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A sign of intelligence is an awareness of one’s own ignorance.
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SUMMARY

Understanding the behavior of cyber adversaries provides threat intelligence to secu-
rity practitioners, and improves the cyber readiness of an organization. With the rapidly
evolving threat landscape, data-driven solutions are becoming essential for automati-
cally extracting behavioral patterns from data that are otherwise too time-consuming
to discover manually. This dissertation advocates the use of machine learning (ML) to
obtain insights into adversary behavior for creating AI-assisted practitioners. However,
developing adversary behavior models is challenging since cyber data is often unlabeled,
noisy, infrequent, and contains intricate patterns that evolve over time. We demonstrate
that sequential features are effective at addressing these challenges. Yet, they have lim-
ited interpretability and algorithmic support.

This dissertation starts by defining the notion of explainability as it is currently used
within cybersecurity by systematizing available literature in Chapter 2. We find that
the literature frequently relies on black-box models that use off-the-shelf explanation
methods without considering the explanation stakeholders. In contrast, literature on
sequence learning models that are interpretable by design is severely limited.

We address these challenges by developing special algorithms that learn sequential
patterns from infrequent events, and evolving data in an unsupervised setting. We utilize
these algorithms to create interpretable tool-chains for understanding the behavior of
various types of adversaries. We show that it is possible to learn interpretable models
(even for complex sequential data in an unsupervised setting) that provide more insights
than just prediction probabilities, while achieving competitive performance. In doing
so, we encourage the security community to look beyond accuracy scores, and focus on
extracting actionable insights from ML models. We make our tool-chains open-source.

The first part of this thesis models the strategies employed by human threat actors.
Chapters 3 and 4 develop a novel paradigm of attack graphs (AG) that are learned directly
from intrusion alerts for capturing attacker strategies. The attacker strategies are learned
using our S-PDFA model, which is interpretable, fast, and effective. We learn alert-driven
AGs from 3 open-source datasets, and show their ability to compress over 1.4 million
alerts in 401 AGs in under 5 minutes. The AGs provide actionable intelligence regarding
strategic differences and fingerprintable paths. They also reduce analyst alert fatigue by
triaging critical attacks.

The second part of this thesis models the capabilities exhibited by automated threat
actors (malware). Chapters 5 and 6 develop an explainable sequence clustering tool-
chain to automatically characterize the network behavior of malware samples. We use
this tool-chain to create behavioral profiles of 1196 real-world malware samples for ex-
plaining their capabilities. We also develop a streaming sequence clustering algorithm
for real-time behavior profiling, which is evaluated on 5 datasets and against 4 cluster-
ing algorithms. By automatically creating behavioral profiles of bot-infected hosts in
real-time, we distinguish between benign and malicious hosts with 100% accuracy.

xi





SAMENVATTING

Het gedrag begrijpen van cyberaanvallers levert dreigingsinformatie op aan veiligheids-
professionals en verhoogt de cybergereedheid van een organisatie. Door het snel evolu-
erende dreigingslandcshap worden data gebaseerde oplossingen steeds belangrijker om
gedragspatronen automatisch te extraheren die anders handmatig een zeer tijdrovend
taak zou zijn. Deze proefschrift bepleit voor het gebruik van machine learning (ML) om
gedragsinzichten te verkrijgen van een cyberaanvaller, met het oog op het creëren van
door AI-ondersteunde beoefenaars. Het ontwikkelen van gedragsmodellen voor een cy-
beraanvaller is echter een uitdaging, gezien dat cyberdata is meestal ongelabeld, ruizig,
en ingewikkelde patronen bevatten die in de loop van de tijd evolueren. We laten zien
dat sequentiële kenmerken effectief zijn bij het aanpakken van deze uitdagingen. Toch
hebben ze een beperkte interpreteerbaarheid en algoritmische ondersteuning.

Dit proefschrift begint met het definitie van “verklaarbaarheid” zoals het nu wordt
gebruikt binnen cybersecurity door beschikbare literatuur systematisch te analyseren in
Hoofdstuk 2. We stellen vast dat de literatuur vaak gebaseerd is op black-box modellen
die gebruik maken van kant-en-klare verklaringsmethoden zonder rekening te houden
met de belanghebbenden van de verklaring. Daarentegen is de literatuur over sequentie-
leermodellen die interpreteerbaar zijn door het ontwerp zeer beperkt.

Deze uitdagingen worden aangepakt door specifieke algoritmen te ontwikkelen die
sequentiële patronen leren van zeldzame gebeurtenissen en evoluerende data in een
onbeheerde omgeving. We maken gebruik van deze algoritmen om “interpreteerbare
tool-chains” te creëren voor het begrijpen van het gedrag van verschillende soorten van
cyberaanvallers. We tonen aan dat het mogelijk is om intpreteerbare modellen te leren
(zelfs voor complexe sequentiële data in een onbeheerde omgeving) die meer inzicht
opleveren dan alleen voorspellingswaarschijnlijkheden, terwijl er competitieve presta-
ties worden behaald. Hiermee moedigen we de security gemeenschap aan om verder te
kijken dan nauwkeurigheidsscores van modellen en zich richten op het verkrijgen van
een bruikbare inzichten uit ML-modellen. We maken onze tool-chains open-source.

Het eerste deel van dit proefschrift modelleert de strategieën die door menselijke
bedreigingsactoren worden gehanteerd. Hoofdstukken 3 en 4 ontwikkelen een nieuw
paradigma van “Attack Graphs” (AG), die rechtstreeks worden geleerd van inbraakwaar-
schuwingen om aanvalsstrategieën vast te leggen. De aanvalsstrategieën worden geleerd
met behulp van ons S-PDFA model, dat interpreteerbaar, snel en effectief is. We leren ons
alert-driven AGs van drie open-source datasets en tonen hun capaciteit om meer dan 1.4
miljoen waarchuwingen in 401 AGs te comprimeren in minder dan 5 minuten. The AGs
bieden bruikbare intelligentie met betrekking to strategische verschillen en identificeer-
bare trajecten. Ze verminderen de vermoeidheid van analisten door een triage te maken
voor kritieke aanvallen.

Het tweede deel van dit proefschrift modelleert de capaciteiten vertoond door ge-
automatiseerde bedreigingsactoren (malware). Hoofdstukken 5 en 6 ontwikkelen aan

xiii
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uitlegbare tool-chain van sequentieclustering die is om het netwerkgedrag van malwa-
revoorbeelden automatisch te karakteriseren. Met behulp van deze tool-chain creëren
we gedragsprofielen van 1196 malwaremonsters uit de echte wereld die hun capaciteiten
verklaren. We ontwikkelen ook een streaming sequentie clustering algoritme voor real-
time gedragsprofilering, dat wordt geëvalueerd op basis van 5 datasets en tegen 4 clus-
tering algoritmen. Door in real-time automatisch gedragsprofielen te creëren van bot-
geïnfecteerde hosts, onderscheiden we goedaardige en kwaadaardige hosts met 100%
nauwkeurigheid.



1
INTRODUCTION

The perpetual arms-race between cyber adversaries and defenders has fueled the cre-
ation of sophisticated cyber attacks over the years. Astra Security estimates that in 2023,
a cyber attack occurred every 39 seconds, and 300,000 malware samples were generated
on a daily basis. Meanwhile, it took organizations 49 days to detect malware, on average
[2]. Moreover, cyber attacks create large volumes of alerts that security analysts inves-
tigate manually. For instance, it is estimated that security analysts receive more than a
million alerts each day [3]. It takes security teams an average of 130 hours per week to
monitor threats, and more than 20 minutes of manual effort to detect, prioritize, and
remediate a vulnerability [4].

Data-driven security solutions are becoming increasingly necessary for defending
against modern cyber adversaries. These approaches operate on the intuition that at-
tacker actions can be observed in the data generated by a targeted system, e.g., net-
work traffic generated by a victim host, and can thus be approximated using machine
learning-enabled knowledge discovery [5]. Patterns related to attacker actions are char-
acterized using either (a) unsupervised learning where groups in observable data are dis-
covered based on similar attributes (i.e., features), or (b) supervised learning where asso-
ciations are found between features of observable data and the corresponding class label
(e.g., benign, malicious). Ultimately, the aim of the learning process is to find patterns
that can be generalized to unseen data instances [5].

In practice, cybersecurity applications often utilize data-driven solutions for attack
detection – the aim is to maximize attack detection while minimizing false alarms and
detection times. This typically entails complex optimizations of feature combinations,
making the resulting machine learning model a ‘black box’ [6]. This lack of transparency
is a well-known reason for the slow deployment of machine learning in industry [7], [8].
Furthermore, the black-box nature of the model removes security practitioners from the
learning loop, which makes it difficult for them to understand the model and intervene
when it makes mistakes [9].

Parts of this chapter have been published as “Learning About the Adversary” by Nadeem, A., Yang, S. J. & Verwer,
S. in Autonomous Intelligent Agents for Cyber Defense, Springer, 2023 (pp. 105-132) [1].

1
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2 1. INTRODUCTION
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Figure 1.1: (a) The Cyber Kill Chain [11] categorizes a cyber-intrusion in seven phases, starting with scanning
for reconnaissance and ending with actions on objectives. (b) The Pyramid of Pain [12] shows the difficulty of
obtaining various Indicators of Compromise (IOCs).

Stepping away from the realm of attack detection, the analysis of cyber attacks offers
valuable threat intelligence for the development of better detection tools, e.g., investi-
gating attack campaigns provides intelligence for better detection signatures. This, in
turn, enhances the cyber readiness of organizations, enabling them to gracefully handle
future cyber attacks. In practice, however, attack analysis and threat intelligence gener-
ation remain expert-driven manual tasks [10].

In this dissertation, we utilize machine learning to obtain more insights than just
predication probabilities and accuracy scores – machine learning is used to extract in-
tricate patterns regarding adversary behavior from observable data. This way, data-
driven approaches create a potential human-in-the-loop setting for AI-assisted practi-
tioners. The philosophy is to utilize unsupervised machine learning models as virtual
autonomous agents that assist in analyzing large datasets, discovering patterns related
to adversary behavior, and delivering actionable threat intelligence to security practi-
tioners. They can then use this threat intelligence for downstream tasks, such as risk
assessment, signature creation, and defense playbook creation.

In this chapter, we define the notion of data-driven attacker behavior analysis, dis-
cuss the challenges of developing unsupervised data-driven solutions for modeling ad-
versary behavior, and broadly explain the proposed approach utilized in this disserta-
tion. We also present an outline of this dissertation and specify our contributions.

1.1. UNDERSTANDING ADVERSARY BEHAVIOR
“Know thy enemy” is one of the first principles of warfare preached by The Art of War [13].
In practice, adversaries are normally quantified and classified using threat assessment
models. These models theoretically define an adversary from different facets, which help
security practitioners provide security guarantees for specific abuse cases. For instance,
the Capability, Opportunity, Intent (COI) model characterizes an adversary based on its
(a) “Capability” – an adversary’s capacity to undertake the task at hand; (b) “Opportu-
nity” – the presence of an operating environment, and (c) “Intent” – the brain processes
that make the adversary act upon the task [14]–[16]. Understanding the capabilities of
an adversary improves situational awareness and cyber readiness – it provides threat in-
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Figure 1.2: Contributions of this thesis: We replace the manual and monotonous labor of analyzing large vol-
umes of data with machine learning for the generation of threat intelligence. The threat intelligence can be
used to analyze attacker behavior, create/update training playbooks, and detection signatures.

telligence required for targeted countermeasures. For instance, the intelligence can be
used for creating signatures for classification/detection, for assessing the quality of cur-
rent defenses (risk assessment), and for constructing playbooks of adversary strategies
that can be utilized for training incident response staff.

Adversary behavior is often described in terms of Tactics, Techniques, and Proce-
dures (TTP). TTPs are usually an expression of an adversary’s training/education, and
are thus extremely difficult to alter, once detected. TTPs relate to an adversary’s capa-
bility of employing a strategy to obtain their objectives. A vulnerability in the target
system presents an opportunity for the adversary, while the adversary’s intent is often
implicitly inferred through their actions. Lockheed Martin’s Cyber Kill Chain [11] and
MITRE’s ATT&CK [17] are two of the most popular frameworks to study the structure
of a cyber attack in terms of tactics and techniques. The Cyber Kill Chain, shown in
Figure 1.1a, models the attack process as a sequential chain of seven steps that an adver-
sary must complete in order to obtain their objective, while ATT&CK is a comprehensive
knowledge-base enumerating the TTPs of cyber adversaries.

Threat assessment models are utilized for understanding adversary behavior in two
ways: manual approaches based on expert knowledge, and automated approaches that
are data-driven. Expert knowledge based approaches rely on practitioner expertise to
manually characterize adversary behavior. In contrast, data-driven approaches aim to
reduce practitioner workload by automating the process of extracting insights about ad-
versary behavior from observable data sources. Figure 1.2 graphically shows the stan-
dard process of gathering threat intelligence, and how this thesis contributes to it.

1.1.1. EXPERT KNOWLEDGE BASED MANUAL APPROACHES

Security practitioners build adversary behavior models based on their knowledge of past
attacks, the analysis of threat intelligence feeds, and other domain knowledge. They are
also further enriched with insights obtained from investigating historical incident logs.

In addition to being time-consuming and expensive, there are two main drawbacks
of purely relying on expert knowledge for modeling adversary behavior: First, because
these models are created manually, they must be updated periodically to accurately re-
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flect the evolving threat landscape. This means that the practitioners experience fast-
paced and monotonous workloads to keep the defenses updated, causing them to burn
out [18]. Second, because of these extreme workloads, the task performance goes down
and the quality of these models can vary [19]. As such, manually generated adversary
behavior models are often incomplete, since analyzing all attacks with full situational
awareness is infeasible.

1.1.2. MACHINE LEARNING BASED DATA-DRIVEN APPROACHES
Data-driven approaches rely on patterns in cyber data to create adversary behavior mod-
els. These approaches have the benefit of continually learning from new data in order
to keep the behavior models updated. They can automatically discover intricate pat-
terns that are too difficult to identify manually. Thus, data-driven approaches reduce
practitioner workload by automating the generation of threat intelligence regarding ad-
versary behavior. Note that this paradigm necessitates a mapping between concepts
seen in standard threat assessment models (e.g., MITRE ATT&CK) and observable data.
For instance, the Action-Intent Framework (AIF) [20] is a wrapper around the ATT&CK
framework that maps attacker intent with intrusion alert signatures (see Chapter 3).

Extracting patterns related to adversary behavior from observable data is extremely
challenging. The Pyramid of Pain [12], presented in Figure 1.1b, shows different types
of Indicators of Compromise (IOCs) that can be extracted from observable data. As one
moves up the pyramid, the IOCs get harder to extract. The IOCs regarding adversary
behavior (i.e., TTPs) lie at the very top of the pyramid, demonstrating the difficulty of the
task. Section 1.2 explains these challenges in detail.

DEFINITIONS: DATA-DRIVEN AGENTS

We define a data-driven approach for modeling adversary behavior as an autonomous,
data-driven machine learning agent that learns contextually meaningful cyber adversary
behaviors from observable data. We define these terms as follows:

• Cyber adversary: A cyber adversary is a single or a group of human actors or auto-
mated agents (malware) that intend to perform malicious actions that harm other
cyber resources. The actions can also have physical aspects, e.g., as in the case of
social engineering attacks. The risk associated with a cyber adversary is related to
their perceived capabilities and intent.

• Adversary behavior: A behavior is a group of actions, and is a learned abstraction
(model or pattern) from observable data that can be interpreted and transferred
to other systems.

• Adversary intent: Intent is defined as the relationship between an adversary and
their action, which lends insights into the motivations that lead to an attack. In-
tent is inferred through observed actions. A framework such as ATT&CK or Action-
Intent Framework (AIF) aims to connect the intended attack stage with the corre-
sponding tactics, techniques, and procedures (TTPs).

• Observables: Observables can be extracted from data sources to learn adversary
behavior. These include, but are not limited to, software logs (network traffic, in-
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{timestamp:2018-11-03T14:36:00.340802+0000, flow_id:2014505597331735, 
in_iface:ens4, event_type:alert, src_ip:10.0.0.20, src_port:33068, 
dest_ip:10.0.254.204, dest_port:3000, proto:TCP, tx_id:0, alert:{signature:ET SCAN 
Nikto Web App Scan in Progress, category:Web Application Attack, severity:2}, 
_serial: 21248, _si: [index01, ids], _subsecond: .340802, _time: 2018-11-03 
14:36:00.340 UTC, index: ids, linecount: 1, source: /var/log/suricata/alert-
json.log, sourcetype: suricata:alert, splunk_server: index01}

{timestamp:2018-11-03T23:29:58.831562+0000, flow_id:936249975795249, 
in_iface:ens4, event_type:alert, src_ip:10.0.254.204, src_port:35702, 
dest_ip:10.0.0.20, dest_port:3000, proto:TCP, tx_id:0, alert:{signature:GPL
EXPLOIT CodeRed v2 root.exe access, category:Access to a Potentially Vulnerable 
Web Application, severity:2}, _serial: 0, _si: [index01, ids], _subsecond: 
.831562, _time: 2018-11-03 23:29:58.831 UTC, index: ids, linecount: 1, source: 
/var/log/suricata/alert-json.log, sourcetype: suricata:alert, splunk_server: 
index01}

{timestamp:2018-11-03T19:26:40.831562+0000, flow_id:936249975795250, 
in_iface:ens4, event_type:alert, src_ip:10.0.254.204, src_port:35702, 
dest_ip:10.0.0.20, dest_port:3000, proto:TCP, tx_id:0, alert:{signature:ET
WEB_SERVER ColdFusion administrator access, category:Web Application Attack, 
severity:2}, _serial: 0, _si: [index01, ids], _subsecond: .831562, _time: 2018-11-
03 19:26:40.831 UTC, index: ids, linecount: 1, source: /var/log/suricata/alert-
json.log, sourcetype: suricata:alert, splunk_server: index01}

{timestamp:2018-11-03T19:26:40.831562+0000, flow_id:936249975795251, 
in_iface:ens4, event_type:alert, src_ip:10.0.254.204, src_port:35702, 
dest_ip:10.0.0.20, dest_port:3000, proto:TCP, tx_id:0, alert:{signature:GPL
EXPLOIT CodeRed v2 root.exe access, category:Access to a Potentially Vulnerable 
Web Application, severity:2}, _serial: 0, _si: [index01, ids], _subsecond: 
.831562, _time: 2018-11-03 19:26:40.831 UTC, index: ids, linecount: 1, source: 
/var/log/suricata/alert-json.log, sourcetype: suricata:alert, splunk_server: 
index01}

{timestamp:2018-11-03T13:26:40.831562+0000, flow_id:936249975795239, 
in_iface:ens4, event_type:alert, src_ip:10.0.254.204, src_port:35702, 
dest_ip:10.0.0.20, dest_port:3000, proto:TCP, tx_id:0, alert:{signature:GPL
WEB_SERVER Oracle Java Process Manager access, category:Access to a Potentially 
Vulnerable Web Application, severity:2}, _serial: 0, _si: [index01, ids], 
_subsecond: .831562, _time: 2018-11-03 13:26:40.831 UTC, index: ids, linecount: 1, 
source: /var/log/suricata/alert-json.log, sourcetype: suricata:alert, 
splunk_server: index01}

(a) An excerpt from alert logs

ETPRO WEB_SPECIFIC_APPS ipTIME firmware < 9.58 RCE

GPL EXPLOIT CodeRed v2 root.exe access

ET WEB_SERVER ColdFusion administrator access

GPL EXPLOIT administrators.pwd access

ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM

ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT

GPL WEB_SERVER Tomcat server snoop access

ET WEB_SERVER /etc/shadow Detected in URI

ET WEB_SERVER ColdFusion componentutils access

ET WEB_SERVER Possible CVE-2014-6271 Attempt in Headers

ET CURRENT_EVENTS QNAP Shellshock CVE-2014-6271

ET WEB_SPECIFIC_APPS WEB-PHP RCE PHPBB 2004-1315

ET SCAN Potential VNC Scan 5800-5820

ET SCAN Potential VNC Scan 5900-5920

ET SCAN Suspicious inbound to mySQL port 3306

ET SCAN Suspicious inbound to MSSQL port 1433

ET SCAN Suspicious inbound to Oracle SQL port 1521

ET SCAN Suspicious inbound to PostgreSQL port 5432

ET SCAN Nikto Web App Scan in Progress

GPL EXPLOIT unicode directory traversal attempt

GPL EXPLOIT iisadmpwd attempt

GPL WEB_SERVER viewcode access

GPL WEB_SERVER 403 Forbidden

(b) An attack path derived by a data-driven agent

Figure 1.3: Example 1: Deriving attack campaigns from intrusion alerts is time-intensive. A data-driven ap-
proach automatically aggregates correlated alerts, discovers dependencies between alerts, and displays the
attack campaign as a path in an attack graph.

trusion alerts, system logs), software code (malware binaries decompiled or oth-
erwise), threat intelligence (feeds shared among organizations, collected through
open-source threat intelligence (OSINT)). “Features” are attributes derived from
observables that characterize adversary actions. Note that obtaining real-world
and usable observables is one of the biggest challenges in constructing data-driven
adversary models, as described later in the chapter.

• Autonomous data-driven agent: A machine learning model that learns adversary
behavior from observable data with either limited reliance on ground truth (i.e., in
a semi-supervised setting) or no reliance on ground truth (i.e., in an unsupervised
setting) [5]. It does not require frequent human intervention for (re)learning, and
is not necessarily used for detection tasks. The model enables an interpretable
(potentially) human-in-the-loop setting where a security analyst can understand
the adversary behaviors discovered by the model, and validate the model, if needed.

• Contextually meaningful: A model that produces contextually meaningful output
by correlating several temporally-linked observables from different modalities, in-
stead of viewing a single observable in vacuum.

1.1.3. EXAMPLES: MANUAL VS. DATA-DRIVEN APPROACHES
In the following, we provide examples from two different domains that highlight the ben-
efit of data-driven approaches over manual ones for understanding adversary behavior:
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EXAMPLE 1: ATTACKER STRATEGY DISCOVERY

Once an attack is detected, security analysts want to discover the strategies utilized by
the attackers to penetrate the network. An attack graph is a well-known example of an
adversary behavior model that shows the pathways followed by an attacker. Traditional
attack graphs are based on Topological Vulnerability Assessment (TVA), which rely on
expert input and system vulnerabilities to model adversary behavior [21]. Due to the
reliance on vulnerability scanning, these attack graphs are incomplete since not all vul-
nerabilities are known in advance [22]. Moreover, these attack graphs are typically huge
since they show all the hypothetical pathways an attacker may follow based on the lim-
ited situational awareness [23]. In an operational setting, however, analysts want action-
able insights into the exact path followed by the attacker.

We propose a data-driven approach to automatically discover attack campaigns cap-
tured by intrusion alert logs. Figure 1.3a shows an excerpt of intrusion alerts gener-
ated during an incident. While the alerts capture the actions of the attacker, it is time-
consuming to manually identify the relationship between the alerts and the compro-
mised assets. Our data-driven agent aggregates correlated alerts, discovers dependen-
cies between them, and displays the strategy in an alert-driven attack graph1. Figure
1.3b shows an attack campaign, demonstrating that the attacker host 10.0.254.204
performed data manipulation using an SQL injection attack after conducting a Nikto
vulnerability scan, and penetrating the vulnerable host using the CodeRed, ColdFusion,
and Shellshock exploits. Thus, our data-driven agent automates the time-consuming
aspect of alert investigation: It reduces analyst workload by efficiently triaging critical
alerts and providing actionable threat intelligence regrading attacker strategies.

EXAMPLE 2: MALWARE CAPABILITY ASSESSMENT

Another example is from the malicious software (malware) domain where analysts want
to characterize the capabilities of malware samples. The information about malware ca-
pabilities is then utilized to study malware phylogeny [24], [25], and to create behavior
catalogs, e.g., the MITRE’s Malware Behavior Catalog2. The behavior catalog is particu-
larly useful for creating behavior-based signatures.

To this end, malware analysts manually dissect malware executables, e.g., using tools
like Ghidra3, and investigate software logs resulting from malware executions. Figure
1.4a shows an excerpt of network traffic logs generated from the execution of several
malware samples. It is time-consuming to analyze the logs, and identify the captured be-
haviors, especially for novel capabilities. In contrast, we propose a data-driven agent for
automatically discovering the capabilities and creating a behavior catalog4. This behav-
ior catalog can be refreshed as new malware samples are received. We can then describe
previously unseen malware samples based on the discovered behaviors, e.g., see Figure
1.4b. The behavior profiles help to identify interesting relationships between malware
samples. For instance, the samples #29 and #17 exhibit identical capabilities and belong
to the same malware family, i.e., ZeuS-VM-AES. In contrast, the Gozi-ISFB samples #229

1Details about this approach are given in Chapter 3.
2MITRE MBC: https://github.com/MBCProject
3Ghidra: https://ghidra-sre.org/
4Details about this approach are given in Chapter 5.

https://github.com/MBCProject
https://ghidra-sre.org/
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No., Time, Source, Destination, Protocol, Length, Info

1260, 2023-09-12 20:56:47.811358, 74.125.34.46, 192.168.178.36, TLSv1.3, 1466, 
Application Data

1261, 2023-09-12 20:56:47.811373, 192.168.178.36, 74.125.34.46, TCP, 54, 64597 > 
443 [ACK] Seq=2384 Ack=465138 Win=525056 Len=0

1262, 2023-09-12 20:56:47.811416, 192.168.178.36, 74.125.34.46, TCP, 54, 64597 > 
443 [ACK] Seq=2384 Ack=467962 Win=525056 Len=0

1263, 2023-09-12 20:56:47.811486, 2a00:1450:400e:801::2003, 
2001:1c00:c04:a200:18b3:a103:7ba0:7d75, TCP, 86, 443 > 64601 [SYN,  ACK] Seq=0 
Ack=1 Win=65535 Len=0 MSS=1440 SACK_PERM WS=256

1264, 2023-09-12 20:56:47.811499, 192.168.178.36, 74.125.34.46, TCP, 54, 64597 > 
443 [ACK] Seq=2384 Ack=470786 Win=525056 Len=0

1265, 2023-09-12 20:56:47.811538, 192.168.178.36, 74.125.34.46, TCP, 54, 64597 > 
443 [ACK] Seq=2384 Ack=473610 Win=1053184 Len=0

1266, 2023-09-12 20:56:47.811585, 192.168.178.36, 74.125.34.46, TCP, 54, 64597 > 
443 [ACK] Seq=2384 Ack=476434 Win=1053184 Len=0

1267, 2023-09-12 20:56:47.811616, 2001:1c00:c04:a200:18b3:a103:7ba0:7d75, 
2a00:1450:400e:801::2003, TCP, 74, 64601 > 443 [ACK] Seq=1 Ack=1 Win=132352 Len=0

1268, 2023-09-12 20:56:47.811636, 192.168.178.36, 74.125.34.46, TCP, 54, 64597 > 
443 [ACK] Seq=2384 Ack=479258 Win=1053184 Len=0

1269, 2023-09-12 20:56:47.811882, 2a00:1450:400e:801::2008, 
2001:1c00:c04:a200:18b3:a103:7ba0:7d75, TCP, 86, 443 > 64600 [SYN,  ACK] Seq=0 
Ack=1 Win=65535 Len=0 MSS=1440 SACK_PERM WS=256

1270, 2023-09-12 20:56:47.811977, 2001:1c00:c04:a200:18b3:a103:7ba0:7d75, 
2a00:1450:400e:801::2008, TCP, 74, 64600 > 443 [ACK] Seq=1 Ack=1 Win=132352 Len=0

1271, 2023-09-12 20:56:47.813045, 2001:1c00:c04:a200:18b3:a103:7ba0:7d75, 
2a00:1450:400e:801::2003, TLSv1.3, 591, Client Hello

1272, 2023-09-12 20:56:47.813052, 2001:1c00:c04:a200:18b3:a103:7ba0:7d75, 
2a00:1450:400e:801::2008, TLSv1.3, 591, Client Hello

1273, 2023-09-12 20:56:47.817705, 2a00:1450:400e:801::2003, 
2001:1c00:c04:a200:18b3:a103:7ba0:7d75, TCP, 74, 443 > 64599 [ACK] Seq=4485 
Ack=1171 Win=67840 Len=0

(a) An excerpt from network traffic logs

• Systematic port scan

• Randomized port scans

• Malicious subnet

ZeuS-VM-AES-29

ZeuS-VM-AES-17

• Systematic port scan

• Randomized port scan

• Malicious subnet

Gozi-ISFB-229

• Broadcast traffic

• LLMNR traffic

• Systematic port scan

• Randomized port scan

Blackmoon-77 • C&C reuse

Zeus-Panda-770 • C&C reuse

Gozi-ISFB-86
• Connection spam

• HTTPs traffic

Behavior profileMalware sample

(b) Behavior profiles derived by a data-driven agent

Figure 1.4: Example 2: Discovering the capabilities of malware from software logs is time-intensive. A data-
driven approach automatically identifies the behaviors observed in software logs, and describes a malware
sample using its behavior profile.

and #86 exhibit significantly different capabilities. Peculiar still, the Blackmoon sample
#77 and the Zeus-Panda sample #770 receive instructions from the same Command and
Control (C&C) server, which is strange since malware authors typically do not share C&C
servers. In summary, these insights derived from a data-driven approach dramatically
enhance the capacity of malware analysts to handle large volumes of malware samples.

1.2. CHALLENGES OF LEARNING ADVERSARY BEHAVIOR
In this section, we describe the challenges pertaining to the design of an effective data-
driven agent capable of extracting insights regarding adversary behavior. While some of
these challenges arise from the lack of representative datasets, it is mainly the modeling
assumptions that determine the quality of the behavioral insights.

I. EXPLAINABLE ADVERSARY BEHAVIOR MODELING
Complex (black-box) ensembles of machine learning pipelines are difficult to under-
stand and validate. This is particularly relevant for data-driven agents meant for mod-
eling adversary behavior since their primary goal is to provide behavioral insights to se-
curity analysts. Existing research has shown that machine learning models learn biases
from training data, making it difficult to trust them if they are black boxes [6]. This is
why it is critical to develop white-box (interpretable) settings for security analysts so they
can understand what the model is actually learning [26]. The field of explainable artifi-
cial intelligence (XAI) is actively developing methods to convert black-box models into
their white-box counterparts by explaining their inner workings [27]. Although explain-
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able agents for modeling adversary behavior can improve practitioner trust in machine
learning, the design of such agents remains an active area of research [28].

II. UNLABELED DATASETS
Cyber data is rarely labeled in real-world settings. In addition, open-source datasets are
typically not accompanied with granular behavior-related labels, which makes it really
difficult to understand the observable behaviors in the datasets. For instance, although
the scenarios described in the CTU-13 dataset [29] state when the hosts are infected with
botnets, the network flows (Netflows) themselves are only labeled as benign or mali-
cious without any indication of the exact behavior they correspond to. For the datasets
where labels are available, they are often noisy, which makes it difficult to validate learn-
ing approaches. For example, the malware family names linked to open-source mal-
ware datasets have repeatedly been shown to be noisy and unreliable [30]. This un-
reliable nature of ground truth makes supervised learning very challenging, since the
model is learning from faulty labels. Learning paradigms with limited reliance on ground
truth are thus more realistic. Although semi-supervised and unsupervised learning tech-
niques are more suitable paradigms for learning adversary behavior, it is significantly
more challenging to design and evaluate such approaches [31].

III. INFREQUENT PATTERN MINING
Cyber data typically follows a skewed class distribution, such that the majority of the data
is associated to benign activities. For instance, the majority of the traces in network in-
duced observables, such as intrusion alerts and network traffic, often reflect benign/low-
risk behavior, while those related to malicious activities are rare. Frequency-based learn-
ing algorithms end up discarding the rare malicious activities, which defeats the purpose
of modeling adversary behavior. Learning with infrequent data remains an open prob-
lem in the machine learning community [32].

IV. FEATURE REPRESENTATION FOR BEHAVIOR CHARACTERIZATION
The quality of the behavioral insights that can be obtained from data is only as good as
the data itself. The lack of good quality datasets for adversary behavior modeling is a
well-known problem in the security community [33], [34]. In the presence of low qual-
ity datasets, it is important to consider feature selection and representation for effective
behavior modeling. An important aspect of behavior characterization is context mod-
eling. Sequential (temporal) features are effective for capturing the context in which an
observable appears. For example, while a single incorrect login attempt seems innocu-
ous, a series of irrational access attempts with mismatched port numbers point to an
ongoing brute force attack. Nevertheless, sequential features are expensive to process
and have limited algorithmic support. Effectively exploiting sequential features to learn
contextually meaningful adversary behaviors is an active area of research [35], [36].

V. EVOLVING THREAT LANDSCAPE
In cybersecurity, there is a continual arms-race between attackers and defenders, which
causes the threat landscape to evolve rapidly, making it near-impossible for data-driven
agents to rely on supervised learning, or much of a priori expert knowledge. A data-
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driven agent is expected to discover intricate behavioral patterns while adapting to the
evolving landscape. For instance, anomaly detectors commonly learn from evolving
data streams. They model the normal state of a system in order to detect deviations from
it. Over time, the normal system behavior may evolve, either due to system upgrades or
new features, which can trigger the anomaly detector to raise false alarms for normal
behavior that no longer fits its criteria of normality [37], [38]. Hence, the agent must de-
tect when the data distribution has changed sufficiently (known as concept drift), and
relearn what the “new” normal behavior looks like. Continually learning from evolving
data (in real-time) can become prohibitively expensive especially for sequential features,
and thus remains an open problem [39], [40].

VI. EVALUATION APPROACHES FOR BEHAVIOR MODELING

It is challenging to evaluate data-driven agents meant for modeling adversary behavior
from both quantitative and qualitative perspectives. From a quantitative point of view,
there is a scarcity of metrics that measure model interpretability and the quality of the
derived behavioral insights, specifically in the absence of ground truth [41]. Standard
performance metrics like accuracy and precision may not adequately capture the true
performance of a model [42]. This is why it is imperative that practitioners attempt to
understand the inner workings of the data-driven agent. This requires qualitative ap-
proaches, e.g., expert evaluation and case studies. To this aim, application-grounded
evaluation (i.e., user studies with security practitioners) is the gold-standard [43]. How-
ever, it is expensive to conduct user studies with a small pool of highly specialized per-
sonnel. Besides, security practitioners already face demanding workloads and may not
have time to participate in such evaluations. The low response rate of security practition-
ers in user studies is a well-observed phenomenon in the security literature (discussed
in Chapter 2). As such, a combination of appropriate metrics and qualitative analysis of
diverse case studies is required, which should be designed with care.

1.3. EXPLAINABLE SEQUENTIAL MACHINE LEARNING
There are three key challenges related to modeling adversary behavior in terms of mod-
eling assumptions (as described in Section 1.2): unsupervised setting, feature represen-
tation, and explainability. Since behavior has a temporal element (e.g., in Figure 1.3b),
we adopt the sequential machine learning paradigm to model adversary behavior in an
unsupervised setting. We also pay special attention to making these sequential pipelines
explainable to make it easier to extract threat intelligence about adversary behavior.

UNSUPERVISED SEQUENTIAL MACHINE LEARNING

Existing research typically assumes conditional independence between the features of
network-induced observables, e.g., intrusion alerts and network traffic. This enables
them to collapse the structural and temporal properties of the observables into statis-
tical features, which are cheap and efficient to process. Although statistical methods can
efficiently handle large volumes of observables, neglecting their temporal dependence
negatively impacts the quality of discovered patterns, since such observables are inher-
ently linked due to unobserved latent factors [44]. Moreover, subtle differences in adver-
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Figure 1.5: Sequential vs. statistical modeling: Sequence A is oscillating and Sequence B is monotonically
increasing. Both sequences have the same statistical aggregates, i.e., µ= 2.1, Me = 2, σ= 0.83, and σ2 = 0.69.

sary behavior can get lost when these features are collapsed into statistical aggregates,
which would have been otherwise visible in sequential features. Figure 1.5 presents a toy
example of two sequences (from [45]) with clear temporal differences that are lost when
collapsed into statistical aggregates. The sequences have different temporal character-
istics, i.e., one is oscillating while the other is monotonically increasing. Both sequences
can be represented by the same mean of 2.1, median of 2, standard deviation of 0.83, and
variance of 0.69.

Sequential machine learning refers to learning algorithms that support sequential
(temporal) features. Sequential features are a rich resource for behavior analysis since
the order of events often provides meaningful insights regarding the nature of events. Se-
quential features also enable modeling the context (or semantics) of adversary actions.
The neighboring activities (i.e., what happens before and after an action) can be used
to model the context. This context can be used for differentiating between similar ac-
tions that result in significantly different outcomes. For instance, recent work has shown
that sequential features are more effective in detecting intrusions than statistical features
[46]. Similarly, Figure 1.6 shows the impact of feature representation on the performance
of two clustering tasks (discussed later in Chapter 6), where sequential features clearly
outperform statistical aggregates.

Sequence learning has only recently started getting attention in the literature. This
interest can be explained, in part, due to the ubiquity of deep learning methods, such as
the Long Short-Term Memory (LSTM) and Transformer networks. The typical usage of
these methods is prominent within supervised learning scenarios (where ground truth
is available). They are also usually fed entire executables or network streams without
explicit feature selection optimized for behavior modeling [47], [48]. Within the unsu-
pervised learning paradigm, Markov chains, and finite state automata are popular se-
quence learning models. They have been sparingly used within cybersecurity, e.g., for
reverse engineering network protocols [49], and detecting attacks on cyber-physical sys-
tems [50]. However, many of these works focus on attack detection, and do not utilize
the full potential of machine learning for analyzing adversary behavior.

Nevertheless, as powerful as sequential features are, it is difficult to work with them:
First, they may be misaligned, requiring specialized distance measures to determine the
similarity between them. These distance measures often have a quadratic run-time
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(a) Univariate sine curve sequences
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(b) Multivariate network traffic sequences

Figure 1.6: Sequence clustering (using the algorithm presented in Chapter 6) achieves higher F1 scores versus
collapsing the temporal features into aggregates. (a) Clustering 5000 univariate sine curves from 4 classes. (b)
Clustering 4276 multivariate sequences of network traffic from 2 classes. All sequences have length 100.

complexity in the length of the sequence, making their use in real-time applications
nearly impossible. Second, sequential features have high dimensionality, making it dif-
ficult to visualize them, and consequently understand the results. Besides, many se-
quence learning models are considered black boxes because it is difficult for an analyst
to understand how the input data led to a model prediction.

EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)
Explainable Artificial Intelligence (XAI) refers to the tools and techniques that aim to im-
prove the understandability of machine learning models for humans [27]. There are two
key paradigms within XAI: explaining a black-box model using post-hoc explainability,
and directly learning a white-box (interpretable) model. See Chapter 2 for details.

In summary, post-hoc explanations either identify influential features for the black-
box model [51], or learn a simpler interpretable model called a “surrogate model" [52].
While promising for verifying the correctness of black-box models, the fidelity and trust-
worthiness of post-hoc explanations themselves can be subjected to attacks [53].

Alternatively, one can directly learn an interpretable model. These models are widely
believed to be less performant than black-box models [6]. Recent studies show that there
does not necessarily have to be a trade-off between explainability and performance, i.e.,
interpretable models can sometimes even achieve better performance than their black-
box counterparts [54]. In fact, when a model is interpretable, it allows humans to learn
from it, which ultimately also elevates human performance. There is an increasing em-
phasis on interpretable models that enable human-in-the-loop setting for reliable deci-
sion support [6].
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Note that keeping a data-driven model interpretable requires an innate understand-
ing of the problem domain and the machine learning methods, especially for complex
structured data, e.g., sequential features. As such, there is limited algorithmic support for
interpretable sequence learning algorithms that can operate in an unsupervised setting.

1.4. PROBLEM STATEMENT
This thesis addresses the open problem of designing explainable sequence learning meth-
ods for understanding adversary behavior that do not rely on ground truth. Below, we
motivate the research questions answered in this dissertation:

Data-driven agents that are meant to provide insights into adversary behavior are
expected to be explainable. Although Explainable Artificial Intelligence (XAI) methods
have recently gained traction within cybersecurity as a means to improve the under-
standability of machine learning models, they are not yet commonly used to understand
adversary behavior. Additionally, the available literature is fragmented across several re-
search communities, including machine learning, computer graphics, and cybersecu-
rity. The first research question systematizes the state-of-the-art literature that uses XAI
for security applications in order to consolidate the notion of explainability within cy-
bersecurity, i.e., in terms of key stakeholders (explanation users), application objectives
(explanation uses), task domains, and preferred explanation methods.

Q1: What are the challenges and opportunities for explainable artificial intelligence
(XAI) within cybersecurity?

From the broad field explainable adversary behavior analysis, we focus on modeling
the strategies employed by human threat actors, and the capabilities exhibited by au-
tomated adversaries (malware). We limit ourselves to analyzing sequences of network-
induced observable data (e.g., intrusion alerts, network logs) since they can be acquired
remotely, and are more cost-effective to obtain compared to system logs.

1.4.1. ATTACKER STRATEGY DISCOVERY
Practitioners in Security Operations Centers (SOC) struggle to keep up with the dramatic
volumes of intrusion alerts. Once a network intrusion is detected, the process to iden-
tify and reverse engineer attacker strategies (attack campaigns) is largely manual and
time-consuming. While existing alert correlation techniques reduce the volume of alerts
to analyze, they do not show attack progression. Meanwhile, traditional attack graphs
(AG) show attack progression, but rely heavily on expensive expert knowledge that is not
always available, resulting in graphs that only show a static view of the network. Learn-
ing attack graphs from data is a longstanding open problem in cybersecurity and formal
methods [55], [56]. It is challenging to discover sequential constraints within data while
mitigating issues related to a state-space explosion. Existing efforts have so far man-
aged to summarize alert datasets using sequential machine learning without explicitly
extracting attack graphs [57], [58]. The next question investigates the possibility of using
sequential machine learning to construct attack graphs directly from intrusion alerts as
a way of bridging the gap between dynamic alert management and static attack graphs.
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Q2: How can we learn attack graphs directly from intrusion alerts using interpretable
unsupervised sequence learning?

