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Abstract. IDR(s) [P. Sonneveld and M. B. van Gijzen, SIAM J. Sci. Comput., 31 (2008), pp.
1035–1062] and BiCGstab(�) [G. L. G. Sleijpen and D. R. Fokkema, Electron. Trans. Numer. Anal.,
1 (1993), pp. 11–32] are two of the most efficient short-recurrence iterative methods for solving large
nonsymmetric linear systems of equations. Which of the two is best depends on the specific problem
class. In this paper we describe IDRstab, a new method that combines the strengths of IDR(s) and
BiCGstab(�). To derive IDRstab we extend the results that we reported on in [G. L. G. Sleijpen, P.
Sonneveld, and M. B. van Gijzen, Appl. Numer. Math., (2009), DOI: 10.1016/j.apnum.2009.07.001],
where we considered Bi-CGSTAB as an induced dimension reduction (IDR) method. We will analyze
the relation between hybrid Bi-CG methods and IDR and introduce the new concept of the Sonneveld
subspace as a common framework. Through numerical experiments we will show that IDRstab can
outperform both IDR(s) and BiCGstab(�).
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1. Introduction. Bi-CGSTAB [14] is the most popular short-recurrence method
for solving large nonsymmetric systems of equations

Ax = b

of order n. Bi-CGSTAB can be seen as a combination of two different techniques: Bi-
CG on the one hand and a one-step minimal residual method (such as GMRES(1)) on
the other hand. The Bi-CG part of the algorithm ensures, at least in exact arithmetic,
termination at the exact solution in a finite number of steps. This property causes su-
perlinear convergence during the iterative process. Bi-CG, on the other hand, does not
possess an error minimization property; the residual norm may go up during the pro-
cess. To introduce some kind of error minimization, Bi-CGSTAB performs a minimal
residual norm step in every iteration. This residual minimization step is performed
without extra cost, thus using the computational work more efficiently than in Bi-
CG, resulting in a faster convergence. The combination of these two complementary
methods explains to a large extent the success of Bi-CGSTAB.

IDR(s) [12] is a new short-recurrence Krylov subspace method for solving large
nonsymmetric linear systems. The induced dimension reduction (IDR) method gen-
erates residuals that are forced to be in subspaces Gk of decreasing dimension. These

nested subspaces are related by Gk+1 = (I − ωk+1A)(Gk ∩ R̃
⊥
0 ), where R̃

⊥
0 is the or-

thogonal complement of the range of a fixed n×s matrix R̃0, and the ωk’s are nonzero
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scalars. This working principle is different from the more conventional Krylov subspace
methods like Bi-CGSTAB that construct residuals in the growing Krylov subspace

Kk(A, r0) ≡ span
(
r0,Ar0,A

2r0, . . . ,A
k−1r0

)
.

The numerical examples that are described in [12] show that IDR(s), with s > 1
and not too large, is quite competitive and outperforms Bi-CGSTAB for important
problem classes.

Although the ideas behind IDR(s) and Bi-CGSTAB are quite different, the two
methods are mathematically closely related. Specifically, IDR(1) is mathematically
equivalent to Bi-CGSTAB, and IDR(s) with s > 1 is related (but not mathematically
equivalent) to the Bi-CGSTAB generalization ML(k)BiCGSTAB [17] of Yeung and
Chan. This latter method is a block version of Bi-CGSTAB for systems with one
right-hand-side vector, which uses multiple initial shadow residuals. We refer to [12],
[7], and [3] for the details.

Like Bi-CGSTAB, IDR(s) lacks a global error minimization property. In order to
smooth the convergence, the ωk’s are chosen such that the next residual is minimized
in norm. As is explained in [12], a new ω can be chosen every s+1 step (matrix-vector
multiplication (MV)). Note that for s = 1 this is exactly the same as in Bi-CGSTAB,
where a new ω is selected after every second MV such that the next residual is
minimized in norm.

For problems with a strongly nonsymmetric matrix and in which all the data are
real, a linear minimal residual step does not work well. It is easy to see that the ω’s are
zero for skew-symmetric matrices and must be small for nearly skew-symmetric matri-
ces, which will lead to (near) breakdown of the algorithm. Consequently, Bi-CGSTAB
is less suited for this class of problems. In order to overcome this problem, Gutknecht
proposed to combine Bi-CG with quadratic stabilization polynomials (i.e., with GM-
RES(2)), which led to BiCGStab2 [2]. Sleijpen and Fokkema combined Bi-CG with
stabilization polynomials of degree �, which yields BiCGstab(�) [6].

The linear minimal residual step in IDR(s) also makes this method less suited
for problems with a strongly nonsymmetric matrix. Example 3 in [12] presents such a
problem. This example shows a very poor performance for IDR(1). The performance
of the method can be improved significantly by choosing s larger than 1. However,
BiCGstab(�), with � = 2 or 4, shows a vastly superior convergence and outperforms
IDR(s) irrespective of the choice of s.

It is therefore a natural idea to combine IDR(s) and BiCGstab(�) into a new
method. In order to derive such a method, we will extend the results in [7], where
we studied the mathematical relation between Bi-CGSTAB and IDR. We will call the
resulting method IDR(s)stab(�), or IDRstab for short. IDRstab unifies IDR(s) and
BiCGstab(�): by choosing � = 1 it is mathematically equivalent to IDR(s), and by
choosing s = 1 it is mathematically equivalent to BiCGstab(�).

We present numerical experiments that demonstrate that the combined method
is more efficient than either IDR(s) or BiCGstab(�) for certain classes of problems.
In particular, we show that IDRstab with s and � larger than 1 can be significantly
faster than both IDR(s) and BiCGstab(�).

This paper is organized as follows. The next section reviews the IDR principle and
its relation to hybrid Bi-CG methods. It also provides new insights. In particular, it
introduces the concept of the Sonneveld subspace. Section 3 explains how BiCGstab(�)
is derived from Bi-CG, and section 4 presents an IDR algorithm. We include the
derivation of both BiCGstab(�) and IDR in this paper for completeness and to enhance



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPLOITING BICGSTAB(�) STRATEGIES 2689

readability and also because the derivations and the resulting schemes are slightly
different from the standard ones in the literature. Section 5 explains that these new
variants facilitate easy incorporation of �th-degree stabilization polynomials. To this
end we give insightful schemes on how the different vector quantities in IDRstab are
related. The excellent performance of the new method is illustrated with numerical
experiments in section 6.

Some remarks on the notation.
Notation 1.1. If R̃ is an n × s matrix and v is an n-vector, then we put v ⊥ R̃

if v is orthogonal to all column vectors of R̃, and we say that v is orthogonal to R̃.

The linear subspace of all vectors v that are orthogonal to R̃ is denoted by R̃
⊥
.

If V1, . . . ,Vk are matrices with column vectors of size n, then span(V1, . . . ,Vk)

is the subspace spanned by all column vectors of all Vj . We put V1, . . . ,Vk ⊥ R̃ if

span(V1, . . . ,Vk) ⊂ R̃
⊥
. n-Vectors v are identified with the n× 1 matrices [v].

Notation 1.2. Updates of the form v−Cβ will play a crucial role in this paper.
Here, v is an n-vector and C is an n × s matrix. When considering such updates,
both v and C are available. Often, the s-vector β is determined by an orthogonality
requirement v−Cβ ⊥ R̃, where R̃ is some given n× s matrix. For ease of notation,
we will simply put

“v−Cβ ⊥ R̃” if we mean “let β be such that v−Cβ ⊥ R̃.”

Note that, with σ ≡ R̃
∗
C, β can be formally computed as β = σ−1(R̃

∗
v) (in prac-

tice, a more stable variant should be used). The operator I −Cσ−1R̃
∗
is an oblique

projection onto the orthogonal complement of R̃.
Notation 1.3. We will follow a number of MATLAB conventions:
— if W = [w1, . . . ,ws], then W(:,1:q) ≡ [w1, . . . ,wq] and W(:,q) ≡ wq (q ≤ s);
— [U0; . . . ;Uj ] ≡ [UT

0 , . . . ,U
T

j ]
T (if sizes permit).

