## PhD-course on Iterative Methods for Linear Systems of Equations

## Theoretical assignments day 2

1.     - Show that CG cannot break down if $A$ is SPD, unless $r_{k}=0$ (which is called happy break).

- In which step can CG break down if $A$ is not $S P D$ ? Why?

2. Let $A$ be the SPD system matrix and $M$ a SPD preconditioner.

- Show that $M^{-1} A$ is self-adjoint in the $M$-inner product.
- The CG method can be applied to the preconditioned system $M^{-1} A x=M^{-1} b$ by working with the $M$-inner product. Let $z_{k}=M^{-1} r_{k}$. Show that this leads to the following algorithm (igonoring the initialisation step):

$$
\begin{aligned}
\alpha_{k} & =\frac{\left(z_{k}, z_{k}\right)_{M}}{\left(M^{-1} A p_{k}, p_{k}\right)_{M}} \\
x_{k+1} & =x_{k}+\alpha_{k} p_{k} \\
r_{k+1} & =r_{k}-\alpha_{k} A p_{k} \\
z_{k+1} & =M^{-1} r_{k+1} \\
\beta_{k} & =\frac{\left(z_{k+1}, z_{k+1}\right)_{M}}{\left(z_{k}, z_{k}\right)_{M}} \\
p_{k+1} & =z_{k+1}+\beta_{k} p_{k}
\end{aligned}
$$

- Show that $\left(z_{k}, z_{k}\right)_{M}=\left(r_{k}, z_{k}\right)_{2}$ and that $\left(M^{-1} A p_{k}, p_{k}\right)_{M}=\left(A p_{k}, p_{k}\right)_{2}$.
- Show that the above algorithm is equivalent the following algorithm (which is expressed in the standard inner product):

$$
\begin{aligned}
\alpha_{k} & =\frac{\left(r_{k}, z_{k}\right)_{2}}{\left(A p_{k}, p_{k}\right) 2} \\
x_{k+1} & =x_{k}+\alpha_{k} p_{k} \\
r_{k+1} & =r_{k}-\alpha_{k} A p_{k} \\
z_{k+1} & =M^{-1} r_{k+1} \\
\beta_{k} & =\frac{\left(r_{k+1}, z_{k+1}\right)_{2}}{\left(r_{k}, z_{k}\right)_{2}} \\
p_{k+1} & =z_{k+1}+\beta_{k} p_{k}
\end{aligned}
$$

3. $\quad$ Show that the Lanczos vectors satisfy $A q_{k}=\beta_{k} q_{k-1}+\alpha_{k} q_{k}+\beta_{k+1} q_{k+1}$.

- Derive the Lanczos algorithm by making use of the fact that the Lanczos vectors form an orthonormal basis of the Krylov subspace.

4.     - Prove that CG applied to the Normal Equations minimizes the residual $r_{k}=$ $b-A x_{k}$.

- Write down the CGLS algorithm. The algorithm should:
- Contain a recursion for $r_{k}=b-A x_{k}$, and for $s_{k}=A^{T} b-A^{T} A x_{k}$.
- Avoid explicit computations with $A^{T} A$.

5. Assuming that $\kappa_{2}(A)=100$ :

- Give an upper bound on the number of CG iterations to satisfy $\frac{\left\|x-x_{k}\right\|_{A}}{\left\|x-x_{0}\right\|_{A}}<10^{-6}$.
- Same question for CGLS.

