A comparison between higher-order finite elements
and finite differences for solving the wave equation
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Abstract. High-order finite elements with mass lumping al-
low for explicit time stepping whenintegrating thewave equa-
tion. An earlier study suggeststhat this approach can be used
for two-dimensional triangulations, but cannot be extended
to tetrahedra. Here, however, a new element for tetrahedrais
presented.

Finite elementsfor triangles and tetrahedra are better suit-
ed to model irregular surfaces and sharp contrastsin velocity
models than standard finite differences on regular cartesian
grids. The question is whether or not the superior accuracy
of the finite element method allows for a reduction of the
number of degrees of freedom that is large enough to bal-
ance its higher cost. Here it is shown by a comparison on
a simple two-dimensional reflection problem that the higher-
order finite-element method isactually more efficient than the
standard finite-difference method. In addition, a comparison
between finite-el ement schemes of variousorder suggeststhat
the higher-order approximations are more efficient than the
lower-order ones.

1 Introduction

Large-scale simulators for the wave eguation are commonly
based on higher-order finite-difference schemes. The finite-
difference method (FDM), if formulated on aregul ar cartesian
grid, is attractive because of its efficiency and its simplicity
which allows for straight-forward parallelisation. Numerical
discretisation errors in the FDM show up as artificial disper-
sion. A fair amount of points per shortest wavelength in a
given problem is required to keep the numerical dispersion
sufficiently small. Higher-order schemes are often preferred,
because their improved accuracy amply outweighs the in-
creased cost, leading to an overall improvement of efficiency
as less points per shortest wavelength are required (see, e.g.,
[4]).

Two disadvantages of the FDM are: (i) accurate modelling
of rugged topography, necessary when computing the seismic
responsein mountainousregions, isdifficult, and (ii) thehigh-
order accuracy is lost near sharp interfaces in the velocity
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model. Figure 1 shows an example: a reflected wave for a
sharp interface at 10° dip, obtained by the FDM. The result
has been obtained by carrying out two computations: one for
the reflection problem and one for a homogeneous medium
withthevelocity of thetoplayer. Theresultingtraces (receiver
data) have been subtracted to eliminate the direct wave. The
velocity model is the same as shown in Fig. 2. The receiver
line, however, has not been placed at the depth marked by the
crosses but at the top of the figure. The typical wavy, cross-
hatched patternin Fig. 1 behind the first peak of the reflected
waveiscaused by theabrupt changeinvel ocity at theinterface
andisanumerica artifact. An obviousalternativeto the FDM
is the finite-element method (FEM), which allows irregular
interfaces and surfaces to be fitted by element boundaries.
Higher-order elements are desirable for the same reason as
with the FDM.
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Figurel. Reflectiontracesfor asharp interfaceat 10° dip
obtained by afinite-difference scheme.

High-order finite-elementsfor wave propagation problems
have not received much attention for reasons explained in
[5], where it is shown that unphysical, so-called spurious or
parasitic modes will occur. Recently, it has been shown that
the amount of energy in these modesis small for sufficiently



low frequencies [2], [8]. This still might imply that a large
number of pointsper shortest wavelengthisneededto obtaina
prescribed accuracy. In [6], however, | have shown by amore
thorough, abeit one-dimensional analysis that the spurious
modes contribute to the discretisation in a meaningful way.
Therefore, the higher the order of the scheme, the smaller the
number of points per shortest wavelengththat are required for
sufficient numerical accuracy, just as with the FDM.

Mass|umpingisrequired for the FEM to avoid the solution
of alarge sparse linear system. This keeps the computational
cost within acceptablelimits. Two-dimensional elementswith
mass lumping for triangles have been studied in [8] (see aso
[3]). The author states that she has not been able to come up
with 3D elements for tetrahedra, which seriously limits the
range of applicability of the FEM.

As| have been able to find a viable approach for the con-
struction of elements for tetrahedra, an important remaining
questioniswhether or not the FEM can outperform the FDM.
To answer that question, acodefor two-dimensional problems
has been written and results have been compared to those ob-
tained by afinite-difference scheme.

Thefollowing section describesthe approach for construct-
ing higher-order finite elements. The ideais to choose a stan-
dard element of given order and add extra degrees of freedom
to obtain a sufficiently accurate integration rule that alows
for mass lumping without loss of accuracy. Only the spatial
part of the discretisation is described. The temporal discreti-
sation is the same as in [4]. In Section 3, the results of the
comparison between finite elements and finite differences are
presented.

