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Program day 1

• Overview of the course

• Useful references

• Introduction to iterative methods

• Some general concepts

• Basic iterative methods

• One-step projection methods
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Goals of the course

• Explain basic ideas;

• Show how these ideas translate into algorithms;

• Give overview of modern iterative methods.

At the end of the course you will

• be able to understand the differences and similarities

between the many iterative methods;

• and you will be able to select a suitable method for your

problem.
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Daily schedule (tentative)

9.00 - 11.00 Lecture, new theory

11.00 - 12.00 Theoretical exercises

12.00 - 13.30 Lunch

13.30 - 14.00 Introduction to an application

14.00 - 16.00 MATLAB-assignment
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Topics per day
• Day 1: Basic iterative methods

• Day 2: Projection methods (1)

Krylov methods for symmetric systems: CG, MINRES,

methods for the normal equations

• Day 3: Projection methods (2)

Krylov methods for nonsymmetric systems:

GMRES-type methods

• Day 4: Projection methods (3)

Krylov methods for nonsymmetric systems: BiCG-type

methods

• Day 5: Preconditioning techniques
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Recommended literature
• Gene H. Golub and Charles F. Van Loan. Matrix

Computations. 3rd ed. The Johns Hopkins University
Press, Baltimore, 1996.

• Richard Barrett, Michael Berry, Tony Chan, James
Demmel, June Donato, Jack Dongarra, Victor Eijkhout,
Roidan Pozo, Charles Romine, Henk van der Vorst.
Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. 2nd edition, SIAM, 1994.

• Henk van der Vorst, Iterative Krylov methods for large
linear systems. Cambridge press, 2003

• Yousef Saad, Iterative Methods for Sparse Linear
Systems. 2nd ed. SIAM, 2003
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Useful webpages
• http://www.netlib.org/: a wealth of information on a.o.

numerical software, e.g.

• LAPACK, BLAS: dense linear algebra

• NETSOLVE: grid computing

• TEMPLATES: the book plus software

• MATRIX MARKET: matrices

• http://www.math.uu.nl/people/vorst/: manuscript of the book,

software

• http://www-users.cs.umn.edu/ saad/: first edition of the

book, software

• http://www2.imm.dtu.dk/ pch/: interesting links, software
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Introduction to iterative methods

Many applications give rise to (non)linear systems of equations.

Typically the system matrices are

• Large, 108 unknowns are not exceptional anymore;

• Sparse, only a fraction of the entries of the matrix is

nonzero;

• Structured, the matrix often has a symmetric pattern and is

banded.

Moreover, the matrix can have special numerical properties, e.g it

may be symmetric, Toeplitz, or the eigenvalues may all be in the

right-half plane.
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An application: ocean circulation (1)

Physical model: balance between

• Wind force

• Coriolis force

• Bottom friction.
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An application: ocean circulation (2)

Mathematical model

r∇2ψ + β
∂ψ

∂x
= ∇× F in Ω,

• ψ: streamfunction

• r: bottom friction parameter

• β: Coriolis parameter

• F: Wind stress
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An application: ocean circulation (3)

Numerical model: discretisation with FEM
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An application: ocean circulation (4)
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Why iterative methods?

Direct methods: A = LU .

Due to fill-in L and U can not be stored for realistic problems.

This is in particular true for three dimensional (3D) problems.

Model problem Direct Iterative

Computational O(np) O(np)

costs p ≈ 2.0 for 2D p ≈ 1.4 for 2D

p ≈ 2.3 for 3D p ≈ 1.2 for 3D

Memory O(np) O(n)

requirements p ≈ 1.5 for 2D

p ≈ 1.7 for 3D
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Iterative versus direct

For many problems, it is not clear which method is best:

• Direct methods are robust

• O(np) can have a very large constant for iterative methods

• Often a combination can be used, e.g. in domain

decomposition or iterative refinement
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Does the best iterative method exist?

If no further restrictions: no

For certain classes: yes

Success of any iterative method depends on:

• Properties of A

(Size, sparsity structure, symmetry, ...)

