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PRECONDITIONED MULTISHIFT BiCG FOR H2-OPTIMAL
MODEL REDUCTION∗

MIAN ILYAS AHMAD† , DANIEL B. SZYLD‡ , AND MARTIN B. VAN GIJZEN§

Abstract. We propose the use of a multishift biconjugate gradient method (BiCG) in combina-
tion with a suitable chosen polynomial preconditioning, to efficiently solve the two sets of multiple
shifted linear systems arising at each iteration of the iterative rational Krylov algorithm (IRKA)
[Gugercin, Antoulas, and Beattie, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609–638] for H2-
optimal model reduction of linear systems. The idea is to construct in advance bases for the two
preconditioned Krylov subspaces (one for the matrix and one for its adjoint). By exploiting the
shift-invariant property of Krylov subspaces, these bases are then reused inside the model reduction
methods for the other shifts. The polynomial preconditioner is chosen to maintain this shift-invariant
property. This means that the shifted systems can be solved without additional matrix-vector prod-
ucts. The performance of our proposed implementation is illustrated through numerical experiments.
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1. Introduction. Numerical simulations are often based on large-scale complex
models that are used to measure and control the behavior of some output parameters
with respect to a given set of inputs. The goal of model reduction is to approximate
this input-output behavior by a much simpler model that can predict the actual
behavior. Model reduction is used in many areas, including modeling large-scale
dynamical systems [2], and applications such as electronic design, where it is used to
predict the behavior of complicated interconnect systems [9].

Consider a single-input single-output (SISO) linear time invariant system,

(1.1)
ẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t),

where A ∈ Rn×n, b, c ∈ Rn, with n being the order (or dimension) of the system, and
x(t) ∈ Rn, u(t), y(t) ∈ R are the state, input, and output, respectively. We assume
that the eigenvalues of the matrix A lie in the open left half plane, meaning that the
system is stable. In terms of the transfer function representation, (1.1) is given by
G(s) = cT (sI −A)−1b.

Model reduction aims at identifying another system, of much smaller dimension
m� n, similar to (1.1), i.e., of the form
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(1.2)
ẋm(t) = Amxm(t) + bmu(t),

ym(t) = cTmxm(t),

with Am ∈ Rm×m, bm, cm, xm(t) ∈ Rm. The goal is that ym(t) is close to y(t) in some
norm so that the reduced system can be used as a surrogate to the original system.
In the frequency domain, this means that the transfer function of the reduced system
(1.2) given by Gm(s) = cTm(sIm − Am)−1bm approximates G(s) well, in a certain
system norm. Here we consider H2-optimal model reduction where one seeks a stable
minimizer to the H2-norm of G−Gm over all possible choices of stable Gm, and the
H2-norm is defined as

‖G‖2H2
:=

1

2π

∫ ∞
−∞
|G(iw)|2dw.

Projection techniques are often used to compute a reduced system of the form
given in (1.2); see, e.g., [5]. In general, projection involves the following steps:

• Compute matrices Vm ∈ Rn×m and Wm ∈ Rn×m, whose columns span the m-
dimensional subspaces V and W, respectively.

• Approximate x(t) by Vmxm(t).
• Impose the Petrov–Galerkin conditions

WT
m(Vmxm(t)−AVmxm(t)− bu(t)) = 0,

ym(t) = cTVmxm(t).

The matrices and vectors to be used in the reduced system (1.2) are then given by

(1.3) Am = (WT
mVm)−1WT

mAVm, bm = (WT
mVm)−1WT

mb, cm = V Tm c.

This means that the reduced system depends on the choice of the matrices Vm
and Wm, or equivalently on the subspaces V and W. These subspaces can be con-
structed in different ways, resulting in a variety of model reduction techniques. For a
detailed analysis of these techniques; see, e.g., [2]. In this paper, we consider rational
interpolatory projection methods [15, 26, 27] for model reduction, where V andW are
appropriate (left and right) Krylov subspaces such that the particular choice allows us
to enforce certain interpolation conditions and the construction involve matrix-vector
products (or solution of shifted systems) of dimension n; see further section 1.1. For
another approach, using moment matching and Krylov spaces; see [29].

The concept of projection-based interpolation was introduced in [34] and modi-
fied to a computationally efficient setting in [15]. This idea is linked with H2-optimal
approximation of linear systems in [18], where a fixed point iterative framework was
used to propose the iterative rational Krylov algorithm (IRKA). Upon convergence,
the algorithm produces a reduced system that satisfies interpolation-based necessary
conditions for H2-optimality. IRKA has received considerable attention in the lit-
erature and has been extended to more general interpolatory projection methods,
including parameterized model order reduction [4], model reduction of linear descrip-
tor systems [19], and interpolatory projection methods for bilinear systems [7, 10].

In this paper, we propose an alternative implementation to methods such as
IRKA, by utilizing an appropriately preconditioned biconjugate gradient (BiCG)
method [11]. In IRKA and other interpolatory projection methods, at every iter-
ation, two systems,

(1.4) (σI −A)x = b and (σI −AT )x̃ = c,
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must be solved for every shift frequency σ ∈ Sm = {σ1, . . . , σm}. For each shift,
BiCG can solve both of these shifted linear systems simultaneously, and we call this
multishift BiCG. While the approximate solutions produced by BiCG (or any other
iterative method) are not exact, the results in [6, 36] indicate that the reduced order
models obtained with these approximations are optimal for a model which is close to
the original problem.

In addition, we take advantage of the shift-invariant property of Krylov subspaces,
and thus, use the same space for all shifts simultaneously. In other words, we can
build a basis for one of the shifts, called the seed system, and use the same basis for
BiCG for the other systems, avoiding any additional matrix-vector products, and thus
achieving considerable computational savings [13, 23]. The shift-invariant property
can be simply stated as

(1.5) Ki(A, b) = Ki((σI −A), b),

where Ki(A, b) := span{b, Ab,A2b, . . . , Ai−1b}, i.e., an element of this subspace can
be written as p(A)b, where p(z) is a polynomial of degree i− 1.

A third component of our proposed contribution is the use of specific polynomial
preconditioners, which allows us to simultaneously precondition a set of shifted linear
systems, without losing the shift-invariance property of the corresponding Krylov sub-
spaces, as considered in [12]. We also discuss a polynomial preconditioner for matrices
with a strongly complex spectrum. In this manner, the same preconditioner can be
used for all shifts, in contrast to other preconditioners, such as those discussed in [36].

We mention that the use of BiCG for IRKA has already been proposed in [36]
and [1]. In the latter reference, a set of dual shifted systems is solved such that the
Krylov subspace associated with a pair of shifted systems is updated and reused for
the next pair of shifted systems belonging to the same set. Our approach also uses
BiCG, as described above, but instead of reusing some vectors, and restarting the
computations, we use the same basis as for the seed system, without any additional
matrix-vector product, and with an appropriate polynomial preconditioner. We also
mention that BiCG was also used for moment matching in [30].

In addition, we note that some of the ideas presented in this paper, such as storing
the bases of the seed system, and the use of suitable polynomial preconditioners,
could also be applied when using (restarted) GMRES [14] or BiCGStab [13] (or for
that matter QMR [12]), but in these cases, of course, one needs to solve the two
systems (1.4) (for each shift).

Remark 1.1 (MIMO systems). The shift invariance property given in (1.5) is ap-
plicable to systems with fixed b. In case of multi-input multi-output systems, tan-
gential interpolation is often used for model order reduction, in which case there are
vectors b(σ) that vary with the interpolation points. Therefore, the proposed frame-
work would have to be revisited since it is not directly applicable to the tangential
interpolation framework.

