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Introduction

The iterative solution of large linear systems

Ax = b

is still an active area of research.

In the eighties and nineties many iterative solvers have been

proposed.

The focus of the research has since then been mainly on the

development of preconditioners.

Still, the search for faster and more robust iterative solvers

remains important, in particular for nonsymmetric problems.
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The most popular iterative methods
A is symmetric positive definite:

• CG: minimizes the A-norm of the error over the Krylov

subspace

Kn(A, r0) = r0 ⊕ Ar0 ⊕ A2r0 ⊕ · · · ⊕ Anr0 ,

and uses short recursions.

A nonsymmetric:

• GMRES: minimizes the residual norm over the Krylov

subspace and uses long recurrences

• Bi-CGSTAB: does not minimize an error norm, but uses

short recurrences
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IDR(s)

IDR(s) is a new family of Krylov subspace methods.

All IDR-methods are based on the IDR-theorem that provides a

way to generate a sequence of nested subspaces of shrinking

dimension.

Like Bi-CGSTAB, IDR(s) uses short recurrences, and does not

minimize an error over the Krylov subspace.

The IDR(s) paper, joint with Peter Sonneveld, appeared in SISC

in 2008 and has generated active new research in Krylov

subspace methods.
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IDR(s) applied to a difficult problem
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The IDR approach for solving Ax = b

Generate residuals rn = b − Axn that are in subspaces Gj of

decreasing dimension.

These nested subspaces are related by

Gj = (I − ωjA)(Gj−1 ∩ P⊥) P = [p1 · · ·ps]

where ωj ∈ C’s are non-zero scalars.

Then the IDR theorem states that:

i) Gj ⊂ Gj−1 for all j > 0.

ii) Gj = {0} for some j ≤ N .
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Making an IDR algorithm

Every IDR-based algorithm consists of two different steps:

- The dimension reduction steps:

Given sufficient vectors in Gj , compute first residual in Gj+1;

- Intermediate steps:

Compute sufficient vectors in Gj to make a dimension

reduction step.
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The dimension reduction step

Given g
j
1 · · · g

j
s, r

j
s ∈ Gj , a vector v ∈ Gj ∩ P⊥ is computed by

v = rj
s −

s∑

i=1

γig
j
i ,

with γi such that PHv = 0.

The first residual in Gj+1 is then computed by

r
j+1
0 = (I − ωj+1A)v
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The dimension reduction step
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Consistent updates

We also need the corresponding iterate x
j+1
0 . In practice this

means that if we update x with u :

x = x + u

we have to update the residual by

r = r − Au

The vectors g
j
i are update vectors for the residuals, so we need

u
j
i such that

g
j
i = Au

j
i
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Intermediate steps

s intermediate steps are needed to compute

g
j+1
1 · · · gj+1

s , rj+1
s ∈ Gj+1.

New vectors ∈ Gj+1 can be computed by repeating the algorithm.

ωj has to be kept constant.
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Example: computation of r
j+1

1
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Prototype IDR( s) algorithm.
Calculate r = b− Ax;
G = O∈ CN×s; U= O∈ CN×s; M = I ∈ Cs×s; ω = 1;
while ‖r‖ > TOL do

for k = 1 to s do
f = PHr;
Solve c from Mc = f ;
v = r − Gc;
uk = Uc + ωv; gk = Auk;
r = r − gk ; x = x + uk;
G(:, k) = gk; U(:, k) = uk; M(:, k) = PHgk;

end for
Compute f = PHr;
Solve c from Mc = f ;
v = r − Gc;
t = Av; ω = (tHv)/(tHt);
x = x + Uc + ωv; r = r − Gc− ωt;

end while
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Stommel’s model for ocean circulation

Balance between bottom friction, wind stress and Coriolis force.

−r∆ψ − β
∂ψ

∂x
− = (∇× F)z

plus circulation condition around islands k
∮

Γk

r
∂ψ

∂n
ds = −

∮

Γk

F · s ds.

