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Abstract

We prove that for a graph G = (V,E) without bad K4 subdivision, and for b ∈ ZV ∪E
+ ,

the b-stable set polytope is determined by the system of constraints determined by the
vertices, edges and odd circuits. We also prove that this system is totally dual integral.
This relates to t-perfect graphs.

Let G = (V,E) be a graph and let b ∈ ZV ∪E
+ . Then a b-stable set in G is a vector x ∈ ZV

+

satisfying xv ≤ bv for every vertex v and xu + xv ≤ buv for every edge uv. The b-stable set
polytope of G is defined as the convex hull of the b-stable sets in G.

We will use the following notation. For sets B ⊆ A and a vector x ∈ RA, let χB be the
characteristic vector of B and let x(B) := xT χB. For an edge {u, v} we will use the shorthand
notation uv.

The vectors in the b-stable set polytope obviously satisfy the following system of inequal-
ities.

(i) 0 ≤ xv ≤ bv for each v ∈ V ; (1)
(ii) xu + xv ≤ buv for each edge uv ∈ E;
(iii) x(V C) ≤ b1

2b(EC)c for each odd circuit C.

We call a graph G t-perfect with respect to b if the b-stable set polytope is determined by
(1). Since each integral vector satisfying (1) is a b-stable set, the polytope determined by
(1) equals the b-stable set polytope if and only if it is integral. We call a graph G strongly
t-perfect with respect to b if system (1) is totally dual integral.

For any weight function w ∈ ZV
+ and any b ∈ ZV ∪E

+ , denote by α(G, b, w) the maximum
w-weight wT x of a b-stable set x in G. Define a w-cover as a family of vertices, edges and
odd circuits in G that covers each vertex v at least wv times. The b-cost of a w-cover is
defined as the sum of the costs of its elements, where the cost of a vertex v equals bv, the
cost of an edge e equals be and the cost of an odd circuit C equals b1

2b(EC)c. Denote by
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ρ̃(G, b, w) the minimum cost of a w-cover. Strong t-perfection can now be characterized
equivalently as follows: a graph G = (V,E) is strongly t-perfect with respect to b if and only
if α(G, b, w) = ρ̃(G, b, w) for every weight function w ∈ ZV

+.
Call a subdivision of K4 odd if each triangle of K4 has become an odd circuit. An odd

subdivision of K4 is called bad if there are no two disjoint edges e, f of K4 such that e and
f are not subdivided and the other four edges have become even length paths. We say that
a graph has a bad K4 subdivision if it has a subgraph that is a bad K4 subdivision.

In [4], it was proved that a graph has no bad K4 subdivision if and only if each subgraph
is t-perfect with respect to the all-one vector. Here the ‘if’ part follows from the fact that
a bad K4 subdivision is not t-perfect with respect to the all-one vector (see [1]). In [5], it
was proved that graphs without bad K4 subdivision are also strongly t-perfect with respect
to the all-one vector. In this paper we prove that graphs having no bad K4 subdivision are
strongly t-perfect with respect to every b ∈ ZV ∪E

+ , which implies our theorem.

Theorem. Let G = (V,E) be a graph. Then the following are equivalent:

(i) G has no bad K4 subdivision,

(ii) G is t-perfect with respect to each b ∈ ZV ∪E
+ ,

(iii) G is strongly t-perfect with respect to each b ∈ ZV ∪E
+ .

Proof. If G satisfies (ii), then also each subgraph of G satisfies (ii). So the implication (ii)
=⇒ (i) follows from the fact that a bad K4 subdivision is not t-perfect with respect to the
all-one vector (see [1]).

The implication (iii) =⇒ (ii) follows from the fact that any totally dual integral system
with integral right-hand side determines an integral polyhedron.

To prove the implication (i) =⇒ (iii), it will be convenient to first prove the implication
(i) =⇒ (ii). Let G = (V,E) be a graph without bad K4 subdivision, and let b ∈ ZV ∪E

+ . We
show that the polytope P determined by (1) is integral. Suppose that x is a nonintegral
vertex of P . Let x′ be defined by x′v := xv − bxvc for every vertex v and let b′ be defined
by b′v := bv − bxvc for every vertex v and b′e := be − bxuc − bxvc for every edge e = uv.
Then x′ is a nonintegral vertex of the polytope determined by (1) with b replaced by b′. Let
G′ := (V, F ), where F := {e ∈ E| b′e = 1}. Since G′ has no bad K4 subdivision and x′ satisfies
the constraints (1) for the graph G′ and the all-one vector χV ∪F in stead of b, x′ is a convex
combination of incidence vectors of stable sets in G′ by [5]. Each of these incidence vectors is
a b′-stable set. Hence x′ is a convex combination of b′-stable sets in G, a contradiction. This
proves the implication (i) =⇒ (ii).

