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Abstract. High-order finite elements with mass lumping al-
low for explicit time stepping when integrating the wave equa-
tion. An earlier study suggests that this approach can be used
for two-dimensional triangulations, but cannot be extended
to tetrahedra. Here, however, a new element for tetrahedra is
presented.

Finite elements for triangles and tetrahedra are better suit-
ed to model irregular surfaces and sharp contrasts in velocity
models than standard finite differences on regular cartesian
grids. The question is whether or not the superior accuracy
of the finite element method allows for a reduction of the
number of degrees of freedom that is large enough to bal-
ance its higher cost. Here it is shown by a comparison on
a simple two-dimensional reflection problem that the higher-
order finite-element method is actually more efficient than the
standard finite-difference method. In addition, a comparison
between finite-element schemes of various order suggests that
the higher-order approximations are more efficient than the
lower-order ones.

1 Introduction

Large-scale simulators for the wave equation are commonly
based on higher-order finite-difference schemes. The finite-
difference method (FDM), if formulated on a regular cartesian
grid, is attractive because of its efficiency and its simplicity
which allows for straight-forward parallelisation. Numerical
discretisation errors in the FDM show up as artificial disper-
sion. A fair amount of points per shortest wavelength in a
given problem is required to keep the numerical dispersion
sufficiently small. Higher-order schemes are often preferred,
because their improved accuracy amply outweighs the in-
creased cost, leading to an overall improvement of efficiency
as less points per shortest wavelength are required (see, e.g.,
[4]).

Two disadvantages of the FDM are: (i) accurate modelling
of rugged topography, necessary when computing the seismic
response in mountainous regions, is difficult, and (ii) the high-
order accuracy is lost near sharp interfaces in the velocity
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model. Figure 1 shows an example: a reflected wave for a
sharp interface at 10

�
dip, obtained by the FDM. The result

has been obtained by carrying out two computations: one for
the reflection problem and one for a homogeneous medium
with the velocity of the top layer. The resulting traces (receiver
data) have been subtracted to eliminate the direct wave. The
velocity model is the same as shown in Fig. 2. The receiver
line, however, has not been placed at the depth marked by the
crosses but at the top of the figure. The typical wavy, cross-
hatched pattern in Fig. 1 behind the first peak of the reflected
wave is caused by the abrupt change in velocity at the interface
and is a numerical artifact. An obvious alternative to the FDM
is the finite-element method (FEM), which allows irregular
interfaces and surfaces to be fitted by element boundaries.
Higher-order elements are desirable for the same reason as
with the FDM.
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Figure 1. Reflection traces for a sharp interface at 10o dip
obtained by a finite-difference scheme.

High-order finite-elements for wave propagation problems
have not received much attention for reasons explained in
[5], where it is shown that unphysical, so-called spurious or
parasitic modes will occur. Recently, it has been shown that
the amount of energy in these modes is small for sufficiently
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low frequencies [2], [8]. This still might imply that a large
number of points per shortest wavelength is needed to obtain a
prescribed accuracy. In [6], however, I have shown by a more
thorough, albeit one-dimensional analysis that the spurious
modes contribute to the discretisation in a meaningful way.
Therefore, the higher the order of the scheme, the smaller the
number of points per shortest wavelength that are required for
sufficient numerical accuracy, just as with the FDM.

Mass lumping is required for the FEM to avoid the solution
of a large sparse linear system. This keeps the computational
cost within acceptable limits. Two-dimensional elements with
mass lumping for triangles have been studied in [8] (see also
[3]). The author states that she has not been able to come up
with 3D elements for tetrahedra, which seriously limits the
range of applicability of the FEM.

As I have been able to find a viable approach for the con-
struction of elements for tetrahedra, an important remaining
question is whether or not the FEM can outperform the FDM.
To answer that question, a code for two-dimensionalproblems
has been written and results have been compared to those ob-
tained by a finite-difference scheme.

The following section describes the approach for construct-
ing higher-order finite elements. The idea is to choose a stan-
dard element of given order and add extra degrees of freedom
to obtain a sufficiently accurate integration rule that allows
for mass lumping without loss of accuracy. Only the spatial
part of the discretisation is described. The temporal discreti-
sation is the same as in [4]. In Section 3, the results of the
comparison between finite elements and finite differences are
presented.