• ψ: streamfunction

• r: bottom friction parameter

• β: Coriolis parameter

• F: Wind stress
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Discretization of the ocean problem

• Discretization with linear finite elements

• Results in nonsymmetric system of 42248

• Eigenvalues are (almost) real

• ILU(0.1) as preconditioner
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Solution of the ocean problem
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Convergence for the ocean problem
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Relation with CG-type methods

The idea behind IDR(s) is to generate residuals that are in the

nested subspace Gj of shrinking dimension.

The IDR theorem gives a recursive definition of these

subspaces.

This viewpoint is different from the more conventional Krylov

(CG-type) methods. Essential to these are the following

ingredients:

• Implicitly or explicitly generate a basis for the Krylov

subspace, using a Lanczos-type algorithm;

• Apply a (Petrov-)Galerkin condition to compute an

approximate solution.
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Different viewpoints on IDR

The difference in approach makes IDR(s) harder to understand.

Several papers have appeared that put IDR(s) in a more

conventional framework:

• M. Gutknecht, IDR explained, ETNA 2010 (report 2008)

• G.L.G. Sleijpen, P. Sonneveld, and M.B. van Gijzen,

Bi-CGSTAB as an induced dimension reduction method,

APNUM to appear (report 2008)

• V. Simoncini and D. Szyld, Interpreting IDR as a

Petrov-Galerkin method, SISC 2010 (report 2009)

• M. Gutknecht and J. Zemke , Eigenvalue computations

based on IDR, (report 2010)
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Polynomial analysis

• Why does IDR(s) converge?
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Polynomial analysis

• Why does IDR(s) converge?

• Finite termination of IDR(s)?

• What is the relation with other Krylov methods?

• IDR(s) is a Krylov subspace method

• Residuals satisfy rn = Φn(A)r0, Φn is an n-th degree

polynomial.



July 8, 2010 21

Institute of Applied Mathematics

Polynomial analysis

• Why does IDR(s) converge?

• Finite termination of IDR(s)?

• What is the relation with other Krylov methods?

• IDR(s) is a Krylov subspace method

• Residuals satisfy rn = Φn(A)r0, Φn is an n-th degree

polynomial.

• Analyze those polynomials
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The CG algorithm

To relate IDR(s) to more conventional methods we first look at

CG.

Regular steps in CG algorithm:

ρn = rT
nrn, βn = ρn/ρn−1

pn = rn + βnpn−1, qn = Apn;

σn = pT
nqn, αn = ρn/σn

rn+1 = rn − αnqn;

xn+1 = xn + αnpn
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The CG algorithm (2)

Recall that CG minimizes the A-norm of the error.

This optimality property is (for A SPD) mathematically

equivalent with

rn+1 ⊥ Kn(A, r0) .

Hence rn+1 ⊥ rj , j = 1, · · ·n.

This and the fact that CG is a Krylov subspace method make it

possible to see CG as a construction method for polynomials

that are orthogonal with respect to a special inner product.
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The polynomial relations

• The relevant vectors satisfy:

rn = ϕn(A)r0, pn = ψn(A)r0

where ϕn and ψn are polynomials of degree n.

• Define inner product between polynomials:

〈φ1, φ2〉 = rT
0 φ1(A)φ2(A)r0 = [φ1(A)r0]

Tφ2(A)r0

• then orthogonality between rn and rk corresponds to

orthogonality of ϕn and ϕk.
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CG for orthogonal polynomials

The coefficients and polynomials can also be calculated by

ρn = 〈ϕn, ϕn〉, βn = ρn/ρn−1

ψn(t) = ϕn(t) + βnψn−1(t),

σn = 〈ψn, tψn〉, αn = ρn/σn

ϕn+1(t) = ϕn(t) − αntψn(t)

This is (part of) the CG-algorithm for orthogonal polynomials.
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Nonsymmetric systems

It is not possible to make a Krylov method for nonsymmetric

problems that use short recurrences and that minimize the error

in some norm over the Krylov subspace.