The remainder of this proof consists of showing the implication (i) =⇒ (iii). The idea is
to reduce the general statement to the case where b is the all-one vector.

Suppose the implication (i) =⇒ (iii) is false. Let the graph G = (V,E) and b ∈ ZV ∪E
+

form a counter example with |V | + |E| minimal and (secondly) b(V ) minimal. Let w ∈ ZV
+

be any weight function for which α(G, b, w) < ρ̃(G, b, w). Note that by the minimality of G,
we know that G has no isolated vertices. We observe the following facts about w and b.
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Claim 1.

(i) α(G, b, w) < α(G− e, b|G−e, w) for each edge e ∈ E, (2)
(ii) buv < bu + bv for each edge uv ∈ E,

(iii) 1 ≤ bu ≤ buv for each edge uv ∈ E,

(iv) 1 ≤ wv for each vertex v ∈ V.

By the minimality of G, we know that

α(G, b, w) < ρ̃(G, b, w) ≤ ρ̃(G− e, b|G−e, w) = α(G− e, b|G−e, w).

This gives (i). If for some edge uv we have buv ≥ bu + bv, then every b|G−uv-stable set in
G − uv is a b-stable set in G, contradicting (i). Hence we have (ii). Suppose that bu > buv

for some edge uv. Let b′ := b− χu. Now we have

α(G, b′, w) = α(G, b, w) < ρ̃(G, b, w) = ρ̃(G, b′, w),

contradicting the minimality of b. Hence we have 0 ≤ buv − bv < bu ≤ buv and (iii) follows.
Suppose that wv = 0 for some vertex v. Let b′ := b|G−v and w′ := w|G−v. Then

α(G− v, b′, w′) = α(G, b, w) < ρ̃(G, b, w) ≤ ρ̃(G− v, b′, w′),

contradicting the minimality of G. Hence we have (iv). End of proof of Claim 1.

For the b-stable sets of maximum weight we have the following.

Claim 2. Let x be a b-stable set of w-weight wT x = α(G, b, w). Then xv ≤ 1 for each v ∈ V .

To see this, suppose that xv > 1 for some vertex v. Let x′ := x−χv, and b′ := b−χ{v}∪δ(v).
For any b′-stable set x̃ in G, we have:

wT x̃ = wT (x̃ + χv)− wv ≤ α(G, b, w)− wv = wT x′,

and hence x′ is a maximum w-weight b′-stable set in G. By minimality of b, there exists a
w-cover F of b′-cost ρ̃(G, b′, w) = α(G, b′, w).

Since xv > 1, we have x′v > 0, and hence by ‘complementary slackness’, v is covered
exactly wv times by F . This implies that F has b-cost

ρ̃(G, b′, w) + wv = α(G, b′, w) + wv = α(G, b, w),

a contradiction. End of proof of Claim 2.

Claim 3. For every edge f ∈ E we have bf ≤ 2.

Suppose that Claim 3 is not true and that we have bf ≥ 3 for some edge f = uv. Let
w′ := w + N · χf , where N := w(V ) + 1. Then

α(G, b, w′) = ρ̃(G, b, w′),
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since otherwise by Claim 2 applied to w′, we have for any maximum w′-weight b-stable set x
the following inequality:

w′T x = wT x + N(xu + xv) ≤ N − 1 + 2N < 3N,

while x′ := buχu + (bf − bu)χv is a b-stable set of w′-weight

w′T x′ ≥ N · bf ≥ 3N,

contradicting the optimality of x.
So we can choose w such that

α(G, b, w) < ρ̃(G, b, w), (3)
α(G, b, w + χf ) = ρ̃(G, b, w + χf ).