2. The Sonneveld subspaces. The aim is to derive a method that combines
the features of IDR(s) and BiCGstab(�). In order to derive such a method we first look
at the relation between the spaces in which these methods construct the residuals.
Using the new concept of the Sonneveld subspace we will bring IDR-type methods and
hybrid Bi-CG methods (also called Lanczos-type product methods) into a common
framework.

The IDR method exploits the following result, from which we learn how to con-
struct a strictly increasing sequence of nested linear subspaces. For a proof we refer
to [12, 7].

Theorem 2.1. Let R̃0 = [r̃1, . . . , r̃s] be an n×s matrix, and let (μk) be a sequence
in C. With G0 ≡ Cn, define

Gk+1 ≡ (μk+1I−A)(Gk ∩ R̃
⊥
0 ) (k = 0, 1, . . .).

If R̃
⊥
0 does not contain an eigenvector of A, then, for all k = 0, 1, . . ., we have that

(1) Gk+1 ⊂ Gk and (2) dimGk+1 < dimGk unless Gk = {0}.
IDR updates an approximation with residual in Gk to an approximation with

residual in Gk+1. In view of the above theorem, we know that the residual even-
tually will be zero and the exact solution will be detected. Fortunately, in practice
convergence is much faster: the residual becomes sufficiently small in norm for most
problems long before this moment.
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We will relate the “IDR” spaces Gk to Krylov subspaces through the new concept
of the Sonneveld space that we will define next.

Definition 2.2. For a polynomial Pk and an n×s matrix R̃0, consider the linear
subspace

S(Pk,A, R̃0) ≡ {Pk(A)v | v ⊥ Kk(A
∗, R̃0)}.

Here, k is the (exact) degree of the polynomial Pk, and Kk(A
∗, R̃0) is the kth (block)

Krylov subspace generated by A∗ and R̃0 as follows:

Kk(A
∗, R̃0) =

⎧⎨
⎩
∑
j<k

(A∗)jR̃0γj | γj ∈ C
s

⎫⎬
⎭ .

For reasons explained in Note 2.5 we call S(Pk,A, R̃0) the (Pk) Sonneveld subspace

(generated by A and R̃0); k is the order of the Sonneveld subspace.

Note 2.3. v ⊥ Kk(A
∗, R̃0) if and only if v,Av, . . . ,Ak−1v ⊥ R̃0.

To increase the order of the Sonneveld subspace, the order of the shadow Krylov
subspace Kk(A

∗, R̃0) has to be increased by one, which requires s MVs. An additional
MV is needed to increase the degree of the polynomial Pk.

The following result relates the “IDR” spaces Gk to the Sonneveld subspaces. For
a proof, we refer to [7].

Theorem 2.4. With R̃0, (μk), and Gk as in Theorem 2.1, and with Pk defined

by Pk(λ) ≡
∏k

j=1(μj − λ) (λ ∈ C), we have that

Gk = S(Pk,A, R̃0).(2.1)

Since IDR methods are characterized by the fact that they compute residuals
rIDR ∈ Gk, we have

rIDR ∈ Gk = S(P IDR

k ,A, R̃0),

with P IDR

k (λ) ≡ ∏
j≤k(1− ωjλ) (λ ∈ C). The ωj = 1/μj are selected to minimize the

residual norm. Note that by defining the polynomial in terms of ω’s, we automati-
cally generate a residual polynomial. Of course, the ω’s should not be zero to avoid
breakdown.

Hybrid methods produce residuals that can be expressed as rhybrid =
P hybrid

k (A)rBiCG

k , where rBiCG

k ⊥ Kk(A
∗, r̃0) is the kth Bi-CG residual. Hence, we have

rhybrid ∈ S(P hybrid

k ,A, r̃0) .

The polynomial P hybrid

k determines the specific hybrid variant. The selection Pk(λ) =∏
j≤k(1 − ωjλ) yields Bi-CGSTAB. The above framework makes it clear that

Bi-CGSTAB is equivalent to IDR(1); see also [12], [7]. For BiCGstab(�) we have

P BiCGstab(�)

k (λ) =
∏

j≤k/�

(1−
�∑

i=1

γi,j�λ
i);

that is, BiCGstab(�) uses a product of �-degree polynomials. The γi,j� are selected to
minimize the residual norm every �th step.
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With the above terminology and definitions we can now give the Sonneveld sub-
space in which the residuals of our new method IDRstab should lie as follows:

rIDRstab ∈ S(P BiCGstab(�)

k ,A, R̃0).

IDRstab can therefore be viewed as BiCGstab(�) with an s-dimensional initial shadow

residual R̃0 instead of a one-dimensional one r̃0.
In practical implementations of IDR methods as well as of hybrid Bi-CG methods,

intermediate residuals will be generated to bring a residual from a kth order Sonneveld
subspace to one of order k + 1. We will refer to the residuals that “arrive first” in a
Sonneveld subspace as primary residuals; the others are called secondary residuals.

Note 2.5. Given the fact that (sub)spaces are named after mathematicians, we
feel that the name Sonneveld subspace is appropriate. Sonneveld introduced the IDR
concept of Theorem 2.1 in a joint paper with Wesseling [16]. In this paper from 1980,
he also gave an algorithm that is equivalent to Bi-CGSTAB. The relation to hybrid
Bi-CG expressed in Theorem 2.4 and the fundamental principle in hybrid Bi-CG that
any polynomial of appropriate degree can be used to avoid multiplication by A∗ were
introduced in Sonneveld’s CGS paper [11] from 1989.

3. From Bi-CG to BiCGstab(�). In this section, we recall the derivation of
Bi-CGSTAB and BiCGstab(�). Our derivation here slightly differs from the standard
one and leads to slightly more expensive (but equivalent) algorithms: they require a
few vector updates more per step. However, we feel that this modified form helps to
clarify the derivation of our IDR variants in sections 4–5. It also explains how the
IDR variants relate to BiCGstab(�).

3.1. Bi-CG. Bi-CG uses coupled two term recurrences,

uk = rk − βk−1uk−1, rk+1 = rk − αkAuk,(3.1)

to produce a residual rk at step k that is orthogonal to the kth shadow Krylov subspace
Kk(A

∗, r̃0). It exploits the fact that, to achieve this orthogonality, it suffices to put
the vectors Auk and rk+1 orthogonal to one vector only: with r̃0, . . . , r̃j spanning
Kj+1(A

∗, r̃0) for all j ≤ k, the coefficients βk−1 and αk are such that Auk ⊥ r̃k−1 and
rk+1 ⊥ r̃k. The approximate solutions xk+1 are obtained by updating xk by +αkuk:
here, as elsewhere in this paper (and in hybrid Bi-CG methods), residuals are updated
by vectors of the form −Au with u always explicitly available.

