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Abstract
Solvers for constraint optimisation problems exploit variable and value ordering heuristics. 
Numerous expert-designed heuristics exist, while recent research learns novel, customised 
heuristics from past problem instances. This article addresses unseen problems for which no 
historical data is available. We propose one-shot learning of customised, problem instance-
specific heuristics. To do so, we introduce the concept of deep heuristics, a data-driven 
approach to learn extended versions of a given variable ordering heuristic online. First, for 
a problem instance, an initial online probing phase collects data, from which a deep heu-
ristic function is learned. The learned heuristics can look ahead arbitrarily-many levels in 
the search tree instead of a ‘shallow’ localised lookahead of classical heuristics. A restart-
based search strategy allows for multiple learned models to be acquired and exploited in the 
solver’s optimisation. We demonstrate deep variable ordering heuristics based on the small-
est, anti first-fail, and maximum regret heuristics. Results on instances from the MiniZinc 
benchmark suite show that deep heuristics solve 20% more problem instances while improv-
ing on overall runtime for the Open Stacks and Evilshop benchmark problems.

Keywords  Variable ordering · Machine learning · Constraint optimisation problem · 
Gecode · Random forest regression

Mathematics Subject Classification (2010)  90C27 · 68T05

1  Introduction

The order in which the variables are chosen can have significant effect on the total runt-
ime of a constraint optimisation problem (COP) solver [1]. Various variable ordering heu-
ristics have been designed by human experts [2–4]. Recent work also acquires dedicated 
heuristics using machine learning (ML), or learns which of a given set of heuristic to use 
[5–8]. However, both classical and learned heuristics are based on the current search node. 
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Further, some ML methods may require significant offline training time before starting 
search, while others face the familiar ML difficulty of generalising to unseen instances.

This article addresses the situation of online solving of unseen optimisation problems 
for which no historical data is available for learning. We introduce the concept of deep 
heuristics, a data-driven approach to learn extended versions of a given heuristic. We adopt 
regression analysis, a simple ML technique which requires little data or training time. The 
acquired deep variable ordering heuristics are approximation functions that look at multi-
ple levels of a search tree with the aim of generalising better than classical variable order-
ing heuristics.

We demonstrate deep heuristics derived from three representative variable ordering heu-
ristics: smallest, anti first-fail, and maximum regret. On the MiniZinc benchmark suite, we 
empirically compare deep and classical ‘shallow’ versions of these heuristics. The results 
indicate that deep heuristics solve 20% more problem instances while also improving on 
overall runtime for the Open Stacks and Evilshop problems.

In more detail, we implement deep heuristics in the open source Gecode solver [9]. 
Inspired by Chu and Stuckey [10], given a problem instance, an initial probing phase 
employs pseudo-random search to gather a variety of variable–value assignments. This 
data, including features and labels, is then utilised by the machine learning component to 
acquire a deep heuristic function. Then second, during solving, given the current search 
state, the solver can predict scores with the learned model and select the variable with the 
best predicted score. Third, to leverage the pseudo-random nature of the probing data, a 
restart-based search strategy allows for multiple ML models to be learned, increasing the 
chance of finding promising solutions.

The article proceed as follows. After brief preliminaries in Sections 2, and 3 introduces 
and formalises the concept of deep heuristics. Section 4 provides an experimental study on 
four classes of COPs. Section 5 positions our contribution in the literature. Section 6 con-
cludes and points out future directions.

2 � Preliminaries

We denote a Constraint Satisfaction Problem (CSP) as the tuple (V,D,C), where V is a finite 
set of decision variables; D is a finite set of domains Dv for each variable v ∈ V, each con-
taining containing the possible values for v; and C is a finite set of constraints on what val-
ues each variable v ∈ V may take. One can also add an objective function to a CSP which 
is maximised or minimised. This turns the CSP into a Constraint Optimisation Problem 
(COP).

Given a CSP or COP, a variable ordering heuristic decides which variable to assign 
a value to first [11]. A typical heuristic is first-fail [2] that selects variable x ∈ V which 
is most likely to fail, meaning that by assigning a value to x first the constraints cannot 
be satisfied. Formally, this is the same as picking the variable with the smallest remain-
ing domain. On the other hand, anti-first-fail (AFF) selects the variable with the largest 
domain, least likely to fail. The smallest (SM) heuristic simply chooses the variable with 
the smallest value in its domain. Maximum regret chooses the variable with the largest dif-
ference between the two smallest values in its domain.

Many other human-designed heuristics exist for both variable and value ordering, and 
more recent efforts acquire novel heuristics by machine learning, as discussed in Section 5.
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3 � Deepification: learning deep heuristics

This section explains how we create deep variable ordering heuristics by defining deep 
heuristic score functions. We approximate these score functions in an online setting 
with a supervised ML model, which is used during restart-based search in Gecode. Fig-
ure 1 summarises the proposed learning-and-solving framework.

3.1 � Deep heuristic score functions

A deep heuristic is built using a deep heuristic score function (DHSF) which repeatedly 
uses a classical heuristic score function. That is, for a graph with tree-like shape where 
nodes represent variables and edges are the next variable selection options, a DHSF 
looks at multiple levels of the tree, iterating over multiple nodes.

