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ABSTRACT

When modeling wave propagation, truncation of the com-
putational domain to a manageable size requires nonreflecting
boundaries. To construct such a boundary condition on one side
of a rectangular domain for a finite-difference discretization of
the acoustic wave equation in the frequency domain, the domain
is extended on that one side to infinity. Constant extrapolation
in the direction perpendicular to the boundary provides the
material properties in the exterior. Domain decomposition can
split the enlarged domain into the original one and its exterior.
Because the boundary-value problem for the latter is translation-
invariant, the boundary Green functions obey a quadratic matrix
equation. Selection of the solvent that corresponds to the out-
going waves provides the input for the remaining problem in
the interior. The result is a numerically exact nonreflecting

boundary condition on one side of the domain. When two non-
reflecting sides have a common corner, the translation invari-
ance is lost. Treating each side independently in combination
with a classic absorbing condition in the other direction restores
the translation invariance and enables application of the method
at the expense of numerical exactness. Solving the quadratic ma-
trix equation with Newton’s method turns out to be more costly
than solving the Helmholtz equation and may select unwanted
incoming waves. A proposed direct method has a much lower
cost and selects the correct branch. A test on a 2D acoustic
marine seismic problem with a free surface at the top, a classic
second-order Higdon condition at the bottom, and numerically
exact boundaries at the two lateral sides demonstrates the capa-
bility of the method. Numerically exact boundaries on each side,
each computed independently with a free-surface or Higdon
condition, provide even better results.

INTRODUCTION

Simulation of wave propagation in the earth often requires
truncation to a subset of interest, except in global seismology when
modeling the whole planet. Other applications involve infinite or
very large domains that have to be reduced in size to keep the com-
putations tractable. The required artificial boundaries should let
outgoing waves pass without generating reflections. In practice, this
turns out to be difficult, as witnessed by the large number of pub-
lications on the subject. Various reviews and comparison studies
have appeared over time (Mittra et al., 1989; Mulder, 1997; Tsynkov,
1998; Tourrette and Halpern, 2001; Givoli, 2004; Hagstrom and Lau,
2007; Bérenger, 2015; Antoine et al., 2017; Gao et al., 2017).
In most applications, popular local and approximate schemes

such as those by Engquist and Majda (1977) and Higdon (1986)

and various types of perfectly matched layers (PMLs) (Bérenger,
1994; Chew and Weedon, 1994; Komatitsch and Martin, 2007) per-
form satisfactorily. In more demanding settings, for instance, in
modeling seismic interbed multiples, conditions that perform better
or that do not require tuning of parameters may be preferable. In
those cases, exact nonreflecting boundary conditions are an option.
An example is the method of Ting and Miksis (1986), which is
based on Green’s second identity. Because of a long-term instabil-
ity, some dissipation has to be added (Givoli and Cohen, 1995). A
reformulation as a boundary integral problem (Falletta and Mone-
gato, 2014) does not require extra dissipation.
A step further are numerically exact nonreflecting boundary con-

ditions (Ryaben’kii et al., 2001; Sofronov et al., 2015; Mulder,
2020a) that are exact for the discretized partial differential equa-
tion(s). A definition for the time domain is: “There is no difference
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between a computation on the truncated domain with this method
and one on an enlarged domain with reflecting boundaries that are
placed so far away that their reflections cannot reach the original
domain within the modeled time span” (Mulder, 2020a). That paper
presents an improvement of the method of Sofronov et al. (2015) by
using recursion to compute the elementary kernels, or the boundary
Green functions as they will be called in this paper. This signifi-
cantly improves the efficiency of the method. In spite of that, its
convolutional character makes the approach still costly compared
with existing approximate methods.
The goal of the current paper is to evaluate whether performing the

calculations in the frequency domain instead of the time domain
would help to further reduce cost. In the frequency domain, enlarging
the domain may not help to remove the influence of the boundaries —
unless the solution decays with distance. Adding some attenuation to
the problem helps to accomplish that, especially in 1D, in which there
is no geometric spreading that causes amplitude decay with distance.
The numerically exact nonreflecting boundary conditions for a

finite-difference scheme on a rectangular domain use the discrete
boundary Green functions, which are the responses in the extended
part of the domain to Kronecker deltas on the boundary of
the original domain. If the material properties outside the original
domain are determined by constant extrapolation in the direction
perpendicular to the boundary, the boundary Green functions can
be computed by applying recursion and solving a wave equation
in a small strip just outside the domain and parallel to the boundary.
Because the method assumes translation invariance perpendicular

to the boundary, it can only be used if two numerically exact non-
reflecting boundaries do not meet at a corner. This limits its appli-
cability to cases in which open boundaries occur at opposing ends
of the domain. One way to circumvent the corner problem is the
application of a classic nonreflecting condition in the other co-
ordinate direction (Mulder, 2020b). In the present paper, the classic
second-order Higdon (1986, 1987) condition is chosen.
The next section describes the finite-difference discretization, the

numerically exact boundary condition in one space dimension, its
generalization to the 2D case, how to solve the quadratic matrix
equation, and why a further generalization to 2.5D modeling is a
problem. For the sake of exposition and as a proof of principle,
the paper focuses on a second-order finite-difference approximation
of the 2D frequency-domain acoustic wave equation. Higher order
schemes are feasible (Mulder, 2020a), but they are not considered
here. A 2D seismic marine example serves as a test problem for the
method. A convergence study on a homogeneous problem provides
accuracy and cost estimates.

