
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 07-07

IDR(s): a family of simple and fast algorithms for solving large
nonsymmetric linear systems

Peter Sonneveld and Martin B. van Gijzen

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2007

Copyright 2007 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Department of Applied Mathematical Analysis,
Delft University of Technology, The Netherlands.

IDR(s): a family of simple and fast algorithms for solving

large nonsymmetric systems of linear equations

Peter Sonneveld and Martin B. van Gijzen∗

March 19, 2007

Abstract

We present IDR(s), a new family of efficient, short-recurrence methods for large
nonsymmetric systems of linear equations. The new methods are based on the Induced
Dimension Reduction (IDR) method proposed by Sonneveld in 1980. While state-of-
the-art methods such as Bi-CGSTAB require at most 2N matrix-vector products to
compute an exact solution in exact arithmetic, IDR(s) requires at most N + N/s
matrix-vector products, with N the problem size and s the dimension of a pre-chosen
subspace. We describe the algorithm and the underlying theory and present numerical
experiments to illustrate the theoretical properties of the method and its performance
for systems arising from different applications. Our experiments show that IDR(s)
is competitive with or superior to most Bi-CG-based methods, and outperforms Bi-
CGSTAB when s > 1.

Keywords. Iterative methods, IDR, Krylov-subspace methods, Bi-CGSTAB, CGS, non-
symmetric linear systems.

AMS subject classification. 65F10, 65F50

1 Introduction

Krylov subspace methods are used extensively for the iterative solution of linear systems
of equations

Ax = b .

The most popular method for solving large systems with A Hermitian and positive definite
of size N is the Conjugate Gradient (CG) method [5] of Hestenes and Stiefel. The CG
method minimizes the A-norm of the error over the Krylov subspace

Kn(A, r0) = r0 ⊕ Ar0 ⊕ A2r0 ⊕ · · · ⊕ Anr0 , (1)

using short recurrences. Here, n is the iteration number, and r0 = b − Ax0 is the initial
residual. Short recurrences imply that only a small number of vectors is needed to carry out
the process, so that an extremely simple and efficient method is obtained. Unfortunately,
as shown by Faber and Manteuffel [1], it is not possible to derive a method for general
A that combines an optimal minimization of some error norm over Kn(A, r0) with short
recurrences.

∗Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft,
The Netherlands. E-mail: P. Sonneveld@tudelft.nl, M.B.vanGijzen@tudelft.nl

1

The search for efficient Krylov-methods for systems with a general matrix A has been
dominated by two different approaches, both of which are generalizations of CG. In the first
approach, the requirement of short recurrences is removed. The most popular member of
this family, GMRES [7], yields iterates that minimize the residual over the Krylov subspace
after n iterations, at the expense of having to compute and store a new orthogonal basis
vector for the Krylov subspace at every iteration. This operation becomes prohibitive,
with respect to both memory and computations, if many iterations have to be performed
to achieve a desired precision.
The second approach generalizes CG using short recurrences. The archetype of this class
is the Bi-CG method of Fletcher [2], which is equivalent to CG in the symmetric case.
However, Bi-CG requires two matrix-vector products per iteration, one with A and one
with AH , which makes it approximately twice as expensive as CG. Moreover, the method
has no optimality property for general A. Since Bi-CG is based on the bi-Lanczos tri-
diagonalization method [6], the method terminates (in exact arithmetic) in at most N
iterations, hence using at most 2N matrix-vector products. The search for a faster Bi-
CG-type method focused on Sonneveld’s idea of making better use of the ‘wasted’ extra
matrix-vector multiplication. In his CGS method [10], this is achieved by applying the CG
polynomial twice at no extra cost in terms of matrix-vector multiplications. An additional
advantage of CGS is that no multiplications with AH are needed. For many problems, CGS
is considerably faster than Bi-CG, but the convergence behavior is also much more erratic.
To overcome this drawback, Van der Vorst proposed Bi-CGSTAB [11], which applies the
Bi-CG polynomial in combination with a minimal-residual step at each iteration. This
method has been generalized by Sleijpen and Fokkema [8] to the BiCGstab(ℓ) method,
which combines Bi-CG with a higher-order minimum-residual method.
As mentioned before, research efforts on fast Krylov algorithms based on short recurrences
have focused on Bi-CG-type methods. This is probably due to the fact that in the sym-
metric case Bi-CG is mathematically equivalent to the optimal CG method (albeit at twice
the price). However, there is no reason to believe that a different approach cannot yield
faster methods. In this paper, we propose an approach that seems to confirm that indeed
it is possible to derive competitive or even faster methods for nonsymmetric systems in a
way that is not closely related to Bi-CG or Lanczos.
In order to derive such a method we revisit the Induced Dimension Reduction (IDR) algo-
rithm proposed in 1980 by Sonneveld [13] as an iterative method for solving nonsymmetric
systems of equations. The method has several favorable features: it is simple, uses short
recurrences, and computes the exact solution in at most 2N steps (matrix-vector mul-
tiplications) in exact arithmetic. Analysis of IDR revealed a close relation with Bi-CG.
It was shown in [13] that the iteration polynomial constructed by IDR is the product of
the Bi-CG polynomial with another, locally minimizing polynomial. Sonneveld’s obser-
vation that the Bi-CG polynomial could be combined with another polynomial without
transpose-matrix-vector multiplications led to the development first of CGS, and later of
Bi-CGSTAB.
Over the years, CGS and Bi-CGSTAB have completely overshadowed IDR which is now
practically forgotten, except perhaps as the predecessor of CGS. This is a pity since, al-
though there is a clear relation between CG-type methods and the original IDR method,
the underlying ideas are completely different. This suggests that by exploiting the differ-
ences new methods may be developed. Bi-CG, CGS, Bi-CGSTAB, and BiCGstab(ℓ) are
essentially based on the computation of two mutually bi-orthogonal bases for the Krylov
subspaces Kn(A, r0) and Kn(AH , r̃0). The ‘S’-part in CGS, and the ‘STAB’-part in Bi-
CGSTAB are different ways of making more efficient use of the AH-related information.

2

The finiteness of these methods (in exact arithmetic) comes from the finiteness of any
basis for (a subspace of) C

N . The IDR method, on the other hand, generates residuals
that are forced to be in subspaces Gj ’s of decreasing dimension. These nested subspaces
are related by Gj = (I − ωjA)(S ∩ Gj−1), where S is a fixed proper subspace of C

N , and
the ωj’s are non-zero scalars.
In this paper, we describe IDR(s), a family of new iterative solution algorithms based
on the IDR mechanism. We propose a number of improvements and generalizations of
the original IDR method as well as new variants that compute the exact solution in
exact arithmetic using less than 2N matrix-vector multiplications. More precisely, IDR(s)
requires at most N +N/s matrix-vector multiplications.
The paper is organized as follows. In Section 2, we present and prove the IDR theorem
which provides the theoretical basis for the new algorithms. In Section 3, we describe a
prototype for the IDR family of algorithms. In Section 4 we analyze the termination and
break-down behavior of the IDR algorithms. In Section 5, we discuss IDR(s) as a poly-
nomial based algorithm, give alternative formulations and modifications of the algorithm,
and explain the relationship between IDR(1) and Bi-CGSTAB. In Section 6, we describe
the numerical experiments. We present both simple experiments to validate the theoretical
properties of IDR(s), and realistic examples to make an evaluative comparison with the
best known Bi-CG-type methods: Bi-CGSTAB, Bi-CG, QMR [3], CGS, and BiCGstab(ℓ).
We present concluding remarks in Section 7.

2 The Induced Dimension Reduction theorem

The new family of algorithms is based om the Induced Dimension Reduction theorem. The
original IDR theorem was published in [13, p. 550]. Here, we give a generalization of the
original result to complex matrices.

Theorem 1 (IDR) Let A be any matrix in C
N×N , let v0 be any nonzero vector in C

N ,
and let G0 be the complete Krylov space KN (A,v0). Let S denote any (proper) subspace
of C

N such that S and G0 do not share a nontrivial invariant subspace of A, and define
the sequence Gj , j = 1, 2, . . . as

Gj = (I − ωjA)(Gj−1 ∩ S)

where the ωj ’s are nonzero scalars. Then
(i) Gj ⊂ Gj−1 for all j > 0.
(ii) Gj = {0} for some j ≤ N .