Provided that attack graphs can be learned from intrusion alerts, we hypothesize that
these ‘alert-driven’ attack graphs will capture attacker strategies reflected in the intru-
sion alerts. The next question investigates whether the alert-driven attack graphs pro-
vide more threat intelligence regarding attacker strategies compared to raw alert inves-
tigation, e.g., related to similarities and differences between different attack campaigns,
and fingerprintable attacker behavior.

Q3: What kind of threat intelligence can be extracted from alert-driven attack graphs
for discovering similarities and differences between attacker strategies?

1.4.2. NETWORK ATTACK CHARACTERIZATION
Malware analysts identify the capabilities of malware by manually tagging known be-
haviors during the investigation of decompiled malware code and dynamically created
system logs. Anecdotally, it can take them anywhere from a few minutes to several days
to investigate the capabilities of a malware sample, and automating malware capabil-
ity assessment remains an open problem. To this end, the next question investigates
whether it is possible to use unsupervised machine learning to discover the capabilities
of malware samples from their execution traces, i.e., by clustering sequences of execu-
tion traces to identify distinct behavioral groups. One key consideration in answering
this question is feature selection – the choice of features determines the granularity of
the behaviors that are visible in the clusters. We limit ourselves to identifying the capa-
bilities of malware visible in their network logs, since it is believed that network traffic
shows the core behavior of malware [59].

Q4: How can we leverage unsupervised sequence clustering to characterize the net-
work behavior of malware in order to discover similarities and differences between
malware capabilities?

The previous question considers an offline setting for malware capability assess-
ment. However, malware behavior evolves rapidly in order to evade detection. Network
traffic must be continuously monitored to accurately characterize malware capabilities
at any given time. This creates the need for a real-time sequence clustering approach
that can handle evolving data distributions (i.e., due to concept drift). Existing real-time
clustering algorithms have limited support for sequential data [60]. Besides, a highly
efficient algorithm is required to cluster the large volumes of network traffic required
for real-time behavioral analytics. Furthermore, the algorithms that support sequential
data do not provide interpretability, which is a problem in itself since the analysts need
to be able to understand the evolving behaviors captured by a cluster. To the best of
our knowledge, there is currently no way to cluster large sequential datasets in real-time
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while supporting interpretability and concept drift. The next question fills this gap, and
investigates whether such a real-time sequence clustering algorithm improves the qual-
ity of malware capability assessment compared to standard approaches.

Q5: How can we characterize the network behavior of malware in real-time using
interpretable unsupervised sequence clustering?

1.5. CONTRIBUTIONS OF THIS THESIS
This thesis tackles the challenges outlined in Section 1.2 and the questions posed in Sec-
tion 1.4 by following a two-pronged approach: 1) We develop learning algorithms capa-
ble of handling the unique challenges of cyber data, e.g., algorithms with inherent sup-
port for sequences [61], algorithms that learn from infrequent data [62], and algorithms
that learn from evolving data [39]. 2) We develop interpretable tool-chains that utilize
these learning algorithms for modeling adversary behavior. These tool-chains aim to re-
duce practitioner workload by automatically triaging large volumes of observable data,
and extracting actionable intelligence regarding adversary behavior.

We show, for multiple scenarios, that it is possible to develop interpretable machine
learning models (even for complex sequential data in an unsupervised setting) that pro-
vide more insights than just prediction probabilities, while achieving competitive per-
formance. Consequently, this thesis challenges the status quo, and makes fundamental
contributions to the fields of machine learning and cybersecurity.

The specific contributions of this thesis are as follows:

1. In Chapter 2, we propose the first comprehensive taxonomy that defines the no-
tion of explainability within cybersecurity in terms of stakeholders and application
objectives. We distill key takeaways and recommendations from the literature that
should streamline and stimulate further research in the field.

2. We also provide a tutorial that (i) shows how model designers can utilize com-
monplace explanation tools to discover weaknesses in their models (e.g., spurious
correlations), and (ii) warns about the dangers of misinterpreting post-hoc expla-
nations that may steer practitioners towards misleading conclusions.

3. We propose a myriad of explanation techniques for analysis tasks, as opposed to
the dominant paradigm of prediction tasks. The explanations elucidate the input
data and the behavioral patterns discovered by the model, e.g., by summarizing
attacker strategies in intrusion alerts (Chapter 3), by explaining the behavioral re-
lationships among malware samples (Chapter 5), and by explaining the meaning
of multivariate sequential clusters in real-time (Chapter 6).

4. In Chapter 3, we propose a suffix-based probabilistic deterministic finite automa-
ton (S-PDFA) – an interpretable sequence learning model that accentuates infre-
quent intrusion alerts and models the semantic meaning behind the alerts.

5. We develop SAGE – the first tool-chain to learn succinct and interpretable attack
graphs directly from intrusion alerts using the S-PDFA. The attack graph generator
is available publicly as a docker container.
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6. We also develop a web-based dashboard with querying and prioritization capabil-
ities to further consolidate the ‘alert-driven’ attack graphs.

7. In Chapter 4, we demonstrate the extraction of threat intelligence enabled by the
‘alert-driven’ attack graphs (pertaining to strategic differences, scripted attacks,
and fingerprintable attempts) that would have been much more costly to acquire
with a raw corpus of intrusion alerts.

8. To the best of our knowledge, we develop the first method to automatically char-
acterize the network behavior of malware samples using explainable sequence
clustering in Chapter 5. We have made our machine learning pipeline, MalPaCA,
open-source.

9. In Chapter 6, we propose SECLEDS – the first real-time interpretable algorithm
for clustering sequences in evolving data streams. Our algorithm significantly im-
proves the state-of-the-art, and is a lightweight algorithm that efficiently clusters
large volume of sequences.

10. We utilize SECLEDS as a novel network traffic sampling technique that preserves
the temporal relationships between network packets. Our sampling technique im-
proves the quality of real-time malware behavior characterization compared to
standard sampling techniques.

1.5.1. OUR APPROACH TO LEARNING ADVERSARY BEHAVIOR
This thesis addresses the challenges described in Section 1.2 as follows: The machine
learning tool-chains proposed in Chapters 3 – 6 predominantly model adversary be-
havior in an interpretable way by intelligently summarizing large volumes of network-
induced observables in order to reduce practitioner workload (Challenge I). These tool-
chains go beyond accuracy scores by providing actionable insights into adversary behav-
ior. SAGE, MalPaCA, and SECLEDS also do not rely on ground truth or expert knowledge
to discover adversary behaviors (Challenge II). To encompass a variety of data-collection
methods, we utilize industry-acquired data in Chapter 5, data generated from security
competitions in Chapters 3 and 4, and multiple open-source datasets in Chapter 6. Each
of these tool-chains extract contextually meaningful behaviors by modeling the tempo-
ral relationship between observables (Challenge IV). Moreover, the S-PDFA model pro-
posed in Chapter 3 accentuates infrequent patterns in intrusion alerts (Challenge III),
while the SECLEDS clustering algorithm proposed in Chapter 6 summarizes the con-
cepts present in evolving data streams (Challenge V).

Finally, the challenges around evaluation are addressed by conducting quantitative
and qualitative analyses. Since the tool-chains are aimed at reducing practitioner work-
load, one way to evaluate their utility is to measure the fraction of data that is sum-
marized by the methods. For instance, the utility of SAGE is quantitatively evaluated
by measuring the quality of the S-PDFA model and its alert compression power, and
it is qualitatively evaluated by investigating the attacker strategies in multiple datasets
and conducting informal user studies with senior security analysts. Similarly, MalPaCA
and SECLEDS are evaluated by first comparing their performance against existing ap-
proaches, and then analyzing case studies to delve deeper into their added utility.
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1.5.2. THESIS OUTLINE
Most technical chapters of this thesis contain an integral copy of a publication some-
times with minor changes. The chapters are independent and can be read on their own.
The publication details are given on the first page of each chapter. Because we preserve
the technical details of the chapters as their original publications, there may be over-
lap between various chapters, e.g., in the introduction, preliminaries, and datasets. The
thesis is organized as follows:

CHAPTER 2: A TAXONOMY OF EXPLAINABLE MACHINE LEARNING IN CY-
BERSECURITY
This chapter answers Q1 by systematizing the fragmented body of literature that uses
XAI for cybersecurity applications. We identify three main stakeholders (i.e., model users,
model designers, adversaries) and four application objectives (XAI-enabled user assis-
tance, XAI-enabled model verification, explanation verification & robustness, and of-
fensive use of explanations). We observe that explainability is predominantly used with
black-box models for prediction tasks. We note that the security literature sometimes
fails to disentangle the role of the various stakeholders, which makes it harder to provide
explanations to model users and designers without also exposing them to adversaries.
We provide a tutorial that shows the utility of off-the-shelf XAI methods for exposing
weaknesses in a machine learning model, but also warns model designers of the poten-
tial pitfalls of these explanations that may steer them towards misleading conclusions.
We provide recommendations for streamlining future research efforts.

This chapter has been published as: “SoK: Explainable Machine Learning for Com-
puter Security Applications” by Nadeem, A., Vos, D., Cao, C., Pajola, L., Dieck, S., Baum-
gartner, R., & Verwer, S. in IEEE European Symposium on Security and Privacy (Euro
S&P), 2023 (pp. 221-240).

PART I: INTERPRETABLE SEQUENTIAL LEARNING FOR ATTACKER STRATEGY

DISCOVERY
Part I of this thesis presents approaches to learn attacker strategies from intrusion alerts.

CHAPTER 3: ALERT-DRIVEN ATTACK GRAPH GENERATION
This chapter answers Q2 regarding learning attack graphs. We propose a novel solu-
tion for ‘alert fatigue’ by developing an interpretable sequence learning tool, SAGE, that
learns attacker strategies directly from intrusion alerts (without any expert input), and
displays them as succinct attack graphs. At the heart of SAGE lies a suffix-based proba-
bilistic deterministic finite automaton (S-PDFA) – an interpretable model that accentu-
ates infrequent severe alerts, and models the context of alerts to differentiate between
similar strategies leading to different outcomes. We also study the impact of various
modeling decisions and alert datasets on the quality of the attack graphs. We show that
SAGE compresses over 1.4 million alerts into ∼400 attack graphs, dramatically reducing
the workload of security analysts.

Parts of this chapter have been published as: “Alert-driven Attack Graph Generation
using S-PDFA.” by Nadeem, A., Verwer, S., Moskal, S., & Yang, S. J. in IEEE Transactions on
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Dependable and Secure Computing (TDSC), 2021, 19(2), 731-746, and “Enabling Visual
Analytics via Alert-driven Attack Graphs” by Nadeem, A., Verwer, S., Moskal, S., & Yang, S.
J. in ACM SIGSAC Conference on Computer and Communications Security (CCS), 2021
(pp. 2420-2422).

CHAPTER 4: ENABLING VISUAL ANALYTICS VIA ALERT-DRIVEN ATTACK GRAPHS
In addition to triaging alerts, the alert-driven attack graphs help visualize and compare
attacker strategies. This chapter answers Q3 by conducting a qualitative analysis of the
alert-driven attack graphs. We show that the attack graphs i) enable forensic analysis of
prior attacks, and ii) enable proactive defense by providing threat intelligence regarding
attacker strategies, e.g., pertaining to strategic differences, scripted attacks, and finger-
printable attempts. We also notice that while SAGE does the heavy lifting in terms of
discovering attacker strategies, it is infeasible for security practitioners to visualize each
attack graph for finding global patterns. Thus, we build an interactive web-based vi-
sual analytics dashboard to consolidate the alert-driven attack graphs. The dashboard
is equipped with filtering and prioritization capabilities to highlight alerts that might re-
quire the urgent attention of security practitioners, further reducing their workload.

Parts of this chapter have been published as: “Alert-driven Attack Graph Generation
using S-PDFA.” by Nadeem, A., Verwer, S., Moskal, S., & Yang, S. J. in IEEE Transactions
on Dependable and Secure Computing (TDSC), 2021, 19(2), 731-746, and “Critical Path
Exploration Dashboard for Alert-driven Attack Graphs” by Nadeem, A., Dıaz, S. L., & Ver-
wer in IEEE Symposium on Visualization for Cyber Security (VizSec), 2022.

PART II: EXPLAINABLE SEQUENTIAL LEARNING FOR NETWORK ATTACK ANAL-
YSIS
Part II of this thesis presents approaches to characterize the network behavior of mali-
cious software (malware/botnets).

CHAPTER 5: BEYOND LABELS: AUTOMATED BEHAVIOR PROFILING OF MAL-
WARE
This chapter answers Q4 regarding malware behavior characterization. We follow the in-
tuition that similar malware capabilities/behaviors generate similar network traffic. We
utilize abstract features extracted only from network packet headers since malware an-
alysts do not always have access to network packet payloads. We develop MalPaCA – an
explainable sequence clustering approach that partitions the unique behaviors present
in a network traffic dataset. It uses the cluster membership information to build be-
havioral profiles for malware samples that describe their capabilities. A global dendro-
gram of the behavioral profiles enables comparison between the capabilities of different
malware samples. This way, MalPaCA reduces the time required to analyze a malware
sample by automatically explaining its capabilities.

This chapter has been published as: “Beyond Labeling: Using Clustering to Build
Network Behavioral Profiles of Malware Families” by Nadeem, A., Hammerschmidt, C.,
Gañán, C. H., & Verwer, S. in Malware Analysis Using Artificial Intelligence and Deep
Learning 2021 (pp. 381-409), Springer.
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CHAPTER 6: REAL-TIME SEQUENCE CLUSTERING FOR NETWORK ATTACK

SUMMARIZATION
This chapter answers Q5 by designing an interpretable sequence clustering algorithm,
SECLEDS, that efficiently clusters large data streams with concept drift in almost lin-
ear time. We demonstrate that SECLEDS outperforms several state-of-the-art real-time
clustering algorithms, especially in the presence of concept drift. SECLEDS is an on-
line variant of the popular k-medoids algorithm that represents the clusters with actual
data instances (known as medoids). We develop an explanation method that utilizes the
medoids to incrementally explain the clusters as new data arrives. We utilize SECLEDS to
summarize network traffic in order to reduce the burden on downstream tasks. We use
SECLEDS as an intelligent temporal pattern-preserving traffic sampling technique. We
show that such a sampling technique can support network bandwidths of over 1 GB/s.
Finally, we combine SECLEDS with MalPaCA in order to support real-time malware ca-
pability assessment. By sampling traffic from real botnets, we show that SECLEDS en-
ables MalPaCA to build better behavioral profiles of bot-infected devices in real-time
compared to standard sampling techniques.

Parts of this chapter have been published as: “SECLEDS: Sequence Clustering in Evolv-
ing Data Streams via Multiple Medoids and Medoid Voting” by Nadeem, A., & Verwer, S.
in European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD), 2022 (pp. 157-173).

CHAPTER 7: CONCLUSIONS, OUTLOOK, AND SOCIETAL RELEVANCE
This chapter presents a detailed reflection on the research questions and concludes the
thesis. We also discuss future research directions that we identified during this thesis.

1.5.3. LIST OF EXCLUDED PUBLICATIONS
The following papers were published during the Ph.D. study but were not included in the
dissertation because they do not contribute significantly to the story line of the thesis.

1. Nadeem, A. (2024). Cybersecurity as a Crosscutting Concept Across an Undergrad Computer
Science Curriculum: An Experience Report. ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE).

2. Mouwen, D., Verwer, S., & Nadeem, A. (2022). Robust attack graph generation. Learning and
Automata workshop (LearnAut).

3. Nadeem, A., Rimmer, V., Joosen, W., & Verwer, S. (2022). Intelligent malware defenses. Secu-
rity and Artificial Intelligence, Springer, pp. 217-253.

4. Rimmer, V., Nadeem, A., Verwer, S., Preuveneers, D., & Joosen, W. (2022). Open-World net-
work intrusion detection. In Security and Artificial Intelligence, Springer, pp. 254-283.

5. Nadeem, A., Verwer, S., & Yang, S. J. (2021). SAGE: Intrusion Alert-driven Attack Graph Ex-
tractor. IEEE Symposium on Visualization for Cyber Security (VizSec) (pp. 36-41). IEEE.

6. Verwer, S., Nadeem, A., Hammerschmidt, C., Bliek, L., Al-Dujaili, A., & O’Reilly, U. M. (2020).
The robust malware detection challenge and greedy random accelerated multi-bit search.
ACM Workshop on Artificial Intelligence and Security (AISec), pp. 61-70.
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7. Roeling, M. P., Nadeem, A., & Verwer, S. (2020). Hybrid connection and host clustering for
community detection in spatial-temporal network data. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), Springer, pp.
178-204.
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2
A TAXONOMY OF EXPLAINABLE

MACHINE LEARNING IN

CYBERSECURITY

Explainable Artificial Intelligence (XAI) improves the transparency of machine learning
(ML) pipelines. In this chapter, we consolidate the notion of explainability within cyber-
security, and identify the challenges and opportunities for the use of XAI in cybersecurity.

We systematize the increasingly growing (but fragmented) microcosm of studies that de-
velop and utilize XAI methods for defensive and offensive cybersecurity tasks. We identify
3 cybersecurity stakeholders (users) who utilize XAI for 4 distinct objectives (uses) within
an ML pipeline. Our analysis of the literature indicates that many of the XAI-enabled user
assistance applications remove the model user from the equation. The security literature
sometimes also fails to disentangle the role of the various stakeholders – the role of model
designers is particularly minimized in the security literature. As a solution, we present
an illustrative tutorial for model designers, demonstrating how off-the-shelf XAI tools can
help with model verification. We also discuss scenarios where interpretability by design
may be a better alternative. We hope that the discussion helps to shape the future of XAI
research within cybersecurity.

This chapter is based on the paper “SoK: Explainable Machine Learning for Computer Security Applications” by
Nadeem, A., Vos, D., Cao, C., Pajola, L., Dieck, S., Baumgartner, R., & Verwer, S. in IEEE European Symposium
on Security and Privacy (Euro S&P), 2023 (pp. 221–240) [1].
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2.1. INTRODUCTION
Cybersecurity applications predominately use machine learning (ML) to maximize at-
tack detection, while minimizing false alarms and detection times. At the same time, se-
curity practitioners are interested in high-performing ML models that can also explain
their decisions [2]. However, despite the unprecedented performance achieved by pre-
vailing ML systems, they have been slow to materialize in the security industry [3]–[5].
This is because these systems are considered ‘black boxes’ due to their lack of trans-
parency – they are notoriously difficult to understand for humans because of their com-
plex configurations and large model sizes. In addition to the lack of understandability,
their correctness and robustness can also not be easily verified. For instance, the model
might learn incorrect associations (i.e., spurious correlations) from the input data, giv-
ing it the illusion of being performant without being able to generalize in practice1. The
model might also have fatal weaknesses that can be exploited by an adversary to evade
detection2. For the safety-critical environment of cybersecurity, the usage of such mod-
els is not ideal. In fact, black-box models are not even allowed in regulated fields unless
they are supplemented with explanations [10], e.g., courts do not consider model out-
puts as admissible evidence unless a forensic analyst is able to justify how the output
links to the case [11]. Moreover, the “right to explanation” in the GDPR AI act also makes
it tricky to deploy black-box models [12].

Explainable artificial intelligence (XAI)3 has been proposed to open the proverbial
‘black box’ by making the model internals more human understandable [13]. The first
mention of XAI can be traced back to van Lent et al. [14] in 2004, while the field really
started growing drastically after DARPA announced its XAI program in 2014 [15].

In this chapter, we systematize the increasingly growing microcosm of studies that
develop and utilize XAI methods for security-specific target domains. We argue that the
applications of XAI within cybersecurity are intrinsically different from other domains
because cybersecurity works with practical use cases for safety-critical and high-stakes
decision-making under adversarial settings. The lack of explainability is also an obstacle
for deployment in cybersecurity [3]. In fact, explainability has arguably always been a
core tenet in the design of ML pipelines for security [2], [16]. Even the seminal work
by van Lent et al. uses XAI to explain the behaviour of AI-controlled entities in military
simulation games [14].

In recent years, the security community has actively adopted XAI as a means to in-
crease practitioners’ trust [17]. Numerous studies have applied existing XAI methods
to security applications [18], [19]. However, recent studies have recognized their short-
comings in addressing the unique pain points of the security domain [20]. To this end,
several security-specific XAI methods [21]–[23], and evaluation criteria [24], [25] have
been proposed.

These recent developments have made XAI research within cybersecurity a fast-grow-
ing field: While there were only 42 articles about ‘explainability’, ‘learning’, and ‘cy-
bersecurity’ in 2015, that number has since skyrocketed to 2600+ in 2021, according to

1This is often referred to as the Clever Hans phenomenon [6].
2Adversarial machine learning studies these cases, see e.g., [7]–[9].
3The terms ‘explainable artificial intelligence’, ‘explainable machine learning’, and ‘interpretable machine

learning’ are used interchangeably in the literature.
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Figure 2.1: (Left): The interplay between application objectives and an ML pipeline. (Right): The interplay
between stakeholders and application objectives.

Google Scholar. This literature is fragmented across several research communities (in-
cluding machine learning, security, graphics, and software engineering) with no unified
overview. Additionally, existing works often use different terminologies interchangeably,
e.g., explicable, accountable, transparent, and understandable, making it more difficult
to track research developments.

To the best of our knowledge, this is the first SoK on explainable ML for cybersecu-
rity4. By taking a step back, we synthesize insights from the vast body of fragmented
literature and identify open areas to stimulate further research in this field.

Following the XAI definitions set forth by Roscher et al. [28], we identify three cyber-
security stakeholders, i.e., (i) model users, (ii) model designers, and (iii) adversaries who
utilize XAI for four distinct objectives within the security literature: (i) XAI-enabled user
assistance, (ii) XAI-enabled model verification, (iii) explanation verification & robustness,
and (iv) offensive use of explanations. The interplay between the stakeholders, objec-
tives, and the stages of a typical ML pipeline are given in Figure 2.1. Particularly, the
stakeholders remain central throughout our discussions. We also categorize the litera-
ture w.r.t the targeted domain (e.g., intrusion detection), ML model, and XAI method.
This taxonomy serves as a guide for finding related literature on XAI for cybersecurity.

After carefully reviewing 300+ papers, we found that XAI has been most commonly
used for providing decision support to model users – 58% of the works are classified
under XAI-enabled user assistance. User evaluation is a critical aspect of these studies to
ensure that they are usable, and are sufficiently aligned with existing analyst workflows.
However, user studies are conducted in only 14% of the cases, which is alarming since
these methods aim to work directly with model users. We propose ideas for mitigating
the lack of user studies in Section 2.5.

In addition, the stakeholders we identify have different competencies, and thus re-
quire tailored explanations [29], e.g., model designers are typically experts in ML while
model users are not. However, we identify several cases that either do not distinguish be-
tween model users and designers or do not specify any stakeholder. In contrast, model
users and adversaries interact with the explanations in similar ways, but with opposing
intent, requiring special manoeuvres to limit adversary access.

4Although Hariharan et al. [26] present a survey on XAI4cybersecurity, it covers only a small fraction of the lit-
erature. Also, the Explainable Security (XSec) framework proposed by Vigano et al. [27] is a non-conventional
take on explainability, and does not embed the traditional XAI concepts within the security context.
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Figure 2.2: Ontology showing the key concepts within Explainable Artificial Intelligence (XAI).

Furthermore, the role of model designers is substantial in cybersecurity for ensuring
the security of the model and its explanations. Yet, the reviewed literature only provides
decision support to model designers in 22.3% of the cases. We tease out the role of model
designers in Section 2.4: We present a walk-through tutorial of how model designers can
utilize off-the-shelf XAI methods to detect and remove spurious features in a network
attack detection scenario. The tutorial serves as a practical and easy starting point for
security practitioners by showing three concrete ways to debug a black-box model via
XAI. We show cases where the explanations are helpful, and cases where model design-
ers may draw misleading conclusions instead. We discuss what can go wrong when ex-
plaining black-box models, and advocate for interpretability by design.
Organization. In Sections 2.2 and 2.3, we describe the scope and the proposed taxon-
omy. In Sections 2.3.1–2.3.4, we elaborate on the main takeaways from the reviewed lit-
erature. In Section 2.4, we demonstrate how model designers can use XAI to debug their
models. In Section 2.5, we present open problems and recommendations for further XAI
research within cybersecurity.

2.2. BACKGROUND AND METHODOLOGY
Explainable machine learning. ML pipelines either use white-box models, which are
inherently interpretable, or use black-box models that are explained via post-hoc ex-
plainability. For instance, linear regression and decision trees are considered white-box,
while neural networks and random forests are considered black-box. The output of a
post-hoc explainability method is either a surrogate model, which is an interpretable
model that approximates the black-box model, or is an explanation of the black-box
model in terms of model components (e.g., feature importance) or input examples (e.g.,
counterfactuals). Additionally, an explanation can either elucidate how the model pre-
diction is affected by a single data point (local methods), or by all data points (global
methods). Note that interpretable models provide both local and global explanations.
Furthermore, most post-hoc methods can be applied to any ML model, making them
model-agnostic, while interpretable models are also referred to as model-based explana-
tions. Figure 2.2 shows the various XAI terminologies, adapted from [30].

Method and Scoping. We synthesize available literature that uses XAI for (offensive
and defensive) cybersecurity tasks. To this aim, we collect relevant literature, apply a
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reflexive/inductive thematic analysis [31] to construct a taxonomy based on common
themes (i.e., stakeholders, application objectives), and classify the literature into those
themes. The literature was collected by seven researchers. Each paper was investigated
by at least two researchers independently and discussed with all authors during weekly
meetings. The code books were updated as new categories emerged.

We collected peer-reviewed literature that has used explainable models to address
cybersecurity problems since 2014, i.e., post-DARPA, by searching popular scientific repo-
sitories (e.g., IEEE Xplore) and top security conference proceedings (e.g., Usenix). We
used known search terms, e.g., ‘explainable’, ‘interpretable’, ‘artificial intelligence’, ‘cy-
bersecurity’, ‘robust’, ‘offensive’, ‘attacks’, and ‘trustworthiness’. To handle the fragmented
literature, we expanded our search to include synonyms of the search terms at smaller
security and non-security venues (see appendix 2.7.1 for the full list of venues). We also
included older popular works that try to explain their model without explicitly using XAI,
see e.g., [16], [32], [33]. After carefully reviewing 300+ papers, we select 75 cybersecurity
studies to build the taxonomy. Since it is impossible to cover all the available literature in
the limited space, we chose representative works from each problem area. As such, there
is some overlap with usable security, safety, and robustness literature, but we mainly fo-
cus on the use of XAI within cybersecurity.

2.3. SYSTEMATIZATION
Given an ML pipeline from data collection to model deployment, explainable ML is ap-
plied once a model becomes available. In the literature, XAI has been used to explain the
model output to a human, either for supporting them in decision-making or for help-
ing them understand whether the model works as intended. In addition, the adversarial
threat landscape of cybersecurity suggests that XAI can also be used by an adversary to
gain actionable information about the model in order to strengthen their attacks. This
implies the existence of three stakeholders who interact with different phases of an ML
pipeline and accomplish distinct objectives using XAI. We classify the literature based
on the stakeholders, application objectives, target domain, model and explainer class.
Figure 2.1 shows an overview of the stakeholder objectives that can be accomplished by
applying XAI on a typical ML pipeline.

Stakeholders. We identify three stakeholders (explainees or users) who have different
intents and expertise, and thus consume explanations for distinct objectives, even when
interacting with the same ML model. The explanations are hence tailored to the specific
needs of the stakeholders.

a) Model user is defined as a broad class of personnel who utilize the ML pipeline
to improve the defence capacity of an organization, such as an analyst, developer, op-
erator, domain expert, practitioner, or end-user. To this aim, a model user utilizes XAI
techniques to better understand the output of a deployed model and to make informed
decisions, e.g., a security analyst uses XAI to analyze attack campaigns present in an in-
trusion alert dataset [34], or a malware analyst uses explanations to gain insights into
why a binary was classified as malicious [35].

b) Model designer is responsible for engineering the ML pipeline used for a security
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application, and consequently has a more intimate relationship with the model. A model
designer utilizes XAI techniques during model training and validation to verify that the
model works as intended, e.g., a malware analyst uses explanations to investigate the
causes of misclassifications, and to ensure that the model employs meaningful features
[36]. Moreover, since the ML pipeline exists in an adversarial threat landscape, the model
designer also ensures the safety and robustness of the model and its explanations [37].

c) Adversary is a human or an automated agent that intends to harm an organization
by compromising the ML pipeline. An adversary exploits XAI techniques to formulate
more efficient attacks, e.g., by discovering weaknesses in the model [38]. In addition, an
adversary may attack the XAI component of the ML pipeline itself to alter the generated
explanations [39]. Depending on the attacker model, the adversary may interact with
the explanations either during model training or after the model is deployed.

Application objectives. We classify the literature under four application objectives based
on the intended use of the XAI technique – XAI is used to provide decision support to
model users in (1); model designers in (2) & (3), and adversaries in (4).

(1) XAI-enabled user assistance covers techniques that are developed and utilized to
support model users in making informed decisions, usually with the help of visual ana-
lytics dashboards. The explanations are meant to give control back to the user by helping
them understand how/why an attack took place [40], and analyze attacker behavior [41].
Since it is the model designers who typically develop the explanations for model users,
it is essential to include model users during the evaluation process to understand the
explanation efficacy.

(2) XAI-enabled model verification studies techniques that are developed and uti-
lized to help model designers debug and validate the correctness of the ML model. These
explanations are usually more technical in nature. In the literature, XAI has primarily
been used to discover spurious/faulty features by investigating a given black-box model
using, e.g., feature importance [36], [42] or surrogate models [22], [43].

(3) Explanation verification & robustness studies techniques that are developed and
utilized to help model designers debug and validate the correctness & robustness of the
XAI component in the ML pipeline. These methods test the correctness of post-hoc ex-
planations under natural settings [44], and the robustness of explanations produced by
post-hoc methods [37] and interpretable models [45] under adversarial settings [46].

(4) Offensive use of explanations studies how adversaries exploit insights provided
by XAI techniques for enhancing their capabilities, e.g., i) by using explanations to com-
promise the privacy of the model, and ii) by using explanations to compromise the in-
tegrity and availability of the model. These attacks can be deployed during model train-
ing (e.g., poisoning attacks [47]), and model deployment (e.g., privacy attacks [48]).

Target domain. We further classify the literature according to the cybersecurity target
domain. In terms of defensive security domains, we cover: malware detection, anomaly
detection, intrusion detection, alert management, vulnerability discovery, asset prioriti-
zation, phishing detection, reverse engineering, traffic classification, and privacy protec-
tion. In terms of offensive security domains, we cover: privacy attacks (e.g., membership
inference, model inversion, and model extraction), poisoning attacks (e.g., backdoor injec-
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Table 2.1: Code book for ML model classes. ‘w.b’ represents white-box, and ‘b.b’ represents black-box models.

Model class Machine learning algorithms w.b b.b

CNN
Convolutional neural networks for image data, e.g., ResNet,
VGGnet, RPN, and inception network

✓

DNN
Deep neural networks for tabular data, e.g., MLP, and
autoencoder

✓

GNN Graph neural networks, e.g., GCN, and graph attention network ✓
SeqNN Sequential neural networks, e.g., RNN, LSTM, and transformers ✓
Kernel-SVM Support vector machine with non-linear kernel ✓

Ensemble
Ensemble of models, e.g., random forest, gradient boosting
trees, and neural network ensembles

✓

LM
Linear models, e.g., logistic (rule) regression, linear rank
regression, and linear SVM

✓

RBC
Rule-based classifiers, e.g., decision trees, regular expressions,
and BRCG

✓

NB Naive Bayes and its gaussian variant ✓

Automata
Abstract computing machines, e.g., Markov chains, and prob-
abilistic deterministic finite automata

✓

kNN K-nearest neighbors ✓ ✓

Unsupervised
Clustering algorithms, e.g., HDBSCAN, kmeans, with(out) dim-
ensionality reduction, e.g., self-organizing maps, PCA, t-SNE

✓ ✓

Table 2.2: Code book for explainer classes.

Explainer class Explanation methods

SHAP SHAP and its variants, e.g., kernelSHAP

LIME LIME and its variants, e.g., graphLIME

LEMNA Non-linear LIME variant for security applications

GNNExplainer Explanation method for graph neural networks

Grad-based
Gradient-based methods, e.g., GradCAM, saliency map,
integrated gradients, and layer-wise relevance propagation

Activation Neuron activations, activation maps and attention

Importance
Feature importance computed using tree-based splitting, feature
permutation, and SOM-based dimensionality reduction

Exemplar Example-based explanations, e.g., kNN, prototypes, protoDash

Contrastive Contrastive explanations, e.g., counterfactuals

Anomaly-score
Custom metric capturing deviation from normalcy, e.g., decoder
reconstruction loss

Visual-explanation
Explanation based on visualizing model components or model
output for human perception

Sur-RBC
Surrogate rule-based classifiers, e.g., decision trees, decision
lists, and rule sets

Sur-Mixture Surrogate mixture linear regression model

Sur-Automata Surrogate automaton model

tion), and evasion attacks (e.g., test-time adversarial perturbations). The papers address-
ing generic non-security concepts, such as anomaly detection are further categorized
according to the data sources they use, e.g., image, binary, and network traffic. To the
best of our knowledge, this is the first SoK to cover such a broad range of target domains.

Model & explainer class. Finally, we specify the ML models and XAI techniques used
in the literature. The models are grouped according to the algorithm and the input data
type accepted by the model (e.g., tabular, images). The models are further classified
coarsely as either black-box or white-box models, following the consensus of the ML
community, see Table 2.1 for the model code book. The XAI techniques (called explain-
ers henceforth) are categorized according to their underlying mechanism (e.g., model
components, examples, surrogate), see Table 2.2 for the explainer code book.

Table 2.3 provides a summary of the reviewed literature, which also showcases the
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co-occurrence of certain models and explainers. Note that the classification in Table
2.1 reflects the general level of understanding provided by the model class, while Table
2.3 shows the actual usage of the model: Some studies explicitly treat white-box models
as black-box for a model-free approach, see e.g., [18], [49]. Other studies utilize an in-
comprehensible feature set (e.g., by replacing feature names with integers), turning an
interpretable model into a black box, see e.g., [50].

The overview also helps us identify the misleading usage of certain terminologies.
For instance, some works report their methods as being ‘interpretable’ while utilizing
post-hoc explainers for black-box models, see e.g., [22], [51], [52]. Strictly speaking,
black-box models cannot be interpretable [28]. Thus, we categorize such works under
post-hoc explainability. Note that it is possible to have an interpretable model that also
uses a post-hoc explainer, but when a black-box model is explained via an interpretable
model, it is called a surrogate model.

2.3.1. XAI-ENABLED USER ASSISTANCE
The fundamental objective for employing (explainable) ML methods in security work-
flows is to provide decision support to model users. In fact, practitioners have been try-
ing to make their models understandable since before the popularity of XAI, see e.g.,
[16], [53], [54]. Over the past decade, numerous XAI applications have arisen to sup-
port model users in their decision-making when interacting with a deployed model. The
prominence of this objective is evident from the distribution of the available literature –
58% of the reviewed studies provide decision support to model users.

Within the reviewed literature, the explanations are generated for distinct purposes
at different levels of expertise even when considering a single stakeholder. For instance,
to assist software developers in understanding vulnerable code, some approaches simply
highlight the lines of code that the model thinks are vulnerable [55]–[57], while others ex-
tract human-understandable rules from the vulnerable code that can serve as actionable
intelligence for periodic scanning and control [53], [58]. Often, the goal of XAI-enabled
user assistance is to explain the input data that captures attacker behavior dynamics.
As such, these methods fall under two broad application scenarios: i) XAI is employed to
provide assistance to model users for understanding model decisions and reducing their
workload (i.e., threat prioritization, false alarm reduction, user awareness), or ii) XAI is
employed for the synthesis of new information (i.e., expert knowledge creation, reverse
engineering). Below we provide examples from the literature showing the different uses
of explanations for different model users.

Triaging and threat prioritization. Security practitioners receive an enormous influx
of cyber data that needs to be analyzed. XAI-enabled triaging techniques have been pro-
posed to reduce analyst workload by redirecting their attention to critical events. This is
crucial for Security Operations Center (SOC) analysts who often suffer from ‘alert fatigue’
caused by investigating large volumes of intrusion alerts on a daily basis [34]. Black-box
methods can often not be applied since the analysts are under contractual obligation to
review all alerts [59]. Instead, XAI techniques can reduce their workload via intelligent
alert management while enabling them to justify the model’s decisions. The intuition
is that a security analyst can use the explainable ML model as a ‘virtual assistant’ that
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Table 2.3: Summary of XAI use within cybersecurity. Rows are ordered w.r.t Objectives, Domain, and Year.
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[63] 2018 Alert management • • ✓ ✓ ✓ ✓
[34] 2021 Alert management • • ✓ ✓
[61] 2022 Alert management • • ✓ ✓ ✓
[64] 2022 Alert management • • ✓ ✓ ✓
[65] 2018 Anomaly detection (sensor) • • ✓ ✓
[66] 2018 Anomaly detection (syslogs) • • ✓ ✓ ✓
[50] 2020 Anomaly detection (syslogs) • • ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[67] 2021 Anomaly detection (network) • • ✓ ✓ ✓
[68] 2021 Anomaly detection (sensor) • • ✓ ✓ ✓ ✓ ✓ ✓ ✓
[69] 2021 Anomaly detection (sensor) • • ✓ ✓ ✓
[22] 2021 Anomaly detection (network) • • • • ✓ ✓ ✓ ✓ ✓
[40] 2022 Anomaly detection (network) • • ✓ ✓
[62] 2021 Asset prioritization • • ✓ ✓ ✓ ✓
[10] 2021 Asset prioritization • • ✓ ✓
[60] 2021 Asset prioritization • • ✓ ✓ ✓ ✓ ✓
[70] 2020 Intrusion detection • • ✓ ✓ ✓
[71] 2020 Intrusion detection • • • • ✓ ✓ ✓
[19] 2021 Intrusion detection • • ✓ ✓ ✓
[72] 2021 Intrusion detection • • ✓ ✓
[73] 2021 Intrusion detection • • ✓ ✓ ✓ ✓ ✓ ✓
[51] 2022 Intrusion detection • • ✓ ✓ ✓
[41] 2021 Malware analysis • • ✓ ✓ ✓
[16] 2014 Malware detection • • ✓ ✓
[54] 2016 Malware detection • • ✓ ✓
[74] 2017 Malware detection • • • • ✓ ✓ ✓ ✓
[21] 2018 Malware detection • • • • ✓ ✓ ✓ ✓
[35] 2019 Malware detection • • • • ✓ ✓ ✓
[75] 2020 Malware detection • • ✓ ✓ ✓
[76] 2020 Malware detection • • • • ✓ ✓ ✓
[77] 2021 Malware detection • • ✓ ✓ ✓
[78] 2021 Malware detection • • ✓ ✓ ✓
[79] 2021 Malware detection • • ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[80] 2021 Malware detection • • ✓ ✓ ✓
[81] 2022 Malware detection • • ✓ ✓ ✓ ✓ ✓
[82] 2017 Phishing detection • • ✓ ✓
[83] 2021 Phishing detection • • ✓ ✓ ✓ ✓
[84] 2021 Phishing detection • • ✓ ✓ ✓
[85] 2021 Privacy protection • • ✓ ✓ ✓ ✓ ✓
[33] 2010 Protocol analysis • • ✓ ✓
[86] 2020 Protocol analysis • • ✓ ✓
[87] 2017 Test-time perturbations • • ✓ ✓ ✓ ✓
[53] 2015 Vulnerability discovery • • ✓ ✓
[55] 2018 Vulnerability discovery • • ✓ ✓ ✓
[56] 2019 Vulnerability discovery • • ✓ ✓ ✓
[58] 2020 Vulnerability discovery • • ✓ ✓ ✓
[18] 2020 Vulnerability discovery • • ✓ ✓ ✓ ✓
[57] 2021 Vulnerability discovery • • ✓ ✓ ✓
[88] 2021 Vulnerability discovery • • ✓ ✓ ✓ ✓
[49] 2021 Uncertainty estimation • • ✓ ✓ ✓
[89] 2017 Binary analysis • • ✓ ✓ ✓ ✓
[90] 2018 Intrusion detection • • ✓ ✓ ✓ ✓ ✓
[36] 2020 Malware detection • • ✓ ✓ ✓ ✓
[23] 2021 Malware detection • • ✓ ✓ ✓
[43] 2022 Malware detection • • ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[91] 2021 Privacy protection • • ✓ ✓ ✓
[92] 2020 Traffic classification • • ✓ ✓ ✓
[42] 2021 Vulnerability discovery • • ✓ ✓ ✓ ✓ ✓
[93] 2021 Anomaly detection (sensor) • • ✓ ✓ ✓
[44] 2020 Backdoor injection • • ✓ ✓ ✓ ✓
[94] 2020 Intrusion detection • • ✓ ✓ ✓ ✓ ✓
[95] 2018 Reverse engineering • • ✓ ✓ ✓ ✓
[37] 2018 Test-time perturbations • • ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[39] 2019 Test-time perturbations • • ✓ ✓ ✓ ✓
[46] 2019 Test-time perturbations • • ✓ ✓ ✓
[52] 2020 Test-time perturbations • • ✓ ✓ ✓
[96] 2020 Test-time perturbations • • ✓ ✓ ✓
[97] 2021 Test-time perturbations • • ✓ ✓ ✓
[98] 2021 Test-time perturbations • • ✓ ✓ ✓ ✓
[99] 2021 Backdoor injection • • ✓ ✓ ✓ ✓
[47] 2021 Backdoor injection • • ✓ ✓ ✓ ✓ ✓
[38] 2021 Membership inf./model steal. • • ✓ ✓ ✓

[100] 2021 Membership inference • • ✓ ✓ ✓ ✓ ✓
[48] 2021 Model inversion • • ✓ ✓ ✓

[101] 2019 Test-time perturbations • • ✓ ✓ ✓
[102] 2021 Test-time perturbations • • ✓ ✓ ✓
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discovers meaningful patterns in large datasets and presents them to the analyst who
can then make informed decisions about which data to triage and what actions to take
next [60]. For example, Nadeem et al. [34] propose alert-driven attack graphs that show
attacker strategies learned from intrusion alerts (discussed in Chapter 3). They utilize
an interpretable suffix-based automaton model to learn contextually meaningful attack
paths. Security analysts can triage critical alerts by selecting one of the attack graphs. Van
Ede et al. [61] use an LSTM to learn the contextual meaning of alerts by capturing the
correlation between them in an attention vector. Their system clusters attention vectors,
capturing attack campaigns. Security analysts only need to analyze outlier and sampled
events from emerging clusters, drastically reducing their workload. Similar approaches
have been proposed to triage critical syslog entries for the forensic analysis of cyber at-
tacks in a federated learning setup [51], and to efficiently allocate cyber resources for
advanced persistent threat (APT) detection [62].