2 Construction of finite elements

Consider the simple wave equation (constant density acous-
tics)

1
c � x � 2 � 2�

t2
u � t,x ��� ∆u � t,x ��� f � t,x � , � 1 �

on a domain Ω � IRndim , ndim � 2 or ndim � 3, with source
term f � t,x � and t �	� 0,T �
� IR. Initial values u � 0,x � and��

t u � 0,x � are assumed to be zero; here only zero Dirichlet
boundary conditions are considered. The weak formulation
of this problem is�

Ω
dx 
 c � 2

� 2u�
t2

v ��� xu ��� xv � fv ��� 0, � 2 �
for all test functions v � H1

0 � Ω � .
The finite-element discretisation is obtained as usual. Given

a grid made up of Nt triangles or tetrahedra � j, j � 1, ����� ,Nt, a
set of nt nodes is defined for each element. On each element,
shape functions are defined as polynomials that equal 1 on one
of the nodes and 0 on the other nodes. These polynomials will
be specified below. Let the polynomials be given by p j

k � x � ,
j � 1, ����� ,Nt, k � 1, ����� ,nt, with p j

k � xk ��� 1 and p j
k � x �����

0 for ���� k. The semi-discrete finite-element discretisation

becomes  
h
� 2uh � t ��

t2
�"! huh � t �#� Fh. � 3 �

Let $ k, k � 1, ����� ,ndim � 1, be the barycentric coordinates on
each triangle ( $ 1 � 1 �
$%�
& , $ 2 �'$ , $ 3 �(& ) or tetrahedron
( $ 1 � 1 �)$*��&+�', , $ 2 �-$ , $ 3 �.& , $ 4 �/, ). Assuming
c � x � to be constant on each element, the contribution of each
element to the mass matrix

 
h is:

c � 2
j JjA

j, Aj
k,l � �10

j

d $ 1 ����� d $ ndim p j
kp j

l � 4 �
Here Jj is the Jacobian of the coordinate transformation, which
equals twice the area of the triangle or 6 times the volume of
the tetrahedron. If mass lumping is applied, the matrix Aj is
replaced by a diagonal matrix obtained from row sums:2

Aj
k,k � nt3

l 4 1

Aj
k,l � diag 5 w1, �6��� ,wnt 7 . � 5 �

In two dimensions, the contribution to the stiffness matrix
is ! is:

Jj,1Bj,1 � Jj,2Bj,2 � Jj,3 8Bj,3 �'� Bj,3 � T 9 , � 6 �
where the superscript T denotes the transpose and

Bj,1
k,l � �:0

j

d $ 1d $ 2

�
p j

k� $ 1

�
p j

l� $ 1
,

Bj,2
k,l � � 0

j

d $ 1d $ 2

�
p j

k� $ 2

�
p j

l� $ 2
,

Bj,3
k,l � � 0

j

d $ 1d $ 2

�
p j

k� $ 1

�
p j

l� $ 2
.

If the vertices of a triangle are numbered counter-clockwise
as 1, 2, and 3, then

x � x1 �"$;� x2 � x1 ���<&=� x3 � x1 � ,
y � y1 �"$;� y2 � y1 ���<&=� y3 � y1 � ,

and

Jj � � x2 � x1 �>� y3 � y1 �?�)� y2 � y1 �@� x3 � x1 � ,
and

Jj,1 � 8 � x3 � x1 � 2 �A� y3 � y1 � 2 9CB Jj,

Jj,2 � 8 � x2 � x1 � 2 �A� y2 � y1 � 2 9CB Jj,

Jj,3 � 8 � x2 � x1 �>� x3 � x1 �D�'� y2 � y1 �@� y3 � y1 � 9EB Jj.

For the source term, we have a contribution Jjwkf j
k .

We now turn to the description of the polynomials used
as shape functions. Let the standard class of polynomials be
ΠM: the polynomials of degree M. These are uniquely defined
by the nt nodes if and only if nt � 1

2 � M � 1 �>� M � 2 � in
two dimensions and nt � 1

6 � M � 1 �>� M � 2 �>� M � 3 � in three
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dimensions, assuming that the nodes are layed out in such a
way that degeneracies are avoided.