METHOD

Discretization

The acoustic wave equation is adopted for seismic simulations as a
simplification of the elastodynamic equations by setting the shear veloc-
ity to zero. In the frequency domain on a spatial domain Ω, it reads

−
ω2

ρc2
p − ∇ ·

�
1

ρ
∇p

�
¼ s; in Ω; (1)

where the pressure pðω; xÞ depends on the angular frequency ω and
position x ∈ Ω, ρðxÞ is the density, cðxÞ is the sound speed, and
sðω; xÞ is a forcing function or source term, typically a delta function

in seismic applications. In the presence of attenuation, the complex
sound speed also depends on frequency (e.g., Aki and Richards, 2002):

1

cðω; xÞ ¼
1

c0ðxÞ
�
1 −

1

πQ
log

�
ω

2πfref

�
þ i

2Q

�
; (2)

whereQðxÞ is the quality factor and the logarithmic termwith reference
frequency fref, typically 1 Hz, accounts for causality. In the following,
the complex wavenumber is defined by kðω; xÞ ¼ ω∕cðω; xÞ.
Equation 1 should be augmented with suitable boundary condi-

tions, usually consisting in a zero Dirichlet condition at the surface
Γ0 of the earth or, in marine applications, of the water. At the rest of
the boundary Γn ¼ ∂Ω \ Γ0, nonreflecting boundaries of the form
n · ∇p ¼ Bp are imposed, where n denotes the normal to Γn and
B represents the Dirichlet-to-Neumann map (Keller and Givoli,
1989; Deakin and Dryden, 1995).
A grid for a finite-difference discretization on a domain

Ω ¼ fðx; zÞjx ∈ ½xmin; xmax�; z ∈ ½zmin; zmax�g is defined by
xi ¼ xmin þ ði − 1∕2ÞΔx for i ¼ 1; : : : ; Nx with a spacing
Δx ¼ ðxmax − xminÞ∕Nx, and likewise in the z-direction with zj ¼
zmin þ ðj − 1∕2ÞΔz for j ¼ 1; : : : ; Nz and a spacing
Δz ¼ ðzmax − zminÞ∕Nz. With the lowest-order finite-difference
scheme in 2D, this leads to

−k2i;jpi;j −
ρi;j
Δx2

�
piþ1;j − pi;j

ρiþ1∕2;j
−
pi;j − pi−1;j

ρi−1∕2;j

�

−
ρi;j
Δz2

�
pi;jþ1 − pi;j

ρi;jþ1∕2
−
pi;j − pi;j−1

ρi;j−1∕2

�
¼ ρi;jsi;j: (3)

The average densities can be determined by ρiþ1∕2;j ¼
1∕2ðρi;j þ ρiþ1;jÞ and similarly for the other averages (Kummer
et al., 1987; Moczo et al., 2002; Vishnevsky et al., 2014). Outside
the computational domain, the material properties are assumed to be
defined by constant extrapolation in the direction perpendicular to
the boundary. If this is done one coordinate at the time, corner re-
gions are automatically handled.
Before considering the numerically exact nonreflecting boundary

condition in 2D, various boundary conditions will be discussed for
the 1D case.

Boundary conditions in one dimension

Consider the boundary at xmax in the 1D case. A zero Dirichlet
boundary condition is defined by setting pNþ1 ¼ −pN , where Nx

has been replaced by N. With the opposite sign, pNþ1 ¼ pN , a zero
Neumann boundary condition is imposed. The Sommerfeld radia-
tion condition (Sommerfeld, 1964) at this boundary on the right
sets dp∕dx ¼ ikp and lets waves of the form eiðkx−ωtÞ pass through
from the interior to the exterior, where t denotes the time. If dis-
cretized by a first-order scheme, ðpNþ1 − pNÞ∕Δx ¼ ikpN , re-
sulting in pNþ1 ¼ pNð1þ ikΔxÞ. With a second-order scheme,
ðpNþ1 − pNÞ∕Δx ¼ ikðpNþ1 þ pNÞ∕2, providing

pNþ1 ¼ bðkNÞpN; bðkÞ ¼ 1þ ikΔx∕2
1 − ikΔx∕2

: (4)

