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ABSTRACT

We discuss several aspects of raytracing solutions in smooth velocity models compared to hard interface
models. The emphasis of this paper is to identify a fundamental open problem of describing wave propagation in
a medium with singularities.

1 Introduction

Understanding of wave propagation is essential in geophysical imaging techniques. Most of these techniques
require an a priori approximate model of the subsurface, the so-called background model ¢g(z). The true model
¢(z) is considered as a linear perturbation on this background:

e(z) = co + de(z). (1)

The data are considered as being caused by first order perturbations on this background and the imaging technique
aims at determining these perturbations from the data. Apart from this linearization conventional imaging
techniques involve another approximation namely a high frequency approximation to the solution of the wave
equation in the background model. Thus a commonly used imaging formula is

6—0(:—) = / drds B(z) p3®2(t = tsz +tor) (2)

€o

where pd2t® is the data, B(z) is an amplitude function and ¢ is a traveltime function measuring the time from
source to receiver via a reflection at z in the subsurface. Both the traveltime and amplitude functions are found
from raytracing in the background model cy. As a result of the high frequency approximation this imaging is

not a true inverse. The reflectivity 6—?351 is determined up to smooth functions in z, that is, only the singular or

rapid oscillatory components of the vglocity are determined. It therefore seems an obvious choice to require the
velocity model to be smoo‘a: all reflection data are caused by discontinuities that can be considered as rough
perturbations on the smoc.h background model. In its simplest form, the background is a piecewise constant
model in which finite jumps occur across interfaces.
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Two aspects of this approach make the construction of a proper background model less obvious. First,
frequencies are only measured in a finite band width. Secondly, variations of the medium parameters occur at
several length scales. Large-scale fluctuations might be defined as variations that have a length scale larger than
the dominant wavelengths in the data, where small-scale variations occur on length scales much smaller that the
dominant wavelengths. Unfortunately, this distinction depends on the angle of incidence: for one range of angles
the medium may appear smooth, whereas for other angles the same medium may appear discontinuous. As a
consequence, it is difficult to separate those aspects from the model that may be considered smooth from those
that may be viewed as perturbations.

2 Some Experiments

It is an open question how wave propagation in the high-frequency approximation in a smooth medium is
related to the propagation in a discontinuous medium, except in one-dimensional media. In this talk we study
the relation between smooth models and piecewise constant models (i.e., exhibiting velocity jumps at interfaces)
by studying wave propagation in a one-parameter family of media that interpolate between the two extremes. We
show evidence that the wave propagation in the limit from a smooth to a discontinuous model is singular. The
reflection coefficient, however, has a smooth limit. This is in contrast with the situation in one dimension, where
recent results show that propagation is non-singular in the limit from a smooth to a hard model.!

As an illustration, we consider a medium that consists of two half-spaces, with a constant velocity of 3.5 on
the “left” and 1.5 on the “right”. Figure 1 shows a two-dimensional finite-difference solution obtained in this
medium. The wave front consists of several parts: the direct wave and transmitted wave, a reflected wave (part
of a circle) and a refracted wave (a straight line). The refracted wave becomes tangent to the reflected wave at a
given point, marked by the black dot in Fig. 2d.

Figure 2a—c show traces of ray-tracing solutions for smoothed media,
cy? = Atanh(z — 20)/H + B, A, B const,., 3)

superimposed on a 3D finite-difference solution in the hard medium. The amount of smoothing is characterised
by a smoothing length H. Figure 2d shows the exact wave front. The wave front obtained by ray tracing can
be seen to approach the wave front in the discontinuous case for decreasing H (Fig. 2a to 2c), except for one
feature. The missing part corresponds to the reflected wave for smaller angles. This is the part of the trace data
in Fig. 2d beyond the black dot (i.e., for later times). This suggests that the limit for vanishing smoothing length
of the wave front is singular. In summary we draw the following conclusions:

e In a smooth medium, ray-tracing produces a continuous wave front.

e The various branches of the ray-tracing wave front can be identified with the direct wave, the transmitted
wave, the refracted wave, and part of the reflected wave in the limit of vanishing smoothing length. This
limit is singular.

o The part of the reflected wave that is captured by the ray-tracing in a smoothed medium is the part that
lies between the critical angle and the point where the refraction wave becomes tangent to the reflected
wave.