Let F := {v1, . . . , vr, e1, . . . , es, C1, . . . , Ct} be a minimum b-cost w + χf -cover, where
the vi are vertices, the ei are edges and the Ci are odd circuits. Note that none of the ei

is the edge f , since otherwise ρ̃(G, b, w) ≤ ρ̃(G, b, w + χf ) − bf , which would imply that
ρ̃(G, b, w) ≤ α(G, b, w + χf ) − bf ≤ α(G, b, w). Let G′ := G − f , let b′ := b|G′ , and let x′ be
a maximum w-weight b′-stable set in G′. Then α(G′, b′, w) ≥ α(G, b, w) + 1 by Claim 1, and
hence

x′(f) > bf . (4)

For any odd circuit C traversing f , we have:

x′(V C) ≤ b1
2b(EC)c+ 1

2(x′(f)− bf + 1), (5)

since 2x′(V C) ≤ x′(f)+ b(EC−f) = x′(f)+ b(EC)− bf . Now let l be the number of circuits
in F traversing f . We obtain:

ρ̃(G, b, w + χf ) = α(G, b, w + χf ) ≤ α(G, b, w) + bf ≤ α(G′, b′, w)− 1 + bf

= wT x′ − 1 + bf = (w + χf )T x′ − (x′(f)− bf + 1)

≤ −(x′(f)− bf + 1) +
r∑

i=1

x′(vi) +
s∑

i=1

x′(ei) +
t∑

i=1

x′(V Ci)

≤ (1
2 l − 1)(x′(f)− bf + 1) +

r∑
i=1

bvi +
s∑

i=1

bei +
t∑

i=1

b1
2b(ECi)c

= (1
2 l − 1)(x′(f)− bf + 1) + ρ̃(G, b, w + χf ).

(6)

Hence we have (l − 2)(x′(f)− bf + 1) ≥ 0. Since x′(f)− bf + 1 > 0 by (4), we have l ≥ 2.
We may assume that C1 and C2 traverse f . Decompose the cycle EC1∆EC2 into circuits

C ′
1, . . . , C

′
q, where C ′

1, . . . C
′
p are odd and C ′

p+1, . . . , C
′
q are even. Choose in each C ′

i with
i = p + 1, . . . , q a perfect matching Mi with b(Mi) ≤ 1

2b(EC ′
i). Now replace C1 and C2 in the
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cover F by the circuits C ′
1, . . . , C

′
p, the edges in the matchings Mp+1, . . . ,Mq and the edges

in EC1 ∩ EC2. This gives a w + χf -cover F ′ of b-cost

ρ̃(G, b, w + χf )− b1
2b(EC1)c − b1

2b(EC2)c

+ b(EC1 ∩ EC2) +
p∑

i=1

b1
2b(EC ′

i)c+
q∑

i=p+1

b(Mi)

≤ ρ̃(G, b, w + χf )− 1
2(b(EC1) + b(EC2)− 2) + 1

2(b(EC1∆EC2)) + b(EC1 ∩ EC2)

= ρ̃(G, b, w + χf ) + 1. (7)

Hence F ′ − f is a w-cover of b-cost at most ρ̃(G, b, w + χf ) + 1− bf . This implies that

α(G, b, w) ≤ ρ̃(G, b, w)− 1 ≤ ρ̃(G, b, w + χf )− bf

= α(G, b, w + χf )− bf ≤ α(G, b, w). (8)

So we have equality throughout and in particular we obtain

α(G, b, w + χf ) = α(G, b, w) + bf .

Let x be a maximum w + χf -weight b-stable set in G. Then

α(G, b, w) + bf = (w + χf )T x = wT x + x(f) ≤ α(G, b, w) + bf ,

and hence x(f) = bf and x is a maximum w-weight b-stable set. But x(f) = bf ≥ 3 implies
that xu > 1 or xv > 1, contradicting Claim 2. End of proof of Claim 3.

Partition the vertex set V into V1 := {v ∈ V | bv = 1} and V2 := {v ∈ V | bv = 2}. So
by Claim 1, we know that the edges e spanned by V1 have be = 1 and the other edges have
be = 2. We now prove the following claim.

Claim 4. Either V1 = ∅ or V2 = ∅.

To prove the claim, take w with α(G, b, w) < ρ̃(G, b, w) such that w(V ) is minimal. We
first prove the following.

If bv = 1 for some vertex v,
then there exists a maximum w-weight b-stable set x with xv = 0.

(9)

Indeed, let w′ := w − χv. By the minimality of w, we have

α(G, b, w′) + 1 = ρ̃(G, b, w′) + 1 ≥ ρ̃(G, b, w) ≥ α(G, b, w) + 1.

Hence α(G, b, w′) = α(G, b, w), implying that there exists a maximum w-weight b-stable set
x satisfying xv = 0.
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Similarly, we have

If be = 1 for some edge e,
then there exists a maximum w-weight b-stable set x with x(e) = 0.

(10)

To see this, let w′ := w − χe. By the minimality of w, we have

α(G, b, w′) + 1 = ρ̃(G, b, w′) + 1 ≥ ρ̃(G, b, w) ≥ α(G, b, w) + 1.

