Iterative Methods for Linear Systems of Equations Projection methods (1)

ITMAN PhD-course, DTU, 20-10-08 till 24-10-08
Martin van Gijzen

Overview day 2

- The Krylov subspace
- Better than Richardson
- Construction of a basis
- Computation of an approximate solution
- Solution methods:
- The Conjugate Gradient method
- CG Convergence theory
- CR and MINRES
- CG for the normal equations

Richardson's method

Yesterday we saw that Richardson's method produces iterates

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k}(I-A)^{i} r_{0} .
$$

So $x_{k+1} \in \operatorname{span}\left\{x_{0}, r_{0}, A r_{0}, A^{2} r_{0}, \cdots, A^{k} r_{0}\right\}$.
For the residuals we have

$$
r_{k+1}=b-A x_{0}-A \sum_{i=0}^{k}(I-A)^{i} r_{0}=r_{0}-A \sum_{i=0}^{k}(I-A)^{i} r_{0}
$$

and hence $r_{k+1} \in \operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \cdots, A^{k+1} r_{0}\right\}$.

The Krylov subspace

The space $\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \cdots, A^{k-1} r_{0}\right\}$ is called the Krylov subspace of dimension k, corresponding to matrix A and initial residual r_{0} and is denoted by

$$
K^{k}\left(A ; r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \cdots, A^{k-1} r_{0}\right\}
$$

The leading question in the next days will be:
Can we use the information contained in $K^{k}\left(A ; r_{0}\right)$ more efficiently than in Richardson's method?

Basic Iterative Methods

Basic iterative methods produce iterates according to

$$
x_{k+1}=x_{k}+M^{-1} r_{k} .
$$

Hence $x_{k+1} \in x_{0} \cup K^{k+1}\left(M^{-1} A ; M^{-1} r_{0}\right)$.
For the moment, we concentrate on the choice $M=I$.

One-step methods are Krylov methods

Both the steepest-descent method and the minimal-residual method perform iterations of the form

$$
\begin{align*}
x_{k+1} & =x_{k}+\alpha_{k} r_{k} \tag{1}\\
r_{k+1} & =b-A x_{k+1}=r_{k}-\alpha_{k} A r_{k}
\end{align*}
$$

Clearly, also for these methods $x_{k+1} \in x_{0} \cup K^{k+1}\left(A ; r_{0}\right)$

Towards optimal methods

One-step projection methods make an optimal combination of the last two basis vectors in the Krylov subspace. The question that we will address now is:
Is it possible to make optimal linear combinations of all the basis vectors in the Krylov subspace?
We will answer this question in two steps:

- First, we discuss how to construct a basis for $K^{k}\left(A ; r_{0}\right)$;
- Then, we will explain how we can construct an optimal approximation as a linear combination of the basis vectors. Today we will focus on symmetric matrices.

A basis for the Krylov subspace

The most simple basis for the Krylov subspace $K^{k}\left(A ; r_{0}\right)$ is the power basis: $r_{0}, A r_{0}, A^{2} r_{0}, \cdots A^{k-1} r_{0}$.

Clearly, this basis is ill-conditioned since $A^{k-1} r_{0}$ will point more and more in the direction of the largest eigenvector of A.

A stable, orthogonal basis can be constructed with Arnoldi's method.

Arnoldi's method

Choose a starting vector q_{1} with $\left\|q_{1}\right\|_{2}=1$.

FOR
$k=1, \cdots$ DO
$v=A q_{k}$
FOR $i=1, \ldots, k \quad$ orthogonalisation

$$
\begin{aligned}
& h_{i, k}=v^{T} q_{i} \\
& v=v-h_{i, k} q_{i}
\end{aligned}
$$

END FOR

$$
h_{k+1, k}=\|v\|_{2}
$$

IF $h_{k+1, k}=0$ STOP invariant subspace spanned
$q_{k+1}=v / h_{k+1, k} \quad$ new basis vector

END FOR

The Arnoldi relation

The Arnoldi method can be summarised in a compact way. Let

$$
H_{k}=\left[\begin{array}{cccc}
h_{1,1} & \cdots & \ldots & h_{1, k} \\
h_{2,1} & \ddots & & \vdots \\
& \ddots & \ddots & \vdots \\
O & & h_{k, k-1} & h_{k, k}
\end{array}\right]
$$

and $Q_{k}=\left[q_{1} q_{2} \cdots q_{k}\right]$ then

$$
A Q_{k}=Q_{k} H_{k}+h_{k+1, k} q_{k+1} e_{k}^{T}
$$

Here e_{k} is the k-th canonical basis vector in \mathbb{R}^{k}.