2 Construction of finite elements

Consider the simple wave equation (constant density acous-
tics)

1 & =A f 1

)2 @u(t,x) = Au(t,x) + f(t.x), (1)
onadomain Q C IRY™ ngm = 2 or Nngm = 3, With source
term f(tx) and t € (0,T) C IR. Initial values u(0,x) and
2.u(0,x) are assumed to be zero; here only zero Dirichlet
boundary conditions are considered. The weak formulation
of thisproblemis

262U
/dx c ﬁv+ Vxu - Vv —fv| =0, (2)
Q

for all test functionsv € H3(Q).

Thefinite-element discretisationisobtained asusual . Given
agrid made up of N trianglesor tetrahedraZj,j = 1,...,N, a
set of n; nodesis defined for each element. On each element,
shape functionsare defined as polynomia sthat equal 1 onone
of the nodes and 0 on the other nodes. These polynomialswill
be specified below. Let the polynomials be given by pi(x),
i=1,....N,k=1,...,n, withpl(x) = 1 and p)(x;) =
0 for £ # k. The semi-discrete finite-element discretisation

becomes
n82U(t)
ot?

Let &, k=1,...,ngm + 1, bethe barycentric coordinates on
eachtriangle(¢é1 = 1— & —n, & = €, &3 = ) or tetrahedron
(r=1-¢6-n—-(&=¢ & =mn & = (). Assuming
c(x) to be constant on each element, the contribution of each
element to the mass matrix M" is;

M +K"(t) = F. (3)

GIN, A = / dés .. . Ay PLP! (4)

T

HereJ; isthe Jacobian of the coordinatetransformation, which
equal s twice the area of the triangle or 6 times the volume of
the tetrahedron. If mass lumping is applied, the matrix Al is
replaced by adiagonal matrix obtained from row sums:

Ryo=Y A, =diag{wi, ... We}. (5)
I=1

In two dimensions, the contribution to the stiffness matrix
iskis

1B + 2B — 3B + (B)T], (6)

where the superscript T denotes the transpose and

) 6pj 6pj
il 2k M
Ba = /Tdfld& 96, 961"
]
) apj api
j2 Mk M
Bo = /Tdfld 2 56, 06,
]
) apJ 8pl
BS = / dérdg, =% L
Kl . £1dE2 36: 96

If the vertices of a triangle are numbered counter-clockwise
as 1, 2, and 3, then

= X1+ & —X1) + n(Xs —x1),
= Y1+&(Y2— Y1) +0(ys — Y1),

and
J o= (e —x)(ys— Y1) — (Y2 — Y1) (% — ),
and
Ji = [0e—x)*+ (s —y)’/3,
Ja = [ —x)*+ (Y2 —y1)1/3,
Jaz = [0—X)(X—X) + (Y2 — y)(ys — y1)]/J-

For the source term, we have a contribution Jjwif!.

We now turn to the description of the polynomials used
as shape functions. Let the standard class of polynomials be
Mu: the polynomialsof degree M. These are uniquely defined
by the n; nodes if and only if ny = (M + 1)(M + 2) in
two dimensionsand n; = (M + 1)(M + 2)(M + 3) inthree
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dimensions, assuming that the nodes are layed out in such a
way that degeneracies are avoided.

Consider the class My. In order to satisfy continuity re-
quirements (conformity), the vertices of the element must be
included among the nodes, asmust M — 1 nodeson theinterior
of theedges. Intwo dimensions, thisleaves (M — 2)(M — 1)
nodes for the interior. The nodes must be chosen in such a
way that the weightswy, k = 1,. .. ,n, are positive and that
the corresponding integration formulais sufficiently accurate.
Also, we would like to have a symmetric arrangement of the
nodes. These requirements can only be met if additional no-
des are added to the interior, as shown in [8]. Thisincreases
the degree of the interpolating polynomials to M. Confor-
mity can be maintained by requiring the restriction of these
polynomials to the edges to be of degree M. We obtain the
following subspace of My, :

fw = {p €My p|, €Mu}, M >M>1

for atriangle 7 with edges &k (k = 1,2,3). The total number
of nodesthat uniquely define this set of polynomialsis

3+3(M—1)+ (M — 2)(M; — 1). (7)

In two dimensions, extra nodes can be inserted in the in-
terior of the triangle; in three dimensions, extra nodes can be
inserted in the interior of the faces and in the interior of the
tetrahedral volume. The extranodes on the faces should result
in polynomials of degree M which have arestriction of de-
gree M on the edges. Conformity requires these polynomials
to be uniquely determined by the nodal values on each face.
Theextranodesin theinterior of thetetrahedron should result
in polynomial of degree M; having a restriction of degree M;
on the faces and of degree M on the edges. We obtain the
following subspace of My;:

Mw = {pe I‘IMi:p|fje M, p|, € Mu},

for atetrahedron 7 with faces 7 (j = 1,. . . ,4) and edges &
(k=1,...,6).HereM; > M; > M > 1. Thetotal number of
nodes that uniquely define this set of polynomialsis