Hence α(G, b, w′) = α(G, b, w), implying that there exists a maximum w-weight b-stable set
x satisfying x(e) = 0.

Consider an edge e = uv with u ∈ V1 and v ∈ V2. By (9), there is a maximum w-weight
b-stable set x with xu = 0. By Claim 2, we know that xv ≤ 1. Hence x(e) ≤ 1 < 2 = be. So
we have:

For each edge e ∈ δ(V1),
there is a maximum w-weight b-stable set x with x(e) < be.

(11)

Next consider an odd circuit traversing an edge in δ(V1). We have:

For each odd circuit C traversing an edge in δ(V1), there is a
maximum w-weight b-stable set x with x(V C) < b1

2b(EC)c.
(12)

Indeed, let C be an odd circuit traversing an edge in δ(V1) and suppose that C does not
traverse an edge spanned by V1. Let u ∈ V1 be a vertex traversed by C. By (9), there is a
maximum w-weight b-stable set x with xu = 0. By Claim 2 we have x(V C) ≤ |V C| − 1 <
|V C| = b1

2b(EC)c.
So we may assume that C traverses an edge spanned by U1. Then C has three consecutive

vertices t, u and v with t, u ∈ V1 and v ∈ V2. By (10) there is a maximum w-weight b-stable
set x with x(tu) = 0 = btu − 1. By Claim 2 we have xv ≤ 1, and hence x(uv) ≤ 1 ≤ buv − 1.
So 2x(V C) ≤ b(EC)− 2, and hence x(V C) < b1

2b(EC)c.
Now suppose that V1 and V2 are nonempty. By minimality of G, we know that there is

at least one edge e ∈ δ(V1). Let G′ := G− e, let b′ := b|G′ and let x′ be a maximum w-weight
b′-stable set in G′. Let x maximize wT x over the b-stable set polytope of G such that x is
in general position on the face of optimal solutions. Then by (11) and (12), x(e) < be and
x(V C) < b1

2b(EC)c for each odd circuit traversing e. Hence there is a 0 < λ ≤ 1 such that
x̃ := (1 − λ)x + λx′ satisfies the system of constraints (1). By the the implication (i) =⇒
(ii), x̃ belongs to the b-stable set polytope of G. But wT x̃ > wT x since wT x′ = α(G′, b′, w) >
α(G, b, w) = wT x by Claim 1. This contradicts the optimality of x. So either V1 or V2 is
empty. End of proof of Claim 4.

If b is the all-one vector, the total dual integrality of (1) follows from [5]. So V1 is empty
and hence be = 2 for every edge e and bv = 2 for every vertex v. Denote by a 2w-edge cover
a vector y ∈ ZE

+ with y(δ(v)) ≥ 2wv for every vertex v ∈ V . It is easy to see that for any
2w-edge cover y and any 2-stable set x, we have wT x ≤

∑
e∈E ye

1
2

∑
v∈e x(v) ≤ y(E). By a
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theorem of Gallai (see [2]), G has a 2-stable set x and a 2w-edge cover, such that wT x = y(E).
Denote by Uy the set of vertices v for which y(δ(v)) is odd. Let x be a 2-stable set and let y
be a 2w-edge cover such that wT x = y(E) and |Uy| is minimal.

If Uy 6= ∅, then there is a simple path P connecting two vertices in Uy with ye ≥ 1 for
each e ∈ EP . Let M be a maximum size matching in P . Then y′ := y + χEP − 2χM is a
2w-edge cover with y′(E) ≤ y(E) and |Uy′ | = |Uy| − 2, a contradiction. So y(δ(v)) is even for
every vertex v and we can write y = χEC1 + . . . + χECr + χEC′

1 + . . . + χEC′
s for odd circuits

C1, . . . Cr and even circuits C ′
1, . . . C

′
s. Let Mi be a perfect matching in C ′

i for i = 1, . . . , s.
Then C1, . . . , Cr together with the edges in the matchings M1, . . . ,Ms give a w-cover of b-cost
y(E) = wT x. Since x is a b-stable set, this implies that ρ̃(G, b, w) ≤ α(G, b, w), contradicting
the choice of w. This concludes the proof.

Remark. Let G = (V,E) be a graph with E×V incidence matrix M . In [3] it was proved that

the matrix
(

I
−I
M

−M

)
has Chvátal rank at most 1 if and only if G has no odd K4 subdivision. The

equivalence of (i) and (ii) above, has the following reformulation in terms of the Chvátal rank:
the matrix

(
I

−I
M

)
has Chvátal rank at most 1 if and only if G has no bad K4 subdivision.
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