
R.E.H. Franich Genetic VFE 49

4. Genetic vector field estimation
Vector field estimation is an optimisation problem. The search space presented by
a vector field is large and contains a large number of sub-optimal solutions.
Classical blockmatchers handle this by examining the vector field one block at a
time. Vector field coherence or smoothness is obtained using schemes which
results in spatial convergence effects in the vector field.

The genetic algorithm for vector field estimation presented in this chapter does not
optimise vectors but it optimises vector fields. The objective, as with classic
blockmatchers, is the minimisation of a matching criterion but the strategy used in
this minimisation results in smooth vector fields without imposing spatial
convergence artefacts..

4.1 Genetic algorithms
Genetic algorithms, commonly abbreviated as GAs, form a class of optimisation
algorithms with robust performance on large search spaces with large numbers of
local sub-optima. Large search spaces preclude full enumeration: the examination of
all possible solutions. An abundance op local sub-optima prevents hill climbing
techniques such as Powell’s method or the conjugate gradient technique [Press91]
from being effective. An example of a function with a large number of sub-optima is
the function known as f6 [Davis91] in genetic algorithm literature. This function is
plotted in Figure 4.1.

Figure 4.1: Plot of f6.

50 Genetic VFE R.E.H. Franich

The mathematical description of f6 is given by:

()()
()

f x y
x y

x y
6 05

05

1 0 001

2 2
2

2 2 2(,) .
sin .

. ()
= −

+ −

+ +
 . (4.1)

The optimum of f6 is in this case chosen to be the maximum of f6. This f6 is a
simple function of only two real numbers for which the optimum can be easily
found using mathematical insights but which is difficult for numerical optimisation
techniques because of the multitude of local optima. And this is with a search space
which consists of only two numbers.

Many real world optimisation problems have much larger search spaces and also
feature local sub-optima.

It is with this kind of problem in mind that genetic algorithms were conceived
[Holl75]. They were inspired and are described along the lines of the metaphor of
natural evolution. Whilst this metaphor is useful in describing, talking and even
thinking about these techniques it is important to note that, as with all metaphors, it
shouldn’t be taken too far. The link between genetic algorithms and
biology/genetics is no stronger than the link between neural networks and the
human brain or the link between simulated annealing and actual physical cooling
processes. The connection may have played some part in initial inspiration and it is
certainly used in description of the various algorithms but that is the full extent of it.

One of the most important aspects of genetic algorithms is that they work not on
one solution at a time but on a set of solutions. In keeping with the genetic
metaphor each solution is encoded as a chromosome. At any one time the present
set of chromosomes is called the population. The basic genetic algorithm can now
be described as follows:

• Optimisation becomes evolution: as one generation of the population changes to
the next generation the strongest chromosomes survive by reproducing into the
next generation.

• The criterion being optimised becomes the fitness of a chromosome (or of it’s
decoded solution). The “objective” of evolution is to improve the overall fitness
of the population.

• Natural selection is reflected by the fact that the chance which chromosomes
have of being selected for reproduction into the next generation is proportional to
their fitness.

• Reproduction is where evolution takes place. Parts of the parent chromosomes
are exchanged, mixed, in the production of child chromosomes. Additionally
random mutation may introduce chromosomal patterns which are present in
neither parent chromosome.

R.E.H. Franich Genetic VFE 51

• Evolution has no memory. In producing a new fitter population for the next
generation is has available to it only the chromosomal material present in the
current generation of the population.

A block diagram of the basic genetic algorithm is given in Figure 4.2.

This block diagram gives a high level description of the basic genetic algorithm. In
the following sections the various components of the genetic algorithm will be
discussed in more detail.

4.1.1 Chromosome encoding and decoding
The method of chromosome encoding is one of the most important links between
the genetic algorithm and the optimisation problem at hand. The data structure
which is used to describe a solution is at least as important as the algorithm which is
used to search for an optimal solution.

Figure 4.2: Block diagram of basic GA.

52 Genetic VFE R.E.H. Franich

Basic genetic algorithms use binary bit strings as encoding technique. For example
the two real numbers which represent x and y in f6 can be encoded as a string of 64
bits (two single precision floating point numbers). Or they could be encoded into a
string of 22 bits where decoding consists of splitting the 22 bit string into two 11 bit
integers, subtracting and offset value from each and subsequently multiplying by a
suitable scaling factor as illustrated in Figure 4.3.

As all data structures are internally represented as binary bit strings in digital
computers this makes a genetic algorithm which operates on pure bit strings
(without any knowledge of what these bit strings represent) a kind of universal
optimisation engine. In fact this is exactly what it is. Proper bit string based genetic
algorithms work on a very large variety of problems. They may not be optimally
efficient, in fact they probably won’t be, but they will find a good solution. They are
robust and flexible.

Better, faster, results can be obtained by using encoding techniques which are
closer to the problem at hand as discussed in Section 4.2.

4.1.2 Fitness and evaluation
Having defined what a solution looks like it is also important to define an index for
what a good solution is. In genetic algorithms the index which defines the goodness
of a solution is called fitness while the function which determines this fitness is
referred to as the fitness function. A function which generates a value, from a
decoded chromosome, which must be somehow manipulated before being used as a
fitness value is referred to as an intermediate function.