This form of the Sommerfeld radiation condition agrees with the
lowest order Enquist and Majda (1977) or Higdon (1986) condition.
An exact version would be pNþ1 ¼ pN expðikΔxÞ.
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A numerically exact boundary condition can be based on domain
decomposition. Consider two domains Ω1 and Ω2. The first Ω1 ¼
½xmin; xmax� represents the original one. The second Ω2 ¼ ½xmax;∞Þ
is the exterior domain stretching to infinity. The boundary condition
at xmin is, for instance, zero Dirichlet or Neumann, whereas only
outgoing waves are allowed at x → ∞, or, in the presence of attenu-
ation, the solution should vanish at infinity. With these boundary
conditions, the discrete problem on Ω1 ∪ Ω2 can be expressed as

�
L11 L12

L21 L22

��
pð1Þ

pð2Þ

�
¼

�
s
0

�
: (5)

The vector pð1Þ contains the solution ðp1; p2; : : : ; pNÞT . The vector
pð2Þ ¼ ðpNþ1; pNþ2; : : : ÞT with exterior values is infinitely long.
The discrete source term is represented by s. The matrix L11 cor-
responds to the original problem on Ω1, and L12 describes how the
solution pð1Þ on Ω1 is affected by the solution values of pð2Þ in the
exterior domain Ω2. With a second-order discretization, this only
involves pNþ1. The infinite matrix L22 corresponds to the exterior
Ω2 and L21 describes how the solution pð2Þ on Ω2 depends on the
interior solution pð1Þ. With a second-order discretization, this only
involves pN . Given the latter, the formal solution can expressed as

pð2Þ ¼ −L−1
22L21 pN ¼ GpN ; (6)

where G is the boundary Green function, the response in the
exterior of a unit spike on the boundary of the original domain.
In the 1D case, it is a row vector of infinite length with elements
Gk that correspond to the solution pNþk ¼ GkpN , k > 0, evaluated
at xNþk ¼ xmax þ ðk − 1∕2ÞΔx, given the same grid definition as in
the previous section. How to compute G is the central point of this
paper, but before turning to the details, let us assume that it is
known. The first block of rows in equation 5 then becomes

L11pð1Þ þ L12G1pN ¼ ~Lpð1Þ ¼ s: (7)

With a second-order finite-difference scheme in 1D, ~L is a tridiag-
onal matrix and can be solved with a direct method.
Next, the solution method for the boundary Green function G

will be presented. If the material properties on Ω2 are obtained
by constant extrapolation from their values at xmax,
i.e., cðxÞ ¼ cðxmaxÞ and ρðxÞ ¼ ρðxmaxÞ for x > xmax, the second
row of blocks in equation 5 becomes

−k2pi −
1

Δx2
ðpiþ1 − 2pi þ pi−1Þ ¼ 0; i > N: (8)

Here, the complex wavenumber k ¼ kðxmaxÞ. With the ansatz pi ¼
gi−NpN , i > N, i.e., Gi ¼ gi−N , the second row of equation 5 be-
comes

−
1

Δx2
ðk2Δx2 þ g − 2þ 1∕gÞ gi−NpN ¼ 0; i > N: (9)

The resulting quadratic equation in g has two solutions:

g ¼ 1 −
1

2
ðkΔxÞ2 � iðkΔxÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4
ðkΔxÞ2

r
: (10)

One corresponds to an incoming and one to an outgoing wave.
The plus sign selects the outgoing wave. The solution g is the

frequency-domain equivalent of the discrete boundary Green func-
tion of Mulder (2020a) or the elementary kernels of Sofronov et al.
(2015). The result matches the earlier lowest-order Enquist-Majda or
Higdon condition up to second order. The number of points per
wavelength nλ ¼ λ∕Δx ¼ 2π∕ðkΔxÞ should be Oð10Þ for sufficient
accuracy with a second-order spatial discretization. In that case and in
the absence of damping, the square root is real-valued.
Appendix A provides an alternative derivation in which the exact

solution is adjusted to contain the discretization error, which is re-
quired if one wants a numerically exact boundary condition instead
of an exact one for the underlying partial differential equation.
With the boundary condition of equation 10, there is no differ-

ence between the numerical solution on the domain ½xmin; xmax� and
one on a much larger domain, other than numerical rounding errors,
at least if there is some attenuation that causes the 1D solution to
decay with distance.