Proof We first show by induction that Gj ⊂ Gj−1, ∀j > 0.
Since G0 is a complete Krylov space, we have

G1 = (I − ω1A)(G0 ∩ S) ⊂ (I − ω1A)G0 ⊂ G0

Now assume Gj ⊂ Gj−1 for some j > 0 and let x ∈ Gj+1. Then

x = (I − ωj+1A)y

for some y ∈ Gj ∩S. Then y ∈ Gj−1∩S by the induction hypothesis. Hence, (I−ωjA)y ∈
Gj. This implies that Ay ∈ Gj and therefore, (I − ωj+1A)y = x ∈ Gj .
It follows that Gj+1 ⊂ Gj.

3

We now show that Gj = {0} for some j ≤ N . Since Gj+1 ⊂ Gj , there are two possibilities:
either Gj+1 is a proper subspace of Gj , or Gj+1 = Gj.
In the first case, dim(Gj+1) < dim(Gj). The second case can only occur if Gj ∩ S = Gj.
Otherwise, dim(Gj∩S) < dim(Gj) and consequently, dim(Gj+1) < dim(Gj). So Gj∩S = Gj,
and therefore Gj ⊂ S. Also Gj+1 = (I − ωj+1A)(Gj ∩ S) = (I − ωj+1A)Gj , which implies
that Gj is an invariant subspace of A.
Since Gj ⊂ S and Gj ⊂ G0, and by assumption S and G0 do not share a nontrivial invariant
subspace of A, it follows that Gj = {0}. Therefore, either the dimension of the Gj space
is reduced at each step, or Gj = {0}. Since dim(G0) ≤ N , no more than N dimension-
reduction steps can be performed. Hence there is a j ≤ N for which Gj = {0}. �

Remark: The restriction that S and G0 may not share a non-trivial invariant subspace
of A is not severe. Because G0 is a complete Krylov space, all eigenspaces of A in G0 are
one-dimensional. So if, for instance, S is chosen at random, the event that one of these
eigenspaces is in S has zero probability.

The above theorem states that it is possible to generate a sequence of nested subspaces
of decreasing dimension and that under mild conditions the smallest possible subspace is
{0}.

3 The IDR(s) Algorithm

Let Ax = b be an N × N linear system. A Krylov-type solver produces iterates xn for
which the residuals rn = b−Axn are in the Krylov spaces Kn(A, r0). Here x0 is an initial
estimate of the solution. As a consequence, the iterates rn can be written as Φn(A)r0,
where Φn is an n-th degree polynomial: Φn ∈ P

n \ P
n−1.

The next residual rn+1 can be generated according to the following general rule

rn+1 = −αArn +

bj∑

j=0

βjrn−j . (2)

in which the parameters α, βj are determined by the specific Krylov method. If ĵ = n, we
have a so-called long recurrence, which implies that the amount of work and the memory
requirements grow with n. On the other hand, if ĵ is fixed and small (compared to N), we
have a so-called short recurrence, which is attractive with respect to computational and
memory requirements.
In order to solve a system, we must be able to compute xn corresponding to rn. This
can always be done if the coefficients βj satisfy

∑
βj = 1, as can be easily seen from the

following analysis. Using the forward difference operator ∆uk = uk+1−uk, the recurrence
(2) can be written as

rn+1 = γ0rn − αArn −

bj∑

j=1

γj∆rn−j ,

for suitably chosen coefficients γj . Now, since ∆rn−j = −A∆xn−j, the choice γ0 = 1
provides the following update formulae:

rn+1 = rn − αArn −

bj∑

j=1

γj∆rn−j ,

4

xn+1 = xn + αrn −

bj∑

j=1

γj∆xn−j ,

Of course γ0 = 1 is equivalent to
∑
βj = 1. In terms of the polynomials Φn, this condition

is equivalent to Φn(0) = 1.
The IDR-theorem can be applied by generating residuals rn that are forced to be in the
subspaces Gj, where j is nondecreasing with increasing n. Then under the assumptions of
Theorem 1, the system will be solved after at most N dimension-reduction steps.
The residual rn+1 is in Gj+1 if

rn+1 = (I − ωj+1A)v with v ∈ Gj ∩ S .

Without loss of generality, we may assume the space S to be the left nullspace of some
N × s matrix P:

P = (p1 p2 . . . ps), S = N (PH) .

The vector v is a combination of the residuals rl (or ∆rl) in Gj, and hence can be written
as

v = rn −

bj∑

j=1

γj∆rn−j . (3)

Since v is also in S = N (PH), it additionally satisfies

PHv = 0 . (4)

Combining (3) and (4) yields an s× ĵ linear system for the coefficients γj . Under normal

circumstances this system is uniquely solvable if ĵ = s. Consequently, computing the first
vector in Gj+1 requires s + 1 vectors in Gj and we may expect rn to be in Gj+1 only for
n ≥ (j + 1)(s + 1). We will come back to the exceptional case when the system is not
uniquely solvable in the next section.
Define the following matrices:

dRn = (∆rn−1 ∆rn−2 · · · ∆rn−s) , (5)

dXn = (∆xn−1 ∆xn−2 · · · ∆xn−s) . (6)

Then the computation of rn+1 ∈ Gj+1 can be implemented by the following algorithm:

Calculate: c ∈ R
s from (PHdRn)c = PHrn,

v = rn − dRnc,

rn+1 = v − ωj+1Av .

Since Gj+1 ⊂ Gj , repeating these calculations will produce new residuals rn+2, rn+3, · · · ,
in Gj+1. Once s+1 residuals in Gj+1 have been computed, we can expect the next residual
to be in Gj+2.
In the calculation of the first residual in Gj+1, we may choose ωj+1 freely but the same
value must be used in the calculations of the subsequent residuals in Gj+1. A suitable
choice for ωj+1 is the value that minimizes the norm of rn+1, similarly as is done in,
amongst others, the Bi-CGSTAB algorithm.
Of course, we must update the solution vector xn+1 together with the updates for the
residual rn+1. Furthermore, the process must be initialized, that is residuals and solution
updates must be generated by a Krylov-oriented procedure, before we can start the above-
type of calculations. We present the algorithm in Figure 1.

5

Require: A ∈ C
N×N ; x0, b ∈ C

N ; P ∈ C
N×s; TOL ∈ (0, 1); MAXIT > 0

Ensure: xn such that ‖b − Axn‖ ≤ TOL
{Initialization.}
Calculate r0 = b − Ax0;

{Apply s minimum norm steps, to build enough vectors in G0}
for n = 0 to s− 1 do

v = Arn; ω = (vHrn)/(vHv);
dxn = ωrn; drn = −ωv;
rn+1 = rn + drn; xn+1 = xn + dxn;

end for
dRn+1 = (drn · · · dr0); dXn+1 = (dxn · · · dx0);

{Building Gj spaces, for j = 1, 2, 3, . . .}
n = s
{Loop over Gj spaces}
while ‖rn‖ > TOL or n < MAXIT do

{Loop inside Gj space}
for k = 0 to s do

Solve c from PHdRnc = PHrn

v = rn − dRnc;
if k = 0 then

{Enter Gj+1}
t = Av;
ω = (tHv)/(tHt);
drn = −dRnc − ωt;
dxn = −dXnc + ωv;

else
{Subsequent vectors in Gj+1}
dxn = −dXnc + ωv;
drn = −Adxn;

end if
rn+1 = rn + drn;
xn+1 = xn + dxn;
n = n+ 1;
dRn = (drn−1 · · · drn−s);
dXn = (dxn−1 · · · dxn−s);

end for
end while

Figure 1: The IDR(s) Algorithm.

6

Remarks.

• This prototype is not intended as a practical but as a mathematical algorithm. The
implementation of dRn = (drn−1 · · · drn−s) etc, as well as the the computation of
matrices PHdRn can of course be done much more efficiently than suggested. We
refer to the appendix for a simple but efficient Matlab-code.

• The s × s system may be (nearly) inconsistent, leading to a (near) breakdown. We
will refer to this as breakdown of type 1.

This is similar to what is called Lanczos breakdown in Bi-CG-based methods. Work-
ing around this problem, however, is far less complicated than in the Bi-CGSTAB
algorithm.

