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In more sophisticated genetic algorithms the crossover and mutation operators are
generally uncoupled. In fact there may be a number of different crossover operators
and a number of different mutation operators. When reproduction is to take place an
operator is chosen from the list of operators and an appropriate number of
chromosomes are taken from the population to serve as input for this operator.

The selection of operators can be performed in much the same way as the selection
of chromosomes if an operator-fitness is assigned to each operator and roulette
wheel selection is used to select an operator whenever required. Operator-fitness
values can be chosen fixed or interpolated as the genetic algorithm progresses.

Interpolation of operator-fitness can be advantageous for many problems. If the
initial population is largely random , i.e. it has a lot of diversity then crossover is the
best operator to re-combine this diversity of schemata. Conversely, mutation does
not have too much of a part to play in the initial generations as there is already a lot
of diversity present in the population and the mutation operator is not needed to
produce additional diversity.

After the algorithm has run for a number of generations crossover will have
recombined the schemata present in the initial population to advantage. The
mutation operator now becomes more important as it is required to perform its role
as injector of diversity.

4.1.5 Population handling
The way in which a new population is created from child chromosomes is also a
characteristic of a genetic algorithm. When the genetic algorithm starts there is an
initial population and when it ends there is an evolved population of improved
fitness. What is required is a policy for removing old (and inferior) population
members from the population and replacing them by new and fitter offspring.

The elementary way of doing this is known as generational replacement. In the
course of a generation the population of Npop chromosomes is kept unchanged and
Npop new chromosomes are produced using the selection and reproduction
mechanisms described in the previous sections. Once all Npop new chromosomes
have been produced the whole current generation is replaced by the new population.
Hence the name generational replacement.

The advantage of this technique is its simplicity. Little or no computational
overhead is incurred in population handling. Whether or not this is an important
advantage depends on the problem at hand. Usually evaluation of the fitness
function is by far the most computationally intensive part of the optimisation
process and a little extra computational load incurred because of more sophisticated
population handling will not make a significant difference to the net computational
load.
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What may well make a considerable difference in computation time is the fact that
generational replacement does not tend to give the fastest convergence: more fitness
function evaluations will be required to produce the same result. The best individual
chromosome in a generation may not survive to the next generation and the best
chromosome in this next generation may actually have a lower fitness value than
this “old” best chromosome.

Another disadvantage of generational replacement is that storage space is required
for an additional population. This may or may not be a problem depending on how
large the individual chromosomes are, the magnitude of Npop and how much storage
space is conveniently available to the hardware on which the genetic algorithm is
implemented.

A simple approach to improving population handling is the introduction of elitism.
The best chromosome in a population is copied to the next generation. In order to
prevent this chromosome from over-dominating as a super individual (Section 4.1.2)
elitism should be coupled to either fitness windowing or some kind of fitness
normalisation.

Another improvement in population handling is the introduction of a so called
steady-state reproduction technique. This involves substituting a few new
chromosomes at a time into the population instead of replacing the whole
population at a stroke as with generational replacement. Typically the number of
chromosomes which is replaced, nss, is small: 1 or 2. In fact nss is usually equal to
the number of offspring produced by a reproduction operator. The nss worst (lowest
fitness) members of the population are deleted and the nss new chromosomes are
inserted into the population.

With steady-state reproduction the population changes gradually from generation to
generation. Chromosomes with good schemata stand a better chance of surviving
and propagating their successful  genetic material into following generations.

The steady-state reproduction technique can be further sophisticated by disallowing
the insertion of duplicate chromosomes into the population. This helps to keep
diversity in the population and it can also help to keep successful chromosomes
from over-dominating the population.

Disallowing duplicates has one drawback in the fact that a new chromosome will
have to be compared to all chromosomes in the population before it can be inserted
into that population. This introduces an additional computational load which may
not be trivial. However, as stated earlier, this computational load will usually be
considerably smaller that the one incurred because of the fitness function
evaluations and the improvement in convergence speed (which means less fitness
function evaluations) will usually more than compensate for the extra load because
of chromosome comparisons.
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4.2 Hybridisation for vector field estimation
The basic robust genetic algorithm which operates on bit string chromosomes with
simple bit based reproduction operators will work for a very large variety of
optimisation problems. While for a given problem it al almost certain to work it is
also almost certainly not the best algorithm for solving a given problem.

Block matching techniques for vector field estimation already exist. Whilst not
without their drawbacks they certainly do point the way towards the finding good
vector fields. Little can be achieved by replacing these techniques with the robust
genetic algorithm.