The 2D case

For the generalization to 2D, we assume for the moment that all
boundaries are reflecting, that is, zero Dirichlet or Neumann, and
only the one on the right, at x ¼ xmax, is nonreflecting. Domain de-
composition as shown in equation 5 now involves the enlarged do-
main Ω1 ∪ Ω2, consisting of the original domain Ω1 ¼ fðx; zÞjx ∈
½xmin; xmax�; z ∈ ½zmin; zmax�g and enlarged with Ω2 ¼ fðx; zÞjx ∈
½xmax;∞Þ; z ∈ ½zmin; zmax�g. The boundary conditions for Ω2 at
zmin and zmax should be the same as those for Ω1, whereas at
x → ∞, only outgoing waves are allowed or, in the presence of at-
tenuation, the solution should vanish at infinity. The material prop-
erties, which are the sound speed, density, and quality factor in the
acoustic case, are obtained in Ω2 by constant extrapolation in the
direction perpendicular to the boundary Ω1 ∩ Ω2 at x ¼ xmax.
Because of that, the block tridiagonal operator L22 is translation-
invariant in the x-direction, resulting in

− k2Nx;j
Δx2pi;j − ðpiþ1;j − 2pi;j þ pi−1;jÞ

−
Δx2

Δz2
ρNx;j

�
pi;jþ1 − pi;j

ρNx;jþ1∕2
−
pi;j − pi;j−1

ρNx;j−1∕2

�
¼ 0;

i > Nx; j ¼ 1; : : : ; Nz: (11)

The boundary condition at zmin is imposed by pi;0 ¼ �pi;1, with the
minus sign for a Dirichlet or the plus sign for a Neumann boundary
condition, and the boundary condition at zmax is imposed by
pi;Nzþ1 ¼ �pi;Nz

. For fixed i, equation 11 can be expressed as

ðAp½i�Þj − piþ1;j − pi−1;j ¼ 0; i > Nx; j ¼ 1; : : : ; Nz;

(12)

where p½i� is a vector with the solution values p½i�;j ¼ pi;j and A is a
tridiagonal Nz × Nz matrix containing the terms corresponding to
pi;j, pi;j−1, and pi;jþ1 in equation 11. Because of the translation
invariance, A does not depend on i.
To solve the boundary-value problem onΩ2 after domain decom-

position, we start with pNx;j from Ω1 in equation 11 and make the
ansatz that p½i� ¼ Gi−Nxp½Nx �, i > Nx, where G now is an Nz × Nz

matrix that only describes the response in the set of exterior points
neighboring the boundary and not in all exterior points as in the 1D
case. Substitution into equation 12 provides
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AG −G2 − I ¼ 0; i ¼ Nx þ 1; (13a)

ðAG −G2 − IÞGi−1−Nx ¼ 0; i > Nx þ 1; (13b)

where I is the Nz × Nz identity matrix. Because G may be singular,
the case with i ¼ Nx þ 1 is listed separately.
Equations 13a and 13b can be satisfied by solving the quadratic

matrix equation 13a. Its solutions are called solvents (Dennis et al.,
1987; Higham and Kim, 2000; Tisseur and Meerbergen, 2001). The
related quadratic eigenvalue problem has 2Nz eigenvalues, which can
be split into two sets (Higham and Kim, 2000). The largest Nz ei-
genvalues correspond to a solvent that is called dominant, and the
smallest Nz correspond to a solvent that is called minimal. For
the wave equation with nonzero attenuation, the outgoing waves have
decaying amplitudes and should vanish at x → ∞, so the minimal
and not the dominant solvent is needed. Details will be given next.
The resulting matrix G contains the boundary Green function

Gi;j;Nx;j0 at i ¼ Nx þ 1, defined as the response in the point
ðxi; zjÞ ∈ Ωð2Þ for a unit solution value at the point
ðxNx

; zj0Þ ∈ Ωð1Þ and zero in all other ðxNx
; zjÞ ∈ Ωð1Þ for j ≠ j0.

The solution in the domain Ω2, corresponding to the second part
of the domain-decomposition problem in equation 5 but then gen-
eralized to 2D, is given by

pð2Þ
i;j ¼

XNz

j0¼1

�
Gi−Nx

�
j;j0

pð1Þ
Nx;j0

; i > Nx; j ¼ 1; : : : ; Nz:

(14)

The superscripts ð1Þ and ð2Þ are redundant but are still included to
emphasize in which domain the solution resides. The remaining part
in Ω1 of the domain-decomposition problem becomes

L11 p
ð1Þ þ L12 Gpð1Þ½Nx� ¼ ~Lpð1Þ ¼ s; (15)

representing the acoustic wave equation in Ω1 with a numerically
exact boundary condition at x ¼ xmax. This 2D problem with matrix
~L is still amenable to a direct sparse-matrix solver, although the
occurrence of G causes a loss of sparsity on the boundary.
If nonreflecting boundaries meet at a corner, translation invari-

ance breaks down and it is not clear how to determine the boundary
Green functions in an efficient manner. To avoid this problem, an
alternative approach is the independent treatment of each boundary
separately. Instead of the zero Dirichlet or Neumann boundary con-
dition at zmin and zmax, as assumed above, we can impose a classic
nonreflecting boundary condition such as those of Sommerfeld
(1964), Engquist and Majda (1979), Higdon (1986, 1987), or Bé-
renger (1994). In the frequency domain, the PML of the latter is
nothing but a complex coordinate stretching (Chew et al., 1997).
Here, I will use the classic second-order boundary condition of