The Bi-CG method is a generalization of CG that computes

residuals that are orthogonal wrt. a ’shadow’ Krylov subspace.

The method uses short recurrences, but has no optimality

property for general systems.
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The Bi-CG algorithm

Regular steps in Bi-CG algorithm:

ρn = r̃T
nrn, βn = ρn/ρn−1

pn = rn + βnpn−1, qn = Apn;

p̃n = r̃n + βnp̃n−1, q̃n = AT p̃n

σn = p̃T
nqn, αn = ρn/σn

rn+1 = rn − αnqn;

r̃n+1 = r̃n − αnq̃n

xn+1 = xn + αnpn



July 8, 2010 28

Institute of Applied Mathematics

The polynomial relations

• The relevant vectors satisfy:

rn = ϕn(A)r0, pn = ψn(A)r0

r̃n = ϕn(AT )r̃0, p̃n = ψn(AT )r̃0

where ϕn and ψn are polynomials of degree n.

• Define ‘inner product’ between polynomials:

〈φ1, φ2〉 = r̃T
0 φ1(A)φ2(A)r0 = [φ1(A

T )r̃0]
Tφ2(A)r0

• then bi-orthogonality between rn and r̃k corresponds to

orthogonality of ϕn and ϕk.
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The IDR(1) polynomials.

• First element in Gj , r2j , satisfies r2j = Φ2j(A)r0.
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The IDR(1) polynomials.

• First element in Gj , r2j , satisfies r2j = Φ2j(A)r0.

• For arbitrary r ∈ Gj , r = (1 − ωjA)r′, with r′ ∈ Gj−1.
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The IDR(1) polynomials.

• First element in Gj , r2j , satisfies r2j = Φ2j(A)r0.

• For arbitrary r ∈ Gj , r = (1 − ωjA)r′, with r′ ∈ Gj−1.

• Going down, finally : r = Ωj(A)r̃, with r̃ ∈ G0. Here

Ωj(t) = (1 − ωjt)(1 − ωj−1t). · · · (1 − ω1t).
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The IDR(1) polynomials.

• First element in Gj , r2j , satisfies r2j = Φ2j(A)r0.

• For arbitrary r ∈ Gj , r = (1 − ωjA)r′, with r′ ∈ Gj−1.

• Going down, finally : r = Ωj(A)r̃, with r̃ ∈ G0. Here

Ωj(t) = (1 − ωjt)(1 − ωj−1t). · · · (1 − ω1t).

• Hence Φ2j is divisible by Ωj , Φ2j(t) = Ωj(t)φj(t)

• From the intersections with S = p⊥ follows for l < j:

pT Ωl(A)φj(A)r0 = 0, so Ωl(A
T )p ⊥ φj(A)r0.

Hence φj is the j-th Bi-CG - polynomial
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The IDR(1) polynomials.

• First element in Gj , r2j , satisfies r2j = Φ2j(A)r0.

• For arbitrary r ∈ Gj , r = (1 − ωjA)r′, with r′ ∈ Gj−1.

• Going down, finally : r = Ωj(A)r̃, with r̃ ∈ G0. Here

Ωj(t) = (1 − ωjt)(1 − ωj−1t). · · · (1 − ω1t).

• Hence Φ2j is divisible by Ωj , Φ2j(t) = Ωj(t)φj(t)

• From the intersections with S = p⊥ follows for l < j:

pT Ωl(A)φj(A)r0 = 0, so Ωl(A
T )p ⊥ φj(A)r0.

Hence φj is the j-th Bi-CG - polynomial

• Obtained without calculating AT products.
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Historical remarks

• IDR(1) was already discovered by Sonneveld in 1980.