Intuitively, a shallow score looks only at the tip of the iceberg: the idea is that a 
shallow score is computed from a fast-to-compute and (relatively) easy-to-understand 
decision. By contrast, a deep score aims to understand more and make a more judi-
cious decision. It looks further into the sub-tree, trying to reveal whether a decision was 
indeed better than others. For example, suppose the average sub-tree of decision A over 
the average sub-tree of decision B yields a better score, but decision B had better shal-
low score: then a myopic shallow decision here may have hidden the more interesting 
branch.

Fig. 1   Probing, learning, and heuristic search phases implemented in Gecod



	 F. Doolaard, N. Yorke‑Smith 

1 3

Definition 1  A heuristic score function h takes as input the features of a search node 
based on an arbitrary heuristic ϕ, and outputs a heuristic score, based on the objective (i.e., 
minimise or maximise) of heuristic ϕ.

For example, the heuristic score function for the smallest heuristic has as input an 
unassigned variable, and outputs the lowest value in the domain as the heuristic score. 
Other features of a search node that a HSF might use are, for example, the sum of the 
domain sizes of all variables, the value assigned to a variable, or the domain size of a 
variable.

We take a heuristic score function as one of the inputs to a deep heuristic score 
function:

Definition 2  A deep heuristic score function H takes as input a depth parameter d and a 
heuristic score function h, and outputs a deep heuristic score based on the heuristic score 
function h over a graph fragment.

For example, a DHSF based on smallest could return a deep heuristic score by aver-
aging all the collected heuristic scores, as we explain below. Note that a DHSF does not 
provide a predicted score, rather it is used below as a label to learn a deep heuristic.

Figure  2 provides an illustration of computing a DHSF given a depth value d, for 
different nodes in a graph with a tree-like shape. The nodes coloured blue represent the 
current variable under consideration in the search. The edges represent the selection 
of a currently-unassigned variable from that node. As seen, while a DHSF may give 
substantial information about many nodes compared to a heuristic score for a single 

Fig. 2   Examples of computing a deep heuristic score with a total of three variables. The nodes represent the 
current variable ordering and the edges a variable selection. A solution is found through the path {A,B,C,D}
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node, computing multiple heuristic scores is a costly operation during search. Hence in 
the sequel we acquire a learned model to approximate a given DHSF and predicts the 
DHSF’s scores based on a set of features.

Given a DHSF – whether the exact function or a learned approximation of it – we can 
select variables based on its outputs. In the example graph of Fig. 2, consider node A. We 
compute a deep heuristic score for each of the variable selection options x, y, and z by 
inputting the set of features for node A. We then compare the scores and select the variable 
with the highest or lowest score depending on the kind of heuristic we want to use. For 
example, if we use the smallest heuristic then we use the minimum score of the DHSF. We 
call the heuristic that selects a variable this way deep smallest.

3.1.1 � Three example deep variable ordering heuristics

We demonstrate how to deepify smallest, maximum regret, and anti-first-fail heuristics. 
The choice to deepify here anti-first-fail (AFF) rather than first-fail is arbitrary. The ambi-
tion is to present the potential of the deepification concept through the diversity of these 
three heuristics. Section 6 discusses deepifying other heuristics.

Specifically, we consider the implementation of these three heuristics in Gecode [9]. We 
deepify the heuristics given the features that can be retrieved from Gecode. For each of the 
heuristics, we define the corresponding heuristic score function h (Table 1). The DHSFs 
are defined recursively as follows:

where x is an available variable that is selected in the current search node (i.e., one of 
the currently unassigned variables); v the value to be assigned for the selected variable x, 
i.e., x ← v; k the current level in the tree; M the set of variables of children of the current 
node; hr(x) the heuristic score for heuristic r by selecting variable x; nodes-counted the 
total nodes for which a heuristic score is computed; and d the depth for which we compute 
the heuristic in the number of levels of a tree.

For the assignment of values we simply choose the lowest value in the domain for mini-
misation problems and the highest value for maximisation problems. While value selec-
tion heuristics can be used for better performance, in order to isolate the effect of vari-
able ordering heuristics in this article we consistently use the indomain_min MiniZinc 

(1)g(x, v, k) =

�

hr(x) +
∑

y∈Mg(y, v
�, k + 1) if k < d

0 if k = d

(2)H(x, v, k) =
g(x, v, k)

nodes − counted

Table 1   Heuristic score functions Heuristic score fn. Output Objective

hsmallest(x) lowest value in Dx minimisation
hmax-regret(x) difference between the two 

smallest values in Dx 
maximisation

hanti-ff(x) size of domain Dx maximisation
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annotation (for minimisation problems) for both the Gecode heuristics and their deep ver-
sions. Dynamic variable and value ordering are again discussed in Section 6.

3.2 � Approximating deep heuristic scores

Since deep heuristic score functions are too expensive to compute at solving time, and 
moreover require information ahead in the search tree which might be yet unknown from a 
given search node, we use online supervised learning to approximate DHSFs.

Training samples are needed to fit a ML model, where Xf are the features, yscore the 
labels (scores), and ψ the approximate deep heuristic score function:

In our setting historical solving data is not available: we begin with an unseen problem 
instance and assume that no probing or other search has been done before solving com-
mences. To overcome the lack of training samples, we create an instance-specific dataset 
online, through a probing phase over the COP. The probing phase acts as a short pre-search 
to gather features at every search node of the search tree, akin to how Chu and Stuckey [10] 
learn value heuristics. The probing creates a probe tree, which in our current implemen-
tation is then discarded once the information is extracted from it. An idea for the future 
would be to re-use part of the probe tree in the main solving phase.