Consider the class ΠM . In order to satisfy continuity re-
quirements (conformity), the vertices of the element must be
included among the nodes, as must M � 1 nodes on the interior
of the edges. In two dimensions, this leaves 1

2 � M � 2 �>� M � 1 �
nodes for the interior. The nodes must be chosen in such a
way that the weights wk, k � 1, ����� ,nt, are positive and that
the corresponding integration formula is sufficiently accurate.
Also, we would like to have a symmetric arrangement of the
nodes. These requirements can only be met if additional no-
des are added to the interior, as shown in [8]. This increases
the degree of the interpolating polynomials to Mf . Confor-
mity can be maintained by requiring the restriction of these
polynomials to the edges to be of degree M. We obtain the
following subspace of ΠMf :2

ΠMf ��� p � ΠMf : p �� � k
� ΠM � , Mf � M � 1

for a triangle � with edges � k (k � 1,2,3). The total number
of nodes that uniquely define this set of polynomials is

3 � 3 � M � 1 � � 1
2 � Mf � 2 �@� Mf � 1 � . � 7 �

In two dimensions, extra nodes can be inserted in the in-
terior of the triangle; in three dimensions, extra nodes can be
inserted in the interior of the faces and in the interior of the
tetrahedral volume. The extra nodes on the faces should result
in polynomials of degree Mf which have a restriction of de-
gree M on the edges. Conformity requires these polynomials
to be uniquely determined by the nodal values on each face.
The extra nodes in the interior of the tetrahedron should result
in polynomial of degree Mi having a restriction of degree Mf

on the faces and of degree M on the edges. We obtain the
following subspace of ΠMi :2

ΠMi ��� p � ΠMi : p �� � j
� ΠMf , p �� � k

� ΠM � ,

for a tetrahedron � with faces � j (j � 1, ����� ,4) and edges � k

(k � 1, � ��� ,6). Here Mi � Mf � M � 1. The total number of
nodes that uniquely define this set of polynomials is

4 � 6 � M � 1 �@� 2 � Mf � 2 �@� Mf � 1 �@� 1
6 � Mi � 3 �@� Mi � 2 �@� Mi � 1 � .� 8 �

Elements can be derived by choosing the degrees M, Mf , and
Mi and suitable nodes with arbitrary positions and arbitrary
weights. The arrangement of nodes is chosen to be symmetric.
The result of integration over the triangle or tetrahedron of
arbitrary polynomials up to degree Q should be reproduced
exactly by the integration weights. Here we must have Q �
M � max � Mf ,Mi � � 2 to achieve the same order of accuracy
as without mass lumping (see, e.g., [7]). These requirements
lead to a linear system in the weights wk with coefficients that
are polynomials in the parameters that describe the position
of the nodes.

If this system has no solution with positive weights, the
number of nodes, and hence Mf and Mi must be increased. In

some cases, there are multiple solutions. In that case, the one
with the smallest number of nodes is chosen.

The results of this search for elements are summarised
in Appendix A and B. Appendix A contains elements up to
M � 4, with the one for M � 4 being new. Appendix B
contains a new element for M � 2 and a non-conforming
element for M � 3. The elements have been constructed by
using Mathematica 2.2.

The time-stepping scheme is the same as in [4].

Figure 2. Example of a FEM grid for a simple reflection problem.
The top layer has a velocity of 1.5 km/s, the bottom of 3.0 km/s. The

source is marked by a dot, the receivers by crosses.

3 Results

3.1 Comparison to the FDM

Solutions obtained by the FDM and FEM have been compared
to the exact solution of a simple two-dimensional reflection
problem. A comparison between elements of different order
is presented as well.

The FDM is formulated on a regular cartesian grid and
uses standard central differences. A scheme of even order Nx

approximates the second derivative in x by

� 1
∆x2

	
w0 � Nx 
 23

k 4 1

wk � Tk
x � T � k

x ��� , � 9 �
where

w0 � Nx 
 23
m 4 1

2
m2

, wk � � � 1 � k Nx 
 23
m 4 k

2
m2

� m! � 2� m � k � ! � m � k � ! .

The shift operator Tx is defined by Tk
x ui,j � ui 
 k,j for values ui,j

at grid points � xi,yj � , xi � i∆x, yj � j∆y. Similar expressions
are found for the y-coordinate.