The following recurrences are equivalent to the ones in (3.1):

rk+1 = rk − αkAuk ⊥ r̃k,

Auk+1 = Ark+1 − βkAuk ⊥ r̃k, uk+1 = rk+1 − βkuk.
(3.2)

The first two updates in (3.2) require orthogonality to the same vector r̃k. This com-
mon orthogonality property will turn out to be convenient for our approach. The
vectors Auk in (3.2) are obtained by recursive update rather than by MV as in the
standard approach (3.1), where, first, uk+1 is computed by uk+1 = rk+1 − βkuk and
then an MV is used to obtain Auk. Nevertheless, this formulation does not save MVs:
(3.2) requires the computation of Ark+1. Actually, the coupled recurrences in (3.2)
are slightly more expensive than the ones in (3.1): they require one vector update
more per step (per MV). The third recurrence relation provides the update uk+1 for
the approximate solution xk+1.
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3.2. Hybrid Bi-CG. Since r̃k ∈ Kk+1(A
∗, r̃0), there are polynomials Pk of

degree k (possibly with complex coefficients) such that r̃k = Pk(A
∗)r̃0. For notational

convenience, we write Pk ≡ Pk(A). Pk is a matrix: it is the value of the matrix
polynomial Pk at A. Multiplying the relations in (3.2) by Pk leads to

Pkrk+1 =Pkrk − αkAPkuk ⊥ r̃0,

APkuk+1 =APkrk+1 − βkAPkuk ⊥ r̃0, Pkuk+1 = Pkrk+1 − βkPkuk.
(3.3)

For the orthogonality, we used relations such as r̃∗krk+1 = (Pk(A
∗)r̃0)∗rk+1 =

r̃∗0Pkrk+1.
If, for each k, Pk(0) = 1, then r′k ≡ Pkrk+1 (and rhybrid

k ≡ Pkrk) is a residual; i.e.,
r′k = b−Ax′

k for some approximate solution x′
k. The x

′
k can be computed by recursive

updating using the update vector αkPkuk. Note that (3.3) allows us to compute the
residuals as r′k without computing the individual factor Pk or rk. Actually, none of the
individual factors will show up in algorithmic formulations of hybrid Bi-CG methods.
Also note that rhybrid

k belongs to the Sonneveld subspace S(Pk,A, r̃0). It is a primary
residual, while r′k is secondary.

The relations in (3.3) give a general scheme for hybrid Bi-CG methods. The
scheme is slightly different from the standard one to accommodate for the common
orthogonality to r̃0. The strategy for selecting the polynomials Pk, or rather for se-
lecting the update strategy for the polynomials, determines the method. There are a
number of effective strategies; see e.g., [11], [14], [2], [6], [1], [18].

3.3. Bi-CGSTAB and BiCGstab(�). In Bi-CGSTAB, the polynomials Pk

satisfy the two-term relation Pk+1(λ) = (1 − ωk+1λ)Pk(λ): it requires the selection
of scalars ωk+1. Hence, Pk+1 = (1− ωk+1A)Pk and

Pk+1rk+1 = Pkrk+1 − ωk+1APkrk+1,

Pk+1uk+1 = Pkuk+1 − ωk+1APkuk+1.
(3.4)

A combination of these relations with the ones in (3.3) forms an update of the pri-
mary residual rBiCGSTAB

k ≡ Pkrk in S(Pk,A, r̃0) to the primary residual rBiCGSTAB

k+1

in S(Pk+1,A, r̃0). To complete the Bi-CGSTAB loop consisting of (3.3) and (3.4),
APk+1uk+1 has to be computed. This can be done by multiplying Pk+1uk+1 by A,
or by multiplying APkuk+1 by A after the updates in (3.3), followed by the update

APk+1uk+1 = APkuk+1 − ωk+1A
2Pkuk+1.(3.5)

This last approach makes each loop one vector update more expensive: the number
of MVs (two per loop) is not affected, but this approach fits best to the one in
sections 4–5.

Bi-CGSTAB selects ωk+1 to minimize the norm of the right-hand side of the
first expression in (3.4). Note that this minimizing scalar is real if A is real and the
residuals are real. BiCGstab(�) can be described by stating that it selects ωj in C

such that at the end of each cycle of � of these loops, the norm of the expression

Pkrk+� − γ1,kAPkrk+� − · · · − γ�,kA
�Pkrk+�(3.6)

is minimal with respect to the scalars γi,k and Pk+�rk+� equals this expression. Here,

1− γ1,kλ− · · · − γ�,kλ
� = (1− ωk+1λ) · · · · · (1− ωk+�λ) (λ ∈ C),
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Select an initial guess x and an r̃0.

Compute r0 = b−A 	 x

r = [r0], u = [r0;A 	 r0]

while ‖r0‖ > tol

for j = 1, . . . , �

% The Bi-CG step

σ = r̃∗0uj, α = σ−1(r̃∗0rj−1)

x = x+ u0 α, r = r− [u1; . . . ;uj ]α, r = [r;A 	 rj−1]

β = σ−1(r̃∗0rj), u = r− uβ, u = [u;A 	 uj ]

end for

% The polynomial step

γ = [γ1; . . . ; γ�] = argminγ‖r0 − [r1, . . . , r�] γ‖
x = x+ [r0, . . . , r�−1] γ, r = r0 − [r1, . . . , r�] γ

u = [u0 −
∑�

j=1 γjuj ;u1 −
∑�

j=1 γjuj+1]

end while

Algorithm 3.1. BiCGstab(�). The uj and rj in the computation of the scalars σ, α, and β,
respectively, are related to u, and r according to u = [u0; . . . ;uj ] and r = [r0; . . . ; rj ], respectively.
MVs are denoted by statements like A � v. Note that the sizes of r and u change during the loop:
at the start of the jth step of the “for j = . . .” loop, r = [r0; . . . ; rj−1] and u = [u0; . . . ;uj ]. γ is
an �-vector.

relates the γ’s and ω’s. Note that k is a multiple of �. In actual computations, the γ’s
are computed. Since they can only be computed at the end of the cycle of � loops,
the ω’s are not available in intermediate loops. Therefore, to make this �th-degree
minimization applicable, the cycle of � loops needs some rearrangement as is done in
[6] in the derivation of a BiCGstab(�) algorithm. For completeness, we include the
resulting algorithm; see Algorithm 3.1. This variant is equivalent to the original one in
[6]. But, as explained above, in contrast to the original version, the new one explicitly
puts vectors orthogonal to r̃0 (see (3.3)).

The polynomials Pk in CGS [11], GCGS [1], and GPBiCG [18] are generated by
three term recurrences βkPk+1(λ) = (λ − αk)Pk(λ) − βk−1Pk−1(λ) (with βk + αk +
βk−1 = 1 to have “residual” polynomials Pk; i.e., Pk(0) = 1). Therefore, although Pk

can be expressed as Pk(λ) = Πj≤k(1−ωjλ), these hybrid variants cannot be described
in the above Bi-CGSTAB fashion: the ωj’s (j ≤ k) change as k increases (ωj = ωj,k).

4. IDR. In this section, we formulate a variant of IDR that, in section 5, allows
easy incorporation of degree � polynomial minimization for � > 1. In this variant, we
distinguish two parts in one cycle of the method.

Suppose that at the beginning of the kth cycle, n × s “update” matrices Uk =
[u1, . . . ,us] and AUk ≡ [Au1, . . . ,Aus] are available. In addition, we also have an
approximate solution xk and its associated residual rk ≡ b − Axk (assuming exact
arithmetic). (For s = 1, the rk and Uk correspond to the Pkrk and Pkuk, respectively,
of (3.3). Note that, in this section, the notation of rk and Uk does show the polynomial
dependence. References to corresponding formulas in section 3 are italic.)

• In the first part (see section 4.1), which we call the IDR step, we update the
residual rk in Gk (a primary residual) and the n×smatrixAUk with columns
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also in Gk to a (secondary) residual r′ in Gk ∩ R̃
⊥
0 and an n × s matrix AV

with columns in Gk ∩ R̃
⊥
0 .

• Then in the second part (see section 4.2), the polynomial part, we select a
degree one polynomial factor Q(λ) ≡ 1 − ωk+1λ and update r′ to the (next

primary) residual rk+1 ≡ r′ −ωk+1Ar′ in Gk+1 ≡ (I−ωk+1A)(Gk ∩ R̃
⊥
0 ) and

AV to AUk+1 with columns also in Gk+1. V is updated to Uk+1.
Although the structure of the algorithm that we describe here seems similar to

the ones described in [12] and [15], there is an essential difference. The IDR(s) algo-
rithms given in [12] and [15] compute in the “IDR step” vectors in Gk, which requires
multiplication with the polynomial factor (I− ωkA). The “polynomial step” consists
of the computation of a new polynomial factor (I − ωk+1A) (i.e., the computation
of a new value for ω) and of the first residual in Gk+1. In the algorithm we describe

here, the IDR step involves computation of vectors in Gk ∩ R̃
⊥
0 , which only requires

multiplications with A. The update of the vectors in Gk ∩ R̃
⊥
0 to vectors in Gk+1 is

done in the polynomial step. The fact that the minimization polynomial is only ap-
plied explicitly in the polynomial step of the algorithm makes the extension to higher
order minimization polynomials natural.