• The ω calculation might produce a (nearly) zero ω-value, leading to stagnation of
the procedure. This is referred to as breakdown of type 2.

This is exactly the same as what can happen in the Bi-CGSTAB algorithm. In some
cases we can use the repair possibilities described in [9]. If the trouble is caused by
structural orthogonality between v and t = Av, problems vanish by using a complex
auxiliary matrix P.

Estimates for work and memory requirements are presented in Table 1. The operation
count for the main operations to perform a full cycle of s+ 1 IDR(s) steps yields: (s+ 1)
matrix-vector products, s2+s+2 inner products, and 2s2+ 7

2s+
5
2 vector updates. For this

count we refer to appendix A. Note that we have counted scaling of a vector and a simple
addition of two vectors as half an update each. Table 1 gives an overview of the number of
vector operations per matrix-vector multiplication for some IDR(s) variants, and for the
most widely used other Krylov methods. This table also gives the memory requirements
(excluding storage of the system matrix and of the preconditioner, but including storage
for the righthand side and the solution.).

Method DOT AXPY Memory Requirements

IDR(1) 2 4 8
IDR(2) 22

3 55
6 11

IDR(4) 42
5 9 7

10 17
IDR(6) 62

7 13 9
14 23

GMRES n+1
2

n+1
2 n+ 3

Bi-CG 1 21
2 7

QMR 1 4 13
CGS 1 3 8

BiCGSTAB 2 3 7
BiCGstab(2) 21

4 33
4 9

BiCGstab(4) 23
4 51

4 13
BiCGstab(8) 33

4 81
4 21

Table 1: Vector operations per matrix-vector product and memory requirements

7

4 Analysis of the algorithm

4.1 Performance and exceptions.

The original IDR theorem only predicts dimension reduction, but does not say by how
much. In the original algorithm [13], where S = p⊥ (the s = 1 case), the dimension is
reduced by one at each step. Here, a step requires 2 matrix-vector operations, but in the
case of IDR(s), each step requires (s + 1) matrix-vector operations, possibly leading to
about (s + 1)N ‘matvecs’ for the whole finite procedure. Now in practice the method
shows a much faster convergence, but still, we would like to have a reliable prediction for
the finite behavior.
The following theorem concerns the rate at which the dimension reduction takes place in
the IDR(s) algorithms.

Theorem 2 (Extended IDR theorem) Let A be any matrix in C
N×N , let p1,p2, . . . ,ps ∈

C
N be linearly independent, let P = [p1,p2, . . . ,ps], let G0 = KN (A, r0) be the com-

plete Krylov space corresponding to A and the vector r0, and let the sequence of spaces
{Gj , j = 1, 2, . . .} be defined by

Gj = (I − ωjA)(Gj−1 ∩ N (PH))

where ωj are nonzero numbers, such that I − ωjA is non-singular.
Let dim(Gj) = dj , then the sequence {dj , j = 0, 1, 2, ...} is monotonically non-increasing,
and satisfies

0 ≤ dj − dj+1 ≤ dj−1 − dj ≤ s .

Proof: Let U = Gj−1 ∩ N (PH), and let Gj−1 be a matrix of which the columns form a
basis for Gj−1. Then each x ∈ Gj−1 can be written as x = Gj−1c for some c. Therefore
each x ∈ U can be represented as x = Gj−1c, with c satisfying PHGj−1c = 0. Hence
U = Gj−1(N (PHGj−1)), and consequently

Gj = (I − ωjA)Gj−1(N (PHGj−1)) .

We assumed (I − ωjA) to be non-singular, so

dj = dim(Gj) = dim(U) .

Now PHGj−1 is an s× dj−1 matrix, therefore

dj = dim(N (PHGj−1)) = dj−1 − rank(PHGj−1) (7)

On the other hand rank(PHGj−1) = s− dim(N (GH
j−1P)), hence

dj = dj−1 − s+ l

with l = dim(N (GH
j−1P)) ∈ [0, s]. This proves that 0 ≤ dj−1 − dj ≤ s.

Now suppose v ∈ N (GH
j−1P), v 6= 0, then Pv ∈ N (GH

j−1), hence Pv ⊥ Gj−1. Since

Gj ⊂ Gj−1, this implies Pv ⊥ Gj, and hence v ∈ N (GH
j P). So N (GH

j−1P) ⊂ N (GH
j P),

and therefore dim(N (GH
j−1P)) ≤ dim(N (GH

j P)). It follows that

dj+1 = dj − s+ l′

with l′ = dim(N (GH
j P)) ≥ l. So dj − dj+1 ≤ dj−1 − dj, which proves the theorem. �

8

Remark: According to Theorem 2 the dimension reduction per step is between 0 and s.
Zero reduction only occurs if Gj ⊂ N (PH), which is highly improbable, as was remarked
after Theorem 1. In practical situations the reduction is s, the maximal value. This can
be understood by the following observation. According to (7) in the proof of Theorem 2,
the dimension reduction equals the rank of the s× dj−1 matrix PHGj−1. The columns of
Gj−1 are linearly independent, because they are a basis for Gj−1. The columns of P are
independent by definition. If rank(PHGj−1) < s, we must have pHGj−1 = 0H for some
nonzero p = Pc. Now if dj−1 > s, it is highly improbable that p can be made to satisfy
these dj−1 relations, having only the s components of c as free parameters.
Unfortunately, this does not prove dj = dj−1 − s ‘almost always’, since the space Gj−1,
and therefore the matrix Gj−1 is not constructed independently from the matrix P, which
is strongly involved in the construction procedure. It can be shown, however, that for a
random choice of P, dj − dj−1 < s will happen with zero probability.

If the dimension reduction per step is precisely s throughout the process, we will speak
of the generic case, otherwise we have the non-generic case. In the non-generic case we
call s− (dj−1 − dj) the deficiency of the reduction. In Theorem 2 we have proved that the
deficiency is non-decreasing during the process.

Corollary 1 In the generic case IDR(s) requires at at most N + N
s

matrix-vector multi-
plications to compute the exact solution in exact arithmetic.

For the IDR-algorithms two questions may be of importance, that we will now discuss.

Observation of non-genericy. Can non-genericy be recognized during execution of the
algorithm? If in some application the IDR(s) algorithm happens to be non-generic, then
for some j0 we must have dim(Gj ∩S) < s, for j = j0, j0 +1, The only way this can be
observed is rank-deficiency of the s× s matrices PHdRn. However, rank deficiency is not
an exclusive property of non-genericy. So it may happen that after having produced, say,
100 vectors in Gj ∩ S spanning only a s− 1 dimensional space, the 101-th vector happens
to be outside this subspace. Therefore a non-generic case cannot be detected in practice.
However, the example mentioned above is also a reason not to worry about non-genericy:
rank-deficiency is a serious problem anyhow, no matter whether we are in the generic case
or not.

Breakdown of the algorithm. Can the algorithm break down in the generic case, and
is that curable? This question is important. Similar to the Bi-CGSTAB method, and other
methods related to Bi-CG, there are two distinct ways the algorithm can break down (or
will loose digits in practice).
In the generic case, a type 1 breakdown can be cured by expanding the previous matrix
dRn−1 with new residual differences, rather than by replacing the least recent residual
difference vector by the most recenly computed one. The s× s system then becomes s× l
with l > s, but of course that is not a problem since any solution of this underdetermined
system will be in Gj ∩ S. Eventually we will get a better conditioned system for making
the first step in Gj+1.
This fix can be carried out in different ways, but is always conceptually simpler than
the look-ahead / work-around procedures we know for CG-type methods. However, if
we actually have a non-generic case, the matrix deficiency will remain, and can not be
resolved by the above procedure.

9

Most type 2 breakdowns can be cured by repair methods as developed in [9]. In some
problems, however, the ω calculations fail systematically, for example if A behaves like a
skew-symmetric matrix. For these cases Sleijpen and Fokkema proposed BiCGstab(ℓ) [8].
This technique uses higher degree stabilization polynomials, like p(t) = 1 + b1t+ b2t

2. We
have not yet found a similar possibility for the IDR(s) algorithms, since this would require
a new variant of the IDR theorem. However, in our numerical experiments the problems
vanished completely when we choose the matrix P complex rather than real.