44+6(M—1)+2(Mr—2)(Mr — 1)+ £ (Mi —3)(Mi — 2)(M; — 1).
(8)
Elements can be derived by choosing the degrees M, M, and
M; and suitable nodes with arbitrary positions and arbitrary
weights. The arrangement of nodesischosen to be symmetric.
The result of integration over the triangle or tetrahedron of
arbitrary polynomials up to degree Q should be reproduced
exactly by the integration weights. Here we must have Q =
M + max(M¢,M;) — 2 to achieve the same order of accuracy
as without mass lumping (see, e.g., [7]). These requirements
lead to alinear systemin the wei ghtsw with coefficients that
are polynomials in the parameters that describe the position
of the nodes.
If this system has no solution with positive weights, the
number of nodes, and hence Ms and M; must be increased. In

some cases, there are multiple solutions. In that case, the one
with the smallest number of nodesis chosen.

The results of this search for elements are summarised
in Appendix A and B. Appendix A contains elements up to
M = 4, with the one for M = 4 being new. Appendix B
contains a new element for M = 2 and a non-conforming
eement for M = 3. The elements have been constructed by
using Mathematica 2.2.

The time-stepping scheme isthe same asin [4].

Figure2. Example of aFEM grid for asimple reflection problem.
The top layer hasavelocity of 1.5 km/s, the bottom of 3.0 km/s. The
source is marked by adot, the receivers by crosses.

3 Results
3.1 Comparison tothe FDM

Solutionsobtai ned by theFDM and FEM have been compared
to the exact solution of a simple two-dimensional reflection
problem. A comparison between elements of different order
is presented aswell.

The FDM is formulated on a regular cartesian grid and
uses standard central differences. A scheme of even order Ny
approximates the second derivative in x by

Nx/2
1 k —k
- &g le + ) w(T+ Ty )] : (9)

k=1
where

Lo kN*/z 2 (m!)2
W=D W= U i

The shift operator Ty isdefined by TXuij = Uiy for valuesui;
at grid points (x;,yj), Xi = iAX, y; = jAy. Similar expressions
are found for the y-coordinate.

Figure 2 showsan example of aFEM grid. Thegrid density
has been scaled to the velocity. The time-step is chosen to be
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Figure3. Maximum errorsin the fourth-order FEM and FDM
using traces between 0.1 and 0.3 seconds.
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Figure4. Errorsin the fourth-order FEM and FDM for the
constant-velocity problem using traces between 0.1 and 0.3 seconds.

2102 sfor the coarsest cartesian grid which has ny x n, =
51x51 points for the FDM and approximately 2601 degrees
of freedom for the FEM. Finer grids have size 101x 101,
151x 151, etc., and thetime-step is decreased inverse propor-
tionally to ny.

Figure 3 shows the maximum solution error in the FDM
and FEM as a function of the number of unknowns and as a
function of cpu-time used. The FEM used here is exact for
polynomial supto degree3, implying fourth-order accuracy in
space. Thetime-stepping schemewas a so fourth-order inthis
comparison. The traces (receiver data) have been recorded at
the positions marked by crossesin Fig. 2.

Cpu-time is measured only for the time-stepping loop of
the program, excluding initialisation and grid generation. For
the reflection problem, the FEM is more efficient than the
FDM, as can be seen in Fig. 3 (1% accuracy corresponds
to an error in the range 10~ to 10~%). Note that the FDM,
although formally fourth-order, degenerates to second-order
accuracy because of the abrupt change in velocity over the
interface. The FEM does not suffer from this degradation of
accuracy.

It should be noted that for a horizontal interface, the FDM
has second-order accuracy if the interface sits precisely half-
way between two grid points, and only first-order accuracy if
it does not.

Thetiming results should be read in a qualitative sense, as
they are sensitiveto coding detail sand machine characteristic-
s. The present results were obtained on an IBM RS/6000 3AT
withaprogram writtenin C using doubleprecisionarithmetic.

The FDM performs better than the FEM for homogeneous
problems. Figure 4 showsresultsfor aconstant-vel ocity prob-
lem, whichissimilar totheearlier problem but with thebottom
layer having the same vel ocity asthe top layer. The FDM and
FEM have practically the same accuracy for a given number
of unknowns. The FEM, however, is slower by a factor of
about 3.5.

3.2 Comparison of orders

Finite difference methods have the well-known property that
schemes of higher order are more efficient, at least for pro-
blems with sufficient smoothness. A series of numerical ex-
periments have been performed to see if asimilar statement
can be made for finite elements. Again, it is assumed that the
velocity is piecewise constant.