4.1. The IDR step. Let Πi be the projections defined by

Πi ≡ I−AiUkσ
−1R̃

∗
0A

1−i with σ ≡ R̃
∗
0AUk (i = 0, 1).(4.1)

Note that

R̃
∗
0Π1 = 0 and Π1A = AΠ0.(4.2)

In particular, we have that Π1w ⊥ R̃0 for all n-vectors w.

With ρ ≡ R̃
∗
0rk and α ≡ σ−1ρ, we generate r′ and x′ by (cf. (3.3))

r′ ≡ Π1rk = rk −AUkα and x′ ≡ xk +Ukα.(4.3)

Then we have that b − Ax′ = r′ ⊥ R̃0. Now, we obtain the vector Ar′ by matrix
multiplication.

Next, we update Uk to V, and AUk to AV such that AV is orthogonal to R̃0

(cf. (3.3)) and we compute A2V. We generate AV such that the columns form a basis
of the Krylov subspace Ks(Π1A,Π1Ar′). As a “side product” we obtain A2V and V.
For instance (for variants, see section 4.4), if

AV = [Π1Ar′, (Π1A)2r′, . . . , (Π1A)sr′] ⊥ R̃0,(4.4)

then, with s ≡ AVeq for some q < s, the vector AVeq+1 can be computed as c ≡ As,
which gives the qth column of A2V,

A2Veq = c, where c ≡ As,(4.5)

followed by the projection:

AVeq+1 = c−AUkβ, where β ≡ σ−1ρ and ρ ≡ R̃
∗
0c.(4.6)

Now, the (q + 1)th column of V can be computed as

Veq+1 = s−Ukβ.(4.7)
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(The vector c relates to residuals as we will indicate in section 4.4.3, and (4.6) corre-
sponds to the second relation in (3.3) while (4.7) corresponds to the third relation.)

The following scheme summarizes this IDR step

Uk xk → x′ Ve1 Ve2 . . . Ves
Π0

↗ ↓ A
Π0

↗ ↓ A ↓ A

AUk rk
Π1

→ r′ AVe1 AVe2 . . . AVes

↓ A
Π1

↗ ↓ A
Π1

↗ ↓ A ↓ A

Ar′ A2Ve1 A2Ve2 . . . A2Ves

(4.8)

The boxed vectors have been obtained by explicit multiplication by the matrix A.
The other “new” vectors have been obtained by vector updating as indicated in (4.3),
(4.6), and (4.7).

The new vectors on the second row of vectors in scheme (4.8), the vectors

r′,AVe1, . . . ,AVes, are orthogonal to R̃0. To use IDR terminology, if rk and AUk

belong to Gk, then (see Lemma 4.1 below) these new vectors belong to Gk ∩ R̃
⊥
0 .

Multiplication by A leads to the vectors on the last row of (4.8). What Gk+1 will be

depends on the choice of μk+1: Gk+1 ≡ (μk+1I−A)(Gk ∩ R̃
⊥
0 ). Hence, μk+1 times a

vector on the second row plus the corresponding vector on the third row belongs to
Gk+1 (for general μk+1). In the next subsection, we discuss the choice μk+1 = 1/ωk+1.

Lemma 4.1. Assume span(AUk, rk) ⊂ Gk. Then span(AV, r′) ⊂ Gk ∩ R̃
⊥
0 .

Proof. By definition of Π1 and (4.2), Π1t ∈ Gk ∩ R̃
⊥
0 if t ∈ Gk. In particular,

r′ ∈ Gk ∩ R̃
⊥
0 . Consider an s ∈ Gk ∩ R̃

⊥
0 . Apply (1) of Theorem 2.1 (with μk+1 = 0)

to see that A(Gk ∩ R̃
⊥
0 ) ⊂ Gk. Hence, (t ≡)As ∈ Gk and Π1As ∈ Gk ∩ R̃

⊥
0 . Taking

s = r′ and s = AVeq for q = 1, . . . , s completes the proof.

4.2. The polynomial step. Now, we have the ingredients to perform the mini-
mization step to obtain our next approximate solution, residual, and update matrices,
denoted by xk+1, rk+1, Uk+1, and AUk+1, respectively.

Select a complex scalar ωk+1. Then

xk+1 ≡ x′ + ωk+1r
′, rk+1 ≡ r′ − ωk+1Ar′,

Uk+1 ≡ V− ωk+1AV, AUk+1 ≡ AV− ωk+1A
2V

(cf. (3.4) and (3.5)).
This step can be viewed as a Richardson step with parameter ωk+1. In practice,

ωk+1 is selected to minimize the norm of the new residual rk+1 and then the step can
be viewed as one step in restarted GMRES with restart every step (GMRES(1)). But
other choices are possible as well: instead, for minimal residuals, one can also aim for
accurate IDR updates similar to the strategy for Bi-CGSTAB as explained in [8].

Note 4.2. If, in scheme (4.8), the column with x′, r′, and Ar′ is replaced by
xk+1 and rk+1 (rk+1 at the location of Ar′), and a similar replacement for AVk is
included, then the scheme for the subsequential steps can be chained. The horizontal
movement (from left to right) can be viewed as representing the update of the order
k of the shadow Krylov subspace Kk(A

∗, r̃0), while the vertical movement (from top
to bottom) represents the increase of the polynomial degree (cf. [5], [4]).
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Select an initial guess x and an n× s matrix R̃0.

Compute r = b−A � x

% Generate an initial U;AU

for q = 1, . . . , s

if q = 1, v0 = r, else, v0 = v1

v1 = A � v0

U(:,q) = v0, AU(:,q) = v1

end for

while ‖r‖ > tol

% The IDR step

σ = R̃
∗
0AU, α = σ−1(R̃

∗
0r)

x = x+Uα, r = r−AUα, Ar = A � r

for q = 1, . . . , s

if q = 1, v0 = r, v1 = Ar, else, v0 = v1, v1 = v2

β = σ−1(R̃
∗
0v1), v0 = v0 −Uβ, v1 = v1 −AUβ, v2 = A � v1

V(:,q) = v0, AV(:,q) = v1, A2V(:,q) = v2;

end for

% The polynomial step

ω = argminω‖r− ωAr‖
x = x+ ωr, r = r− ωAr

U = V− ωAV, AU = AV− ωA2V

end while

Algorithm 4.2. IDR. The A in quantities as AU is “part of the name.” MVs are indicated
by a “�” as, for example, v1 = A � v0 (line 6).

Algorithm 4.2 summarizes the above. In the algorithm, we replace old quantities
by the corresponding new ones whenever possible. In particular, there is no reference
to the step number k and x′ is absorbed by x and r′ by r. This basic algorithm can
be improved in several ways as we will indicate in section 4.4.

4.3. The relation to IDR. A combination of Theorem 2.4 and the following
proposition implies that the above approach defines an IDR method.

Proposition 4.3. Consider one cycle of the method as described above in sec-
tions 4.1 and 4.2. Suppose that at the beginning of the cycle the residual rk as well as
the columns of the matrix AUk belong to a Sonneveld subspace S(Pk,A, R̃0) with Pk

a polynomial of exact degree k. Then, with Pk+1(λ) ≡ (1− ωk+1λ)Pk(λ), the residual

rk+1 and the columns of AUk+1 at the end of the cycle belong to S(Pk+1,A, R̃0).
Proof. Combine Theorem 2.4 with the argument at the end of section 4.1.