4.2 Iterative behavior, choice of P.

Similar to the experiences with the early Lanczos and CG type methods, the IDR(s) family
is finite in a structural way, but behaves like an iterative procedure as well. Only in the
case of CG, applied to positive definite Hermitian matrices, we have a rather complete
convergence analysis, on the basis of which we can fine-tune the method to extremely high
performance (by preconditioning). The convergence analysis is based on the behavior
of the zeros of the CG-polynomials (Ritz values), in relation to the (active part of the)
spectrum of A.
However, if the matrix is not Hermitian, and may have complex eigenvalues, the conver-
gence analysis collapses.
In the case of CGS and Bi-CGSTAB, part of the analysis still holds if the matrix is
only moderately non-Hermitian, and if the shadow residual is chosen equal to the initial
residual. But also if the problem does not satisfy the necessary restrictions for maintaining
‘theoretical convergence’, the practical convergence often remains satisfactory.
As the numerical examples show, and as all our tests have shown so far, this holds for the
IDR(s) algorithms as well. In our experience, the IDR(s) algorithms are certainly not less
‘robust’ than the other short recursion Krylov methods.
In the beginning of our experimental phase, we expected that it would be wise to make the
columns of P somehow related to the problem, just like the shadow vector in Bi-CGSTAB
is preferably chosen equal to the initial residual. Surprisingly, the IDR(s) algorithms with
these ‘clever’ choices of P ran terribly poorly in many test problems. After extensive
experimentation, we decided to choose the columns of P as orthogonalization of a set of
random vectors. Mainly for reasons of comparison with Bi-CGSTAB, however, we use
p1 = r0 in most of our experiments.

5 Polynomial issues.

5.1 Different implementations

The ‘basic IDR(s) algorithm’ is a prototype. There is considerable freedom in translating
the IDR-theorem into an actual algorithm. Furthermore, for a given algorithm, computa-
tional variants exist that are mathematically equivalent, but differ in numerical stability.
In this section we will consider some implementations that are mathematically different.
We concentrate on the freedom in ‘filling’ the space Gj+1. A new residual in Gj+1 can be
constructed according to

Solve c from (PHdRn)c = PHrn

Calculate v = rn − dRnc

Calculate rn+1 = v − ωj+1Av

10

In this code fragment, rn and the columns of dRn must be in Gj, in order for rn+1 to be
in Gj+1. In the prototype algorithm, dRn consists of the most recent residual differences,
and when we construct the rn+1 in Gj+1, this is the only possibility (if no breakdown
is happening). But in calculating rn+k, with k > 1, we have k − 1 degrees of freedom
(generally speaking).
In order to analyze the different implementations of dimension reduction, we use the
polynomial description. Concentrating on the residuals we have

rn = Φn(A)r0, Φn ∈ P
n \ P

n−1, Φn(0) = 1 . (8)

Similar to CGS and Bi-CGSTAB, the algorithm can be interpreted as a construction
method for the polynomials Φn, and, what is important, the algorithmic requirements can
be translated into relations between polynomials.

Let rn ∈ Gj for some j > 0, then rn = r′ − ωjAr′ for some r′ ∈ Gj−1 ∩ S. Similarly,
r′ = r′′ − ωj−1Ar′′ for some r′′ ∈ Gj−2 ∩ S. Going on like this we arrive at

rn = Ωj(A)v (9)

where v ∈ G0 ∩ S, and where the polynomial Ωj is defined by

Ωj(t) = (1 − ωjt)(1 − ωj−1t) · · · (1 − ω1t) (10)

Obviously, Ωl(A)v ∈ Gl ∩ S for l = 0, 1, . . . , j − 1, therefore the following j vectorial
relations must be satisfied by v:

PHΩl(A)v = 0, l = 0, 1, . . . , j − 1 (11)

According to (8) and (9), and since v is in the Krylov space G0, v can be written as

v = Ψn−j(A)r0 (12)

so (11) represents relations between the coefficients of Ψn−j. Splitting P into columns,
the relations (11) read

pH
k Ωl(A)Ψn−j(A)r0 = 0, k = 1, 2, . . . , s, l = 0, 1, . . . , j − 1 (13)

Together with the requirements Ψn−j(0) = 1, this represents an inhomogeneous system
of sj + 1 equations in n − j + 1 unknowns. The vectors pk, k = 1, 2, . . . , s are chosen
arbitrarily, not in relation to the system Ax = b. Therefore it is a true exception if these
relations can be satisfied if n− j+ 1 < sj+ 1. So, again generally speaking, we must have
n ≥ (s+ 1)j for rn to be in Gj.
An interesting side effect of this polynomial analysis is the uniqueness of the residuals
r(s+1)j , that are the very first elements in a new G-space. Independently of the chosen
variant for calculation of the other residuals in Gj , the first elements are uniquely deter-
mined.
The authors have tested extensively the following choices for calculating the intermediate
residuals in Gj+1:

1. Use oldest residuals in Gj .

2. Use all known residuals in Gj , and choose the minimum norm solution.

3. Use most recent residuals in Gj .

The variants 1 and 2 both require many more vectors to keep in memory, and, even if
carefully coded, variant 1 is of poor numerical quality in some cases, and variant 2 offers
only a modest stability improvement, if any. Therefore we present only the third variant
of the IDR(s) algorithm.

11

5.2 Relation between IDR and Bi-CGSTAB

The relations in (13) can be interpreted as formal orthogonality relations for the polynomial
Ψn−j. Define s formal inner products on the space of polynomials as follows:

[ϕ,ψ]k = pH
k φ(A)ψ(A)r0, k = 1, 2, . . . , s .

Then (13) can be written as

[Ωl,Ψn−j]k = 0, k = 1, 2, . . . , s, l = 0, 1, . . . , j − 1 (14)

and this is equivalent to formal orthogonality of Ψn−j to all polynomials in P
j−1, with

respect to the s inner products [. , .]k.
The idea of polynomials that are simultaneously orthogonal to lower degree polynomials
with respect to more than one type of inner product is quite new, and we did not yet
attempt to develop theory for it. In the case s = 1, however, we have classic theory. We
have sj = j, and

[Ωl,Ψj] = 0, l = 0, 1, . . . , j − 1

with [φ,ψ] = pHφ(A)ψ(A)r0. So, independent of the choices for ωl in the algorithm,
the ‘Ψ-part’ of the polynomial will be the unique orthogonal polynomial of degree j, with
respect to this formal inner product, and being unity in the origin. This is exactly the
Bi-CG-polynomial.
The remark in [11] about the mathematical equivalence between the old IDR and Bi-
CGSTAB is only true for the ‘even iterates’ r2j . The odd steps of every variant of IDR(1),
including the old method described in [13], are always different from the odd steps in
Bi-CGSTAB. This is because Bi-CGSTAB must calculate the Bi-CG coefficients αj and
βj , which is completely determined by the classical organization of the algorithm with
residuals and search directions. The Bi-CGSTAB choice for the odd-numbered residuals
must have an IDR(1) interpretation, but it is not clear what this is.
We can also think the other way round. The Bi-CG method produces residuals r̃n =
ϕn(A)r0, and search directions p̃n(A)r0, linked together by beautiful formulas, in which
the well-known coefficients α and β play an essential role. For our comparison, one relation
is of importance:

r̃n+1 = r̃n − αnAp̃n .

In Bi-CGSTAB, the vectors rn = Ωn(A)r̃n, and vn = Ωn(A)p̃n play a role 1. Furthermore,
the vectors rn and Avn are made orthogonal to a shadow residual. With respect to the
IDR philosophy, this implies that both rn and Avn are in Gn.
Indeed, instead of producing s+ 1 residuals in Gj, we can also produce only one residual,
and s, ‘search directions’ in Gj , and we get a genuinely different variant of IDR(s). The
authors have implemented this variant, and tested it, and the outcome was a nearly as
stable algorithm. There is, however, a drawback. It is slightly more expensive in vector
operations, and it does not produce intermediate residuals. So we can only decide to
stop after each s+ 1 steps. Trying to retrieve intermediate residual information is rather
expensive and complicated.
Bi-CGSTAB is the first example of a ‘search-direction’ variant of IDR(s). Some implemen-
tations, for instance Matlab’s, produce intermediate residuals. These vectors, however, are
reliable purely by accident: some part of the update is qualified as intermediate residual,
but it could as well have been dropped

1The numbering differs from that in [11].