The probing phase provides data on different variable assignments and their correspond-
ing label based on the chosen heuristic score function. To provide a maximally-diverse set 
of assignments, we employ a random variable order and random value assignment during 
probing. Regardless of which DHSF is to be learned, the following features are saved at 
each search node: variable domain size Dx, sum of the domain sizes of all variables DV, 
assigned value v, value position in the domain vp, minimum and maximum values in the 
domain vmin and vmax, maximum regret as the difference between the two smallest value 
in the domain rmin, maximum regret as the difference between the two largest value in the 
domain rmax.

These features are possible to collect during probing, and also during the actual search. 
This is important because predictions have to be made based on the features gathered dur-
ing probing. Features such as ‘number of siblings/children’ tell us about the structure of the 
search tree but are not known during search. For example, visiting a node for the first time 
means the node does not have any children nodes yet, thus making that feature unreliable.

At the end of the probing phase, with the feature data acquired, we compute the labels 
yscore. We thus compute the deep heuristic score for each node in the search tree that was 
probed, discarding nodes in the probe tree that have children fewer than d levels deep.

Figure 3 gives an example of the computation of labels for a depth value of 2. Let there 
be a heuristic score si for each variable i. The only nodes from which deep heuristic scores 
can be computed are the green nodes, respecting the depth value. From node A, select-
ing variable y would yield a deep heuristic score of (sy + sx + sz)/nodes-counted = (2 + 1 
+ 1)/3 ≈ 1.33 by (2). From node A, selecting variable z, would yield a deep heuristic score 
of (sz + sx + sy)/nodes-counted = (3 + 1 + 2)/3 = 2. Finally, from node B, selecting variable 
y, would yield a deep heuristic score of (sy + sx)/nodes-counted = (2 + 1)/2 = 1.5.

Algorithm  1 shows the naive approach to compute the labels based on the recursive 
function (2). It could be improved by using a dynamic programming algorithm, iterating 
from leaves to root and memorising computed values.

(3)�(Xf ) = yscore



Online learning of variable ordering heuristics for constraint…

1 3

Putting the pieces together, the intuition is summarised as follows: we gather data from 
a probe tree and use that data to acquire a learned model, which approximates a DHSF. 
During the main solving phase, if we had the entire search tree in front of us, we would 
look not only at the current node being explored, but also at its children up to a specified 
depth. However at solving time, since we do not have the entire tree – indeed, the search 
is only constructing it incrementally – we exploit whatever information we have at the cur-
rent node, and also an estimate for the information in its future children, based on what was 
learned from the probe tree. Next we explain how this main search proceeds.

3.3 � Using deep heuristics in search

Recall that the three steps of our approach are probing, machine learning and restart-based 
heuristic search (Fig. 1). We give implementation details of each in turn and explain the 
search, the final phase.

Probing gathers data by solving the COP using random variable and value orderings. 
A cutoff bound restarts search after a specified number of failures. A new first variable is 
selected after each restart, in order to gain maximal data at the top of the search tree [12].

The learning must operate online, and so should be relatively fast in training and fast in 
prediction. We considered support vector regression and stochastic gradient descent, and 
settled on random forest regression. Even with a linear model, the ML latency means it 
is not tractable to make predictions for every feature combination. To save runtime, we 
can cache predictions and re-use them when a variable ordering has been seen before. The 
downside to this is that a value change also leads to a prediction change in the model and a 
cached prediction would result in a different outcome.

Algorithm 1   Computing labels yscore.
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Heuristic search is implemented upon Gecode 6.2.0 using custom branchers which 
make choices on which variable and value to pick next. For each currently-unassigned vari-
able, a heuristic score is predicted through the ML model within this brancher. A variable 
is then selected depending on the chosen deep heuristic: e.g., the lowest predicted heuristic 
score for deep smallest and deep max regret and the highest predicted score for deep anti-
first fail. As explained earlier, since deep heuristics are not used for value selection, we use 
the minimum or maximum value in the chosen variable’s domain, for minimisation and 
maximisation problems, respectively.

Fig. 3   Computing labels yscore in the green nodes for variable choices at least 2 levels deep
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Lastly, to obtain a wider variety of variable orderings and values, we exploit a restart-
based process which allows for multiple search jobs within the total search time given. The 
intuition behind the idea is to find a successful deep heuristic search out of multiple jobs, 
leveraging the stochastic nature of the deepification. Figure  4 shows an overview of the 
restart-based search.

A job consists of probing, ML fitting and heuristic search. First we specify a job time. 
Whenever the search does not finish within the job time then the job is halted, and the next 
job started. Data gathered by probing is not transferred between jobs, as initial experiments 
found it greatly increases the time to fit a random forest regression model. Jobs restart 
sequentially until the overall search time limit is reached. Note that within each search 
job, default Gecode search is used (other than the custom variable ordering). In particular, 
Gecode’s restart-based search (‘rbs’) is not used. In Section 4 when comparing with clas-
sical shallow heuristics, we likewise use Gecode’s default search for the latter, and not its 
‘rbs’.

One could argue to perform longer probing instead of multiple shorter probing phases. 
However, besides causing a longer fitting time this increases the chance that the solver may 
be stuck for a long time on a variable ordering. In this case, the solver tries to backtrack, 
assigning different values to the variables, but fails frequently. However, by restarting 
search completely we get a different predicted variable ordering due to the pseudo-random 
probing.