False alarm reduction. XAI can help security practitioners and other model users quickly
disregard false alarms by explaining why the model made a prediction. For instance,
Sopan et al. [63] propose a visual analytics dashboard to understand why an alert was
raised. The dashboard provides an explanation of the alert in the form of an approxi-
mated decision path followed by the model and a list of important features. A similar
approach is proposed in [70], [72]. Other works only show feature importance to help se-
curity analysts understand model predictions, e.g., for malware detection [79]–[81], and
anomaly detection [19], [50], [66], [68], [69]. In contrast, instead of explaining the predic-
tions, de Bie et al. [49] have proposed a metric to help security analysts weed out false or
untrustworthy predictions in regression models. They follow the intuition that instances
close to each other typically have similar predictions. Thus, by comparing the predic-
tion of a given instance with those of its k-nearest neighbours, a model user can identify
whether the prediction can be trusted.

A handful of works have used anomaly scores to automatically discard anomalous
events, thus reducing the cognitive load on general model users. For instance, Ardito
et al. [67] use anomaly scores to support medical staff in detecting when an attack has
occurred on a patient’s e-health telemonitoring device. The autoencoder-based system
avoids processing anomalies that can otherwise have devastating effects on a patient’s
health. Instead, it sends out a validation request to the medical staff. Similarly, Akerman
et al. [103] use image reconstruction loss as an indication of whether artefacts in ADS-
B video frames are false alarms. ADS-B is a protocol used by air traffic controllers to
communicate with pilots regarding surrounding objects. By highlighting what might be
false alarms, pilots can efficiently focus on the mission at hand.

User awareness & education. XAI has been utilized to increase the general awareness
of different model users for insecure behaviour deterrence. For example, to keep android
users safe, multiple works display warning signs with explanations for why an app was
blocked or marked as malicious. The explanations are constructed from influential fea-
tures extracted from apps’ permission usage [16], [78], and network traffic [54].

XAI has also been used for warning end-users when they land on potential phishing
websites to improve their overall Internet browsing behaviour [82]–[84]. For instance,
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Phishpedia [84] employs logo detection to generate visual explanations in the form of
insightful annotations on the websites. Chai et al. [83] take one step further by de-
veloping a multi-modal learning setup for more accurate phishing website detection.
Their attention-based explanations highlight the URL characters, website text, and im-
ages that were relevant for the detection.

Finally, in order to raise awareness among security analysts regarding the impact of
adversarial examples on a given ML model, Norton et al. [87] develop a visualization
suite that lets them investigate the effect of various gradient-based adversarial attacks
on image classifiers.

Expert knowledge creation. XAI can be used to synthesize human-understandable
knowledge from black-box models. For instance, Mahdavifar et al. [75] extract a sur-
rogate rule set from a pre-trained neural network that substitutes the knowledge base
of their expert system. Security analysts interact with the expert system, which uses the
rule sets to explain classification decisions. These rules are then used to classify unseen
security incidents (e.g., malware attacks and phishing attempts).

In order to address the lack of interpretability in vulnerability discovery methods
[104], Zou et al. [58] and Yamaguchi et al. [53] extract human-understandable rules from
code snippets that the model thinks are vulnerable. These rules are then used by soft-
ware developers to detect vulnerabilities in previously unseen code bases. Next to this,
counterfactual explanations have been used to automatically generate patches for vul-
nerable code. Wijekoon et al. [88] discover vulnerabilities in source code and proactively
correct them with minimal changes necessary. To this end, they use LIME to find the
nearest unlike neighbour as the most similar code snippet that is not vulnerable, which
is then used as a patch.

Reverse engineering. Reverse engineering is commonly used in software engineering
to convert black-box systems into white-box alternatives. However, there is a key dif-
ference between surrogate model learning and reverse engineering: The former extracts
an interpretable model from a black-box model, while the latter either learns an inter-
pretable model or uses a post-hoc explainer to provide insights into the input data. In this
sense, reverse engineering methods can be considered as standalone tools that provide
decision support to model users regarding input data (that capture behavior dynamics).

The most common application of reverse engineering is to consider a live system as a
black box, collect traces from it, and learn an interpretable model from these traces. This
model can be relatively easily visualized for model-based explanations about the black-
box system. For instance, Fiterau et al. [86] apply protocol state fuzzing on servers that
use the Datagram Transport Layer Security (DTLS) protocol in order to discover func-
tional and non-conformance issues in several implementations. Discoverer [32] and
Prospex [105] are two other popular systems for reverse engineering application-level
specifications of network protocols. Similarly, Cho et al. [33] learn an automaton from
botnet traffic to understand its Command and Control (C&C) channels; Lin et al. [65]
learn an automaton from sensors of a water treatment plant to detect potential sensor
malfunction, and Cao et al. [40] learn an automaton from the network traffic of a Kuber-
netes cluster to identify misbehaving pods.
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Alternatively, a black-box model can be learned from the traces, and post-hoc ex-
plainers can be used to explain the properties of the traces. For instance, Gulmezoglu
et al. [85] want to understand the type of web requests that leak side-channel informa-
tion, such as performance counters and cache occupancy. This leakage enables website
fingerprinting attacks in which users can be tracked by monitoring the unique combi-
nation of websites visited by their browsers. To this aim, they collect side-channel infor-
mation leaked from different browsers, use it to learn several ML models, and use LIME
and saliency maps to identify the leakiest web requests. Similarly, malware analysts can
use reverse engineering to understand the relationship between malware samples. For
instance, Nadeem et al. [41] build behavioural profiles of malware samples by clustering
their network activities (discussed in Chapter 5). They visualize the overlap in the mal-
ware profiles in order to discover interesting malware capabilities. Similarly, Iadarola
et al. [77] use gradient-based saliency maps to construct cumulative heatmaps for indi-
vidual malware families that show visual differences between their disassembled code.

THE ROLE OF VISUALIZATIONS IN XAI
Visual explanations are the most common way to explain the inner workings of a black-
box model. This is because human cognition prefers visual information over text for
providing decision support [106]. The reviewed literature proposes several types of vi-
sual explanations, e.g., a graph-based interpretable automaton model proposed by Lin
et al. [65] that can directly be visualized for anomaly detection, and a context-based vi-
sual analytics dashboard proposed by Alperin et al. [18] that uses LIME and t-SNE for
triaging vulnerabilities.

Visualizing the structure of tree-based models is another popular explanation method
[63], [70], [74]. Sopan et al. [63] report that the security analysts found their visualization
of an approximated decision path generally helpful. However, this is not always the case.
Angelini et al. [74] propose a visual analytics system to explain the reason for malware
detection by showing geo-locations of downloaded files and allowing a malware analyst
to drill deeper into the individual paths of a random forest. However, simultaneously ex-
ploring the paths of ∼100 decision trees does not make it any easier to decipher what the
model is doing. Instead, it is preferable to provide different explanations based on the
user’s trust, e.g., by providing less explanation when trust is high, and more explanation
when trust is low [107].

Usability is an important consideration when designing decision-support tools for
human analysts. Every explanation method has an associated cost in terms of its adapta-
tion time. Even a simple XAI tool that plots reconstruction errors and lists top-k anoma-
lies can cost analysts a full day to get used to it [19]. Generally, simpler explanations
are preferred, otherwise they can make the original task even more time-consuming [108].
In other terms, complex visualizations contribute to cognitive load, subverting effective
explanations. This is why the knowledge of existing analyst workflows is an important
predictor in the successful deployment of XAI tools [64].

In addition, visualizations are not always equivalent to effective explanations. A
model does not become interpretable just by virtue of visualizing it. For instance, the
automaton model presented in [65] requires some level of expert knowledge to correctly
interpret it. Similarly, the decision tree proposed in [72] is claimed to be interpretable
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by default since it mimics human-level decision making, while it does not appear to be
size-limited to actually be considered interpretable [109]. Furthermore, the explanations
provided by DeltaPhish [82] are incomplete because they are limited to the linear coeffi-
cients of a single SVM, while it uses an ensemble of SVMs for different features.

Takeaway 1: Visualization is not equivalent to effective explanation. XAI should re-
duce complexity, not add another layer of complex visualizations.

EXPLANATION EVALUATION VIA USER STUDIES

XAI-enabled user assistance tools can be evaluated along several dimensions, e.g., fi-
delity, understandability, efficiency, and construction cost [110]. Most of these crite-
ria can be evaluated without human involvement. However, understandability involves
multiple usability factors that can only be suitably evaluated with model users. This is
tricky because analyst time is expensive [22]. Thus, many existing works focus on eval-
uating other aspects of explanations instead, e.g., their fidelity and efficiency [19], [71],
[93]. However, an explanation is unlikely to be used in practice if it is not understand-
able, even if it is robust and correct. Therefore, we advise bringing humans back in the
loop by evaluating XAI-enabled user assistance tools with application-grounded (with
experts) or human-grounded (with lay persons) user studies [111].

In order to subvert costs, qualitative analyses are often conducted in place of user
studies [23], [34], [53], [57], [74]. This is problematic because of the involvement of mul-
tiple stakeholders – the XAI tools are typically developed by model designers for model
users. In practice, these stakeholders have different expertise. We recommend avoid-
ing qualitative analyses that only investigate the happy flows (successful explanations)
in order to circumvent the possibility of cherry-picking [112].

Takeaway 2: User studies are necessary to evaluate the usability of decision support
tools. Yet, only 14% of the reviewed literature performs user studies with a median of
8 participants.

THE IMPORTANCE OF STAKEHOLDER SPECIFICATION

We identified six cases within the reviewed literature where the roles of model users and
designers were entangled [21], [22], [35], [71], [74], [76]. These methods assume that the
same person is both, the designer and the user: 1) Angelini et al. [74] propose a visual
analytics system for helping malware analysts handle ‘grey cases’ where a model pro-
duces a classification with low confidence. The intuition is that the explanations can
either enhance the analyst’s confidence in the system if the explanations make sense,
or can trigger model improvement if they do not. 2) Kyadige et al. [76] and 3) Mathews
[35] explain the output of a malware detector to help analysts understand why a binary
was classified as malicious, and evaluate whether the model uses meaningful features. 4)
Wang et al. [71] use SHAP to help security analysts recognize the relationship between
specific features and attack types, which can guide the design of a more efficient intru-
sion detection system. 5) LEMNA [21] and 6) DeepAID [22] are specialized XAI methods
that address the unique challenges of the cybersecurity domain, e.g., non-linear deci-
sion boundaries and concept drift [113]. LEMNA is a non-linear variant of LIME, while



2

38 2. A TAXONOMY OF EXPLAINABLE MACHINE LEARNING IN CYBERSECURITY

DeepAID learns a surrogate automaton model that allows users to understand the back-
box model and improve it, if necessary.

We also identified 17 cases where the intended stakeholder was left unspecified [33],
[42], [55], [62], [66], [68], [79]–[82], [85], [86], [89], [91]–[94]. These methods appear to
heavily focus on the fidelity of the explanations instead of their understandability, re-
moving the human from the loop and potentially limiting their deployability.

Disentangling stakeholders is necessary for assessing how the proposed method trans-
lates to industry, since model users and designers are often distinct parties, working in
different departments or even different organizations. Moreover, since model users and
designers interact with distinct phases of the ML pipeline, they often have different ex-
pertise and require disparate explanations. For example, while both Russell et al. [55]
and Chakraborty et al. [42] use activation to highlight vulnerable code, the former is in-
tended for model users (explaining why a code snippet was considered vulnerable), and
the latter is intended for model designers (making sure the model highlights correct code
snippets). Even within the same domain and for the same stakeholder, the explanations
can have contrasting uses, e.g., within malware detection, some works use explanations
to warn smartphone users of malicious apps on their phones [16], [54], [78], while other
works provide more technical explanations to malware analysts regarding classifier de-
cisions [79]–[81]. Thus, explanations meant for one type of user might be too vague or
too technical for another user [29].

Takeaway 3: Effective explanations are tailored to a specific user. Model users and
designers usually have different expertise, and thus require disparate explanations.
We encourage the community to specify their intended explanation stakeholders.

2.3.2. XAI-ENABLED MODEL VERIFICATION

In fields other than cybersecurity, humans interact with AI systems with the assumption
that they are near-perfect [114]. Thus, faith or fidelity is a major constituent of trust in
the beginning, which is eventually replaced by reliance and predictability. The reverse is
true for the adversarial threat landscape of cybersecurity: Reliance and predictability are
important constituents of trust since these systems can be attacked. To this aim, model
designers have a vital role in validating the safety and correctness of the ML pipeline in
order to build trust with practitioners.

A defensive security model designer is generally concerned with two aspects of model
verification: (i) The model is robust to adversarial perturbations. (ii) The model is gen-
eralizable and works as intended. The former is covered by the adversarial learning lit-
erature that aims to limit the possibility of evasion by making models robust to adver-
sarial perturbations [7], [8]. Recent works have started to investigate the relationship
between robustness and interpretability – early evidence suggests that robust models
may be more interpretable than their non-robust counterparts [115], [116]. The intu-
ition here is that robust models are smoother and can thus be more easily interpreted by
humans. Nevertheless, further research is warranted to explore how XAI can guide the
search for tamper-proof features used to train robust models.

The latter aspect of model verification fundamentally scrutinizes the generalizability
of the model. Generalization is a highly desirable property in learning-based security
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systems as they are meant to detect previously unseen threats. XAI has been used to de-
tect spurious correlations – artefacts unrelated to the security task that allow the learning
algorithm to create shortcuts for separating the classes, instead of actually solving the
task. These artefacts make the model seem performant without being able to generalize
in practice [101], [117]. In this systematization, we expand the traditional definition of
spurious features to also include faulty features whose distributions are not representa-
tive of real-world cases [113]. In the literature, spurious/faulty feature detection is done
via conformance checking, influential feature analysis, and surrogate model analysis.

Conformance checking. Comparing classifier decisions with some notion of ground
truth can be used for model debugging. For instance, Kyadige et al. [76] and Chua et al.
[89] compare model outputs with expert knowledge as a sanity check to ensure that the
model works correctly. Specifically, given an RNN that recovers function types and sig-
natures from decompiled binaries, Chua et al. [89] use post-hoc explainers to verify that
the model is able to learn concepts comparable to an expert’s domain knowledge. To
this aim, they use t-SNE to visualize semantically similar word embeddings, and saliency
maps to understand which instructions are relevant for the recovery of the input func-
tions. Nevertheless, many security applications struggle with obtaining ground truth,
making conformance checking difficult in practice [113].

Influential feature analysis. Feature importance can be employed to investigate whether
the model uses meaningful features. For example, Chakraborty et al. [42] use LEMNA to
check whether the highlighted tokens meaningfully communicate why a code snippet
was classified as vulnerable. Similarly, Reyes et al. [94] use SHAP and Ahn et al. [92] use
feature permutation to select meaningful features for intrusion detection and network
traffic classification, respectively.

Feature importance can also be used to investigate causes of misclassifications in
order to improve the model. For example, Becker et al. [36] propose a visual analytics
system that enables malware analysts to explore how the model views malware samples
at different layers by clustering neuron activations. By visualizing the internal compo-
nents of black-box models, malware analysts can identify sources of bias and misclas-
sifications. Another example is from the domain of voice assistants: Chen et al. [91]
design a more robust voice assistant by first using SHAP to identify the type of fuzzy
words that cause a given tree ensemble-based wake-up word detector to become falsely
triggered, and then proposing countermeasures to avoid it from happening. Within con-
tinual learning settings, CADE [23] explains the cause of performance degradation of a
malware detector by reporting the features that are most affected by concept drift. It
uses the contrastive explanation method: It perturbs features to see which combination
increases the distance to the training data the most and thus is responsible for causing
drift. Finally, Marino et al. [90] identify and correct the cause of missed detections and
false alarms in IDS. They use adversarial examples that naturally serve as counterfac-
tual explanations, showing the minimal changes required in feature values to correctly
classify the (misclassified) security events. They expect that these insights will further
improve their IDS performance. However, it is unclear how they avoid over-fitting since
they utilize the knowledge of the test set to improve their model performance.
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Surrogate model analysis. Interpretable surrogate models are inferred from black-box
models that can directly be inspected for defects, e.g., Han et al. [22] learn a surrogate
automaton model, while Dolejš et al. [43] learn a rule-based surrogate model. In addi-
tion, Dolejš et al. [43] measure the interpretability of the surrogate model in terms of
its behavioural similarity to the black-box model, i.e., by checking whether they make
similar mistakes.

THE RISKS OF POST-HOC EXPLAINABILITY

As it stands, the security literature heavily relies on performance metrics (e.g., F1 score)
as a means to conduct model verification. Goodhart’s law dictates that when a measure
becomes a target, it ceases to be a good measure [118]. This is evident from the abun-
dant literature on adversarial learning, suggesting that merely relying on performance
metrics is a dangerous strategy as the model might have fatal weaknesses that an adver-
sary can exploit. Moreover, high performance on experimental data does not imply that
these methods would generalize in practice. This is because the analysis is rarely con-
ducted in operational settings due to excessive costs. Furthermore, security papers often
skip details on the operationalization of the ML pipeline, making it difficult to know if
any spurious/faulty features have been used. As such, feature attribution can be used
for identifying spurious features [117]. In fact, spurious feature detection and removal
should become more commonplace before deploying new models. We also recommend
that publicly available models be supplemented with a verification analysis to enhance
trust among practitioners. To assist model designers, we provide an illustrative tutorial
of how they can debug their models using commonplace XAI tools in Section 2.4.

Having said that, model designers must also be aware of the risks of using post-hoc
XAI for model verification: Post-hoc explanations are approximations of black-box mod-
els that either hide away details or learn different concepts altogether. For example, ex-
planations based on feature importance often disagree on the same model prediction
[119], suggesting that there is a mismatch between the explanations and what the model
actually does. A similar observation has been made for surrogate models [120]. In fact, it
is even possible to extract fair explanations from known unfair models. In regulated en-
vironments where companies are required to supplement their black-box models with
explanations, they can be abused to perform ‘fairwashing’ – promoting the false percep-
tion that a model is fair when it is actually not [120]. Therefore, it is advisable to opt
for interpretable models. Where that is not possible, it is critical to establish an equiv-
alence relationship between a model and its explanation, e.g., by learning a certifiably
equivalent surrogate model. For instance, Weiss et al. [121] and Koul et al. [122] extract
equivalent deterministic finite automata from black-box RNNs. These works fall under
the safety verification literature, see e.g., [123]–[126].

Takeaway 4: Regardless of the XAI method used to validate a model, it is vital for
safety-critical applications to establish an equivalence relation between the model
and its explainer. However, this is not yet common practice within cybersecurity.

2.3.3. EXPLANATION VERIFICATION & ROBUSTNESS
Whilst using XAI for model verification, the explanations themselves need to be verified
for correctness and robustness. Model designers are thus also responsible for conduct-
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ing explanation verification to ensure the safety of the ML pipeline. This is an important
line of work because XAI methods can sometimes trigger on input data patterns rather
than on meaningful model behaviour. For instance, Adebayo et al. [95] reset the weights
of a neural network to their initial random values and show that some gradient-based
methods still use information from the input. Therefore, evaluating the fidelity of expla-
nations becomes vital. Yet, it has sometimes been overlooked within the security litera-
ture, see e.g., [36], [70]. In addition, qualitative analysis alone does not provide sufficient
test coverage, and may even lead to cherry-picking [112]. Knowing that XAI methods can
generate arbitrary explanations, objective evaluation criteria are required to ensure that
(a) the explanation methods work [44], [93], [95], and (b) the explanations are robust to
adversarial attacks [37], [45], [127]–[130]. Warnecke et al. [24] and Ganz et al. [25] are
excellent starting points for evaluation criteria for a wide variety of post-hoc explainers
under security settings. Their criteria include descriptive accuracy, sparsity, complete-
ness, stability, efficiency, and robustness.

Fidelity evaluation. The explanation fidelity can be evaluated in several ways: Wick-
ramasinghe et al. [93] test the fidelity of their attribution method by perturbing feature
values and analyzing their impact on the explanations. Lin et al. [44] test the correctness
of different saliency explanations by deliberately injecting artefacts in the input data to
see if the explanations detect them. Specifically, they inject backdoor trigger patterns in
input images that would naturally result in misclassifications by a CNN. These backdoor
triggers serve as ground truth, i.e., the backdoor features are primarily responsible for
causing misclassifications, so a faithful explainer must be able to identify them.

Adversarial robustness. More importantly, XAI forms an additional attack vector for
adversaries within the context of cybersecurity – both post-hoc explainers [39], [46], [52],
[96]–[98] and interpretable models [131], [132] are sensitive to small adversarial pertur-
bations. For instance, Ghorbani et al. [39] investigate the effect of adversarial perturba-
tions on exemplars. Exemplars are samples from the training set whose features most re-
semble the instance to be explained. They find that while keeping the prediction equal,
they can cause the top-3 exemplars to be entirely different for perturbed samples, im-
plying that the perturbed samples enter a part of the model with drastically different
latent features. Moreover, Dombrowski et al. [46] exploit the fragility of explanations
to perform targeted attacks. They show that by adding imperceptible perturbations to
the input image, the adversary can completely control the generated explanation. These
studies identify three problematic traits of post-hoc explainers:

• Predictions and explanations can change tremendously under small perturbations;

• While keeping the explanation fixed, input samples can be perturbed to cause mis-
classifications;

• While keeping the prediction fixed, input samples can be perturbed to change the
explanation.

The fact that models and explainers can be attacked independently opens up a new
range of attacks. For instance, malware authors can evade detection while masking the
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features that they used for evasion. In this case, the generated feature importance maps
do not represent the features that are actually important for classification. Therefore, it
is imperative that model designers robustify explainers against adversarial perturbations.

Recent works have started to investigate the robustness of post-hoc explainers: Alvarez-
Melis et al. [37] investigate the smoothness of explanations around data points as a mea-
sure of robustness. Based on a local version of the Lipschitz constant, they show that the
smoothness of model-agnostic explainers, e.g., LIME and SHAP, can vary across datasets.
They also show that gradient-based explanations are approximately four times smoother
than LIME, suggesting that model-based explanations are more robust than their model-
agnostic counterparts. For counterfactual explanations, Fokkema et al. [127] show that
robust explainers cannot also be recourse sensitive5. This means that there will always
be model inputs for which the explanations suggest modifications that do not end up
changing the model’s prediction6. As a solution, they suggest using multiple counterfac-
tual explanations pointing in different directions.

A handful of works have also proposed robust variants of interpretable models, such
as linear models and decision trees. For instance, Vos et al. [45] learn efficient and robust
decision trees, while Hayes et al. [130] learn robust and differentially private logistic
regression. Note that decision trees and logistic regression are considered interpretable
as long as they are size-limited [109].

Takeaway 5: Along with ML models, explainers can also be attacked. In addition to
fidelity testing, we recommend either using a robust explainer or conducting explana-
tion verification under adversarial settings.

2.3.4. OFFENSIVE USE OF EXPLANATIONS

From the offensive security perspective, XAI can also provide decision support to adver-
saries for better attack formulation. As outlined by Papernot et al. [9], adversaries can
target multiple phases of an ML pipeline, e.g., the training phase for poisoning attacks,
and the deployment phase for evasion and privacy attacks. XAI can further strengthen
these capabilities by exposing sensitive details about the model. Adjusting the defini-
tions proposed in [9] for XAI, we organize the nefarious uses of explainers through the
lens of the classical confidentiality, integrity, and availability (CIA) triad [133]. Consid-
ering the added utility of XAI, attacks on confidentiality utilize explanations to expose
the model structure or the data on which the model was trained. Attacks on integrity
and availability utilize explanations to discover knowledge that adversaries can use to
induce specific model outcomes of the adversary’s choosing and thwart legitimate users
from accessing meaningful model outputs.

Confidentiality attacks. Explanations provide additional information to adversaries
about the inner workings of a deployed model, making it easier to reconstruct the model
and the training data. This is why explanations are seen as privacy vulnerabilities [134].

5Recourse refers to a description of feature modifications required to change the model outcome.
6Note that the inputs for which this happens might not occur in practice and that this problem does not exist

in linear unbounded models.
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Yet, little work is done to generate privacy-preserving explanations [135]. In the litera-
ture, XAI has been used to strengthen model inversion [48], membership inference [100],
and model extraction attacks [38].

Model inversion attacks enable adversaries to reconstruct training data from model
predictions [9]. Adversaries can reproduce the model more accurately by utilizing ex-
planations, e.g., Zhao et al. [48] use an XAI-aware model inversion attack to successfully
recover images from the training data. They show that feature importance maps gener-
ated from gradients and layer-wise relevance propagation (LRP) helped improve image
reconstruction and led to an increase in model inversion performance compared to only
using predicted probabilities.

Membership inference attacks assume that an adversary has some inputs and they
want to predict whether they were used during training [9]. Shokri et al. [100] utilize
gradient-based explanations to perform stronger membership inference attacks. They
use the variance of saliency maps as a feature to infer membership and show that it works
better than mere random guessing. The performance further improves when using the
full explanation instead of only the variance.

Finally, model extraction attacks enable adversaries to recover the model’s structure
and parameters from predictions [9]. Kuppa et al. [38] utilize counterfactual explana-
tions to improve their model extraction and membership inference attacks. They per-
form the model extraction attack by learning a surrogate model from known predictions
and explanations. In addition, they perform membership inference by comparing the
predictions of the target and counterfactual models to infer whether an input belonged
to the training data.

Integrity and Availability attacks. Explanations provide additional knowledge to ad-
versaries about the features to perturb in order to alter the correct functioning of the
model. This can be done while the model is already deployed (i.e., evasion attacks) or
when the model is training (i.e., poisoning and backdoor attacks).

Demetrio et al. [101] use integrated gradients to explain the importance assigned to
the various fields of binary executables. They use this information to identify a few bytes
in the malware header that need to be perturbed in order to successfully evade detection.

Poisoning attacks are specialized adversarial attacks where an adversary injects a
small percentage of perturbed data to get some desired change in the learned model.
Kuppa et al. [38] use counterfactual explanations to find the malware features that most
heavily impact the classifier decision. They use this knowledge to craft adversarial train-
ing samples that efficiently poison the model.

Backdoor attacks are specialized poisoning attacks where the adversary makes the
model sensitive to a pre-specified trigger. Severi et al. [47] use SHAP to craft backdoor
triggers in malware detectors. Utilizing the explanation, they determine which features
to poison, resulting in a success rate of up to three times higher than that of a greedy
algorithm that does not use XAI. Similarly, Xu et al. [99] inject backdoors into GNNs by
leveraging XAI techniques. They employ GNNExplainer to identify the parts of the graph
to attack, and GraphLIME to identify the node features and values to change.

In two-player competitive games, Wu et al. [102] utilize XAI to exploit the weakness
of an adversarial reinforcement learning agent. In such games, the agents take optimal



2

44 2. A TAXONOMY OF EXPLAINABLE MACHINE LEARNING IN CYBERSECURITY

actions according to their policy function, which is often learned using self-play. Using
saliency maps, the proposed adversarial agent observes which of their actions the oppo-
nent pays the most attention to, and alters them in the next time stamp, thus confusing
and manipulating the opponent’s actions.

Takeaway 6: Uniquely attributed to the security domain, adversaries may abuse ex-
planations to bolster their capabilities. Meanwhile, research on privacy-preserving
explanations that are also robust to evasion attacks is almost non-existent.

2.4. USE CASE: DEBUGGING A MALICIOUS NETWORK TRAFFIC

DETECTOR VIA XAI
Sections 2.3.2 and 2.3.3 elucidate the critical role of model designers in ensuring the
correctness and robustness of an ML pipeline. While XAI has been commonly directed
towards model users, we argue that model designers can also greatly benefit from it. In
this section, we present an illustrative tutorial on how model designers might use XAI
for model verification. Specifically, we demonstrate how the investigation of influential
features and misclassifications can identify problematic or spurious features. The ex-
periments necessitate a sufficient understanding of post-hoc explainers for correct in-
terpretation and highlight the expressive power of interpretable models.

We consider a model designer who learns an ML model to detect malicious botnet
traffic on their company’s network. They have some intuition of how a potential botnet-
infected device might behave, and thus use XAI to validate whether the model follows
that intuition, e.g., by checking whether it uses any spurious features or any strange arte-
facts from the training data. Note that we are only interested in finding spurious features:
While the selection of tamper-resistant features is also an important problem, using XAI
to discover such features remains an open problem, to the best of our knowledge.

Dataset selection. We use the open-source CTU-13 [136] as our experimental dataset.
It has 13 scenarios, each containing both benign and malicious Netflow data. The ma-
licious Netflows in each scenario are collected by monitoring virtual machines (VM) in-
fected with real malware. Each Netflow has the following features: start time (StartTime),
duration (Dur), protocol (Proto), source port (Sport), Netflow direction (Dir), destina-
tion port (Dport), state (State), source type of service (sTos), destination type of service
(dTos), total packets (TotPkts), total bytes (TotBytes), and source bytes (SrcBytes). The
dataset contains 64,855,215 benign and 1,535,374 malicious Netflows.

Experimental setup. We have developed a modular XAI pipeline in Python with six
models and four explainers. Implementation details are given in appendix 2.7.2. We
release the code for reproducibility7.

For the experiments, we train a gradient boosting machine (GBM) over all the fea-
tures of the Netflow data, as described in [136]. The GBM achieves a balanced accuracy
of 86.4%. While this model is arguably not state-of-the-art for detection purposes, it is

7XAI pipeline: https://github.com/tudelft-cda-lab/xai-pipeline

https://github.com/tudelft-cda-lab/xai-pipeline
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Figure 2.3: Global SHAP summary plot for the GBM. The y-axis shows the features ordered by their importance.
For each feature, the Netflows are shown as dots with color representing the feature’s contribution towards
model output. It shows the GBM uses Dport, Sport, and StartTime as the most important features.

a black box that concretely shows how improvements can be obtained via XAI. As such,
the analysis described in this section can be applied to any black-box model8.

We use SHAP, LIME, and LEMNA to explain the predictions of the GBM. The global
SHAP summary plot is given in Figure 2.3. The LEMNA explanations9 for the GBM are
given in appendix 2.7.4. We also learn an interpretable decision tree (see Figure 2.4) to
verify whether similar conclusions can be drawn from model-based and model-agnostic
explanations. The decision tree has nine nodes and achieves a balanced accuracy of
83.6%, which is only slightly worse than the GBM. We generate explanations for 140 Net-
flows from the test set: 50 true positives (malicious), 50 true negatives (benign), 20 false
positives (not malicious), and 20 false negatives (not benign).

2.4.1. XAI FOR DISCOVERING SPURIOUS CORRELATIONS

It is evident from the SHAP summary plot (Figure 2.3) that the GBM exhibits a strong
reliance on the destination port, source port, and start time features. We also see this
trend in the interpretable decision tree in Figure 2.4.

The reliance on the start time and source port features is problematic: Start time is
problematic because it represents Unix time, so each new Netflow will have a vastly dif-
ferent feature value compared to the ones seen in the training data, negatively impacting
the test accuracy and the model’s generalizability. For instance, a benign Netflow that
the GBM considers as malicious with a probability of 65% suddenly becomes benign
with a probability of 94% if we artificially perturb the start time to four weeks earlier.
This implies that the model learns to predict when a Netflow is generated, rather than

8We recognize that the tutorial discusses a simple use case and that the features may have more complex
relationships in reality. However, even this simple case occurs frequently in practice, as shown in [137].

9LEMNA is excluded from the analysis since it provides remarkably fewer insights for class distinction com-
pared to SHAP and LIME.
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if Dport <= 52

if StartTime <= 1313270720

yes

if Sport <= 23048

no

100% Normal if Dir == ->

if State == FSPA_FSPA 100% Normal

100% Normal 99% Botnet

if Dport <= 587 99% Normal

if StartTime <= 1313427136 if Dport <= 65499

97% Normal if State == FSPA_FSPA

60% Normal 95% Botnet

94% Normal 99% Botnet

Figure 2.4: Decision tree for the CTU-13 dataset. It predominantly considers StartTime and Sport to differenti-
ate between benign and malicious Netflows.

Feature SHAP Value
State = 54 0.2339

SrcBytes = 186 -0.1756
StartTime = 1313593252 -0.1210

Dport = 80 0.1121
Sport = 1703 -0.1113

dTos = 0 0.0465
TotPkts = 8 0.0408

TotBytes = 492 -0.0295
Proto = 0 0.0266

Dur = 8.96 -0.0247
Dir = 2 0.0

sTos = 0 0.0

Feature Value LIME Rule Weight
Sport 1703 Sport=1703 0.17

StartTime 1313593252 1313537772.00 < Start… 0.14
Dport 80 Dport = 80 0.12

TotPkts 8 TotPkts > 4.00 0.05
Proto 0 Proto=0 0.03

TotBytes 492 271.50 < TotBytes <= 4… 0.02
State 54 State=54 0.01

Dir 2 Dir = 2 0.01
Dur 8.96 0.13 < Dur <= 9.01 0.01

SrcBytes 186 83.50 < SrcBytes <= 1… 0.0

Feature SHAP Value
Dport = 3389 0.5387

State = 16 0.0495
Sport = 4505 -0.0488

StartTime = 1313571534 -0.0475
dTos = 0 0.0274

TotPkts = 10 0.0209
TotBytes = 1076 -0.0077
SrcBytes = 437 -0.0057

Dur = 60.95 0.0032
Proto = 0 0.0

Dir = 2 0.0
sTos = 0 0.0

Figure 2.5: (Left): SHAP explanation for a false positive Netflow. (Middle): LIME explanation for a false positive
Netflow. (Right): SHAP explanation for a false negative Netflow. Orange rows contribute positively, and blue
rows contribute negatively towards the malicious label.

the Netflow’s maliciousness.

Source port is problematic because it typically gets arbitrarily assigned by the oper-
ating system, and as such should not be indicative of malicious behaviour. However, the
CTU-13 dataset uses only a small subset of VM-related port numbers [138], which in-
advertently becomes indicative of malicious behaviour. This is a common shortcoming
of lab-collected datasets [117]. Thus, it can also be considered an artefact of the experi-
mental data.

It is noteworthy that start time and source port are perfectly valid features if the test
set comes from CTU-13. Since we cannot expect real data to follow the same patterns
as CTU-13, we consider them spurious features. This type of analysis is not common
practice in the security literature: Several recent and relatively popular works utilize the
identified faulty features, see e.g., [139]–[141]. Since these features are tightly coupled
with the prediction label, standard feature selection methods are unlikely to get rid of
them. This is where XAI can help to detect spurious features, and even improve data
collection methods [142].

The next logical step is to retrain the model without the spurious features. Doing so
lowers the balanced accuracy of the GBM and decision tree to 74.4% and 58.1%, respec-
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tively. We argue that this is an improvement since the faulty features were making the
classifier appear performant without being able to generalize in practice. Because cyber
data is often noisy, sole reliance on performance metrics is generally meaningless, espe-
cially when spurious features are involved. Therefore, we recommend that like ablation
studies, the identification and removal of spurious features should become a fundamen-
tal step in the design of ML pipelines.

2.4.2. XAI FOR FINDING CAUSES OF MISCLASSIFICATIONS
We find that post-hoc explanations must be supplemented with input data statistics to
make meaningful inferences regarding the causes of misclassifications. For instance, we
analyze a randomly sampled false positive Netflow. The local SHAP explanation (see
Figure 2.5a) shows a heavy reliance on the state value of 54 and source bytes of 186. This
information in itself is likely insufficient for an analyst to understand why the model
made this mistake. However, combining this information with an analysis of the training
data reveals that these feature values appear almost exclusively in malicious samples,
thus identifying the cause of the false positive.

In another example, we analyze a randomly sampled false negative Netflow. The lo-
cal SHAP explanation (see Figure 2.5c) shows a substantial reliance on the destination
port 3389, which is associated with the remote desktop protocol (RDP). Internet-facing
RDP servers commonly fall victim to cyber attacks10, making it a likely indicator of suspi-
cious activity. Yet strangely, the port 3389 has contributed heavily towards the opposite.
Analyzing the training data reveals that RDP is mostly used by benign hosts in the CTU-
13 dataset, due to which the model incorrectly classifies a malicious Netflow as benign.
These examples reveal what appear to be sampling and confounding biases in the CTU-
13 dataset.

Takeaway 7: Feature importance explanations do not provide the full picture in iso-
lation. Instead, actionable insights can be obtained by combining the input data to-
gether with post-hoc explanations.

2.4.3. UTILITY OF DIFFERENT XAI TYPES
All explanations are not created equal. Since XAI is meant to explain the behaviour of
a model, testing the predictability of the model on a new (previously unseen) data in-
stance, given a few explanations provides an estimate of the explanation’s utility. In this
sense, there is a clear divide between interpretable models and post-hoc explanations.

For a given interpretable model, such as the decision tree in Figure 2.4, it is almost
trivial to predict how a new instance will be classified by following the decision path.
However, since post-hoc explanations are mere approximations of the black-box model,
it is difficult to predict how the GBM would classify a new instance, given its LIME and
SHAP explanations. For instance, the local SHAP explanations provide feature impor-
tance with equality relationships (e.g., see Figure 2.5a), which makes it impossible to
predict how a new instance will be classified, even if it resembles the instances for which
explanations are already available. This is because the explanations do not reveal the
impact of slight feature perturbations on the classification. We encountered almost the

10http://darktrace.com/blog/botnet-malware-remote-desktop-protocol-rdp-attack

http://darktrace.com/blog/botnet-malware-remote-desktop-protocol-rdp-attack
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same problem for LIME even though it considers a local neighbourhood to prevent this
very issue.

Moreover, post-hoc explainers compute their local neighbourhoods differently, caus-
ing explanations for the same model prediction to differ. Going back to the false positive
example, SHAP (Figure 2.5a) heavily relies on the state feature, while LIME (Figure 2.5b)
assigns a very low importance to it. Also, while SHAP considers dTos to be important, it
does not even appear in LIME. This disagreement problem between feature attribution
methods has recently been discussed by Krishna et al. [119]. Based on their metric, there
is a 25.5% disagreement rate between the top-3 features of SHAP and LIME for our 140
Netflows. This exemplifies the mismatch between the black-box model and its explana-
tions and makes a strong case for learning interpretable models from the get-go.

The correct interpretation of post-hoc explanations often relies on how well the ex-
plainee understands the underlying mechanisms of the method, reiterating the impor-
tance of user studies in explanation evaluation. For instance, while both local-SHAP and
LIME show feature importance, their explanation interpretation can be very different.
We found that LIME assigns very low weights to all features for almost all the Netflows.
This does not imply that similar Netflows should have the same label, as one would in-
tuitively expect, but rather that LIME has low confidence about the prediction given its
local surroundings. Thus, an unsuspecting analyst might draw misleading conclusions
by overly relying on intuition rather than the understanding of the method [112].

Takeaway 8: LIME and local-SHAP are both feature attribution methods but their
interpretations can be different. Working knowledge of post-hoc explainers is cardinal
for correctly interpreting the explanations.

2.5. DISCUSSION AND OPEN PROBLEMS
While more than half of the reviewed literature focuses on model users, there is limited
research on methods that model adversary behavior – the vast majority of the literature
aims to explain model decisions, instead of generating threat intelligence regarding ad-
versary behavior. We believe that this is a missed opportunity, and that there should be
more research into this topic. We present several solutions to fill this gap in Chapters 3 –
6. Below, we provide broader recommendations for future research directions:

User study crisis. The lack of qualitative validation among decision support papers is
alarming. While model users are the most common consumers of explanations in the
security literature, they have regularly been excluded from the evaluation process (Take-
aways 1-3, 8). The evaluation of robustness and fidelity does not guarantee usability,
which is arguably an equally important trait of good explanations. However, usability
is rarely taken into account when designing evaluation criteria for effective security ex-
planations, see e.g., [24], [25]. Since analyst time is expensive, it may be beneficial to
develop proxy tasks and metrics on which to evaluate new research instead. A hand-
ful of studies have incorporated human cognition in their metric definition. For ex-
ample, Islam et al. [143] quantify the complexity of post-hoc explanations in terms of
cognitive chunks, and Dolejš et al. [43] quantify the added opaqueness of explanations
w.r.t. known interpretable models. Alternatively, in the absence of security practitioners,
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newly developed tools could be peer-reviewed regarding their usability, e.g., during con-
ference artefact evaluation sessions. Furthermore, disentangling and specifying stake-
holders should also provide clarity regarding the intended subjects for user studies.

Robustness vs. interpretability. The role of model designers is minimized in the se-
curity literature with merely 22.3% of the literature focused on model & explainer ver-
ification (Takeaways 4-5, 7-8). Since trust manifests inherently differently in the se-
curity domain, specialized XAI methods are needed to bolster practitioner trust in ML
pipelines. While the tutorial in Section 2.4 helps model designers get started with XAI-
enabled model verification, the role of XAI in tamper-resistant feature selection and ro-
bust model learning remains unclear. Another related question is regarding the relation-
ship between robustness and interpretability: Initial research eludes to robust models
being more interpretable than non-robust models [115], requiring further research in
this direction.