12

6 Numerical Examples

In this section we consider four different examples. The first example is one-dimensional
and is included to confirm the theoretical properties of the algorithm. The other three are
more realistic and are typical for three different problem classes.
We have performed the experiments with Matlab 6.5, and have used the standard Matlab
implementation of Bi-CGSTAB, Bi-CG, CGS and QMR. The tests with BiCGstab(ℓ) have
been performed with the Matlab code of Sleijpen 2.

6.1 A 1D Convection-Diffusion Problem.

The first example we discuss is a 1D convection-diffusion problem. With this academic
example we illustrate the termination behaviour of IDR(s) as predicted by Theorem 4.1.
Moreover, this example also illustrates the correspondence in the convergence behaviour
of Bi-CGSTAB and IDR(1).
The test problem is the finite difference discretisation of the following differential equation:

−
d2u

dx2
+ w

du

dx
= 0 x ∈ (0, 1)

with boundary conditions u(0) = u(1) = 1. The convection parameter w is chosen such
that wh

2 = 0.5, in which h is the mesh size. We have taken a total of 60 grid points,
excluding the boundary nodes, which yields for the grid size h = 1

61 . Central differences
are used for both the convection and the diffusion term.
We have solved the system with four (unpreconditioned) variants of IDR(s) using for s
the values 1, 2, 4, and 6. As initial guess the nullvector was chosen. For the columns of
P we took the orthogonalisation of s − 1 random vectors, complemented with the initial
residual. To investigate the stagnation level of the different methods, each iterative process
is continued until no further reduction of the true residual norm is achieved.
The system consists of 60 equations, hence according to Theorem 4.1 the IDR(s) methods
should terminate (in exact arithmetic) at the exact solution within 120, 90, 75, and 70
matrix-vector products (‘matvec’s), respectively. Figure 2 displays for the four methods the
norm of the true residual (scaled by the norm of the right-hand side vector) as function of
the number of matvecs. The figure also shows the convergence curves for full GMRES and
Bi-CGSTAB. Note that in exact arithmetic GMRES should terminate within 60 matvecs
and Bi-CGSTAB within 120 matvecs.
The figure clearly shows for all the methods a sharp drop of the residual norm around the
point where termination of the algorithm should occur. Also, the convergence curves of
IDR(1) and BiCGSTAB are essentially the same, which confirms the fact that in exact
arithmetic the residual norms of the two methods should be the same at the even steps.
The norms of the true residuals of all the methods stagnate at a level close to machine
precision, although IDR(4) and IDR(6) stagnate at a slightly higher level than the other
methods. This difference can be attributed to the peaks in the residual norms in the initial
iterations.
In this example, we investigated the property that IDR(s) is a finite method. In the next
examples IDR(s) will be used as an iterative method, i.e. we want to compute a sufficiently
accurate approximation to the solution in far less iterations than needed to reach the point
where termination at the exact solution should occur.

2http://www.math.uu.nl/people/sleijpen/

13

0 20 40 60 80 100 120 140 160 180 200
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of MATVECS

S
ca

le
d

re
si

du
al

 n
or

m

Convergence 1D convection−diffusion problem

IDR1
IDR2
IDR4
IDR6
BiCGSTAB
GMRES

Figure 2: Breakdown of IDR(s), Bi-CGSTAB and GMRES

6.2 An Example from Oceanography

The second example that we discuss is a convection-diffusion problem from oceanography.
This realistic example is typical for a wide class of problems encountered in CFD. The
system matrices of this kind of problems are real and nonsymmetric, with eigenvalues that
have a positive real part and a small (or zero) imaginary part. Bi-CGSTAB is often quite
efficient for this type of problems.
Steady barotropic flow in a homogeneous ocean with constant depth and in near equilib-
rium can be described by the following partial differential equations:

−r∆ψ − β
∂ψ

∂x
− = (∇× F)z in Ω.

Here, ∆ is the Laplace operator, ψ is the stream function, and F is the external force field
caused by the wind stress τ divided by the average depth of the ocean H times the water
density ρ:

F =
τ

ρH
. (15)

The other parameters are the bottom friction coefficient r, and the Coriolis parameter β.
The zero normal velocity boundary condition implies that the stream function is constant
on continent boundaries:

ψ = Ck on Γk, k = 1, · · · ,K, (16)

where K is the number of continents. The values of the constants Ck are a priori unknown.
In order to determine them one has to impose integral conditions, stating that the water
level is continuous around each island or continent.

∮

Γk

r
∂ψ

∂n
ds = −

∮

Γk

F · s ds. (17)

14

The equations are commonly expressed in spherical coordinates to map the physical do-
main onto a rectangular domain. The coordinate transformation causes singularities on
the poles. The singularity at the South Pole gives no problem since the South Pole is land.
The singularity at the North Pole is solved by imposing the Dirichlet condition ψ = 0 on
the North Pole.
The values for the physical parameters, which are taken from [12], are listed below.

• Wind stress τ : Long term averaged data for January [4],

• Average depth H = 500m,

• Water density ρ = 1000 kg/m3,

• Earth radius R = 6.4 · 106 m,

• Coriolis parameter β = 2.3 · 10−11 cos θ (ms)−1,

• Bottom friction coefficient r = 5 · 10−6 s−1.

The above problem has been discretized with the technique described in [12]. The solution
is plotted in Figure 3.

0 50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

Figure 3: Solution of the ocean problem.

The resulting system consists of 42248 equation. The matrix is nonsymmetric, but has a
positive definite symmetric part, meaning that all eigenvalues are in the right-half plane.
The number of nonzeros in the matrix is almost 300,000. As preconditioner we use ILU(0),
which we apply symmetrically.
The resulting system is solved with the IDR variants IDR(1), IDR(2), IDR(4), IDR(6).
For comparison we have also solved the system with Bi-CGSTAB and with full GMRES.
We stress that full GMRES is not a limited memory method. In each iteration a new
orthonormal basis vector for the Krylov subspace is computed and stored, which makes the
method quite expensive, both with respect to memory and with respect to computations.
GMRES is included only because it is optimal with respect to the number of matrix-vector

15

multiplications. Since GMRES is optimal in this sense, none of the other methods can
converge faster with respect to the number of matvecs. It is therefore quite interesting to
determine how close the convergence curves of the other (limited memory) methods are
to the optimal convergence curve of GMRES.
In order to assess the numerical accuracy of the methods we compute in each iteration the
true residual of the (preconditioned) system, and we continue the iterative process until
the stagnation level has been reached. The convergence curves of the different methods are
plotted in figure 4. Although in this example the methods are used as iterative techniques,

0 100 200 300 400 500 600 700
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of MATVECS

S
ca

le
d

re
si

du
al

 n
or

m
Convergence 2D ocean problem

IDR1
IDR2
IDR4
IDR6
BICGSTAB
GMRES

Figure 4: Convergence for the ocean problem of IDR(s), Bi-CGSTAB and GMRES

rather then as direct methods as in the previous example, there is considerable qualitative
agreement in behaviour of the methods for the two examples. We make the following
observations:

- The required number of matrix-vector multiplications decreases if s is increased. The
convergence curves of IDR(4) and IDR(6) are close to the optimal convergence curve
of GMRES.

- The convergence curves of IDR(1) and Bi-CGSTAB agree well. The other variants
of IDR(s) converge significantly faster than Bi-CGSTAB.

- The (scaled) norm of the true residual of all methods except GMRES stagnates at
a level between 10−10 and 10−12. GMRES stagnates near machine precision, but to
achieve this extra accuracy an othonormal set of basisvectors has to be computed
and stored. This is for most application prohibitivily expensive, and the gain in
precision is for most practical applications unimportant.

In order to make a more quantitative comparison, we have checked for each of the methods
after how many matvecs the norm of the scaled residual drops below 10−8. The results
are tabulated in Table 2. This table also includes the results for Bi-CG, QMR, and CGS.
The results in this table clearly show that IDR(s) outperforms the other limited memory
methods with respect to the number of matvecs, in particular for higher values of s. The
IDR(6) variant is close to optimal with respect to the number of matvecs. The difference

16

Method Number of MATVECS

GMRES 265

Bi-CG 638
QMR 624
CGS Stagnates

Bi-CGSTAB 411

IDR(1) 420
IDR(2) 339
IDR(4) 315
IDR(6) 307

Table 2: Number of matrix-vector multiplications to solve the system such that the (true)
norm of the scaled residual is less than 10−8

.

with full GMRES is 42, which is only about 15% more than the minimum possible. For
comparison: Bi-CGSTAB takes 411 matvecs, or 50 % more than the minimum.
We did not tabulate the computing times for this example since the standard Matlab-
routines are not as optimized with respect to efficiency as our own IDR(s) routine.