3.3.1 � Integration

The framework of Fig.  1 is implemented in C++ inside Gecode, which is invoked from 
MiniZinc. The deep heuristics can then be used with this MiniZinc annotation:

solve :: heuristic_search(q) minimize;
where q is a list of decision variables in a minimisation problem. The probing is imple-

mented in C++ in Gecode. To learn the approximate DHSF, from within Gecode we call 
a Python script which uses the Scikit-Learn library 0.23 to train the ML model. Lastly, as 
noted, the restart-based search is implemented with custom Gecode branchers.

The source code is available at: https://​doi.​org/​10.​4121/​17081​021.1

Fig. 4   Restart-based search: independent jobs with a job time repeat until search time is reached

1  DOI will be made active by data.4tu.nl after paper acceptance.

https://doi.org/10.4121/17081021
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4 � Experimental study

We conduct an empirical study to investigate how deep heuristics affect total solving 
time and number of instances solved. The focus is the performance of the Gecode 
‘shallow’ variable ordering heuristics versus their deep versions. Further, we examine 
varying the probing time limit, the job time limit, and the deepification depth.

4.1 � Problem instances

From the MiniZinc benchmarks repository [13] we test deep heuristics on four representa-
tive problem classes: Resource Constrained Project Scheduling Problem (RCPSP), Evil-
shop, Amaze, and Open Stacks; respectively, 138, 11, 13, and 43 instances. These four 
problem classes are selected based on a number of factors.

First, they provide many instances relative to other problem classes in the reposi-
tory for us to experiment with. Second, some of the alternative problem classes con-
tain boolean or float decision variables and we have not yet implemented deep heuris-
tics for these variable types; the choice was limited to integer problems. Third, even 
though Evilshop has much resemblance to the RCPSP problem we selected it due to 
its different features: it leaves the capacity of resources as a variable, and its tasks use 
more than half of the possible maximum capacity. Thus, we could observe whether or 
not there was a significant change of results due to sequential search or a large change 
in domain values and size. (We observed none of those changes.) From the classes 
we select problem instances that run for at least a minute in Gecode with the smallest 
variable ordering heuristic, to exclude overly-simple instances.

RCPSP  The RCPSP2 is an NP-hard problem [14] which consists of J activities each hav-
ing a process time pj for j ∈ J. Once an activity is started it cannot be stopped and due 
to technological requirements there is a precedence relation between activities. An activ-
ity requires an amount of resources, for example a machine or vehicle, before it can start. 
These resources are renewable as their full capacity becomes available again after a period 
[15]. The objective is to find and optimal schedule with respect to the earliest end time of 
the schedule. The tasks’ resource requirements may not exceed the resource capacities and 
each precedence relation must be met.

Specific to Minizinc and CP, this problem is modelled with a constant discrete capacity 
over time and tasks with a constant discrete duration and resource requirements.

The solver will use the starting times of the activities as decision variables.

Evilshop  The Evilshop3 problem is a variant of the classic job-shop scheduling problem 
where the capacity of resources has been left as a variable and tasks use more than half of 
the possible maximum capacity. Besides that, start times are scaled up.

The solver will use the starting times of the jobs as decision variables.

2  https://​github.​com/​MiniZ​inc/​miniz​inc-​bench​marks/​blob/​master/​rcpsp/​rcpsp.​mzn
3  https://​github.​com/​MiniZ​inc/​miniz​inc-​bench​marks/​blob/​master/​evils​hop/​evils​hop.​mzn

https://github.com/MiniZinc/minizinc-benchmarks/blob/master/rcpsp/rcpsp.mzn
https://github.com/MiniZinc/minizinc-benchmarks/blob/master/evilshop/evilshop.mzn
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Amaze  Amaze4 is a game in which we have been given a grid containing pairs of natural 
numbers where the goal is to connect the pairs: 1 to 1, 2 to 2, etc. Lines can only be drawn 
horizontally or vertically and they may never cross.

The solver will use each cell of the grid as a decision variable to insert natural numbers.

Open Stacks  In the Open Stacks5 problem, also called Minimising the Maximum Number 
of Open Stacks (MOSP), there are customers who can order products. Only one product 
at a time can be manufactured in batches. The customers can order multiple products and 
a stack to save the products for the customers is opened once manufacturing for one of 
their products has begun. Once all ordered products for a customer are manufactured, the 
products can be sent and the stack is freed. The aim is to determine the sequence of manu-
facturing products such that we minimise the maximum amount of open stacks that are 
needed which is the maximum number of customers whose products are being manufac-
tured simultaneously [16].

The solver uses the schedule of manufacturing products as decision variables.

4.2 � Parameter selection

All the instances are run for a maximum time of 4 hours. We set the job time to be 15 
minutes for the deep heuristics, allowing at most 16 jobs in total. We compare the solvers 
with and without instances that time out. For all problems we select a depth value of 25. 
The number of decision variables of the instances is at least 30, which means that d = 25 
ensures we gather data for at least the first 5 levels of the search tree.

Selecting how long we should probe can be very dependent on the problem: as the com-
plexity of the problem changes, for instance multiple decision variables or more constraints 
per variable, it may take a variable amount of time to collect data. For RCPSP, Evilshop, 
and Amaze we set the probing limit to 1 million nodes and for Open Stacks to 2 minutes, 
as the collection of 1 million nodes of information on Open Stacks takes an excessive time. 
Probing time for RCPSP, Evilshop, and Amaze is usually within 1 minute. The last column 
of Table 4 shows the average dataset size that is used after probing has finished.