• Computer architecture

(scalar, parallel, memory organisation, ...)

• Memory space available

• Accuracy required
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Some general concepts

Iterative methods construct successive approximations xk to the

solution of the linear systems Ax = b. Here k is the iteration

number, and the approximation xk is also called the iterate. The

vector rk = b−Axk is the residual.

The iterative methods are composed of only a few different basic

operations:

• Products with the matrix A

• Vector operations (updates and inner product operations)

• Preconditioning operations
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Preconditioning
Usually iterative methods are applied not to the original system

Ax = b

but to the preconditioned system

M−1Ax = M−1b

where the preconditioner is chosen such that:

• Preconditioning operations (operations with M−1) are

cheap;

• The iterative method converges much faster for the

preconditioned system.

Preconditioners will be discussed in more detail on day 5.
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Basic iterative methods

The first iterative methods we will discuss are the basic
iterative methods. Basic iterative methods only use
information of the previous iteration.

Until the 70’s they were quite popular. Some are still used
but as preconditioners in combination with an acceleration
technique. They also still play a role in multigrid techniques
where they are used as smoothers. Multigrid methods are
discussed on day 5 of this course.



19

PhD-course DTU Informatics, Graduate School ITMAN

Basic iterative methods (2)

Basic iterative methods are usually constructed using a splitting

of A:

A = M −R.

Successive approximations are then computed using the

iterative process

Mxk+1 = Rxk + b

which is equivalent too

xk+1 = xk +M−1(b−Axk)

The vector rk = b−Axk is called the residual, and the matrix M

is a preconditioner. The next few slides we look at M = I.
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Richardson’s method

The choice M = I, R = I −A gives Richardson’s method, which

is the most simple iterative method possible.

The iterative process becomes

xk+1 = xk + (b−Axk) = b+ (I −A)xk
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Richardson’s method (2)

This process yields the following iterates:

Initial guess x0 = 0

x1 = b

x2 = b+ (I −A)x(1) = b+ (I −A)b

x3 = b+ (I −A)x(2) = b+ (I −A)b+ (I −A)2b

Repeating this gives

xk+1 =
k∑

i=0

(I −A)ib
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Richardson’s method (3)

So Richardson’s method generates the series expansion for 1
1−z

with z = I −A. If this series converges we have

∞∑

i=0

(I −A)i = A−1

The series expansion for 1
1−z

converges if |z| < 1. If A is

diagonalizable then the series
∑∞

i=0(I −A)i converges if

|1 − λ| < 1

with λ any eigenvalue of A. For λ real this means that

0 < λ < 2
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Richardson’s method (4)

In order to increase the radius of convergence and to speed up

the convergence, one can introduce a parameter α:

xk+1 = xk + α(b−Axk) = αb+ (I − αA)xk

It is easy to verify that the optimal α which gives fastest

convergence is given by

αopt =
2

λmax + λmin

.
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Richardson’s method (5)

Before, we assumed for the initial guess x0 = 0.

Starting with another initial guess x0 only

means that we have to solve a shifted system

A(y + x0) = b⇔ Ay = b−Ax0 = r0

So the results obtained before remain valid, irrespective of the

initial guess.
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Richardson’s method (6)

We want to stop once the error ‖xk − x‖ < ǫ, with ǫ some

prescribed tolerance. Unfortunately we do not know x, so this

criterion does not work in practice.

Alternatives are:

• ‖rk‖ = ‖b−Axk‖ = ‖Ax−Axk‖ < ǫ

Disadvantage: criterion not scaling invariant

• ‖rk‖
‖r0‖

< ǫ

Disadvantage: good initial guess does not reduce the

number of iterations

• ‖rk‖
‖b‖ < ǫ

Seems best



26

PhD-course DTU Informatics, Graduate School ITMAN

Convergence theory

To investigate the convergence of Basic Iterative Methods in

general, we look again at the formula

Mxk+1 = Rxk + b.