4.4. Alternative formulations of the IDR step. In (4.8) above, we con-
structed the basis vectors of AU ≡ Ks(Π1A,Π1Ar′) (AV is the matrix of basis vec-
tors) by multiplication by the operator Π1A, thus generating a “power basis.” With
larger s, this approach will be unstable, and a more stable approach should be used
such as Arnoldi’s method for generating an orthonormal set of basis vectors. Then
the matrix of basis vectors can be expressed as AVT , with T some nonsingular s× s
matrix. For instance, with Arnoldi’s, we find the n × s orthonormal matrix Q from
the QR-decomposition of AV: AV = QR, the s × s matrix R is upper triangular,
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and T = R−1. Herewith associated, we should compute Ṽ ≡ VT and A2Ṽ ≡ A2VT
instead of V and A2V, respectively. Then Q = AṼ.

In practice, whenever we compute AṼeq by
∑

j<q γjAṼej + γqAVeq, we imme-

diately compute AiṼeq (for i = 0, 2) by
∑

j<q γjA
iṼej + γqA

iVeq, and we put the
new values at the location of the old ones.

Below we discuss three stable approaches for generating a set of basis vectors.

4.4.1. Orthogonalization. In this approach, Arnoldi’s approach, AṼ is or-
thonormal: AṼeq+1 is obtained by orthogonalizing Π1A

2Ṽeq against AṼ(:,1:q). Note

that A2Ṽeq is obtained by multiplying AṼeq by A. The alternative of orthogonaliz-

ing AΠ1A
2Ṽeq against A

2Ṽ(:,1:q) is comparably stable, but is slightly more expensive,

since now the computation of A2Ṽeq requires vector updates as well.

4.4.2. Biorthogonalization. The columns of A2Ṽ and R̃0 satisfy a biorthogo-

nality relation: σ̃ ≡ R̃
∗
0A

2Ṽ is lower triangular. The vector A2Ṽeq+1 is obtained by

(bi)orthogonalizing s ≡ AΠ1A
2Ṽeq against R̃0(:,1:q) withW ≡ A2Ṽ(:,1:q): A

2Ṽeq+1 =

(I−Wσ̃−1
q R̃

∗
0(:,1:q))s, where σ̃q ≡ R̃

∗
0(:,1:q)W. The matrix σ̃q is q× q lower triangular;

it is the left upper block of σ̃.
This approach appears to be stable and is quite efficient: for instance, the σ̃ is

the σ of the next IDR step. This variant is similar to the one described in [15]. For
details, we refer to this reference.

4.4.3. Projected systems. Krylov subspace methods, such as ORTHODIR
and GCR, for solving the projected system

Π1Ay = r′(4.9)

(with initial guess 0 or, equivalently, to the system Π1Ay = b with initial guess x)
produce a (stable) set of basis vectors for AU as well. These methods can also be
used. As a side product they allow termination before finishing the IDR step: if, say,
the GCR residual is small enough for q < s, then the GCR approximation for y is an
appropriate update for x. For a further discussion we refer to [10, section 4.4].

4.4.4. Saving storage. Note that the ωk+1 can be determined after the compu-
tation of r′ and Ar′, but before the formation ofVe1: xk+1 and rk+1 can be computed
before forming Ve2 and AVe2. Similarly, Uk+1eq and AUk+1eq can be computed be-
fore forming Veq+2 and AVeq+2. These vectors can be stored at the location of storage
of Veq and AVeq. This saves the storage of an n× s matrix (the matrix A2V).

4.4.5. Saving vector updates. For the computation of σ (cf. (4.1)), the matrix

AUk is not needed: σ can be computed as (A∗R̃0)
∗Uk. The matrix A∗R̃0 has to be

computed once and stored. This allows us to compute r′, V, and AV without AUk

and without computing A2V in the IDR step. This saves storage, as well as vector
updates. For details, see [10, section 4.5].

The approaches in sections 4.4.2 and 4.4.4–4.4.5 can be combined. However, we
will not elaborate on this here; it will be the subject of a future publication.

5. IDRstab. As explained in section 4.2, after computation of x′, r′, Ar′, V,
AV, and A2V, a scalar ωk+1 can be determined and the vectors can be updated to
xk+1, rk+1 = r′ − ωkAr′, Uk+1 = V− ωk+1AV, etc. As an alternative, the IDR step
can be repeated � times before selecting appropriate scalars ωk+1 (see section 5.1 and
Lemma 5.2 below). This leads to a BiCGstab(�) version of IDR (see section 5.2). We
will refer to this variant as IDR(s)stab(�), or IDRstab for short.
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5.1. The IDR step that allows degree � minimization. We give details on
how to “repeat” an IDR step without polynomial updates.

Performing j − 1 repetitions makes a residual r, say, available with associated
approximation x, plus the vectors Ar, . . ., Aj−1r, and the n × s matrices U, AU,
and A2U, . . ., AjU. If j = 1, then r = rk, x = xk, and U = Uk (with k an integer
multiple of �).

The next “repetition step” can be described by the projections Πi defined by

Πi ≡ I−AiUσ−1R̃
∗
0A

j−i (i = 0, 1, . . . , j) with σ ≡ R̃
∗
0A

jU.(5.1)

Note that

R̃
∗
0Πj = 0 and Πi+1A = AΠi (i = 0, 1, . . . , j − 1).(5.2)

First, we obtain Air′ for i < j by projection: with α ≡ σ−1(R̃
∗
0A

j−1r),

Air′ ≡ Πi+1(A
ir) = Air−Ai+1Uα (i < j), x′ = x−Uα.(5.3)

Next, we obtain Ajr′ by multiplying Aj−1r′ by A:

Ajr′ = A(Aj−1r′).(5.4)

Then we update AiU to AiV (i = 0, . . . , j) such that the columns of AjV are

orthogonal to R̃0 and form a basis of the Krylov subspace Ks(ΠjA,ΠjA
jr′). As a

side product we obtain AiV for i = 0, . . . , j− 1, j+1. For instance, with sj ≡ AjVeq
for some q < s, the vector AjVeq+1 can be computed as Asj , which gives the qth
column of Aj+1V, followed by the projection Πj : AjVeq+1 ≡ Asj − AjUβ, where

β ≡ σ−1ρ and ρ ≡ R̃
∗
0Asj . Then the (q + 1)th column of AiV can be computed

as AiVeq+1 = si+1 − AiUβ (i = 0, . . . , j − 1), involving vector updates only (no
additional MVs, no additional dot products). Here, si ≡ AiVeq. The following scheme
summarizes this IDR step in case j = 2:

U x → x′ Ve1 Ve2 . . . Ves
Π0

↗ ↓ A
Π0

↗ ↓ A ↓ A

AU r
Π1

→ r′ AVe1 AVe2 . . . AVes

Π1

↗ ↓ A
Π1

↗ ↓ A ↓ A

A2U Ar
Π2

→ Ar′ A2Ve1 A2Ve2 . . . A2Ves

↓ A
Π2

↗ ↓ A
Π2

↗ ↓ A ↓ A

A2r′ A3Ve1 A3Ve2 . . . A3Ves

(5.5)

As before, the boxed vectors have been obtained by explicit multiplication by the
matrix A, while the other “new” vectors have been obtained by vector updates.

The new vectors on the next to last row of scheme (5.5)—the vectors Ar′, A2Ve1,

. . ., A2Ves—are orthogonal to R̃0. Actually, all new vectors have this orthogonality
property except for the ones at the last and at the first rows (see also Note 2.3).

Lemma 5.1. Assume AU, r ⊥ Kj−1(A
∗, R̃0). Then AV, r′ ⊥ Kj(A

∗, R̃0).
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Proof. Consider an s ⊥ Kj(A
∗, R̃0). We will show that ΠiA

is ⊥ R̃0 and Ai−1r′ ⊥
R̃0 for i = 1, . . . , j. Then an induction argument (increasing q with s = r′ and
s = AVeq) completes the proof for AV.