The approach to take here is that of hybridisation: take what we know of two ir
more incongruous optimisation algorithms and create a new one which is better than
either of the parent algorithms.

Vector field estimation is an optimisation problem. The objective is to produce as
good a vector field as possible. In the design of any disparity estimator two issues
must inherently be addressed:

• What is a vector field? How does the estimator take this into account?

• What is a “good” vector field? How does the estimator determine one?

In applying a genetic algorithm to a problem and in hybridising the genetic
algorithm with existing algorithms for vector field estimation one of the first points
to examine is that of the encoding. The bit string representation of the robust
genetic algorithm can describe anything but encoding techniques appropriate to
vector field estimation will favour the development of appropriate reproduction
operators and it can also facilitate the integration of current algorithms into the
genetic algorithm.

A full search blockmatcher is only conscious of the fact that it is dealing with vector
fields in the sense that it stores vector data in a two dimensional array which is the
vector field. The estimation algorithm itself functions by finding a best match for
individual blocks. This best match for each of the individual blocks is also the
definition of good for the vector field as a whole.

In this way the full search blockmatcher effectively ignores the way in which
vectors appear in patches in vector fields. That is to say one moving object in a
scene will have a single vector associated with it if the model of linear displacement
without distortion holds. Even if the linear displacement model does not hold then
the object displacement can be approximated as the linear displacement of several
smaller objects. Objects in images are composed of blocks. The full search
blockmatcher treats each block independently and assigns it an optimal vector in
match criterion sense. Often this vector will be the correct vector for the object to
which the block belongs. As described and illustrated in Chapter 3 however
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decreasing block size brings with it a risk of noise based matches being made and
areas with periodic texture content can introduce multiple local optima for the
vector under examination.

The recursive blockmatcher still only works on individual block but it does take into
account the fact that the vector for a block stands a good chance of being equal or
very similar to the vector or vectors of a neighbouring block or blocks. It does so by
using a limited vector search space in the vicinity of the vector or vectors
determined for neighbouring blocks. This does indeed reduce the occurrence of
spurious matches and also helps with periodic textures. There is one essential
fallacy to this concept: neighbouring blocks either belong to the same object or they
do not. The associated vectors will either be very similar or they may be completely
different! Recursive schemes implicitly assume the former while the latter is certain
to occur in any scene with more than one object. At the very least this introduces a
convergence effect but particularly with disparity estimation where neighbouring
objects can have very different disparities the estimator can be thrown completely
off track.

So if a genetic algorithm for vector field estimation (blockmatching) is going to be
an improvement over conventional techniques it will have to be more conscious of
objects than these techniques. The place in the genetic algorithm into which to
inject this consciousness is that of the reproduction operators of crossover and
mutation.

At the very base of the genetic vector field estimation algorithm there is off course
the encoding of a vector field.

The purpose of the mutation operator(s) is to introduce diversity into the population.
Doing so on a random basis is always possible but in vector field estimation
existing block matching techniques can also be used as a basis for mutation
operators.

Existing block matching techniques do not feature anything like crossover operators
as these operators are very particular to genetic algorithms. Because crossover is so
important to the function of genetic algorithms it is crucial that any vector field
encoding that is chosen should allow for the implementation of at least one
meaningful crossover operator.

4.3 Vector field encoding
In designing an encoding technique it is important to decide what is being encoded.
It is possible to define a chromosome as being a single vector belonging to a block.
Thus aiming at a genetic algorithm version of a conventional blockmatcher.  But as
these blockmatchers were computationally realistic in the first place and operating
on single vectors does not give sufficient scope for the exploitation of the properties
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of the vector field this is not the best idea. To design an algorithm which operates
on vector fields, chromosomes should describe a whole vector field and not single
vectors.

Combining the idea of operating on a whole vector field with that of objects and
associated vectors a chromosome could be formed by a list of objects with each
object having associated with a shape, location and a displacement vector. This list
would have to be of variable length as arbitrary scenes do not contain a
predetermined number of objects. The storage required for each object would also
get to be of variable length as objects will have different sizes and shapes.

Such an advanced vector field encoding strategy, whilst fascinating and very
promising, poses formidable problems for the design and implementation of
crossover and mutation operators. Design of such operators is possible but poses
formidable implementation problems. The mere design of a good crossover operator
for such encoding would be an extremely complex issue.