Higdon (1986, 1987). The main reason is that it preserves the spar-
sity pattern of the discrete Helmholtz operator and that it is easy to
implement. The last is also true for a PML, but that condition re-
quires an additional strip of grid points.
The second-order Higdon boundary condition at zmax in the time

domain reads

�Y2
m¼1

�
∂
∂t

þ cm
∂
∂z

��
p ¼ 0; (16)

where cm ¼ cb∕ cos θm and cb is the sound speed at the boundary.
Equation 16 lets incoming waves at angles θm, m ¼ 1; 2 pass with-
out reflections. In the subsequent example, the chosen angles are
θ1 ¼ 0° and θ2 ¼ 60°. Define the shift operator Tz by
Tzpi;j ¼ pi;jþ1. A discrete form of equation 16 in the frequency
domain is

�Y2
m¼1

�
−ikm

Tz þ 1

2
þ Tz − 1

Δz

��
T−1
z pi;Nz

¼ 0; (17)

where km ¼ ω∕cm. With bm ¼ bðkmÞ as defined in equation 4, this
simplifies to

pi;Nzþ1 ¼ ðb1 þ b2Þpi;Nz
− b1b2pi;Nz−1: (18)

This expression for the extrapolated value enables the elimination of
pi;Nzþ1 in terms of pi;Nz

and pi;Nz−1 from the Helmholtz operator in
equation 3 as well as equations 11 and 12. The resulting expression
for A will differ from the one for a Dirichlet or Neumann boundary
condition at zmax; hence, equation 15 will lead to a different boun-
dary matrix G and operator ~L.
A nonreflecting boundary condition at xmin follows from a similar

approach, with its own matrix A, similar to equation 12 but with
i < 1, providing another boundary Green function G. A further step
is the use of the boundary Green functions on each side of the original
domain independently, including zmax and, in the absence of a free
surface, zmin. In this way, the Higdon boundary conditions only ap-
pear in each matrix A that corresponds to a 1D problem on a line just
outside and parallel to one side of the domain. As a result, the Higdon
conditions are no longer explicitly present in the modified Helmholtz
operator ~L, but only implicitly via the boundary Green functions.
Because the resulting boundary Green functionsG are decoupled

by treating them independently for each side of the domain, the net
result is different from the true boundary Green function for the
entire boundary consisting of all the nonreflecting sides taken to-
gether. The latter provides a truly numerically exact nonreflecting
boundary condition, but an affordable numerical method for its
computation has not yet been found for problems in which the
model parameters are not constant in the exterior.

Quadratic matrix equation

An obvious choice for the solution of the quadratic matrix equa-
tion 13a is Newton’s method. To reduce the risk of convergence
toward an incorrect solution, G is initialized as a diagonal matrix
with the 1D result with the plus sign in equation 10 for each j. New-
ton’s method requires the Jacobian of the nonlinear problem, which
is a sparse matrix of size N2

z × N2
z . Initially, it contains Nz copies of

A, so about 3Nz nonzero entries, but after a few iterations that in-
creases to OðN3

zÞ nonzero entries. More precisely, it fills up to Nz

square block diagonals, each of size Nz × Nz, and Nz off-diagonals,
each a horizontal or vertical distanceNz apart, resulting in slightly less
than 2N3

z nonzero entries. This is usually much larger than the almost
5NxNz nonzero entries of the interior operator L11. The cost of solv-
ing for the Jacobian matrix in several iterations, typically approxi-
mately 8 to reach 10−15, rapidly exceeds that of solving the
interior Helmholtz problem if the number of grid points increases.
Although the resulting boundary Green function can be reused for
multiple problems as long as the grid points and wavenumbers on
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the boundary at xmax do not change, this does not make the method
attractive.
Another iterative method, equation 26 of Higham and Kim

(2000), in the current setting reads

I − AGðmþ1Þ þGðmÞGðmþ1Þ ¼ 0; (19)

where the iteration count m starts at Gð0Þ ¼ 0 and becomes

Gð0Þ ¼ 0; Gðmþ1Þ ¼ ðA −GðmÞÞ−1; m ≥ 0: (20)

This fixed-point iteration provides the minimal solvent, as required
for outgoing waves. The repeated matrix inversions are still costly,
given the fact that GðmÞ becomes a full matrix.
A more robust and efficient approach uses the eigenvalues and

eigenvectors of A. Because A is tridiagonal, although not complex
symmetric and not Hermitian, its eigenvalues and eigenvectors can
be computed at a relatively low compute cost. Let Q be the matrix
with the eigenvectors as columns and Λ ¼ Q−1AQ a diagonal ma-
trix with the corresponding eigenvalues of A. The quadratic matrix
equation can be transformed to

0 ¼ Q−1½G2 − AGþ I�Q ¼ Γ2 − ΛΓþ I; Γ ¼ Q−1GQ:

(21)

The solution of this set ofNz equations is the diagonal matrix Γwith
elements

γj;j ¼ ðλj;j∕2Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλj;j∕2Þ2

q
; j ¼ 1; : : : ; Nz; (22)

where λj;j are the diagonal elements of Λ. This procedure avoids the
risk of selecting the incorrect branch. The boundary Green func-
tions for each of the boundary points are the columns of

G ¼ QΓQ−1: (23)

With this approach, the cost of finding G is of the same order but
lower than that of solving the Helmholtz equation 3 with any of the
classic boundary conditions. In addition, the boundary condition
based on G changes the original Helmholtz operator L11 in equa-
tion 16. The resulting operator ~L has a different sparsity pattern with
a full instead of a sparse matrix on the boundary, which increases
the cost of solving the interior problem.