While the nature of the fitness function for a particular problem can be quite
obvious it always warrants proper attention. If, for example, the problem at hand is
the optimisation of f6 then f6 itself (the intermediate function) can function as the
fitness function. Low f6 values indicate undesirable chromosomes while high f6
values indicate desirable ones.

Figure 4.3: Example chromosome decoding.

R.E.H. Franich Genetic VFE 53

The chance which chromosomes have of being chosen for reproduction into the
next generation is proportional to their fitness. So if we have two chromosomes in
the f6 problem, one with a fitness of 0.25 and one with a fitness of 0.50 then the
second one will have twice the chance of being selected for reproduction that the
first one has.

If the algorithm has run for a number of generations and the worst chromosome, in
the population, A, evaluates to 0.8760 and the best chromosome, B, evaluates to
0.9971 then B will have only 1.14 times the chance of being selected that A has.
Faster convergence may well be obtained if a higher proportional reproduction
chance is somehow assigned to B.

This aspect can become even more pronounced if a trivial change is made to the
(intermediate) function. For example a problem very similar to the maximisation of
f6 is the maximisation of elevated f6 or f6e:

()()
()

f x y f x y
x y

x y
e6 6 999 999 5

05

1 0 001

2 2
2

2 2 2(,) (,) .
sin .

. ()
= + = −

+ −

+ +
 . (4.2)

Now for f6e chromosome A gets a fitness value of 999.8760 and chromosome B
has a fitness of 999.9971. The chance which B stands of being selected for
reproduction is now only 1.0001 times higher than A’s chance of being selected for
reproduction. In fact the best possible solution has a fitness value (1000) which is
only 1.001 times better than the worst fitness value (999).

There are two approaches to handling this problem. The first is known as
windowing and is illustrated in Figure 4.4. The minimum intermediate function
evaluation for the population is determined. The fitness is then taken to be the

difference between a chromosome’s intermediate function evaluation and this
minimum value. Differences which fall below a certain threshold can be assigned a
default offset fitness. This is to avoid the lowest evaluating chromosomes in the
population having zero or near zero chance of being selected for reproduction. A

Figure 4.4: Example of fitness windowing.

54 Genetic VFE R.E.H. Franich

convenient choice for this offset fitness is a set fraction of the difference between
the maximum and the minimum evaluation. In the example of Figure 4.4 5% of the
maximum difference (0.05x0.7236≈0.0362) is used as threshold and offset. The
highest evaluating chromosome has 20 times the chance of being selected for
reproduction that the lowest evaluating chromosome has.

The second technique for deriving fitness from intermediate function evaluations is
referred to as linear normalisation in genetic algorithm literature [Davis91]. The
chromosomes are ordered in descending order of intermediate function evaluation
value and subsequently numbered in ascending order. Thus assuming the population
to have Npop members and i to be the numbering index then the chromosome with
the largest function evaluation is numbered i=0, the largest but 1 is numbered i= 1,
the largest but 2 is numbered i= 2 and the smallest is numbered i=Npop-1. The fitness
of a chromosome which comes ith in this list is then given by:

fitness a i bi linnorm linnorm= ⋅ + (4.3)

if we wish the chromosome with the largest plain function evaluation to have a
fitness G times as great as the chromosome with the smallest plain function
evaluation alinnorm and blinnorm would have to be chosen such that:

a
b G

G blinnorm
linnorm

linnorm=
N

pop

()
, .

1

1
1 0

−
−

> > (4.4)

An example is given in Figure 4.5. The same population of four with the same

intermediate function evaluations is used. G was chosen as 10 and blinnorm was
chosen as 100 so that the fitness of the chromosome with the largest raw function
evaluation becomes 100 whilst the fitness of the chromosome with the smallest raw
function evaluation becomes 10.

Figure 4.5: Example of linear normalisation for fitness.

R.E.H. Franich Genetic VFE 55

Both windowing and linear normalisation can handle the presence of a super
individual within the population. A super individual is a chromosome with an
intermediate function evaluation which is much larger than the raw function
evaluation of any other chromosome within the population. The thresholding
parameter in windowing and the alinnorm and blinnorm parameters in linear
normalisation allow the proportion between the largest and the smallest fitness
value to be set. This is illustrated in Figure 4.6 where a single set of plain
evaluations is converted to fitness values using both windowing and linear

normalisation. Both result in the fitness of the chromosome with the largest
intermediate evaluation being 10 times as large as the fitness of the chromosome
with the smallest intermediate evaluation even though a factor of 101 separates their
intermediate function evaluations.

The advantage of linear normalisation over windowing becomes apparent when
there are groups of chromosomes with very similar intermediate function values. A
common situation with chromosome populations generated by genetic algorithms.
Windowing assigns these chromosomes very close fitness values (in Figure 4.6 the
effect is exaggerated because the thresholding make the low plain function
evaluations effectively identical) while linear normalisation assigns uniformly rising
fitness thus giving “better” chromosomes a higher chance at reproduction even if
their raw function evaluation value differs only slightly from the plain function
evaluation value of the next best chromosome.