The vector field encoding technique used in this work is in fact a compromise. A
whole vector field is encoded as a two dimensional array of vectors which are
represented by integer numbers. One chromosome thus corresponds to one vector
field. In this encoding strategy no specific account it taken of the fact that patches
of vectors tend to have the same vector value. This awareness is used in the
reproduction operators of the genetic algorithm.

As the vector fields which are of interest in this work are disparity fields for stereo
image pairs where the disparity can be modelled as completely horizontal the
displacement has only one component and thus a chromosome becomes a two
dimensional array of integers. The number of columns in this array becomes:

nvc
W

N
pix

x

=  , (4.9)

the width of the images divided by the block width. Similarly the number of rows in
this array becomes:

nvr
H

N
pix

y

=  , (4.10)

the image height divided by the block height. Thus a chromosome, C,  is described
as:
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4.4 Vector field fitness
Of the objective measures which are available for vector field evaluation such as
prediction error, smoothness and vector field entropy prediction error is a
computationally convenient choice as the prediction error for a whole image is
nothing more than the sum of prediction errors for all the nvc x nvr blocks in the
image. Also it is so that if crossover or mutation operators make localised changes
to a chromosome (a vector field) then the fitness of the whole chromosome can be
re-calculated by subtracting from the prediction error for the whole vector field the
decrease in prediction error for those vectors which were actually changed.

The actual weighting function used in the prediction error is MSE.

In order to avoid the problems sketched in Section 4.1.2 it is also sensible to use
linear normalisation of fitness as described in that same section.

4.5 Vector field population initialisation
The initial chromosome population can be randomly initialised in the style of the
robust genetic algorithm. Each vector in each vector field can be set to a random
value. The distribution of vectors chosen as uniform over the range of legal and
feasible vector values.

A form of temporal recursion can be introduced by seeding the initial population
with vector fields determined for previous frame pairs. This can speed convergence
but also provides another reason for performing the fitness normalisation of Section
4.1.2. If this is not done then these previous vector fields, which in all likelihood
give far lower prediction errors than any random vector field, will over-dominate
the population as super individuals.

A similar idea would be to seed the initial population with a vector field generated
by a full search blockmatcher. This idea is not in harmony with the use of a genetic
algorithm coupled with prediction error as a fitness function. The full search
blockmatcher generated vector field will produce the lowest possible prediction
error (assuming it had a sufficiently large search range) and will thus always be the
fittest individual chromosome in the population. In the first generation and in every
subsequent generation. No matter how much the reproduction operators reflect the
patch-wise constant nature of vector fields.
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If such a full search type vector field is available and it is used to seed the
population then after completion of the genetic algorithm it is the second fittest
chromosome which should be selected as the output vector field. This vector field
will have a prediction error which is a little higher than that of the full search
generated vector field but it will have been generated by the reproduction operators
which will result in a smooth vector field.

4.6 Vector field population handling
Generational replacement is seldom the optimum population handling strategy. As it
will be necessary to maintain the population in a sorted order in order to efficiently
implement fitness normalisation the additional overhead of a steady-state
reproduction policy is minimal. When reproduction yields nss new chromosomes the
nss worst performing chromosomes in the population are deleted to make space for
these new chromosomes.

The question of whether to allow duplicates is less clear cut. Comparison of entire
vector fields is a much less computationally expensive than determining the
prediction error for a vector field but it certainly not a completely trivial overhead.
As the chromosomes are large and there is much initial diversity comparison can be
very quick because a single differing vector suffices to make two vector fields
different. As the algorithm converges the chance of duplicate chromosomes
occurring increases.

4.7 Vector field mutation
The mutation operator takes a single chromosome as input and produces a single
chromosome as output. In the genetic vector field estimation algorithm a single
chromosome is a vector field which links two images.

4.7.1 Random vector field mutation
The most trivial implementation of the vector field mutation operator is the random
vector field mutation operator which is little different from the basic bit mutation
operator used on bit strings.

For each of the nvc x nvr vectors in a chromosome C a probability test is
performed. A random number r is generated according to a uniform distribution on
[0,1>. If for a certain element of C it happens that  r < pm then this element of C is
set to a random vector value which is generated according to a uniform distribution
over the range of legal vector values.

As with all such mutation operators pm should be chosen low. In order for the
random vector field mutation operator to change an average of two vectors in a
typical vector field a value of 0.0003 is appropriate.
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The function of the random vector field mutation operator is to maintain diversity in
the population. In itself it will not generate good vector fields with any speed.
Because the diversity in the initial population is already high the operator fitness of
the random vector field mutation operator should start low and increase to a modest
value as the generations progress.