4.3 � Evaluation metrics

We use three metrics to assess quality of deep heuristics. The first is to compare total runt-
ime versus Gecode’s standard variable ordering heuristics. Note that a comparison in total 
number of search nodes cannot be made due to a limitation in Gecode: when a job is can-
celled in the restart-based search, Gecode does not show the statistics with the number of 
nodes. Second, we record the number of instances that are solved by each heuristic.

The third metric is the quality of the fitted ML model. We seek to measure this with the 
coefficient of determination R2. Further, since the order of the predicted values for select-
ing variables is more important than predicting the exact true value, we use Spearman’s 
rank correlation metric rs to see the relationship between the predicted data set and true 
test set. Thirdly, we use the true rankings of predicted values. R2 and Spearman’s rank 

4  https://​github.​com/​MiniZ​inc/​miniz​inc-​bench​marks/​blob/​master/​amaze/​amaze.​mzn
5  https://​github.​com/​MiniZ​inc/​miniz​inc-​bench​marks/​blob/​master/​open∖_​stacks/​open∖_​stack​s∖_​01.​mzn

https://github.com/MiniZinc/minizinc-benchmarks/blob/master/amaze/amaze.mzn
https://github.com/MiniZinc/minizinc-benchmarks/blob/master/open∖_stacks/open∖_stacks∖_01.mzn
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correlation are also used to evaluate the top 10 predicted values (rather than all predicted 
values) to get a better idea of the quality of early choices. These are denoted as R2@10 and 
Spearman@10. These metrics are used on a withheld 20% of the dataset to prevent bias; 
the other 80% is used for training.

Since our restart-based search is sequential and does not carry over any information 
between searches, the final results reported below in each case come from the deep heuris-
tic search in one search job: the last job.

4.4 � Evaluating deepified heuristics

First, Fig. 5 shows the total runtime of the smallest (SM), maximum regret (MR), and anti-
first-fail (AFF) heuristics versus the deep versions, deep smallest (DS), deep maximum 
regret (DR), and deep anti-first-fail (DAFF). Averaged over all instances, DS uses 7.7% 
less total runtime than SM, DAFF 26.1% less than AFF, while DR uses 4.4% more than 
MR.

Figure 6 compares the classical heuristics with each other and the deep heuristics with 
each other by showing their average runtime. We observe that AFF performs worse than 
the other heuristics, and also that AFF mostly timed-out. We also observe that MR on aver-
age outperforms the other heuristics for each problem where as DR does not. Below we 
compare the deep heuristics with each other in detail.

Figures 7 and 8 and Table 2 compare the average runtime. It is evident that AFF per-
forms worse than DAFF. Figure 7 includes timeouts, which means that we do not know for 
how long these instances would have run given unlimited runtime. These runs are assigned 
a time of twice the timeout, i.e., 8 hours. Figure 8 shows the same comparison without 
timed-out instances. On most problems deep heuristics are outperformed in average runt-
ime. Figure  8b misses two bars for the Amaze problem because there are no instances 
where neither AFF nor DAFF time outs.

Second, we examine the the percentage of instances solved per problem, in Table 3. The 
deep heuristics outperform their classical counterparts as they are able to solve more prob-
lems within 4 hours. Only in the Amaze problem deep smallest (DS) and deep regret (DR), 
and Evilshop DS is outperformed. Drilling down, Fig. 9 shows the number of instances in 
which heuristics outperform their counterpart. Notable is that DS and DAFF outperform 
SM and AFF in more instances, while many RCPSP problems cannot be solved within the 
time limit by either heuristic. Overall MR works better than SM and AFF on RCPSP and 
Open Stacks.

If a deep heuristic search completes within 4 hours then one of the search jobs in the 
framework succeeded. We denote these successes as ‘solutions’. The solutions are inde-
pendent of other search jobs and hence we compare their runtimes in Fig. 10. It can be said 
that the solutions have significantly less runtime than the classical heuristics. This can be 
partly explained by the fact that search jobs have a maximum runtime of 15 minutes: the 
searches that timed out without finding a solution only had jobs that ran for more than 15 
minutes. Recall that within each search job, restarting search is not employed; likewise for 
the runs with shallow heuristics.

Third, Table 4 shows the average quality of the fitted model for deep heuristics. Note 
that the values ‘err’ denote values that have not been recorded due to the dataset being 
likely too small. Rankings for each dataset were computed by looking at what variable 
the heuristics would select first and giving it rank 1, etc. Then we compute the pre-
dicted selection of variables for the corresponding deep heuristic and rank its order of 
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Fig. 5   Total runtime divided into probing, ML, and search
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selection, similarly. Finally we compare the two rankings, by showing how the top three 
predicted rankings compare to the actual ranking in the dataset. As explained earlier, we 
report the R2 and Spearman’s rankings, both for the whole ranking and for the top 10.

Fig. 6   Comparison of average runtime between heuristics
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Fig. 7   Comparison of average 
runtime including timed-out 
instances
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Fig. 8   Comparison of aver-
age runtime without timed-out 
instances
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The R2 values in Table 4 are high; similarly, the Spearman’s rank correlations are mostly 
around 0. However the true ranking is based on only 20% of the dataset, which means that 
data for early variable assignment in the total solution could be located in the other 80%. 
The table also shows the true ranks of predicted values.6 In general we see that the first 
three predicted ranks are close to the true first rank based on the average size of the data-
set. For example, for DS on RCPSP the 1st predicted rank has as true 1st rank 706 which is 
706/41730 ⋅ 100 = 1.7% from the top rank. This suggests that the DHSFs are performing 
better than either R2 or Spearman can capture (Tables 5 and 6).