Price of interpretability. If interpretable surrogate models are to be used for model
verification, they must be certifiably equivalent to their black-box parent models for
the evaluation to be meaningful. In this sense, directly learning a robust interpretable
model (as opposed to learning a black-box model explained by a surrogate) may prove
more helpful in establishing trust. Yet, only 25.9% of the studies we reviewed adopt inter-
pretable models, while the majority of them focus on applying post-hoc explainability.
The discussion regarding the ‘price of interpretability’ (measuring the trade-off between
explainability and performance) [144] requires special considerations in cybersecurity.
We believe that the presence of an adversary and the prevalence of spurious features
will likely make this trade-off less pronounced compared to other fields. However, fur-
ther research is warranted in this area. Furthermore, it may be possible to exploit the
power of post-hoc explanations without losing interpretability: Black-box models may
be used as a benchmark to guide the search for better interpretable models. Post-hoc
explanations can provide actionable intelligence regarding features and parameters for
interpretable models. In this way, we view post-hoc explainers and interpretable models
as complementary methods rather than as alternatives.

Privacy-preserving explanations. In addition to attacking the XAI module, adversaries
can also utilize explanations, much like model users, but with a devious intent (Takeaway
6). This makes it difficult to provide explanations to model designers and model users
without the adversaries also taking advantage of them. There is some preliminary work
that studies the trade-off between explainability and privacy in order to select privacy-
preserving explanations [135]. However, such explanations could still be used to bolster
attacks on model integrity and availability. Therefore, this is also an urgent avenue for
future research.

2.6. CONCLUSIONS
We systematize available research that utilizes explainable models for solving security
problems. We identify 3 cybersecurity stakeholders (users) that employ XAI for 4 re-
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search objectives (uses) within a typical ML pipeline. Distilled from a diverse body of
literature, this overview streamlines existing research on explainability within cyberse-
curity, and provides a starting point for practitioners.

While most of the reviewed literature provides XAI methods for model users, they
are usually eliminated from the evaluation of the explanations. Also, there are limited
studies that attempt to understand adversary behavior for the generation of threat intel-
ligence. We also found evidence that the security literature does not always disentangle
model users and designers. In addition, only 22.3% of the security literature focuses on
model & explanation verification. This is problematic because model designers have a
critical role in ensuring the correctness and security of an ML pipeline. With regards
to model correctness, we specifically provide a walk-through tutorial of how model de-
signers can successfully detect and discard spurious features using SHAP & LIME. At
the same time, the example also exposed the disagreement problem between local ex-
planations and showed that SHAP & LIME have different interpretations. Thus, model
designers must have a working knowledge of the explanation method in order to draw
correct conclusions.

Moreover, adversaries can not only attack the XAI component but can also utilize
explanations to compromise the confidentiality, integrity, and availability of a model.
Meanwhile, research on limiting these abuses is almost non-existent. Finally, the lack
of user validation in XAI-enabled user assistance, the shortage of automated threat in-
telligence generation studies, and the scarcity of interpretability by design shows the
substantial margins of improvement within the field of XAI for cybersecurity.

Acknowledgments. We thank Daniël Meinsma for his contributions to the literature
review, and the anonymous reviewers for their feedback. This work was made possible
by TTW VIDI project 17541 (LIMIT) and EU H2020 project 952647 (AssureMOSS).

2.7. SUPPLEMENTARY MATERIAL

2.7.1. SELECTED LITERATURE
The literature related to explainability and cybersecurity has increased dramatically since
2014, see Figure 2.6. This literature is fragmented across various Computer Science do-
mains. Table 2.4 provides a list of venues used for literature selection.

2.7.2. XAI PIPELINE DESIGN
We develop a modular XAI pipeline in Python (since it has in-built support for many
popular models and explainers). The pipeline has three components: (1) The parser
parses the input data (train and test) in either CSV or NumPy array format. The user can
specify to the parser which feature fields should be read by means of providing a config-
uration file for the parser. (2) The classifiers are implemented as a wrapper over the ML
algorithms provided by scikit-learn. We currently support decision trees, logistic re-
gression, explainable boosting machines, random forests, gradient boosting machines,
and SVMs. The wrapper specifies the ML algorithm and its hyperparameters. (3) Sim-
ilarly, the explainers are also implemented as wrapper functions and currently provide
support for SHAP, LIME, LEMNA, and ELI5. The modules can be extended for added
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Figure 2.6: Prevalence of XAI literature in cybersecurity from 2014-2021.

Feature SHAP Value
State = 54 0.2339

SrcBytes = 186 -0.1756
StartTime = 1313593252 -0.1210

Dport = 80 0.1121
Sport = 1703 -0.1113

dTos = 0 0.0465
TotPkts = 8 0.0408

TotBytes = 492 -0.0295
Proto = 0 0.0266

Dur = 8.96 -0.0247
Dir = 2 0.0

sTos = 0 0.0

Feature Value LIME Rule Weight
Sport 1703 Sport=1703 0.17

StartTime 1313593252 1313537772.00 < Start… 0.14
Dport 80 Dport = 80 0.12

TotPkts 8 TotPkts > 4.00 0.05
Proto 0 Proto=0 0.03

TotBytes 492 271.50 < TotBytes <= 4… 0.02
State 54 State=54 0.01

Dir 2 Dir = 2 0.01
Dur 8.96 0.13 < Dur <= 9.01 0.01

SrcBytes 186 83.50 < SrcBytes <= 1… 0.0

Feature Coefficient
dTos 1.0
sTos 2.46E-10

StartTime 4.53E-11
Sport -4.33E-11
Dir -4.06E-11

State 3.77E-11
Dur 2.07E-11

Proto -1.93E-11
Dport -5.96E-12

Figure 2.7: Post-hoc explanations for a false positive Netflow (including spurious features). (Left): SHAP. (Mid-
dle): LIME. (Right): LEMNA.

Feature SHAP Value
State = 54 -0.3583
Dur = 8.96 -0.2450

TotBytes = 492 -0.1873
SrcBytes = 186 -0.1518

Dport = 80 0.0850
dTos = 0 0.0569

TotPkts = 8 0.0359
Proto = 0 0.0023

Dir = 2 0.0023
sTos = 0 0.0

Feature Value LIME Rule Weight
TotPkts 8 TotPkts > 4.00 0.13
State 54 State=54 0.11
Dport 80 Dport = 80 0.10
Dur 8.96 0.13 < Dur <= 9.01 0.10

TotBytes 492 271.50 < TotBytes <= 4… 0.06
SrcBytes 186 83.50 < SrcBytes <= 1… 0.05

sTos 0 sTos <= 0.00 0.0
dTos 0 dTos <= 0.00 0.0
Proto 0 Proto=0 0.0

Dir 2 Dir = 2 0.0

Figure 2.8: Post-hoc explanations for a false positive Netflow (after removing spurious features). (Left): SHAP.
(Right): LIME.

Feature SHAP Value
Dport = 3389 0.5387

State = 16 0.0495
Sport = 4505 -0.0488

StartTime = 1313571534 -0.0475
dTos = 0 0.0274

TotPkts = 10 0.0209
TotBytes = 1076 -0.0077
SrcBytes = 437 -0.0057

Dur = 60.95 0.0032
Proto = 0 0.0

Dir = 2 0.0
sTos = 0 0.0

Feature Value LIME Rule Weight
Dport 3389 Dport = 3389 0.18

StartTime 1313571534 1313537772.00 < Start… 0.13
Sport 4505 Sport=4505 0.09

TotPkts 10 TotPkts > 4.00 0.07
State 16 State=16 0.04
Proto 0 Proto=0 0.03

SrcBytes 437 SrcBytes > 186.0 0.03
TotBytes 1076 TotBytes > 494.25 0.02

Dir 2 Dir = 2 0.01
Dur 60.95 Duration > 9.01 0.01

Feature Coefficient
Dir 0.2574

Proto 0.2440
Dport 0.2404
Sport 0.2035
Dur 0.1680

State 0.1116
StartTime 0.0810

sTos 0.0241
dTos -0.0179

Figure 2.9: Post-hoc explanations for a false negative Netflow (including spurious features). (Left): SHAP. (Mid-
dle): LIME. (Right): LEMNA.
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Feature SHAP Value
Dport = 3389 0.1542

SrcBytes = 437 0.0707
TotBytes = 1076 -0.0591

dTos = 0 0.0394
State = 16 0.0312

TotPkts = 10 0.0200
Dur = 60.95 -0.0153

Proto = 0 -0.0014
Dir = 2 0.0003

sTos = 0 0.0

Feature Value LIME Rule Weight
Dport 3389 Dport=3389 0.20

TotBytes 1076 TotBytes > 494.25 0.15
TotPkts 10 TotPkts > 4.00 0.14
State 16 State=16 0.04

SrcBytes 437 SrcBytes > 186.0 0.03
Dir 2 Dir=2 0.01

sTos 0 sTos <= 0.0 0.0
dTos 0 dTos <= 0.0 0.0
Proto 0 Proto=0 0.0
Dur 60.95 Duration > 9.01 0.0

Figure 2.10: Post-hoc explanations for a false negative Netflow (after removing spurious features). (Left): SHAP.
(Right): LIME.

Table 2.4: Venues explored for literature discovery from various domains.

Domain Type Venue

Cybersecurity Conference ACM Conference on Computer and Communications Security (CCS)
Cybersecurity Conference Asia Conference on Computer and Communications Security (AsiaCCS)
Cybersecurity Conference European Symposium on Research in Computer Security (ESORICS)
Cybersecurity Conference European Symposium on Security and Privacy (Euro S&P)
Cybersecurity Conference IEEE Symposium on Security and Privacy (S&P)
Cybersecurity Conference International Conference on Security and Privacy
Cybersecurity Conference Italian Conference on Cybersecurity (ITASEC)
Cybersecurity Conference Network and Distributed System Security (NDSS)
Cybersecurity Conference USENIX Security Symposium
Cybersecurity Journal Computers and Security
Cybersecurity Journal IEEE Transactions on Dependable and Secure Computing (TDSC)
Cybersecurity Journal IEEE Transactions on Information Forensics and Security (TIFS)
Cybersecurity Journal IEEE Transactions on Networks and Systems Management (TNSM)
Cybersecurity Workshop ACM workshop on Artificial Intelligence and Security (AISec) @ CCS
Cybersecurity Workshop ACM workshop on Wireless Security and Machine Learning
Cybersecurity Workshop AI-enabled Cybersecurity Analytics and Deployable Defense (AI4Cyber)
Cybersecurity Workshop IEEE Symposium on Visualization for Cybersecurity (VizSec) @ VIS
Cybersecurity Workshop Machine Learning for Cyber Security (MLCS) @ ECML/PKDD
Cybersecurity Workshop Workshop on Artificial Intelligence and Cybersecurity (AI-Cybersec)
Cybersecurity Book Malware Analysis using Artificial Intelligence and Deep learning (Springer)
Machine learn. Conference AAAI Conference on Artificial Intelligence
Machine learn. Conference ACM Conference on Knowledge Discovery & Data Mining (SIGKDD)
Machine learn. Conference Conference on Neural Information Processing Systems (NeurIPS)
Machine learn. Conference International Conference on Computer Vision
Machine learn. Conference International Conference on Intelligence Virtual Agents
Machine learn. Conference International Conference on Machine Learning (ICML)
Machine learn. Conference International Conference on Pattern Recognition
Machine learn. Conference International Joint Conference on Artificial Intelligence (IJCAI)
Machine learn. Conference International Joint Conference on Neural Networks (IJCNN)
Machine learn. Journal Advances in Intelligent Systems and Computing (Springer)
Machine learn. Journal Human-Intelligent Systems Integration (Springer)
Machine learn. Journal Nature Machine Learning
Machine learn. Journal Neural Computing and Applications (Springer)

Computer Sci. Conference
ACM Symposium on High-Performance

Parallel and Distributed Computing (HPDC)
Computer Sci. Conference Conference on Human Factors in Computing Systems (CHI)
Computer Sci. Conference International Conference on Enabling Technologies (WETICE)
Computer Sci. Conference International Conference on Human System Interactions (HSI)
Computer Sci. Journal ACM Computing Surveys
Computer Sci. Journal Annual Conference on Industrial Electronics Society (IECON)
Computer Sci. Journal Electronics (MDPI)
Computer Sci. Journal Expert Systems with Applications (Science Direct)
Computer Sci. Journal IEEE Access
Computer Sci. Journal Lancet Digital Health (Elsevier)
Computer Sci. Journal Procedia Computer Science (Science Direct)
Computer Sci. Journal Quality and Reliability Engineering (Wiley)

Software Engg. Conference
ACM Joint European Software Engineering Conference and

Symposium on Foundations of Software Engineering (ESEC/FSE)

Software Engg. Conference
ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems (MODELS)
Software Engg. Journal ACM Transactions on Software Engineering
Software Engg. Journal ACM Transactions on Software Engineering and Methodology

Software Engg. Workshop
International workshop on Continuous Software

Evaluation and Certification (IWCSE) @ ARES

support of custom parsers, models, and explainers. For the sake of reproducibility, the
pipeline saves the model, predictions, and explanations in a file.
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2.7.3. LEMNA IMPLEMENTATION
We based our implementation of LEMNA on the code by Warnecke et al. [24]. For the
explanation generation, we use the following settings: N = 500,K = 6,S = 10. The values
of N and K are based on the original LEMNA paper. We do not need fused Lasso since our
features do not have a temporal structure. Therefore we set S to a high value, effectively
turning off the fusing effect. We expect LEMNA to perform better on tabular data when
using feature discretization. However, optimizing LEMNA is out of the scope of this work
as we are only using existing methods for model debugging.

2.7.4. EXPLANATIONS FROM THE TUTORIAL
Figures 2.7 and 2.8 show the post-hoc explanations for the false positive Netflow with and
without the identified spurious features, respectively. Figures 2.9 and 2.10 show the post-
hoc explanations for the false negative Netflow with and without the identified spurious
features, respectively.
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ALERT-DRIVEN ATTACK GRAPH

GENERATION

Learning about attacker strategies, such as their tactics, techniques, and procedures (TTPs)
is largely a manual task. Attacker strategies are typically represented using attack graphs
(AG). Existing techniques for AG generation cannot directly be used to monitor ongoing at-
tacks in Security Operations Centers (SOCs) since they do not show the dynamic strategies
being employed by the attackers. Meanwhile, SOC analysts defend against cyber attacks
by monitoring millions of intrusion alerts on a daily basis, often leading to ‘alert fatigue’
and reduced productivity.

Instead of deriving AGs based on system vulnerabilities, this work advocates the direct use
of intrusion alerts. We propose SAGE, an interpretable sequence learning pipeline that au-
tomatically constructs AGs from intrusion alerts without a priori expert knowledge. SAGE
exploits the temporal and probabilistic dependence between alerts in a suffix-based prob-
abilistic deterministic finite automaton (S-PDFA) – a model that brings infrequent severe
alerts into the spotlight and summarizes paths leading to them. Attack graphs are ex-
tracted from the model on a per-victim, per-objective basis.

SAGE is thoroughly evaluated on three open-source intrusion alert datasets collected throu-
gh security testing competitions in order to analyze distributed multi-stage attacks. We
show that SAGE compresses over 1.4 million alerts into ∼400 AGs (a reduction of 99.97%),
in under 5 minutes.

This chapter is based on the papers “Alert-driven Attack Graph Generation using S-PDFA.” by Nadeem, A.,
Verwer, S., Moskal, S., & Yang, S. J. in IEEE Transactions on Dependable and Secure Computing (TDSC), 2021,
19(2), 731-746 [1], and poster “Enabling Visual Analytics via Alert-driven Attack Graphs” by Nadeem, A., Verwer,
S., Moskal, S., & Yang, S. J. in ACM SIGSAC Conference on Computer and Communications Security (CCS), 2021
(pp. 2420-2422) [2].
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3.1. INTRODUCTION
Alert investigation is one of the main responsibilities of security operations centers (SOC),
and it is largely used for reactive defense capabilities. However, alert management can
also be used to derive proactive cyber threat intelligence (CTI), e.g., by deducing attacker
strategies specific to a network under observation. The biggest hurdle to this aim is the
large volume of alerts that SOCs receive on a daily basis: Alert fatigue is one of the most
prevalent problems faced by analysts working in SOC environments [3]. A survey con-
ducted during the RSA conference in 2018 revealed that security analysts receive more
than a million alerts each day, many of which they cannot even address the same day [4].
Alert correlation reduces the volume of alerts by grouping alerts from the same attack
stage [5]–[7]. However, it does not provide a bigger picture of the attack, and the subse-
quent analysis to obtain actionable insights into attacker strategies is still manual and
labor-intensive.

Attacker strategies are often represented via attack graphs, which are commonly used
for visual analytics [8]–[10] and forensic analysis [11], [12]. An attack graph (AG) displays
all the paths an attacker can exploit to penetrate a network. Vertices in a typical attack
graph represent privileges gained by an attacker, and the edges represent the vulnerabil-
ities that enabled the attacker to gain those privileges [13]. Existing AG generation ap-
proaches fall under the Topological Vulnerability Analysis (TVA) [14] that requires exten-
sive amount of expert knowledge and published vulnerability reports [15], [16]. As such,
expert-driven AG generation is time-consuming, and it is ineffective to constantly rely on
vulnerability scanning – the delayed nature of vulnerability reporting leaves blind-spots
in an organization’s security [17]. Additionally, shared threat intelligence reports are of-
ten not directly relevant to one’s own network [18]. To the best of our knowledge, it is still
an open problem to construct attack graphs that provide directly relevant intelligence
regarding attacker strategies without expert input.

In this chapter, we formally define our proposed system, SAGE (IntruSion alert-driven
Attack Graph Extractor) [19]. SAGE generates AGs directly from intrusion alerts without
a priori vulnerability and network topology information. It adopts an interpretable se-
quence learning pipeline to exploit the temporal and probabilistic dependence present
between intrusion alerts. SAGE can directly augment existing intrusion detection sys-
tems (IDS) for triaging large volumes of alerts to produce only a handful of AGs. Figure
3.1 shows the boxology diagram for SAGE, according to the modular design patterns by
van Bekkum et al. [20].

A particular challenge for machine learning-enabled attacker strategy identification
is the scarcity of severe alerts – the majority of alerts are associated to network scans,
which are not interesting for an analyst due to their widespread use [21]. Therefore,
frequency analysis methods like frequent pattern mining and longest common subse-
quence are inherently unsuitable, since they discard infrequent behavior. Instead, we
learn an interpretable suffix-based probabilistic deterministic finite automaton (S-PDFA)
using the Flexfringe automaton learning framework [22]. We tune the learning algorithm
and transform the alert data such that the resulting model accentuates infrequent severe
alerts, without discarding any low-severity alerts. The model summarizes attack paths
leading to severe attack stages. It can distinguish between alerts with the same signa-
ture but different contexts, i.e., scanning at the start and scanning midway through an
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Figure 3.1: SAGE takes intrusion alerts as input to generate attack graphs. Intrusion alerts are transformed
into episode sequences (Section 3.3.1). An interpretable S-PDFA model is learned from those sequences (Sec-
tion 3.3.2). The sequences are replayed through the S-PDFA and transformed into targeted attack graphs (Sec-
tion 3.3.3).

attack are treated differently, since the former indicates reconnaissance and the latter
indicates attack progression. Targeted attack graphs are extracted from the S-PDFA on a
per-victim, per-objective basis.

We demonstrate SAGE’s effectiveness on distributed multi-stage attack scenarios,
i.e., where attackers collaborate to compromise various targets progressing through nu-
merous attack stages. Discovering attacker strategies in this setting is inherently difficult
because host information cannot be used to aggregate alerts from different collaborating
attacker(s). Security testing competitions provide an ideal setting to study such attacks
in a controlled setting. To this end, we use three open-source datasets collected through
penetration testing competitions [23] and blue team exercises [24] that have significantly
different statistical properties and target infrastructures.

On all the datasets combined, SAGE compresses over 1.4 million alerts into 401 AGs
in under 5 minutes. Even with an imperfect IDS, the AGs capture the strategies used by
the participating teams. We show that SAGE is agnostic to the specific inner workings
of an IDS, and can process any alert dataset as long as it contains IP addresses, port-
numbers, and a description of the observed attack event. Our main contributions are:

1. We propose a suffix-based probabilistic deterministic finite automaton (S-PDFA) –
an interpretable sequence learning model that focuses on infrequent severe alerts
without discarding any low-severity alerts. The model summarizes attack paths in
the dataset.

2. We provide formal definitions for SAGE’s components, including a thorough ex-
plainability analysis of SAGE and the alert-driven AGs it generates.

3. We apply SAGE on alerts from three security testing competition datasets. We
show that SAGE is generalizable, and that the AGs capture attacker strategies.
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Organization. We provide a brief overview of the related works in Section 3.2. The ar-
chitecture of SAGE is illustrated in Section 3.3, and its explainability aspect is described
in Section 3.4. Sections 3.5 and 3.6 describe the experimental setup and a thorough anal-
ysis of alert-driven attack graphs. We discuss the limitations of SAGE in Section 3.7 and
conclude in Section 3.8.

3.2. RELATED WORK

Alert management. Intrusion detection systems (IDS) generate thousands of alerts on
a daily-basis. Alert triaging techniques have been proposed to model attack scenarios,
such as alert correlation [5]–[7], [25]–[29] and alert prioritization [30], [31]. Alert corre-
lation groups alerts from the same attack stage, while alert prioritization highlights and
summarizes alerts for speeding up the response time. Although these methods drasti-
cally reduce alert volume, they do not provide a bigger picture of the specific strategies
employed by the attackers.

Attack graph generation. SOC analysts rely on labor-intensive processes for obtaining
intelligence regarding attacker strategies. Attack graphs (AG) provide a concise way of
displaying these strategies [10], [17]. Specifically in the network security domain, Kaynar
et al. [13] have proposed a taxonomy of the existing AG generation approaches. Many
of them fall under the topological vulnerability analysis (TVA) [14], which relies heavily
on a priori knowledge about the topology of, and vulnerabilities in a network, making
them unsuitable for zero-day attacks. MulVAL [15] and NetSPA [16] are popular tools in
this category. Next to this, there are many approaches to improve pre-existing AGs, e.g.,
works focusing on AG completeness [32], [33], AG complexity reduction [34], [35], and
what-if analyses [8], [9].

Learning from observables. Cyber data from prior security incidents can be utilized
to gain insights into attacker behavior, e.g., using log data [36]–[38], sensor data [39],
and network traffic [40]. Process mining and Markov models are particularly well-suited
for sequential learning problems. Process mining (PM) has been used to provide a vi-
sual summary of the intrusion alert datasets [41], [42]. While great for modeling concur-
rent events, PM models are dense and cannot be used to model context: They use alert
signatures as identifiers, which makes it impossible to distinguish between alerts with
different contexts but identical signatures. Markov models, however, have no such limi-
tation. Moskal et al. [43] use suffix-based Markov chains to represent attacker strategies
as sequences of hyper-alerts. They measure attack sequence similarity using Jensen-
Shannon divergence. In this chapter, we propose SAGE, which is a purely alert-driven
approach for generating attack graphs. We borrow initial ideas from Moskal et al. [43].
We leverage the temporal and probabilistic dependence between alerts to generate tar-
geted attack graphs without a priori expert knowledge. The probabilistic deterministic
finite automaton (S-PDFA) that we use has more expressive power than Markov chains,
while being easier to interpret.
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Explainability. SAGE provides an explainable and automated alternative to the man-
ual process of finding attacker strategies. It is important to note that while explainability
is widely considered for classification decisions, SAGE is not a classifier, and the explain-
ability lies in the attack graphs and the S-PDFA instead. Because the explainability aspect
of SAGE is an important design consideration, we do not consider inherently black-box
models, such as neural networks [44]. While attention mechanisms [45] and linear surro-
gate models [46] help explain the decisions of such black-box models, they typically offer
post-hoc explainability on a per-input basis. Instead, SAGE relies on the interpretable
nature of its entire pipeline. As opposed to black-box models that often make use of ran-
domization and soft decision boundaries to avoid local minima and over-fitting, SAGE
relies on statistical tests, making every step in its pipeline discrete and deterministic. In
addition to model interpretability, this provides design and algorithmic transparency. We
make conscious design decisions to enhance the interpretability of the S-PDFA, and the
way the attack graphs are constructed makes them explainable. These notions are de-
scribed by Roscher et al. [47], who list the three components of explainable machine
learning as: transparency, interpretability, and explainability. In short, interpretability is
about the model, while explainability is about the output of a learning pipeline. Model
interpretability allows a user to: 1) examine (visualize) a learned model, 2) reason about
the discovered patterns, 3) draw inferences, and 4) combine it with subsequent analysis
methods. A model is design transparent if design decisions can be motivated from the
application domain, and it is algorithmically transparent if it allows a user to reverse the
learning pipeline to obtain the input data that led to modeling decisions. We provide
examples of these concepts in Section 3.4.

3.3. INTRUSION ALERT-DRIVEN ATTACK GRAPH EXTRACTOR –
SAGE

SAGE (IntruSion alert-driven Attack Graph Extractor) is a purely alert-driven approach
for attack graph generation. SAGE has 3 core components, as shown in Figure 3.1. It takes
raw intrusion alerts as input and aggregates them into sequences of attacker actions. An
automaton model is learned using these sequences, summarizing attacker strategies.
Finally, attack graphs are extracted from the model on a per-victim, per-objective basis.
SAGE is released as open-source1. It is implemented in Python and released as a docker
container for cross-platform support.

In this section, we use the Collegiate Penetration Testing Competition dataset from
2018 [48], i.e., CPTC-2018, as a running example. CPTC-2018 contains intrusion alerts
generated by six teams (T1, T2, T5, T7, T8, T9) attempting to compromise the infrastruc-
ture of a fictitious automotive company (See Section 3.5 for details).

3.3.1. ATTACK EPISODE AGGREGATION
As a first step, we arrange intrusion alerts in sequences that characterize an attacker
strategy. Raw intrusion alerts are noisy and often multiple alerts are triggered by a single
attacker action. Thus, the main goal of this step is to clean and aggregate alerts into
sequences of attacker actions.

1SAGE: https://github.com/tudelft-cda-lab/SAGE

https://github.com/tudelft-cda-lab/SAGE
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Figure 3.2: The alert distribution per attack stage for the CPTC-2018 teams (T1-T9), showing that scanning-
alerts are significantly more frequent than exploitation-alerts.

Alert pre-processing. An intrusion alert is composed of attributes such as, source and
destination IP addresses, a timestamp, a descriptive signature, and some protocol spe-
cific fields. SAGE utilizes fields that are available for all alerts, regardless of the attack
vector. The input to SAGE is a set of observable intrusion alerts O. Let o ∈ O be an in-
trusion alert, with attributes o = 〈sIP,dIP,sPort,dPort, ts,sign〉. Here sIP, sPort are the
attacker’s IP and port number and dIP, dPort are the victim’s IP and port number. ts is
the time elapsed since the first alert in seconds. sign is the alert signature attribute.

Features are extracted as follows: (i) The destination port number is used to identify
the likely targeted service tServ = Serv(dPort) from the open-source IANA mapping [49].
(ii) Intrusion alerts typically contain many repeated alerts occurring within a short time
interval. Such high-frequency noise creates undesired artifacts in model learning. We
filter all alerts with identical attributes that occur within a t-second interval, keeping
only the first occurrence, i.e., we create a set OF ⊆ O such that for each observation
〈sIP,dIP,sPort,dPort, ts,sign〉 ∈ OF , there exists no 〈sIP,dIP,sPort,dPort, ts′,sign〉 ∈O with
ts ̸= ts′, and ts− t ≤ ts′ < ts. In this chapter, we use t = 1.0 sec following [7], [43]. (iii) In-
stead of using the default alert signature attribute, we augment alerts with attack stages
proposed by the Action-Intent Framework (AIF) of Moskal et al. [50] for categorizing
them into their respective attack phases. The AIF provides a better representation of
the attack stages. Based on the MITRE ATT&CK framework [51], it was proposed specif-
ically to map action-types to dynamic observables, such as intrusion alerts. The AIF
provides a mapping mcat = Map(sign) from alert signatures to attack stages (see ap-
pendix Table 3.9). (iv) Finally, the filtered set Õ of intrusion alerts õ is a 5-tuple õ =
〈sIP,dIP, tServ, ts,mcat〉 for each o ∈ OF . Figure 3.2 shows the distribution of the attack
stages across all six teams in the filtered CPTC-2018 dataset.
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Gathering alerts into Alert Sequences (AS). There are three main methods for con-
verting discrete observables into sequences with aggregation based on (i) source IP: show-
ing the attacker’s perspective; (ii) destination IP: showing the victim’s perspective, and
(iii) (source IP, destination IP) pair: showing individual interactions between unique at-
tackers and victims. We select (iii) because the sequences clearly show the interaction an
attacker has with a victim, without other attackers polluting the sequence, which helps
to preserve the temporal dependence between alerts. We implement an alert sequence
as a windowed list of alerts, i.e., it is a list of multi-sets between a unique (attacker, victim)
pair, where each multi-set contains time-ordered alerts occurring within a time window.

Definition 1 An Alert Sequence (AS) is a windowed list of alerts occurring within a time
window w. Let A be the set of unique attacker hosts, V be the set of unique victim hosts,
and C be the set of unique attack stages (mcat), then ASavc = öavc

1 . . . öavc
n , where (a,v) ∈ A×V ,

c ∈ C. Here, öavc
i = {ôavc

1 . . . ôavc
ω } is a multi-set of alerts for 1 ≤ i ≤ n. For a window w

and given õj = 〈a,v, tServ, ts,c〉 ∈ Õ, we define ôavc
j = 〈tServ, ts,c〉 such that Πts(ôavc

1 ) = i ·w,

Πts(ôavc
ω )−Πts(ôavc

1 ) ≤ w, andΠts(ôavc
j ) ≤Πts(ôavc

j+1), for 1 ≤ j ≤ω.

Here, ΠX (ôavc
j ) is the projection of the X attribute of ôavc

j . In contrast to other works
that use sIP and dIP as explicit features [26]–[28], we only use them to construct se-
quences. This allows identification of related alerts originating from different sources.

Aggregating AS into Episode Sequences (ES). Intrusion alerts are aggregated into a
group, such that they likely belong to the same attacker action. In the literature, such
an aggregation is called an attack episode or a hyper-alert [43]. We assume that these
episodes closely characterize attacker actions. Generally, low-severity alerts are so fre-
quent that they subsume high-severity alerts. To overcome this, we treat each attack
stage separately. Intuitively, we test the frequency of all alerts in a windowed sequence:
When the frequency starts to increase (an up), we consider it the start of an episode;
when the frequency is continuously decreasing and reaches a global minimum (a down),
we consider it the end of that episode (see example in Figure 3.3). Episodes are the build-
ing block of SAGE. All extracted episodes are collected and time-sorted in an episode
sequence (see Algorithm 1).

Definition 2 An Episode Sequence (ES) for an attacker a and victim v is a list of episodes,
ESav = epiav

1 . . .epiav
m . An episode is a 4-tuple epiav

j = 〈stav,etav,mcatav,mServav〉 for 1 ≤
j ≤ m, where stav,etav ∈R denote the start time and end time of an episode, mcatav is
the attack stage of an episode, and mServav is the most frequently targeted service in an
episode.

In essence, episode sequences aggregate bursts of alerts. We construct ESav from
windowed alert sequences with different attack stages c, i.e., ASavc = öavc

1 . . . öavc
n . For

each 1 ≤ s ≤ e ≤ n, the start time is stav = min(Πts(öavc
s )) if f ′(|öavc

s |)) = 0 and f ′(|öavc
s+1|) > 0;

the end time is etav = max(Πts(öavc
e )) if f ′(|öavc

e |) = 0 and f ′(|öavc
e−1|) < 0; the attack stage is

mcatav = c, and the most frequently targeted service is mServav = argmaxmserv|{ΠtServ(öavc
i )

= mserv : s ≤ i ≤ e}|. Here, f ′(öavc
i ) is the slope derived from the number of alerts in each

window, i.e.,
∆|öavc

i |
∆i .
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Algorithm 1: Convert alert sequences into episode sequences

Input: Alert sequence: as
Output: Episode sequence: es

1 function CONVERT_TO_ES(as)
2 es ← []
3 forall (mcatx, asx) in SPLIT_ON_MCAT(as) do
4 timed_as ← LEN(window) for all window ∈ asx

5 slope ← f ′(x) for all x ∈ timed_as
6 ups ← GET_POSITIVE_SLOPES(slope)
7 downs ← GET_NEGATIVE_SLOPES(slope)
8 episodes ← GET_EPISODES(ups,downs)
9 Append (mcatx, ep) to es for all ep ∈ episodes

10 Sort es by episode start time
11 yield es

12 function GET_EPISODES(ups,downs)
13 episodes ← []
14 for i ← 0 . . . LEN(ups)−1 do
15 if IS_DOWN_BETWEEN_UPS(i, i+1, downs) then
16 down ← GET_LAST_DOWN(i, i+1,downs)
17 Append (ups[i],down) to episodes

18 yield episodes

3.3.2. SUFFIX-BASED PROBABILISTIC DETERMINISTIC FINITE AUTOMATON
The insight provided by episode sequences is limited because they fail to capture the
temporal dependence between episodes. We use a suffix-based probabilistic determin-
istic finite automaton (S-PDFA) with Markovian properties to summarize attacker strate-
gies. It clusters similar attack paths based on temporal and behavioral similarity. It also
brings infrequent severe episodes into the spotlight. This last requirement is important
because most clustering approaches ignore infrequent patterns.

In contrast to regular Markov chains, an automaton model is able to distinguish be-
tween episodes of the same mcat with different contexts, e.g., a scanning event happen-
ing at the start, and that happening mid-way through an attack, when attackers have
already gained some knowledge, are treated differently. This makes them popular for
learning the behavior of software systems, such as communication protocols and even
malware, see e.g., [52]–[55].

Definition 3 A Suffix-based Probabilistic Deterministic Finite Automaton (S-PDFA) is a
5-tuple A = 〈Q,Σ,∆,P,q0〉 defining the machine structure: Q is a finite set of states; Σ is
a finite alphabet of symbols; ∆ is a finite set of transitions; P : ∆→ [0,1] is the transition
probability function, and q0 ∈ Q is the final state (for suffix model). A transition δ ∈∆ in
an S-PDFA is a tuple 〈q,q′,a〉, where q,q′ ∈ Q are the target and source states, and a ∈Σ is
a symbol. P is a function such that

∑
q,a P(〈q,q′,a〉) = 1. ∆ is such that for every q ∈ Q and

a ∈Σ, there exists at most one 〈q,q′,a〉 ∈∆, making the model (suffix) deterministic.
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Figure 3.3: For each (attacker, victim) pair, bursts of alerts from each attack stage are aggregated into episodes.
The figure shows an attack sequence related to vulnerability scanning that is aggregated into two episodes.

A suffix automaton contains a single final state and does not model starting states.
Instead of generating a sequence from the start, it generates sequences from the end.
It still represents a probability distribution over Σn for all 1 ≤ n. The probability of
a sequence s = a1 . . .an is computed along the reverse path q0anq1an−1q2 . . .a1qn, with
〈qi,qi+1,an−i〉 ∈∆, called the S-PDFA run. The sequence probability is then P(s) =∏

0≤i<n P(〈qi,qi+1,an−i〉), where
∏

denotes a product. For any trace, there exists a unique
run due to suffix determinism. The Flexfringe automaton learning framework [22] can be
used to learn suffix models. Flexfringe implements several automaton learning heuris-
tics within the well-known state merging algorithms, such as state merging [56] and
DFASAT [57] (see [58] for details).

Note that the S-PDFA learns only from positive traces that are composed of observed
events. This is done by modeling the probability distribution of the the input traces,
and using it as evidence for state merging. Essentially, the merge criteria tests a null-
hypothesis that the probability distribution followed by two different states is equivalent,
i.e., the trace prefixes that can occur after two different states have been reached follow-
ing the same distribution, and thus the two states can be modeled using a single state.
If the null-hypothesis is rejected with sufficient confidence provided by the evidence,
it prevents a merge from happening, since the two states lead to significantly different
outcomes (see [59] for details).

Input trace construction. Whereas an episode sequence may contain multiple attempts
to exploit a victim host, an S-PDFA models each attempt separately to find partial overlap
in attacker strategies. To this end, an ES is partitioned into episode subsequences (ESS)
when a low-severity episode follows a high-severity one. Severity(epi) is a user-defined
function, determined by the acceptable risk of a SOC. By default, scanning has low sever-
ity, exploitation has high severity and the rest of the enabler-actions have medium sever-
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CnC|http infoD|http infoD|http

serD|fis vulnD|ahsp serD|cpdlc vulnD|ahsp hostD|http serD|fis vulnD|ahsp hostD|http
serD|unknown vulnD|ms-sql-s serD|ssh hostD|http serD|unknown vulnD|ahsp serD|ssh hostD|http
serD|rpas-c2 vulnD|ncube-lm serD|unknown vulnD|ahsp hostD|http serD|unknown vulnD|ncube-lm
serD|ssh hostD|http

bfCred|Unknown serD|ssh vulnD|ncube-lm serD|ssh hostD|http

bfCred|pop3s serD|unknown vulnD|ahsp hostD|http

rPrivEsc|smtp serD|ssh hostD|http serD|unknown vulnD|ahsp serD|ssh

serD|ssh hostD|Unknown serD|unknown vulnD|ahsp hostD|Unknown serD|ssh vulnD|ncube-lm
serD|ssh hostD|http

exfil|Unknown infoD|Unknown hostD|wap-wsp serD|unknown vulnD|ahsp hostD|wap-wsp
serD|unknown vulnD|ncube-lm serD|ssh hostD|http

exfil|http bfCred|http hostD|http serD|unknown vulnD|ahsp serD|ssh

Attack stage Targeted service

Figure 3.4: An excerpt from the input traces used for learning the S-PDFA. Each symbol in the trace is a tuple
〈mcat,mServ〉 or 〈attack stage, targeted service〉. The traces have been reversed to learn a suffix-based model.

ity (see appendix Table 3.9).

Definition 4 Given an ESav = epiav
1 . . .epiav

m , define a break-point as an index i such that
Severity(epiav

i+1) = low and Severity(epiav
i ) =medium/high. An Episode Subsequence ESSav =

epiav
s . . .epiav

s′ is a contiguous subsequence of ESav without break-points, i.e., ESav = epiav
1 . . .

epiav
s . . .epiav

s′ . . .epiav
m . Every ESav is broken into its break-point-free subsequences ESav =

ESSav,1 . . .ESSav,k.

The S-PDFA learns on sequences of univariate symbols, called traces. Figure 3.4 shows
an excerpt from the CPTC-2018 traces. One trace is constructed per ESS. The symbols
signify the most apparent intent of episodes, defined by 〈mcat,mServ〉. Theme(mServ)
groups services based on their functionality (see appendix Table 3.10). For CPTC-2018,
this gives 664 traces, which is small but sufficient to learn insightful S-PDFAs.

S-PDFA for SAGE. We opt for a suffix model because we are interested in predicting
which episodes eventually lead to high-severity attack stages. These attack stages are
infrequent, and always lie at the end of our input traces. A suffix-automaton model is
thus used to predict the past, instead of predicting the future. Each state in an S-PDFA
model can then be thought of as a milestone achieved by an attacker.

Although Flexfringe uses prefix-based models, we obtain a suffix-based one by sim-
ply reversing the input traces. We choose the Flexfringe implementation of the Alergia
algorithm [60] because of limited data. For reversed traces, the algorithm constructs a
suffix tree (see Figure 3.5 for an example). The algorithm starts at the root of the suf-
fix tree and iteratively tries to merge states based on the chosen merge criteria. The
parameter selection for model learning is guided by the properties of input traces and
some trial-and-error of visualizing the model until satisfied. Fortunately, the algorithm
learns these models in less than 0.5 seconds. Figure 3.6 shows the S-PDFA for CPTC-
2018, learned from all 664 traces to enable behavior comparison.

We use three important settings for learning an interpretable S-PDFA: (i) We limit
which states are used to compute statistics. The learning algorithm merges two states if
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Figure 3.5: A suffix tree for three example traces. For any vertex, the previous vertex happens chronologically
in the future, and the next vertex corresponds to the past.

it does not find sufficient evidence that the states are different, i.e., accepting the null-
hypothesis. A lower bound on the data required for this evidence is controlled by the
state_count and symbol_count parameters. Intuitively, it is better to use only frequently-
occurring states and transitions in the statistical tests, but the default values of 50 and 25
are much too large for the limited amount of high-severity episodes in the dataset. We
set both to 5, implying that a state in the suffix tree that occurs only 5 times in total can
provide sufficient evidence to prevent a merge from happening. (ii) We use the Marko-
vian property, which dictates that for any given states q1 and q2, the previous transition
labels have to be identical, i.e., 〈q′,q1,a〉 and 〈q′,q2,a〉. It enforces that the incoming
transition label for states is unique, which makes the model easier to interpret. (iii) We
utilize sink states. Sink states are non-final states that typically have no outgoing transi-
tions. We utilize sink states to model extremely infrequent actions. The core algorithm
continues merging until all states have either been merged or added to the model. For
infrequent (sink) states, there is typically insufficient evidence to prevent a merge and
they can, therefore, be merged with any of the states added in the previous iterations.
The sink_count parameter avoids this by disallowing merges that occur sink_count times
or less, which we set to 5. The states that occur less than sink_count times are not dis-
played in the learned model, which makes it easier to interpret. That said, high-severity
sink states are interesting from behavioral perspective since they show the rare exploita-
tive actions. We perform post-processing to include such high-severity sink states in the
learned model. This process salvages 13% of the sinks for CPTC-2018, which otherwise
would not have appeared in the attack graphs.