Since ΠiA
is = Ais − AiUσ−1R̃

∗
0A

js, the assumption implies that ΠiA
is ⊥ R̃0

for i = 1, . . . , j − 1. Similarly, Ai−1r′ = ΠiA
i−1r ⊥ R̃0. The fact that R̃

∗
0Πj = 0 (see

(5.2)) implies ΠjA
js ⊥ R̃0 and Aj−1r′ = ΠjA

j−1r ⊥ R̃0.

The following lemma essentially states that the polynomial step can be postponed.
Lemma 5.2. Assume AU, r ⊥ Kj−1(A

∗, R̃0). For a polynomial Q of degree < j,
put

Π̂1 ≡ I−AWσ̂−1R̃
∗
0 with W ≡ Q(A)U and σ̂ ≡ R̃

∗
0AW.

Then Π̂1Q(A)s = Q(A)Π1s for all s ⊥ Kj−1(A
∗, R̃0). In particular, Π̂1Q(A)r =

Q(A)r′ and Π̂1AQ(A)AVeq = Q(A)AVeq+1.

Proof. The assumption implies that σ̂ ≡ R̃
∗
0AQ(A)U = γR̃

∗
0A

jU = γσ, with γ

the leading coefficient ofQ. Further, if s ⊥ Kj−1(A
∗, R̃0), then R̃

∗
0Q(A)s = γR̃

∗
0A

j−1s

whence Π̂1Q(A)s = Q(A)Π1s.
The last claim follows by an induction argument (for q) and Lemma 5.1.

To prepare for the next repetition of an IDR step, rename x′ to x, Air′ to Air
(i = 0, . . . , j), and AiV to AiU (i = 0, . . . , j + 1).

The variants in section 4.4 have their analogues for the present situation. In our
actual implementation for this paper, we followed Arnoldi’s variant of section 4.4.1
to orthonormalize AjV (orthonormalizing the vectors at the next to last row of
scheme (5.5)).

5.2. Minimization using polynomials of degree �. After � repetitions of the
IDR step and before renaming, we have a residual r′ available, plus the vectorsAir′ for
i = 0, . . . , �, the associated approximation x′, and �+2 matrices AiV (i = 0, . . . , �+1)
of size n×s. Now, to finish one cycle of IDRstab, determine scalars γ1,k, . . . , γ�,k such
that the norm of

rk+� ≡ r′ − γ1,kAr′ − · · · − γ�,kA
�r′(5.6)

is minimal. Compute

xk+� ≡ x′ + γ1,kr
′ + · · ·+ γ�,kA

�−1r′(5.7)

and

AiUk+� ≡ AiV− γ1,kA
i+1V− · · · − γ�,kA

i+�V (i = 0, 1).(5.8)

5.3. The relation to IDR. Theorem 2.4 and the following theorem allows
IDRstab to be viewed as an IDR method.

Theorem 5.3. Consider one cycle of IDRstab as described above in sections 5.1
and 5.2. Suppose none of the roots λ1, . . . , λ� of the polynomial

Q�(λ) ≡ 1− γ1,kλ− · · · − γ�,kλ
� (λ ∈ C)

is zero. Suppose at the beginning of the cycle the residual rk and the columns of the
matrix AUk belong to the Sonneveld subspace S(Pk,A, R̃0), with Pk a polynomial of
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exact degree k. Then the residual rk+� and the columns of AUk+� at the end of the

cycle belong to S(Q�Pk,A, R̃0): Pk+� ≡ Q� Pk is of exact degree k + �.
Proof. To prove the theorem, factorize the polynomial Q� as

Q�(λ) = 1− γ1,kλ− · · · − γ�,kλ
� = (1 − ωk+1λ) · · · · · (1− ωk+�λ).

Then, with Q0 ≡ 1 and Qj(λ) ≡ (1 − ωk+j−1λ)Qj−1(λ), use induction to j,
j = 1, . . . , �, adding one factor per induction step with the IDR strategy of sec-
tions 4.1 and 4.2: from Proposition 4.3 we learn that the resulting residual r̂k+�, say,

will be in S(Q�Pk,A, R̃0). From Lemma 5.2 we learn that r̂k+� is precisely rk+�.
A similar statement holds for AUk+� and, therefore, for Uk+� (using that A is
nonsingular).

We actually proved that the quantities xk+�, rk+�, and Uk+� (of (5.6)–(5.8))
would also have been obtained by performing � steps of the IDR variant of section 4,
provided the scalars ωk+j would have been appropriately selected in each polyno-
mial step (cf. section 4.2). Obviously, it is impossible in practice to select the ωk+j

“appropriately” at step k + j, j < �: the roots of the minimizing polynomial Q are
not known at this stage. In particular, in one cycle of IDRstab, we move from the
primary residual rk to the primary residual rk+� and do not explicitly compute the
intermediate primary residual rk+j (j = 1, . . . , �− 1). Nevertheless, the theorem is of
interest since it shows that IDRstab is an IDR method but with more effective ωk+j

selection than in standard IDR.

5.4. The IDRstab algorithm. The procedure described in sections 5.1 and
5.2 leads to Algorithm 5.3. The notation in this algorithm follows the MATLAB
conventions of Notation 1.3. The ri, Ui, and Vi correspond to the Air, AiU, and
AiV, respectively, of section 5.1.

With � = 1, this algorithm is (mathematically) equivalent to IDR(s), and with
s = 1, we have BiCGstab(�).

The lines in the two “for q = . . .” loops involving μ form an implementation
of Arnoldi’s procedure to obtain an orthonormalized matrix U0 and Vj , respectively.
We use Arnoldi’s since it is more stable than the power basis. If the power method is
sufficiently stable (for instance, if s < 3), then these lines can be skipped. However,
for larger s, a more stable form of the Gram–Schmidt method, as modified Gram–
Schmidt or repeated Gram–Schmidt, may be required. We have good results with
s ≤ 8, and in our experience, for this size of s classical Gram–Schmidt is sufficiently
stable.

Actually, Arnoldi’s may be applied to obtain an orthonormalized matrix Vi(=
AiV) for any i = 0, . . . , j + 1. For a further discussion, see [10, section 5.4].

As in BiCGstab(�), the γ can be computed as the solution of the normal equation

(R∗R)γ = R∗r0, where R ≡ [r1, . . . , r�],

leading to a minimal residual (which can be viewed as the residual after � steps of
GMRES with initial residual r0). As for BiCGstab(�), a suitable combination with
the Galerkin residual (that is, the residual after � steps of the full orthogonalization
method) may lead to more stability in the IDR step (see [8]).

Assembling matrices such as U0, U1 = AU0, . . ., Uj = AjU into one tall matrix
U = [U0; . . . ;Uj ] and vectors such as r0, r1 = Ar0, . . . , rj−1 = Aj−1r0 into one tall
vector r = [r0; r1; . . . ; rj−1] allows the compact representation of vector updates in
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Select an initial guess x and an n× s matrix R̃0.