Table 2   T-tests of average total runtime, without and with timeouts, and average job solution runtime with 
timeouts. p-value with α = 0.05. ‘–’ denotes p-value cannot be computed because of too few instances

Comparison Total time Total time Job solution time

no timeouts with timeouts with timeouts

p-value signif.? p-value signif.? p-value signif.?

DS vs SM: RCPSP 0.12 No 0.68 No 1.02 ⋅ 10− 13 Yes
DR vs MR: RCPSP 0.014 Yes 0.75 No 6.76 ⋅ 10− 14 Yes
DAFF vs AFF: RCPSP 0.45 No 4.6 ⋅ 10− 4 Yes 2.8 ⋅ 10− 23 Yes
DS vs SM: Evilshop 0.19 No 0.08 No 4.5 ⋅ 10− 5 Yes
DR vs MR: Evilshop 0.15 No 0.21 No 2.2 ⋅ 10− 3 Yes
DAFF vs AFF: Evilshop 0.13 No 0.028 Yes 1.2 ⋅ 10− 5 Yes
DS vs SM: Amaze – No 0.53 No 0.12 No
DR vs MR: Amaze 0.45 No 0.004 Yes 0.62 No
DAFF vs AFF: Amaze – No 0.018 Yes 2.8 ⋅ 10− 21 Yes
DS vs SM: OS 0.33 No 3.8 ⋅ 10− 4 Yes 4.86 ⋅ 10− 9 Yes
DR vs MR: OS 0.016 Yes 0.85 No 0.14 No
DAFF vs AFF: OS 0.14 No 1.7 ⋅ 10− 4 Yes 1.2 ⋅ 10− 8 Yes

Table 3   Percentage of total 
instances solved by heuristics

Heuristic RCPSP j30 Evilshop Amaze Open stacks

Gecode smallest 29.7% 54.6% 38.5% 23.3%
Deep smallest 31.2% 18.2% 23.1% 54.3%
Gecode anti-first fail 15.9% 18.2% 18.2% 23.3%
Deep anti-first fail 35.4% 63.6% 63.6% 56.6%
Gecode max regret 37.7% 18.2% 76.9% 57.4%
Deep max regret 41.6% 48.5% 28.2% 58.1%

6  For DR on Evilshop, metrics could not be recorded due to an unknown implementation reason.
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Fig. 9   Number of times that heu-
ristics outperform each other
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Fig. 10   Comparison of average 
runtime: deep heuristic solutions
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4.5 � Exploring probing meta‑parameters

We next focus on a preliminary exploration of three meta-parameters of the deepification pro-
cess: probing time, job time, and deepification depth.

First, halving probing time leads to increased runtime for most problems, as shown in 
Fig. 11, with a respective total increase of 9.1%, 15.2%, and 13.7% for DS, DAFF, and DR. We 
can see that the total probing time is sometimes larger even though probing time was halved: 
this could be the case because it took more search jobs to find a solution which means more 
probing phases were initiated (Fig. 12).

Second, Table 7 presents the number of instances solved when we halve the job time from 
900 to 450 seconds. Comparing with Table 3, it can be noticed that halving the job time leads 
to a considerable decrease of the number of instances that are solved. That means that we do 

Table 4   Average quality of deep heuristics presented through R2, Spearman’s rank correlation, and pre-
dicted rankings. ‘err’ denotes value not recorded

Heuristic and R2 R2@10 Spear. Spear. 1st pred. 2nd pred. 3rd pred. dataset
Problem @10 value value value size

DS RCPSP 0.19 − 31787 0.40 0.03 706 818 822 41730
DS Evilshop 0.31 − 71.74 0.14 0.39 14 15 17 272
DS Amaze − 1.68 − 35904 − 0.02 0.16 13 13 16 385
DS Open Stacks 0.05 − 28957 0.29 0.02 10361 9474 10258 143417
DAFF Fail RCPSP 0.39 − 13701 0.57 0.03 1812 1687 1814 41426
DAFF Evilshop − 0.01 − 109.17 0.25 0.07 22 22 24 274
DAFF Amaze − 0.32 − 7148 − 0.04 0.15 16 18 21 1198
DAFF Open Stacks − 0.02 − 35837 0.21 0.05 3994 4274 4271 94234
DR RCPSP − 0.12 0.00 0.01 0.00 802 785 724 41449
DR Evilshop err err err err err err err 270
DR Amaze − 0.16 − 0.05 NaN 0.10 34 36 33 1230
DR Open Stacks − 0.12 0.00 0.09 0.02 4741 5120 5010 138506

Table 5   Significance of mean 
comparison average runtime with 
timeouts, comparing the p-value 
to α = 0.05

Mean average runtime (with 
timeouts)

p-value Significant 
difference

DS vs SM: RCPSP 0.68 No
DR vs MR: RCPSP 0.75 No
DAFF vs AFF: RCPSP 4.6 ⋅ 10− 4 Yes
DS vs SM: Evilshop 0.08 No
DR vs MR: Evilshop 0.21 No
DAFF vs AFF: Evilshop 0.028 Yes
DS vs SM: Amaze 0.53 No
DR vs MR: Amaze 0.004 Yes
DAFF vs AFF: Amaze 0.018 Yes
DS vs SM: OS 3.8 ⋅ 10− 4 Yes
DR vs MR: OS 0.85 No
DAFF vs AFF: OS 1.7 ⋅ 10− 4 Yes
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not profit from the increase in the number of search jobs that can be performed: there is simply 
not enough time to solve certain data instances within 450 seconds.