4.7.2 Hybrid vector field mutation
In having one vector field, which links two images, as output vector field mutation
is similar to complete conventional vector field estimators. The difference lies in the
fact that vector field mutation also has a vector field as input. In thinking of
conventional vector field estimators this is still not such a large difference because it
simply means that there is an “initial guess” vector field available.

There are two things which can be input into a hybrid vector field mutation
operator:

• The “looking for best matches” behaviour of conventional block matching
techniques.

• Knowledge of the patch-wise constant nature of vector fields. Best matches
belong not so much to single blocks but to homogenous clusters of blocks, to
objects in the scene.

These two thoughts lead to a hybrid vector field mutation operator which works as
follows:

1. A random location (i, j) is chosen within the vector field. i according to a uniform
distribution over [1, nvr] and j according to a uniform distribution over [1, nvc].

2. A vector search range is examined to see if a better value (producing a lower
prediction error) can be found for dh(i,j). If so then this new value is substituted
for dh(i,j) if not then dh(i,j) is left unmodified (per definition because then dh(i,j)
must itself already be the best match vector).

3. dh(i,j) is recursively propagated to the left (i, j-1), right (i, j+1), up (i-1, j) and
down (i+1,j) to those locations within C where it would not increase the local
prediction error and a value equal to dh(i,j) is not already present.

4. If recursive propagation was not possible, i.e. if only the vector at location (i,j)
was changed then dh(i,j) is reset to its original value so that the mutation operator
has no effect on C.

The best match search nature of conventional blockmatchers is embodied in step (2)
of this algorithm where a best match is looked for by calculating the prediction error
for a number of candidate vectors and selecting the one which gives the lowest
prediction error.
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Steps (3) and (4) reflect the piece-wise constant nature of vector fields. The vector
value found in step (2) is tried for neighbouring blocks which may belong to the
same object. Spurious matches for a single block only are rejected in step (4).

This hybrid vector field mutation operator will never increase the prediction error
associated with a vector field and it will also (except in the pathological case)
improve the smoothness and homogeneity of the vector field.

A sample run of this hybrid vector field mutation operator is illustrated in Figure
4.10 for a small example vector field which has nvr 6 and  nvc = 8.

In the example of Figure 4.10 the location within the vector field which is randomly
picked by the mutation operator is (3,6). A best matching vector is determined for
this vector location and it is successfully propagated to 22 vector field locations
where it would not increase the local prediction error. Twelve locations within the
vector field of the example are never examined because they would not be
considered by the recursive propagation process which was stopped at thirteen
vector field locations.

4.8 Vector field crossover

Figure 4.10: Example of  hybrid vector field mutation.
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In vector field crossover schemata are defined as contiguous clusters of vectors
within a vector field which share the same vector value(s). Hopefully these clusters
of vector will corresponds to objects in the scene.

The following vector field crossover operator will exchange such schemata for two
parent chromosomes C and D:

1. A random location (i, j) is chosen, i according to a uniform distribution over [1,
nvr] and j according to a uniform distribution over [1, nvc].

2. In parent vector field C the contiguous patch of vectors around (i, j) which has
the same vector value of dh,C(i,j) is determined. Similarly in parent vector field D
the contiguous patch of vectors around (i, j) which has the same vector value of
dh,D(i,j) is determined.

Figure 4.11: Example of vector field crossover.
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3. The patch of vectors found for C is copied to D and the patch of vectors
determined for D is copied to C.

This vector field crossover operator will propagate successful vector field patches
throughout the population. It is effectively blind to prediction error except for the
fact that the parent chromosomes were chosen with a bias to high fitness, i.e. a bias
to low prediction error.

A sample run of this vector field crossover operator is illustrated in Figure 4.11. The
random location used in this instance was (4,3). Triangle marks denote the vector
patch which was determined in parent vector field 1 while circles mark the  vector
patch which was determined in parent vector field 2. In the child vector fields the
appropriate super-impositions have been made.

4.9 Operator fitness setting
Three reproduction operators have been discussed: random vector field mutation,
hybrid vector field mutation and vector field crossover. When a new chromosome
or new chromosomes are to be produced one of these operators should be picked as
described in Section 4.1.4. In order to use the mechanism there described it is
necessary to assign necessary to assign each operator an operator-fitness. These
operator-fitness values can be chosen fixed or parametrised over the generations.