The state merging algorithm ensures that only the states with similar pasts are merged.
The Markovian property, in addition, enforces that the immediate-future is identical.
Thus, the occurrence of identical episodes leading to different states shows semantic
differences, e.g., data exfiltration may either be reached by service discovery → arbitrary
code execution, or by vulnerability discovery → privilege escalation. Separate states will
be learned for these types of data exfiltration, capturing their context.
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Figure 3.6: The S-PDFA model for the six teams of CPTC-2018. The states are colored according to the severity
of the incoming symbol’s attack stage: Red is high, blue is medium, white is low. Sink states are excluded.
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3.3.3. ALERT-DRIVEN ATTACK GRAPHS
The S-PDFA assigns the same context to episodes that are temporally and probabilis-
tically similar, where context is denoted by state identifiers. We first augment episode
sequences with their context, and then transform them into attack graphs (AG) on a per-
victim, per-objective basis.

Adding context to Episode Sequences (ES). The states of an S-PDFA provide contex-
tual meaning to the episodes’ attack stages. Existing work by Lin et al. [61] have utilized
this context to encode traces into state sequences for clustering similar car-following be-
haviors. We follow the same principle, and convert the episode sequences (ES) into state
sequences (ESQ). We run each episode subsequence a1 . . .an through the model, which
produces qn . . .q0. A state subsequence is an episode subsequence augmented with state
identifiers, i.e., q0anq1an−1q2 . . .a1qn.

Definition 5 A State Sequence (ESQ) for an episode sequence ESav = ESSav,1 . . .ESSav,k is
the concatenated sequence ESQav = sq1sq2 . . .sqk, where sqi is the state subsequence for
ESSav,i for all 1 ≤ i ≤ k.

Attack graph construction. The state sequences are transformed into alert-driven at-
tack graphs based on the specified objective and the victim host. An objective obj ∈ Obj
is a 3 tuple 〈mcat,mServ,q〉 associated to a high-severity attack stage, represented by the
last six categories of the Action-Intent mapping (see appendix Table 3.9). They are con-
sidered as end-goals since (a) they are typically the last actions to appear in ESS, and
(b) it is unlikely that medium-severity actions, e.g., privilege escalation, are done to no
end. To support episode prioritization, an analyst can choose the granularity of objec-
tives, i.e., only attack stage 〈mcat〉, attack stage and targeted service 〈mcat,mServ〉 or the
full tuple 〈mcat,mServ,q〉. By default, SAGE generates AGs on a per-victim, per-objective
basis, i.e., for an objective obj ∈ Obj and a victim v ∈ V , only the state sequences that con-
tain obj are considered, i.e., {path ∈ ESQav|obj ∈ path}. In theory, this produces |V | · |Obj|
attack graphs, many of which contain shared paths. We aggregate AGs of a victim v and
objectives obj = 〈mcat,mServ,q〉 and obj′ = 〈mcat,mServ,q′〉, by adding a new root node
〈mcat,mServ〉. This is because paths leading to obj and obj′ tend to have shared vertices.
On the CPTC-2018 dataset, for 19 victims and 70 objectives, this step results in 93 AGs
instead of 1330 (a reduction of 93%). Each AG compresses over 500 alerts in less than 16
vertices, on average.

Figure 3.7 shows an alert-driven attack graph’s anatomy. Somewhat deviating from
a traditional AG, the vertices of an alert-driven AG represent attacker actions, and the
edges represent the temporal relationship between them. Specifically, the root of an
alert-driven AG is 〈mcat,mServ〉. Other vertices are the unique items in path. We re-
move the state identifiers of low-severity vertices to reduce the total vertices, and to
further highlight the infrequent severe vertices. Edges are obtained by running a slid-
ing window of length 2 over path. The edge label shows the start-time attribute of each
episode, showing attack progression. In a state sequence, if an objective is achieved mul-
tiple times, each attempt is shown as an individual path in the graph. Also, to make the
strategy comparison easier, all teams that achieve an objective are shown in one graph,
distinguishable by their edge color.
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Figure 3.7: An alert-driven attack graph: Vertices: Labels show 〈attack stage, targeted service, state identifier〉.
Low-severity episodes are oval, medium-severity are boxes, high-severity are hexagons. The first episode in a
path is yellow & the objective is red. Sinks are dotted. Edges: Labels show seconds since the first alert. Colors
show team affiliation: T1 (Maroon), T2 (Orange), T5 (Green), T7 (Blue), T8 (Magenta), T9 (Purple).

3.4. EXPLAINABILITY ANALYSIS OF SAGE
We make conscious design decisions to make the entire SAGE pipeline explainable. This
is so that security analysts can review the attack graphs (AG), reason about attacker
strategies, and discover new knowledge [62].

Figure 3.7 shows the composition of an alert-driven AG. An AG for a given 〈v,obj〉 is a
compressed representation of its relevant intrusion alerts. A vertex represents an aggre-
gation of alerts, i.e., an episode (defined by the severity of its attack stage, its context as
determined by the S-PDFA, and the most frequently-targeted service within the alerts).
Some episodes may have the same shape, attack stage, and targeted service, but differ-
ent contexts, i.e., state identifiers. This happens when these episodes are observed in
sequences with different futures and pasts. An AG may also have multiple red vertices
if the S-PDFA identifies different ways of obtaining the same objective, which happens
when the paths leading up to it are significantly different. A path in an AG represents a se-
quence of episodes that leads to an objective. Two paths overlap iff the S-PDFA has suf-
ficient evidence that they are similar, i.e., the episodes have identical futures or similar
pasts. In addition, we remove the influence of (a) other actions in a path by constructing
a sequence with only the alerts between a specific (attacker, victim) pair, and (b) other
attack attempts by modeling each one as a separate path. A path can be traced start-
ing from a yellow vertex, following the time progression of the edge labels, and ending
in one of the red vertices. This makes each AG design and algorithmically transparent,
interpretable, and scientifically explainable.

The S-PDFA is an intermediate step responsible for modeling context. We specifically
learn a suffix model to highlight the infrequent severe episodes. The Markovian property,
together with sinks, make the model components interpretable. The deterministic nature
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Table 3.1: Summary of experimental datasets.

Dataset properties CPTC-2018 CPTC-2017 CCDC-2018

# alerts 330,270 43,611 1,052,281
# teams 6 9 Unknown
# IPs 42 494 2138
# services 160 168 2050
Duration (hrs) 9 11 25
Attacker hosts known? Yes No No
Victim hosts known? Yes No No
Dataset type Penetration testing Penetration testing Blue teaming

of the model makes it algorithmically transparent. The parameter settings are guided by
the input data, making the model design transparent.

3.5. DATASET AND EXPERIMENTAL SETUP
Datasets. Security testing competitions provide an ideal setting for distributed multi-
stage attacks in a controlled environment. In this chapter, we use three open-source
intrusion alert datasets: two datasets from the Collegiate Penetration Testing Competi-
tion (CPTC) [63] for showing SAGE’s efficacy, and one dataset from the Collegiate Cyber
Defense Competition (CCDC) [64] for showing SAGE’s generalizability. A summary of the
datasets is given in Table 3.1.

The alert datasets are generated by different student teams who are tasked to com-
promise a common fictitious network. The CPTC-2017 dataset contains alerts by nine
teams (T2 to T10) targeting an electronic election infrastructure, while the CPTC-2018
dataset contains alerts by six teams (T1, T2, T5, T7, T8, T9) targeting an automotive com-
pany. Naturally, some vulnerabilities are unique to the network, while others are typical
of any misconfigured web sever. Each team has access to fixed-IP machines that they
can use, either in collaboration, or in isolation to achieve their objectives. The infras-
tructure is monitored by a Suricata IDS [65], which records alerts on a per-team basis.
Beyond the attackers’ IP information, no other ground truth is available regarding the
attack progression and attacker strategies. This imitates the real-world scenario where
SOC analysts manually investigate how an attack transpired.

Parameters. In this chapter, we set t = 1.0 seconds to filter repeated alerts [7], [43].
For window length w , we experiment with w = {60,150,300,600} seconds, and choose
w = 150 as a reasonable value. Smaller window sizes produce longer alert sequences,
which may cut the same behavior across multiple episodes. As such, w should be tuned
according to the trade-off between analysis resolution and the number of alerts available
per sequence. For model learning, state_count, symbol_count, and sink_count are set to
5. All experiments are run in a Jupyter notebook executed on Intel Xeon W-2123 quad-
core processor and 32 GB RAM.

Experiments. We perform three experiments pertaining to the quality of the S-PDFA
model, and the efficacy of SAGE in reducing the number of alerts to analyze.
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Table 3.2: Quality evaluation (via Perplexity) of four suffix models on the CPTC-2018 traces. Suffix tree and
SAGE S-PDFA are the best on training and test data, respectively. Best values* are marked.

Suffix tree Markov chain Default S-PDFA SAGE S-PDFA

Training set 1265.4∗ 13,659.6 15,136.5 2397.8
Holdout test set 13,020.7 11,617.8 11,241.5 9884.6∗

1. S-PDFA quality evaluation. We evaluate the quality of the S-PDFA model learned
for CPTC-2018 compared to alternative modeling techniques (Section 3.6.1).

2. S-PDFA model comparison. We perform a comparison between the CPTC-2017
and CPTC-2018 S-PDFA models to highlight infrastructure-related differences cap-
tured by the learning algorithm (Section 3.6.2).

3. Alert triaging. We investigate the extent to which SAGE triages alerts for the three
experimental datasets, and analyze the statistical properties of the alert-driven at-
tack graphs (AGs). Specifically, we use the CCDC-2018 dataset to demonstrate that
SAGE can learn attack graphs (and triage alerts) even on datasets with no prior
information (Section 3.6.3).

3.6. RESULTS AND DISCUSSION
SAGE addresses a long-standing open problem in the security domain regarding data-
driven attack graphs by discovering sequential constraints that do not lead to a state-
space explosion [66]. As such, SAGE generates purely alert-driven attack graphs without
expert input. It has an explainable architecture, and can directly augment existing intru-
sion detection systems. It is released in a docker container for cross-platform support.
The attack graphs are a compressed representation of numerous alerts. Even though
SAGE does not discard any alert, the targeted nature of the attack graphs allow analysts
to review large quantities of alerts without being overwhelmed.

In this section, we rigorously evaluate SAGE with diverse datasets and against alter-
native modeling approaches.

• We evaluate the quality of the S-PDFA for modeling attacker strategies, compared
to well-known alternative models, e.g., Markov chains.

• We take a deep-dive into infrastructural differences captured by the S-PDFA mod-
els for the different datasets. Figures 3.6 and 3.8 show the S-PDFA models for the
CPTC-2018 and CPTC-2017 datasets, respectively.

• We investigate the extent to which SAGE helps in triaging the alert volume for
CPTC-2017, CPTC-2018, and CCDC-2018. Particularly, SAGE compresses 99.97%
of the alerts into AGs in under 5 minutes.

3.6.1. S-PDFA MODEL QUALITY EVALUATION
The S-PDFA model discovers attacker strategies in an alert dataset, and represents them
graphically. Because the S-PDFA is not used for classification, typical evaluation metrics
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(such as, F1-score) cannot be used to evaluate its quality.
Evaluating model quality without ground truth is a hard problem in grammatical in-

ference [58], [67]. Typically, it is measured using a trade-off between model size and
fit. We are mainly interested in the insight provided by the S-PDFA. The initial suffix
tree shows the data as is, which provides insight but does not show similarities between
the different traces. The S-PDFA shows such similarities by performing merges. Every
such merge generalizes from the training data, and assigns probability mass to unseen
test data. We use Perplexity [68] to quantify model quality. It measures the prediction
power of a model, and has been used in grammatical inference competitions [69], [70].

It is defined as 2− 1
N

∑N
i=1 log2P(xi), where N is the number of traces, and P(xi) returns the

probability of the xi trace. The lower the value, the better the model fits with the data.
We compute perplexity for both, training and test data, using an 80-20 split, where the
former shows how well the model fits the training data, and the latter shows how well it
generalizes to unseen test data.

We compute Perplexity for four suffix model-variants: (i) Suffix tree: plain represen-
tation of traces in a tree format, (ii) Markov chain: standard statistical model, (iii) Default
S-PDFA: an S-PDFA with default settings, and (iv) SAGE S-PDFA: an S-PDFA learned us-
ing the settings in this chapter. Table 3.2 shows the perplexity for each variant on the
CPTC-2018 dataset. It shows that a suffix tree provides the best fit with the training data,
as expected. The SAGE S-PDFA is about twice as “perplexed”. It is hard to quantify how
good this is exactly, but it is better than what the Markov chain and the default S-PDFA
achieve. On the test data, SAGE S-PDFA gives the best perplexity value, demonstrating
that it accurately captures many patterns present in the data.

In addition, the AGs generated from each of the models show a different perspective:
The Markov chain-AGs do not model the context and make vast over-generalizations,
thus producing no added-benefit of the modeling step, i.e., the state identifiers do not
differentiate between contextually different objectives. The suffix tree-AGs and the S-
PDFA-AGs are highly similar, except the S-PDFA-AGs are smaller due to the state merg-
ing algorithm. The real benefit of the S-PDFA becomes apparent in larger graphs because
similar paths are merged in an S-PDFA. Thus, repeated (sub-)strategies are displayed us-
ing already-existing vertices. In contrast, the suffix tree-AGs are larger because of several
similar vertices, which are not merged since no learning is applied. This analysis raises
the question: When is learning (i.e., making generalizations) a good idea, and when does
simply showing raw data suffice?

3.6.2. COMPARING INFRASTRUCTURAL DIFFERENCES ACROSS DATASETS

We analyze the extent to which an S-PDFA model summarizes infrastructure-related nu-
ances present in an alert dataset. We learn two S-PDFA models, one for CPTC-2018 (Fig-
ure 3.6) and the other for CPTC-2017 (Figure 3.8) using the same method and parameter
settings. Both models summarize the various paths taken by the teams to reach high-
severity states. Table 3.3 shows the number of states and transitions utilized to model
the intrusion alerts from CPTC-2017 and CPTC-2018. The 2017 model is larger (consid-
ering also sink states) than the 2018 model, with significantly more transitions. This is
because the 2017 dataset has more traces, and there is more variability per-trace, i.e., the
2017 teams exhibit more diverse and infrequent sub-behaviors than the 2018 teams.
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Figure 3.8: The S-PDFA model for the nine teams of CPTC-2017. The states are colored according to the severity
of the incoming symbol’s attack stage: Red is high, blue is medium, white is low. Sink states are excluded.

Table 3.3: Model statistics for the S-PDFA learned from CPTC-2017 and CPTC-2018.

Dataset Alerts Traces
S-PDFA states

(incl. sinks)
S-PDFA transitions

(incl. sinks)

CPTC-2018 330,270 664 74 (262) 106 (293)
CPTC-2017 43,611 1039 73 (351) 143 (420)

Table 3.4 shows an exhaustive comparison between the two models in terms of the
services used to carry out the objectives. It shows the number of unique objectives ex-
ploited by the teams via a particular service. This includes the different ways of reaching
the same objective, as identified by the S-PDFA model. The most striking difference be-
tween the models is that there are, on average, more paths leading to severe states in
the 2017 model than in the 2018 one. This means that a control could be more easily
placed in the 2018 network, making it impossible for attackers to complete certain ob-
jectives. This is important because the 2018 teams exploit each service for completing
more objectives, on average. However, the same does not hold for the 2017 model as it
has additional pathways for attackers to evade controls.

Table 3.4 shows that the teams in the election scenario (2017) exfiltrate data us-
ing a specific type of browser, while this service is never even scanned in the automo-
tive scenario (2018). They also conduct DoS attacks using the network time protocol
(clocksync), and use services associated to authentication and storage that are never
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Table 3.4: Differences between the S-PDFAs for CPTC-2017 and CPTC-2018 as the number of unique objective
states modeled, i.e., 〈high-severity attack stage, targeted service〉.
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http(s)
CPTC-2017 10 ✓ ✓ ✓
CPTC-2018 18 ✓ ✓ ✓ ✓ ✓

wireless
CPTC-2017 3 ✓ ✓
CPTC-2018 6 ✓ ✓ ✓ ✓

remoteAccess
CPTC-2017 8 ✓ ✓ ✓
CPTC-2018 9 ✓ ✓ ✓ ✓ ✓

surveillance
CPTC-2017 7 ✓ ✓
CPTC-2018 9 ✓ ✓ ✓ ✓

broadcast
CPTC-2017 8 ✓
CPTC-2018 6 ✓ ✓ ✓ ✓ ✓

hostingServer
CPTC-2017 - n/a
CPTC-2018 9 ✓ ✓ ✓ ✓

email
CPTC-2017 1 ✓
CPTC-2018 - n/a

authentication
CPTC-2017 2 ✓ ✓
CPTC-2018 - n/a

dataSharing
CPTC-2017 2 ✓
CPTC-2018 - n/a

nameserver
CPTC-2017 1 ✓
CPTC-2018 - n/a

browser
CPTC-2017 2 ✓ ✓
CPTC-2018 - n/a

clocksync
CPTC-2017 2 ✓
CPTC-2018 - n/a

storage
CPTC-2017 3 ✓ ✓
CPTC-2018 - n/a

unassigned
CPTC-2017 8 ✓ ✓
CPTC-2018 7 ✓ ✓ ✓ ✓

used in the automotive scenario. On the other hand, teams conduct privilege escalation
on a web hosting service in the automotive scenario, but never in the election scenario.
Furthermore, while both team-sets scan and elevate privileges related to email, only the
teams in the election scenario manage to exploit it for exfiltrating data. The unassigned
service category is particularly intriguing because it refers to high port numbers being
targeted. SOC analysts for both the networks should analyze whether these open ports
indicate a misconfiguration in their networks.

3.6.3. ALERT TRIAGING VIA ALERT-DRIVEN ATTACK GRAPHS

Alert compression. SAGE compresses intrusion alerts into a handful of alert-driven at-
tack graphs (AGs). Instead of investigating tabular alerts, analysts can triage alerts based
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Table 3.5: Breakdown of the CPTC-2018 teams: Raw alerts and their compression* at each step of SAGE. *Note
that this table was regenerated after making modifications to the code. There may be discrepancies compared to
the published manuscript [1].

CPTC-2018 Teams
Alerts
(raw)

Alerts
(filtered)

Episodes ES/ESQ ESS Traces AGs

T1 81,373 26,651 738 113 184 123 36
T2 42,474 4922 671 95 119 94 6
T5 52,550 11,918 668 76 137 118 51
T7 47,101 8517 664 88 120 81 23
T8 55,170 9037 623 93 176 122 22
T9 51,602 10,081 1115 82 163 126 29

Table 3.6: Breakdown of the CPTC-2017 teams: Raw alerts and their compression at each step of SAGE.

CPTC-2017 Teams
Alerts
(raw)

Alerts
(filtered)

Episodes ES/ESQ ESS Traces AGs

T2 2923 2904 411 142 142 56 9
T3 3353 3293 520 120 131 84 22
T4 7801 7232 1539 213 462 276 120
T5 1912 1890 433 138 138 56 11
T6 8413 7485 980 136 258 192 72
T7 4712 4220 767 141 176 114 26
T8 7150 4944 1019 132 203 123 35
T9 2233 2199 511 122 147 75 36

T10 5114 4949 496 146 148 63 11

on a few AGs of interest. SAGE compresses ∼330k alerts into 93 AGs for CPTC-2018, and
compresses ∼43k alerts into 169 AGs for CPTC-2017. Tables 3.5 and 3.6 show a team-
level break-down of the reduction in the volume of alerts by each component of SAGE for
CPTC-2018 and CPTC-2017, respectively. They show the number of raw intrusion alerts
triggered by each team, which are then filtered for duplicate alerts and aggregated into
episodes. The episodes are converted into episode sequences, which are then broken
into individual attack attempts, and are then converted into input traces for the S-PDFA.
Note that the S-PDFA is learned on traces with a minimum length of 3 symbols. Hence,
the number of traces is often fewer than the number of episode sub-sequences.

Note that the last column of Tables 3.5 and 3.6 shows the number of AGs each team
participates in, i.e., the number of unique 〈victim, objective〉 combinations attacked by
a team. The number of AGs per dataset (i.e., 93 and 169) is hence an upper-bound for the
last column. For instance, we observe that while no team participates in all of the AGs,
T4 in CPTC-2017 comes close – T4 exploits 120 out of 169 combinations of victim hosts
and objectives.

Attack graphs for CCDC-2018. The CCDC-2018 dataset is used to understand the gen-
eralizability of SAGE. Table 3.7 demonstrates that SAGE can successfully generate AGs for
over a million alerts with no prior information about attacker/victim IPs and the under-
lying infrastructure. Having information about attacker/victim IPs (or even internal/ex-
ternal hosts) definitely helps to create targeted AGs, but it is not necessary. SAGE is also
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Table 3.7: Statistical summary of the alert-driven attack graphs for each experimental dataset. The granularity
of the objectives is set to the default 〈attack stage, targeted service, state identifier〉.

Dataset Alerts AGs
Average objectives

per AG
Average paths

per AG
Average path
length per AG

Generation
time (s)

CPTC-2018 330,270 93 1.3 4.1 8.6 49.1
CPTC-2017 43,611 169 1.4 4.7 9.1 20.9
CCDC-2018 1,052,281 139 1.2 2.0 2.1 141.0

not limited to AG generation for penetration testing competition datasets – CCDC-2018
contains alerts from a blue teaming exercise.

We observe that several traces in CCDC-2018 pertain to the same IP as both, source
and destination. This may indicate a spoofing attempt or misconfiguration of the IDS.
This unique property of the dataset results in several more AGs compared to, e.g., the
CPTC-2018 dataset. Furthermore, the average size of the AGs for CCDC-2018 is smaller
compared to the AGs generated for the CPTC datasets.

Statistical properties of attack graphs. Table 3.7 shows that for the three experimental
datasets combined, SAGE compresses 1,426,162 alerts into 401 AGs. Even though CPTC-
2017 has significantly fewer alerts compared to CPTC-2018, more AGs are generated be-
cause there are more hosts and services present in the dataset. This naturally follows the
observation we made for the CPTC-2017 S-PDFA model in Section 3.6.2. Table 3.7 also
summarizes the average number of unique (contextual) objectives exploited in each AG,
the average number of paths in each AG, the average length of these paths, and the time
it takes to construct these AGs per dataset.

We observe that the S-PDFA identifies, on average, 1.2 to 1.4 unique objectives per
AG. Typically, the AGs show a minimum of 1 and a maximum of 4 semantic ways of ex-
ploiting an objective for all three datasets. There are, on average, 4 to 5 paths in each AG
for the CPTC-2017 and CPTC-2018 datasets, which also follow a long-tailed distribution.
These paths contain, on average, 8 to 9 episodes. Note that it is possible for multiple
paths to belong to the same attacker that are split in different sub-attempts. CCDC-2018
is an exception with fewer average paths per AG and shorter average path lengths. This
is because the dataset contains a lot of hosts that maintain short-lived interactions with
other hosts. This phenomenon may be explained by the fact that the alerts are only re-
lated to the defensive blue teaming exercise, and the ones related to the offensive red
teaming are excluded.

Finally, the table also lists the execution time of SAGE for each dataset. Combined
for the three datasets, it takes SAGE 3.5 minutes to process over 1.4M alerts (including
parsing the alert files and rendering the AGs). It is important to note that a significant
fraction of the execution time goes towards parsing the alerts, which is why CPTC-2017
has the lowest and CCDC-2018 has the highest execution time.

Attack graph complexity analysis. We evaluate the complexity of the AGs using the
model simplicity metric proposed by De Alvarenga et al. [41] for process mining, i.e.,
Simplicity(AG) = |V |

|E| , where |V | and |E| are the number of vertices and edges, respectively.
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Table 3.8: Simplicity of the alert-driven attack graphs computed for each experimental dataset.

Dataset
Average vertices

per AG
Average edges

per AG
Average Simplicity

CPTC-2018 16.0 33.2 0.48
CPTC-2017 20.2 36.6 0.55
CCDC-2018 4.9 5.4 0.91

We use this metric as a proxy for interpretability – we assume that simpler AGs produce
lower cognitive load for understanding attacker strategies.

Table 3.8 shows the average simplicity of the alert-driven AGs for the three experi-
mental datasets. For each dataset, the average number of vertices and edges are signifi-
cantly lower than those reported by [41], i.e., AGs with more than 30 vertices are consid-
ered complex. These AGs also show the paths for all teams, making strategy comparison
much easier. Furthermore, while the average simplicity of CCDC-2018 is higher than the
other datasets, the AGs are significantly smaller, making it easier to analyze them.

3.7. LIMITATIONS AND FUTURE WORK
SAGE leverages interpretable sequence learning to compress thousands of alerts into
a few objective-oriented attack graphs (AG). Further research is required to investigate
the attacker behavior dynamics captured by these AGs, and to what extent they can be
utilized in operational settings. In addition, attack graph querying and prioritization is
an important direction for future work since it will enable analysts to reach the most
interesting attack paths quicker. We address these limitations in Chapter 4.

The current method for episode sequence construction does not show distributed
attacks in the same AG. Although changing the granularity of the sequence construction
is a simple fix, it produces considerably larger AGs. Thus, a trade-off is required between
sequence granularity and AG size.

Learning from infrequent data is a difficult problem, which is exacerbated by the
unavailability of labeled data. A side-effect of including high-severity sinks in the state
sequences is that the corresponding AG might show distinct objective-types for similar
sequences. Although this happens rarely, handling this problem is left as future work.

It is also currently unclear how to empirically measure interpretability and the use-
fulness of an AG. Metrics like AIC, BIC, and Perplexity produce arbitrary values for mod-
els learned on different parameters, making the comparison meaningless. Further re-
search is required into the design of a metric to measure AG quality.

The S-PDFA is sensitive to small perturbations in the sequences at test-time. To build
resilience, perturbed traces can be added to the training dataset at learning time. Note
that oversampling will alter the true data distribution, which is why we do not opt for
this solution, and leave it for future work.

Another open question for SAGE is its handling of on-going attacks. Currently, only
the state sequences that reach an objective are part of its corresponding AG. If the AGs
can be generated in real-time, evolving attacks can be monitored and highlighted. The
AGs can potentially even be used to predict next attack steps, thus enabling proactive
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defense and dynamic risk assessment.

3.8. CONCLUSIONS
Intrusion alerts play a critical role in extracting intelligence about attacker strategies,
which is a labor-intensive and expert knowledge-driven process. To the best of our knowl-
edge, SAGE is the first tool that generates purely alert-driven attack graphs (AG), without
a priori expert knowledge. We elaborate upon SAGE’s sequence learning pipeline, which
is fully transparent, interpretable, and explainable. As a core building block, SAGE uti-
lizes a suffix-based probabilistic deterministic finite automaton (S-PDFA) – a model that
leverages the temporal and probabilistic dependence between alerts. The S-PDFA brings
infrequent severe alerts into the spotlight without discarding any low-severity alerts. Tar-
geted attack graphs are then extracted on a per-victim, per-objective basis.

Our experiments show that i) the S-PDFA we learn for SAGE accurately models the
underlying data and can also generalize to unseen data, and ii) SAGE is agnostic to host
and network properties: SAGE is capable of producing insightful AGs even when no
ground truth about attackers and the target network is available. SAGE compresses over
1.4M alerts in exactly 401 AGs in under 5 minutes. The resulting AGs are also simpler
than those proposed in existing works. Analysts can triage critical attacks by investigat-
ing a few of these AGs, drastically reducing their workload. SAGE is released in a docker
container for cross-platform support.
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3.9. SUPPLEMENTARY MATERIAL

3.9.1. ATTACK STAGE DEFINITION
Table 3.9 shows the micro attack stages defined by the Action-Intent Framework (AIF),
and their severity levels as defined in this chapter.

3.9.2. TARGETED SERVICE MAPPING
Table 3.10 lists the categorization of the targeted services (in CPTC-2018) according to
their functionality.

3.9.3. S-PDFA MODEL FOR CCDC-2018
Figure 3.9 shows the S-PDFA model learned for the CCDC-2018 dataset using the param-
eters specified in the chapter.
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4
ENABLING VISUAL ANALYTICS VIA

ALERT-DRIVEN ATTACK GRAPHS

The knowledge of attacker strategies that is specific to a network under observation serves
as actionable cyber threat intelligence (CTI). Such CTI currently requires extensive expert
input for obtaining, assessing, and correlating system vulnerabilities into a graphical rep-
resentation, often referred to as an attack graph (AG). Recently, alert-driven AGs have
emerged as a novel paradigm of attack graphs that reverse engineer attacker strategies di-
rectly from the actions observed through intrusion alerts without any expert input. How-
ever, a comprehensive qualitative analysis of these attacker strategies remains unexplored.

In this chapter, we learn alert-driven attack graphs from two diverse intrusion alert datasets
and investigate the attacker behavior dynamics they capture. Specifically, we show how
these AGs (a) enable forensic analysis of prior attacks, and (b) enable proactive defense by
providing relevant threat intelligence regarding attacker strategies. We also build a dash-
board for the alert-driven AGs that provides querying and prioritization capabilities to
analysts, further reducing their workload. We believe that alert-driven AGs can play a
key role in AI-enabled cyber threat intelligence as they open up new avenues for attacker
strategy analysis whilst reducing analyst workload.

Parts of this chapter are based on the paper “Alert-driven Attack Graph Generation using S-PDFA.” by Nadeem,
A., Verwer, S., Moskal, S., & Yang, S. J. in IEEE Transactions on Dependable and Secure Computing 2021, 19(2),
731-746 [1], and poster “Critical Path Exploration Dashboard for Alert-driven Attack Graphs” by Nadeem, A.,
Dıaz, S. L., & Verwer in IEEE Symposium on Visualization for Cyber Security (VizSec), 2022 [2].
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4.1. MOTIVATION & RELATED WORK
Analysts working in Security Operations Centers (SOC) are responsible for managing,
triaging, and analyzing large volumes of intrusion alerts for the forensic analysis of secu-
rity incidents. The process of reverse engineering attacker objectives and strategies from
intrusion alerts is often manual and time-intensive [3].

Extensive research has been conducted to reduce analyst workload by introducing
ML-powered visual analytics tools in their workflows that visualize large datasets, iden-
tify unique patterns, and provide actionable intelligence. Graphical dashboards are pop-
ular for providing statistical insights into intrusion alerts [4]–[9]. There is also a grow-
ing interest in utilizing alert sequences for classifying critical security events [10], con-
ducting root-cause analysis of security events [11], predicting next attack steps [12], and
modeling attack campaigns [13]. The focus of these studies is typically on detecting at-
tacks and triaging intrusion alerts. Existing literature rarely conducts qualitative analy-
ses to understand the extent to which attacker strategies are captured by the machine
learning models. This is an important question because such analyses can discover and
visualize hidden patterns in input data for augmenting human intelligence. For instance,
the analysis can equip analysts to compare attacker strategies, distinguish novice from
expert attackers, fingerprint different styles of strategies, or detect unknown unknowns.

Recently, ‘alert-driven attack graphs’ (AGs) have been proposed as a novel paradigm
of attack graphs that reverse engineer attacker strategies from the actions observed throu-
gh intrusion alerts [1]. The attack graph generator, SAGE [14], automatically discovers
and summarizes attacker strategies as individual attack paths in objective-oriented AGs.
However, a comprehensive qualitative analysis assessing the effectiveness of these AGs
in capturing attacker strategies is currently lacking. We hypothesize that by analyzing
alert-driven AGs, we can identify and characterize the behavior dynamics of attackers,
which would enable security analysts to differentiate between novice and expert attack-
ers. This is an interesting finding for criminologists, and could have significant military
applications. For example, the AGs could be used to determine how vulnerable an asset
is based on the complexity of the strategies that exploit it. Additionally, we could even
create profiles of attackers based on their unique style of strategies.

Another challenge is that while SAGE does the heavy lifting in terms of discovering
and displaying attacker strategies, it is infeasible and time-consuming for security ana-
lysts to visualize each AG separately for finding global patterns. Even though the average
complexity of SAGE AGs is lower than alternative modeling approaches (see Chapter 3),
the AGs of relatively common objectives (e.g., data exfiltration on HTTP) can be signifi-
cantly more complex with hundreds of vertices. The AGs also lack interactivity, i.e., at-
tack paths cannot be filtered by time or attack stage of interest. Preliminary interviews
with security analysts revealed that such large graphs with no interaction capabilities
are unhelpful in an operational setting. Finally, SAGE does not prioritize critical attack
paths1 that might need the urgent attention of security analysts.

To this end, we first conduct a rigorous qualitative analysis of the attacker strategies
modeled by the alert-driven AGs. Specifically, our investigation focuses on identifying
the attacker behavior dynamics present in the AGs, and assessing whether we can obtain

1A critical path is a series of actions that leads to critical event(s).
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actionable threat intelligence regarding potentially scripted attack attempts and finger-
printable paths. In addition to the qualitative analysis, we build a critical path explo-
ration dashboard to consolidate the alert-driven AGs in a single location, and to further
empower security analysts. Specifically, we develop a web-based visual analytics dash-
board for alert-driven AGs with querying and prioritization capabilities for critical attack
paths. The dashboard reduces analyst workload by i) discovering and extracting attacker
strategies from intrusion alerts (done by the SAGE module); ii) consolidating the dis-
covered attacker strategies in a dashboard with filtering capabilities, and iii) prioritizing
critical events that might require an analyst’s urgent attention.

We utilize two security testing competition datasets to extensively evaluate the AGs
generated by SAGE, and to test the efficacy of the dashboard. We show that SAGE is gen-
eralizable, and that the AGs unlock a new means to derive intelligence regarding attacker
strategies without having to investigate thousands of intrusion alerts. The AGs provide
the visual means to compare attacker strategies. We show how to use this comparison
to find fingerprintable paths and to rank various attackers based on the severity of their
actions. On one of the experimental datasets, they reveal that attackers follow a shorter
path to re-exploit an objective after they have already discovered a longer path in 84.5%
of the cases. We also provide an exemplary use case for the dashboard demonstrating
how the querying and prioritization functionalities further help triage attack paths of
interest. In summary, our main contributions are:

1. We evaluate the behavioral analytics enabled by alert-driven attack graphs, i.e., in
terms of attacker strategy comparison and fingerprintable path discovery.

2. We demonstrate the generalizability of the attack graphs by investigating three use
cases generated from an unexplored blue teaming exercise.

3. We build a web-based dashboard to consolidate all the alert-driven attack graphs
by providing querying and prioritization capabilities to security analysts.

Deployability of Alert-driven Attack Graphs. SAGE uses intrusion alerts to generate
attack graphs (AG) that succinctly display all the paths that reach a given objective, mak-
ing it an interpretable visual analytics tool for the following two types of end-users:

1. SOC analysts. The primary use case explored in this chapter is about enabling SOC
analysts to extract threat intelligence about attacker strategies from previously ob-
served malicious activities. As such, SAGE augments existing SIEMs and IDSs by
triaging the attack scenarios of interest, e.g., for specific assets in a network. The
selected alert-driven AGs can be analyzed and attacker strategies can be derived
for corroborating specific evidences. Section 4.4.1 discusses concrete examples of
interpreting and comparing attacker strategies. The occurrence of certain paths
in an AG can also serve as fingerprints. Additionally, attacker hosts can be ranked
based on the severity of alerts they raise.

2. Red teams. As an adversarial use case, SAGE acts as a monitoring intermediary
during red team training. After a training session, the teams can review alert-
driven AGs for gaining insights, such as (a) identifying the shortest path to an ob-
jective that was discovered by a team member, or (b) showing redundant paths,
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for instance, due to lack of communication between the team members. Enumer-
ating all paths toward an objective can help the teams develop creative strategies,
see Section 4.4.2. The teams can use such feedback to improve their performance.

Organization. Section 4.2 provides a summary of the alert-driven attack graphs and
the design details of the dashboard. Section 4.3 explains the experimental setup. Section
4.4 presents the results pertaining to attacker strategy analysis, generalization of SAGE,
and an exemplary use case of how the dashboard helps investigate attacks. We discuss
the limitations and the practical implications for cyber threat intelligence in Sections 4.5
and 4.6. Finally, we conclude in Section 4.7.

4.2. METHODOLOGY
In this section, we first present a brief summary of SAGE and our method for validating
the alert-driven attack graphs. Then, we explain the design of the critical path explo-
ration dashboard.

4.2.1. ALERT-DRIVEN ATTACK GRAPHS

SAGE2 discovers attacker strategies in intrusion alerts using unsupervised machine learn-
ing and represents them as attack graphs. The choice of the machine learning algorithm
is driven by the following challenges:

• Class imbalance between severe (e.g., exploitation) and non-severe (e.g., scanning)
alerts presents a huge difficulty. Severe alerts are infrequent, while non-severe
alerts reflect an important aspect of an attacker’s strategy. A solution that keeps
both type of alerts, while highlighting infrequent alerts is required. This is a tricky
problem because most ML solutions discard infrequent events.

• The future and past of a given alert captures important contextual cues about the
intent of an attacker. Thus, the proposed solution must model this context to dis-
tinguish between similar alerts that lead to different attacks.

• Black-box solutions that security analysts cannot understand are undesirable, thus
calling for an explainable approach.

SAGE is an interpretable, unsupervised, sequential learning pipeline that compresses
thousands of intrusion alerts into AGs without a priori expert knowledge about exist-
ing vulnerabilities and network topology. It starts by aggregating raw intrusion alerts
into episode (hyper-alert) sequences. The temporal and probabilistic dependence be-
tween alerts is leveraged using a suffix-based probabilistic deterministic finite automa-
ton (S-PDFA) – it is an interpretable and deterministic graphical model of all attack paths
present in an alert dataset. A suffix-based PDFA is utilized to accentuate infrequent se-
vere alerts and to model context. The model distinguishes between episodes with dif-
ferent contexts but identical signatures so as to differentiate between similar attacker

2SAGE: https://github.com/tudelft-cda-lab/SAGE

https://github.com/tudelft-cda-lab/SAGE
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Figure 4.1: An alert-driven attack graph is generated for an objective exploited on a victim host. The anatomy of
an alert-driven AG: Vertices: Labels show 〈attack stage, targeted service, state identifier〉. Low-severity episodes
are oval, medium-severity are boxes, high-severity are hexagons. The first episode in a path is yellow & the ob-
jective is red. Sinks are dotted. Edges: Labels show seconds since the first alert. Colors show different attackers.

strategies that lead to distinct outcomes: If the future and past of two episodes are statis-
tically different, then the S-PDFA considers them to be different states even if they have
the same signature. Finally, individualized AGs are extracted from the S-PDFA for every
objective that is exploited on the victim host(s). Security analysts can triage and visualize
AGs of interest for understanding attacker strategies.

Figure 4.1 shows the anatomy of an alert-driven attack graph. An alert-driven AG
can be considered as an aggregated representation of relevant alerts, where each attack
path originates from one of the starting (i.e., yellow) vertices (representing episodes)
and leads to the root (i.e., objective) vertex. Each attacker that obtains the objective
is shown using a different edge color (along with the attacker IP next to the starting ver-
tex) and multiple attack attempts are broken into individual attack paths. The context
of an episode is denoted using the state identifier from the S-PDFA. Since low-severity
episodes are too frequent, we remove their state identifiers to reduce the number of re-
sulting vertices. This post-processing step further highlights the infrequent high-severity
episodes and their varying contexts. Furthermore, a list of alert signatures is shown as
a tool-tip by hovering over each vertex. This enables analysts to link the vertices of the
attack graphs to the relevant intrusion alerts.

AG Analysis and Validation. The attack graphs were generated from security testing
competition datasets where several multi-member student teams attack/defend a com-
mon fictitious infrastructure (see Section 4.3 for details). Since these datasets are unla-
beled, quantitatively validating the AGs is non-trivial. Instead, we conducted a qualita-
tive analysis by comparing the attack paths present in each AG and across different AGs
with the underlying alert datasets.
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Figure 4.2: The critical path exploration dashboard for alert-driven attack graphs. Attacker strategies extracted
from the uploaded intrusion alerts are visualized as a: (1) Graph explorer showing a unified view of all strate-
gies, (2) Timeline viewer allowing the analysis of individual attacker actions, and (3) Recommender matrix high-
lighting the alerts that require the urgent attention of an analyst.

We validated the completeness of the AGs by matching them against the teams’ self-
reported claims. We found that most of the AGs supported at least one of the claims. In
fact, the AGs provided significantly more detail into attacker strategies than the steps de-
scribed by the teams. Some claims did not have corresponding attack paths, which could
indicate that those actions did not trigger any alerts. Further investigation is required to
understand what causes such missing paths.

We also conducted an informal user study with two senior security researchers re-
garding the correctness and usability of the AGs, whose responses suggested that SAGE
is a promising tool for extracting insights from intrusion data. They also indicated that
large AGs with no interaction capabilities might be unhelpful in an operational setting.

4.2.2. CRITICAL PATH EXPLORATION DASHBOARD FOR ALERT-DRIVEN AT-
TACK GRAPHS

The proposed critical path exploration dashboard is a Django application, implemented
as a wrapper around SAGE, responsible for visualizing the attacker strategies extracted
by SAGE. Figure 4.2 shows the components of the proposed dashboard. Intrusion alert
files can be uploaded in JSON format to the dashboard. This triggers the execution of the
SAGE module, which processes the alerts, applies unsupervised sequence learning, ex-
tracts temporal and probabilistic patterns from the alerts, and produces state sequences
that reflect attacker strategies. The discovered attacker actions and their temporal rela-
tionships are then stored in a relational SQLite database that is later queried to populate
the three visualizations, i.e., graph explorer, timeline viewer, and recommender matrix.

In summary, the graph explorer presents a consolidated view of all attacker strate-
gies discovered by SAGE, and interactively visualizes them in order to find relationships
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Figure 4.3: The graph explorer allows analysts to view composite attack graphs based on selected filters, and
also allows them to view relevant alert signatures by selecting vertices of interest.
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Figure 4.4: An alert signature table is displayed upon selecting a vertex in the graph explorer. The table can be
exported in various formats for reporting purposes.

between attacker objectives. The timeline viewer enables the analyst to investigate tem-
poral correlations between attacker actions, and compare the tactics/techniques used
by the attackers at different timestamps. The recommender matrix shows a condensed
version of the MITRE ATT&CK stages that assists the analyst in prioritizing critical events
based on their prevalence and urgency in the alert dataset.