Figure 13 shows the number of times classical heuristics and deep heuristics outperform 
one another. Notable is that SM outperforms DS in more instances but DAFF and DR show 
an improvement in number of outperforms. There is a slight improvement for the Open Stacks 
problem and no improvement for the Amaze and Evilshop problem.

Third, halving the DHSF depth results in an overall increase of 1.3% average runtime and 
21.4% decrease in average solution runtime (Fig. 14). Through inspection we see that deep 
heuristics with a lower depth value perform worse on RCPSP and Open Stacks. On the other 
hand, Evilshop only sees an improvement with DR while Amaze has an overall lower average 
runtime. This improvement can be a specific benefit to the Amaze problem because of the 
increased amount of data gathered. Looking closely at DR on RCPSP, we see a large increase 
in average runtime. Overall, reducing depth does not seem to positively affect runtime, possi-
bly indicating that deep heuristics need a sufficient depth to find promising solutions (Fig. 15).

5 � Related Work

There is much recent interest in combining combinatorial optimisation with reinforce-
ment learning (e.g., [17–20]) and deep neural networks (e.g., [21, 22] ). In contrast to most 
works, our aim is an online setting where training time is included in the total solving time.

Perhaps the most interesting connection is with the work of Rousseau and col-
leagues [8, 18], who combine reinforcement learning (RL) and constraint program-
ming. The approach is to use a dynamic programming model as a common interme-
diary. RL acquires a value selection heuristic, which is used in the COP search. The 
authors note the importance of caching to reduce the number of invocations to the ML 
component at runtime.

Related to our work in another way is the predict-and-optimise paradigm [23] in 
that we do not directly learn to solve an optimisation problem; hence the quality of the 
learned function per se is less important than its use to improve the subsequent solving 

Table 6   Significance of mean 
comparison average solution 
runtime with timeouts, 
comparing the p-value to α 
= 0.05

Mean average solution runtime p-value Significant 
difference

DS vs SM: RCPSP 1.02 ⋅ 10− 13 Yes
DR vs MR: RCPSP 6.76 ⋅ 10− 14 Yes
DAFF vs AFF: RCPSP 2.8 ⋅ 10− 23 Yes
DS vs SM: Evilshop 4.5 ⋅ 10− 5 Yes
DR vs MR: Evilshop 2.2 ⋅ 10− 3 Yes
DAFF vs AFF: Evilshop 1.2 ⋅ 10− 5 Yes
DS vs SM: Amaze 0.12 No
DR vs MR: Amaze 0.62 No
DAFF vs AFF: Amaze 2.8 ⋅ 10− 21 Yes
DS vs SM: OS 4.86 ⋅ 10− 9 Yes
DR vs MR: OS 0.14 No
DAFF vs AFF: OS 1.2 ⋅ 10− 8 Yes
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Fig. 11   Reduced probing time: 
Total runtime
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Fig. 12   Hypothesis 1: Average 
runtime of classical heuristics 
versus deep heuristics
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of the combinatorial problem.7 Another connection is with efforts to estimate the size 
of a branch-and-bound search tree and estimate the percentage of the search process 
complete in an anytime fashion [24].

The deep heuristics in our work depend on human expert designed variable ordering 
heuristics. Haralick and Elliott [2] designed the first-fail heuristic, ordering variables 
on smallest domain first. Boussemart et al. [3] designed domwdeg, ordering variables 
on domain size divided by weighted degree. Refalo [4] designed the impact-based 
search strategy where we order variables or values based on how much a variable’s 
domain size would decrease. Petrovic and Epstein [25] learn which among a set of 
heuristics to use. These and many other human expert heuristics and meta-heuristics 
are employed in specific heuristic–problem combinations – and are well studied [26] 
– while our work is more flexible by learning variable ordering heuristics based on a 
problem’s search tree.

Frost and Dechter [27] develop a value ordering heuristic, look-ahead value order-
ing (LVO), based on the number of times a value of the current variable conflicts with 
some value of a future variable. The authors do not consider use of machine learning to 
approximate and accelerate the lookahead.

Closer to our work, Chu and Stuckey [10] use online learning to acquire value order-
ing heuristics, using partial least squares regression to learn the score function. Our 
approach differs in that, firstly, we learn variable ordering heuristics and we utilise a 
more complex score function, utilising multiple heuristic score functions over multiple 
nodes. Second, our framework uses a restart-based approach in probing and in search.

Glankwamdee and Linderoth [28] used lookahead branching on grand-child nodes in 
a mixed integer program (MIP), finding that information from these nodes often reduces 
the total size of the search tree and can fix bounds on variables. In our work we use 
deeper lookaheads, but only during probing since using a lookahead at every node in the 
search tree is a costly operation. Instead we exploit ML predictions to circumnavigate 
this cost.