4.1.3 Parent selection
The function of the parent selection mechanism within a genetic algorithm is to
favour chromosomes with relatively high fitness values by (positively) biasing their

Figure 4.6: Comparison of windowing and linear normalisation.

56 Genetic VFE R.E.H. Franich

chance of being selected for reproduction. The most common way of handling this
is the so called roulette wheel selection mechanism. This roulette wheel selection
mechanism is illustrated in Figure 4.7.

For each chromosome in the population the cumulative sum of fitness values is
determined. Thus if the Npop chromosomes are numbered i=0..Npop-1 and the fitness
value of each chromosome is given by Fi then the cumulative sum CSi for
chromosome i is given by:

CS Fi j
j

i

=
=
∑ .

0

(4.5)

The sum of fitnesses of all chromosomes in the population is:

PS F CSj N
j

i

pop
= = −

=
∑ 1

0

. (4.6)

With all the CS values having been calculated two steps remain in picking a
chromosome from the population. A random integer r has to be generated according
to a uniform distribution:

p r R
PS

R PS p r R() ()= = < ≤ = =
1

0 0 for and elsewhere. (4.7)

Finally the value chromosome ic is selected by setting ic equal to the first value of I
for which CSi≥r:

i i CS rc i= ≥min{ }. (4.8)

Taking the example of Figure 4.7 a random number sequence of {65, 10, 63, 174, 9,
192, 35, 124, 70, 159} would result in the following ic: {0, 0, 0, 2, 0, 2, 0, 1, 0, 1}.

The reason that this method of selection is referred to as roulette wheel selection is
because the picking of a random r and subsequent determination of the appropriate
ic is the probabilistic equivalent of tossing a ball into the mathematical roulette
wheel of Figure 4.7 seeing where it stops comes to rest.

Figure 4.7: Roulette wheel selection.

R.E.H. Franich Genetic VFE 57

4.1.4 Reproduction operators
The actual improvement of a population of chromosomes (the evolution) is driven
by the reproduction operators of the genetic algorithm. In the basic genetic
algorithm there are two reproduction operators: mutation and crossover.

The mutation operators takes a single chromosome as input and changes part of it.
The function of this operator is to introduce (parts of) chromosomes into the
population that were not there previously. These parts of chromosomes are known
as schemata. For example a three bit chromosome ‘110’ has eight possible
schemata.

In the black-box genetic algorithm the mutation operator operates on chromosomes
which are encoded as bit strings. The mutation operator runs down all the bits in a
chromosome in sequence. Each bit is inverted with a probability pm. The process is
illustrated in Figure 4.8 where the example bit string has a length of 22 bits (it is in
fact the same bit string as in Figure 4.3). A series of 22 random numbers which is
uniformly distributed on the interval [0,1> is generated. For this example pm=0.10.
Those random numbers in the sequence of 22 which fall below pm correspond to a
bit change. In the instance illustrated in this example there are 4 such bit positions
while on average there will off course be 2.2 bits inverted. Typical values for pm in
a black box genetic algorithm would be at least an order of magnitude lower than in
the example of Figure 4.8, i.e. they would range from 0.001 to 0.01.

The second operator which is present in all genetic algorithms is the crossover
operator. The crossover operator takes two chromosomes as input and produces
two so called child chromosomes as output. What the crossover operator does is to
take a certain amount genetic of material, according to some schema, from the two
parent chromosomes and exchange it between these two parent chromosomes.

Figure 4.8: Example of bit mutation.

58 Genetic VFE R.E.H. Franich

The elementary form of bit string crossover is known as one point crossover and is
illustrated in Figure 4.9. A position along the chromosome bit string is randomly
chosen. All bits behind this position are exchanged and all bits in front of the
position are left unchanged. The result is two child chromosomes.

Note that exchanging bits after the random position is completely equivalent to
exchanging material before the chosen position and leaving unchanged bits behind
this position. The same child chromosomes result only in a different order.

The purpose of crossover is to propagate successful genetic material (schemata that
result in high fitness) through the population much faster than (random) mutation
could achieve this by itself.

Crossover operators are the most characteristic feature of genetic algorithms. There
are other optimisation algorithms which operate on sets of solutions and perform
some kind of mutation, for example the rearrangement function in simulated
annealing [Press91] but crossover is particular to genetic algorithms in at least as
much that genetic algorithms without some kind of crossover operator are not really
genetic algorithms at all.

Crossover and mutation acting on a population provide a kind of intrinsic
parallelism. The genetic algorithm manipulates a number of schemata in parallel.
Mutation introduces diverseness (new schemata). Crossover reproduces and
combines successful schemata, schemata which resulted in relatively high fitness,
through the population.

In the black box genetic algorithm one point crossover and bit mutation are
commonly combined into a single one point crossover and mutate operator. Two
parent chromosomes are subjected to crossover and the resulting child
chromosomes are first subjected to mutation before being considered for re-
insertion into the population.

Figure 4.9: Example of one point crossover.