• The connection with Bi-CG, however, led him to develop

another method: CGS.

• This method caused a revolution in the Krylov Subspace

world: it turned out to be possible to avoid MATVECS with

AT , and to speed up the convergence at the same time!

• Bi-CGSTAB, proposed by Henk van der Vorst, was

developed as a STABilised variant of CGS. It is

mathematically equivalent to IDR(1).

Bi-CGSTAB is still the most widely used Bi-CG method

(almost 2000 citations).



July 8, 2010 31

Institute of Applied Mathematics

The IDR(s) polynomials.

• A similar polynomial analysis for IDR(s) yields:

rn = Ωj(A)Ψn−j(A)r0

with

Ωj(t) = (1 − ωjt)(1 − ωj−1t) · · · (1 − ω1t), Ω0(t) ≡ 1.

• and Ψn−j(A) such that

pH
k Ωl(A)Ψn−j(A)r0 = 0, k = 1, 2, . . . , s, l = 0, 1, . . . , j − 1 .
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Multi-orthogonality

These latter relations can be interpreted as formal orthogonality

relations for the polynomial Ψn−j .

Define s formal inner products on the space of polynomials as

follows:

[ϕ,ψ]k = pH
k φ(A)ψ(A)r0, k = 1, 2, . . . , s .

Then

[Ωl,Ψn−j ]k = 0, k = 1, 2, . . . , s, l = 0, 1, . . . , j − 1 ,

and this is equivalent to formal orthogonality of Ψn−j to all

polynomials in P
j−1, with respect to the s inner products [ . , . ]k.
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Finite termination of IDR( s)

The degree of the polynomial Ψn−j determines the finite

termination of the algorithm. In order to generate a polynomial of

degree N , we need n = N +N/s MATVECS, where j = N/s is

the degree of Ωj .

Hence IDR(s) terminates in at most N +N/s iterations (=

MATVECS) at the exact solution.
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A 1D Convection-Diffusion Problem

The first example illustrates the finite termination behaviour of

IDR(s).

We consider the discretisation of

−
d2u

dx2
+ w

du

dx
= 0 x ∈ (0, 1)

with u(0) = u(1) = 1 with the grid size h = 1
61 . The parameter w

is such that wh
2 = 0.5. The system consists of 60 equations.

P consists of r0 for comparison with Bi-CGSTAB, supplemented

with s− 1 random vectors.
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Termination of IDR( s)
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Observations

• Termination behaviour as predicted.

• In theory after 120, 90, 75, and 70 MATVECS for s equal

to 1, 2, 4, 6 resp.

• In practice sharp drop of the residual norm around

predicted termination point

• Convergence curves of IDR(1) and Bi-CGSTAB almost

coincide

• Stagnation level of IDR(s) almost same as for Bi-CGSTAB.

IDR(4) and IDR(6) slightly higher due to peaks in initial

iterations.
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Relation with other methods

As the polynomial analysis shows, IDR(s) is closely related to

some Bi-CGSTAB methods:

• IDR(1) and Bi-CGSTAB yield the same residuals at the even

steps.

• ML(k)BiCGSTAB (Yeung and Chan, SISC 1999) is closely

related to IDR(s), but

• Residual/approximate solution always different

• More complicated than IDR(s), is based on polynomial

approach.
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Algorithmic variants
To develop an IDR-based method, there are three elements of

choice.

• How to choose P,

→ Orthogonalized random vectors

• How to choose ωj ,

→ To minimize the next residual norm

plus modification by Sleijpen and van der Vorst aiming

for accuracy

→ IDRstab (later this talk)

→ Precomputed, based on Ritzvalues (Simoncini and

Szyld, SISC 2010)

• How to compute intermediate vectors in Gj .
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Exploiting bi-orthogonality

The prototype IDR(s) method that is described in the SISC 2008

paper is not always stable for large s (s > 10).