Fig. 5 showsthe errors for a second-order spatial discreti-
sation (M = 1). Thetemporal order is2 or 4. Thefourth-order
temporal accuracy is obvioudly inefficient. Fig. 6 shows re-
sults for a third-order spatial discretisation (M = 2). For the
current example, second-order accuracy in time appearsto be
the more efficient choice.

Fig. 7 shows the errors for a fourth-order spatial discreti-
sation (M = 3) and temporal orders 2, 4, and 6. The second-
order temporal accuracy startsto dominatetheerror for values
below 10~*. The fourth-order temporal accuracy appears to
be a better choice in this case if high accuracy is desired.
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Figure5. Errorsfor the FEM (2nd order in space).
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Figure6. Errorsfor the FEM (3rd order in space).
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Figure7. Errorsfor the FEM (4th order in space).
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Figure8. Errorsfor the FEM (5th order in space).
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The effect of the second-order temporal accuracy is more space dimensions. This make the FEM a serious competitor
pronounced in Fig. 8 where fourth-order temporal accuracy for the FDM in wave-equation simul ation.

definitely isto be preferred for thefifth-order spatial discreti- A comparison between finite-element schemes of various
sation (M = 4). order suggeststhat the higher-order approximations are more

Thevariousordersare comparedinFig. 9, using atemporal efficient than the lower-order ones.

order of 2 for M = 1and M = 2, and a tempora order of
4for M = 3and M = 4. This figure suggests that schemes
of higher order are more efficient than schemes of low order,
despite their added complexity.
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Figure9. FEM errorsfor various orders.

4 CONCLUSIONS

Higher-order finite elements with mass lumping for triangles
and tetrahedra are better suited for modelling irregular sur-
faces and sharp velocity contrasts than finite differences on
regular cartesian grids. Here we have presented a number of
existing and new elements.

For aconstant-vel ocity model, thefinite-difference method
(FDM) ismoreefficient than thefinite-element method (FEM). Figure 10. Snapshots for amodel with rugged topography.
For a simple two-dimensional reflection problem, however,
the higher-order FEM with mass lumping is more efficient
than the FDM. The results are expected to carry over to three
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A Triangles

Theelementsare presented asfollows. For given M, weneed at
least 2(M-+1)(M+2) nodesfor the representation of the shape
functions. The actual number isgivenasn; = 2(M+1)(M -+

2)-+the number of extra points. Next we list the nodes of the
elements. On each line one of the nodesis given, followed by
the number of nodes that can be obtained by symmetry. If the
node has barycentric coordinates (¢,n), then the set of nodes
obtained by symmetry are those represented by the first two
coordinates of al permutationsof (¢,7,1 — & — n). Theseall

have the same integration weight, which is given next.

The standard element isobtainedfor M = 1, M; = 1, n; =
3+0:

(0,0) [3: wy =

M=2M =3, m=6+1:

v
o

(
(

Thisisaknown element [1], [8].

M=3M=4n=10+2a=i1-I=45),
B =3(1-1/V7)

00 [B: wi=4-Y¥
(0) [0 Wo= 4+

B ws= 2 _ I/

360 720

(8.8)

This element can also be foundin [8].

M =4,Mf =5n=15+3,a = }(1-1/v3),8 = 5£/7,

7=
(000 [3: Wl:s_is
(30 B W=
(@0) [6] Ws= o5
B.8) [3: wi= L+ 24
() 1B ws= A 0T
B Tetrahedra

The style of presentation of the previous Appendix is used.
For given M, we need at least (M + 1)(M + 2)(M + 3)
nodes for the representation of the shape functions. If a node
has barycentric coordinates (¢,1,¢), then the set of nodes
obtained by symmetry are those represented by the first two
coordinates of all permutationsof (¢,7,{,1— ¢ —n — ().

The standard element is obtained for M = My = M; = 1,
n=4+0:
(0,00) [4]: wy = 2

M=2M =M =4n =10+ 13,6 = (7 — V/13)/18:

(000) [4: w = (13— 3V13)/10080
(1,00) [6: w,=(4-V13)/315
(3800 [12: ws = (29+ 17v/13)/10080
(722 [ w=g5

Therestriction of thesefourth-degree polynomialsto thefaces
is of fourth degree. The restriction to the edges is of second
degree.

A non-conforming element can be obtained for M = 3, n; =
204+ 4, a= %(1— V7)Y =(9—-v17)/32:

(000) [4: w = (2917 — 75)/80640
(,00) [12]: w, = (273 — 23V/17)/80640
(1100 4 ws=27(7 - V17)/8960
()[4 wa = (915+ 283v/17)/80640

The shape function are polynomials of the 4th degree, which
have arestriction to the edges of degree 3.
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