Other works make use of ML to select heuristics. For instance, Xia and Yaap [6] 
use a multi-armed bandit reinforcement learning approach and experiment with this on 
non-binary CSPs. The idea is that each arm is a choice for a heuristic; choosing out of 
multiple arms is a trade-off between exploration and exploitation. Alanazi and Lehre 
[5] present the limitations of additive reinforcement learning mechanisms for selection 
hyper-heuristics. Rather than using such selection heuristics, we select an existing vari-
able order heuristic and learn a problem-specific extended version.

Table 7   Reduced job time: 
Percentage of total instances 
solved

Heuristic RCPSP j30 Evilshop Amaze Open Stacks

Deep smallest 26.6% 9.1% 20.5% 56.6%
Deep anti-first fail 34.8% 15.4% 28.2% 44.2%
Deep max regret 35.5% 15.2% 25.6% 49.6%

7  Outside the scope of this article, but interesting for the future, is to investigate the relationship between 
the quality of the learned models used to deepify heuristics and the overall solving performance exploiting 
those heuristics.



Online learning of variable ordering heuristics for constraint…

1 3

Fig. 13   Reduced job time: Pair-
wise out-performance counts
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Fig. 14   Reduced depth: Average 
runtime
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Fig. 15   Hypothesis 3: Average 
runtime of classical heuristics 
and deep heuristics solutions
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6 � Conclusion and Future Work

This article addressed the problem of one-shot learning of search heuristics for con-
straint optimisation problems. We proposed to learn extended versions of existing vari-
able ordering heuristics, through a deepification process. The learning uses an online 
probing phase to gather data coupled with a fast regression approach. The deepified 
heuristics are exploited in restart-based sequential search.

We demonstrate deep heuristics based on three diverse classical heuristics: smallest, 
anti first-fail, and maximum regret. Compared to the classical ‘shallow’ heuristics, we 
find that deep heuristics solve 20% more problem instances across a representative sub-
set of four MiniZinc benchmarks, while improving on overall runtime for two problem 
classes.

We compared directly between Gecode using a given classical variable ordering heu-
ristic, and our learn-and-search framework and the (automatically learned) deepified ver-
sion of the same heuristic. All other aspects were held constant. Our current work is to 
compare also our approach with Gecode using the same restart-based search, i.e., restarts 
every 15 minutes instead of the Gecode default strategy.

The result that, overall, deep heuristics solve more instances – albeit with increased 
average runtime on some problem–heuristic combinations and reduced average on other 
combinations – suggests development of the approach in a number of possible directions.

First, while we have evidence of the contribution of all the three elements of our 
approach, a full ablation study of the components is interesting. There is also theoretical 
interest in seeing how using exact DHSF computation (supposing unlimited computation 
time) compares with using their approximation.

Second, our framework is implemented in Gecode. To deepify heuristics such as dom-
wdeg, Gecode needs additional instrumentation: during probing we cannot record, e.g., 
search node successes, failures, and added or removed constraints. Besides deep dom-
wdeg, we also attempted to make a deep impact-based heuristic, but faced that Gecode 
does not implement impact-based search by default; we also could not find suitable prob-
lems in the MiniZinc benchmarks which use the impact annotation. On the other hand, 
deepifying other heuristics such as first-fail and occurrence face no such hurdles.

Also related to Gecode, further engineering is needed also to parallelise the probing, 
whatever heuristic is being deepified: Gecode cannot handle our simultaneous node addi-
tion to the same search tree.

Third, our exploratory experiments about probing meta-parameters indicate that set-
ting parameters such as probing time and job time has importance. Meta-parameters 
should be set on separate problem instances to prevent over-fitting. However, based on 
the presented heuristic–problem results, we think it unlikely that the meta-parameters can 
be tuned such that deep heuristics work well for any arbitrary problem instance. If the 
problem class is known, the meta-parameters could be tuned after selecting the right heu-
ristic for the problem; possibly, ML can learn meta-parameters settings given meta-data 
about the COP instance.

Fourth, can we detect (automatically) the cases of instances or problems for which 
shallow or deep heuristics are likely to be best?

Fifth, we explored the use of random search in probing. The use of specific probing 
heuristic(s) is interesting. For example, the smallest heuristic could be used to gather data 
for deep smallest. However, the risk of using a specific heuristic during probing could be 
its bias. Sixth, use of the score from the DHSF might be improved by adding exploration 
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and exploitation attributes. For instance, one could add a discount factor to give more 
weight to earlier choices adhering to the principle of making good early decisions [12].

Distributing our method into MiniZinc is easy: Gecode allows for the implementation 
of custom branchers which can be called by adding a specific annotation for flatzinc files. 
Further, we used Python within C++ to use the latest ML libraries. However, integrating 
the ML library calls from within C++, i.e., within Gecode, is advised. This prevents Python 
script calls and the need to install Python as a dependency, avoids calling Python from C++ 
which risks memory leaks, and provides in principle a faster and more efficient implementa-
tion than Python.

This article showed how to deepify variable ordering heuristics. Our approach can be 
readily applied to value ordering. Further, the learned deep heuristic function can learn 
both variable and value orderings (compare Cox et al. [29]). Another interesting direction 
is extending the restart-based search mechanism. Currently, new data is gathered at every 
restart without saving data from the previous search jobs. Besides running the jobs in paral-
lel, one could allow the total dataset from probing to grow over time. The challenge is the 
volume of data gathered and efficiently learning over it; stochastic gradient descent may be 
an interesting option.
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