GRAPH EXPLORER

A global, unified view of all attacker strategies is shown in the graph explorer (see Figure
4.3). Analysts can use filters to query for specific attack paths based on the attacker host,
victim host, targeted service, and attack stage of interest. This view enables analysts to
draw conclusions about the most frequently used pathways towards an objective, and
the temporal inter-dependency between them. The graph explorer is implemented us-
ing the vis.js Network chart that enables efficient interactions with large graphs. The
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Figure 4.5: The timeline viewer allows analysts to view and analyze individual attacker actions/episodes by
setting filters and zooming in on time windows of interest.

vertices and edges in the graph represent the same information as the SAGE AGs, i.e., the
vertices correspond to the attacker actions (showing the attack stage, targeted service,
and state identifier), while the edges show the temporal relation between the vertices.
A single-click on a vertex displays a signature table that shows the alert signatures that
are triggered by the corresponding attacker action (see Figure 4.4). The table shows the
start and end times of the attacker action (i.e., episode), the attacker and victim IP ad-
dresses, and the frequencies of the different alert signatures. This table can be exported
in multiple formats to be used for reporting.

TIMELINE VIEWER

The timeline viewer (see Figure 4.5) enables analysts to focus on specific attacker ac-
tions that occurred during a user-selected time-window to determine, for instance, if a
victim is targeted by numerous attackers at the same time. The timeline viewer is im-
plemented using the D3 timelines-chart, which supports several swimlanes. Each
swimlane corresponds to the various actions taken by an attacker on a victim using a
specific service. The segments in a swimlane correspond to the vertices in the graph ex-
plorer (i.e., attacker actions). The segment color corresponds to the action’s attack stage.
The swimlanes are either grouped by attacker or victim IP and can be filtered by time.
Once the interesting actions are narrowed down, clicking on ‘Go to Graph Explorer’ redi-
rects to the graph explorer and shows the corresponding attack paths.

RECOMMENDER MATRIX

The recommender matrix (see Figure 4.6) shows a condensed version of the MITRE ATT&-
CK framework, similar to the ATT&CK Navigator3, where the different attack stages are
highlighted based on the urgency of the observed alerts. The urgency score for each
attack stage is calculated based on two factors – severity and prevalence (see Eq. 4.1).
First, each attack stage is assigned a default severity level according to the original SAGE
paper [1]. We quantify the severity levels with weights between [0,1], i.e., low-severity
(0.25), medium-severity (0.5), and high-severity (1.0). The severity levels and weights
can be adjusted based on the risk appetite of a SOC. Second, we compute the prevalence
of each attack stage based on their occurrence frequency. We normalize the prevalence
of attack stages to accommodate for the imbalance in the alert types, shown by Eq. 4.2.

3ATT&CK Navigator: https://mitre-attack.github.io/attack-navigator/

https://mitre-attack.github.io/attack-navigator/
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Figure 4.6: The recommender matrix allows analysts to triage critical attack stages by computing their urgency
based on the observed alerts, and filtering on hosts of interest. By clicking on a highlighted attack stage, the
dashboard redirects to the graph explorer with only the attack paths that contain the selected attack stage.

Here, V contains all attack graph vertices, and Count(V ,mcat) gives the count of vertices
with the specific attack stage mcat.

urgency(mcat) = severity(mcat)∗prevalence(mcat) (4.1)

prevalence(mcat) = Count(V ,mcat)

|V | (4.2)

The recommender matrix is implemented using the Highcharts Honeycomb tile
map. Each hexagonal tile in the tile map shows an attack stage from the Action-Intent
Framework (AIF) [15], while its color shows how urgently it needs to be assessed (darker
→ more urgent). The tiles from left to right increase in their severity, i.e., the left tiles
typically show the start of an attack and the right tiles show adversary objectives. Click-
ing on a tile with a non-zero urgency score redirects the user to the graph explorer, which
shows the specific attack paths where the particular attack stage occurs (which is colored
white for easier identification). This allows the analysts to gain a broader perspective on
the different kinds of attacks that were enabled due to the selected technique.

4.3. DATASET AND EXPERIMENTAL SETUP
Datasets. We use two open-source intrusion alert datasets: one dataset from the Colle-
giate Penetration Testing Competition (CPTC) [16] for investigating the attacker behavior
dynamics, and one dataset from the Collegiate Cyber Defense Competition (CCDC) [17]
for showing the attack graphs’ generalizability. Table 4.1 shows the summary of the ex-
perimental datasets.
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Table 4.1: Summary of the experimental datasets used to learn attacker strategies.

Dataset properties CPTC-2018 CCDC-2018

# alerts 330,270 1,052,281
# teams 6 Unknown
# IPs 42 2138
# services 160 2050
Duration (hrs) 9 25
Attacker hosts known? Yes No
Victim hosts known? Yes No
Competition type Penetration testing Blue teaming

The alert datasets are generated by different student teams who are tasked to com-
promise/defend a common fictitious network. The CPTC-2018 dataset contains alerts
by six teams (T1, T2, T5, T7, T8, T9) targeting an automotive company. Each team
has access to fixed-IP machines that they can use, either in collaboration, or in isola-
tion to achieve their objectives. The infrastructure is monitored by a Suricata IDS [18],
which records alerts on a per-team basis. Beyond the attackers’ IP information, no other
ground truth is available regarding the attack progression and attacker strategies. This
imitates the real-world scenario where SOC analysts i) determine how an attack hap-
pened, and ii) compare attacker strategies for fingerprintable behaviors.

The CCDC-2018 dataset contains alerts from a blue team exercise, where the orga-
nizers serve as the red team. Other than a network topology diagram (which seems like a
web shop), no other ground truth is available. This reinforces the claim that SAGE does
not need any expert input to produce insightful AGs.

Parameters. In this chapter, we set t = 1.0 seconds to filter repeated alerts [13], [19].
For window length w , we experiment with w = {60,150,300,600} seconds, and choose
w = 150 as a reasonable value. Smaller window sizes produce longer alert sequences,
which may cut the same behavior across multiple episodes. As such, w should be tuned
according to the trade-off between analysis resolution and the number of alerts available
per sequence. For model learning, state_count, symbol_count, and sink_count are set to
5. All experiments are run in a Jupyter notebook executed on Intel Xeon W-2123 quad-
core processor and 32 GB RAM.

Experiments. We perform three experiments pertaining to the behavior dynamics cap-
tured by alert-driven attack graphs.

1. Behavioral analytics. We analyze the attack graphs generated from CPTC-2018 for
explaining and comparing attacker strategies, discovering fingerprintable paths,
and ranking attackers based on their observed actions (Section 4.4.1).

2. Replication use case. We investigate the usefulness of the attacker strategies cap-
tured by the attack graphs generated from an unexplored blue team exercise, i.e.,
CCDC-2018 (Section 4.4.2).
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3. Dashboard usage. We show the added utility of the critical path exploration dash-
board by showing an exemplary attack investigation use case (Section 4.4.3).

4.4. RESULTS AND DISCUSSION
In this section, we show that alert-driven attack graphs (AG) reflect the actual pathways
taken by the attacker teams. The AGs are powerful because they not only enable foren-
sic analysis of prior attacks (i.e., displaying and comparing attack paths), but they also
provide relevant threat intelligence about attacker strategies (i.e., insights into behav-
ior dynamics, fingerprinting paths for attacker re-identification, and ranking attackers
based on the uniqueness and severity of their actions). The AGs are also succinct, inter-
pretable, and generalizable.

4.4.1. EXPLAINING ATTACKER STRATEGIES IN CPTC-2018
We analyze the AGs generated from CPTC-2018. The S-PDFA finds a total of 70 contextual
objectives that are achieved by targeting 19 victim hosts. 330,270 alerts are represented
by 93 AGs, where each AG shows how the attack actually transpired. The end-to-end
execution time is 49 seconds, where most of the time is spent parsing the intrusion alerts.
Below, we discuss the visual analytics enabled by SAGE for attack path interpretation,
and strategic difference analysis.

COMPARING INDIVIDUAL ATTACK PATHS

Alert-driven AGs provide insights into the paths exploited by attackers. Figure 4.7 shows
the strategies of three teams (the absence of other teams indicates that they were unable
to achieve this objective or did not trigger alerts of this type). This graph compresses 300
alerts into 25 vertices, enabling SOC analysts to follow the attack progression.

Figure 4.7 shows that T1, T5, and T8 exfiltrate data from 10.0.0.20 using a remote
access service. The teams self-reported that they had found a chatting application on
this host that contained credentials, which they exfiltrate using a combination of privi-
lege escalation and arbitrary code execution. The alert signatures displayed by the differ-
ent vertices of the AG concretely show that this was achieved by exploiting a combination
of the CodeRed v2, ColdFusion, and ShellShock exploits.

T5 finds two distinct paths to complete this objective: first at around the 1.4-hour
mark of the competition, and then later at around the 4.5-hour mark. T1 also finds
two paths, but significantly later in the competition. The S-PDFA identifies three dis-
tinct exfiltration states because of significant differences in the paths that reach these
states. Clearly, the states 〈data_exfiltration, remoteware-cl, 17〉 and 〈..., 116〉
are reached later in the competition with fewer steps, implicitly capturing attackers’ in-
creasing experience.

Interestingly, an AG of data manipulation (Figure 4.8) results in a partial sub-graph of
the AG from Figure 4.7, due to overlap in paths that attain both objectives. It shows three
variants of data manipulation, two of which are also present in the exfiltration graph, i.e.,
〈data_manipulation, remoteware-cl, 95〉 and 〈..., 288〉. T5 finds one additional
path to reach 〈..., 18〉 right after it has reached
〈data_exfiltration, remoteware-cl, 17〉 from the previous AG. These type of in-
sights provide actionable intelligence to disrupt the cyber kill-chain [20].
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Figure 4.7: An alert-driven attack graph for 10.0.0.20 – data exfiltration over remoteware-cl (IDs are state
identifiers, capturing the context). Three attacker teams exploit it: Teams 1 (maroon) and 5 (green) exploit it
twice, where subsequent attempts are shorter than the previous ones. There are three ways of exploiting the
objective, based on the actions that lead up to it, as determined by the S-PDFA. Sinks are states that are too
infrequent for the S-PDFA to learn from (dotted vertices). Edge labels show time progression in seconds.



4.4. RESULTS AND DISCUSSION

4

107

Figure 4.8: A data manipulation attack graph is a partial sub-graph of Figure 4.7 due to overlapping paths.

EXPLAINING STRATEGIC DIFFERENCES ACROSS AGS

In addition to comparing attack paths, SOC analysts can also compare entire AGs for
a broader view of the network, e.g., the AGs of victims 10.0.1.40 and 10.0.1.41 for
data exfiltration over http are identical, both in terms of the teams that exploit it and the
timestamps of their actions (see Figure 4.9). According to the network topology, these
two hosts handle authentication in the production network. The identical AGs indicate
that both, T5 and T8 conduct a scripted attack on these hosts. A simple graph edit dis-
tance is enough to automate the detection of such identical AGs.

Figure 4.10 shows T5, T7, and T8 conducting resource hijacking over two hosts (.40,
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.41) using http, resulting in highly similar AGs. T5 has an identical strategy for both
hosts. T7 does scans before manipulating accounts and conducting a network DoS over
.41, while later they only perform a scan and a network DoS over .40. Similarly, T8 does
a privilege escalation and code execution after network DoS over .41, while they later
only do a network DoS over .40 to achieve their objective. These differences show that
attackers tend to follow shorter paths after having successfully exploited a longer path.
Out of all the attack paths discovered in CPTC-2018, 84.5% subsequent paths are shorter
than an earlier attempt, for a given objective. This finding is backed by common-sense
intuition that if an attacker already knows how to exploit an objective, they would skip
the unnecessary hit-and-trial steps for re-exploitation.

(a) Victim: 10.0.1.40 (b) Victim: 10.0.1.41

Figure 4.9: Identical and simultaneous attacks targeting multiple victim hosts result in identical attack graphs.
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(a) Victim: 10.0.1.40 (b) Victim: 10.0.1.41

Figure 4.10: Similar attacks targeting multiple victim hosts result in overlapping attack graphs.

DISCOVERING FINGERPRINTABLE PATHS

After analyzing the AGs, we observe that different teams often reach different objectives,
and when they do reach the same objective, their paths are very different. Moreover,
when a team reaches an objective multiple times, their paths are highly similar. Thus,
the uniqueness of the paths can be used by SOC analysts as fingerprints to single-out
attacker teams. A fingerprint is a uniquely identifiable sequence of episodes, i.e., path
(from Chapter 3), that leads to a certain objective. It is entirely possible that other paths
(or sub-paths) leading to common objectives are also unique, but we take a conservative
approach and say that an objective is fingerprintable if only a single team reaches it.
Also, an objective can have more than one fingerprint if a team finds multiple unique
ways to reach it. Table 4.2 shows the number of unique paths each team discovers during
CPTC-2018. 17 objectives are fingerprintable, with a total of 29 unique fingerprints. We
found 9 fingerprints for two objectives reached by T1; 10 fingerprints for four objectives
reached by T5; 7 fingerprints for five objectives reached by T7, and 3 fingerprints for
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three objectives reached by T9. We found no dedicated fingerprintable objectives for T2
and T8. Also, since a fingerprint is a sequence of episodes, longer fingerprints provide
more evidence for identifying an attacker. The fingerprints we discover are composed of
15.8 episodes, on average, which provides solid evidence to uniquely identify a team.

Table 4.2: The number of unique paths discovered by the CPTC-2018 teams, per objective. Fingerprintable
objectives are highlighted (and the number of fingerprints is shown as x∗).

Service
Unique paths discovered

Fingerprint?
T1 T2 T5 T7 T8 T9

Data Delivery
http 8 3 2 5 5

commplex-main 1∗ ✓
cslistener 1 1
wap-wsp 1 1

remoteware-cl 1∗ ✓
us-cli 1 1

unassigned 1∗ ✓
Data Exfiltration

http 13 8 3 12 6
commplex-main 3∗ ✓

cslistener 1∗ ✓
wap-wsp 1∗ ✓

remoteware-cl 2 2 1
us-cli 1 2 1

etlservicemsgr 2∗ ✓
unassigned 2 7 1 6 1 7

Data Manipulation
http 14 7 3 8 6

commplex-main 1∗ ✓
cslistener 1∗ ✓
wap-wsp 1 1

remoteware-cl 1 2 1
us-cli 1 1 1

etlservicemgr 2∗ ✓
unassigned 1∗ ✓

Resource Hijacking
http 5 6 9 10 5

commplex-main 1∗ ✓
cslistener 1∗ ✓
wap-wsp 1 1

remoteware-cl 2 1
us-cli 1 1

etlservicemgr 2∗ ✓
unassigned 1∗ ✓

Network DoS
http 6 7 7 8 14
ssdp 8∗ ✓

Data Destruction
us-cli 1∗ ✓

RANKING ATTACKER PERFORMANCE

Each vertex in an alert-driven AG (corresponding to a unique S-PDFA state identifier)
signifies a new milestone achieved by an attacker. We argue that the fraction of unique
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milestones discovered by an attacker provides a metric for their performance, which can
be used by SOC analysts and red teams to rank interesting attacker hosts. A medium-
severity episode serves as a stepping-stone towards a high-severity episode. Hence, we
propose that high-severity vertices hold twice the weight of medium-severity vertices,

i.e., (2∗high)+(1∗medium)
3 .

Table 4.3 shows the evaluation of CPTC-2018 teams based on all 93 AGs, ranked ac-
cording to their performance. It shows, for each team, the number of active attacker
hosts, and the unique milestones they discover. T5 is the most high-profile team, even
though only two team members were responsible for discovering all the high-severity
vertices. T1 comes in second, solely because they discover the highest number of medium-
severity vertices. Finally, T2 discovers the least number of severe vertices. These results
are also corroborated by Table 4.2, which shows T2 being unsuccessful in discovering
many of the objectives.

Table 4.3: CPTC-2018 team ranking based on the fraction of unique severe vertices discovered, and the number
of attacker hosts responsible for discovering them.

Teams # Active hosts # Vertices Weighted average
percentageHigh-sev

(out of 70)
Medium-sev
(out of 148)

T5 2/5 28 (40%) 40 (27%) 35.67
T1 5/6 18 (26%) 62 (42%) 31.33
T9 5/5 23 (33%) 36 (24%) 30.0
T7 6/6 22 (31%) 26 (18%) 26.67
T8 6/7 15 (21%) 32 (22%) 21.33
T2 3/6 3 (4%) 8 (5%) 4.33

4.4.2. USE CASE A: APPLYING SAGE ON AN UNEXPLORED BLUE TEAM EX-
ERCISE

The Collegiate Cyber Defense Competition (CCDC) dataset is given as input to SAGE to
verify whether the AGs provide the same interpretability and succinctness on a dataset
that is not related to penetration testing. From 1,052,281 alerts, SAGE produces 139 AGs.
The fact that we do not have any information about the attacker/victim hosts and the
underlying infrastructure reinforces that SAGE can produce generalizable attack graphs,
and is agnostic to host, dataset, and infrastructure properties. The cases discussed in
this section verify that the alert-driven AGs require no expert knowledge to be insightful.

CASE 1 - PATH ENUMERATION

The AG in Figure 4.11 shows two possible variants of data exfiltration over smtp (email
service), which can be achieved using the following paths:

1. RPE, ACE, NetDoS, VulnDisc, RPE, ACE, Exfil

2. NetDoS, VulnDisc, RPE, ACE, Exfil

3. VulnDisc, RPE, ACE, NetDoS, Exfil

4. VulnDisc, NetDoS, Exfil
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5. VulnDisc, ACE, Exfil

6. VulnDisc, RPE, ACE, Exfil

where RPE is root privilege escalation; ACE is arbitrary code execution; VulnDisc is vul-
nerability discovery; Exfil is data exfiltration, and NetDoS is network DoS. Explicitly
enumerating attack paths in this way can help red teams come up with creative strate-
gies. The first two paths are especially interesting because they start with a severe attack
stage. Since these alert-driven AGs show a segment of an on-going campaign, starting
from a severe attack stage indicates that the attackers already had intelligence from else-
where before targeting this machine. Such paths are not intuitive when constructing
expert-driven AGs.

Figure 4.11: A data exfiltration over smtp attack graph in CCDC-2018 showing one attacker making 13 attempts.
Paths starting from severe attack stages are possible as these attack graphs show partial attack campaigns.

CASE 2 - SHORTEST PATH

Figure 4.12 shows the AG for performing network DoS using ntp. It shows two possible
variants, starting from six different vertices. Various services are targeted along the way,
including http and microsoft-ds (data sharing protocol). The different attacker hosts are
highlighted by different edge colors. This AG shows that it is possible to obtain this ob-
jective with just two actions, i.e., data exfiltration and network DoS. This happens at the
4-hour mark. About 30 minutes later, root privilege escalation is done leading to arbi-
trary code execution and network DoS. This is a counter-example where a subsequent
path is longer than the first, even though only a single IP is involved. SOC analysts can
further investigate whether these two attempts are indeed made by the same attacker, or
some behavioral artifact is at play.
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Figure 4.12: An attack graph of network DoS over ntp in CCDC-2018 showing six possible starting actions and
two possible ways to reach the objective.

CASE 3 - AN EXTRA ATTEMPT

Figure 4.13 shows various ways to conduct data exfiltration over https for victims 10.47.
3.142 and 10.47.3.1. Both AGs are nearly identical, with one additional exfiltration
attempt in the second AG towards the end of the competition, made by a new attacker.
SOC analysts can investigate why only one of the two machines were targeted by this
new attacker.

(a) Victim: 10.47.3.142 (b) Victim: 10.47.3.1

Figure 4.13: Highly similar attack graphs from two victims in CCDC-2018 showing that the graphs are identical,
except for an additional attack attempt by 10.128.0.205 in the second graph.
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4.4.3. USE CASE B: ATTACK INVESTIGATION VIA THE DASHBOARD
We populate the critical path exploration dashboard with the CPTC-2018 dataset. We use
the intrusion alerts of teams 5 and 9 (resulting in 104,152 alerts) to compare the proposed
dashboard against SAGE AGs. SAGE compresses the alerts into 63 AGs, while the unified
dashboard allows to explore and reason about the discovered attacker strategies.

The recommender matrix shows that alerts associated to data manipulation, arbi-
trary code execution, and information discovery require the urgent attention of security
analysts due to their prevalence and severity scores (see Figure 4.6). Information discov-
ery is being highlighted because of the sheer frequency of raised alerts.

DATA EXFILTRATION ATTEMPTS

A security analyst can view the most common strategies used by attackers to exfiltrate
data over http by using the Data Exfiltration and HTTP filters in the graph explorer. All
the filtered pathways do root privileged escalation and data manipulation before exfil-
tration. By selecting one of the privilege escalation vertices, the alert signatures show,
e.g., “GPL EXPLOIT CodeRed v2 root.exe access”, providing actionable intelligence that
the CodeRed exploit was used to carry out this attack. Ensuring that the network is not
vulnerable to CodeRed helps mitigate similar privilege escalation attacks in the future.

ATTACKS AFTER WORKING HOURS

An analyst may investigate if any anomalous activity occurred at specific times, such
as after working hours or on holidays. The timeline viewer can be used to investigate
what transpired on a victim host. For example, the timeline viewer shows that the victim
10.0.0.22 was targeted by the attacker 10.0.254.204 until 9:44:42 PM. The analyst
can view the strategies employed during this time by redirecting to the graph explorer.
The graph explorer illustrates that arbitrary code execution enabled resource hijacking,
which further enabled data manipulation and data exfiltration. The analyst can use this
information to determine which resources were compromised during these attacks.

4.5. PRACTICAL IMPLICATIONS FOR CYBER THREAT INTELLI-
GENCE

Cyber threat intelligence (CTI) platforms convert cyber data into actionable intelligence.
Intrusion alerts play a critical role in this process, and automated attacker strategy deriva-
tion is a major challenge. Existing tools that display attacker strategies via attack graphs
(AG) require network scans and vulnerability information, which are often time-consum-
ing and outdated.

SAGE facilities attacker strategy analysis via advanced visualizations. The analysis
presented in this chapter merely scratches the surface of the intelligence that can be ac-
quired from these alert-driven AGs. They show clear attack progression and allow strat-
egy comparison. Fingerprintable paths can be recorded for attacker re-identification.
They also show that attackers will often follow shorter paths to re-exploit an objective,
after they have already discovered a longer one.

We show that the AGs indeed model the teams’ self-reported claims. As demon-
strated in Section 4.4.2, SAGE is agnostic to network, host, and alert properties: With no



4.6. LIMITATIONS AND FUTURE WORK

4

115

ground truth about any aspect of the dataset, SAGE produces succinct and interpretable
AGs, capable of actionable insights.

In addition, the proposed critical path exploration dashboard consolidates the AGs
produced by SAGE. The unified view provided by the graph explorer and timeline viewer
helps analysts discover temporal relationships between different objectives. The com-
plexity of the global graph is managed via several filters. We opt for two different views
for investigating attack paths (graph explorer) and attacker actions (timeline viewer) to
reduce the cognitive load on analysts. The recommender matrix highlights critically ur-
gent attack stages. Based on the unique circumstances of a SOC, analysts can adjust the
threshold for what is considered urgent. In addition, analysts can filter the urgency of
critical events based on specific attacker hosts, victim hosts, and targeted services. Fi-
nally, since the dashboard is a web application, analysts can investigate cyber threats
remotely, without having to run SAGE locally.

4.6. LIMITATIONS AND FUTURE WORK
The alert-driven attack graphs provide a comprehensive overview of attacker behavior
dynamics, and the dashboard enhances their deployability for operational settings. We
aim to conduct a deeper investigation into the concept of fingerprints, particularly as-
sessing their potential to be translated into signatures and integrated back into an IDS
in an active learning setup. We also want to investigate whether such signatures hold
across different datasets/infrastructures.

It is important to note that SAGE currently displays all alerts, even if they are con-
sidered false positives. This is because SAGE operates in a completely unsupervised
setting without access to ground truth. Further research is needed to understand how
false positives manifest in the alert-driven AGs, and whether we can design a heuristic to
automatically discard them.

Additionally, a more rigorous validation study is required to measure the correct-
ness of the AGs, and to understand which design decisions enable the analysts to reach
correct conclusions when interacting with the dashboard. For instance, one technical
limitation that may mislead analysts pertains to concurrent actions – due to the nature
of sequential modeling in the S-PDFA, actions that may have been triggered simultane-
ously are placed in a sequential order, giving the false perception that one action pre-
cedes the other. To avoid this confusion, it may be beneficial to explicitly state the start-
and end-time of each episode (vertex) in the AGs.

4.7. CONCLUSIONS
SAGE is utilized to generate alert-driven attack graphs (AG) for two open-source alert
datasets. We show that SAGE generates insightful AGs even with no prior knowledge
about an alert dataset. We demonstrate that alert-driven AGs can provide insights into
past attacks and intelligence for future attacks. Our extensive experiments show that the
AGs provide a clear picture of the attack progression, and capture the strategies of the
participating teams. Specifically for CPTC-2018, SAGE compresses over 330k alerts in
93 AGs in under a minute. These AGs show exactly how specific attacks transpired and
reveal that attackers follow shorter paths to re-exploit objectives 84.5% of the time. We
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discover 29 uniquely identifiable attack paths, composed of 15.8 episodes on average.
We also rank attackers based on the severity of their actions, showing that team 5 visits
the highest, while team 2 visits the lowest number of severe vertices.

Furthermore, the critical path exploration dashboard provides a consolidated view
of the attacker strategies discovered by SAGE. The graph explorer and timeline viewer
help discover global attack patterns, while the recommender matrix highlights the most
critical events to analyze. The filtering capabilities in each visualization help analysts
drill down to more targeted attacks and provide greater flexibility than SAGE did alone.
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1742789 and RIT Global Cybersecurity Institute.
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5
BEYOND LABELS: AUTOMATED

BEHAVIOR PROFILING OF

MALWARE

The capability assessment of malware samples is typically a manual and time-intensive
task. This chapter proposes a novel unsupervised sequence clustering tool-chain called
MalPaCA, which automates capability assessment by clustering the observable behavior
in malware’s network traces. The behavioral profiles are generated based on the cluster
membership of malware’s network traces. A directed acyclic graph (DAG) shows the sim-
ilarities and differences between malware behavioral profiles. The behavioral profiles to-
gether with the DAG provide a more meaningful characterization of malware than current
family designations, which are known to be inconsistent and noisy.

We apply MalPaCA on a financial malware dataset collected in-the-wild that comprises
of 1196 malware samples resulting in 3.6M packets. Our experiments show that (i) Mal-
PaCA successfully identifies capabilities, such as port scans and the reuse of Command
and Control servers by clustering only 20 packet headers; (ii) it uncovers multiple discrep-
ancies between behavioral clusters and family labels, and (iii) it demonstrates the effec-
tiveness of clustering temporal features by producing an error rate of 8.3%, compared to
57.5% obtained from statistical features.

This chapter is based on the paper “Beyond Labeling: Using Clustering to Build Network Behavioral Profiles of
Malware Families” by Nadeem, A., Hammerschmidt, C., Gañán, C. H., & Verwer, S. in Malware Analysis Using
Artificial Intelligence and Deep Learning 2021 (pp. 381-409), Springer [1]. Section 5.4 was added afterward.
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5.1. INTRODUCTION
The first malware was discovered over thirty years ago. Yet, malware infections remain
one of the leading threats in cybersecurity1. AV-test, a security research institute, re-
ported detecting over 1000M malware samples in 20192. Anti Virus (AV) companies play
a pivotal role in identifying newly discovered malware samples by labeling them. The
family labels for these malware samples are either taken from the malware code itself,
or are assigned by a malware analyst. These family labels typically do not represent the
capabilities of malware samples. Also, the overall process of assigning malware labels is
often inconsistent, and multiple AV vendors can end up assigning different names to the
same sample [2], [3]. This black-box (uninterpretable) nature of malware labeling makes
it impossible to verify assigned family labels, causing the evaluation of newer detection
methods to depend on unreliable ground truth [4].

In this chapter, we address the limited interpretability of malware family labels by
augmenting them with their explainable behavioral profiles. To this aim, we propose
MalPaCA (Malware Packet Sequence Clustering and Analysis) – an unsupervised sequence
clustering tool-chain for automated capability assessment of malware samples.

We challenge the current research paradigm in two ways: First, the behavioral pro-
files are constructed using manual capability assessment3 [5]–[7], which causes them
to become quickly outdated. We investigate the usage of unsupervised machine learn-
ing (ML) for automated capability assessment in order to address the growing volume of
malware samples. Second, the behavior analysis of malware is heavily based on its static
and system-level activity analysis. Network traffic is rarely used to analyze malware be-
havior because of the scarcity of ground truth and the non-stationarity of its data dis-
tribution [8]. As a result, malware samples that exhibit identical network behavior but
have different code attributes end up in different families, see e.g., Perdisci et al. [9].
Meanwhile, existing research suggests that network traffic shows malware’s core behav-
ior by capturing direct interactions with the attacker or the command and control (C&C)
server [10]. Network traffic analysis can also be performed remotely, which presents a
lower overhead than many popular system-activity solutions. Thus, we place an empha-
sis on building network behavioral profiles.

Existing learning-based behavior analysis approaches typically construct a single mo-
del that either describes the whole network or describes each protocol usage individu-
ally [11]. However, the network traffic originating from even a single host can be so com-
plex that these models fail to correctly represent malicious behaviors [12]. This is why
MalPaCA splits the network traffic between hosts into unidirectional connections and
considers them as discrete behaviors (or capabilities). MalPaCA clusters similar connec-
tions based on their temporal similarity, where each cluster represents a unique capa-
bility. A malware sample is then represented by its behavioral profile – an enumeration
of the cluster membership of its connections. We represent these behavioral profiles
in a directed acyclic graph (DAG) that shows the overlapping behaviors of different sam-
ples. The graph also shows malware samples from different families behaving identically,
showing potentially inconsistent family labels.

1https://www.cybersecurity-insiders.com/top-15-cyber-threats-for-2019/
2https://www.av-test.org/en/statistics/malware/
3The goal of capability assessment is to discover the behaviors a malware sample exhibits.

https://www.cybersecurity-insiders.com/top-15-cyber-threats-for-2019/
https://www.av-test.org/en/statistics/malware/
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MalPaCA’s novelty lies in its sequential features that keep the temporal nature of the
traffic intact. It utilizes only 20 packets to characterize the network behavior of any
given connection. It also utilizes only the packet header features that are available even
when traffic is encrypted. MalPaCA utilizes a combination of dynamic time warping
and ngrams to measure the distance between network connections for the clustering
task. The clusters are visualized using temporal heatmaps that provide a data-driven ap-
proach to investigate the quality of MalPaCA’s clusters by clearly showing multivariate
sequences of network connections that are grouped together. The heatmaps also enable
analysts to assign capability labels to clusters, without having to manually investigate
thousands of network traces. Thus, the temporal heatmaps provide a visual means to
understand MalPaCA’s rationale for finding behavioral similarity. In doing so, we address
the interpretability problem of typical black-box analysis methods.

We evaluate MalPaCA’s performance on 1196 financial malware samples (resulting
in 3.6M packets) coming from 15 families collected in-the-wild. We also compare the
effectiveness of sequence clustering by comparing with an existing method based on
frequently-used statistical (aggregate) features [13]. We show that (i) MalPaCA’s capabil-
ity assessment works on low quality datasets with as low as 20 packets in each connec-
tion, though longer/additional connections result in more thorough profiles; (ii) it suc-
cessfully discovers several attacking capabilities, such as port scans and reuse of C&C
servers; (iii) MalPaCA demonstrates the effectiveness of sequence clustering by produc-
ing an error rate of 8.3% compared to 57.5% obtained from statistical features, and (iv)
MalPaCA uncovers multiple discrepancies between behavioral clusters and family labels.
We believe this happens either because the labels are incorrect or because the overlap-
ping samples share significant behavior. In summary, our contributions are as follows:

1. We present a comprehensive survey of machine learning use for malware analysis
in the available literature.

2. We build MalPaCA – a tool-chain that automatically builds network behavioral
profiles for malware samples collected in-the-wild.

3. We introduce temporal heatmaps as a data-driven and visualization-based cluster
evaluation method for multivariate sequential features. We also demonstrate the
utility of the directed acyclic graph in uncovering discrepancies between behav-
ioral clusters and traditional family labels.

4. We show the superiority of clustering sequential features over statistical features.

THE PROBLEM WITH AV LABELS
This section presents an analysis of our experimental dataset (i.e., 1196 malware sam-
ples) to emphasize the problem of inconsistent AV labels, and to motivate the need for
explainable behavioral profiles. We compare the agreement rate of two popular malware
labeling practices, i.e., YARA rules4 and VirusTotal5. The malware collection process is
given in Section 5.5. Table 5.2 shows the number of binaries in each malware family.

4YARA: https://virustotal.github.io/yara/
5VirusTotal: https://www.virustotal.com/

https://virustotal.github.io/yara/
https://www.virustotal.com/
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Figure 5.1: Label agreement rate among AV vendors for malware binaries. Rows show YARA labels, and
columns show AVClass labels.

The malware binaries in the dataset are labeled using YARA rules. Each malware
binary also has a VirusTotal (VT) scan report. On average, there are 61 AV vendors for
each malware sample, out of which 25.8% vendors per malware sample return a null
detection, i.e., unable to detect it as malicious. The rest assign various labels to each
malware binary.

Since each AV vendor has its own vocabulary, a trivial filtering attempt on a VT re-
port cannot identify the true underlying family label. Sebastian et al. [3] have developed
an open-source tool, called AVClass, that takes VT reports as input and returns the most
likely family label. If, after all the filtering steps, AVClass is unable to identify the family
name, it declares the malware as a “SINGLETON”. We use AVClass to reduce a VT re-
port into its representative VT family label. In the experimental dataset, AVClass returns
“SINGLETON” for 101/1196 (8.4%) VT reports, while assigning 42 unique family labels
to the rest 1095 malware binaries.

Figure 5.1 shows the agreement rate between the YARA and VT labels. The y-axis
shows the YARA labels. The x-axis shows the VT labels as aggregated by AVClass. For
brevity, “OTHERS” category contains all samples for which counts < 10. Only 3 fam-
ily names co-exist in both YARA and VT labels, i.e., Citadel, Gozi, and Ramnit. Also,
although Ramnit is detected under the same name by both YARA and VT, 10 malware
samples are still labeled differently. In fact, YARA family labels are assigned 4.2 distinct
VT labels on average, while VT labels are assigned 1.5 distinct YARA labels on average.
One example demonstrating this is: YARA: Zeus-VM-AES (29 samples) are predicted as
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VT: razy (10 samples), gamarue (6 samples), cerber (3 samples), upatre (3 samples),
farfli (1 samples), locky (1 samples), hpcerber (1 samples), and SINGLETON (4 sam-
ples). This makes it very hard to understand the collected malware. One fair conclusion
is that some VT labels can be considered as sub-families of the popular YARA malware
family. For example, Dinwod and Banbra seem to be sub-families of Blackmoon, but the
names alone do not explain which attributes set them apart from each other.

5.2. SURVEY OF ML-BASED MALWARE DEFENSE

The field of malware analysis has existed since the first malware was discovered over
thirty years ago. Since then, multiple machine learning based approaches have been
proposed to automate malware detection and analysis. In this section, we present a brief
survey of the major research challenges targeted by prior work. In doing so, we highlight
how our work fills the gaps across various research themes.

5.2.1. CHALLENGES IN MALWARE LABELING

Existing research has repeatedly shown that malware family labels are noisy and incon-
sistent. Popular tools, such as VirusTotal, run multiple AV scanners and return an array of
labels predicted by each scanner, without any indication as to which is correct. There is
also an absence of a common vocabulary that all security companies can follow to label
malware samples. Maggi et al. [14] propose a method to find inconsistencies in malware
family labels generated by Anti Virus (AV) scanners. Mohaisen et al. [15] are the first to
measure the accuracy, consistency, and completeness of AV scanners. Their results show
that AV vendors produce inconsistent labels 50% of the time, on average. These findings
resulted in research that found ways to deal with the inconsistencies in the family labels.
Kantchelian et al. [2] proposed an algorithm based on expectation maximization and
Bayesian models that assigns weights to each vendor’s trustworthiness. Sebastián et al.
[3] developed a useful open-source tool, called AVClass, that determines the likely family
name after performing heavy filtering on all the predicted labels. However, these meth-
ods do not address the key underlying issue – malware family labels are black-box and
have a limited link with malware capabilities.

Behavioral profiles complement family names in that they also describe the behav-
ior of a sample. Capability assessment is done to characterize a malware sample, which
has primarily been a manual effort resulting in behavioral profiles that are quickly out-
dated. Also, most of the prior works in capability assessment utilize information ex-
tracted from the static analysis of malware executables: Black et al. [5] bridge the se-
mantic gap between low-level API calls and high-level behaviors in order to build a tax-
onomy of banking malware. They extract API calls by statically analyzing a banking mal-
ware dataset, and map them to high-level behaviors manually with the help of domain
experts. Sharma et al. [7] recently proposed a method to automatically build behavioral
profiles. They select a few high-level capabilities possessed by malware by investigating
the literature, and map them to low-level behaviors extracted from the static analysis
of 56 malware samples. In contrast, we propose MalPaCA that automatically builds dy-
namic (network) behavioral profiles.
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5.2.2. RESEARCH OBJECTIVES: DETECTION VS. ANALYSIS
Existing research on malware comes in two strains: detection-based and analysis-based.
Malware detection and signature generation dominates existing literature, with the end-
goal of optimizing metrics [9], [13], [16]–[26], while only a few of these studies provide
qualitative analysis of the obtained results [12], [27]. Recently, however, several malware
analysis approaches have been proposed that aim to improve malware understandabil-
ity rather than optimizing detection rates. Black et al. [5] perform an in-depth analysis
of the key behaviors of banking malware families and how they have evolved over time.
Moubarak et al. [6] discuss malware evolution and the structural relationship between
several potentially state-sponsored malware. In [28], the authors cluster android mal-
ware samples, and build a dendrogram of the malware families showing overlapping
code snippets. Sharma et al. [7] build behavioral profiles for malware samples using
static analysis. In this chapter, we also build an analysis method, MalPaCA, that groups
similar network connections.

Although clustering is an unsupervised technique, existing literature often uses some
notion of ground truth (family labels) to evaluate cluster quality. Bayer et al. [22] evalu-
ate their malware clustering approach using labels obtained by the majority voting of 6
AV vendors. Perdisci et al. [9] evaluate their malware clustering approach by introduc-
ing a notion of AV graphs that depict the agreement between AV vendors as a measure
of cluster cohesion and separation. In [17], the authors report over 95% precision and
recall for their malware clustering approach. They use the majority voted family labels
from 25 AV vendors as their ground truth. Li et al. [4] have advised caution against
deciphering highly accurate clustering results as they may be impacted by spatial bias:
Relying on majority voting with AV-provided labels is hazardous since widespread agree-
ment among AV vendors indicates that the families are already easily identifiable. In this
chapter, we propose a data-driven cluster evaluation method without using family labels.
Instead of optimizing clustering accuracy, our emphasis is on explainability of the results.

5.2.3. CHALLENGES IN MALWARE BEHAVIOR MODELING
Modeling malware behavior is challenging since malware authors specifically try to evade
detection [29]. Static analysis of malware binaries and disassembled code has been a
popular malware analysis approach in the literature [5], [17], [21], [30], [31]. Increas-
ingly more malware uses obfuscation techniques to evade analysis, causing difficulties
for statically analyzing malware. The obfuscation attempts gave rise to dynamic analysis
of malware that executes a malware sample in a sandbox and collects execution traces
from it. Dynamic analysis is generally divided in two strains: system activity and network
traffic analysis. Network traffic analysis collects traces of malware samples remotely
using existing network monitoring infrastructures [9], making it much easier to apply.
However, the behavior analysis and signature generation literature is heavily focused on
system activity analysis, e.g., see [7], [22], [32], [33]. Research suggests that network traf-
fic shows the core behavior of malware [10]. Although sometimes encrypted, network
traffic contains the direct interaction with the attacker. In this section, we discuss three
major challenges of modeling malware behavior via traffic analysis.

1. Feature selection. Network traffic analysis is typically utilized for network intru-
sion detection systems (NIDS) that either detect anomalous traffic [23] or generate
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signatures for malware families [34]–[36]. Deep packet inspection (DPI) is a com-
mon approach to extract information from packet payloads. For example, Rafique
et al. [26] use DPI for automated signature generation of malware families. Al-
though effective, DPI-based approaches are privacy-intrusive, operationally ex-
pensive, and do not work out-of-the-box for encrypted traffic. There are also ap-
proaches that use specific headers to detect attacks. For example, HTTP-based
malware can be detected using specific features from the application header [9].
Similar approaches exist for DNS-based malware [37], [38], and HTTPs-based mal-
ware [39]. Several works use coarse or high-level features that are protocol-agnostic
and work out-of-the-box even with encrypted traffic. For example, Conti et al. [19]
use sequences of packet sizes to characterize the network behaviors generated by
android applications. Aiolli et al. [20] use various statistical features computed
over packet sizes to detect bitcoin wallet application functionality. Acar et al. [18]
use network traffic direction and packet lengths to identify commands issued to
smart home IoT devices. These works aim to characterize benign network behav-
iors. In the malware domain, Tegeler et al. [13] use average packet size, average
packet inter arrival time, average connection duration, and the fast fourier trans-
form (FFT) of C&C communication to detect bot infected hosts. Garcia [12] builds
a behavioral intrusion detection system by using the size, duration, and periodic-
ity of Netflows. In this chapter, we also use high-level features from packet headers
to characterize malware’s network behavior.