Compute r0 = b−A � x, r = [r0]

% Generate an initial U = [U0;U1] = [U0;AU0]

for q = 1, . . . , s

if q = 1, v0 = r0, else, v0 = v1

v = [v0;A � v0]

μ = (U0 (:,1:q−1))
∗v0, v = v−U(:,1:q−1)μ, v = v/‖v0‖

U(:,q) = v

end for

while ‖r0‖ > tol

for j = 1, . . . , �

% An IDR step

σ = R̃
∗
0Uj, α = σ−1(R̃

∗
0rj−1)

x = x+U0α, r = r− [U1; . . . ;Uj ]α, r = [r;A � rj−1]

for q = 1, . . . , s

if q = 1, v = r, else, v = [v1; . . . ;vj+1]

β = σ−1(R̃
∗
0vj), v = v−Uβ, v = [v;A � vj ]

μ = (Vj (:,1:q−1))
∗vj, v = v−V(:,1:q−1)μ, v = v/‖vj‖

V(:,q) = v

end for

if j < �, U = V

end for

% The polynomial step

γ = [γ1; . . . ; γ�] = argminγ‖r0 − [r1, . . . , r�]γ‖
x = x+ [r0, . . . , r�−1]γ, r = r0 − [r1, . . . , r�]γ

U = [V0 −∑�
j=1 γjVj ;V1 −∑�

j=1 γjVj+1]

end while

Algorithm 5.3. IDRstab. The Uj, rj−1, vj , and Vj in the computation of σ, α, β, and
μ, respectively, are related to U, r, v, and V according to U = [U0; . . . ;Uj ], r = [r0; . . . ; rj−1],
v = [v0; . . . ;vj ], and V = [V0; . . . ;Vj+1], respectively. Note that the sizes of r, U, and v change
during the loop: at the beginning of the “for j = . . .” loop, r = [r0; . . . ; rj−1] and U = [U0; . . . ;Uj ].
The assignment v = [v1; . . . ;vj+1] shifts the coordinates of v n positions (dropping v0). As before,
A times a vector v is denoted by A � v.

the IDR step that is used in Algorithm 5.3. Implementation of this may also lead to
more efficiency on certain types of computers.

Table 5.1 summarizes the computational costs. The number of DOTs depends
mildly on �: the computation of the coefficients of the minimizing polynomial requires

Table 5.1

The table gives the costs of the algorithm averaged per MV: one sweep of IDRstab involves
(s + 1)� MVs. A DOT is an inner product between two n-vectors; an AXPY is a vector update
of the form x + αy with x and y n-vectors. The third column represents the average costs for the
orthogonalization using classical Gram–Schmidt.

DOTs 2s− 1 + 1
2

�+5
s+1

1
2
s

AXPYs 1
2
s(�+ 3) + 2 1

4
(s− 1)(�+ 3) + 1

4
�+3
s+1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2702 GERARD L. G. SLEIJPEN AND MARTIN B. VAN GIJZEN

≈ 1
2�

2 inner products per �(s+ 1) MVs. The extra costs for increasing � is mostly in
the extra vector updates.

6. Numerical experiments. This section presents numerical experiments on
test problems that, for different reasons, are difficult to solve by iterative methods.

As an implementation independent measure for the amount of work to solve the
systems, we will give the number of MVs. This measure is realistic for applications
where the (preconditioned) MV is far more expensive than a vector operation, which
is typically the case, and as long as the number of vector operations per MV is modest.
We will also report the actual solution times (CPU times). However, we stress that the
actual solution times are implementation dependent and that we have not optimized
our code. Further optimizations are possible to limit storage and vector operations,
as we have indicated in sections 4.4.4–4.4.5.

We report on results for Bi-CGSTAB, IDR(s), and BiCGstab(�). These results
are actually obtained with our IDRstab code, with s = � = 1 for Bi-CGSTAB, � = 1
for IDR(s), and s = 1 for BiCGstab(�).

For the columns of R̃0 we take the orthogonalization of s real random vectors.
No preconditioner is applied. The iterative processes are terminated once the residual
norm, divided by the norm of the right-hand-side vector, drops below 10−9.

The experiments are performed with MATLAB 7.5 on a standard PC with an
Intel Core 2 duo processor and 4 Gb of RAM.

6.1. A test problem from the MATRIX-MARKET collection. For our
first test problem, we consider the SHERMAN5 matrix from the MATRIX-MARKET
collection. The size of this matrix is 3312 × 3312. The right-hand-side vector is chosen
such that the solution is the vector consisting of ones.

The SHERMAN5 matrix is, in contrast to the well-known SHERMAN4 matrix
from the same collection, notoriously difficult to solve by iterative methods. This is
due to the fact that the SHERMAN5 matrix is highly indefinite, as is illustrated by
the plot of the spectrum given in Figure 6.1.
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Spectrum SHERMAN5

Fig. 6.1. Spectrum of SHERMAN5.

The system is solved with IDRstab, with different combinations of the parameters
s and �. Figure 6.2 shows the convergence behavior for the following combinations of
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Fig. 6.2. SHERMAN5: convergence for IDRstab and for GMRES.

s and �: s = 1, � = 1 (equivalent with Bi-CGSTAB), s = 4, � = 1 (equivalent with
IDR(4)), s = 1, � = 4 (equivalent with BiCGstab(4)), and s = � = 4.

For comparison, we have also included full GMRES in our experimental evalu-
ation. The comparison with GMRES is interesting for theoretical reasons only: it
shows how close the required number of IDRstab MVs is to the optimal number of
GMRES MVs. For practical applications, where the typical problem size is orders
of magnitude larger than for our test problem (millions of unknowns are quite com-
mon), it is, of course, impossible to perform hundreds of GMRES iterations due to
the excessive memory use and the large overhead of the vector operations. Table 6.1
gives, for different combinations of s and �, the required number of MVs and, within
parentheses, the CPU time to achieve the desired accuracy.

Table 6.1

SHERMAN5: matrix-vector products and CPU times for IDRstab. Optimal values are in bold.

�\s 1 2 4 8

1 n.c. 3121 (3.4s) 2508 (2.7s) 2401 (3.1s)

2 3570 (4.2s) 2401 (2.7s) 2198 (2.5s) 1897 (2.7s)

4 2744 (3.3s) 2125 (2.5s) 1928 (2.4s) 1762 (2.9s)

8 2598 (3.5s) 2020 (2.8s) 1848 (2.9s) 1798 (3.9s)

For s = � = 1 (i.e., Bi-CGSTAB), no convergence (n.c.) occurs within 4000 MVs.
For higher values of s or �, IDRstab always converges. Moreover, Table 6.1 shows
that the number of MVs is reduced by increasing either s or �, and more importantly,
that by increasing both s and � the number of MVs is reduced to a level lower than is
achieved by IDR(s) and BiCGstab(�). This is also reflected in the CPU times. Despite
the fact that our code can be further optimized with respect to vector operations, a
significant reduction in CPU time is achieved by choosing both s and � (moderately)
larger than 1. We observed that the norm of the true residual for � = 4 or 8 sometimes
stagnated above the norm of the recursively computed residual. This so-called residual
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gap can be remedied by the techniques described in [9]. We have not applied these
here.

6.2. A two-dimensional (2D) convection-diffusion problem with a pos-
itive shift. The second test problem we consider is the finite volume discretization
of the following partial differential equations on the unit square [0 , 1]× [0 , 1]:

−uxx − uyy + 1000(xux + yuy) + 10u = f .

Dirichlet conditions are imposed on the boundaries. This problem is discretized with
the finite volume method on a 65 × 65 grid, which yields a matrix of size 4096 × 4096.
The right-hand-side vector f of the discrete system is chosen such that the solution is
the vector consisting of ones. This problem is taken from [8].

Figure 6.3 shows the convergence of four IDRstab variants and, for comparison,
also of full GMRES. This figure shows that also for this problem a significant gain can
be achieved by choosing both s and � higher. The convergence curve for IDRstab with
s = 4 and � = 4 follows the optimal convergence curve of GMRES closely. Table 6.2
gives, for different combinations of s and �, the required number of MVs to achieve
the desired accuracy.
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Fig. 6.3. 2D convection-diffusion problem: convergence for IDRstab and for GMRES.

Table 6.2

2D convection-diffusion problem: matrix-vector products and CPU times for IDRstab. Optimal
values are in bold.

