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Multigrid

• Basic preconditioners

• Coarse grid correction

• What we didn’t talk about
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Introduction

Multigrid is a solution technique for linear systems from

discretised elliptic equations.

Multigrid methods are quite powerful for classes of problems, in

particular for Poisson problems the complexity is of optimal order

n.

The theory on multigrid methods is vast. Today we only give a

short introduction and the main ideas.
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Basic preconditioners

In lesson 10 we discussed some basic preconditioners: Jacobi,

Gauss-Seidel, SSOR, and ILU. Although the preconditioners

discussed before can considerably reduce the number of

iterations, they do normally not reduce the mesh-dependency of

the number of iterations.

In the next slides we take a closer look at how basic iterative

methods reduce the error. From the observations we make, we

will develop the idea that is at the basis of one of the fastest

techniques: multigrid.
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Smoothing Property

Random initial error
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Smoothing Property

Error after 1 Jacobi iterations
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Smoothing Property

Error after 2 Jacobi iterations
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Smoothing Property

Error after 3 Jacobi iterations
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Smoothing Property

Error after 4 Jacobi iterations
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Smoothing Property

Error after 5 Jacobi iterations
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Smoothing Property

Error after 6 Jacobi iterations
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Smoothing Property

Error after 7 Jacobi iterations
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Smoothing Property

Error after 8 Jacobi iterations
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Smoothing Property

Error after 9 Jacobi iterations
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Smoothing Property

Error after 10 Jacobi iterations
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Complementarity

• Error after a few Jacobi iterations has structure, this is the

same for the other basic iterative methods.

• Instead of discarding the method, look to complement its

failings

How can we best correct errors that are slowly reduced by basic

iterative method?



December 10, 2008 6

National Master Course

Complementarity

• Error after a few Jacobi iterations has structure, this is the

same for the other basic iterative methods.

• Instead of discarding the method, look to complement its

failings

How can we best correct errors that are slowly reduced by basic

iterative method?

• Slow-to-converge errors are smooth

• Smooth vectors can be accurately represented using fewer

degrees of freedom
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Coarse-Grid Correction

• Smooth vectors can be accurately represented using fewer

degrees of freedom

• Idea: transfer job of resolving smooth components to a

coarser grid version of the problem

• Need:

• Complementary process for resolving smooth

components of the error on the coarse grid

• Way to combine the results of the two processes
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Multigrid

• Relaxation is the name for applying one or a few basic

iteration steps.

• Idea is to correct the approximation after relaxation, x(1),

from a coarse-grid version of the problem

• Need interpolation map, P , from coarse grid to fine grid

• Corrected approximation will be x(2) = x(1) + Pxc

• xc is the solution of the coarse-grid problem and satisfies

(P T AP )xc = P T A(x − x(1)) = P T r(1)
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Two-grid cycle
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Two-grid cycle

Multigrid Components

• Relaxation Relax: x(1)= x(0)+M (0)r-1

• Use a smoothing process (such as Jacobi or Gauss-Seidel)

to eliminate oscillatory errors

• Remaining error satisfies Ae(1) = r(1) = b − Ax(1)
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Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

Relax: x(1)= x(0)+M (0)r-1

Restriction

• Transfer residual to coarse grid

• Compute P T r(1)



December 10, 2008 9

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

Relax: x(1)= x(0)+M (0)r-1

Restriction

Solve: PTAPxc= PTr(1)

• Use coarse-grid correction to eliminate smooth errors

• Best correction xc satisfies

P
T
APxc = P

T
r
(1)
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Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

• Transfer correction to fine grid

• Compute x(2) = x(1) + Pxc
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Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

• Relax once again to remove oscillatory error introduced in

coarse-grid correction
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Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Direct solution of coarse-grid problem isn’t practical
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Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Direct solution of coarse-grid problem isn’t practical

Use an iterative method!
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Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Recursion!

Apply same methodology to solve coarse-grid problem
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The Multigrid V-cycle

Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax
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Properties of Effective Cycles
• Fast convergence

• Effective reduction of all error components

• On each level, coarse-grid correction must effectively

reduce exactly those errors that are slow to be reduced

by relaxation alone

• Hierarchy of coarse-grid operators resolves relevant

physics at each scale

• Low iteration cost

• Simple relaxation scheme (cheap computation of M−1r

on all levels)

• Sparse coarse-grid operators

• Sparse interpolation/restriction operations
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Choosing Coarse Grids
• No best strategy to choose coarse grids

• Operator dependent, but also machine dependent

• For structured meshes, often use uniform de-refinement

approach

• For unstructured meshes, various weighted independent set

algorithms are often used.
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What didn’t we talk about?

• How do we choose P?

• Number of columns

• Sparsity structure

• Non-zero values

• Choices depend closely on the properties of the relaxation

method
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Concluding remarks about multigrid

Multigrid works well if the problem

- is grid-based. However, matrix-based multigrid methods

(Algebraic Multigrid) do exist and are often successful;

- has a smooth solution. An underlying assumption is that the

error can be represented on a coarser grid. Multigrid works

particularly well for Poisson-type problems. For these

problems the number of operations is O(n).

Multigrid can be used as a separate solver, but is often used as

a preconditioner for a Krylov-type method, or for example as

building block in a saddle point preconditioner.
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