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Abstract

Recent work has shown potential in using Mixed
Integer Programming (MIP) solvers to optimize
certain aspects of neural networks (NN). How-
ever little research has gone into training NNs
with solvers. State of the art methods to train
NNs are typically gradient-based and require sig-
nificant data, computation on GPUs and extensive
hyper-parameter tuning. In contrast, training with
MIP solvers should not require GPUs or hyper-
parameter tuning but can likely not handle large
amounts of data. This work builds on recent ad-
vances that train binarized NNs using MIP solvers.
We go beyond current work by formulating new
MIP models to increase the amount of data that can
be used and to train non-binary integer-valued net-
works. Our results show that comparable results to
using gradient descent can be achieved when mini-
mal data is available.

1 Introduction

Training NNs using gradient-based optimization methods
can be tedious. Hyper-parameters require meticulous and
computationally-intensive tuning to reach the best results. Al-
though state-of-the-art methods use gradient-based optimiza-
tion, these standard methods often require a large number of
neurons and immense amounts of data.

A number of studies have been performed recently that try
to counteract the trend of increasingly-large networks. For
instance, a branch of NN optimization that intends to reduce
the size of networks has gained some traction [Huang er al.,
2020]. The motivation of these studies is to decrease the
memory needs of NNs and to increase efficiency in training
and using them, without degrading the networks’ generaliza-
tion ability.

We posit that modelling NNs using mixed integer pro-
gramming (MIP) and training them with discrete optimisation
solvers could work well in reduced memory settings. Recent
work shows that this idea is feasible when using minimal data
[Icarte et al., 2019]. It is unclear whether MIP solvers can
perform well with large networks and large amounts of data.
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Instead, we see potential in using solvers to train smaller net-
works with small batches of data.

Training with solvers may not compare to gradient-based
methods at large scale, but MIP-based training will reduce
hyper-parameter tuning considerably. Choosing learning
rates, momentum, decay, the number of epochs, batch sizes
and more will be unnecessary. By modelling NNs using MIP
and reasonable objective functions, the solver can in princi-
ple find a guaranteed optimal solution. This is advantageous,
as even after extensive hyper-parameter tuning for gradient-
based methods, it can be unclear whether an optimal NN con-
figuration has been reached.

Previous work has shown the advantages of using MIP to
solve particular aspects of NNs. Fischetti and Jo [2018] show
that it is feasible to model NNs using MIP and use solvers to
generate optimized adversarial images for the network. Icarte
et al. [2019] show the feasibility of directly training binary
NNs (BNN) using MIP solvers. In this paper, we go beyond
Icarte et al. [2019] to train integer-valued NNs using MIP
models. Further, we provide new models that resemble pop-
ular loss functions from gradient-based optimization.

This work-in-progress contributes an expandable frame-
work to train NNs using MIP solvers. This framework pro-
vides flexibility such that the user can choose the range of the
networks parameters accordingly to adjust the memory usage
of the NN. Our proposed models can perform comparably to
gradient-based methods when minimal data is available. This
can be useful for training on small datasets, and it reduces the
need for hyper-parameter tuning and the practical necessity
of using GPUs to train NNs.

The paper is structured as follows. Section 2 describes our
approach. Section 3 presents results of two experiments. Sec-
tion 4 positions our contribution in the literature. Section 5
concludes the paper by identifying future directions.

2 Modelling Approach

Icarte et al. [2019] find that their MIP models are limited by
the amount of data they can feasibly use to train NNs. We aim
to increase the amount of data and provide models that per-
form similarly to a gradient descent baseline, given a limited
amount of data on which to train. Further, we aim to capture
arange of NN loss functions.

To this end, we propose three novel NN MIP models that
have the same base model but separate objective functions to
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serve different purposes. The base model they share in com-
mon is a slightly modified model from Icarte et al. [2019].
This base NN MIP model captures: a multi-layer percep-
tron with sign activation function. Our modifications include
removing any objective function and constraints specific to
Icarte et al.’s methodology. We also modify constraints to
allow the network’s parameters to take larger ranges. The
remaining constraints ensure that the NN’s calculations are
correct.

The decision variables to optimize are the network’s inte-
ger weights and biases (9), continuous connections (10) and
binary activations (11). There are L layers in the network.
We specify two sets to simplify notation. The layer sets are
L ={2,...,L}and £L=1 = {1,..., L — 1}. The number of
neurons per layer ¢ is defined as N,.