2.5D

An interesting generalization of the method is the 3D problem with
model parameters that are constant in the y-direction. Let Lð2DÞ rep-
resents the earlier 2D operator in the ðx; zÞ-plane at y ¼ 0. A grid in y
with spacing Δy is defined by yl ¼ lΔy for integer l ∈ ½−∞;∞�.
The 3D operator at y ¼ 0 or l ¼ 0 has additional off-diagonals
−1∕Δy2 at l ¼ −1 and l ¼ 1 and an extra 2∕Δy2 on its main diago-
nal. DefineA ¼ Δy2Lð2DÞ þ 2I as the subset of the 3D operator acting
on solution values at l ¼ 0 and multiplied by Δy2. Here, the identity
operator I has the same size as the 2D operator Lð2DÞ, the latter
equipped with classic nonreflecting boundary conditions. With this
scaling, the off-diagonals in y become −I and the boundary Green
functionG for the y-direction obeys AG −G2 − I ¼ 0, as previously,
but it now predicts solution values at l ¼ 1 from those at l ¼ 0.

Using mirror symmetry in the y-direction, the Helmholtz equation
in 3D at y ¼ 0 becomes Au − 2Gu ¼ Δy2s 0, with s 0i;0;j ¼
ρi;j si;0;j defined as the source term at ðxi; y0; zjÞ with the density
included. If the matrix Q contains the eigenvectors of A and the
diagonal matrixΛ the corresponding eigenvalues, the quadratic eigen-
value can be solved in the same way as previously and Helmholtz’s
equation has the solution u ¼ QMQ−1Δy2s 0, where the diagonal ma-
trix M has entries μj;j ¼ 1∕ðλj;j − 2γj;jÞ, j ¼ 1; : : : ; NxNz. Choos-
ing a spacing Δy smaller than Δx and Δz will help to reduce the size
of the discretization error in the y-direction.
Although this extension to 2.5D requires little additional coding

and looks deceptively simple, the eigenvalue and eigenvector com-
putation makes it too costly to be of practical use, unfortunately. A
better choice is a spatial Fourier transform in the y-direction with
repeated computations of the 2D Helmholtz problems (Zhou and
Greenhalgh, 1998; Novais and Santos, 2005; Xiong et al., 2011).

EXAMPLES

Inhomogeneous problem

Figure 1a displays the sound speed, c0ðxÞ in equation 2, and
Figure 1b shows the density, ρðxÞ, for a marine example with a salt
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Figure 1. (a) Velocity model and (b) density.
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diapir. Here, z increases with depth. The model consists of a water
layer just below the free surface at the top, at z ¼ 0, followed by
sediment layers. The salt diapir has a high sound speed but lower
density. Close to the boundaries at the left and right, the layers are
flattened to avoid diffractions when the model is extended in the
direction perpendicular to the boundary by constant extrapolation.
The proposed method can only work if the medium is translation-
invariant in the direction perpendicular to the boundary. Dipped
layers on the boundary require a transition region toward a model
with that property, perhaps with smoothed contrasts.
The finite-difference grid has a spacing of 5 m, resulting in

1200 × 600 points. The quality factor for attenuation was set to
1010 in the water layer and to 100 elsewhere. A nonzero value
for 1∕Q is generally advised to stabilize the solution of Helmholtz’s
equation, which is close to indefinite.
A point source located at (502.5, 7.5) m generated the wavefield

shown in Figure 2 for a frequency of 24 Hz. The source amplitude
was set to 1∕ðΔxΔzÞ to mimic a delta function. Note that the am-
plitude range for the real part is larger than for the imaginary part
and both have been reduced to 20% of their maximum to bring out

the weaker parts of the signal. To assess the performance of the
boundary conditions, a reference solution was computed on a larger
domain, using the earlier classic second-order Higdon boundary
conditions combined with a rather thick PML layer (Bérenger,
1994; Chew and Weedon, 1994) in the part outside the original do-
main. Figure 2a and 2b was actually obtained from a subset of that
solution.
Figure 3 shows the difference between the wavefield obtained with