Remark 1.2 (Descriptor systems). The general form of the system (1.1) often
includes a coefficient matrix E ∈ Rn×n in front of the vector ẋ(t). The property (1.5)
holds if the matrix E is the identity matrix, or if it is nonsingular by considering the
Krylov subspace Ki(E−1A,E−1b), whose basis is built without necessarily explicitly
computing E−1. In the case of singular E, one may use the setup given in [19], where
the transfer function is first decomposed into strictly proper and polynomial parts and
then IRKA-type iterations are used only on the strictly proper part of the transfer
function. However, the approach of decomposing a transfer function into strictly
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proper and polynomial parts involve the explicit computation of spectral projectors.
This decomposition is known to be a difficult task [31]. To avoid this issue, certain
important classes of descriptor systems have been considered [19, 20], where the same
can be achieved without explicit computation of spectral projectors. We assume,
throughout the paper, that the original system can be written in the form of (1.1),
and in several places, we comment on the case E 6= I.

The remainder of this paper is organized as follows. In section 1.1 we further
describe rational Krylov methods linked to H2-optimal model reduction (in particular
IRKA); a shifted variant of BiCG that can simultaneously solve a set of shifted systems
is reviewed in section 1.2; in section 2 we explain how this variant of BiCG can be
used to give a computationally attractive implementation of IRKA; in section 3 we
discuss how to appropriately precondition a set of shifted linear systems; and finally,
in section 4 we present numerical experiments that show how efficienct our solution
methods for the shifted linear systems in IRKA can be.

1.1. Rational Krylov methods and H2-optimal model reduction. In this
section, we discuss a particular choice of Krylov subspaces for V, W and its link to
interpolation and H2-optimal approximation. We begin with the following result,
where Ran(V ) is the range of the matrix V .

Theorem 1.1. [19] Let Sm = {σ1, . . . , σm} ⊂ C be a set of m distinct inter-
polation points that is closed under conjugation. Suppose that (σkI − A)−1 and
(σkIm −Am)−1 exist for k = 1, . . . ,m, and that

Ran(Vm) = span{(σ1I −A)−1b, . . . , (σmI −A)−1b},
Ran(Wm) = span{(σ1I −AT )−1c, . . . , (σmI −AT )−1c}.

Then for Gm(s) = cTm(sIm−Am)−1bm, with WT
mVm = Im and Am, bm, cm as defined

in (1.3),

(1.6) Gm(σk) = G(σk), G′m(σk) = G′(σk), for k = 1, . . . ,m,

where as usual, G′(σk) stands for the derivative of G(s) with respect to s, evaluated
at σk.

Note that as long as the inverses (σkI −A)−1 and (σkIm −Am)−1, k = 1, . . . ,m,
exist, the reduced transfer function Gm(s) satisfies (1.6). This also holds for descriptor
systems as long as the inverses of (σkE − A)−1 and (σkEm − Am)−1, k = 1, . . . ,m,
exist. An important issue is the selection of interpolation points σk. The choice of
selecting an optimal set of interpolation points provide a link to the H2-optimal model
reduction problem.

The H2-optimal model reduction problem, as discussed before, is to identify a
stable reduced order system Gm(s), which is the best approximation of G(s) in terms
of the H2-norm, i.e.,

Gm(s) = arg
Ĝm(s) is stable

dim(Ĝm(s))=m

min ‖G− Ĝm‖H2 .(1.7)

The set of stable mth order dynamical systems is not convex and therefore the
problem in (1.7) may have multiple local minimizers. An iterative algorithm may
not converge to the global minimizer that can solve (1.7) but may result in a local
minimizer. Most approaches for solving (1.7) utilize first-order necessary conditions
for local optimality.
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Algorithm 1.1. The iterative rational Krylov algorithm, IRKA.

1: Inputs: A, b, c, m, and tol
2: Initialize: Select Sm = {σ1, . . . , σm} ∈ Cm that are closed under conjugation
3: while error < tol do
4: Compute,

ṽ1 = (σ1I −A)−1b, . . . , ṽm = (σmI −A)−1b ,(1.10)

w̃1 = (σ1I−A)−T c, . . . , w̃m = (σmI−A)−T c(1.11)

5: Compute matrices with orthonormal columns Vm and Wm with

Ran(Vm) = span{ṽ1, . . . , ṽm},
Ran(Wm) = span{w̃1, . . . , w̃m}

6: Compute Am = (WT
mVm)−1WT

mAVm
7: error = ‖sort(λ(−Am))− sort(Sm)‖
8: Update the interpolation points, Sm = λ(−Am)
9: end while

10: Outputs: Am, bm = (WT
mVm)−1WT

mb, cm = V Tm c.

Gugercin [16] introduced an error expression for the H2-norm of the error system
and observed that the error is small if the reduced order model Gm(s) interpolates
G(s) at −λi(A) and −λi(Am), where λi(A) stands for the ith eigenvalue of A. Since
−λi(Am) is not known a priori, several approaches were developed to minimize the
H2-error by choosing interpolation points to be −λi(A) [17, 16]. Gugercin et al. [18]
showed that interpolation at −λi(Am) is more useful and is a necessary condition for
H2-optimality. The following result gives this condition.

Lemma 1.2. [18] Given a stable SISO system G(s)=cT (sI − A)−1b, let Gm(s)=
cTm(sIm − Am)−1bm be a local minimizer of dimension m for the optimal H2-model
reduction problem (1.7) and suppose that Gm(s) has simple poles at −σk, k=1, . . . ,m.
Then Gm(s) interpolates both G(s) and its first derivative at σk, k=1, . . . ,m, i.e.,

Gm(σk)=G(σk), G′m(σk)=G′(σk), for k=1, . . . ,m.(1.8)

It was also shown in [18] that the necessary optimality conditions of Hyland–
Bernstein [22] and Wilson [35] are equivalent to the conditions in Lemma 1.2 in the
case of continuous time SISO systems having simple poles.

The necessary conditions (1.8) are equivalent to the root finding problem of

(1.9) λ (Am(Sm)) = −Sm,

where λ(·) denotes the eigenvalues, and Sm is the set of required roots, and where
we have written Am as Am(Sm) to emphasize the dependence of Am on the inter-
polation points. An iterative framework is used in [18] to compute the interpolation
points (roots) that successively update the roots using Si+1

m = λ(−Am(Sim)). Using
Lemma 1.2, the successive updates Si+1

m = λ(−Am(Sim)) are possible via the rational
Krylov method [26, 27]. This leads to the iterative rational Krylov algorithm (IRKA)
[18] which is given schematically in Algorithm 1.1.

We remark that care must be taken so that the sort function in step 7
of Algorithm 1.1 pairs perfectly well the corresponding eigenvalues and their
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Algorithm 1.2. The biconjugate gradient (BiCG) algorithm.