�\s 1 2 4 8

1 n.c. 1729 (2.4s) 1258 (1.7s) 898 (1.5s)

2 626 (0.9s) 457 (0.6s) 403 (0.5s) 376 (0.6s)

4 626 (0.9s) 490 (0.7s) 418 (0.6s) 376 (0.7s)

8 602 (1.0s) 457 (0.8s) 403 (0.8s) 493 (0.8s)

Also for this example, Bi-CGSTAB does not converge within 4000 MVs. IDR(s)
(i.e., IDRstab with � = 1) converges badly for all values of s, which could be expected
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since the system matrix is almost skew-symmetric. However, we do remark that the
convergence improves significantly by choosing s higher. BiCGstab(�) convergences
after around 600 MVs for all values of � larger than 1. The most important conclusion
is that by combining IDR(s) and BiCGstab(�), i.e., choosing both s and � larger
than 1, it is possible to almost close the gap with GMRES and almost get optimal
convergence with respect to MVs. Moreover, the lowest CPU time is achieved by
choosing both s = 4 and � = 2, again, showing the potential of the combination of
IDR(s) and BiCGstab(�).

6.3. A three-dimensional (3D) convection-dominated problem. The
third test problem is taken from [6] and is also included in [12]. This problem was
used to illustrate that Bi-CGSTAB does not work well due to the strong nonsymme-
try of the system matrix. As was shown in [12], IDR(s) also performs poorly for this

problem (if the shadow space R̃0 is chosen real, the bad convergence can be overcome

by choosing R̃0 complex).
The test problem is the finite difference discretization of the following partial

differential equations on the unit cube [0 , 1]× [0 , 1]× [0 , 1]:

uxx + uyy + uzz + 1000ux = F.

Homogeneous Dirichlet conditions are imposed on the boundaries. The vector F is
defined by the solution u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz). The partial dif-
ferential equation is discretized using central differences for both the convection and
diffusion terms. We take 52 grid points in each direction (including boundary points)
which yields a system of 125,000 equations.

Figure 6.4 shows the convergence behavior of four IDRstab variants and of
GMRES.
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Fig. 6.4. 3D convection-diffusion problem: convergence of IDRstab and of GMRES.

Figure 6.4 shows that the convergence curve of the IDRstab with � = 4, s = 1 (i.e.,
BiCGstab(4)) is close to the optimal convergence curve of full GMRES. As a result,
the reduction in MVs that is obtained by increasing both � and s is modest. This
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is also apparent from the results tabulated in Table 6.3. The BiCGstab(�) variants
are close to optimal; therefore, only a modest improvement can be achieved by also
choosing s > 1. Still, we remark that the number of MVs for � = 8, s = 8 is smaller
than for the four BiCGstab(�) variants that we investigated.

Table 6.3

3D convection-diffusion problem: matrix-vector products and CPU times for IDRstab. Optimal
values are in bold.

�\s 1 2 4 8

1 2190 (136.6s) 2089 (131.7s) 1218 (84.8s) 655 (60.9s)

2 248 (15.3s) 265 (16.5s) 253 (18.1s) 250 (24.3s)

4 264 (18.1s) 265 (19.0s) 253 (21.6s) 241 (28.5s)

8 320 (25.6s) 259 (23.1s) 248 (28.0s) 232 (37.0s)

6.4. A parameterized 2D convection-diffusion-reaction equation. The
last, parameterized, test problem is the finite difference discretization of the following
partial differential equations on the unit square [0 , 1]× [0 , 1]:

−uxx − uyy +
α√
2
(ux + uy)− βu = F.

Homogeneous Dirichlet conditions are imposed on the boundaries. The vector F is
defined by the solution u(x, y, z) = xy(1− x)(1− y). The partial differential equation
is discretized using central differences. We take 201 grid points in each direction
(including boundary points) which yields a system of 39,601 equations.

We consider four different choices for the parameters α and β, which results
in test problems with quite different characteristics. Figure 6.5 shows the conver-
gence behavior of four IDRstab variants and of GMRES. We make the following
observations:

– α = β = 0: the matrix is symmetric positive definite for this choice. Fig-
ure 6.5(a) shows that the convergence for Bi-CGSTAB is close to the optimal
GMRES convergence. As a result, the gain of choosing s and � greater than
1 is limited.

– α = 1000, β = 0: the system matrix is highly nonsymmetric. One expects
BiCGstab(�) to perform better than IDR(s) for such a problem. This is con-
firmed by the convergence plot given in Figure 6.5(b): IDR(4) performs signif-
icantly better than Bi-CGSTAB, and BiCGstab(4), in turn, performs better
than IDR(4). But also this example shows that choosing both s and � larger
than 1 improves the convergence. The convergence of IDR(4)stab(4) follows
the optimal GMRES convergence closely.

– α = 0, β = 1000: the system matrix is symmetric but indefinite. The conver-
gence for this case is shown in Figure 6.5(c). Here, IDR(4) performs better
than BiCGstab(4), and again, the combination IDRstab(4,4) is fastest. For
this problem, Bi-CGSTAB does not converge within 4000 MVs.

– α = 1000, β = 1000: the system matrix is highly nonsymmetric and has
eigenvalues in both the right and the left half-plane. The convergence of the
IDRstab variants shown in Figure 6.5(d) is similar (apart from the fact that
here Bi-CGSTAB stagnates completely) to that of the highly nonsymmetric
but definite case that is shown in Figure 6.5(b). IDR(4)stab(4) again closely
follows the GMRES convergence.
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(a) α = 0, β = 0.
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(b) α = 1000, β = 0.
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(c) α = 0, β = 1000.
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(d) α = 1000, β = 1000.

Fig. 6.5. 2D parameterized convection-diffusion-reaction problem: convergence of IDRstab and
of GMRES.

As for the previous examples, we have tested all the combinations s = 1, 2, 4, 8
and � = 1, 2, 4, 8. Table 6.4 shows the optimal combinations of s and � with respect
to number of MVs. Table 6.5 gives the combinations that give the lowest CPU time.
Also, these results show that choosing both s and � larger than 1 may result in
(significantly) less MVs and a lower CPU time than can be obtained with IDR(s) or
BiCGstab(�). For example, for the most difficult test case α = 1000, β = 1000, the
number of MVs is reduced from 810 for BiCGstab(8) to 523 for IDR(4)stab(2). The
CPU time is reduced from 13s for BiCGstab(2) to 9.5s for IDR(4)stab(2).

Table 6.4

Optimal combinations of s and � with respect to the number of MVs.

Problem s � MVs CPU time [s]

α = 0, β = 0 4 2 403 7.3

α = 1000, β = 0 8 2 466 12.0

α = 0, β = 1000 8 1 970 22.0

α = 1000, β = 1000 4 2 523 9.5
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Table 6.5

Optimal combinations of s and � with respect to CPU time.

Problem s � MVs CPU time [s]

α = 0, β = 0 4 1 408 7.1

α = 1000, β = 0 4 2 518 9.5

α = 0, β = 1000 2 4 1132 20.1

α = 1000, β = 1000 4 2 523 9.5

7. Conclusions. The goal of this research was to unify two of the most powerful
short-recurrence Krylov methods for nonsymmetric systems into one method that
inherits the strong points of both. To this end we have derived the method IDRstab.
We have illustrated the potential of this method with numerical experiments that
show that IDRstab for certain problems outperforms both IDR(s) and BiCGstab(�).

The quest for IDRstab has provided us with considerable new insight. In [12] it
was postulated that a new IDR theorem was needed to make an IDR method that
uses higher order stabilization polynomials. In this paper we have shown that this is
not the case.

In the method that we have presented in this paper, many specific choices were
made. The resulting algorithm is, for modest values of s and � (e.g., s = 4, � = 2), in
our experience efficient and numerically stable. Nevertheless, further improvements
can still be made, and we have indicated some of them.

After submission of our manuscript, we received a new report [13] by Tanio and
Sugihara describing a related method.

Acknowledgments. We thank Peter Sonneveld for introducing us to IDR and
sharing his deep insight with us. We also thank the referees for their comments.
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