the second-order Higdon boundary conditions at the left, right, and
bottom, and the reference solution. In this case, the full amplitude
range is shown. Because the source is located near the left boundary,
its reflections are strongest. With the numerically exact boundary con-
ditions at the left and right, combined with the classic condition at the
bottom, the results of Figure 4a and 4b are obtained. These only show
reflections from the bottom, which are much smaller than those from
the sides as is evident from the much larger amplitudes in Figure 3.
Finally, Figure 5 combines the numerically exact boundary conditions
at the left and right with the same at the bottom, but with a free-surface
condition at zmin ¼ 0. The second-order Higdon boundary conditions
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Figure 2. (a) Real and (b) imaginary part of the reference solution,
each clipped at 20% of its maximum amplitude.
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Figure 3. (a) Real and (b) imaginary part of the difference between
a solution computed with the second-order Higdon boundary con-
ditions and the reference solution.
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now only enter at the endpoints in the 1D problems for computation of
the boundary Green functions on each side. The resulting difference
with the reference solution is smaller than the one in Figure 4, except
at the bottom-left corner. Note that Figures 4a, 4b, 5a, and 5b were all
plotted with the same amplitude scale. Reflections from the two cor-
ners at the bottom remain because waves that travel around the corner
were ignored in the computation of the boundary Green functions.

Homogeneous problem

The reference solution in the previous example was a very accu-
rate approximation to the numerical solution with the same grid
spacing on an infinite half-space because the goal was to examine
how close the proposed method could come to a truly numerically
exact nonreflecting boundary condition. In the current example, the
reference solution is the exact one of a homogeneous problem with
a free-surface boundary condition at zero depth. The difference be-
tween the numerical solution and the reference solution will then

consist of the combined effect of the discretization error and the
deviation for the numerically exact boundary condition.
The domain is 1.0 km wide and 0.4 km deep, the sound speed c is

1 km/s, and the density is 2 g∕cm3. A point source is placed at a
grid point nearest to xs ¼ 400 m and zs ¼ 100 m. Its amplitude is
1∕ðΔxΔzÞ, as in the previous example. The frequency is 20 Hz, and
the wavenumber k ¼ ðω∕cÞð1þ 10−5iÞ. The small imaginary part
helps to avoid numerical instabilities on fine grids.
The proposed boundary condition will be compared with the sec-

ond-order Higdon and a PML boundary condition. The last had the
simplest quadratic form of complex stretching (Collino and Tsogka,
2001; Zhang and Shen, 2010). In the x-direction with a strip of
width Lx ¼ NPMLΔx at the right boundary, at xmax, this leads to
a stretched coordinate ~x defined by

d~x ¼
�
1 −

dðxÞ
iω

�
dx; dðxÞ ¼ d0

�
x − xmax

Lx

�
2

: (24)
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Figure 4. (a) Real and (b) imaginary part of the difference between
a solution computed with the numerically exact boundary condi-
tions at the left and right and the second-order Higdon boundary
condition at the bottom and the reference solution.
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Figure 5. (a) Real and (b) imaginary parts of the difference between
a solution computed with the numerically exact boundary condi-
tions independently at the left, right, and bottom and the reference
solution.
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The minus sign accounts for the opposite sign convention. The
PML layer ends at xmax þ Lx with a zero Dirichlet boundary con-
dition. Collino and Tsogka (2001) suggest a parameter

d0 ¼ −
3

2

c
Lx

β0 logðR0Þ; (25)

with β0 ¼ 1 for the 1D case. In the current example, the choice of
parameters is NPML ¼ 20, R0 ¼ 10−4, and β0 ¼ 2.
Figure 6a compares the relative root-mean-square (rms) error of

the solution as a function of the grid spacing Δx ¼ Δz. The rms
error is taken as the square root of the summed squared absolute
values of the errors on the interior domain, divided by the summed
squared absolute values of the exact solution, excluding the values
at the source position where the solution is singular. The error be-
haves as OðΔx2Þ for the larger grid spacings in this test, consistent

with the approximation error of the finite-difference discretization,
but it flattens out on finer grids because of the boundary reflections.
With the second-order Higdon condition applied to the sides and
bottom, this already happens on fairly coarse grids. With the pro-
posed scheme, applying the numerically exact conditions independ-
ently along each side, the unwanted reflected waves start to
dominate the error only on much finer grids.
This comes at a cost. Figure 6b shows the observed wall clock

time as a function of ðNxNzÞ1∕2 with Nx being the number of grid
points in the x-direction and Nz in the z-direction. The horizontal
axis is reversed to follow Figure 6a. The computations were carried
out in MATLAB [version 9.6.0 (R2019a)] with only a single thread.
On the finer grids, the elapsed wall-clock time scales roughly as
ðNxNzÞ2.5 with the Higdon condition and as ðNxNzÞ2.7 with the pro-
posed approach. The higher cost is due to solving the quadratic ma-
trix equation three times, once per side of the domain, and to the
loss of sparsity at the boundaries, which increases the cost of solv-
ing the Helmholtz problem. The Higdon condition is less costly
than the PML, but on finer grids, the difference becomes smaller
because the number of extra points for the PML conditions is kept
constant. The proposed method is 1.4–4.0 times more costly in this
example.