1: Inputs: A, b, c, max it, and tol
2: Initialize: x = z = 0, rx = b, rz = c, dx = dz = 0, ρold = 1
3: nb = ‖b‖, nc = ‖c‖
4: for i = 1 to max it do
5: ρ = rTz rx, β = −ρ/ρold
6: dx = rx − βdx, dz = rz − β̄dz
7: α = ρ/(dTz Ad)
8: x = x+ αdx, z = z + ᾱdz
9: rx = rx − αAdx, rz = rz − ᾱAT dz

10: error = max{‖rx‖/nb, ‖rz‖/nc}
11: if error < tol then break end
12: ρold = ρ
13: end for
14: Outputs: x, z

approximation. We also note that the fact that the shifts are closed under conju-
gation implies that the matrices Vm and Wm can be kept real by combining each
pair of complex conjugate basis vectors to two real basis vectors. These real vectors
correspond to the real and imaginary parts of the complex conjugate pair.

1.2. Shifted variants of the BiCG algorithm. In this section, we review a
variant of the biconjugate gradient (BiCG) method [11], that utilizes the shift invariant
property of Krylov subspaces, (1.5), to solve shifted linear systems. We begin with a
brief description of the standard BiCG method.

BiCG is based on the non-symmetric Lanczos algorithm that can simultaneously
solve a linear system Ax = b and a transposed system AT z = c. For a given A ∈ Rn×n
and two vectors b, c ∈ Rn with cT b 6= 0, it computes two approximate solutions, xm
and zm, such that

(i) A-orthogonal search directions: Given x0 and z0, then for i = 1, 2, . . . ,
until convergence,

xi = xi−1 + αidxi
and zi = zi−1 + ᾱidzi ,

where αi ∈ C, ᾱi is its complex conjugate and where dxi
, dzj ∈ Cn are A-

orthogonal, that is, dTzjAdxi
= 0 for i 6= j,

(ii) Orthogonal residuals: Let rxi
= b−Axi and rzj = c−AT zj be the residuals

for i, j = 0, 1, 2, . . . , then rTzjrxi
= 0 for i 6= j.

A version of the BiCG algorithm is given in Algorithm 1.2.
We note that the condition cT b 6= 0 is fundamental. In general, if any iteration

index results in ρ = 0, Algorithm 1.2 has a breakdown of the BiCG method. We
mention, however, that we have not encountered this in our experiments in section 4.

In order to solve a set of shifted linear systems, such as those in (1.10)–(1.11),
by using basis vectors associated with A and AT , we consider a seed system and a
shifted linear system, i.e.,

(1.12) Ax = b, (σI −A)x̂ = b,

where A ∈ Rn×n, and x, x̂, b ∈ Rn, while σ ∈ C. Let xi ∈ Ki(A, b) and x̂i ∈
Ki((σI − A), b) be the approximations of the above linear systems obtained after i
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iterations of the BiCG algorithm (Algorithm 1.2). We can write them as

xi = pi−1(A)b and x̂i = p̂i−1(σI −A)b,

where pi−1 and p̂i−1 are polynomials of degree less than or equal to i−1. Then the
associated residuals ri = b−Axi and r̂i = b− (σI −A)x̂i can be written as

(1.13) ri = qi(A)b and r̂i = q̂i(σI −A)b,

where qi(t) = 1− tpi−1(t) and q̂i = 1− tp̂i−1(t) are polynomials of degree i such that
qi(0) = q̂i(0) = 1, called the residual polynomials.

It turns out that these residuals are necessarily collinear, as established in [13].

Lemma 1.3. Let ri = b − Axi and r̂i = b − (σI − A)x̂i be the residuals after the

ith iteration of BiCG of the two systems in (1.12). Then, there exists ζ̂i ∈ C, such

that ri = ζ̂ir̂i.

As a consequence, we can write

(1.14) r̂i = (1/ζ̂i)ri,

which implies

r̂i = q̂i(σI −A)b = (1/ζ̂i)qi(A)b.

Since q̂i(σ − t) = (1/ζ̂i)qi(t) and q̂i(0) = 1,

(1.15) ζ̂i = qi(σ).

The above expression and (1.14) shows that the residual associated with the shifted
linear system in (1.12) can be expressed in terms of the residual associated with
the seed linear system Ax = b. In the following, we give some expressions of the
parameters associated with the shifted BiCG method; these are essentially from [13].

From the BiCG algorithm (Algorithm 1.2 with d := dx, r := rx), we have for
i = 1, 2, . . . ,

di−1 =
1

βi
(ri − di), Adi =

1

αi
(ri − ri+1),

and therefore

ri = ri−1 − αi−1Adi−1 = ri−1 − αi−1A
(

1

βi
(ri − di)

)
,

= ri−1 −
αi−1
βi

Ari +
αi−1
βiαi

(ri − ri+1),

which results in the following three-term recurrence expression for the residual,

(1.16) ri+1 = −αiAri +
βiαi
αi−1

ri−1 +

(
1− βiαi

αi−1

)
ri.

In terms of the polynomial representation used in (1.13), the above expression can be
written as

qi+1(t) = −αitqi(t) +
βiαi
αi−1

qi−1(t) +

(
1− βiαi

αi−1

)
qi(t).
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Setting t = σ and using (1.15), we have

(1.17) ζ̂i+1 =

(
1− αiσ −

βiαi
αi−1

)
ζ̂i +

βiαi
αi−1

ζ̂i−1.

Since we have collinear residuals (1.14), the residual for the shifted system is

r̂i+1 =
1

ζ̂i+1

(
−αiζ̂iAr̂i +

βiαiζ̂i−1
αi−1

r̂i−1 + (ζ̂i −
ζ̂iβiαi
αi−1

)r̂i

)
,

=
αiζ̂i

ζ̂i+1

(σI −A)r̂i +
βiαiζ̂i−1

αi−1ζ̂i+1

r̂i−1 +

(
ζ̂i

ζ̂i+1

− ζ̂iβiαi

αi−1ζ̂i+1

− σαiζ̂i
ζ̂i+1

)
r̂i.

Now, comparing the above equation with the three-term recurrence (similar to
(1.16)) for the shifted system given by

r̂i+1 = −α̂i(sI −A)rsi +
β̂iα̂i
α̂i−1

r̂i−1 +

(
1− β̂iα̂i

α̂i−1

)
r̂i,

we have

α̂i = −αi

(
ζ̂i

ζ̂i+1

)
,

β̂i =

(
αi
α̂i

)(
α̂i−1
αi−1

)
ζ̂i−1

ζ̂i+1

βi =

(
ζ̂i−1

ζ̂i

)2

βi,

ζ̂i+1 =

(
1− αiσ −

βiαi
αi−1

)
ζ̂i +

βiαi
αi−1

ζ̂i−1·

The above expressions are also true for m = 0, if we initialize ζ̂−1 = 1. A variant of
the BiCG method using a single basis for m shifts is given in Algorithm 1.3, where
it is assumed that the seed system is the one which would take the largest number of
iterations to converge.

Note that, as observed in [13], when finding an update for the approximate solu-

tion of shifted systems, Algorithm 1.3 uses x̂ = x̂+ α̂d̂x, where d̂x = r̂x − β̂d̂x. Since
r̂x can be expressed in terms of rx, no matrix-vector multiplications are required for
the shifted systems if the residual rx is known. In the following we use this important
result to propose an iterative algorithm for the H2-optimal model reduction problem.

2. Iterative shifted BiCG for H2-optimal model reduction. In this
section we develop an implementation of the shifted biconjugate gradient method
(MS-BiCG) to compute local minimizers to the H2-optimal model reduction prob-
lem. The proposed approach allows us to compute the complete Krylov subspace
associated with all shifts in Sm in advance.