The variable w;¢; is the weight of the connection from neu-
ron i € Ny_; to neuron j € N,. The variable by; is the
bias of neuron j € N,. To model 1nter-1ayer calculations for

each sample, we use the variable czgj The binary variable

ub ; models the activation of neuron j € Ny for every sample
k € T. With it we model the sign activation function: if the
input to neuron j € Ny is negative ufj =0 (3) otherwise
=1(2). Subsequently, 707 calculates using uz To prop-
I]y model the sign function, the values {0,1} are mapped to
{ 1,1}. Thus, in following layers, equations (5—8) ensure that
MJ (2u(é 1)i — 1) - wjg;. Finally, @f models the normal-
ized value in output neuron j € Ny, for sample k. We choose
€ = 1-1075 in equation (3) to model the inequality in accor-
dance with the variable precision tolerance of the solver we
will use [Gurobi Optimization, 2019].
Equation (4) models calculations of the NN’s first layer
while equations (5-8) model the subsequent layers as noted.
Equation (1) calculates the values in neurons in the final layer.
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The value ¢ therefore represents an encoded predicted value
of the network

All sample labels are encoded using +1/-1 encoding in ac-
cordance with the theme of BNNs and using the sign function
as an activation function. Further, the output neurons (1) are
normalized using a linear approximation method such that all
values are approximately between -1 and 1. In a MIP model
we cannot use non-linear normalization functions, such as
softmax or sigmoid, so we approximately linearly normalize
instead.

We next explain our three model variants and their objec-
tive functions.

2.1 Model 1: Max-correct

Our first proposed model, max-correct, aims to maximize the
number of correct predictions of training samples. It uses a
binary variable for each output neuron to denote whether the
sample has the correct label.

rnaxz Z 0;? (13)

kETjGNL:yle
Vi€ N, keT (14)
Vi€ N, keT (15)
Vj € N (16)

Vi€ NpkeT (17)

This model is simple and fast. It requires only one output
neuron per sample to be positive and maximizes the number
of positive output neurons that correspond to the correct label.
However, there is little confidence in predictions as they just
barely need to be correct. Therefore, similar samples in the
testing dataset may be incorrectly classified.
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2.2 Model 2: Min-hinge

To increase the confidence of predictions, we propose our sec-
ond model, min-hinge. This model is inspired by the squared
hinge loss (18) that can be used when using +1/-1 encoding
for labels. The loss function is thus:

2
1 L
L:Zmax (0,2 —@(J)y(])> (18)
J

The squared hinge loss function is non-linear but can be
approximated using piecewise linear (PWL) functions. PWL
functions are defined by a number of break points and lines
between the break points. By choosing sufficient break
points, the non-linear squared hinge loss function can be ap-
proximated. We can then simply input the multiplication of
our predicted value 3 (1) with the encoded label ¥ to calcu-
late the loss for a single output neuron for a single sample.

The total loss to be minimized is the sum over all output
neurons for all samples (19):

min Y > f(55 ) (19)

keT jeNL

The advantages of this model are that predictions are
pushed to be more confident. The max-correct (2.1) model’s
target is to maximize the number of correct predictions. The
min-hinge model also aspires to do so, but additionally aims
to make each prediction to be above the margin of % The
squared hinge loss (18) is taken from literature so we can be
more sure of the network being optimized reasonably.

2.3 Model 3: Sat-margin

Our final proposed model, sat-margin, combines aspects from
the previous two models. It optimizes a sum of binary vari-
ables, like max-correct (2.1), but also aims to confidently pre-
dict each sample, like min-hinge (2.2).
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The advantages of using the sat-margin model are that it
tries to reach the same minimum objective value as min-hinge
(2.2). However, there is no need for defining PWL functions.
This may help with future work that could have additional
objective functions.

3 Experimental Results

We undertake two experiments that train NNs using the pro-
posed models. Experiment 1 compares training BNNs using
our three models to a gradient descent (GD) baseline on in-
creasingly large training datasets. Experiment 2 trains integer
NNs (INN) using the sat-margin model (2.3).

Both experiments train NNs using the Adult dataset [Ko-
havi and Becker, 1996]. The associated task with the dataset
is binary classification. There are 32560 samples in the train-
ing set and 16280 in the testing set. Each sample represents
an individual and the corresponding label denotes whether the
individual has a yearly income of over 50K or not. Each sam-
ple has 14 attributes, 8 of which are categorical and 6 are
numerical. We pre-process the data such that the categorical
attributes are one-hot encoded and the numerical attributes
are normalized to be between 0 and 1.