A is symmetric

According to the Arnoldi relation we have

$$
Q_{k}^{T} A Q_{k}=H_{k}
$$

Moreover, if A is symmetric we have

$$
H_{k}^{T}=Q_{k}^{T} A^{T} Q_{k}=Q_{k}^{T} A Q_{k}=H_{k}
$$

So H_{k} is symmetric and upper Hessenberg,
this means that H_{k} must be tridiagonal.

A is symmetric (2)

So

$$
H_{k}=\left[\begin{array}{cccc}
h_{1,1} & h_{2,1} & & O \\
h_{2,1} & \ddots & \ddots & \\
& \ddots & \ddots & h_{k, k-1} \\
O & & h_{k, k-1} & h_{k, k}
\end{array}\right]
$$

With $\alpha_{k}=h_{k, k}$ and $\beta_{k}=h_{k-1, k}$ the Arnoldi method simplifies to the (symmetric) Lanczos method. With the Lanczos method it is possible to compute a new orthonormal basis vector using only the two previous basis vectors.

The Lanczos method

Choose a starting vector q_{1} with $\left\|q_{1}\right\|_{2}=1$
$\beta_{1}=0$

$$
\begin{aligned}
& q_{0}=0 \\
& k=1, \cdots \mathrm{DO} \\
& \alpha_{k}=q_{k}^{T} A q_{k} \\
& v=A q_{k}-\alpha_{k} q^{\prime} \\
& \beta_{k+1}=\|v\|_{2} \\
& q_{k+1}=v / \beta_{k+1}
\end{aligned}
$$

initialization iteration
orthogonal to previous q normalization

$$
v=A q_{k}-\alpha_{k} q_{k}-\beta_{k} q_{k-1} \quad \text { new direction }
$$

END FOR

The Lanczos method

Let

$$
T_{k}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & 0 \\
\beta_{2} & \alpha_{2} & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& 0 & \ddots & \ddots & \beta_{k} \\
& & & \beta_{k} & \alpha_{k}
\end{array}\right]
$$

and

$$
Q_{k}=\left[q_{1} q_{2} \ldots q_{k}\right]
$$

Then $A Q_{k}=Q_{k} T_{k}+\beta_{k+1} q_{k+1} e_{k}^{T}$

Eigenvalue methods

Arnoldi's and Lanczos method were originally proposed as iterative methods to compute the eigenvalues of a matrix A :

$$
Q_{k}^{T} A Q_{k}=H_{k}
$$

is 'almost' a similarity transformation. The eigenvalues of H_{k} are called Ritz values.

Optimal approximations (1)

The Lanczos method provides a cheap way to compute an orthogonal basis for the Krylov subspace $K^{k}\left(A ; r_{0}\right)$. Our approximations can be written as

$$
x_{k}=x_{0}+Q_{k} y_{k}
$$

where y_{k} is determined so that either the error

$$
f\left(x_{k}\right)=\left\|x_{k}-x\right\|_{A}^{2}=\left(x_{k}-x\right)^{T} A\left(x_{k}-x\right)
$$

is minimised in A-norm (only meaningful if A is pos. def.) or that

$$
g\left(x_{k}\right)=\left\|A\left(x_{k}-x\right)\right\|_{2}^{2}=r_{k}^{T} r_{k},
$$

i.e. the norm of the residual is minimised.

Optimal approximations (2)

We first look at minimisation of the error in the A-norm:

$$
x_{k}=x_{0}+Q_{k} y_{k} \Rightarrow f\left(x_{k}\right)=\left(x_{0}+Q_{k} y_{k}-x\right)^{T} A\left(x_{0}+Q_{k} y_{k}-x\right)
$$

To minimise, we differentiate with respect to y_{k} and set $\frac{\partial f\left(x_{k}\right)}{\partial y_{k}}=0$. This yields

$$
Q_{k}^{T} A Q_{k} y_{k}=Q_{k}^{T} r_{0}
$$

and with $Q_{k}^{T} A Q_{k}=T_{k}, r_{0}=\left\|r_{0}\right\| q_{1}$ we get

$$
T_{k} y_{k}=\left\|r_{0}\right\| e_{1}
$$

with e_{1} the first canonical basis vector.

Optimal approximations (3)

It is easy to see that the residuals are orthogonal to the basis vectors:

$$
r_{k}=r_{0}-A Q_{k} y_{k} \Rightarrow Q_{k}^{T} r_{k}=Q_{k}^{T} r_{0}-Q_{k}^{T} A Q_{k} y_{k}=0
$$

This condition is equivalent to minimising $f\left(x_{k}\right)$ when A is SPD.
Since the r_{k} 's are orthogonal, each residual is just a multiple of the corresponding basis vector q_{k}. This also means that the residuals form an orthogonal basis for the Krylov subspace.