6.3 A 3D Convection-Dominated Problem

The next test problem is rather academic and is taken from [8]. This problem was proposed
as an example for which Bi-CGSTAB does not work well, due to the strong nonsymmetry
of the system matrix. Specifically, the problem is caused by the fact that the matrix has
eigenvalues with large imaginary parts. We recall that Bi-CGSTAB is a combination of
linear minimal residual steps and Bi-CG steps. Bi-CGSTAB does not work well for this
type of problems because the linear minimal residual steps produce a polynomial Ωl (cf.
Section 5.2) that is a product of real linear factors. Consequently, Ωl has real roots, and
hence is unsuited as a residual minimizing polynomial, which should have roots close to
the eigenvalues. Analogously, IDR(s) is a combination of linear minimal residual steps and
IDR-reduction. The linear minimal residual steps generate the same type of polynomial
Ωl as Bi-CGSTAB. It is therefore interesting to see if IDR(s) also performs poorly for this
problem, and if so, to examine possible remedies.
The test problem is the finite difference discretisation of the following partial differential
equations on the unit cube [0 , 1] × [0 , 1] × [0 , 1] with Dirichlet boundary conditions:

uxx + uyy + uzz + 1000ux = F .

The vector F is defined by the solution u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz). The
partial differential equation is discretised using central differences for both the convection
and diffusion terms. We take 52 gridpoints in each directions (including boundary points)
which yields a system of 125,000 equations.
We have solved this problem with IDR(1), IDR(2), IDR(4), IDR(6), Bi-CGSTAB and GM-
RES. For the the columns of P space we take our standard choice, i.e. the orthogonalisation
of the initial residual complemented with s− 1 real random vectors. No preconditioner is
applied. The iterative process is terminated once the residual norm, devided by the norm
of the right-hand side vector, drops below 10−8. The convergence test is performed on the
recursively computed residual, as would be the case in practice. At the end of the process a
check is performed if the norm of the true residual matches that of the recursively updated

17

residual, which was the case for all tests we present here. Figure 5 shows the convergence
behaviour of the different methods. The figure shows the poor convergence behaviour of

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of MATVECS

S
ca

le
d

re
si

du
al

 n
or

m

3D convection−diffusion problem, real P

IDR1
IDR2
IDR4
IDR6
Bi−CGSTAB
GMRES

Figure 5: Convergence for IDR(s) (with real P), Bi-CGSTAB and GMRES.

Bi-CGSTAB for this problem, and as can be expected also for IDR(1). No convergence is
achieved for both methods within 2000 matvecs. Increasing s significantly improves the
convergence behaviour of IDR(s). However, compared with the optimal convergence of
GMRES, the rate of convergence is still rather poor. We have tabulated in Table 3 for
each method the required number of matvecs to achieve the desired accuracy. This table
also includes the results for CGS, Bi-CG and QMR. We note that the results of Bi-CG
and QMR are quite satisfactory. These methods do not use linear minimal residual steps.
CGS does not converge due to the well known lack of robustness of this method.

Method Number of MATVECS

GMRES 191

BiCG 454
QMR 450
CGS n.c.

Bi-CGSTAB n.c.

IDR(1) n.c.
IDR(2) 1858
IDR(4) 1125
IDR(6) 784

Table 3: Number of matrix-vector multiplications to solve the system such that the (true)
norm of the scaled residual is less than 10−8.

As was remarked before, the disappointing convergence behaviour of both Bi-CGSTAB
and IDR(s) can be attributed to the poor performance of the minimal residual step in
the algorithms. Sleijpen and Fokkema [8] have shown that this problem can be overcome
by combining Bi-CG with higher order minimal residual polynomials, thus creating a

18

polynomial Ql that admits complex roots. This idea has given rise to the elegant Bi-
CGstab(ℓ) method. In Figure 6 we show the convergence of this method. The improvement

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of MATVECS

S
ca

le
d

re
si

du
al

 n
or

m

3D convection−diffusion problem, BiCGstab(l)

BiCGstab(1)
BiCGstab(2)
BiCGstab(4)
BiCGstab(8)
GMRES

Figure 6: Convergence for BiCGstab(ℓ).

in the convergence is quite spectacular, the required number of matvecs for BiCGstab(2)
drops to 252, and for BiCGstab(4) and BiCGstab(8) to 216 and 224 respectively, which is
very close to 191, the number of matvecs for GMRES.
As was remarked in Section 4.1, it is not obvious how to derive an IDR-variant that uses
higher order minimal-residual steps. There is, however, another solution to this problem:
by choosing P complex, instead of real, the polynomial Ql can have complex roots. Fol-
lowing this idea we have rerun the example using the orthogonalization of randomly chosen
complex vectors for the columns of P. The convergence of the IDR(s) methods is shown
in Figure 7 Clearly, choosing P complex also solves the convergence problem: the number
of IDR(6) iterations is 242, only slightly more than for Bi-CGstab(8). This is, however, at
the price of turning a real computation into a complex computation.

6.4 A 3D Helmholtz Problem

As our last example we consider sound propagation in a room of dimension 4 × 4 × 4m3.
If the sound source is harmonic, then the acoustic pressure field has the factored form

p(x, t) = p̂(x)e2πift. (18)

The pressure function p̂ can be determined from the so-called Helmholtz equation, which
is given by

−(2πf)2

c2
p̂− ∆p̂ = δ(x − xs) in Ω. (19)

Here ∆ is the Laplace operator, c is the sound speed (approximately 340 m/s in air), and
δ(x − xs) represents a harmonic point source that is located at xs, which is in the center
of the room. Five of the walls are reflecting, which is modelled by the boundary condition

∂p̂

∂n
= 0 , (20)

19

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of MATVECS

S
ca

le
d

re
si

du
al

 n
or

m

3D convection−diffusion problem, Complex shadow space

IDR1
IDR2
IDR4
IDR6
GMRES

Figure 7: Convergence of IDR(s) with complex P .

whereas the remaining wall is sound absorbing, which is modelled by

∂p̂

∂n
= −

2πif

c
p̂ . (21)

The above problem is discretised with the finite element method using linear tetrahedral
elements on a grid with gridsize h = 8cm. The resulting system is given by

[−(2πf)2M + 2πifC + K]p = b (22)

The size of this system is 132651, and the number of nonzero diagonals in the matrix is
19. The system matrix is complex, symmetric and indefinite. The frequency we use in the
experiments is 100 Hz.
In the experiments we focus on the comparison between IDR(s) and BiCGstab(ℓ). We
use standard ILU(0) as preconditioner. For reasons of comparison with BiCGstab(ℓ) we
take for the columns of P the orthonormal basis vectors for the space spanned by the
initial residual, complemented with s− 1 randomly generated vectors. Figure 8 shows the
convergence of IDR(s), for s equal to 1, 2, 4 and 6, and for BiCGstab(ℓ), for ℓ equal to 1,
2, 4, and 8.
Table 4 gives the comparison between the different methods in terms of numbers of matvecs
and the measured CPU-time that is needed to reduce the norm of the initial residual by
a factor of 108. Note that a preconditioned matrix-vector multiplication is equivalent to
approximately 38 vector operations. The BiCGstab(ℓ) code and the IDR(s) code are both
optimized with respect to computing time, and for this reason we have included the elapsed
times in the table. For both classes of methods the elapsed times are almost proportional
to the number of matrix-vector multiplications, which indicates that this number gives a
good measure for the performance of the methods. As is clear from the results in the table,
IDR(4), and in particular IDR(6) are superior to BiCGstab(ℓ) in the above experiments;
they outperform BiCGstab(ℓ) with about a factor of two. We mention that all methods

20

0 500 1000 1500 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

IDR(s)

Number of iterations
S

ca
le

d
re

si
du

al
 n

or
m

0 500 1000 1500 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

BiCGstab(l)

Number of iterations

S
ca

le
d

re
si

du
al

 n
or

m

IDR1
IDR2
IDR4
IDR6

BiCGstab(1)
BiCGstab(2)
BiCGstab(4)
BiCGStab(8)

Figure 8: Convergence of IDR(s) and of BiCGstab(ℓ).