DISCUSSION

Numerically exact nonreflecting boundary conditions have a con-
siderable computational cost in the time domain. The present study
shows that, in the frequency domain, the additional cost in 2D is
roughly of the same order as that of solving the Helmholtz equation,
making these boundary conditions a viable option.
Still, the computation of the boundary Green functions and the loss

of sparsity at the boundary of the discrete Helmholtz operator make
the method more expensive than the local Higdon or PML boundary
conditions. Note that the boundary Green functions can be reused if
the model parameters at the boundary and the grid stay the same,
thereby allowing for a further cost reduction. Nevertheless, a PML
boundary condition can reach the same accuracy at a lower cost after
careful tuning. The proposed method has the advantage that it is sim-
ple to code and does not require extensive tuning.
When modeling multiple shots or running a full-waveform inver-

sion, the frequency-domain formulation is more efficient than the
time domain for 2D problems (Marfurt and Shin, 1989; Štekl and
Pratt, 1998; Mulder and Plessix, 2002). In 3D, that is no longer true
because computation of the boundary Green functions becomes too
expensive.

CONCLUSIONS

Numerically exact nonreflecting boundary conditions in the time
domain have a substantial computational cost even with the use of
recursion. In the frequency domain with a finite-difference discre-
tization of the 2D acoustic wave equation on a rectangular domain,
computation of the eigenvalues and eigenvectors of a 1D Helmholtz
equation can bring down the cost to the same order as that of solving
the 2D Helmholtz equation in the interior.
The current approach considers each nonreflecting side of the

rectangular domain separately. After extending the domain from
one side to infinity, domain decomposition splits the enlarged do-
main into the original one and its extension. In the latter, constant
extrapolation in the direction perpendicular to the boundary can
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Figure 6. (a) Relative rms error as a function of the grid spacing
Δx ¼ Δz for a homogeneous problem. Convergence with the sec-
ond-order Higdon condition levels off at a much larger value of Δx
than with the proposed method, which maintains second-order ac-
curacy to much finer grids, whereas the PML condition with the
chosen parameters ends up in between. (b) Measured wall clock
time as a function of the square root of the number of grid points.
The horizontal axis has its direction reversed to follow (a).
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provide the material properties such as the sound speed, density, and
quality factor in the acoustic case. As a result, the discrete operator
in the exterior is translation-invariant. The boundary Green func-
tions then follow from a quadratic matrix equation. Its solution with
Newton’s method has an associated computational cost that quickly
exceeds that of solving the Helmholtz equation in the interior. In
addition, there is the risk of selecting incoming instead of outgoing
waves. Instead, we can compute the eigenvalues and eigenvectors of
a 1D Helmholtz equation and explicitly choose the outgoing wave.
With that approach, the computational cost becomes acceptable.
The boundary Green functions only depend on the material prop-

erties next to the boundary. Therefore, they can be reused for other
problems as long as the grid and the properties on the boundary
remain the same.
Treating each side independently causes a loss of exactness when

two nonreflecting boundaries meet at a corner. With a classic boun-
dary condition applied in the other coordinate direction, the method
becomes only partially exact but remains useful, as a 2D acoustic
example representing a marine seismic problem demonstrates.

DATA AND MATERIALS AVAILABILITY

Data sharing is not applicable to this article as no new data were
created or analyzed in this study. However, if the computational re-
sults shown in the figures are considered as new data, then the au-
thor elects not to share those.

APPENDIX A

ALTERNATIVE DERIVATION IN 1D

As mentioned for the 1D case, an exact boundary condition at
xmax would let pNþ1 ¼ pN expðikΔxÞ, but this expression is not nu-
merically exact. For the latter, we have to reinsert the discretization
error. If the solution is of the form g ¼ eiκΔx, then the discrete partial
differential equation (PDE) lets ðg − 2þ g−1Þ∕Δx2 ¼ −k2, provid-
ing 4 sin2ðκΔx∕2Þ ¼ ðkΔxÞ2 or sinðκΔx∕2Þ ¼ kΔx∕2. This
means that the discrete PDE models the 1D Helmholtz equation
exactly, but at a different wavenumber k ¼ κ sincðκΔx∕2Þ, where
sincðxÞ ¼ sinðxÞ∕x. Then,

g ¼ eiκΔx ¼ e
�2 i arcsin

�
1
2
kΔx

�

¼ 1 −
1

2
ðkΔxÞ2 � iðkΔxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4
ðkΔxÞ2

r
;

(A-1)

which is the same as equation 10. The branch with þi provides a
wave traveling to the right. Its series expansion is g ¼ 1þ iðkΔxÞ −
1∕2ðkΔxÞ2 þOððkΔxÞ3Þ and agrees with the Sommerfeld or
lowest order Enquist-Majda or Higdon condition up to the second-
order term.
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