2. Feature representation. Machine learning methods take a feature vector as in-
put, which can represent anything ranging from a single behavior to a complete
malware sample. Multiple observations for a single feature are aggregated into
statistical features, e.g., average bytes in a Netflow. Existing literature is filled with
approaches that use such statistical features, e.g., see [12], [13], [16], [40]. Although
they are computationally efficient, they lose local behavioral details, which can be
a problem when the goal is to characterize that behavior. Another approach that is
gaining momentum is the use of sequential features. Numeric sequential features
are typically used in two ways: discretized and raw sequences. A raw sequence
(or a continuous time-series) is composed of the original observations, while a
discretized sequence encodes the observations into a finite set of bins. Discretiz-
ing sequences is typically faster and makes measuring distances easier. Pellegrino
et al. [27] learn state machines from discretized Netflow data in order to detect
bot-infected traffic, while Hammerschmidt et al. [41] use it to cluster host behav-
ior over time. Lin et al. [24] detect anomalies in industrial water treatment plant
by using discretized sequences from sensor readings. In practice, malware-related
data is often scarce and noisy. In this case, discretization can lose important in-
formation. Raw sequences are rarely used for modeling network traffic because
it is non-stationary and contains noise (e.g., empty acknowledgment packets or
retransmissions), and delays (due to varying network latency) [8]. Ntlangu et al.
[42] provide a brief overview of time-series approaches to model network traffic.
As noted in [42], due to the nature of network traffic and their distributions, (auto-
)regressive models struggle to accurately capture them. Kim et al. [43] use a mul-
tivariate time-series regression model on host-based resource consumption, such
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as CPU and memory usage to identify android malware. The closest approach to
ours is proposed by Conti et al. [19] who use raw sequential features to charac-
terize user actions on android applications. MalPaCA, however, uses significantly
shorter sequences to characterize malware network behavior.

3. Distance measure. The notion of behavioral similarity necessitates the measure-
ment of distance between objects. The choice of the distance measure is directly
dependent on the data type of the feature set (e.g., numeric or categorical) and
the way the features are represented (e.g., statistical or sequential). For statisti-
cal features, Euclidean distance is most commonly used. For instance, Chan et al.
[33] use Euclidean distance to determine similar android processes. Calculating
the distance between sequential features is more challenging because they may
not always be properly aligned. For categorical (or discretized) sequences, there
exist bioinformatics-inspired solutions using sequence alignment [44]. They re-
quire pre-computed substitution matrices, which currently do not exist for mal-
ware. There also exist string matching solutions typically used in natural language
processing. Baysa et al. [45] use Levenshtein, or edit distance, to measure the sim-
ilarity between two malware binary files. A sliding window can also be utilized to
obtain a vector encoding of a sequence, called ngrams, which have been used to
model genomic sequences [46] and to match files [47]. They have also been used
to classify malware families in [48]. Longest common subsequence (LCS) with k-
gaps can also be used to measure distances between sequences. The gaps account
for the occasional noise. Chan et al. [33] use LCS to group similar resource access
patterns in android applications. A few distance measures exist for continuous se-
quences. Verwer et al. [49] have used Kullback-Leibler divergence to measure the
distance between two probability distributions of sequences for learning proba-
bilistic automata. However, it requires substantial amount of data to measure the
similarity with a high confidence, which is not always available for malware. An-
other promising distance measure is dynamic time warping (DTW). DTW has been
used in fingerprint verification [50], characterizing DDoS attacks [51], and measur-
ing similarity in android application behavior [19]. MalPaCA uses a combination
of DTW and ngrams to measure the distance between network connections.

5.3. MALWARE PACKET SEQUENCE CLUSTERING AND ANALY-
SIS – MALPACA

MalPaCA (Malware Packet Sequence Clustering and Analysis) aims to construct a be-
havioral profile for each malware sample that explains its observable capabilities. To
this end, MalPaCA first clusters the various observed network behaviors, and then rep-
resents malware samples using their behavioral information. The profiles are built using
observed behavior since only the executed functionality is relevant for behavior profil-
ing. MalPaCA does not assume any a priori knowledge about the malware’s family name
or its capabilities, and hence can be used out-of-the-box for other malware datasets. The
profiles for individual samples can be enriched further by observing additional traffic.
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Figure 5.2: MalPaCA workflow: The network behavior of malware binaries is stored in Pcap files. Network
connections are clustered based on behavioral similarity, and malware binaries are described using the cluster
membership of their network connections.

We release MalPaCA as open-source6.
Figure 5.2 illustrates the architecture of MalPaCA. Network traces (Pcap files) are

given as input to the system, which are split into unidirectional packet streams (or con-
nections) that are clustered based on temporal similarity. Each cluster is assigned a capa-
bility label by visualizing temporal heatmaps that show multivariate feature values of the
connections. Each malware sample (and its associated Pcap file) is then described by a
cluster membership string (CMS), forming a descriptive behavioral profile. The CMS for
all Pcaps are represented in a directed acyclic graph (DAG), which shows the behavioral
relationships between different malware samples. The temporal heatmaps together with
the DAG are intended for human-in-the-loop exploration – they actively support mal-
ware behavior analysis and provide more insightful characterization of malware than
current family labels.

Connection generation. A connection is defined as an uninterrupted unidirectional
list of packets sent from source IP to destination IP. We characterize connections as either
outgoing and incoming based on their direction with respect to the localhost.

Ideally, a connection captures one complete capability. The connection length can
vary significantly depending upon the behavior and network delays. Since the network
delay is an artifact of the network, not of the malware behavior, it is important to reduce
its impact when measuring behavioral similarity. MalPaCA does so by capping the se-
quence length to a fixed threshold. Existing research suggests that it is possible to iden-
tify behavioral differences from a handshake7. Wang et al. [52] use the first 3 to 12 bytes
of packet headers in order to identify the different so-called protocol format messages.
MalPaCA builds upon this idea and utilizes the first few packets of a connection to iden-
tify the capability. This threshold is a tunable parameter, len. It should be large enough
to allow the handshake to be modeled, but not so large that the sequence includes noise
artifacts and increases MalPaCA’s computational costs.

6MalPaCA: https://github.com/tudelft-cda-lab/malpaca-pub
7Handshake traffic refers to the introductory packets of a connection.

https://github.com/tudelft-cda-lab/malpaca-pub
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Feature extraction. The choice of features is crucial for determining the kind of behav-
iors that are identified by MalPaCA. Two considerations motivate our choice: 1) MalPaCA
should be generalizable to more than one type of malware, and 2) the feature set is small
and easy to extract. Hence, we do not use features extracted from the packet payload it-
self as they limit the applicability of the method. We also do not use IP addresses as they
are easy to spoof and are considered personally identifiable information8 in countries
like the Netherlands. Furthermore, the use of IP addresses also limits the discovery of
unintuitive behavioral similarities.

We use four sequential features: (i) packet size, (ii) time interval, (iii) source port,
and (iv) destination port. All four features are independent of the protocol type, making
them available for every packet. Although these features are simplistic, we demonstrate
that their sequential nature captures malware behavior effectively. Packet size (fps) mea-
sures the size of the IP datagram of each packet in bytes. Time interval (fin) captures the
inter packet arrival time in milliseconds9. We use time interval because malware tends
to show a periodic behavior, e.g., bots send periodic heartbeat packets10 to inform the
C&C server about the infected host. We use both source (fsp) and destination (fdp) port
numbers because the connections are unidirectional. Each connection F is represented
by four sequences, one per feature, F = (fps, fin, fsp, fdp).

HDBScan clustering with sequential features. A key strength of MalPaCA is its clus-
tering algorithm. There exists a familial structure among malware behaviors [28], [36].
Therefore, it makes sense to use hierarchical clustering to model the relationships be-
tween them. To this aim, we have used hierarchical density-based spatial clustering of
applications with noise (HDBScan) [53]. HDBScan is powerful because it automatically
determines the optimal number of clusters, and generates high-quality clusters that re-
main stable over time. It does not force data points to become part of clusters – all data
points whose membership to a cluster cannot be determined are considered to be noise.
In our context, noise refers to behaviors that are either too different or are an amalgama-
tion of different behaviors. An ideal dataset with clear cluster boundaries has no noise.
In the presence of a less ideal dataset, noise is discarded to extract high-quality clusters.
This is based on a minimal set of tunable parameters: the parameter min_cluster_size
specifies the minimum cluster size required, and min_samples specifies how conserva-
tive the clusters should be. Keep in mind that discarding excessive connections can also
be counterproductive, as discussed in Section 5.7.

We provide a pre-computed pairwise distance matrix to HDBScan for the cluster-
ing task. This is computed using a combination of dynamic time warping (DTW) and
ngrams to cater for numeric and categorical feature sequences. DTW is particularly used
to produce clustering results that are resilient to delays and noise, which are common
characteristics of network traces.

Dynamic time warping (DTW) [54] is used to measure distances between numeric
time-series (packet size and time interval). It minimizes the distance between two se-

8https://www.enterprisetimes.co.uk/2016/10/20/ecj-rules-ip-address-is-pii/
9Note that MalPaCA is meant to be used on a single network since using inter-arrival time makes connections

collected on different latency networks incomparable.
10https://www.ixiacom.com/company/blog/mirai-botnet-things

https://www.enterprisetimes.co.uk/2016/10/20/ecj-rules-ip-address-is-pii/
https://www.ixiacom.com/company/blog/mirai-botnet-things
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quences by aligning similar local substructures of one sequence to those of the other se-
quence. Given a set of sequences S, the DTW distance ddtw(a,b) for any two sequences
a = [a0, · · · ,an], b = [b0, · · · ,bm] ∈ S is given by Eq. 5.1. ddtw(a,b) is a dissimilarity score,
which is normalized using Eq. 5.2.

ddtw(a,b) =
n+1∑
i=1

m+1∑
j=1

||ai −bj||+min


d(ai−1,bj),

d(ai,bj−1),

d(ai−1,bj−1))

(5.1)

dnd t w (a,b) =
dd t w (a,b)−argminx,y∈S & x ̸=y dd t w (x, y)

argmaxx,y∈S & x ̸=y dd t w (x, y)−argminx,y∈S & x ̸=y dd t w (x, y)
(5.2)

Ngrams with cosine similarity are used to measure the distance between categorical
sequences (source and destination ports). An ngram profile is a vector encoding of a se-
quence that is derived by running a sliding window of length n along it, and counting
the frequency of each ngram. The larger the value of n, the more sequence structure is
captured. An example for bigrams, i.e., n = 2 is shown in Table 5.1, where A,B,C,D are hy-
pothetical port numbers. Let G be the set of all unique bigrams occurring in the dataset.
For each sequence a, we compute the vector ag = [Count(a,g1), . . . ,Count(a,g|G|)] that
contains the occurrence frequencies Count(a,gi) of each ngram gi ∈ G. The distance be-
tween the vectors is computed using cosine similarity, which has shown promise in mea-
suring similarity between categorical sequences [55]. It is defined by the angle between
two non-zero vectors. The similarity value lies between [0,1], where 1 means the vec-
tors are identical (parallel to each other) and 0 means they are totally different (orthog-
onal to each other). For two sequences in their vector representations a = [v1, . . . ,v|G|],
b = [v′1, . . . ,v′|G|], the cosine distance dcos(a,b) is computed using Eq. 5.3.

Table 5.1: Example: Distance measurement using ngram analysis and cosine similarity.

Input Ngram profiles G=[AB,BC,CB,DA,CA] Cosine distance dcos (a,b)

a = ABC BC AB ,BC ,C B ,BC ag = [1,2,1,0,0]
0.3876

b = D ABC A D A, AB ,BC ,C A bg = [1,1,0,1,1]

dcos(a,b) = 1−
∑|G|

i=1 ai ×bi√∑|G|
i=1 a2

i ×
√∑|G|

i=1 b2
i

(5.3)

Finally, the DTW and cosine distances are combined with equal weights to compute
the pairwise distance matrix for all connections using Eq. 5.4.

dconn(A,B) = dndtw(aps,bps)+dndtw(ain,bin)+dcos(asp,bsp)+dcos(adp,bdp)

4
(5.4)

where A = (aps,ain,asp,adp) and B = (bps,bin,bsp,bdp) are connections and their features:
packet sizes {a|b}ps, intervals {a|b}in, source port ngram profiles {a|b}ps, and destination
port ngram profiles {a|b}dp.
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(a) Packet size (b) Interval

(c) Source Port (d) Destination Port

Figure 5.3: Temporal heatmaps for investigating the cluster content of multivariate sequential features. The
highlighted connection is a clustering error, i.e., it is much too different from other connections in this cluster.

Cluster visualization via temporal heatmaps. We use temporal heatmaps as post-hoc
explanations for the obtained clusters. Four temporal heatmaps are associated to each
cluster, one corresponding to each feature. Each row in a heatmap shows the corre-
sponding feature sequence of the first len packets in a connection. Figure 5.3 shows the
temporal heatmaps for a cluster containing eight connections, where one is highlighted
due to its dissimilarity. Analysts can inspect the heatmaps to determine the cluster la-
bel, i.e., which behavior is captured in a cluster. In addition to the insights provided
by the heatmaps, the analysts can also investigate open-source intelligence (OSINT) re-
garding the involved IP addresses. The cluster labels then serve as an inventory of the
observed capabilities of malware samples. Note that MalPaCA’s goal is to identify differ-
ent behaviors in the network traffic, and it does so regardless of their maliciousness and
origin. Hence, the resulting clusters contain both, benign and malicious behaviors. The
common clusters can be discarded if they contain known-benign behaviors, drastically
reducing the number of connections to analyze.
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Cluster validation and robustness. Formalizing cluster quality without ground truth is
a fundamental challenge in clustering. Although some metrics exist that capture cluster
quality (i.e., Silhouette index [56] and DB index [57]), they require a notion of distance
from a cluster centroid, which is difficult to obtain for sequences. In MalPaCA, each
connection is represented by four sequences and collapsing these into a single cluster
quality measure loses important local behavior. As a result, we observe that the clus-
tering which was optimal according to standard clustering metrics (e.g., DB index) does
not match the clustering that followed our intuition. Instead, we define the following
properties to be indicative of good clustering:

• Cluster homogeneity is high – a cluster contains only similar connections.

• Cluster separation is high – each cluster captures a unique capability.

• Clusters are small and specific so they only capture the core capability.

The first two properties ensure that we obtain meaningful capability-based clusters,
the third ensures that only the core capabilities are captured. Visualizing the cluster
content can help to identify the connections that belong in a cluster. To this end, we
utilize temporal heatmaps and rely on human visualization to determine cluster quality.

A clustering error (CE) is defined as a connection that is placed in cluster X despite
50% of its features being different from other connections in the cluster. Since each fea-
ture holds equal weight, we only consider a connection as CE if more than two features
differ. We consider two features different if more than 50% of their sequences differ so
significantly that a different color appears on the temporal heatmap. This is where hu-
man visualization skills play a key role in determining feature similarity. Figure 5.3 shows
a cluster containing one CE, highlighted in red. It shows that three out of four feature val-
ues of this connection are different from other connections. The clustering error rate is
calculated as # CE

cluster size , i.e., 1
8 . We measure the error rate of each cluster, and calculate

the average percentage of errors per cluster as a notion of clustering quality.
In practice, we first establish the common majority by finding two or more connec-

tions that are the most similar to one another, i.e., the ones that have the least mutual
distance. The pre-computed pairwise distance matrix is used as a lookup table for find-
ing such connections. Figure 5.3 shows a simple case where the rightful owners of a
cluster are easily visible since seven out of eight connections are very similar. The rest of
the connections are compared with the rightful owners and are either considered as true
positives or clustering errors, depending on how many feature sequences differ.

In terms of robustness, a common assumption is that malware can easily evade de-
tection by adding random delays and padding to packets. However, there is a limit to
what an attacker can change. For example, a TCP handshake needs to happen in a cer-
tain way because this is how the protocol dictates it. Also, padding-related provisions
are already standardized by some commonly used protocols, such as TLS making it dif-
ficult to hide “coarse” features like packet sizes and inter-arrival times [58]. We expect
that MalPaCA is evasion resilient, e.g., since MalPaCA only uses coarse features, evading
it is not a trivial task. Moreover, the usage of dynamic time warping distance makes it re-
silient to random delays [59] and due to the relative distance measures used in HDBScan,
randomized port numbers are already clustered together, as shown in Section 5.6.1. If,
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after all this, attackers still manage to evade MalPaCA, the malware sample will end up
with a new behavioral profile, making analysts more prone to analyze it. Nevertheless,
more study is needed to strengthen these claims.

Directed acyclic graph generation. Once the clustering is complete, the cluster mem-
bership of a malware sample’s connections can be used to compute its cluster member-
ship string (CMS). The cluster membership string can be regarded as the behavioral pro-
file for the malware. Precisely, for a malware sample x, CMSx = bn, where b ∈ {0,1}, n is
the number of behavioral clusters, and bi indicates whether x’s connections are present
in the ith cluster. In this work, we consider binary CMSs because we are only interested in
the behavior overlap of different malware samples. Non-binary CMSx = zn, for connec-
tion counts z ∈Z, is an interesting avenue to investigate. We model the behavioral rela-
tionships between the malware samples by considering the cluster membership strings
as a set membership problem. It dictates that, e.g., Set A= {0,1,1} is a subset of Set
B={1,1,1} because Set B encapsulates all of Set A’s behaviors and more. Similarly,
Set C= {0,0,0} is a subset of every other set in this domain. Set C represents a mal-
ware sample for which all of its connections were discarded as noise. We represent these
relationships between malware samples using a directed acyclic graph (DAG). Each ver-
tex in the DAG represents a unique CMS. Different malware samples can share a single
CMS iff their behaviors overlap completely. The vertices with the minimum hamming
distance are connected using edges. This method allows multiple parents, i.e., a CMS of
"111" may be reached by both "110" and "101". Note that this graph is constructed
purely from a data-driven approach without using any knowledge of family labels. In
combination with human intelligence, we believe that it can serve as a powerful tool in
understanding malware’s network behavior.

5.4. EXPLAINABILITY ANALYSIS OF MALPACA
MalPaCA was designed for explainability – it enables malware analysts to understand the
capabilities of malware by investigating the cluster contents (via temporal heatmaps),
and visualizing the similarities and differences between malware samples (via the di-
rected acyclic graph). In doing so, MalPaCA enables the creation of new knowledge,
which would be difficult to obtain using manual approaches [60].

MalPaCA is (partially) transparent and explainable. Transparency has two compo-
nents: design and algorithmic transparency. A machine learning tool-chain is consid-
ered design transparent if the design decisions can be motivated from the application
domain. A tool-chain is considered algorithmically transparent if the solution is deter-
ministic, and if the tool-chain allows a user to reverse the learning pipeline to obtain
the input data that led to modeling decisions. A tool-chain is considered interpretable
if the model can be understood by a human on its own. If the model needs to be sim-
plified or requires additional (post-hoc) explanations, then the tool-chain is considered
explainable. These notions are described by Roscher et al. [61].

MalPaCA is algorithmically transparent and partially design transparent. The HDB-
Scan algorithm is considered deterministic (for a fixed seed). The clusters together with
the temporal heatmaps make it possible to reverse the input network connections from



5.5. DATASET AND EXPERIMENTAL SETUP

5

135

the model, making it algorithmically transparent. Moreover, MalPaCA’s design decisions
are motivated by domain knowledge, making it design transparent – feature selection
(coarse features for privacy reasons), feature representation (sequences for modeling
temporal behavior), distance measure (DTW and ngram for robustness), and clustering
algorithm (HDBScan for modeling the familial relationship between various behaviors).
The parameter settings of the HDBScan algorithm may be considered partially design
transparent since they were chosen heuristically on a configuration dataset.

MalPaCA is partially interpretable. The input feature processing can be explained by
a human. However, the HDBScan clustering algorithm is not interpretable. Not only is
the algorithm non-linear, the density computations and the agglomerative aspects of the
algorithm make it difficult to understand the clustering decisions.

MalPaCA produces local and global post-hoc explanations. The temporal heatmaps
explain why specific connections are clustered together, and can be considered as batched
local explanations. The directed acyclic graph utilizes the clustering results and the in-
put data to explain the global relationships among malware samples. Note that it may
be possible to derive a counterfactual explanation from the temporal heatmaps for why
a connection A was placed in cluster X instead of cluster Y based on their visual ap-
pearance. However, it is not so straightforward since the range of feature values in each
heatmap is local, i.e., the color bars are set on local ranges. In contrast, if the ranges were
set based on global minimum and maximum, the heatmaps would lose the subtle intri-
cacies in feature changes locally (within a single cluster). Further research is warranted
in this direction.

5.5. DATASET AND EXPERIMENTAL SETUP
In this section, we describe the dataset used for the experiments and the configuration
details of MalPaCA’s parameters.

Dataset. MalPaCA was evaluated on financial malware samples collected in-the-wild.
We collaborated with a security company that provided 1196 malware samples collected
in 2018. These 1196 malware samples belong to 15 famous financial malware families,
labeled using the company’s proprietary YARA rules. Table 5.2 summarizes the dataset.
Each malware sample was executed in a sandboxed environment containing several vir-
tual machines. The resulting network traffic was stored in a Pcap file. This resulted in
a total of 1196 Pcap files. Unidirectional connections based on IP addresses were ex-
tracted, resulting in a total of 8997 connections containing 3.6M packets.

Parameters. MalPaCA has four parameters, i.e., the size of the ngrams used for port
numbers, len of packet sequences for features, and the two parameters of HDBScan
clustering algorithm. In our experiments, we have used trigrams (n = 3) for port num-
bers because they form a good trade-off between performance and data sparsity [62].
The HDBScan algorithm uses min_cluster_size = 7 and min_samples = 7. The speci-
ficity of the identified behaviors is highly dependent on the length of sequences, i.e.,
len11. In the experimental dataset, the length of connections is highly skewed towards

11len can be adjusted based on the required behavior specificity.
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Table 5.2: Summary of experimental dataset: Malware binaries and their associated YARA family labels.

Family name (YARA) # Malware binaries

Blackmoon (B) 887 (74.10%)
Gozi ISFB (GI) 122 (10.19%)
Citadel (C) 70 (5.85%)
Zeus VM AES (ZVA) 29 (2.42%)
Ramnit (R) 22 (1.83%)
Dridex Loader (DL) 15 (1.25%)
Zeus v1 (Zv1) 10 (0.83%)
Zeus Panda (ZPa) 10 (0.83%)
Gozi EQ (GE) 7 (0.58%)
Dridex RAT Fake Pin 7 (0.58%)
Dridex (D) 6 (0.50%)
Zeus P2P (ZP) 4 (0.33%)
Zeus (Z) 3 (0.25%)
Zeus OpenSSL 2 (0.17%)
Zeus Action 2 (0.16%)

Total 1196 (100%)

shorter sequences, with a mean of 20 packets. Based on preliminary experiments with
len = {5,10,20,50}, we found that len = 20 provided the optimal trade-off between behav-
ior characterization and data loss. For smaller values, the connections were too generic.
For larger values, connections with slight behavioral differences were considered very
different. For example, at len = 50 several clusters capture slightly different variations of
port scans, while at len = 20 those variations merge to form a few strong clusters. 733 out
of 8997 connections were longer than len = 20, belonging to 12 malware families. The
parameters were selected by tuning MalPaCA on a configuration dataset (5% of the us-
able data). The experiments were run on Intel Xeon E3-12xx v2 processor, 8 cores and
64GB RAM.

5.6. RESULTS AND DISCUSSION

5.6.1. MALWARE CAPABILITY ASSESSMENT VIA Behavioral Profiles
MalPaCA produces 18 clusters from the dataset. There are, on average, 25 connections
in each cluster. The algorithm discards 284 connections as noise. The remaining 449
connections originate from 216 Pcap files. We successfully assigned labels to 12 clus-
ters based on their temporal heatmaps. Table 5.3 shows an inventory of the observed
network behaviors in the malware dataset, and enumerates the cluster attributes. In
terms of cluster validation, e.g., for connection spam (c6), the whole cluster is filled with
almost identical connections originating from the same host. We validate this observa-
tion by investigating the network traffic of these connections. We also left six clusters
unlabeled since we could not identify the captured capability simply by exploring their
temporal heatmaps. These particular clusters were also the source of clustering errors.
The temporal heatmaps show that on average, 8.3% connections per cluster are CEs –
their feature sequences are different from the other connections in the cluster.
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Table 5.3: The connections and families in each cluster, including its capability label, and traffic direction.

Cluster # Conns # Families Behavior Direction
c1 39 9 SSDP traffic (Common) Out
c2 90 9 Broadcast traffic (Common) Out
c3 9 4 LLMNR traffic Out
c4 49 5 Systematic port scan In
c5 56 5 Randomized port scan Out
c6 25 1 Connection spam (Rare) In
c7 23 1 Connection spam (Rare) Out
c8 16 1 Malicious subnet (Rare) Out
c9 11 1 Connection spam (Rare) Out

c10 9 2 HTTPs traffic Out
c11 8 2 C&C Reuse In
c12 18 4 HTTPs traffic In
c13 25 5 Misc. In
c14 10 3 Misc. In
c15 20 3 Misc. In
c16 12 3 Misc. Out
c17 19 3 Misc. Out
c18 10 4 Misc. Out

INVESTIGATING INTERESTING CAPABILITIES

MalPaCA identifies interesting network behaviors using four coarse features from only
20 packet headers. We describe a few examples below. Note how host-based black-
listing [13], [63] would not have been able to pick up these behaviors since each host
behaves in many different ways.

1. Connection Direction Identification. MalPaCA successfully identifies the direc-
tion of traffic flow even though no such feature is used. The clusters and their
traffic direction are listed in Table 5.3. We continue to see this pattern even when
port-related features are removed. Thus, the sequence of packet sizes and their
inter-arrival time are collectively indicative of the flow direction. This important
trait identifies whether the suspicious behavior is originating from inside or out-
side the network.

2. Split-personality C&C Servers. In several instances, an infected host was ob-
served responding differently to the same request, so much so that the result-
ing connections ended up in different clusters. For example, two connections of
Gozi-ISFB contact 46.38.238.XX, which has been reported as a malicious server
located in Germany. The outgoing connections are identical as they both request
for the same resource. However, the responses received are very different – the first
response contains a small packet followed by a series of 1200-byte packets, while
the second one contains a periodic list of small and large packets in the range of
600 to 1800 bytes. A blacklist would have simply grouped these connections since
they belong to the same host. In contrast, MalPaCA provides a better understating
of the C&C’s behavior.

3. Port Scan Detection. Some clusters capture a port scan12, which is used for iden-
tifying open ports on a network host. Port scans are usually a part of the recon-

12https://whatismyipaddress.com/port-scan

https://whatismyipaddress.com/port-scan
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(a) Systematic port scan (b) Randomized port scan

Figure 5.4: Two clusters capturing systematic and randomized port scans.

(a) Packet size (b) Interval

Figure 5.5: A cluster showing Zeus-Panda and Blackmoon connections communicating with IP encoded as
009 and behaving similarly.

naissance phase in the attack kill chain [64]. Utilizing sequences of port numbers
enables us to detect any suspicious temporal behavior before an attack happens.
The clusters (c4, c5) identify two types of port scans: (i) systematic port scan where
ports are swept incrementally, which is seen as a gradient in the corresponding
temporal heatmap, and (ii) randomized port scan where ports are contacted ran-
domly, which shows up in the heatmap as a checkered pattern (see Figure 5.4).
Port scans carried out by different connections are clustered together if they con-
tact the same range of port numbers, which increases their mutual similarity. This
result is in direct contrast with Mohaisen et al. [21] who conclude that port num-
bers are the least useful features in distinguishing malware families.

4. C&C Reuse by Multiple Families. One cluster (c11) contains connections from
different families that contact the same C&C server, and their temporal heatmaps
look identical (see Figure 5.5). The cluster includes three Zeus-Panda (ZPA) con-
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nections and one Blackmoon (B) connection who contact a single IP address (en-
coded as 009), which has been reported as malicious. The suspicious connections
are highlighted in green. This observation suggests that either the YARA rules mis-
labeled the samples or that the authors share the C&C servers.

5. Device Probing. Some clusters (c1, c2, c3) capture connections that connect to
the same host. For example, one cluster contains all connections broadcasting
to 239.255.255.250, which is used by the SSDP protocol to find plug and play
devices. Another cluster captures all connections broadcasting to 224.0.0.252,
which is used by the link-local multicast name resolution (LLMNR) protocol to
find local network computers.

6. Malicious Subnet Identification. In some instances (e.g., c8), several connections
contact IP addresses that fall in the same subnet. For example, two Zeus-VM-AES
connections contact one host from 62.113.203.XX subnet, while another con-
nection detected 15 days later contacts another host in the same subnet. Similarly,
two Zeus-Panda connections and one Blackmoon connection contact two hosts
in 88.221.14.XX subnet. This gives actionable intelligence to ISPs to investigate
if other IPs in these subnets are also hosting C&C servers.

Table 5.3 shows that SSDP (c1) and broadcast traffic (c2) are the most common be-
haviors. Since the dataset is composed of Windows-based malware, it explains why 9
out of 12 families have connections in these two clusters. In contrast, connection spam
(c6, c7, c9) and malicious subnet (c8) are the rarest behaviors. Malicious subnet is only
exhibited by Zeus-VM-AES. In addition, Gozi-ISFB opens numerous connections, cre-
ating a connection spam. The incoming connections are stored in one cluster (c6), while
the outgoing traffic is split into two clusters due to the difference in the type of requests
(c7, c9). This detailed behavior analysis enables the identification of interesting clusters
to analyze further.

BEHAVIORAL SIMILARITIES ACROSS MALWARE FAMILIES

Table 5.4 lists the composite behavioral profiles for the 12 malware families in the dataset
– each family is represented as the union of its samples’ CMSs. Dridex, Gozi-EQ, Zeus-
P2P and Zeus-v1 only generate SSDP and broadcast traffic. Since this traffic is obtained
from standard Windows services, it is likely that the malware was not activated when the
associated Pcap files were recorded. Gozi-ISFB has the most diverse profile, with con-
nection in 16 out of 18 clusters, which exhibit attacking capabilities such as port scans
and connection spamming. Specifically, the connection spamming behavior is never ex-
hibited by any other malware in the dataset. There are two reasons for Gozi-ISFB’s
diversity: (i) Gozi-ISFB is the largest family under consideration, and (ii) Gozi-ISFB
opens more connections per sample compared to other families. For example, one sam-
ple of Gozi-ISFB opens 111 connections, while the average number of connections for
other malware samples is 3.

5.6.2. COMPARATIVE ANALYSIS WITH EXISTING METHODS
We show MalPaCA’s results in relation to existing work by conducting two comparisons:
(i) comparing MalPaCA’s behavioral profiles against YARA family labels, and (ii) compar-
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Table 5.4: Composite behavioral profiles of malware families based on the identified cluster labels.

Cluster labels B C D DL GE GI R Z ZP ZPa Zv1 ZVA

SSDP traffic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Broadcast traffic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LLMNR traffic ✓ ✓ ✓ ✓
System. port scan ✓ ✓ ✓ ✓ ✓
Random. port scan ✓ ✓ ✓ ✓ ✓
In conn spam ✓
Out conn spam ✓
Malicious Subnet ✓
In HTTPs ✓ ✓ ✓ ✓
Out HTTPs ✓ ✓
C&C reuse ✓ ✓
Misc. ✓ ✓ ✓ ✓ ✓ ✓ ✓

# Clusters 7 11 1 8 1 16 4 2 1 7 1 7

ing MalPaCA’s cluster quality with an existing approach based on statistical features.

COMPARISON WITH TRADITIONAL FAMILY LABELS VIA DAG
Figure 5.6 shows the DAG that represents the behavioral relationships between the 216
malware samples (and their associated Pcap files). We use this DAG to compare the mal-
ware family labels against MalPaCA’s behavioral profiles, and identify discrepancies.

Each vertex in the DAG shows a unique CMS, and the number of malware samples
that share it. For example, the vertex with the CMS of "000000000000001010" is labeled
as "Citadel(2), Gozi-ISFB(7)" because 2 Citadel Pcaps and 7 Gozi-ISFB Pcaps
show the same behavior – their connections are co-located in c15 and c17. The root (on
the left most side) contains the Pcaps for which all connections were discarded as noise.
These Pcaps require further investigation as they may contain zero-day attacks. Pcaps
showing increasingly more behaviors are placed towards the right of the graph, with the
right most vertex "111110000001100000 Citadel(1)" containing one Citadel Pcap
that shows the most diverse behavior.

The graph shows four major partitions (denoted by G1-G4), indicating that there are
four high-level behavioral sub-groups present in the dataset. The G2 group containing
only one vertex stands out. It contains Pcaps from Zeus-Panda and Blackmoon, and
are the only malware samples that share a C&C server. This observation makes a strong
case that these particular Pcap files, albeit originating from two families, are behaviorally
alike. The G3 group contains Pcaps from various families that are observed doing port
scans and broadcasting behaviors. Some servers from this group also form malicious
subnets. The G4 group, on the other hand, is the largest group that uses HTTPs traffic
along with broadcasting behaviors. The G1 group is highly dominated by Gozi-ISFB and
is observed doing connection spamming, along with using HTTPs traffic. Some connec-
tions from these Gozi-ISFB Pcaps were placed in the behavioral clusters that we failed
to label (c13-c18).

The vertex location for some malware samples is intriguing. For example, most of
the Zeus-VM-AES Pcaps that are associated with malicious subnets are located in the G3
group, together with Ramnit files that are associated with port scans. Dridex-Loader
is only observed in group G4, where Citadel Pcaps are also co-located. Blackmoon
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G4: Broadcast, Https

G3: Portscans, Subnets, Broadcast

G1: Connection spam, Https

G2: C&C reuse
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Figure 5.6: The DAG shows the relationship among the behavioral profiles of the 216 malware samples. Each
vertex shows a CMS and the YARA labels of the malware samples that share it.

and Gozi-ISFB Pcaps are distributed over all of the behavioral sub-groups. However,
Gozi-ISFB is seen dominating the G1 group, while Backmoon dominates the G4 group.
Furthermore, as observed from Table 5.4, Gozi-ISFB’s Pcaps collectively show 16 dis-
crete behaviors and Citadel’s Pcaps show 11 behaviors. However, Citadel shows more
discrete behaviors per Pcap versus Gozi-ISFB – Gozi-ISFB’s Pcaps contain more (be-
haviorally similar) connections on average, while the Pcaps themselves are more behav-
iorally dissimilar than Citadel’s Pcaps.

Zeus-Panda’s Pcaps are divided in two behavioral sub-groups – one in G2 group with
Blackmoon samples and the other in the G4 group. Zeus-v1, Zeus-P2P, ZeuS, Gozi-EQ,
and Dridex are only seen at the left side of the graph, indicating that none of their dis-
tinguishing behaviors were present in the dataset.

COMPARISON WITH STATISTICAL FEATURES

Baseline setup. We compare the cluster quality of using sequential versus statistical
features. We use the existing method by Tegeler et al. [13] (called baseline, henceforth) to
compare our results since they not only use statistical features, but also incorporate pe-
riodic behavior using fourier transform to detect bot-infected network traffic. Although
the goal of their study diverges from ours, their feature selection approach is similar. For
objectivity, we keep the rest of the pipeline as explained in Section 5.3. Taking guidelines
from Tegeler et al. [13] and adapting them to our problem statement, each connection
in the baseline is characterized by 1) average packet size, 2) average interval between
packets, 3) average duration of a connection, and 4) the maximum power spectral den-
sity (PSD) of the FFT obtained by the binary sampling approach by Tegeler et al. [13] –
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(a) Packet size (b) Interval

Figure 5.7: Baseline clusters: 6/9 behaviorally different connections are clustered in the baseline.

the signal is 1 when a packet is present in the connection and is 0 in between.

Cluster quality comparison. The baseline method results in 22 clusters, with an av-
erage of 21.2 connections per cluster. 265 connections are discarded as noise. These
results are in contrast to sequence clustering – 18 clusters; 25 connections per cluster,
on average, and 284 connections discarded as noise.

The baseline seems to perform better with smaller cluster size on average and dis-
carding fewer connections as noise. However, a deeper analysis shows that the clusters
lack quality:

1. With statistical features, the connections present in most clusters appear very dif-
ferent from other connections in the cluster. On average, 57.5% connections per
cluster have visually different temporal heatmaps, compared to 8.3% for sequen-
tial features. Figure 5.7 shows a cluster from the baseline. It has nine connections,
out of which six are errors based on their behavior. The rightful owners of the clus-
ter are the connections that have the least mutual distance, i.e., GI|090|178→021,
GI|073|610→131, GI|073|610→347. The other six connections have minor dif-
ferences in all features, except the source port (which is 6/TCP). They were clus-
tered together because their statistical features had the least mutual distance, i.e.,
average_time_interval = 19.77±3.11; fft = 0.07±0.05; average_duration = 397.7±
61.7; average_bytes = 573.3±113.8. The temporal heatmaps show behavioral dif-
ferences in nearly all clusters.

2. Statistical features are also unable to identify the direction of network traffic. In the
cluster shown in Figure 5.7, there is one incoming connection in the cluster along
with eight outgoing ones. A similar trend is observed for 19 out of 22 clusters. In
contrast, sequences of packet size and inter-arrival time are enough to identify
traffic direction in sequence clustering.

In summary, while statistical features may be simple to use, they lose behavioral in-
formation that plays a crucial role in accurately determining similarities in network be-
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havior. Sequence clustering obtains significantly better clusters. Given that modeling
behavioral profiles is already challenging for short sequences, it is remarkable that Mal-
PaCA can identify network behaviors using only 20 packets and 4 coarse features.

5.7. LIMITATIONS AND FUTURE WORK
First, performance optimizations are needed to make sequence clustering more efficient
and scalable to perform automated capability assessment in (near) real-time. In Mal-
PaCA, DTW forms the main bottleneck as the length of sequences grows longer. There
exist streaming versions of DTW that compute results in real-time. One such technique
is presented by Oregi et al. [65]. Another alternative is to replace the offline cluster-
ing algorithm with an online, adaptive clustering algorithm with inherent support for
sequences and evolving data distributions.

Second, density-based clustering discards rare events as noise. This makes sense if
the dataset is noisy. However, in the presence of a purely malicious dataset, the connec-
tions that lie in lower-density regions may represent rare attacking capabilities, which
are discarded in the current implementation.

In the future, we will work on (i) combining MalPaCA with a streaming sequence
clustering approach to create behavioral profiles in real-time; (ii) automating the cluster
labeling by building a directory of observed behaviors; (iii) integrating additional behav-
ioral data sources in MalPaCA so as to create holistic profiles using static, system-level,
and network behavior, and (iv) testing and improving MalPaCA’s adversarial robustness.

5.8. CONCLUSIONS
In this chapter, we propose MalPaCA, an intuitive network traffic-based tool-chain to
perform malware capability assessment: It groups capabilities using sequence cluster-
ing, and uses the cluster membership to build network behavioral profiles. We also pro-
pose a visualization-based cluster evaluation method, which serves as a post-hoc expla-
nation method for the clusters, allowing malware analysts to investigate, understand,
and even correct labels, if necessary. We implement MalPaCA and evaluate it on real-
world financial malware samples collected in-the-wild. MalPaCA independently identi-
fies attacking capabilities. We build a DAG to show overlapping malware behaviors, and
discover a number of samples that do not adhere to their family names, either because
of incorrect labeling by black-box solutions or extensive overlap in the samples’ behav-
ior. We also show that sequence clustering outperforms an existing statistical method
by making only 8.3% errors, as opposed to 57.5%. MalPaCA, with its visualizations and
capability assessment, can actively support the understanding of malware samples. The
resulting behavioral profiles give malware researchers a more informative and action-
able characterization of malware than current family designations.
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6
REAL-TIME SEQUENCE

CLUSTERING FOR NETWORK

ATTACK SUMMARIZATION

For constantly evolving malware, automated behavior discovery methods necessitate real-
time sequence clustering. In this chapter, we first propose SECLEDS, the first interpretable
algorithm for clustering sequences in an evolving data stream. We also develop a post-
hoc explanation method to explain the clusters in real-time. We empirically demonstrate
that SECLEDS produces high-quality clusters regardless of drift, stream size, data dimen-
sionality, and number of clusters. We compare against three popular stream and batch
clustering algorithms, and show that SECLEDS achieves a comparable F1 score to state-
of-the-art while reducing the number of required distance computations by 83.7%. Im-
portantly, SECLEDS outperforms all baselines by 138.7% when the stream contains drift.

We utilize SECLEDS to summarize network traffic while preserving temporal patterns. By
clustering network traffic generated by real botnets, we show that SECLEDS can be used
to create real-time behavioral profiles of malware-infected devices, while supporting net-
work bandwidths of up to 1.08 GB/s using the (expensive) dynamic time warping distance.

This chapter is based on the paper “SECLEDS: Sequence Clustering in Evolving Data Streams via Multiple
Medoids and Medoid Voting” by Nadeem, A., & Verwer, S. in European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD), 2022 (pp. 157-173) [1]. Sections
6.3.4 and 6.7 were added afterward.
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6.1. INTRODUCTION
Stream clustering is the problem of clustering a potentially unbounded stream of items
in a single pass, where the items arrive sequentially without any particular order, e.g.,
network traffic, financial transactions, and sensor data. Stream clustering algorithms are
required to have low memory overhead, high computational efficiency, and concept drift
robustness, i.e., due to evolving data distributions [2]. Maintaining high cluster quality
in a fully online setting is extremely difficult. Therefore, hybrid online-offline algorithms
are popular among existing approaches, e.g., CluStream [3], StreamKM++ [4], DenStream
[5], and BIRCH [6]. These algorithms have an online component that summarizes the
data stream, and an offline component that periodically uses that information to create
the final clusters. There also exist algorithms that store part of the stream for handling
outliers, e.g., BOCEDS [7] and MDSC [8]. Existing stream clustering algorithms handle
concept drift by having variable number of clusters: They add new clusters for newly ob-
served behavior and discard clusters that contain too many old data items. This leads to
higher memory requirements for managing buffers and intermediate solutions. Batch
clustering algorithms can also be used in a streaming setting by considering a batch
size of one, e.g., Minibatch k-means [9]. However, they start to under-perform when
the stream contains drift.