We use Gurobi Optimizer version 9.0.1 [Gurobi Optimiza-
tion, 2019] to solve our MIP models. We use a method to
train BNNs introduced by Courbariaux and Bengio [2016] as
our GD baseline. Experiments are run on an 8-core machine
with an Intel Xeon Gold 6148 CPU at 2.40GHz with 32GB
RAM. Each run of a model has a maximum time limit of 10
hours.

The networks trained have one hidden layer containing 16
neurons. We use the sign function as our activation function
in the hidden layer. Each network has two neurons in the
final layer, one for each label the sample can take. To assign
a class to the sample, we choose the larger value of the output
neurons. If the values are equal for a sample, we choose the
label randomly.

To shorten solving time, we do not require each model to
be solved to optimality. Reaching the global optimum with
limited data will likely lead to over-training as well. We there-
fore allow the solver to stop optimizing once the network is
ensured to have a training accuracy of above 90%.

3.1 Experiment 1

Each network is trained using up to 280 samples. We com-
pare how our models perform compared to GD for such lim-
ited data. We are interested in how the resulting networks
generalize to the testing set. We also consider how the run-
times of each model change with more training data. The
purpose of this experiment is to research the feasibility of us-
ing MIP models to train NNs with limited data. We would
like to know how the proposed models compare to each other
so as to know what future work may be interesting.

We hypothesize that the proposed MIP models will per-
form comparably to the GD baseline. The min-hinge (2.2)
and sat-margin (2.3) models should have similar testing accu-
racy but should both outperform the max-correct (2.1) model.
However, the max-correct model will have a much shorter
runtime than min-hinge and sat-margin.

3.2 Experiment 2

We again train NNs using up to 280 samples. In this ex-
periment however, we only use the sat-margin model (2.3).
We would like to research the effects of increasing the range
of the variables that represent weights and biases in the net-
works. We compare training BNNs like in Experiment 1,
where P = 1 (12), to training INNs with P = 3,P = 7,P =
15. Each increase in range represents an extra bit needed
to store a network’s parameter in memory. The purpose of
this experiment is to investigate the benefits of training low-
bitwidth INNs instead of BNNs.
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We hypothesize that NNs with larger ranges for parameters
will be easier to train. Although the increased range results in
larger search spaces, it will be easier to reach good solutions.
BNNs have very constrained variables and smaller search
spaces, but the increased range of INNs could lead to fitting
to training samples easier. Because INNs may find better so-
lutions quicker, we hypothesize that they will have shorter
runtimes. However, they may not generalize better. Increased
ranges of parameters could lead to more over-training, while
BNNs are very regularized.

3.3 Results

Results for Experiment 1 can be seen in Figures 2 and 3, and
the training seen in Figure 1. Each model is run three times
for every amount of training data. Each run uses a random
subset of the available data. The figures show the average
results over the runs. All runs resulted in training accuracies
of above 95%.

Figure 2 shows how well the models generalize and com-
pare them to the GD baseline (gd_nn). We see that with more
data available, testing accuracy generally increases for every
model. The max-correct model is erratic and performs worst
of the models. The min-hinge and sat-margin models perform
similarly and even slightly outperform GD, with increasing
amounts of data.

Figure 3 shows the evolution of runtimes with increasing
amounts of data. It becomes clear that with more than 150
samples to train on, the solving time for min-hinge and sat-
margin drastically increases. Max-correct and GD, on the
other hand, have very short runtimes.

Results for Experiment 2 can be seen in Figures 5 and 6,
and the training seen in Figure 4. We use the sat-margin
model with P values P = 1, P = 3, P = 7Tand P = 15.
Like in Experiment 1, we run each variation three times for
every amount of training data. Each run uses a random sub-
set of the available data. The figures show the average results
over the runs. Again, all runs resulted in training accuracies
of above 95%.

Figure 5 shows how well the model variations generalize to
the testing dataset. When more than 100 examples are avail-
able, all variations perform very similarly. The model with
the lowest bound, the BNN, generalizes slightly better. Fig-
ure 6 shows the difference in runtimes of the variations. It
is clear that with more than 150 samples in the training set,
higher ranges of parameters manage to solve much quicker.

3.4 Discussion

As hypothesized, the max-correct model is quicker than our
other proposed models. However, because it does not require
any confidence in predictions, it results in lower testing accu-
racies. The min-hinge and sat-margin models perform simi-
larly well as we had hoped. They both push predictions to be
more confident and therefore generalize better. In Figure 3 we
see that sat-margin does take longer to solve than min-hinge.
However, we use it in Experiment 2 because it does not re-
quire piecewise linear functions. Using sat-margin with more
complex Gurobi methods may therefore be easier in future
work.