We begin with a simple implementation, Algorithm 2.1. Observe that since this
algorithm utilizes a shifted variant of the BiCG method it can deal with a set of shifted
systems and transposed shifted systems using only matrix-vector multiplications as-
sociated with the seed systems, i.e., systems with no shifts. As already mentioned,
this avoids computing matrix-vector products corresponding to each shifted system.

Furthermore, one could change the value of max it from one “inner” iteration to
the next, thus obtaining different levels of approximations to the solution of the linear
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Algorithm 1.3. Multishift biconjugate gradient (MS-BiCG) algorithm.

1: Inputs: A, b, c, max it, tol, and Sm = {σ1, . . . , σm} ⊂ Cm
2: Initialize: x = z = 0, x̂ = ẑ = O ∈ Rn×m rx = b, rz = c, dx = dz = 0,
d̂x = d̂z = O ∈ Rn×m, αold = 1, ρold = 1, ζ̂old = ζ̂ = 1

3: nb = ‖b‖, nc = ‖c‖
4: for i = 1 to max it do
5: {Linear system with no shift}
6: ρ = rTz rx, β = −ρ/ρold
7: dx = rx − βdx, dz = rz − β̄dz
8: α = ρ/(dTz Adx)
9: rx = rx − αAdx, rz = rz − ᾱAT dz

10: error = max{‖rx‖/nb, ‖rz‖/nc}
11: if error < tol then break end
12: {Shifted systems}
13: for k = 1, . . . ,m do

14: ζ̂new(k) = (1− ασk) ζ̂(k) +
(
αβ
αold

)(
ζ̂old(k)− ζ̂(k)

)
15: α̂(k) = −α

(
ζ̂(k)

ζ̂new(k)

)
16: β̂(k) =

(
ζ̂old(k)

ζ̂(k)

)2
β

17: d̂x(:, k) =
(

1/ζ̂(k)
)
rx − β̂(k)d̂x(:, k)

18: d̂z(:, k) =
(

1/
¯̂
ζ(k)

)
rz − ¯̂

β(k)d̂z(:, k)

19: x̂(:, k) = x̂(:, k) + α̂(k)d̂x(:, k),

20: ẑ(:, k) = ẑ(:, k) + ¯̂α(k)d̂z(:, k)
21: end for
22: ζ̂old = ζ̂, ζ̂ = ζ̂new, αold = αi, ρold = ρ
23: end for
24: Outputs: x̂, ẑ

Algorithm 2.1. IRKA with MS-BiCG.

1: Inputs: A, b, c, m, max it, and tol
2: Initialize: Sm = {σ1, . . . , σm} ⊂ Cm that are closed under conjugation
3: while error < tol do
4: Call the MS-BiCG algorithm (Algorithm 1.3) to compute x̂ and ẑ with A, b, c,

max it, tol, and Sm as inputs
5: Vm := [x̂], Wm := [ẑ]
6: Compute Am = (WT

mVm)−1WT
mAVm

7: error = ‖sort(λ(−Am))− sort(Sm)‖
8: Update the interpolation points, Sm = λ(−Am)
9: end while

10: Outputs: Am, bm = (WT
mVm)−1WT

mb, cm = V Tm c

systems with the shifted matrices (σiI − A), i = 1, . . . ,m. Again, we refer to [6, 36],
which provide a justification of using these approximations.

In our proposed implementation, we divide the tasks of the shifted BiCG algo-
rithm (Algorithm 1.3) into two parts. The first part involves the computation of all
the residuals Rx = [rx1

, rx2
, . . . , rxm

] and Rz = [rz1 , rz2 , . . . , rzm ] of the seed systems
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Algorithm 2.2. Part (a): Krylov basis for MS-BiCG.

1: Inputs: A, b, c, max it, and tol
2: Initialize: rx = b, rz = c, dx = dz = 0, and ρold = 1
3: nb = ‖b‖, nc = ‖c‖
4: for i = 1 to max it do
5: ρ = rTz rx, β = −ρ/ρold
6: dx = rx − βdx, dz = rz − β̄dz
7: α = ρ/(dTz Adx)
8: Rx(:, i) = rx, Rz(:, i) = rz, A(i) = α, B(i) = β
9: rx = rx − αAdx, rz = rz − ᾱAT dz

10: error = max{‖rx‖/nb, ‖rz‖/nc}
11: if error < tol then break end
12: ρold = ρ
13: end for
14: Outputs: Rx, Rz, A, B

Algorithm 2.3. Part (b): MS-BiCG iterations with the stored Krylov basis.

1: Inputs: Rx, Rz, A, B, Sm = {σ1, . . . , σm}
2: Initialize: ζ̂, ζ̂old = ones(m, 1)
3: max it = size(Rx, 2)− 1, αold = A1

4: for i = 1 to max it do
5: α = A(i), β = B(i), rx = Rx(:, i), rz = Rz(:, i)
6: for k = 1, . . . ,m do

7: ζ̂new(k) = (1− ασk) ζ̂(k) +
(
αβ
αold

)(
ζ̂old(k)− ζ̂(k)

)
8: α̂(k) = −α

(
ζ̂(k)

ζ̂new(k)

)
9: β̂(k) =

(
ζ̂old(k)

ζ̂(k)

)2
β

10: d̂x(:, k) =
(

1/ζ̂(k)
)
rx − β̂(k)d̂x(:, k)

11: d̂z(:, k) =
(

1/
¯̂
ζ(k)

)
rz − ¯̂

β(k)d̂z(:, k)

12: x̂(:, k) = x̂(:, k) + α̂(k)d̂x(:, k)

13: ẑ(:, k) = ẑ(:, k) + ¯̂α(k)d̂z(:, k)
14: end for
15: ζ̂old = ζ̂, ζ̂ = ζ̂new, αold = αi
16: end for
17: Outputs: x̂, ẑ

and all the scalar parameters A = [α1, . . . , αm] and B = [βi, . . . , βm]. The second part
uses these residuals to compute the coefficients for the collinearity of the residuals of
the shifted systems, and the rest of the IRKA method.

The first part is given by Algorithm 2.2. Note that this algorithm does not
compute the approximations xm and zm since only the residuals and the constant
parameters are required for the solution of shifted linear systems.

The second part of Algorithm 1.3 involves the computation of all search directions
d̂xi

, and d̂zi and all the scalar parameters Ê = [ζ̂1, . . . , ζ̂m], Â = [α̂1, . . . , α̂m], and

B̂ = [β̂1, . . . , β̂m] to obtain approximations to the shifted and transposed shifted
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Algorithm 2.4. IRKA with two-part MS-BiCG.

1: Inputs: A, b, c, m, max it, and tol
2: Initialize: Select Sm = {s1, . . . , sm} ∈ Cm that are closed under conjugation
3: Call Algorithm 2.2 with inputs A, b, c, max it, and tol to obtain R, R̃, A, B
4: while error < tol do
5: Call Algorithm 2.3 with inputs R, R̃, A, B, and Sm to obtain xs and x̃s
6: Vm = xs and Wm = x̃s
7: Compute Am = (WT

mVm)−1WT
mAVm

8: error = ‖sort(λ(−Am))− sort(Sm)‖
9: Update the interpolation points, Sm = λ(−Am)

10: end while
11: Outputs: Am, bm = (WT

mVm)−1WT
mb, cm = V Tm c

systems, and it is given in Algorithm 2.3. This part requires the output of the first
part, Algorithm 2.2. The advantage of this division of our work is that the outputs of
Algorithm 2.2 can be used by different sets of shifted linear systems without computing
them again for each set; see further our numerical experiments in section 4. Of
course, we have to keep in mind that by doing so, we are incurring the expense of the
additional storage of the computed residuals. The resulting IRKA algorithm with the
two-part MS-BICG method is given in Algorithm 2.4

3. Preconditioning of the shifted problem. In practice, one uses a suit-
ably chosen preconditioner to accelerate the convergence of the Krylov subspace
methods, such as BiCG. For shifted problems this means that, in the case of right-
preconditioning, the iterative method (implicitly or explicitly) solves the system

(3.1) (σI −A)M̂−1ŷ = b, x̂ = M̂−1ŷ .

