Propositions

supplementing the thesis

Matrix Algebras
and
Semidefinite Programming Techniques for Codes

by Dion Gijswijt

Propositions

I

The curling number $C(w)$ of a word w is the largest integer k, for which w is a concatenation of the form $w=x y^{k}$, with y non-empty. For w equal the empty word, we set $C(w):=1$. The curling number transformation $\mathcal{C}(b)$ of a sequence $b_{1}, b_{2}, b_{3}, \ldots$ is the sequence $c_{1}, c_{2}, c_{3}, \ldots$ defined by

$$
\begin{equation*}
c_{n}:=C\left(b_{1}, \ldots, b_{n-1}\right) . \tag{1}
\end{equation*}
$$

The unique fixed point w of \mathcal{C} begins with

$$
\begin{aligned}
& 1,1,2 \\
& 1,1,2,2,2,3 \\
& 1,1,2,1,1,2,2,2,3,2 \\
& 1,1,2,1,1,2,2,2,3,1,1,2,1,1,2,2,2,3,2,2,2,3,2,2,2,3,3,2, \ldots
\end{aligned}
$$

and contains all positive integers. The numbers $1,2,3,4$, and 5 have their first occurence in positions $1,3,9,220$, and (approximately) $10^{10^{23}}$. See: F. J. van de Bult, D. Gijswijt, J. P. Linderman, N.J.A. Sloane and A. R. Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, preprint.

II

Let $G=(V, E)$ be a graph and let $b: E \rightarrow \mathbb{Z}_{+}$be given capacities on the edges. Consider the system
(i) $x_{v} \geq 0 \quad$ for every $v \in V$,
(ii) $x(e) \leq b_{e} \quad$ for every $e \in E$,
(iii) $x(V C) \leq\left\lfloor\frac{1}{2} b(E C)\right\rfloor$ for every odd circuit C.

The following holds:
system (2) is totally dual integral (TDI) for every $b: E \rightarrow \mathbb{Z}_{+}$, if and only if G has no 'bad K_{4} ' as a subgraph.

See: D. Gijswijt, A. Schrijver, On the b-stable set polytope of graphs without bad K_{4}, SIAM Journal on Discrete Mathematics 16 (2003) 511-516.

III

Let V be a finite set of points on a circle, and let A_{1}, \ldots, A_{m} be circular intervals with 'capacities' $c_{1}, \ldots, c_{m} \in \mathbb{Z}_{+}$. Define the set $X \subseteq \mathbb{Z}_{+}^{V}$ by

$$
X:=\left\{x \in \mathbb{Z}_{+}^{V} \mid x\left(A_{i}\right) \leq c_{i} \quad \text { for every } i=1, \ldots, m\right\}
$$

Then for every positive integer k :

$$
(k \cdot \operatorname{conv} \cdot \operatorname{hull}(X)) \cap \mathbb{Z}^{V}=\left\{x_{1}+\cdots+x_{k} \mid x_{1}, \ldots, x_{k} \in X\right\}
$$

Furthermore, there is an algorithm that, given $x \in \mathbb{Z}_{+}^{V}$, finds a decomposition $x=x_{1}+$ $\cdots+x_{k}$ with $x_{1}, \ldots, x_{k} \in X$ whenever such a decomposition exists. The algorithm runs in time $O(n(n+m)$), where $n=|V|$. See: D. Gijswijt, Integer decomposition for polyhedra defined by nearly totally unimodular matrices, zal verschijnen in: SIAM Journal on Discrete Mathematics.

IV

Four is the smallest number of colours that suffice to colour every configuration of nonoverlapping unit squares in the plane (squares sharing part of a side must receive different colours).

V

The question whether a template can be filled using copies of the following four pieces

(colours of adjacent pieces must match), is NP-hard. See: D. Gijswijt, Problemen, Pythagoras februari 2004.

VI

Orthogonal projection onto a matrix $*$-algebra preserves being positive semidefinite of a matrix. This can be used to reduce semidefinite optimisation problems.

VII

Let a finite number of red and blue points in the plane be given, no three on a line. Then there exists a line l such that the number of red points is the same on both sides of l, and also the number of blue points is the same on both sides.

VIII

A well-tried recipe for attracting math teachers has three main ingredients: curtain rings, polyethyleen cord, and above all: fire proof fingers.

