Introduction to Quantum Information and Computation

2021-2022, master course, fall semester. Further info on Brightspace.

2020-2021 Internet Seminar!

If you are a Master or PhD student interested in participating in the ISem24 (Internet Seminar) on "C*-algebras and dynamics" then please contact me! We are organizing a local workgroup at Delft together with Gerrit Vos and Mario Klisse. The seminar counts as a course for which you get EC. You need Applied Functional Analysis as a prerequisite (or follow it in parallel).

Spectral theory of linear operators

2019-2021, master course, spring semester. Further info on Brightspace.

Quantum information theory

2018, 2019, 2021, master course, spring semester. Further info on Brightspace.

Operator algebras

2016-2019, master course, spring semester. See mastermath and here for additional exercises. See Michael Mueger's website for previous material.

Functional analysis

2017-2018, master course, fall semester. See mastermath. Together with Dorothee Frey.

Calculus

2017-2019, see brightspace.

Group theory

2015-2017, 2nd year course, 1st block. All information will be posted on Blackboard.

Dynamical systems

2008-2012, 1st year course, 4th quarter. With Erik Koelink and Maarten van Pruijssen. (Old material available on request).


Other

  • One day course on "Geometry of discrete groups" (summer school Utrecht 2016). Lecture notes.

Theses

If you are interested in writing an MSc thesis on the intersection of any of Operator Algebras, Harmonic Analysis, Quantum Information Theory, Geometry of Groups or Quantum Groups, then please feel free to inform by sending an e-mail! I have put some example topics in the following file (outdated version).
  • Christos Kitsios, Master thesis (with Jordy van Velthoven, expected 2022). Topic: Spectral invariance of operators in Banach algebras.
  • Sam van Poelgeest, Master thesis (with David Elkouss, expected 2022). Topic: Minimal output entropy of quantum channels.
  • Daniel Veldhuizen, Bachelor thesis (with Maximilian Russ and Lieven Vandersypen, expected 2021). Topic: Benchmarking of quantum algorithms.
  • Siem van Benthem, Bachelor thesis (with Mario Klisse, expected 2021). Topic: The Krein-Milman theorem.
  • Hidde de Bos, Bachelor thesis (expected 2021). Topic: The Lindblad equation.
  • Vincent Li, Master thesis (2021). Title: Gradient flow and quantum Markov semigroups with detailed balance.
  • Luc Janssen, Master thesis (2021). Title: Non-commutative differentiation and estimates on operator integrals.
  • Matthijs Borst, Master thesis (2021). Title: Constructing gradient-Sp quantum Markov semi-groups to obtain strong solidity results for von Neumann algebras.
  • Kevin Veerkamp, bachelor thesis (2020). Bell inequalities and their maximal violation.
  • Guillermo Wildschut, Master thesis (2020). Topic: Strong solidity of q-Gaussian algebras. Thesis fixes an issue in Section 4 of this preprint. See here (Theorem 6.4 and Proposition 6.6).
  • Martin van Denzen, bachelor thesis (2019). Speicher's central limit theorem.
  • Gerrit Vos, master thesis (expected 2019). Quantum correlation matrices and Tsirelson's problem.
  • Floris Elzinga, master thesis (2019). Deformed CCR/CAR and Free Monotone Transport: Quons and Fock Parafermions. Available here (very useful exposition of free transport techniques).
  • Nando Leijenhorst, bachelor thesis (2019, with David Elkouss). Quantum error correction: decoders for the toric code.
  • Arjan Cornelissen, master thesis (2018; with Ronald de Wolf). Quantum gradient estimation and its applications to quantum reinforcement learning. Awarded with the ASML thesis prize.
  • Guillermo Wildschut, bachelor thesis (2018). A conjecture on the complete boundedness of Schur multipliers. See also the forthcoming paper here.
  • Lennert den Besten, bachelor thesis (2017). Amenability and paradoxality of groups.
  • Artuur Oerlemans, bachelor thesis (2017). Weaver's conjecture.
  • Geert Doek, bachelor thesis (2017). Gromov's theorem on groups with polynomial growth.
  • Jaco Ruit, honours project (2016). Sofische groepen.