NUMERICAL LINEAR ALGEBRA
 ACADEMIC YEAR 2008-2009

Theoretical assignment 4

1. The Power method can be used to approximate the largest eigenvalue λ_{1}. In this exercise two methods are given to estimate the eigenvalue λ_{2} if λ_{1} and eigenvector x_{1} are known.
(a) Take $q_{0}=\left(A-\lambda_{1} I\right) q$, where q is an arbitrary vector. Show that the Power method applied to this starting vector leads to an approximation of λ_{2} (Annihilation Technique).
(b) Show that if the Power method is applied to the matrix

$$
B=A-\frac{\lambda_{1}}{x_{1}^{T} x_{1}} x_{1} x_{1}^{T}
$$

one gets an approximation of λ_{2}. What is the amount of work per iteration using B (Hotelling Deflation)?
2. Suppose that A is symmetric and positive definite.
(a) Show that one can write $A=D_{A}-L_{A}-L_{A}^{T}$ where D_{A} is diagonal with $d_{i i}>0$ for each $1 \leq i \leq n$ and L_{A} is strictly lower triangular. Further show that $D_{A}-L_{A}$ is nonsingular.
(b) Let $T_{g}=\left(D_{A}-L_{A}\right)^{-1} L_{A}^{T}$ and $P=A-T_{g}^{T} A T_{g}$. Show that P is symmetric.
(c) Show that T_{g} can also be written as $T_{g}=I-\left(D_{A}-L_{A}\right)^{-1} A$.
(d) Let $Q=\left(D_{A}-L_{A}\right)^{-1} A$. Show that $T_{g}=I-Q$ and

$$
P=Q^{T}\left(A Q^{-1}-A+\left(Q^{T}\right)^{-1} A\right) Q .
$$

(e) Show that $P=Q^{T} D_{A} Q$ and P is symmetric and positive definite.
(f) Let λ be an eigenvalue of T_{g} with eigenvector x. Use part (b) to show that $x^{T} P x>0$ implies that $|\lambda|<1$.
(g) Show that the Gauss Seidel method converges.
3. Consider the QR algorithm. Show by induction that without shifts, $\left(Q_{0} Q_{1} \cdots Q_{k}\right)\left(R_{k} \cdots R_{1} R_{0}\right)$ is exactly the QR factorisation of A^{k+1}. This identity connects QR to the power method and leads to an explanation of its convergence; if $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\lambda_{n} \mid$, then these eigenvalues will gradually appear in descending order on the main diagonal of A_{k}.
4. Consider the basic iterative method

$$
M x_{k+1}=R x_{k}+b
$$

The calculation of the residual is an expensive operation. We would therefore like to use a cheaper termination criterion, preferably one on basis of the true error instead of on the residual. In the next assignment we derive such a criterion.
(a) Show that the spectral radius of $G=M^{-1} R$ approximately satisfies

$$
\rho(G) \approx \frac{\left\|x_{k+1}-x_{k}\right\|}{\left\|x_{k}-x_{k-1}\right\|}
$$

(b) Show that if $\rho\left(M^{-1} R\right)$ is known, an estimate for the error is given by $\left\|x-x_{k}\right\|_{2} \leq$ $\frac{\rho(G)}{1-\rho(G)}\left\|x_{k}-x_{k-1}\right\|_{2}$.
Hint: first bound $\left\|x_{j}-x_{k}\right\|_{2}$ in terms of $\rho(G)$ and $\left\|x_{k}-x_{k-1}\right\|_{2}$. Then take the limit $x=\lim _{j \rightarrow \infty} x_{j}$.

