NUMERICAL LINEAR ALGEBRA ACADEMIC YEAR 2008-2009

MATLAB assignment day 13

In this assignment you will develop a simple multigrid code for solving the 1D Poisson equation.

1. Generate a 1D Poisson system using the following commands:
level = input('Level = ')
$\mathrm{n}=2 * *$ level-1
$\mathrm{h}=1 /(\mathrm{n}+1)$;
e = ones (n, 1);
$A=(1 / h * * 2) * s p d i a g s([-e 2 * e-e],-1: 1, n, n) ;$
$\mathrm{b}=$ ones ($\mathrm{n}, 1$);
The parameter Level determines the size of the system. Take Level $=10$. Write a code that performs 10 Gauss-Seidel iteration on the system, starting with a random initial guess. Plot the residual after every iteration and verify that the Gauss-Seidel iterations smooth the residual.
2. Write subroutines for the prolongation and the restriction operation. The restriction operation is such that a vector x_{c} on the courser level takes as values in the gridpoints

$$
x_{c}(i)=0.25 x_{f}(2 * i-1)+0.5 * x_{f}(2 * i)+0.25 * x_{f}(2 * i+1)
$$

where x_{f} is the vector on the finer grid. The prolongation operation is such that

$$
x_{f}(2 * i)=x_{c}(i)
$$

and

$$
x_{f}(2 * i+1)=0.5 *\left(x_{c}(i)+x_{c}(i+1)\right) .
$$

Note that $x(0)=x(n+1)=0$. Test your subroutines, for example on the solution of the system.
3. Write a two grid method. A cycle must consist of the following steps:

- Perform one Gauss-Seidel iteration on the approximate solution x_{f} (pre-smoothing);
- Compute the residual r_{f} (stop if the norm of the residual is small enough).
- Transfer the residual to the courser grid (one level courser), using your restriction routine.
- Solve the system $A_{c} u_{c}=r_{c}$, where all vectors are defined at the courser level.
- Prolongate u_{c} to the finer level, add the resulting u_{f} to x_{f}.
- Perform one Gauss-Seidel iteration (post smoothing).
- Repeat the above steps until convergence.

Test your program for different problem sizes. How does the number of iterations depends on the problem size?
4. Make a recursive version of your program such that your program preforms a complete V-cycle. Take level $=2$ the lowest, on which you solve the system with a direct solver. How does the number of iterations depend on the problem size?