Method Number of Elapsed time
MATVECS [s]

IDR(1) 1500 3322
IDR(2) 598 1329
IDR(4) 353 783
IDR(6) 310 698

BiCGstab(1) 1828 3712
BiCGstab(2) 1008 2045
BiCGstab(4) 656 1362
BiCGstab(8) 608 1337

Table 4: Number of matrix-vector multiplications and elapsed time to solve the Helmholtz
problem.

yield a final (true) residual of the same magnitude, which indicates that the achieved ac-
curacy is the same for all methods.

In [9], Sleijpen and Van der Vorst explain that a small value for the minimal residual
parameter ω can have a negative effect on the accuracy of the Bi-CG parameters, and as
a consequence on the convergence of Bi-CGSTAB. As a possible cure to this they propose
to use not a pure minimal residual step, but to increase the value of ω if this value is too
small. A similar approach can be applied to the IDR(s) algorithm. In the setting of this
algorithm the computation of ω according to the strategy of Sleijpen and Van der Vorst
becomes:

ω = (tHv)/(tHt)
ρ = (tHv)/(‖t‖‖v‖)
if |ρ| < κ then

ω = ωκ/|ρ|
end if

The value κ is user-defined. Sleijpen and Van der Vorst recommend 0.7 as a suitable value
for κ, and this value we used in our experiments, for both BiCGstab(ℓ) and IDR(s).
Figure 9 shows the convergence of IDR(s), for s equal to 1, 2, 4 and 6, and for BiCGstab(ℓ),
for ℓ equal to 1, 2, 4, and 8 with this new choice for ω. Clearly, the lower order members
of both families of methods show a greatly improved rate of convergence.

21

0 200 400 600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

IDR(s)

Number of iterations
S

ca
le

d
re

si
du

al
 n

or
m

0 200 400 600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

BiCGstab(l)

Number of iterations

S
ca

le
d

re
si

du
al

 n
or

m

IDR1
IDR2
IDR4
IDR6

BiCGstab(1)
BiCGstab(2)
BiCGstab(4)
BiCGStab(8)

Figure 9: Convergence of IDR(s) and of BiCGstab(ℓ), new choice for ω.

Table 5 tabulates for all methods the numbers of matvecs that are needed to reduce the
norm of the initial residual by a factor of 108. With the technique of Sleijpen and Van

Method Number of Elapsed time
MATVECS [s]

IDR(1) 678 1483
IDR(2) 474 1051
IDR(4) 323 716
IDR(6) 267 601

BiCGstab(1) 640 1300
BiCGstab(2) 652 1323
BiCGstab(4) 608 1263
BiCGstab(8) 608 1337

Table 5: Number of matrix-vector multiplications and elapsed time for the Helmholtz
problem with improved computation of ω.

der Vorst to compute ω we achieve a further reduction of computing time, which makes
the comparison between IDR(s) and BiCGstab(ℓ) even more favorable for the former than
when the standard choice for computing ω is used.

We mention that we have also tried this technique for the other examples that we have
discussed in this paper, but for these examples we did not observe such a significant
improvement in the rate of convergence of either IDR(s) or BiCGstab(ℓ).

7 Concluding Remarks

We have presented a new approach for solving nonsymmetric systems of linear equations.
Our approach is based on the IDR theorem. The resulting family of solution algorithms,
which we call IDR(s), uses short recurrences, and hence a limited amount of memory.
This in contrast to methods like GMRES. We have shown that IDR(1) is mathematically
equivalent to Bi-CGSTAB, in the sense that the two algorithms produce the same residuals
at even steps. We have also proved that in exact arithmetic the maximum number of

22

matrix-vector products for IDR(s), with s > 1, to reach the exact solution is lower than
2N , the maximum number for Bi-CG-based methods like Bi-CGSTAB, and we have made
it plausible that this number is N + N/s. Our numerical experiments confirm these two
facts.

We have presented a simple and, according to extensive numerical testing, numerically
stable implementation of the algorithm. This algorithm is an almost direct translation of
the IDR theorem. There is, however, much freedom in how to implement the algorithm.
Many variants and extensions are possible, and we have indicated some of them. For
example, it is easy to extend the algorithm with a ‘look-ahead-like’ mechanism to avoid a
break down.
The implementation of IDR(s) algorithms has to be done with great care. Like other short-
recurrence Krylov methods, IDR(s) algorithms are quite sensitive to round-off errors.
Especially, the consistency of drn and dxn requires some prundence: statements like
dr = −Adx should be used whenever possible. We have also observed in several tests
that choosing all the columns of P randomly improved the stability of the method, and
we believe that this randomness is essential for the robustness.

The most basic variant of our algorithm, IDR(1), is about as expensive as Bi-CGSTAB, in
terms of computations and memory requirements, and in our experience is just as stable.
Increasing s makes the algorithm slightly more expensive per iteration, but in all our
experiments, increasing s also yields a significant decrease in the number of iterations.
We have performed and presented numerous experiments. In all our examples, IDR(s),
with s > 1, is superior to Bi-CGSTAB. Increasing s always sped up the convergence, for
most problems to a level close to the optimal convergence (in terms of matvecs) of full
GMRES. Even for known difficult problems, such as those with a highly nonsymmetric or
with an indefinite matrix, IDR(s) was among the most efficient methods. For instance,
for a 3D Helmholtz-type problem IDR(6) outperformed Bi-CGstab(8) by a factor of more
than two in terms of CPU time, and the original Bi-CGSTAB by a factor of six.

We feel that this paper has advanced theory and practice of iterative solution methods for
large nonsymmetric linear systems in two major aspects:

1. The IDR-theorem offers a new approach for the development of iterative solution
algorithms, different from the classical Bi-CG or GMRES-based approaches;

2. The IDR(s) algorithm presented in this paper is quite promising and seems to out-
perform the state-of-the-art Bi-CG-type methods for important classes of problems.

Acknowledgements: The first author wish to thank Jens-Peter M. Zemke, for bringing
back the IDR idea into his mind, by simply asking ‘what happened?’. He also thanks
his colleague Jos van Kan for many stimulating discussions. Finally, he is grateful to the
Delft Institute of Applied Mathematics for offering him a desk after his retirement. Both
authors are grateful to Piet Wesseling and Marielba Rojas for their careful reading of
the manuscript. The second author wishes to thank IMM at the Technical University of
Denmark in Lyngby for the hospitality he received during several visits.
Part of this research has been funded by the Dutch BSIK/BRICKS project.

23

A Prototype for IDR(s) algorithms for Matlab.

We present a frame for the algorithms as an M-file, for use with for instance Matlab or
Octave.

function [x,resvec]=idrs(A,b,s,tol,maxit,x0);

%

%--------------- Creating start residual: ----------

N = length(b);

x = x0;

r = b - A*x;

normr = norm(r);

tolr = tol * norm(b); % tol: relative tolerance

resvec=[normr];

if (normr <= tolr) % Initial guess is a good enough solution

iter=0;

return;

end;

%----------------- Shadow space: --------------------

rand(’state’, 0); %for reproducability reasons.

P = rand(N,s);

P(:,1) = r; % Only for comparison with Bi-CGSTAB

P = orth(P)’; % transpose for efficiency reasons.