Towards a practical algorithm

The main problem in the Lanczos algorithm is that all q_{i} (or r_{i}) have to be stored to compute x_{k}. This problem can be overcome by making an implicit $L U$ factorisation of T_{k} and updating x_{k} in every iteration.
Details can be found in the books of Van der Vorst and of Saad.
With this technique we get the famous and very simple Conjugate Gradient method.

The Conjugate Gradient method

$r_{0}=b-A x_{0} ; \quad p_{0}=r_{0}$
FOR $\quad k=0,1, \cdots$, DO
$\alpha_{k}=\frac{r_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}}$
$x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad$ update iterate
$r_{k+1}=r_{k}-\alpha_{k} A p_{k} \quad$ update residual
$\beta_{k}=\frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}}$
$p_{k+1}=r_{k+1}+\beta_{k} p_{k} \quad$ update direction vector
END FOR
initialization
update direction vector

Properties of CG

CG has several favourable properties:

- The method uses limited memory: only three vectors need to be stored;
- The method is optimal: the error is minimised in A-norm;
- The method is finite: the $n+1$-st residual must be zero since all the residuals are orthogonal;
- The method is robust: $p_{k}^{T} A p_{k}$ and $r_{k}^{T} r_{k}$ both imply that the true solution has been found (that $r_{k}=0$).

Lanczos matrix

Since CG and Lanczos are mathematically equivalent it should be possible to recover the Lanczos matrix T_{k} from the
CG-iteration parameters. This is indeed the case

$$
T_{k}=\left[\begin{array}{ccccc}
\frac{1}{\alpha} 0 & \frac{\sqrt{\beta_{0}}}{\alpha_{0}} & & & 0 \\
\frac{\sqrt{\beta_{0}}}{\alpha_{0}} & \frac{1}{\alpha_{1}}+\frac{\beta_{0}}{\alpha_{0}} & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& 0 & \ddots & \ddots & \frac{\sqrt{\beta_{m-2}}}{\alpha_{m-2}} \\
& & & \frac{\sqrt{\beta_{k-2}}}{\alpha_{k-2}} & \frac{1}{\alpha} k-1+\frac{\beta_{k-2}}{\alpha_{k-2}}
\end{array}\right]
$$

Conjugate Gradient Error Analysis

CG minimises the function

$$
f\left(x_{k}\right)=\left(x_{0}+Q_{k} y_{k}-x\right)^{T} A\left(x_{0}+Q_{k} y_{k}-x\right) .
$$

With the error $e_{k}=x_{k}-x$ and $A e_{0}=r_{0}$ CG minimises

$$
\left\|e_{k}\right\|_{A}=\left\|e_{0}+Q_{k} y_{k}\right\| \text { with } Q_{k} y_{k} \in K^{k}\left(A ; A e_{0}\right)
$$

Consequently

$$
e_{k}=e_{0}-\alpha_{1} A e_{0}-\alpha_{2} A^{2} e_{0}-\cdots-\alpha_{k} A^{k} e_{0}=p_{k}(A) e_{0}
$$

So e_{k} is a polynomial in A times e_{0}, with $p_{k}(0)=1$:

$$
\left\|e_{k}\right\|_{A}=\min _{p_{k}}\left\|p_{k}(A) e_{0}\right\|_{A} \leq \min _{p_{n}} \max _{i}\left|p_{k}\left(\lambda_{i}(A)\right)\right| \cdot\left\|e_{0}\right\|_{A}
$$

A convergence bound for CG

The iterates x_{k} obtained from the CG algorithm satisfy the following inequality:

$$
\left\|x-x_{k}\right\|_{A} \leq 2\left(\frac{\sqrt{K_{2}(A)}-1}{\sqrt{K_{2}(A)}+1}\right)^{k}\left\|x-x_{0}\right\|_{A}
$$

$K_{2}(A)$ is the condition number of A, which is for SPD-matrices

$$
K_{2}(A)=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

Proof (sketch)

The error $e_{k}=x-x_{k}$ can be written as $p_{k}(A) e_{0}$ with $p_{k}(x)$ a polynomial such that $p_{k}(0)=1$. Hence we have

$$
\left.\left\|e_{k}\right\|_{A}=\| p_{k}(A) e_{0}\right) \|_{A}
$$

Since CG is optimal, we have

$$
\left.\| p_{k}(A) e_{0}\right)\left\|_{A} \leq\right\| q_{k}(A) e_{0} \|_{A} \forall q_{k}(x) \text { with } q_{k}(0)=1
$$

The convergence bound can now be proved by taking for $q_{k}(x)$
Chebychev polynomials that are transformed to the interval
$\lambda_{\min }, \lambda_{\max }$.