Figure 2 shows an example of a FEM grid. The grid density
has been scaled to the velocity. The time-step is chosen to be
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Figure 3. Maximum errors in the fourth-order FEM and FDM
using traces between 0.1 and 0.3 seconds.
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Figure 4. Errors in the fourth-order FEM and FDM for the
constant-velocity problem using traces between 0.1 and 0.3 seconds.

2 10 � 3 s for the coarsest cartesian grid which has nx � nz �
51 � 51 points for the FDM and approximately 2601 degrees
of freedom for the FEM. Finer grids have size 101 � 101,
151 � 151, etc., and the time-step is decreased inverse propor-
tionally to nx.

Figure 3 shows the maximum solution error in the FDM
and FEM as a function of the number of unknowns and as a
function of cpu-time used. The FEM used here is exact for
polynomials up to degree 3, implying fourth-order accuracy in
space. The time-stepping scheme was also fourth-order in this
comparison. The traces (receiver data) have been recorded at
the positions marked by crosses in Fig. 2.

Cpu-time is measured only for the time-stepping loop of
the program, excluding initialisation and grid generation. For
the reflection problem, the FEM is more efficient than the
FDM, as can be seen in Fig. 3 (1% accuracy corresponds
to an error in the range 10 � 4 to 10 � 3). Note that the FDM,
although formally fourth-order, degenerates to second-order
accuracy because of the abrupt change in velocity over the
interface. The FEM does not suffer from this degradation of
accuracy.

It should be noted that for a horizontal interface, the FDM
has second-order accuracy if the interface sits precisely half-
way between two grid points, and only first-order accuracy if
it does not.

The timing results should be read in a qualitative sense, as
they are sensitive to coding details and machine characteristic-
s. The present results were obtained on an IBM RS/6000 3AT
with a program written in C using double precision arithmetic.

The FDM performs better than the FEM for homogeneous
problems. Figure 4 shows results for a constant-velocity prob-
lem, which is similar to the earlier problem but with the bottom
layer having the same velocity as the top layer. The FDM and
FEM have practically the same accuracy for a given number
of unknowns. The FEM, however, is slower by a factor of
about 3.5.

3.2 Comparison of orders

Finite difference methods have the well-known property that
schemes of higher order are more efficient, at least for pro-
blems with sufficient smoothness. A series of numerical ex-
periments have been performed to see if a similar statement
can be made for finite elements. Again, it is assumed that the
velocity is piecewise constant.

Fig. 5 shows the errors for a second-order spatial discreti-
sation (M � 1). The temporal order is 2 or 4. The fourth-order
temporal accuracy is obviously inefficient. Fig. 6 shows re-
sults for a third-order spatial discretisation (M � 2). For the
current example, second-order accuracy in time appears to be
the more efficient choice.

Fig. 7 shows the errors for a fourth-order spatial discreti-
sation (M � 3) and temporal orders 2, 4, and 6. The second-
order temporal accuracy starts to dominate the error for values
below 10 � 4. The fourth-order temporal accuracy appears to
be a better choice in this case if high accuracy is desired.
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Figure 5. Errors for the FEM (2nd order in space).
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Figure 6. Errors for the FEM (3rd order in space).
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Figure 7. Errors for the FEM (4th order in space).
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Figure 8. Errors for the FEM (5th order in space).
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The effect of the second-order temporal accuracy is more
pronounced in Fig. 8 where fourth-order temporal accuracy
definitely is to be preferred for the fifth-order spatial discreti-
sation (M � 4).

The various orders are compared in Fig. 9, using a temporal
order of 2 for M � 1 and M � 2, and a temporal order of
4 for M � 3 and M � 4. This figure suggests that schemes
of higher order are more efficient than schemes of low order,
despite their added complexity.

An example of an application with rugged topography is
shown in Fig. 10. The model has a horizontal size of 3 km
and consists of a top layer with a constant velocity of 2 km/s,
followed by a layer with an velocity of 3 km/s increasing to 4
km/s with depth. The scheme has M � 4 and is of fourth order
in time. The snapshots are shown at intervals of 0.2 seconds.
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Figure 9. FEM errors for various orders.

4 CONCLUSIONS

Higher-order finite elements with mass lumping for triangles
and tetrahedra are better suited for modelling irregular sur-
faces and sharp velocity contrasts than finite differences on
regular cartesian grids. Here we have presented a number of
existing and new elements.