The multishift Krylov methods like the BiCG-based algorithms described in the pre-
vious section, all rely on the shift-invariant property (1.5). Preconditioned multi-shift
methods should satisfy the same property; that is, all the Krylov subspaces for the
preconditioned shifted systems must be the same. Without further assumptions on
the preconditioners M̂ this is clearly not the case. The question we address in this
section is how to construct such preconditioners.

Let us assume that a matrix M independent of σ is given, and that for any shift
σ a matrix M̂ exists such that

(3.2) Ki(AM−1, b) = Ki((σI −A)M̂−1, b).

Although M̂ is not needed to generate a basis for Ki((σI − A)M̂−1, b), it is needed
in the computation of the solution x̂ from the solution ŷ of the right-preconditioned
system; see (3.1).

It is easy to see that the condition (3.2) is satisfied if a σ dependent parameter η̂
and a matrix M independent of σ exist such that

(3.3) (σI −A)M̂−1 = η̂I −AM−1,

that is, such that the preconditioned shifted matrix can be written as a shifted pre-
conditioned matrix; see also [12, 23]. Furthermore, we have to choose M such that
the matrices M̂ are efficient preconditioners for the shifted systems.
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We first consider the situation in which we choose M and η̂ such that the shifted
matrix σI − A can be an explicit factor in the right-hand side of (3.3). To illustrate
this case, we consider the shift-and-invert (SI) preconditioner M = µI − A, in which
µ is a suitably chosen shift. Substituting in (3.3) gives

(σI −A)M̂−1 = η̂I −A(µI −A)−1.

After some manipulations, this can be rewritten as

(σI −A)M̂−1 = (1 + η̂)

(
µη̂

1 + η̂
I −A

)
(µI −A)−1.

This further simplifies if we choose η̂ such that

µη̂

1 + η̂
= σ, i.e., η̂ =

σ

µ− σ
·

The matrix M̂ then becomes

M̂ =
1

1 + η̂
(µI −A).

As a result, solving systems with both M and M̂ only involves the matrix µI − A;
only one LU decomposition of the matrix µI − A has to be computed that can be
used for both the preconditioning operations and for computing the solutions of the
shifted systems.

We remark that also in the more general case of descriptor systems, the SI pre-
conditioner M = µE −A can be used. Applying this preconditioner yields, assuming
that µE −A is invertible, a set of shifted problems

(η̂I −A(µE −A)−1)ŷ = b , x̂ =
1

1 + η̂
(µE −A)−1ŷ,

that can be solved with a shifted Krylov method, such as those discussed in the
previous section.

The SI preconditioner has some important drawbacks. Although the precondi-
tioner is very effective for shifted systems with σ close to µ, it is much less effective
for shifts further away from µ. Another disadvantage is that computing the LU de-
composition of µI−A may still be prohibitively expensive for large three-dimensional
(3D) problems.

It was observed in [12, 23] that polynomial preconditioners also satisfy (3.3); that
is, if M−1 is a polynomial in A then for every shift σ, an η̂ exists such that M̂−1 is
a polynomial in A. In [23], Jegerlehner proposed a simple linear polynomial precon-
ditioner that satisfies this property, whereas in [12] Freund constructed a polynomial
preconditioner for a Helmholtz problem with imaginary shifts using the recurrence
for Chebyshev polynomials. Below we will give a general method for computing the
polynomial M̂−1 = p̂N (A) and parameter η̂ for a shift σ, given the polynomial pre-
conditioner M−1 = pN (A).

Let

(3.4) pN (A) =

N∑
i=0

γiA
i
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be the polynomial preconditioner of degree N for A and let p̂N (A) =
∑N
i=0 γ̂iA

i be
the polynomial preconditioner that as a result is (implicitly) applied to the shifted
system

(σI −A)x̂ = b.

In order to determine p̂N (A) given pN (A), we write (cf. (3.3))

(3.5) (σI −A)p̂N (A) = η̂I −ApN (A).

We need to find the parameters γ̂i, i = 0, . . . , N , and η̂ given σ, as well as γi, i =
0, . . . , N . Substituting the sum (3.4) and p̂N (A) =

∑N
i=0 γ̂iA

i into (3.5) gives

N∑
i=0

σγ̂iA
i −

N∑
i=0

γ̂iA
i+1 − η̂I +

N∑
i=0

γiA
i+1 = 0.

Shifting the second and last sums gives

N∑
i=0

σγ̂iA
i −

N+1∑
i=1

γ̂i−1A
i − η̂I +

N+1∑
i=1

γi−1A
i = 0.

Taking out the terms for i = 0 and i = N + 1 and combining the other terms yields

σγ̂0I − γ̂NAN+1 − η̂I + γNA
N+1 +

N∑
i=1

(σγ̂i − γ̂i−1 + γi−1)Ai = 0.

Equating the coefficients for like powers produces

γ̂N = γN ,(3.6)

γ̂i−1 = γi−1 + σγ̂i, i = N,N − 1, . . . , 1,

η̂ = σγ̂0.

These difference equations can be solved explicitly, obtaining

γ̂i =

N∑
j=i

γjσ
j−i, η̂ = σ

N∑
j=0

γjσ
j ,

i.e., we have η̂ and the coefficients for the polynomial p̂N (A) in closed form. In prac-
tice, we use the recursive formulas (3.6) to compute η̂ and γ̂i, rather than the formulas
in closed form. We use the same formulas both for real and imaginary shifts. Note
that the recursive formulas correspond to Horner’s rule for evaluating polynomials. A
good reference that discusses the numerical stability of Horner’s rule is [21].

The above procedure explains how to compute the coefficients of p̂N (A) from
a suitably chosen preconditioning polynomial pN (A) for A. This preconditioning
polynomial should be such that

ApN (A) ≈ I,

or such that the residual polynomial

qN+1(A) := I −ApN (A) ≈ O.
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This is usually accomplished by constructing a polynomial preconditioner such that
the residual polynomial qN+1(t) is small in the area in the complex plane that contains
the spectrum of the preconditioned matrix. The coefficients of the residual polynomial
thus determine the coefficients of the polynomial preconditioner. Let qN+1(t) be
given as

qN+1(t) =

N+1∏
i=1

(1− ωit),

in which the parameters ωi are the reciprocals of the roots of qN+1(t). Furthermore,
for residual polynomials the condition q(0) = 1 is satisfied. Then, in order to find the

coefficients γi of the polynomial p(t) =
∑N
i=0 γit

i, we first express qN+1(t) as

qN+1(t) = 1−
N+1∑
i=1

γi−1t
i.

The parameters γi can then be found from the recursion

qj(t) = qj−1(t)− ωjtqj−1(t), j = 1 : N + 1, q0(t) = 1.