The operator fitness for generation g are:

• Random vector field mutation: O0(g).

• Hybrid vector field mutation: O1(g).

• Vector field crossover: O2(g).

In order for a random number on [0,1> to be directly useable  for roulette wheel
operator selection the operator-fitness are chosen so that for all generations g:
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The random vector field mutation operator is not particularly good at improving
vector fields. It is just there to maintain diversity in the population and thus should
have a low operator-fitness. In early generations it is in fact superfluous as there is
more than sufficient diversity already present in the population. Reflecting this
thought the operator-fitness of the random vector field mutation operator can be
made linearly increasing over the generations. Starting at zero and increasing to a
modest value like 0.01 after Ngen generations:

O g
g

Ngen

0

1

1
001( ) .= −

−
⋅ (4.13)



70 Genetic VFE R.E.H. Franich

The hybrid vector field mutation operator and the vector field crossover operator
each play an important role in improving the population. In early generations the
hybrid vector field mutation operator will be the more important. It produces
patches of vectors where first there was only random diversity. Initially there are
only few vector patches in the population for the vector field crossover operator to
propagate. In later generations the vector field crossover operator will come to play
an increasingly important role as it comes to combine good vector patches between
vector fields. Operator-fitness values for O1 and O2 which reflect this are:
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and:
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4.10 Experiments
In order to actually be able to test the genetic vector field estimator a number of
parameters must be set and some policy decisions have to be made.

Finding “optimal” setting for all the possible parameters and choices involved
would be a complex optimisation problem in itself. The settings described in this
Section were found to work well with the DISTIMA test sequence material and
with the “mirror” test sequence.

The population size is a very important parameter for genetic vector field estimation
because each chromosome consists of an entire vector field. Having very large
populations in the order of thousands of chromosomes would work prohibitively in
the sense that the storage requirements would be too large. In practice the algorithm
will just work with a population size of 30. Better results are obtained with a
population size of 100 while there is little gain to be made by having a population
size larger than that.

The steady-state reproduction policy produces faster convergence than does a
generational replacement policy. Checking for duplicates speeds convergence in
terms of the number of generations required but slows it down in terms of the
execution time taken in simulation. Therefore no checking for duplicates was
performed.

Seeding of the population with a vector field generated for a previous image pair
produced little improvement. Because linear normalisation of fitness was performed
it didn’t have considerable negative effects either. Considering this  no such seeding
was performed and the vector field estimator was allowed to work purely on the
image pair at hand. Initialisation of the population is performed by filling with
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random vector values on the same range as was used by the block matchers of
Chapter 3: -16…+39.

The choice of operator fitness trajectories did have significant effect on the number
of generations required for convergence. The trajectories used are plotted in Figure
4.12.

Operator fitness of hybrid mutation should start relatively high and end relatively
low. The operator fitness of crossover should do just the opposite: start low and end
high. In this way good results are obtained on all test material after 250 generations
at most.

For comparison with the results presented in Chapter 3 experiments were run on the
sequence “mirror” at 8x8 block size on a frame.

The accuracy of the genetic vector field estimator on the sequence mirror (at the
various noise levels) is plotted in Figure 4.13. The accuracy of the full search block
matcher when there is no noise present is practically equalled. In fact this accuracy
is still attained at a 30 dB noise level. At 20 dB the number of correctly estimated
vectors drops to the order of 90% but that is still a doubling of what is achieved by
the full search estimator.

The vector field entropy is plotted in Figure 4.14. At low noise levels it is slightly
lower  then the level achieved with either full search or recursive blockmatchers. At
the 20 dB noise level however the entropy of the genetically estimated disparity
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Figure 4.12: Operator fitness trajectories.



72 Genetic VFE R.E.H. Franich

field is markedly lower then what is achieved with either of the other two block
matchers.

The disparity field estimated for “aqua” is shown in Figure 4.15. Only near the
bottom of the field are there some locations left where single vectors survive from
initial random initialisation or random vector field mutation. The vector field shows
good correspondence with the actual scene content. The spurious outlier matches of
the full search blockmatcher are not present while there are also no convergence
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Figure 4.13: Accuracy of genetic vector field estimation.
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artefacts as happens with the recursive blockmatcher. At 1.8 bit/vector the entropy
of this disparity field is lower than the entropy of the vector fields estimated by
either full search (3.7 bit/vector) or recursive search  (2.7 bit/vector).

Figure 4.15: Genetically estimated disparity field “for aqua”.