%---------------- Produce start vectors: ------------

dR = zeros(N,s); dX = zeros(N,s);

for k = 1:s

v = A*r;

om = dot(v,r)/dot(v,v);

dX(:,k) = om*r; dR(:,k) = -om*v;

x = x + dX(:,k); r = r + dR(:,k);

normr = norm(r);

resvec = [resvec;normr];

M(:,k) = P*dR(:,k);

end

%----------------- Main iteration loop, build G-spaces: ----------------

iter = s;

oldest = 1;

m = P*r;

while (normr > tolr) & (iter < maxit)

for k = 0:s

c = M\m;

24

q = -dR*c; % s-1 updates + 1 scaling

v = r + q; % simple addition

if (k == 0) % 1 time:

t = A*v; % 1 matmul

om = dot(t,v)/dot(t,t); % 2 inner products

dR(:,oldest) = q - om*t; % 1 update

dX(:,oldest) = -dX*c + om*v; % s updates + 1 scaling

else %

dX(:,oldest) = -dX*c + om*v; % s updates + 1 scaling

dR(:,oldest) = -A*dX(:,oldest); % 1 matmul

end

r = r + dR(:,oldest); % simple addition

x = x + dX(:,oldest); % simple addition

iter = iter + 1;

normr=norm(r); % 1 inner product (not counted)

resvec = [resvec;normr];

dm = P*dR(:,oldest); % s inner products

M(:,oldest) = dm;

m = m + dm;

% cycling s+1 times through matrices with s columns:

oldest = oldest + 1;

if (oldest > s)

oldest = 1;

end

end; % k = 0:s

end; %while

return

25

References

[1] V. Faber and T. Manteuffel: Necessary and sufficient conditions for the existence of
a conjugate gradient method.; SIAM J. Numer. Anal. 21: pp. 352-362, (1984)

[2] R. Fletcher: Conjugate gradient methods for indefinite systems; Lecture notes in
Mathematics 506, Springer-Verlag, Berlin, Heidelberg, New York, pp. 73-89, (1976)

[3] R.W. Freund and N.M. Nachtigal: QMR: A quasi-minimal residual method for non-
Hermitian linear systems; Numerische Mathematik 60: pp. 315-339, (1991)

[4] S. Hellerman and M. Rosenstein: Normal monthly wind stress over the world ocean
with error estimates; Journal of Physical Oceanography 13: pp. 1093-1104, (1983)

[5] M.R. Hestenes and E. Stiefel: Methods of conjugate gradients for solving linear sys-
tems; J. Res. Natl. Bur. Stand. 49: pp. 409-436, (1954)

[6] C. Lanczos: Solution of linear equations by minimized iterations; Journal of Research
of the National Bureau of Standards 49: pp. 33-53, (1952)

[7] Y. Saad and M.H. Schultz: GMRES: A generalized minimum residual algorithm for
solving nonsymmetric linear systems; SIAM J. Sci. Statist. Comput. 7: pp. 856-869,
(1986)

[8] G.L.G. Sleijpen and D.R. Fokkema: BiCGstab(ℓ) for linear equations involving ma-
trices with complex spectrum; ETNA 1: pp. 11-32, (1994)

[9] G.L.G. Sleijpen and H.A. van der Vorst: Maintaining convergence properties of
BiCGstab methods in finite precision arithmetic; Numerical Algorithms 10: pp. 203-
223, (1995)

[10] P. Sonneveld: CGS: a fast Lanczos-type solver for nonsymmetric linear systems; SIAM
J. Sci. and Statist. Comput. 10: pp. 36-52, (1989)

[11] H.A. van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems; SIAM J. Sci. Comp. 13: pp. 631-644,
(1992) .

[12] M.B. van Gijzen, C.B. Vreugdenhil, and H. Oksuzoglu: A finite element discretization
for stream-function problems on multiply connected domains; J. Comput. Phys. 140:
pp. 30-46, (1998)

[13] P. Wesseling and P. Sonneveld: Numerical Experiments with a Multiple Grid- and a
Preconditioned Lanczos Type Method; Lecture Notes in Mathematics 771, Springer-
Verlag, Berlin, Heidelberg, New York, pp. 543-562, (1980)

26

B Probability of exceptions for random P.

In this Appendix we will study the question how likely it is that a breakdown of type
1 occurs. We will refer to the behavior when no (near-) breakdown of type 1 occurs
as regular behavior, and a case in which the behavior is regular, we call a regular case.

The behaviour of IDR(s) algorithms is dependent on the choice of P. From the anal-
ysis of the algorithm can easily be derived that replacing P by PC, where C is a
nonsingular s×s matrix, will only influence the round-off behaviour of the algorithm.
Normally, we choose s random vectors in C

N , which we orthonormalize for stabilty
reasons. Mathematically this modification of P does not make any difference, and we
still call this a random P.

As was mentioned in section 4, ‘clever’ choices of P are mostly not successful. We
will now prove that a random choice for P garantuees the IDR(s) algorithms ‘almost
always’ to behave regularly, that is rj(s+1) is the first residual in Gj, as long as the
process is not in its final stage. For simplicity, we assume the matrix A to be non-
defective.

Theorem 3 (Almost always regularity) Let A ∈ C
N×N be non-defective, let

r0 ∈ C
N , let p1,p2, . . . ,ps be randomly chosen vectors in C

N , and let the N × s
matrix P be defined by P = (p1 p2 . . . ps). Let Ñ = dim(G0) be the Krylov dimen-
sion of the problem.

Then if js ≤ Ñ , rj(s+1) is the unique residual in K(j(s+1)
⋂

Gj, for almost every choice
of P.

Proof: We proceed similarly as in 5.1. According to (9), and (12), the residuals rn

in Gj can be represented as

rn = Ωj(A)Ψn−j(A)r0, with Ψ(t) = 1 +

n−j∑

m=1

cmt
l

From (13) follows that the coefficients cm satisfy

n−j∑

m=1

pH
k Ai+mr0 cm = −pH

k Air0, k = 1, 2, . . . , s, i = 0, 1, . . . , j − 1

We consider the case n − j = js, in which this linear system is square. We have to
prove that the corresponding solution exists and is unique, for almost every choice of
P. So we must inspect the regularity of the square matrix

B = (bl,m), with bi∗s+k,m = pH
k Ai+mr0 (23)

We first rule out the possibility that B is singular for all choices of P. Let U =
(u1 u2 . . . u eN

) be an N×Ñ matrix of eigenvectors of A in G0, and let r0 = Ur̃0, then
since A is not defective we have AU = UD, where D is a diagonal matrix, consisting
of eigenvalues of A. Since G0 is a complete Krylov space, the entries d1, d2, . . . , d eN

of
D are all different from each others, and since the Krylov space is generated by r0,
all entries of r̃0 are nonzero.

27

Let p̃k = UHpk, then the entries of B can be written as

bsi+k,m = p̃HDi+mr̃0 =

eN∑

l=1

wk,ld
i+m
l

with wk,l = p̃k,lr̃l.

Now we choose P in a very special way, by choosing the weigths wk,l as follows

wk,l =

{
1, k = 1, 2, . . . , s, l = (k − 1)s + r, r = 1, 2, . . . , j
0, for all other k and l pairs

Then for this choice, the entries of B simply read

bsi+k,m =

j∑

l=1

di+m
(k−1)s+l

Let Π(t) =
∏sj

l=1(t − dl) and consider the sj lagrange polynomials on the mesh
d1, d2, . . . , dsj :

Lr(t) =
Π(t)

Π′(dr)(t− dr)
=

sj∑

m=1

Lm,rt
m−1

The sj × sj matrix L = (Lm,r) is non-singular, and the matrix B̃ = BL is singular if

and only if B is. Now the entries of B̃ read

b̃si+k,r =

sj∑

m=1

bsi+k,mLm,r =

j∑

l=1

di+1
(k−1)s+l

Lr(d(k−1)s+l) =

{
di+1

r (k − 1)s < r ≤ (k − 1)s+ j
0 for other values of r

Now consider a linear combination yHB̃ of rows of B̃:

s∑

k=1

j−1∑

i=0

yk,ib̃si+k,r =

{
drYk(dr) (k − 1)s < r ≤ (k − 1)s + j
0 for other values of r

where Yk(t) =
∑j−1

i=0 yk,it
i, are polynomials of degree less than j.

Now yHB̃ = 0H implies

Yk(dr) = 0, r = (k − 1)s + l, l = 1, 2, . . . , j

A polynomial of degree less than j cannot have j distinct zeros, unless it vanishes
identically. Therefore yk,i = 0 for all appropriate k and i, or equivalently: y = 0.

Hence B̃, and B are non-singular.

So there is a choice for P such that B is non-singular. Now consider the determinant
of B as a function of P:

F (P) = det(B)

Then F (P) is a homogeneous polynomial in of degree sj in the sN entries of P, which
is not identically zero. The zeros of a non identically vanishing polynomial of degree
sj are in the union of at most sj distinct sN −1-dimensional manifolds. The measure
of this set is zero, and therefore the probability for P to be in this set is zero. �

28