We see that there is a considerable difference in training
INNs compared to BNNs. The increased range in param-
eters allows the model to solve much quicker, without de-
grading generalization much. There is a trade-off in increas-
ing parameter ranges. With larger ranges, more memory is
needed to represent the network. Nevertheless, with the aim
of pushing the limits on how much data can be feasibly used
to train on, training low-bitwidth INNs is preferable to train-
ing BNNs.

4 Related Work

While an emphasis of work at the intersection of operations
research and machine learning has been exploiting the latter
to help solve optimisations problems studied by the former,
an important thrust is also the use of OR models and tools to
advance the latter [Bengio et al., 2018].

Fischetti and Jo [2018] researched modelling NNs using
MIP to optimize certain aspects of the network. Instead of
training using solvers, they use pre-trained networks and use
solvers to find optimized adversarial examples. They model
the problem to modify examples minimally such as to fool
the network into classifying the example incorrectly.

Tjeng et al. [2019] go further into evaluating robustness of
NNs with MIP by finding optimized adversarial examples.
They provide tight formulations for non-linearities in the
models which result in considerably quicker solving times.
Due to these speedups, the authors manage to solve larger
and more complex networks. While Fischetti and Jo [2018]
focus on multi-layer perceptrons as we do in our paper, Tjeng
et al. [2019] examine the robustness of deeper networks as
well as networks with convolutional and residual layers.

Anderson et al. [2019] provide strong MIP formulations of
pre-trained NNs. Like Fischetti and Jo [2018] and Tjeng et al.
[2019], they model ReLU networks and evaluate robustness
of networks by modifying samples with minimal perturba-
tions. However, their model removes the need for additional
variables to model the ReLU function. They provide proofs
of their strong formulations and demonstrate how the formu-
lations can decrease solving time considerably.

Grimstad and Andersson [2019] similarly research opti-
mizing certain aspects of pre-trained NNs by using MIP:
namely, using ReLU networks as surrogate models in MIP.
They highlight the importance of bound tightening techniques
and how it effects the efficiency of the models. The results
show that ReL.U networks are suitable as surrogate models in
MIP, at least for small, shallow networks. In contrast to these
works, however, we directly train NN using MIP.

The closest work to our is Icarte et al. [2019], who pro-
ceeded to direct train BNNs using MIP models. They provide
novel methods to model BNNs. Their models train BNNs
while also optimizing certain aspects of them. Instead of op-
timizing a function that leads to high training accuracy, they
introduce constraints that ensure the network fits to training
data perfectly. They then propose two variations of the model.
Variation 1 maximizes the number of zero-weight connec-
tions in the network, thus effectively removing as many un-
necessary connections as possible. Variation 2 maximizes
margins on every neuron in the network, which should lead
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to more confident activations and predictions.

Our work differs from the work by Icarte et al. [2019] as
our proposed models directly optimize loss functions to max-
imize accuracy. Further, our models are more relaxed and
therefore are more capable of handling more training data.
Our work is also more general, in that we are able to handle
the important class of non-binary NNs.

5 Conclusion

This paper builds on the recent idea of training neural net-
works using MIP. We provided a framework that is flexible
to change objective functions as well as the range of integers
the network can use. Training NNs using our proposed mod-
els requires almost no hyper-parameter tuning, in comparison
to extensive hyper-parameter tuning needed when using gra-
dient based methods.

Our results to date show that our proposed models can per-
form comparably to gradient descent baselines when using
minimal data to train and relatively small NNs with integer
or binary parameters. The results also show that solving time
can be considerably improved by allowing NNs to have larger
ranges for parameters, in comparison to binary parameters.

Training NNs using MIP is still limited to the amount of
training data the models can handle. Nevertheless, our meth-
ods have pushed the limits on the amounts of data they can
use. It would be interesting to push these limits even further.
When using gradient-based training, parameters are often up-
dated on small batches of data. It would be interesting to
research a batch training methodology for MIP models.

The NN models used in Grimstad and Andersson [2019]
and Fischetti and Jo [2018] use the ReLLU activation function
while our models use the sign activation function. The ReLU
function is more flexible than the sign function. Thus it would
be interesting to extend our models to handle the ReL.U func-
tion, as well as other potential activation functions.

Lastly, in this paper we compare our models to gradient-
descent baselines on the Adult dataset. This dataset contains
much more training data than our models can handle to date.
It would be interesting to exploit our models in combination
with more applicable datasets. Datasets with minimal avail-
able training data may be an environment where the advan-
tages of training NNs using MIP are most evident.
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