Many polynomial preconditioners have been proposed in the literature, e.g., [3, 24,
28, 32, 33], and any of these can be chosen as preconditioner for A. A natural choice
is to take the ωj ’s equal to the reciprocals of the Chebyshev nodes on the interval
[`, υ], i.e.,

ψj = (2j − 1)/(2(N + 1)), ωj =
2

υ + `− (υ − `) cos(πψj)
, j = 1, . . . , N + 1.

If the eigenvalues are real, ` and υ are lower and upper bounds, respectively, on the
spectrum. If the eigenvalues are complex, ` and υ should be chosen equal to the foci
of the ellipse that encloses the spectrum.

Unfortunately, many realistic problems with all the eigenvalues in the left half
plane, have a strongly complex spectrum for which the resulting ellipse may extend
into the right half plane. Similarly, some non-normal matrices have their field of
values extending into the right half plane. When ellipses do extend into the right half
plane, an SI preconditioner might be needed. Since the residual polynomial has value
1 at the origin, it can not be small inside the ellipse if the ellipse encloses the origin.
As a result, the Chebyshev preconditioner will perform poorly. To overcome this
problem, we construct for the case where the ellipse encloses the origin a polynomial
approximation for the inverse of the shifted matrix µI − A, hence we compute an
approximate SI preconditioner. As a heuristic, we choose the shift equal to half the
length of the minor axis, which guarantees that the eigenvalues of µI − A are in the
right half plane, and that the origin is outside the ellipse.

In the SI preconditioner it is not possible to choose µ = 0 and satisfy the re-
quirement that the left- and right-hand sides of (3.3) share a common factor I − σA.
Chosing µ 6= 0 yields (apart from a scaling factor) the same preconditioner for all
shifts and has as disadvantage that the quality of the preconditioner decreases when
µ is chosen further away from σ. The situation is different, however, for a polyno-
mial preconditioner pN (A). In this case the choice µ = 0 is allowed. The resulting
preconditioners p̂N (A) = M̂−1 are different for every shift σ and aim to approximate
(apart from a scaling factor) the inverse of σI −A. This is possible because for poly-
nomials one can always find a shift η̂ such that a common factor can be devided out
of equation (3.3).
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4. Numerical experiments. In this section we present numerical results for
four different test problems. The first two test problems, taken from the SLICOT test
set [8], are used to demonstrate how our approach can be applied to models with a
system matrix with strongly complex eigenvalues. The third and fourth problem are
large-scale models for flow in a cylindrical reservoir. These two problems illustrate
the performance gain that can be obtained using our approach.

The dimension m of the reduced models is selected to give a good agreement
between the frequency response of the full and the reduced model. For all examples
we give the magnitude of the frequency responses in the form of Bode plots (norm of
the transfer function for different frequency values).

IRKA is always initialized using the harmonic Ritz values after m Arnoldi
iterations with a constant starting vector. The IRKA iterations are terminated once
the maximum difference in the shifts between two consecutive iterations is smaller
than 10−5.

The ellipses around the spectrum are constructed using Khachiyan’s method [25]
such that they enclose the m harmonic Ritz values that are computed to initialize
the IRKA algorithm. We remark that the computational cost of this algorithm is
negligible in comparison with the rest of the IRKA computational effort.

To solve the set of linear systems we have used the following techniques:
1. Direct solution (using MATLAB’s “\” command): every system is solved

individually.
2. BiCG (Algorithm 1.2), without preconditioner, and with polynomial precon-

ditioners of degrees 4, 8, and 16.
3. Shifted BiCG (MS-BiCG, Algorithm 1.3), without preconditioner, and with

polynomial preconditioners of degrees 4, 8, and 16.
4. Two-part MS-BiCG (Algorithm 2.4), without preconditioner, and with a

polynomial preconditioners of degrees 4, 8, and 16.
For all methods we report the number of IRKA iterations, the total number of

matrix-vector multiplications (MATVECs) and the computing time for the complete
IRKA calculation. The number of IRKA iterations should be the same for all tabu-
lated methods, if all linear systems are solved to sufficient accuracy; cf. [6]. We also
report the dimensions of the Krylov subspaces that need to be stored for two-part
MS-BiCG.

The iterative linear equation solvers are terminated for a specific shifted linear sys-
tem once the corresponding residuals satisfy ‖r̂xi

‖ ≤ 10−8‖b‖ and ‖r̂zi‖ ≤ 10−8‖c‖.
Note that the norms of the residuals of the shifted systems can be obtained almost
for free using (1.14). The maximum number of iterations is set to 10,000.

For every test problem we have checked that the first five decimal digits of the
computed shifts are the same for all techniques. This to ensure that possible differ-
ences in the response function are caused by the termination criterion of IRKA, not
by the numerical differences in the solutions of the linear solvers. We remark that all
converged solutions visually yield the same Bode plots.

All computations that are described in this section have been performed using
MATLAB 7.13 on a workstation with 32 GB of memory and equipped with an eight-
core Xeon processor.

4.1. The ISS problem. The first example we consider is the ISS problem de-
scribed in [8]. It models the International Space Station. The system matrix A has
dimension 270. For the dimension of the reduced model we take m = 20.

The Bode plots for the full and for the reduced model are shown in the left panel
of Figure 1. The responses of the two models are almost identical. The bounding
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Fig. 1. ISS problem.

Table 1
Results for the ISS problem. N is the degree of the polynomial preconditioner. Numbers in

parentheses are the maximum dimension of the Krylov subspace.

Method, preconditioner IRKA its. MATVECs CPU time [s]
Direct solution 16 - 0.3

BiCG, none 16 83377 12.8
BiCG, N = 4 16 314100 22.0
BiCG, N = 8 16 480694 27.0
BiCG, N = 16 16 821290 41.4

MS-BiCG, none 16 6695 4.4
MS-BiCG, N = 4 16 25730 4.8
MS-BiCG, N = 8 16 47164 5.2
MS-BiCG, N = 16 16 82300 6.3

Two-part MS-BiCG, none 16 270 (270) 2.8
Two-part MS-BiCG, N = 4 16 2350 (214) 2.0
Two-part MS-BiCG, N = 8 16 4432 (208) 1.9
Two-part MS-BiCG, N = 16 16 8384 (192) 1.9

ellipse does not enclose the origin and therefore, it is not necessary to apply a shift
to the preconditioner.

In Table 1 we present the results for the different methods. Here, and in the other
tables, the numbers in parentheses indicate the dimensions of the Krylov subspaces.
Note that the number of MATVECs (matrix-vector multiplications) corresponds to
the MATVECS for both the (MS-)BiCG iterations and to the MATVECS that are
needed to compute the solutions, i.e., for the multiplications with the polynomials
p̂N (A). These latter computations require a total of N × m MATVECs per IRKA
iteration. This is only a fraction of the total number of MATVECs for BiCG and MS-
BiCG. In contrast, almost all the MATVECS for two-part MS-BiCG with polynomial
preconditioning are needed for applying the polynomials p̂N (A).

It can be appreciated that the number of IRKA iterations is the same for all
methods. This test problem is too small for an iterative solver to be competitive with
the direct solution method. The shifted BiCG algorithm MS-BiCG is about three
times faster than standard BiCG. Note that the number of shifts for this problem
is 20, which is relatively large. Two-part MS-BiCG gives another improvement of
a factor 2. However, two-part MS-BiCG without polynomial preconditioner needs
to store 270 basis vectors for the Krylov subspace, which is equal to the problem
size. The polynomial preconditioner performs poorly with BiCG and with MS-BiCG.
This is indicated by the computing times which go up if the degree of the polynomial
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Fig. 2. Eady problem.

