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Abstract

We show that any subset of Zn
p (p an odd prime) without 3-term arithmetic progression

has size O(pcn), where c := 1 − 1
18 log p

< 1. In particular, we find an upper bound of O(2.84n)
on the maximum size of an affine cap in GF (3)n.

Introduction

Given an abelian group G, a subset A ⊆ G is progression-free if there are no disctinct a, b, c ∈ A
for which a+ b = 2c. In their recent paper [2], Croot, Lev and Pach used the polynomial method
to show an upper bound of O(40.926·n) on the size of progression-free sets in Zn4 . In this paper,
we extend their method to progression-free sets in Znp , where p is an odd prime. This improves

the bound O(p
n

n ) of Meshulam [8] and the bound O( 3n

n1+ε ) (where ε > 0 is a constant) in the case
p = 3 due to Bateman and Katz [1].

Remark 1. While submitting the paper, the author was informed that Jordan S. Ellenberg proved
a similar result [4] three days ago. In their paper an upper bound of O(2.756n) for progression-free
subsets of Zn3 (and hence affine caps in Fn3 is proved. The paper also claims that their method gives
an upper bound of O(pcn) for some c = c(p) < 1 in the case of Znp .
Update v2: Since the arguments of our two papers were essentially identical, we decided to publish
our solutions as a joint paper [5].

Main theorem

Throughout, F = GF (p) will be a finite field, where p is an odd prime. We denote by Ln :=
span{xα : α ∈ {0, 1 . . . , p− 1}n} the linear space of polynomials over F in n variables in which no
variable occurs with exponent more than p − 1. Here we use the notation xα := xα1

1 xα2
2 · · ·xαnn .

Also, we denote |α| := α1 + · · ·+ αn. For f ∈ Ln, we denote by Z(f) := {a ∈ Fn | f(a) = 0} the
zero set of f . For any integer d ∈ {0, . . . , (p− 1)n} we denote by Ln,d the subspace of Ln consisting
of polynomials of degree at most d. Observe that dimLn,d + dimLn,(p−1)n−d−1 = pn since the
map (α1, . . . , αn) 7→ (p− 1− α1, . . . , p− 1− αn) induces a bijection from the set of monomials in
Ln to itself. We will use the following estimate on the dimension of Ln,(p−1)n/3.

In order to bound the dimension of the subspaces Ln,d, we use the following inequality.

Theorem 1 (Hoeffding inequality [7]). Let X1, . . . , Xn be independent random variables on [ai, bi]
and let S = X1 + · · ·+Xn. Then

Pr(E[S]− S ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma 1. Let c := 1− 1
18 log p < 1. For n a positive multiple of 3, we have dimLn,(p−1)n/3 ≤ pcn.
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Proof. Denote by ( nk )p−1 := |{a ∈ {0, 1, . . . , p− 1}n : |a| = k}| the extended binomial coefficients

(see e.g. [6]). So we have dimLn,d =
∑d
k=0 ( nk )p−1. Let X1, . . . , Xn be i.i.d. random variables

with Pr[Xi = t] = 1
p for t = 0, . . . , p − 1. Let S := X1 + · · · + Xn. It is easy to see that

( nk )p−1 = pn Pr[X = k]. The expected value of S equals 1
2 (p− 1)n.

By Hoeffding’s inequality, we have

Pr[S ≤ 1
3 (p− 1)n] = Pr[S ≤ 1

2 (p− 1)n− 1
6 (p− 1)n] ≤ e− 1

18n.

It follows that
dimLn,(p−1)n/3 ≤ pn · e−

1
18n = pn·(1−

1
18 log p ) = pcn.

Proposition 1. The evaluation map φ : Ln → FFn given by φ(f) = (f(a))a∈Fn is a linear bijection.

Proof. The fact that φ is linear is clear. Since dimLn = Fn = dimFFn , it suffices to show that φ is
injective. We will show this by induction on n. If n = 1, this follows since a nonzero polynomial
f = c0 + c1x1 + · · ·+ cp−1x

p−1
1 has at most p− 1 < p roots in F.

Now let n ≥ 2 and let f ∈ Ln be such that Z(f) = Fn. We need to show that f = 0.
Write f = f0 + xnf1 + x2nf2 + · · ·+ xp−1n fp−1, where f0, . . . , fq−1 ∈ Ln−1. Observe that for any

a1, . . . , an−1 ∈ F the univariate polynomial g(xn) :=
∑p−1
i=0 x

i
n · fi(a1, . . . , an−1) evaluates to zero

on the whole of F and therefore is the zero polynomial. That is, for all a1, . . . , an−1 and all
i = 0, . . . , p−1 we have fi(a1, . . . , an−1) = 0. By induction it follows that fi = 0 for i = 0, . . . , p−1
and hence that f = 0.