For a constant-velocity model, the finite-difference method
(FDM) is more efficient than the finite-element method (FEM).
For a simple two-dimensional reflection problem, however,
the higher-order FEM with mass lumping is more efficient
than the FDM. The results are expected to carry over to three

space dimensions. This make the FEM a serious competitor
for the FDM in wave-equation simulation.

A comparison between finite-element schemes of various
order suggests that the higher-order approximations are more
efficient than the lower-order ones.

Figure 10. Snapshots for a model with rugged topography.
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A Triangles

The elements are presented as follows. For given M, we need at
least 1

2 � M � 1 �>� M � 2 � nodes for the representation of the shape
functions. The actual number is given as nt � 1

2 � M � 1 �>� M �
2 � � the number of extra points. Next we list the nodes of the
elements. On each line one of the nodes is given, followed by
the number of nodes that can be obtained by symmetry. If the
node has barycentric coordinates �C$ , &1� , then the set of nodes
obtained by symmetry are those represented by the first two
coordinates of all permutations of �C$ , & ,1 � $���&;� . These all
have the same integration weight, which is given next.

The standard element is obtained for M � 1, Mf � 1, nt �
3 � 0: � 0,0 � 8 3 9 : w1 � 1

6

M � 2, Mf � 3, nt � 6 � 1:� 0,0 � 8 3 9 : w1 � 1
40� 1

2 ,0 � 8 3 9 : w2 � 1
15� 1

3 , 1
3 � 8 1 9 : w3 � 9

40

This is a known element [1], [8].

M � 3, Mf � 4, nt � 10 � 2, �	� 1
2 � 1 � �

1 � 4� � ,
��� 1

3 � 1 � 1 B � 7 � :� 0,0 � 8 3 9 : w1 � 1
90 ��� 7

720��� ,0 � 8 6 9 : w2 � 7
720 ��� 7

180��� ,� � 8 3 9 : w3 � 49
360 � 7 � 7

720

This element can also be found in [8].

M � 4, Mf � 5, nt � 15 � 3, � � 1
2 � 1 � 1 B � 3 � , � � 5 
 � 7

18 ,
� � 5 � � 7

18 : � 0,0 � 8 3 9 : w1 � 1
315� 1

2 ,0 � 8 3 9 : w2 � 4
315��� ,0 � 8 6 9 : w3 � 3
280�	� ,� � 8 3 9 : w4 � 163
2520 � 47 � 7

8820� � , � � 8 3 9 : w5 � 163
2520 � 47 � 7

8820

B Tetrahedra

The style of presentation of the previous Appendix is used.
For given M, we need at least 1

6 � M � 1 �@� M � 2 �>� M � 3 �
nodes for the representation of the shape functions. If a node
has barycentric coordinates � $ , & , , � , then the set of nodes
obtained by symmetry are those represented by the first two
coordinates of all permutations of � $ , & , , ,1 � $ ��& �", � .
The standard element is obtained for M � Mf � Mi � 1,
nt � 4 � 0: � 0,0,0 � 8 4 9 : w1 � 1

24

M � 2, Mf � Mi � 4, nt � 10 � 13, � � � 7 � �
13 � B 18:� 0,0,0 � 8 4 9 : w1 � � 13 � 3

�
13 � B 10080� 1

2 ,0,0 � 8 6 9 : w2 � � 4 � �
13 � B 315��� ,� ,0 � 8 12 9 : w3 � � 29 � 17
�

13 � B 10080� 1
4 , 1

4 , 1
4 � 8 1 9 : w4 � 16

315

The restriction of these fourth-degree polynomials to the faces
is of fourth degree. The restriction to the edges is of second
degree.

A non-conforming element can be obtained for M � 3, nt �
20 � 4, � � 1

2 � 1 � � � � , � � � 9 � �
17 � B 32:� 0,0,0 � 8 4 9 : w1 � � 29

�
17 � 75 � B 80640�
� ,0,0 � 8 12 9 : w2 � � 273 � 23

�
17 � B 80640� 1

3 , 1
3 ,0 � 8 4 9 : w3 � 27 � 7 � �

17 � B 8960� � , � , � � 8 4 9 : w4 � � 915 � 283
�

17 � B 80640

The shape function are polynomials of the 4th degree, which
have a restriction to the edges of degree 3.

7 W.A. Mulder