Remember that A = M −R. If we subtract Mx = Rx+ b from

this equation we get a recursion for the error e = xk − x:

Mek+1 = Rek
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Convergence theory (2)

We can also write this as

ek+1 = M−1Rek

This is a power iteration and hence the error will ultimately point

in the direction of the largest eigenvector of M−1R. The rate of

convergence is determined by the spectral radius ρ(M−1R) of

M−1R:

ρ(M−1R) = |λmax(M−1R)| .

For convergence we must have that

ρ(M−1R) < 1 .
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Linear convergence

Ultimately, we have ‖ek+1‖ ≈ ρ(M−1R)‖ek‖, which means that

we have linear convergence
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Classical Basic Iterative Methods

We will now briefly discuss the three best known basic iterative

methods

• Jacobi’s method

• The method of Gauss-Seidel

• Successive overrelaxation

These methods can be seen as Richardson’s method applied to

the preconditioned system

M−1Ax = M−1b .
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Jacobi’s method

We first write A = L+D + U , with L the strictly lower triangular

part of A, D the main diagonal and U the strictly upper triangular

part. Jacobi’s method is now defined by the choice M = D,

R = −L− U . The process is given by

Dxk+1 = (−L− U)xk + b

or equivalently by

xk+1 = xk +D−1(b−Axk)
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The Gauss-Seidel method

We write again A = L+D + U . The Gauss-Seidel method is

now defined by the choice M = L+D, R = −U . The process is

given by

(L+D)xk+1 = −Uxk + b

or equivalently by

xk+1 = xk + (L+D)−1(b−Axk)
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Successive overrelaxation (SOR)

We write again A = L+D+U . The SOR method is now defined

by the choice M = D + ωL, R = (1 − ω)D − ωU . The parameter

ω is called the relaxation parameter. The process is given by

(D + ωL)xk+1 = ((1 − ω)D − ωU)xk + ωb

or as

xk+1 = xk + ω(D + ωL)−1(b−Axk)

With ω = 1 we get the method of Gauss-Seidel back. In practice

the optimal value of ω is not known.
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Convergence

Convergence depends on spectrum of M−1R = I −M−1A
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Convergence

Convergence depends on spectrum of M−1R = I −M−1A
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One-step projection methods

The convergence of Richardson’s method is not guaranteed and

if the method converges, convergence is often very slow.

We now introduce two methods that are guaranteed to converge

for wide classes of matrices. The two methods take special

linear combinations of the vectors rk and Ark to construct a new

iterate xk+1 that satisfies a local optimality property.
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Steepest descent

Let A be symmetric positive definite. Define the function

f(xk) = ‖xk − x‖2
A = (xk − x)TA(xk − x)

Let xk+1 = xk + αkrk Then the choice

αk =
rT
k rk

rT
k Ark

minimizes f(xk+1).
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Minimal residual

Let A be general square. Define the function

g(xk) = ‖b−Axk‖
2
2 = rT

k rk

Let xk+1 = xk + αkrk Then the choice

αk =
rT
k Ark

rT
k A

TArk

minimizes g(xk+1).
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Orthogonality properties

The optimality properties of the steepest descent method and

the minimal residual method are equivalent with the following

orthogonality properties:

For steepest descent

αk =
rT
k rk

rT
k Ark

⇒ rk+1 ⊥ rk

For the minimal residual method

αk =
rT
k Ark

rT
k A

TArk
⇒ rk+1 ⊥ Ark .



38

PhD-course DTU Informatics, Graduate School ITMAN

Summary

Today we introduced Richardson’s method and three

preconditioned variants: the methods of Jacobi and

Gauss-Seidel and the Successive Overrelaxation Technique.

We saw that the convergence of Richardson’s method can be

related to the convergence of the series 1
1−z

= 1 + z + z2 · · · . If

the method converges, convergence is linear, and often slow.

The question is whether there are better, faster ways to

approximate A−1 using a polynomial expansion.

Tomorrow we will investigate how we can construct such

methods.
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