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ABSTRACT 

We discuss several aspects of raytracing solutions in smooth velocity models compared to hard interface 
models. The emphasis of this paper is to identify a fundamental open problem of describing wave propagation in 
a medium with singularities. 

1 Introduction 

Understanding of wave propagation is essential in geophysical imaging techniques. Most of these techniques 
require an a priori approximate model of the subsurface, the so-called background model c0 (x). The true model 
c(x) is considered as a linear perturbation on this background: 

c(x) =Co+ Oc(:c). (1) 

The data are considered as being caused by first order perturbations on this background and the imaging technique 
aims at determining these perturbations from the data. Apart from this linearization conventional imaging 
techniques involve another approximation namely a high frequency approximation to the solution of the wave 
equation in the background model. Thus a commonly used imaging formula is 

8c( :C) J d d ( ) data( ) --3 - = r s B :c p t = tsx + txr 
co 

(2) 

where pdata is the data, B(x) is an amplitude function and t is a traveltime function measuring the time from 
source to receiver via a reflection at :c in the subsurface. Both the traveltime and amplitude functions are found 
from raytracing in the background model co. As a result of the high frequency approximation this imaging is 
not a true inverse. The r!':flectivity 6c<;> is determined up to smooth functions in :c, that is, only the singular or 

co 
rapid oscillatory components of the velocity are determined. It therefore seems an obvious choice to require the 
velocity model to be smoo' n: all reflection data are caused by discontinuities that can be considered as rough 
perturbations on the smou. h background model. In its simplest form, the background is a piecewise constant 
model in which finite jumps occur across interfaces. 
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Two aspects of this approach make the construction of a proper background model less obvious. First, 
frequencies are only measured in a finite band width. Secondly, variations of the medium parameters occur at 
several length scales. Large-scale fluctuations might be defined as variations that have a length scale larger than 
the dominant wavelengths in the data, where small-scale variations occur on length scales much smaller that the 
dominant wavelengths. Unfortunately, this distinction depends on the angle of incidence: for one range of angles 
the medium may appear smooth, whereas for other angles the same medium may appear discontinuous. As a 
consequence, it is difficult to separate those aspects from the model that may be considered smooth from those 
that may be viewed as perturbations. 

2 Some Experiments 

It is an open question how wave propagation in the high-frequency approximation in a smooth medium is 
related to the propagation in a discontinuous medium, except in one-dimensional media. In this talk we study 
the relation between smooth models and piecewise constant models (i.e., exhibiting velocity jumps at interfaces) 
by studying wave propagation in a one-parameter family of media that interpolate between the two extremes. We 
show evidence that the wave propagation in the limit from a smooth to a discontinuous model is singular. The 
reflection coefficient, however, has a smooth limit. This is in contrast with the situation in one dimension, where 
recent results show that propagation is non-singular in the limit from a smooth to a hard model. 1 

As an illustration, we consider a medium that consists of two half-spaces, with a constant velocity of 3.5 on 
the "left" and 1.5 on the "right". Figure 1 shows a two-dimensional finite-difference solution obtained in this 
medium. The wave front consists of several parts: the direct wave and transmitted wave, a reflected wave (part 
of a circle) and a refracted wave (a straight line). The refracted wave becomes tangent to the reflected wave at a 
given point, marked by the black dot in Fig. 2d. 

Figure 2a-c show traces of ray-tracing solutions for smoothed media, 

c02 =A tanh(z- z0 )/ H + B, A, B const., (3) 

superimposed on a 3D finite-difference solution in the hard medium. The amount of smoothing is characterised 
by a smoothing length H. Figure 2d shows the exact wave front. The wave front obtained by ray tracing can 
be seen to approach the wave front in the discontinuous case for decreasing H (Fig. 2a to 2c), except for one 
feature. The missing part corresponds to the reflected wave for smaller angles. This is the part of the trace data 
in Fig. 2d beyond the black dot (i.e., for later times). This suggests that the limit for vanishing smoothing length 
of the wave front is singular. In summary we draw the following conclusions: 

• In a smooth medium, ray-tracing produces a continuous wave front. 

• The various branches of the ray-tracing wave front can be identified with the direct wave, the transmitted 
wave, the refracted wave, and part of the reflected wave in the limit of vanishing smoothing length. This 
limit is singular. 