This can be overcome by exploit the property that Gj is a linear

subspace. By making linear combination of vectors such that

• each vector g
j
i is made orthogonal to p1, · · · ,pi−1;

• intermediate residuals r
j
i are made orthogonal to p1, · · · ,pi

an algorithm can be derived that is

• More accurate for large s;

• Slightly cheaper, requires less vector updates.



July 8, 2010 40

Institute of Applied Mathematics

Cost of the (new) algorithm

The number of operations per IDR(s) cycle is:

- s+ 1 MATVECS;

- s2 + s+ 2 inner products;

- 2s2 + 2s+ 2 vector updates. (Original IDR(s): s2 + 7
2s+ 5

2 )

- Inner products can be combined: only one synchronization

per MATVEC.
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New variant is accurate for large s

We illustrate the accuracy with the test problem SHERMAN 2

from the MATRIX MARKET collection

• Problem size 1080

• Estimated condition number 1012

• Nonsymmetric and indefinite

• All standard short recurrence methods fail (QMR,

Bi-CGSTAB, Bi-CG etc.)

• Nightmare problem

Convergence until ‖rn‖/‖b‖ < 10−4.

We plot the norm of the true residual after convergence.
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How does the accuracy depend on s?
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Almost skew symmetric problems

• Almost skew-symmetric matrices have eigenvalues with a

large imaginary part.

• Bi-CGSTAB works poorly for such problems:

- Method uses linear stabilization polynomials (minimal

residual steps).

Same is true for IDR(s)!

- Cannot produce roots close to complex eigenvalues

- Solution: use higher order stabilization polynomial:

→ BiCGstab2 (Gutknecht), BiCGstab(ℓ) (Sleijpen and

Fokkema)

• Note: alternative solution (in IDR(s)): use complex P.
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IDRStab

Can higher order stabilization polynomials be used with IDR(s)?

Yes, by combining several dimension reductions steps It is

possible to construct higher order stabilization polynomial.

Such a method was developed by Gerard Sleijpen and MvG.

The name is IDRStab . (SISC 2010, to appear)

A similar method (GBiCGSTAB(s,l)) has been proposed by Tanio

and Sugihara.
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Example

Convection-diffusion problem with shift on unit square:

−uxx − uyy + 1000(xux + yuy) + 10u = f .

• Dirichlet conditions

• Discretised with the finite volume method on a 65 × 65 grid

• The right-hand side vector such that the solution is one.
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Convergence of IDRStab
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Other developments

We mention some other important developments:

• Collignon and MvG formulated IDR(s) variants with a

minimal number of synchronisation points → talk at 14:00 by

Tijmen Collignon.

• Fujino and co-workers study the choice of P⊥, and the

combination of IDR(s) with basic iterative methods

(Gauss-Seidel and Jacobi);

• Sonneveld made an analysis of the convergence behaviour

of IDR(s);

• Zemke and Gutknecht investigate finite precision aspects of

IDR(s) and IDR(s) for computing eigenvalues.
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IDR for eigenvalues

Remember that

rn = Ωj(A)Ψn−j(A)r0 .

The roots of the polynomial Ψn−j converge to the eigenvalues of

A (are the Ritz values).

Hence it is possible to make and eigenvalue algorithm based on

the IDR approach, see Gutknecht and Zemke.

In the next example we use an eigenvalue algorithm based on

IDR(s) Bi-ortho.
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Testproblem RANDOM

• Random matrix of order 64

• Compute 5 eigenvalues closest to 1

• Convergence if scaled residual norm < 10−8

• Convergence plot for largest eigenvalue
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Convergence RANDOM (residual norm)
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Conclusions

• The IDR-theorem offers a flexible approach for the

development of iterative solution algorithms.

• We have discussed several IDR(s) methods

• We have shown the potential of these methods with

numerical examples.

More information: http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

•• Reports and papers,

• Matlab codes and test problems (about to be updated).
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