Table 2
Results for the Eady problem. N is the degree of the polynomial preconditioner. Numbers in

parentheses are the maximum dimension of the Krylov subspace.

Method, preconditioner IRKA its. MATVECs CPU time [s]
Direct solution 50 - 18.3

BiCG, none 50 141122 64.8
BiCG, N = 4 50 235915 65.7
BiCG, N = 8 50 373856 63.8
BiCG, N = 16 50 621749 147.1

MS-BiCG, none 50 26562 15.6
MS-BiCG, N = 4 46 55222 12.2
MS-BiCG, N = 8 52 99133 18.7
MS-BiCG, N = 16 50 156816 26.9

Two-part MS-BiCG, none 51 578 (578) 7.1
Two-part MS-BiCG, N = 4 48 2371 (167) 2.4
Two-part MS-BiCG, N = 8 50 4550 (150) 2.7
Two-part MS-BiCG, N = 16 50 8678 (134) 3.5

preconditioner is increased. Looking at the numbers of MATVECS, we observe that
these almost double if N is doubled, which indicates that the polynomial precondi-
tioner only slightly reduces the number of (MS-)BiCG iterations. This is also appar-
ent from the dimensions of the Krylov subspaces (which equals the number of initial
MS-BiCG iterations) whose bases are stored for two-part MS-BiCG. The reason for
the poor performance of the polynomial preconditioners is the unfavorable spectrum,
which results in an ellipse that is elongated along the imaginary axis and that al-
most touches the origin. We note, however, that although overall the polynomial
preconditioner increases the number of total MATVECS as the degree grows, it does
reduce both the storage requirements and the computing time for two-part BiCG by
about 30%.

4.2. The EADY problem. The second example we consider is the EADY
problem [8], which is a model of the atmospheric storm track. The system matrix A
has dimension 598. For the dimension of the reduced model we take m = 8.

The left panel of Figure 2 shows the Bode plots for the full and for the reduced
model. The right panel shows the spectrum and the bounding ellipse. Although all
eigenvalues have a negative real part, the ellipse extends into the right half plane,
which makes it necessary to use a shift in the preconditioner.

Table 2 gives the results for the different methods. The number of IRKA itera-
tions, due to small numerical differences in the solutions of the linear systems, varies
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slightly for different methods. Since this problem is small, BiCG is not competitive
with the direct solver. Simultaneously solving the shifted systems in one IRKA iter-
ation using MS-BiCG gives a method that is slightly faster than the direct method.
The use of a low degree polynomial preconditioner gives a small speed-up over plain
MS-BiCG. The two-part MS-BiCG method is, for this problem, the fastest: this
method in combination with a polynomial preconditioner of degree 4 is almost eight
times faster than the direct solver.

For this problem the polynomial preconditioner approximates (µI − A)−1, with
µ 6= 0. This means that the numerical performance (numbers of BiCG iterations) of
the polynomial preconditioner cannot be expected to be better than for the exact SI
preconditioner. To validate this we have also solved this problem with the SI pre-
conditioner, which results for example in 133 initial MS-BiCG iterations for two-part
BiCG, whereas two-part MS-BiCG with a polynomial preconditioner of degree 16
needs 134 initial iterations.

4.3. Convection-diffusion problem. The third test problem models transport
in a moving medium. The domain is radial and the medium moves with radial velocity
v = a

r towards the well in the center. In this equation r is the distance to the center
and a is a constant. We assume that also the diffusion is constant in all directions.
A simple model for the concentration C is then given by the following convection-
diffusion equation:

∂

∂r

(
r
∂C

∂r

)
−a∂C

∂r
+

1

r2
∂2C

∂θ2
+
∂2C

∂z2
=
∂C

∂t
, r ∈ (1, R), θ ∈ (−π, π], z ∈ (0, D), t > 0.

(4.1)

Here, R is the radius of the reservoir, θ is the radial coordinate, z the vertical coordi-
nate, D the depth of the reservoir, and t is the time. The domain has radius R = 200
and depth D = 10. For the convection parameter we take a = 4.

The initial condition is C(0, r, θ, z) = 0. A no-flux condition is imposed at the top
and the bottom of the domain:

∂C(t, r, θ, 0)

∂z
= 0,

∂C(t, r, θ,D)

∂z
= 0.

Furthermore, the periodic boundary condition C(t, r, 0, z) = C(t, r, 2π, z) is imposed.
We assume that the flux at the well is prescribed and that the concentration at the
outer boundary is constant. The corresponding boundary conditions are

∂C(t, 1, θ, z)

∂r
= −fwell and C(t, R, θ, z) = 0.

The output variable is the concentration in the well Cwell and the control variable
is the flux fwell. Discretization with the finite difference method, using an equidistant
grid with 500 points in the radial direction, 25 points in the z direction, and 36 points
in the angular direction yields a dynamical system of the following form:

Ċ = AC + bfwell, Cwell = cTC.

The gridsizes are chosen such that the numerical solution is stable, i.e., it does not
exhibit spurious oscillations. The number of state variables is 450,000. The matrix
A corresponds to a convection-diffusion operator and is therefore nonsymmetric. For
the stable grid sizes the eigenvalues of the matrix A are (almost) real.

The dimension of the reduced model m is taken to be 6. Note that due to
symmetry the 1D version of the model that takes only the radial direction into account
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Fig. 3. Convection-diffusion problem.

Table 3
Results for the convection-diffusion problem. N is the degree of the polynomial preconditioner.

Numbers in parentheses are the maximum dimension of the Krylov subspace.

Method IRKA its. MATVECs CPU time [s]
Direct solution 18 - 30645
BiCG, N = 0 n.c. - -
BiCG, N = 4 18 11867 767
BiCG, N = 8 18 12798 698
BiCG, N = 16 18 14342 596

MS-BiCG, N = 0 18 7884 1141
MS-BiCG, N = 4 18 5287 398
MS-BiCG, N = 8 18 5913 369
MS-BiCG, N = 16 18 6896 259

Two-part MS-BiCG, N = 0 n.c. - -
Two-part MS-BiCG, N = 4 18 2797 (473) 229
Two-part MS-BiCG, N = 8 18 2484 (180) 139
Two-part MS-BiCG, N = 16 18 3445 (101) 129

gives the same response. We exploit this by comparing the Bode plot of the full 1D
model with the Bode plot of the reduced 3D model. These are shown in the left panel
of Figure 3. The two plots coincide. The right panel shows the H2-norm of the error
system; this is the response of the full 1D model minus the response of the reduced 3D
model, as function of the IRKA iteration. The convergence of IRKA in the H2-norm
is monotonic, as mostly observed.

Table 3 gives the results for the different solution techniques. Here and in the se-
quel, “n.c.” indicates no convergence within 10,000 iterations. This occurred for BiCG
and two-part MS-BiCG without preconditioning. The number of IRKA iterations is
the same for all other tabulated methods.