Superlinear convergence

The upperbound on the CG-error is in practice very pessimistic. Typically the rate of convergence increases during the process. This is called superlinear convergence.

CG convergence: Sparse Spectrum

CG convergence: Dense Spectrum

Minimising the residuals

CG minimises the A-norm of the error. As we have seen before, another way to construct optimal approximations x_{k} is to minimise the residual, i.e. minimise

$$
g\left(x_{k}\right)=\left\|A\left(x_{k}-x\right)\right\|_{2}^{2}=r_{k}^{T} r_{k}
$$

over all $x_{k} \in\left\{x_{0} \cup K^{k}(A ; b)\right\}$. Before we solve this problem we first look again at the Lanczos relation.

The Lanczos relation

By defining

$$
\underline{T}_{k}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & 0 \\
\beta_{2} & \alpha_{2} & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& 0 & \ddots & \ddots & \beta_{k} \\
& & & \beta_{k} & \alpha_{k} \\
& & & & \beta k+1
\end{array}\right]
$$

the Lanczos relation can also be written as

$$
A Q_{k}=Q_{k+1} \underline{T}_{k}
$$

Minimal residuals

The problem is: find $x_{k}=x_{0}+Q_{k} y_{k}$ such that $\left\|r_{k}\right\|$ is minimal.

$$
r_{k}=b-A x_{k}=r_{0}-A Q_{k} y_{k}=\left\|r_{0}\right\| q_{1}-A Q_{k} y_{k}
$$

hence minimise

$$
\begin{align*}
\left\|r_{k}\right\| & =\| \| r_{0}\left\|q_{1}-A Q_{k} y_{k}\right\| \tag{1}\\
& =\| \| r_{0}\left\|Q_{k+1} e_{1}-Q_{k+1} \underline{T}_{k} y_{k}\right\| \tag{1}\\
& =\| \| r_{0}\left\|e_{1}-\underline{T}_{k} y_{k}\right\|
\end{align*}
$$

Towards a practical algorithm

Solving the small overdetermined system $\underline{T}_{k} y_{k}=\left\|r_{0}\right\| e_{1}$ provides iterates

$$
x_{k}=x_{0}+Q_{k} y_{k}
$$

that minimise the residual. The resulting algorithm is called MINRES.

MINRES can be cast in a CG like algorithm, see the books of van der Vorst and of Saad for details.

The resulting algorithm is called Conjugate Residual method.

Conjugate Residual Method

$r_{0}=b-A x_{0} ; \quad p_{0}=r_{0}$
FOR $\quad k=0,1, \cdots$, DO
$\alpha_{k}=\frac{r_{k}^{T} A r_{k}}{\left(A p_{k}\right)^{T} A p_{k}}$
$x_{k+1}=x_{k}+\alpha_{k} p_{k}$
$r_{k+1}=r_{k}-\alpha_{k} A p_{k}$
$\beta_{k}=\frac{r_{k+1}^{T} A r_{k+1}}{r_{k}^{T} A r_{k}}$
$p_{k+1}=r_{k+1}+\beta_{k} p_{k}$
$A p_{k+1}=A r_{k+1}+\beta_{k} A p_{k} \quad$ to avoid extra matvec

END FOR

Properties of CR

Like CG, CR has many favourable properties:

- The method uses limited memory: only four vectors need to be stored;
- The method is optimal: the residual is minimised;
- The method is finite: the n-st residual must be zero since it is optimal over the whole space;
- The method is robust if A is SPD, else $r_{k}^{T} A r_{k}$ may be zero for some nonzero r_{k}

CR is less popular than CG since minimising the A-norm of the error is often more natural. CG is also slightly cheaper.

CG for the normal equations

CG can always be applied to the normal equations

$$
A^{T} A x=A^{T} b \quad\left(\text { or } A A^{T} y=b \quad \text { with } \quad x=A^{T} y\right)
$$

since $A^{T} A$ is an SPD-matrix (if A has full column rank).
Applying CG to the normal equations has two disadvantages:

- The work per iteration is twice as much as in CG;
- $K_{2}\left(A^{T} A\right)=K_{2}(A)^{2}$, which means that convergence is often very slow.

CGLS

CGLS is a numerical stable variant of CG for the normal equations.

The stability properties are improved by replacing inner products

$$
p^{T}\left(A^{T} A p\right)
$$

by inner products

$$
(A p)^{T} A p
$$

LSQR

LSQR is derived by applying Lanczos to

$$
\left(\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right)\binom{r}{x}=\binom{b}{0} .
$$

The resulting algorithm is equivalent to CGLS.

Concluding remarks

Today, we discussed Krylov methods for symmetric systems. These methods combine an optimal error reduction with short recurrences, and hence limited memory requirements. The next two days, we will discuss methods for solving nonsymmetric systems.