• The part of the reflected wave that is captured by the ray-tracing in a smoothed medium is the part that 
lies between the critical angle and the point where the refraction wave becomes tangent to the reflected 
wave. 

The theory needed to explain these observations exists only partially. Of course the theory of high frequency 
wave propagation in smoothly varying media is well developed. Propagation is described in terms of an operator 
assigning to the medium parameters the data, (i.e. the solution of the of the wave equation). It is known that the 
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forward operator depends in a very nonlinear way on the medium parameters. This makes it hard to studv this 
operator as a function of a decomposition of smooth and rough parts of the medium parameter. Recently, it was 
proven that the forward wave operator in a high frequency approximation is under mild conditions on the medium 
parameters a Fourier Integral Operator (FlO). There exists a rather complete calculus for such operators. \Vith 
this calculus it is possible to associate to the Cauchy problem a so-called Lagarangian manifold in the phase space 
(containing the three dimensional physical space). The solution of the Cauchy problem requires the computation 
of this Lagrangian manifold, which may be done by applying the method of stationary phase. 

If, however, the medium parameters have singularities, the Lagrangian manifolds are no longer simply con­
nected and the construction by applying the method of stationary phase to compute the wave front set is not 
possible, partly due to the inherent diffraction effects occurring at the interface. At present it is unknown how 
the existing calculus of FIOs should be formulated to incorporate refraction effects at the interface. It is clear 
though that the theory of FIOs in media with singularities will provide much needed insight in the construction 
of the associated inverse problem. In one spatial dimension the problem has been studied in1 using techniques 
applicable strictly in one dimension. Partial results combining FIOs with local calculations at an interface exist in 
higher dimensions3 however, a complete theory is still lacking. There thus seems the following open, fundamental 
question: 

How does the solution of the Cauchy problem in a smooth medium relates to the solution of the Cauchy problem 
in a discontinuous medium obtained from the smooth medium by a limiting process in which the medium becomes 
singular? 

Related to the observations made above, we note two other apparent facts, which eventually need to be 
incorporated in a unifying theory of propagation in media with singularities, namely 

• the traveltime branch that went through the focus, i.e. the reflection branch in this case, is more sensitive 
to the smoothing than the parts that did not go through the focus; 

• the amplitude variation as measured by the density variation of rays is much more sensitive to the smoothing 
than the traveltime. 

The second observation can be explained by considering the smooth model as a "perturbation" on a constant 
model: 

c(x) = co[l + <(x)], J<(x)J ~ 1. (4) 

One may then derive a an analogous result as obtained in2 for smooth random models, which implies that to 
first order the traveltime in the smooth model agrees with the constant model, but the amplitude along the wave 
front does not. The first observation above, may be explained by a similar generalization of the result in 2 to any 
smooth non-constant model. We may formulate this result as follows: 

For any non-constant regular, smoothly varying velocity function in two dimensions, there will be a caustic 
point at a finite distance from almost any source position. Raytracing on scales larger than this distance is not 
uniformly valid, leading to substantial traveltime and amplitude errors. 

Thus in a smooth model the wave front will eventually develop a caustic within a finite time in some direction 
of propagation (except for a small set of special source positions). Compare this with the result in a smooth, 
random model where a caustic will develop eventually in any direction from the source! We will make this result 
more precise in a forthcoming paper where we will also discuss a few practical consequences for raytracing in 
smooth backgrounds. 
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Fig. 1. 2D finite-difference solution obtained for a piecewise constant medium with a velocity of 3.5 at the 
left and 1.5 at the right. The position of the source is marked by a dot. The size of the domain is 14x7. 

Fig. 2a. Ray-tracing result (diamonds) for a 
smooth model with H = 0.5. The gray-scale is 
obtained from a 3D finite-difference solution in the 
piecewise constant model (H = 0). 

Fig. 2b. Ray-tracing result for a smooth model 
with H = 0.2 compared to a finite-difference solu­
tion with H = 0. 

Fig. 2c. Ray-tracing result for a smooth model 
with H = 0.1 compared to a finite-difference solu­
tion with H = 0. 

Fig. 2d. Exact ray-tracing solution (dashed lines) 
and finite-difference result. 
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