The theory needed to explain these observations exists only partially. Of course the theory of high frequency
wave propagation in smoothly varying media is well developed. Propagation is described in terms of an operator
assigning to the medium parameters the data, (i.e. the solution of the of the wave equation). It is known that the
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forward operator depends in a very nonlinear way on the medium parameters. This makes it hard to study this
operator as a function of a decomposition of smooth and rough parts of the medium parameter. Recently, it was
proven that the forward wave operator in a high frequency approximation is under mild conditions on the medium
parameters a Fourier Integral Operator (FIO). There exists a rather complete calculus for such operators. With
this calculus it is possible to associate to the Cauchy problem a so-called Lagarangian manifold in the phase space
(containing the three dimensional physical space). The solution of the Cauchy problem requires the computation
of this Lagrangian manifold, which may be done by applying the method of stationary phase.

If, however, the medium parameters have singularities, the Lagrangian manifolds are no longer simply con-
nected and the construction by applying the method of stationary phase to compute the wave front set is not
possible, partly due to the inherent diffraction effects occurring at the interface. At present it is unknown how
the existing calculus of FIOs should be formulated to incorporate refraction effects at the interface. It is clear
though that the theory of FIOs in media with singularities will provide much needed insight in the construction
of the associated inverse problem. In one spatial dimension the problem has been studied in! using techniques
applicable strictly in one dimension. Partial results combining FIOs with local calculations at an interface exist in
higher dimensions® however, a complete theory is still lacking. There thus seems the following open, fundamental
question:

How does the solution of the Cauchy problem in a smooth medium relates to the solution of the Cauchy problem
in a discontinuous medium obtained from the smooth medium by a limiting process in which the medium becomes
singular?

Related to the observations made above, we note two other apparent facts, which eventually need to be
incorporated in a unifying theory of propagation in media with singularities, namely

o the traveltime branch that went through the focus, i.e. the reflection branch in this case, is more sensitive
to the smoothing than the parts that did not go through the focus;

e the amplitude variation as measured by the density variation of rays is much more sensitive to the smoothing
than the traveltime.

The second observation can be explained by considering the smooth model as a “perturbation” on a constant
model:

c(z) = coll +€(2)], le(a) < 1. (4)

One may then derive a an analogous result as obtained in? for smooth random models, which implies that to
first order the traveltime in the smooth model agrees with the constant model, but the amplitude along the wave
front does not. The first observation above, may be explained by a similar generalization of the result in? to any
smooth non-constant model. We may formulate this result as follows:

For any non-constant regular, smoothly varying velocity function in two dimensions, there will be a caustic
point at a finite distance from almost any source position. Raytracing on scales larger than this distance is not
uniformly valid, leading to substantial travellime and amplitude errors.

Thus in a smooth model the wave front will eventually develop a caustic within a finite time in some direction
of propagation (except for a small set of special source positions). Compare this with the result in a smooth,
random model where a caustic will develop eventually in any direction from the source! We will make this result
more precise in a forthcoming paper where we will also discuss a few practical consequences for raytracing in
smooth backgrounds.
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Fig. 1. 2D finite-difference solution obtained for a piecewise constant medium with a velocity of 3.5 at the

left and 1.5 at the right. The position of the source is marked by a dot.
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Fig. 2a. Ray-tracing result (diamonds) for a
smooth model with H = 0.5. The gray-scale is
obtained from a 3D finite-difference solution in the
piecewise constant model (H = 0).
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Fig. 2c. Ray-tracing result for a smooth model
with H = 0.1 compared to a finite-difference solu-
tion with H = 0.

The size of the domain is 14x7.

Fig. 2b. Ray-tracing result for a smooth model
with H = 0.2 compared to a finite-difference solu-
tion with H = 0.

Fig. 2d. Exact ray-tracing solution (dashed lines)
and finite-difference result.
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