Iterative solvers are more suited for this large 3D problem than the direct method.
The results for BiCG with polynomial preconditioner illustrate this. BiCG with a
polynomial preconditioner of degree 16 is about 50 times faster than the direct method.
MS-BiCG and two-part MS-BiCG each give a further performance gain of a factor
2. As a result, two-part MS-BiCG with a polynomial preconditioner of degree 16
yields a speed-up of more than a factor of 200 with respect to IRKA with the direct
solution method. The polynomial preconditioner is quite effective for this problem.
It speeds up MS-BiCG considerably, and it turns BiCG and two-part MS-BiCG from
nonconverging into a rapidly converging processes.
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The performance gain for the two-part MS-BiCG algorithm comes at the expense
of a higher memory consumption than for the other two BiCG variants. Since the
bases for both Ki(A, b) and Ki(AT , c) need to be stored, additional memory of 2i
vectors of the size of the number of state variables is needed. Note that taking the
degree of the polynomial preconditioner higher not only reduces the computing time
but, more importantly, also reduces the storage requirements. Since the bandwidth
of the matrix is 900 (the number of points in angular direction times the number of
points in z direction), the storage required for the LU factors of a direct solution
method is approximately equivalent to the storage required for 1800 vectors. This is
much more than the storage for 202 vectors that is needed to store the basis vectors
for the Krylov subspaces for two-part MS-BiCG with N = 16.

The example that we have considered in this section could easily be replaced by
an equivalent 1D problem. The reason that we have consider the 3D problem, and
not simply the equivalent 1D problem, is to illustrate the computational advantage
of our approach for large-scale problems. We mention that we have also applied our
approach to truly 3D problems, i.e., problems that cannot be replaced by an equivalent
1D problem, with very similar results. However, for these problems we cannot report
on the frequency response of the full model, or on the H2-norm of the error system,
since these calculations are too time consuming for large 3D models.

4.4. Potential flow in a cylindrical reservoir. The last example we consider
describes flow in a porous medium in a cylindrical reservoir around a well. A math-
ematical description for this problem is given by the so-called (dimensionless) radial
diffusivity equation,

(4.2)
∂

∂r

(
r
∂p

∂r

)
+

1

r2
∂2p

∂θ2
+
∂2p

∂z2
=
∂p

∂t
, r ∈ (1, R), θ ∈ (−π, π], z ∈ (0, D), t > 0.

In this equation p is the pressure in the reservoir, r is the distance to the center of
the well, R is the radius of the reservoir, θ is the radial coordinate, z the vertical
coordinate, D the depth of the reservoir, and t is the time. Note that the spatial
operator in (4.2) is the Laplace operator in cylindrical coordinates. As in the previous
example, we take the radius R = 200 and the depth D = 10. The initial condition
is p(0, r, θ, z) = 0. A no-flow boundary condition is imposed on the top and on the
bottom of the reservoir, i.e.,

∂p(t, r, θ, 0)

∂z
= 0 and

∂p(t, r, θ,D)

∂z
= 0.

Because of the cylindrical domain the periodic boundary condition p(t, r, 0, z) =
p(t, r, 2π, z) holds. Furthermore, we assume that the pressure in the well is prescribed
and that there is no inflow through the outer boundary. In dimensionless variables
these boundary conditions read

(4.3) p(t, 1) = pwell and
∂p(t, R, θ, z)

∂r
= 0, t > 0.

The variable of interest is the outflow from the reservoir into the well (which
determines the production rate) given by

vwell = −∂p(t, 1, θ, z)
∂r

.

The control variable is pwell.
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Fig. 4. Diffusivity equation.

Table 4
Results for the diffusivity equation. N is the degree of the polynomial preconditioner. Numbers

in parentheses are the maximum dimension of the Krylov subspace.

Method IRKA its. MATVECs CPU time [s]
Direct solution 55 - 117417
BiCG, N = 0 n.c. - -
BiCG, N = 4 55 122770 8859
BiCG, N = 8 55 126433 7221
BiCG, N = 16 55 137209 5354

MS-BiCG, N = 0 n.c. - -
MS-BiCG, N = 4 55 63725 4593
MS-BiCG, N = 8 55 65179 3720
MS-BiCG, N = 16 55 72677 2866

Two-part MS-BiCG, N = 0 n.c. - -
Two-part MS-BiCG, N = 4 55 5720 (792) 751
Two-part MS-BiCG, N = 8 55 4843 (147) 403
Two-part MS-BiCG, N = 16 55 3586 (83) 359

This problem is discretized with the finite difference method, using the same grid
as in the previous example. The number of state variables is also 450,000.

The outflow into the well is calculated using a second-order finite-difference for-
mula. This leads to a dynamical system of the following form:

ṗ = Ap+ bpwell, vwell = cT p+ dpwell.

The dimension of the reduced model m is taken to be 8. The matrix A has real
eigenvalues, since the diffusivity equation is a Laplace equation and hence A is a
discretized Laplacian. However, due to the Neumann boundary conditions and to the
cylindrical coordinates, the matrix is nonsymmetric.

Due to symmetry, a 1D model with the same response can be formulated by
ignoring the angular and depth dependencies. Figure 4 shows in the left panel the
Bode plots of the reduced system and of the 1D model. The right panel shows the
H2-norm of the error system as function of the IRKA iteration number. The decrease
of the H2-norm is monotonic.

Table 4 shows the numerical results. None of the BiCG variants without precondi-
tioning converge. The direct solver is not competitive with any of the preconditioned
iterative methods. BiCG with a polynomial preconditioner of degree 16 is more than
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20 times faster than the direct method. MS-BiCG gives a further performance gain
of a factor 2, and two-part MS-BiCG a further improvement of a factor 8. Two-part
MS-BiCG gives a much bigger performance gain for this problem than for the previous
problem. This can be explained by the fact that more IRKA iterations are needed for
this problem and that m is higher. As a result, the number of shifted systems that
need to be solved is about four times higher, and therefore also the gain of reusing
the bases for the Krylov subspaces.

The polynomial preconditioner is quite effective for this problem as well. It
turns the unpreconditioned BiCG methods into a converging processes. The best
performance is achieved for the polynomial preconditioners of the highest degree we
considered.

5. Concluding remarks. The computationally most demanding part of IRKA
is the solution of sets of shifted systems. In this paper we have proposed variants of
IRKA that use preconditioned versions of the shifted BiCG algorithm. In the proposed
version, the bases of the two linear systems for a fixed shift are computed, stored,
and reused for the systems with the other shifts. We have presented a polynomial
preconditioner that can simultaneously be applied to all shifted systems. By means of
numerical experiments we have investigated the efficiency of the resulting algorithms.

We have considered two types of test problems. Our first two examples concerned
rather small size problems of which the system matrix has strongly complex eigenval-
ues. For these problems our results indicate that MS-BiCG and two-part MS-BiCG
give a significant reduction of computing time relative to BiCG. The performance
gain of the polynomial preconditioner turned out to be limited in combination with
BiCG and MS-BiCG, but in combination with two-part MS-BiCG the polynomial
preconditioner gave a significant performance improvement for both test problems.

The other two examples concerned large-scale problems of which the system ma-
trix has only (almost) real eigenvalues. For such a matrix it is relatively easy to
compute a suitable polynomial preconditioner. Our results showed the excellent per-
formance of the preconditioned shifted BiCG methods for these problems.

In general, a higher degree polynomial would be a better preconditioner, but of
course at an extra cost. As can be observed in some of our experiments, there is
an optimal point after which the additional cost of higher degree offsets the possible
gain. In the smaller problems, this occurs at around N = 8, and going to N = 16
either does not produce any decrease in execution times, or those times increase. In
the larger problems, after N = 8, there is still a reduction in execution times, but
those reductions are not as steep. Therefore, a good heuristic that cover all cases is
to choose either N = 8 or N = 16. The former choice is more conservative, while the
latter is a little more aggressive, but in either case, one may very well be near the
optimal value.
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