Lemma 2. Let g =
∑
α,β Cα,β x

αyβ ∈ F[x1, . . . , xn, y1, . . . , ym], where C ∈ FNn×Nm . Let A ⊆ Fn

and B ⊆ Fm. Define the matrix M ∈ FA×B by Mab := g(a, b). Then rankM ≤ rankC.

Proof. Let MA ∈ FNn×A,MB ∈ FNm×B be defined by (MA)α,a := aα and (MB)β,b := bβ . It is easy
to check that M := MT

ACMB . Hence, rankM ≤ rankC.

Proposition 2. Let f ∈ Ln,2d and let A ⊆ Fn. Suppose that for all a, b ∈ A we have: f(a+ b) = 0
if and only if a 6= b. Then |A| ≤ 2 dimLn,d.

Proof. Let g ∈ F[x1, . . . , xn, y1, . . . , yn] be defined by g(x, y) := f(x+ y). So g has degree at most
2d. Write g =

∑
α,β Cα,βx

αyβ . Note that Cα,β is nonzero only if |α| ≤ d or |β| ≤ d. It follows that
the support of C is contained in the union of the rows indexed by monomials of degree at most d
and the columns indexed by monomials of degree at most d. Hence, rankC ≤ 2 dimLn,d.

On the other hand, the A×A matrix M defined by Ma,b := g(a, b) is a diagonal matrix with
nonzero diagonal elements and therefore has rank |A|. By Lemma 2, it follows that |A| = rankM ≤
rankC ≤ 2 dimLn,d.

Theorem 2 (Main theorem). Let c := 1 − 1
18 log p < 1. For A ⊆ Fn progression free, we have

|A| = O(pcn).

Proof. Let n be a multiple of 3 and let A ⊆ Fn be progression free. It suffices to show that
|A| ≤ 3pcn.

Define B := {a+ b | a, b ∈ A with a 6= b} and C := {a+ a | a ∈ A}. Since A is progression-free
we have B ∩ C = ∅. Let

K := {f ∈ Ln | (Fn \ C) ⊆ Z(f)},
L := L

n,
2
3 (p−1)n

.

Note that K is a linear space of dimension |C| by Proposition 1. By Lemma 1, L is a linear space
of dimension

dimL ≥ pn − dimL
n,

1
3 (p−1)n−1

≥ pn − pcn.

2



Denote V := K ∩ L. We have

dimV ≥ dimL+ dimK − pn ≥ |C| − pcn. (1)

In particular, we may assume that V has positive dimension, for otherwise |A| = |C| ≤ pcn, and
we would be done.

By Proposition 1, we can view V as a linear subspace of FC . Hence, there is a subset C ′ ⊆ C
of size dimV such that the evaluation map φ : V → FC′

given by φ(f) := (f(c))c∈C′ is surjective.
Hence, we can choose f ∈ V such that f(c) = 1 for all c ∈ C ′.

Let A′ := {a ∈ A | a + a ∈ C ′}. Since p is odd, we have |A′| = |C ′|. Since f ∈ K, we have
B ⊆ (Fn \ C) ⊆ Z(f). This implies that f(a+ b) = 0 for all a, b ∈ A′ distinct. By our choice of
f we also have f(a+ a) = 1 for all a ∈ A′. Since f has degree at most 2

3 (p− 1)n, Proposition 2
implies that |A′| ≤ 2 dimL

n,
1
3 (p−1)n

= 2 dimL. Hence, |C ′| = |A′| ≤ 2pcn. By (1), we obtain

|A| = |C| ≤ pcn + dimV = pcn + |C ′| ≤ 3pcn.

In the special case p = 3, progression-free sets correspond exactly to affine caps. The best

known lower bound for affine caps in Fn3 is Ω(2.2174n) due to Edel [3]. Since 3
1− 1

18 log 3 = 2.84·,
Theorem 2 implies an upper bound of O(2.84n), improving the previous best upper bound of
O( 3n

n1+ε ) due to Bateman and Katz [1].

Corollary 1. The maximum size of an affine cap in Fn3 is O(2.84n).
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