In recent years, sequential data has increasingly become popular because of the pow-
erful insights that it provides regarding behavioral analytics [10], e.g., for attacker strat-
egy profiling [11], malware behavior characterization [12], fraud detection [13], and hu-
man activity recognition [14]. Clustering sequences in an offline setting is challenging
in itself because sequences are often out-of-sync, requiring expensive alignment-based
distance measures, which are often not supported by many clustering algorithms [15].
K-medoids or Partitioning Around Medoids (PAM) has often been used to cluster se-
quences because the k-centers are represented by actual data items, called medoids or
prototypes [16], [17]. This has multiple benefits: i) it makes the cluster interpretation
simpler; ii) it enables the use of non-metric distances such as dynamic time warping
(DTW), and iii) it allows to estimate exact storage requirements based on the k-fixed
clusters. Although the state-of-the-art offline k-medoids algorithms, i.e., FastPAM1 [18]
and BanditPAM [19] have reduced the runtime complexity to O (nlogn), they are still not
efficient enough to be used in streaming settings, and the cluster quality will degrade
over time as the stream evolves. To the best of our knowledge, there exists no stream-
ing version of the k-medoids algorithm that can efficiently cluster sequential data with
concept drift.

Contributions. In this chapter, we propose SECLEDS, a lightweight streaming version
of the k-medoids algorithm with constant memory footprint. SECLEDS has two unique
properties: Firstly, it uses p-medoids per cluster to maintain stable high-quality clusters.
Note the difference from IMMFC [20], which uses the information of multiple medoids
in independent sub-solutions to select the final medoids. We initialize the p-medoids
using a non-uniform sampling strategy similar to k-means++. Secondly, a medoid voting
scheme is used to estimate a cluster’s center of mass. The offline k-medoids has a SWAP

step that tests each point in a cluster to determine the next medoid. SECLEDS cannot
do this because it does not store any part of the stream. Instead, it maintains votes for
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T=t0+x

New items
Old items
Popular medoid
Medoid to be replaced

T=t0 T=t0+x+y

Figure 6.1: An illustration of SECLEDS’ clusters following an evolving data stream. The medoids close to recent
data gain more votes, while the medoids with the least votes are replaced with new data items from the stream.
The k-clusters handle concept drift by capturing different concepts in the stream at different time steps.

each medoid that estimate how representative (valuable) it is given the data seen so far.
A user-supplied decay factor enables SECLEDS to slowly forget the votes regarding past
data. The least representative medoids are then replaced with new data items. This way,
rather than creating new clusters for new concepts, the k-clusters themselves evolve with
the data stream. Figure 6.1 shows how the clusters follow a data stream as it evolves.
Thus, the k-clusters represent different concepts in the stream at different time steps.
We release SECLEDS as open-source1. It addresses the following real-world constraints:

I. A runtime efficient medoid-based clustering algorithm with a fixed memory foot-
print that can handle high-bandwidth data streams;

II. An algorithm that produces high-quality clusters in a streaming environment while
being able to deal with concept drift;

III. Accurate sequence clusters using alignment-based distances;

IV. Cluster explanations for understanding the captured concepts, and

V. Minimal parameter settings to support ease-of-use.

Empirical results. We experiment on several real and synthetic data streams that con-
tain 2D points, univariate, and multivariate sequences. We empirically demonstrate that
SECLEDS produces high-quality clusters regardless of drift, stream size, and number of
clusters. We use the following state-of-the-art and popular clustering algorithms as base-
lines: a) Streaming: CluStream, StreamKM++; b) Batch: Minibatch k-means, and c) Of-
fline: BanditPAM. Particularly, BanditPAM is used as a benchmark for the best achievable
clustering on a static dataset. The results show that i) SECLEDS achieves comparable F1
score to BanditPAM, while reducing the required number of distance computations by
83.7%; ii) SECLEDS outperforms all baselines by 138.7% when the stream contains drift,
and iii) SECLEDS is faster than BanditPAM and CluStream on most clustering tasks.

1SECLEDS: https://github.com/tudelft-cda-lab/SECLEDS

https://github.com/tudelft-cda-lab/SECLEDS
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Use cases. We also discuss two use cases from the cybersecurity domain where net-
work traffic is typically randomly sampled to keep the storage requirements within a
predefined budget. Consequently, temporal patterns in the network traffic are lost that
could have been useful for downstream tasks, e.g., behavioral analytics. We propose a
smarter sampling technique that uses medoid-based stream clustering (SECLEDS) to
summarize the network traffic and create behavioral profiles of malware: (i) SECLEDS
clusters sequences of network traffic and periodically stores the medoids of each clus-
ter, thus reducing the storage needs while preserving temporal patterns in the data. By
clustering real-world network traffic coming from botnets, we provide evidence that SE-
CLEDS (and SECLEDS-dtw) can support network bandwidths of up to 2.79 GB/s (and
1.08 GB/s), respectively. (ii) SECLEDS is used together with MalPaCA [12] to generate
behavioral profiles of bot-infected hosts for real-time capability assessment. We show
that the profiles generated from real-time sequence clustering are more comprehensive
compared to the profiles created from random sampling.

6.2. PRELIMINARIES
Stream. Given a sensor that receives an unbounded stream of multivariate data points
X = {x1,x2, . . . } with dimensionality d , arriving at time steps T = {t1, t2, . . . }, a sequential
data stream is defined as S = {s1, . . .sn, . . . }, where si is a time window w over X such that
si = {xi,xi+1, . . .xi+w}, and yi is its associated class label. Traditional point clustering con-
siders w = 1, while for sequence clustering, we consider w > 1. We use two configu-
rations, i.e., d = 2, w = 1 (2D point clustering) and d = 1, w = 100 (univariate sequence
clustering). A case of bivariate variable length sequences is given in appendix 6.9.4.

Concept drift. Real-world data streams often change unexpectedly over time. This
shift alters the statistical properties of their underlying distribution. In machine learn-
ing, this is called concept drift [21], [22]. Concept drift is typically categorized into four
types [23]: (i) Sudden drift where a new concept arises abruptly; (ii) Gradual drift where
an old concept is slowly replaced by a new one; (iii) Incremental drift where a concept
incrementally turns into another one, and (iv) Recurring concepts are old concepts that
reappear from time to time. Years of research has gone into developing concept drift
detectors that either monitor the underlying data distribution, error rate, or perform
hypothesis testing to trigger model retraining [23], [24]. Typical stream clustering al-
gorithms handle concept drift by introducing new clusters for new concepts, and dis-
carding old irrelevant clusters [25]. Although intuitively appealing, this requires user-
supplied parameters that define what ‘new’ means.

6.3. SEQUENCE CLUSTERING IN EVOLVING DATA STREAMS –
SECLEDS

SECLEDS (Sequence Clustering in Evolving Data Streams) is a lightweight streaming
variant of the classical k-medoids (PAM) algorithm. To support high bandwidth data
streams, SECLEDS does not store any part of the stream in memory – it receives an item,
assigns it to one of the k-clusters, and then discards it. This way, SECLEDS has a guar-
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anteed constant memory footprint [I]. However, this requirement cannot be achieved
using the offline BUILD and SWAP steps of PAM. Instead, SECLEDS performs a non-
uniform sampling (similar to k-means++) on an initial batch of the stream to initialize
the medoids. It also makes use of multiple medoids per cluster to provide a stable cluster
definition in a streaming setting where noise and concept drift are common properties
[II]. These medoids are utilized to craft local and global cluster explanations [IV].

The efficiency of a chosen distance measure is usually the primary performance bot-
tleneck in sequence clustering. Thus, minimizing the number of distance computations
is key to scaling SECLEDS to large data streams. This is achieved by introducing a medoid
voting scheme whose purpose is twofold: (i) It determines the center of mass of a clus-
ter for estimating how representative a medoid is given the data seen so far. (ii) By us-
ing this information, old irrelevant medoids are replaced by new ones that are located
near recent data. Hence, better medoids can be found without having to perform addi-
tional distance computations [I]. This also allows SECLEDS to support robust but com-
putationally expensive distance measures specifically meant for sequential data, e.g., dy-
namic time warping [III]. Finally, SECLEDS handles concept drift by regularly forgetting
past data and occupying newer regions/concepts in the data stream. This is achieved by
applying exponential decay λ to the medoid votes at each time step [II].

SECLEDS has a modular implementation in Python. The k-clusters, p-medoids per
cluster, and decay rate λ are the only three user-supplied parameters needed for the al-
gorithm, making it useful for exploratory data analysis [V]. We believe these parameters
are easier to tune compared to many radius- or density-based hyperparameters in exist-
ing clustering algorithms, which require a deeper understanding of the data distribution
in advance.

6.3.1. STABLE CLUSTER DEFINITION VIA MULTIPLE MEDOIDS

A new data item s is assigned to a cluster cid with the least average distance to its medoids.
With multiple medoids per cluster, this provides a robust cluster assignment. Addition-
ally, the medoid voting scheme encourages the medoids to represent different sections
of a class so they can gain votes: If they are too close together, some of them do not re-
ceive votes and get replaced eventually. It also ensures that outliers are quickly replaced
because of fewer votes.

Concept drift and cluster initialization determine how the medoids behave. Figure
6.2 illustrates three scenarios with varying medoid behavior for a single cluster as a func-
tion of votes gained over time: (a) Assuming no concept drift, when the stream is roughly
evenly shuffled, all the medoids receive uniform votes on average. This is because all
medoids are close to parts of the stream at different time steps. At a specific time step,
the medoid closest to the most amount of recent data becomes popular. Figure 6.2-A
shows that each medoid becomes popular at some point in the stream, indicating that
the medoids represent different sections of the underlying class. (b) When the stream
incrementally drifts, the cluster follows the evolving stream by replacing the least pop-
ular medoids with recent data items from the stream. Since the new medoids are now
closer to new data, they gain more votes and become popular. This has roughly the same
effect as the first case. (c) When the data arrives one class at a time, all clusters are ini-
tialized in a single class. As data from a new class appears, one medoid from the closest
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Figure 6.2: The effect of cluster initialization and concept drift on medoid selection, where p = 5. (A): Given a
uniformly distributed stream, every medoid becomes popular at some point. (B): For an incrementally drifted
stream, the medoid close to drifted data becomes popular. (C): For a class-ordered stream, all clusters start
from one class, until one medoid migrates to the correct class, followed by other medoids. Here, the correct
class is observed from t1300. Medoid-3 migrates first and becomes popular, while medoid-1 migrates last.

cluster migrates to it and starts gaining votes. Over time, the older popular medoids
lose their votes because of exponential decay, and eventually migrate to the new class.
This is shown from t1300 onward in Figure 6.2-C, highlighting the importance of multiple
medoids in noisy streams.

6.3.2. CENTER OF MASS ESTIMATION

The voting scheme provides an estimate of a cluster’s center of mass by assigning more
votes to recently observed data in the stream S, while exponential decay helps to forget
votes regarding older data. Without decay, older clusters with popular medoids never
evolve. Thus, these properties help to replace irrelevant medoids, e.g., those that are
located a) close to the least amount of recent data, or b) in a region where new data no
longer arrives. Note that we only apply exponential decay to the most recently updated
cluster, so that we do not forget valuable information about other clusters while the data
from this class arrives.

6.3.3. THE SECLEDS ALGORITHM

SECLEDS has three modules: an initialization module (INIT), an assignment module
(ASSIGN), and an update module (UPDATE). The task is to assign each item in S to one
of the k-clusters. SECLEDS maintains and updates a model of the stream seen so far in
the form of k-clusters, C = {C1, . . .Ck}. For clarity, we use t to denote the clusters at time
t (these superscripts are removed in Algorithm 2). Each cluster is represented by a set
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of p-medoids and their votes, i.e., for 1 ≤ i ≤ k, Ct
i = {(mt

i,1,vt
i,1) . . . (mt

i,p,vt
i,p)}, where for

1 ≤ j ≤ p: mt
i,j ∈ S is the jth medoid of the ith cluster at time t having vt

i,j ∈R votes.

INIT. A batch B from the start of S is used to initialize the clusters. The batch can
be small but enough to select k ·p medoids. In the experiments, we used a batch size of
(1.5 ·k ·p). We use a non-uniform sampling strategy (similar to k-means++ [26]) to select
the primary medoid of each cluster: SECLEDS selects the first medoid of the first cluster
(m1

1,1) arbitrarily from the batch. Another k−1 medoids are sampled with a probability

proportional to the squared distance between m1
1,1 and other items in B. This initializes

the primary medoid of each cluster. The other p-1 medoids for each cluster C1
i are the

items in B that are closest to its primary medoid m1
i,1. This way, the medoids maintain

cluster separation by reducing the risk of medoids from multiple clusters overlapping
each other. All medoids start with 0 votes.

ASSIGN and UPDATE. With the clusters initialized, the stream processing begins. AS-
SIGN and UPDATE are called for each item in S. ASSIGN has 3 steps: (i) An incoming item s
at time t is assigned to the cluster Ct

cid for which its previous medoids Ct−1
cid have the least

average distance to s, formally defined in Eq. 6.1 for any given distance function d(., .).
(ii) The closest medoid to s receives a vote, while exponential decay λ is applied to the
other medoids i.e., for all 1 ≤ j ≤ p and j′ ̸= j: vt

cid,j = (vt−1
cid,j +1) if j = argminj d(s,mt−1

cid,j),

otherwise vt
cid,j′ = vt−1

cid,j′ · (1−λ). This way, the medoids maintain an estimate of their cen-

ters of mass without storing any part of the stream. (iii) The votes of all other clusters
remain the same, i.e., vt

i,j = vt−1
i,j for all i ̸= cid and 1 ≤ j ≤ p.

Ct
cid = argmin

1≤cid≤k

∑p
j=1 d(s,mt−1

cid,j)

p
(6.1)

At every time step t , the new data item s is promoted to be a medoid of Ct
cid: the

medoid having the least votes which is not the newest medoid is replaced by s, i.e.,
{mt

cid,j = s, vt
cid,j = 0} where j = argminj vt−1

cid,j and mt−1
cid,j ̸= ηt

cid, where ηt
cid keeps track of

the newest medoid of cluster cid at time t . Inspired by Tabu search [27], including ηt
cid

ensures that the most-recently updated medoid is not selected to be replaced each time.
Tabu search is a local search meta-heuristic that selects which values to change except
for the last δ ones (δ= 1 in this case).

Time complexity. Given k clusters, p medoids, b batch size, and n items in the stream,
SECLEDS has a time complexity of O (n): SECLEDS selects the first medoid at random
from the initial batch, and then performs b distance computations to find the other k-1
primary medoids. The rest of the k(p-1) medoids are also selected using the same dis-
tance information. In total, this requires O (kb) distance computations. For every s ∈ S,
SECLEDS computes the average distance to each cluster, which requires kp distance
computations. Over an entire run, this gives nkp distance computations. In the UP-
DATE module, SECLEDS reallocates medoid votes without any distance computations,
making the runtime negligible. Since k and p are small user-supplied parameters, the
overall runtime complexity is O (n).
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Algorithm 2: SECLEDS for clustering sequences in evolving streams

Input: Data stream, nclusters, nprototypes: S, k, p
1 function SECLEDS(S,k, p)
2 b ← 1.5 ·k ·p
3 B← Collect b items from S
4 C ← INIT(B, k, p) // Init
5 forall s in S[b :] do
6 cid ← argmin1≤cid≤k

1
p ·∑p

j=1 d(s,mcid,j) // Assign
7 j ← argminj d(s,mcid,j) for all 1 ≤ j ≤ p

8 vcid,j ← (vcid,j +1), vcid,j′ ← vcid,j′ · (1−λ) for j ′ ̸= j
9 j ← argminj vcid,j where mcid,j ̸= ηcid for all 1 ≤ j ≤ p // Update

10 mcid,j ← s, vcid,j ← 0
11 yield cid

12 function INIT(B,k, p)
13 Choose m1,1 ∈B arbitrarily. Let C1 ← {(m1,1,0)}
14 for i ← 2. . .k do
15 Choose mi ,1 ∈Bwith probability d(mi,1,m1,1)2, mi,1 ̸= m1,1

16 Let Ci ← {(mi,1,0)}

17 for i ← 1. . .k do
18 dist ← d(b,mi,1) for all b ∈B and b ̸= mi ,1

19 Choose {mi ,2 . . .mi ,p } having smallest values in dist
20 Update Ci ← {(mi ,1,0) . . . (mi ,p ,0)}

21 return {C1, . . . ,Ck }

Space complexity. After initialization, SECLEDS only stores the p medoids and their
votes for the k clusters. Since these are (small) user-defined parameters, the space com-
plexity of SECLEDS is O (1).

6.3.4. REAL-TIME CLUSTER EXPLANATIONS

SECLEDS is an interpretable clustering algorithm because the medoids serve as natural
explanations for their respective clusters. However, the medoids are not always easy
to interpret, especially for high-dimensional datasets, such as (multivariate) sequences.
Ideally, we want to visualize the medoids in their original high-dimensional space (e.g.,
sine curves, character strokes), while still being able to interpret their meaning in the
context of the whole dataset.

ExClus [28] is an explanation method for clustering algorithms that creates feature-
wise statistical explanations based on the difference between the data distributions of
the cluster and the whole dataset. We borrow initial ideas from ExClus and create an
explanation method for sequential clustering in a streaming setting. Note that existing
work is severely limited in terms of explanation methods for unsupervised learning, es-
pecially in a streaming setting. For instance, although the temporal heatmaps proposed
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by Nadeem et al. in [12] provide cluster explanations, they require the cluster sequences
to be stored in memory, which is not possible for SECLEDS.

We explain each cluster locally and provide a global explanation for all the clusters.
These explanations use the concept of feature-wise data distribution. For every feature
f in a d dimensional (multivariate) item, the feature-wise data distribution for the clus-
ter cid is the probability density function Ycid,f estimated by the feature-wise mean µcid,f

and standard deviation σcid,f of the p medoids in that cluster (see Eqs. 6.2-6.4). If the
medoids are sequences, we first aggregate each medoid by computing its mean, i.e.,
| mcid,j,f |. Since the medoids are always stored in memory, the cluster distribution is
straightforward to compute. In contrast, we must compute the data distribution of the
stream seen so far Ynew,f in an incremental fashion, i.e., we update the distribution as
new data items arrive (see Eqs. 6.5-6.7). Given n items seen so far and s being the newest
item, µold,f and σold,f represent the mean and standard deviation of the previous n −1
items, and µnew,f and σnew,f represent the mean and standard deviation of the whole
stream seen so far.

µcid,f =
p∑

j=1
| mcid,j,f | (6.2)

σcid,f =

√√√√∑p
j=1(| mcid,j,f | −µcid,f )2

p
(6.3)

Ycid,f ∼ N(µcid,f ,σ2
cid,f ) (6.4)

µnew,f =
(n−1) ·µold,f + s

n
(6.5)

σnew,f =
√

(n−2) ·σ2
old,f + (n−1) · (µnew,f −µold,f )2 + (s−µnew,f )2

n−1
(6.6)

Ynew,f ∼ N(µnew,f ,σ2
new,f ) (6.7)

The local explanation utilizes the p medoids in each cluster – it computes their feature-
wise data distribution, and plots them next to the feature-wise data distribution of the
entire data stream seen so far. It also shows the most centrally located (most represen-
tative) medoid in that cluster. The central medoid is displayed in the most authentic
representation possible, e.g., a medoid is displayed as a character stroke for sequences
representing hand-written characters. Utilizing both the statistical (i.e., data distribu-
tion) and sequential (i.e., medoid sequence) representation helps to faithfully represent
a cluster. The local explanation provides a sense of cluster cohesion by showing how sim-
ilar the medoids are within a cluster. The global explanation shows the feature-wise data
distribution for each cluster and that for the data stream seen so far. This provides a
sense of cluster separation by showing the distinct (non-overlapping) concepts captured
by each cluster. Figure 6.3 shows the local and global cluster explanations for the uni-
variate sine-curve dataset. The explanations for multivariate network traffic are given in
the appendix 6.9.5.
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Figure 6.3: The local and global explanations generated by clustering n = 50,000 univariate sine curves in k = 3
clusters with p = 5 medoids each. The local explanation shows the feature distribution of the medoids within
a cluster versus that of all the curves, and the single most representative medoid (sine curve) in that cluster
(a-c). The global explanation shows the feature distributions of the 3 clusters versus that of all the curves (d).

6.4. DATASET AND EXPERIMENTAL SETUP
Datasets. We use three synthetic and two real datasets containing 2D points and uni-
variate/multivariate sequences, see Table 6.1. The data generation process is given in
appendix 6.9.1. The synthetic datasets are released in the SECLEDS code repository.

Blobs. The blob dataset was created using scikit-learn [29]. The dataset contains
n = 100,000 two-dimensional points (d = 2), equally distributed in k = 10 classes, with
varying standard deviations.

Sine-curve. A sine-curve generator was used to create k = 4 synthetic univariate sine
curves of length 1,250,000 each, using varying frequency, phase, and error (see appendix
6.9.1). Each curve is partitioned using a non-overlapping window of length w = 100 to
obtain the experimental dataset. In total, n = 50,000 curves are obtained, equally divided
across k = 4 classes.

Sine-curve-drifted. Incremental concept drift is added to the Sine-curve dataset by
shifting the phase of each curve by a factor of (drift · c_id), where c_id is the curve index
in the stream, and drift = 0.05. Note that adding drift to the frequency of the sine curves
produces similar results.
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Table 6.1: Summary of the experimental datasets.

Dataset Type Drift Stream size (n) Clusters (k) Dimensions (d,w)

Blobs Synthetic No 100,000 10 (2,1)
Sine-curve Synthetic No 50,000 4 (1,100)
Sine-curve-drifted Synthetic Yes 50,000 4 (1,100)
CTU13-9(A) Real-world Yes 213,386 2 (1,100)
CTU13-9(B) Real-world Yes 1418 2 (4,100)

CTU13-9. CTU13 [30] is an open-source dataset composed of network traffic (Net-
flows) coming from real botnet-infected hosts and normal hosts. We use scenario-9,
containing 10 Neris botnet infected hosts and 6 benign hosts. A total of 2,087,509 (nor-
mal and botnet) Netflows were captured over 5 hours and 37 minutes. We divide the
network traffic into 16 sub-streams based on the 16 hosts in the dataset.

We create two variants of CTU13-9 based on the sequence creation strategy. In CTU13-
9(A), we obtain n = 213,386 univariate sequences of length w = 100 (capturing average
bytes) using a sliding window model [31] with step_size = 1. Figure 6.10 in the appendix
6.9.1 shows a t-SNE plot of the sequences. The unclear class separation emphasizes just
how challenging the clustering task is. In CTU13-9(B), we obtain n = 1418 multivariate
sequences (d = 4) of length w = 100 (capturing total bytes, inter-arrival times, source
ports, destination ports) using a sliding window model with step_size = w. Note that
there are fewer usable sequences in CTU13-9(B) because of the non-overlapping sliding
window, and the multivariate nature of the sequences – we only consider those Netflows
for sequence construction that have, e.g., valid port numbers.

We use Euclidean distance for all datasets. For the Sine-curve and network traffic
datasets, we additionally use dynamic time warping (DTW). Note that Euclidean dis-
tance can only be used with fixed-length sequences and often produces less accurate
results compared to DTW [32], [33].

Stream configuration. A data stream S of size n is constructed from a chosen exper-
imental dataset. For each experiment, the clustering task is executed trials-times, ran-
domly shuffling the stream each time, to make the results order-invariant. A clustering
task invokes SECLEDS and the baselines such that each algorithm observes the exact
same order of data arrival. In this chapter, we set trials = 10, unless otherwise reported.
All experiments are run on Intel Xeon E5620 quad-core processor with 74 GB RAM.

Evaluation. We use two metrics for performance evaluation: i) runtime to cluster a
stream size of n, and ii) F1 score computed from the pairwise co-occurrences of items in
the stream using Eq. 6.8, as originally defined in [34].

eval(a,b) =


ya = yb ∧Cx =Cy , true positive

ya = yb ∧Cx ̸=Cy , false negative

ya ̸= yb ∧Cx =Cy , false positive

ya ̸= yb ∧Cx ̸=Cy , true negative

(6.8)
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Figure 6.4: Clustering Blobs and Sine-curves: SECLEDS’s runtime grows approximately linearly with stream
size, while maintaining competitive F1 score with the best-performing baselines, i.e., BanditPAM and Mini-
batch k-means. SECLEDS consistently performs better than all baselines in the presence of concept drift.

where ya and yb are labels of items a and b that are placed in clusters Cx and Cy .
Since clusters do not have pre-defined labels, data from one class may be assigned to
arbitrary clusters in different runs. Thus, instead of looking at the predicted label, we
measure F1 using the pairwise co-occurrences of true labels.

Baselines. We compare SECLEDS with state-of-the-art open-source partition-based
clustering algorithms with k-fixed clusters: a) Streaming: CluStream, StreamKM++; b)
Batch: MiniBatch k-means, and c) Offline: BanditPAM. MiniBatch k-means and Stream-
KM++ are online versions of the k-means algorithm, while CluStream is an adaptive,
online-offline algorithm. BanditPAM (v1.0.5) is used as a benchmark for the best achiev-
able clustering on a static dataset. We set time_window = 1, max_micro_clusters = k ·p,
halflife = 0.5 for CluStream; chunk_size = 1, halflife = 0.5 for StreamKM++, and
batch_size = 1, max_iter = 1 for Minibatch k-means.

6.5. EMPIRICAL RESULTS
Key findings. In this section, we empirically demonstrate the following results:

1. SECLEDS produces high-quality clusters, regardless of concept drift, stream size
n, data dimensionality (d , w), and number of clusters k. SECLEDS shows compet-
itive F1 compared to the best performing baseline (BanditPAM), while reducing
the number of required distance computations by 83.7%.

2. SECLEDS outperforms all baselines by 138.7% when the stream contains concept
drift. SECLEDS outperforms the best-performing streaming baseline by 58.2% on
Blobs, 33.3% on Sine-curve, and 143.7% on Sine-curve-drifted.
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3. SECLEDS-dtw clusters ∼5.5h of network traffic in just 8% of the time. Thus, it can
handle networks with bandwidths of up to 1.08 GB/s, which is significantly higher
than the requirements of a typical enterprise network.

4. SECLEDS-dtw is used to perform intelligent temporal pattern-preserving traffic
sampling, which improves the quality of the behavioral analytics that can be per-
formed on the sampled network traffic, as opposed to standard random sampling.

Point vs. sequence clustering. We use Blobs with k = 10 on stream sizes n = (5000, . . .
50,000), and Sine-curve with k = 3 on stream sizes n = (2000, . . .30,000). For both, we
set p = 5, λ = 0.1, trials = 10. The mean and standard deviation of the F1 scores and
runtimes are given in Figure 6.4. The benchmark (BanditPAM) achieves a mean F1 of
0.95 and 1.0 for Blobs and Sine-curve, respectively.

SECLEDS outperforms both CluStream and StreamKM++ on the Blobs dataset, and
additionally outperforms Minibatch k-means on the Sine-curve dataset. Minibatch k-
means performs exceptionally well on point clustering, but loses its edge on sequence
clustering. This is because the centroids are computed by collapsing temporally-linked
dimensions into single values that do not adequately represent the sequences. An im-
provement in F1 score is observed for CluStream and StreamKM++ on the higher dimen-
sional Sine-curve dataset because of fewer clusters (k = 10 vs. k = 3).

We also compare the effect of Euclidean and dynamic time warping distance on the
Sine-curve dataset. Although, they both produce equivalent results, it must be noted that
Euclidean distance only works with fixed-length sequences. An example of SECLEDS-
dtw on clustering bivariate sequences d = 2, w =(min:15, max:121) from UJI Pen Char-
acters [35] is given in the appendix 6.9.4.

Initialization quality. Stream clustering algorithms are greatly impacted by the quality
of cluster initialization. To test this, we compare SECLEDS against SECLEDS-rand (ini-
tialized with randomly selected medoids from the initial batch B). Evidently, the clusters
take a long time to converge, regardless of the stream size. The cumulative F1 score over
time for these configurations is given in the appendix 6.9.2, showing that although the
impact of poor initialization is reduced over time, SECLEDS-rand does not completely
recover from it. Thus, the distance-based non-uniform sampling strategy proves to be
extremely helpful in initializing good clusters.

Clustering with Concept drift. We use Sine-curve-drifted with k = 3, p = 5, λ = 0.1,
trials = 10 on stream sizes n = (2000, . . .30,000). SECLEDS outperforms all baselines by
138.7%, and outperforms the best-performing streaming baseline by 143.7%, on average.
BanditPAM no longer serves as a benchmark because it only has a static view of the data,
i.e., it does not distinguish between class distributions at T = tx and T = tx+1. Both
SECLEDS and CluStream maintain their F1 scores with concept drift, but SECLEDS is
161.8% better than CluStream. StreamKM++ and Minibatch k-means observe a signif-
icant reduction in their performance. We hypothesize that it might be due to the lack
of exponential decay in k-means, which limits the movement of the centroids towards
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newer data. This experiment provides strong evidence for SECLEDS’ ability to handle
concept drift with only k-fixed clusters.

Runtime analysis. StreamKM++ and Minibatch k-means are among the fastest cluster-
ing algorithms on all datasets, which is expected since they are based on k-means. CluS-
tream does not scale well for high-dimensional datasets, and is much slower than SE-
CLEDS on sequence clustering. As the stream size n grows, SECLEDS also becomes faster
than the high-performance implementation of BanditPAM on both point and sequence
clustering. Interestingly, the runtimes of BanditPAM, CluStream, and StreamKM++ seem
to be affected by concept drift: Given the same dataset and constant parameters, their
runtimes increase approximately twofold when there is drift in the data. We hypothesize
that this is a side effect of the sampling strategy used to speed up these algorithms.

Scaling with n, k, and p. We use Sine-curve with k = 4, p = {1,3,5,10},λ= 0.1, trials = 10
on stream sizes n = (2,000, . . .30,000). The mean and standard deviation of the F1 and
runtime of SECLEDS are reported in Figure 6.5a. A single medoid per cluster, which is
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Table 6.2: Clustering real network traffic: Compared to BanditPAM, SECLEDS requires fewer distance com-
putations, is faster, and has a better cluster quality. SECLEDS-dtw is slower but produces better clusters than
SECLEDS. Overall, ∼5.5h of network traffic is clustered in under 27 minutes (Bold = best scores).

Algorithm
Stream
config.

# Distances
(k = 2)

Run time
(k = 2)

F1
(k = 2)

F1
(k = 5)

BanditPAM
Time-ordered

10.3×106 978.03s 0.64 0.38
Cross-validated 984.8s 0.64 0.38

SECLEDS
Time-ordered

2.1×106 629.39s 0.85 0.82
Cross-validated 631.84s 0.79 0.76

SECLEDS-dtw
Time-ordered

2.1×106 1623.05s 0.85 0.88
Cross-validated 1626.89s 0.81 0.80

(a) BanditPAM (b) SECLEDS-dtw (c) SECLEDS

Figure 6.6: Visualizing the medoids of BanditPAM, SECLEDS & SECLEDS-dtw on k = 2, p = 5. Each row is a
medoid. The label denotes curve identifier|yi .

standard for PAM-based algorithms, does poorly in a streaming setting. Intuitively, more
medoids help to improve the stability of the clusters, but the relationship is not linear. If
p is set too low, the medoids keep jumping to various regions in the dataset, and if it is set
too high, the medoids slow down the evolution of the clusters, having an equally detri-
mental effect on the performance. The optimal value of p with respect to performance
and runtime is dataset-dependent. For Sine-curve, p = {3,5} are good alternatives. Ad-
ditionally, although SECLEDS has multiple medoids per cluster, it performs significantly
fewer distance computations compared to the (almost linear) BanditPAM. Figure 6.5b
shows this for increasing stream size n, number of clusters k, and number of medoids p,
with BanditPAM as reference.

6.6. USE CASE A: INTELLIGENT NETWORK ATTACK SUMMA-
RIZATION VIA SECLEDS

The first use case shows how to use SECLEDS for network traffic summarization while also
preserving temporal patterns.

A typical enterprise network has a bandwidth of 25 Mbps2, which produces about
17,000 packets per second, consuming 2 terabytes of storage space each day! To conserve
space, the packets are aggregated into network flows (Netflows) at the router level, and
only a fraction of them are stored for analysis i.e., 1 in N Netflows are stored. Naturally,

2https://mosaicnetworx.com/it-challenges/bits-bytes-understanding-enterprise-network-speeds/

https://mosaicnetworx.com/it-challenges/bits-bytes-understanding-enterprise-network-speeds/
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randomly sampled network traffic does not preserve the temporal patterns in the data,
thus limiting the efficacy of traffic profiling and behavioral analytics.

We propose to cluster sequences of Netflows using SECLEDS, and to periodically
store a medoid snapshot of each cluster, since they are representative of the network
traffic seen so far. This way, each snapshot stores an overview of temporally-linked Net-
flows. The number of clusters k can be chosen depending on the required granularity
of behaviors captured by the clusters. It can also be approximated from an initial batch
using, e.g., [36]. The number of medoids p can be configured according to the available
storage space, network bandwidth, and the intervals at which to store the medoids.

EXPERIMENTAL SETUP

We demonstrate this use case by generating a stream from the CTU13-9(A) Netflows. The
construction and feature engineering processes are given in the appendix 6.9.1. In short,
the ground truth provides two classes, i.e., yi ∈ {botnet, normal}. Univariate sequences
of average bytes per Netflow are used to separate the two classes. We use two configura-
tions for the stream: i) Time-ordered: the sequences arrive in order of their timestamps,
and ii) Cross-validated: we shuffle the stream. We run SECLEDS and SECLEDS-dtw with
k = 2, p = 5, trials = 5, and compare the performance against BanditPAM. The results are
given in Table 6.2.

6.6.1. CLUSTERING PERFORMANCE

SECLEDS is faster and produces better medoids compared to BanditPAM. Figure 6.6
visualizes the final medoids produced by all three algorithms in the form of temporal
heatmaps. Temporal heatmaps have previously been used to visualize temporal similar-
ities in [12]. Each row shows a sequence (medoid), and the colors indicate the magnitude
of the curve at each time step. Both medoids of BanditPAM are from the normal class.
Although the medoids of SECLEDS-dtw are all from the botnet class, it is evident that
they capture distinct behaviors of the malicious hosts. SECLEDS finds medoids from
both classes, but the clusters are impure, i.e., the cluster contains medoids from differ-
ent classes. As such, the cluster quality of SECLEDS-dtw is significantly better than that
of SECLEDS.

The results indicate that there are many smaller classes in the network stream, re-
flecting the various behaviors of benign and infected hosts. This implies that the op-
timal value of k must be higher than the predefined number of classes. Thus, we allow
SECLEDS to disrupt the standard assumption used in clustering literature (i.e., k = no. of
classes), and move towards a more realistic setting where there can be more clusters than
the number of predefined classes. When k is set to a larger number, the clustering algo-
rithms find smaller, purer data regions, e.g., for k = 5, SECLEDS-dtw produces 4 pure
clusters (2 normal and 2 botnet), while SECLEDS only produces 1 pure (normal) cluster,
see appendix 6.9.3 for their temporal heatmaps. Table 6.2 shows the F1 scores for k = 5.
Note that although the clustering results for k = 5 are better than k = 2, the former ob-
tains a lower F1 score as a side-effect of the metric: It penalizes higher number of clusters
when less class labels are available by lowering the recall. Regardless, we recommend to
over-estimate k in order to sample many regions from the network traffic.
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6.6.2. NETWORK BANDWIDTH SUPPORT
The experiments in Table 6.2 show that SECLEDS is faster than SECLEDS-dtw, as ex-
pected. SECLEDS clusters the entire stream in 3.1% of the traffic collection time, and
SECLEDS-dtw in 8% of the collection time. This experiment provides evidence that SE-
CLEDS can handle much larger network bandwidths.

In summary, SECLEDS-dtw summarizes traffic from networks with a bandwidth of
up to 1.08 GB/s in real-time, which is more than sufficient for small to medium enter-
prises. Specifically, SECLEDS-dtw spends 1626.89

213,386 = 0.0076 seconds on average to cluster
a single sequence of length w = 100. Thus, SECLEDS-dtw can cluster 131.58 sequences
per second. Assuming that the sequence windows w are non-overlapping over the traffic
stream, SECLEDS-dtw can process 13,158 individual Netflows per second. The CTU13-
9 dataset is composed of 115,415,321 packets aggregated into 2,087,509 Netflows. As-
suming uniform distribution, each Netflow contains ∼ 55.2 packets. SECLEDS-dtw can
process 726,315.79 packets per second. Given that each network packet is about 1500
bytes, this makes a total of 1.089 Gigabytes per second. Similarly, SECLEDS summarizes
network bandwidths of up to 2.79 GB/s in real-time.

6.7. USE CASE B: MALWARE BEHAVIORAL PROFILING VIA SE-
CLEDS

The second use case shows how to use SECLEDS to build behavioral profiles of malware-
infected hosts in (semi-) real-time.

We evaluate the quality of temporal pattern-preserving traffic sampling (via SECLEDS)
for a downstream behavioral analytics task – automated capability assessment of mal-
ware infected hosts. Specifically, we utilize MalPaCA (described in Chapter 5) to con-
struct behavioral profiles of bot-infected hosts through their sampled network traffic. To
this end, we show that the quality of the behavioral profiles varies dramatically depend-
ing on the sampling method, i.e., temporal pattern-preserving sampling vs. standard
random sampling.

BACKGROUND AND PROPOSAL
MalPaCA [12] automatically discovers behaviors within malware’s network traffic and
utilizes this information to create their behavioral profiles. These behavioral profiles
provide insights into the observed operational capabilities of malware, which when used
in conjunction with malware family labels, provide more insights into the consequences
of a malware infection to both consumers and malware analysts. MalPaCA utilizes DTW
and ngrams to measure distances between (sequential) network connections3, and clus-
ters them using HDBScan, which is an offline, density-based agglomerative clustering
algorithm. Each cluster is hand-labeled with the concept (behavior) it captures (either
via data analysis or OSINT). As such, the cluster labels collectively serve as an inventory
of the operational capabilities observed in the dataset. Each malware sample is then as-
signed a behavioral profile based on the cluster membership of its network connections.

The strength of MalPaCA lies in its use of HDBScan to create arbitrary number of
clusters for the unique concepts in the dataset. However, it is limited to offline settings

3A network connection is defined as packets/Netflows transmitted between a (source,destination) IP pair.
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Figure 6.7: Embedding MalPaCA [12] in a traffic sampling framework (random/SECLEDS) to generate real-time
behavioral profiles of bot-infected hosts.

– MalPaCA loads the entire dataset in memory to produce behavioral profiles, which is
infeasible for larger data streams. Meanwhile, malware behavior is known to evolve over
time, creating the need to continuously monitor the network traffic for any behavioral
updates. One idea is to replace HDBScan with SECLEDS to enable real-time network
connection clustering. However, MalPaCA would be limited to discovering only a prede-
fined k number of concepts, which is unreasonable for a behavior discovery application.

We propose to combine the powers of SECLEDS and MalPaCA by embedding Mal-
PaCA in a traffic sampling framework. The idea is that network connections are sampled
in real-time, which are incrementally clustered by MalPaCA to perform (semi-) real-time
behavioral profiling. We compare the impact of SECLEDS sampling vs. random sam-
pling on the generated behavioral profiles. Figure 6.7 shows the experimental setting.
As new traffic is sampled, MalPaCA re-clusters the network connections using a cached
model, and updates the behavioral profiles.

EXPERIMENTAL SETUP

We utilize the stream generated from the CTU13-9(B) Netflows, and create behavioral
profiles for the hosts in CTU13-9. We follow the feature selection of MalPaCA – the mul-
tivariate Netflow sequences represent 〈total bytes, inter-arrival time, source port, desti-
nation port〉.

In the SECLEDS sampling method, we set k = 5 and p = 5 to cluster the multivariate
sequences since these parameters provided the best results in Section 6.6. As the stream
is being clustered, we store the unique medoids every 5 seconds. Overall, we sample 123
medoids, which translates to 12,300 Netflows. For a fair comparison, we also randomly
sample 12,300 Netflows from the data stream to demonstrate the effect of random sam-
pling on the behavioral profiles. This reflects a sampling rate of 1 in 12 Netflows.

The sampled Netflows are incrementally given to MalPaCA. MalPaCA keeps track of
the network connections represented by the Netflows. Each connection is broken down
into lengths of 10 Netflows4, which are used to identify the numerous behaviors exhib-
ited by a host. For random sampling, MalPaCA tracks 3215 network connections, which
result in 791 usable sequences of length 10. For SECLEDS sampling, MalPaCA tracks 39
network connections, which result 1191 usable sequences of length 10. Note how SE-
CLEDS sampling creates more usable sequences from fewer connections, while the ran-

4In contrast to MalPaCA’s default connection length of 20, we select 10 due to data scarcity.
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(a) t-SNE plot for randomly sampled Netflows (b) t-SNE plot for SECLEDS sampled Netflows

Figure 6.8: The distribution of the sampled Netflows (projected in two dimensions via t-SNE). The clusters in
randomly sampled Netflows are easier to separate compared to those in SECLEDS sampling.

Table 6.3: Statistical summary of the Netflow sequences that are sampled via random/SECLEDS sampling, and
clustered using MalPaCA.

Sampling
configuration

Stream size
(w=100)

Sampled
Netflows

MalPaCA connections
(w=10)

Clusters
Silhouette

index
Average cluster

size

Random 1418 12,300 791 2 0.4 385.5
SECLEDS 1418 12,300 1191 6 0.15 155.3

domly sampled Netflows are often insufficient to create adequately long connections.
This is a direct side-effect of the sampling method – SECLEDS sampling stores tempo-
rally related Netflows, while random sampling stores randomly selected Netflows from
several different hosts.

The connections (with w = 10) created from the sampled Netflows are clustered by
MalPaCA to generate the behavioral profiles for 10 malicious and 3 benign hosts5. Table
6.3 shows the number of sequences clustered by MalPaCA for both configurations.

We perform a grid search on a validation dataset (roughly 5% of the input dataset)
to estimate the optimal HDBScan parameters for both random and SECLEDS sampling.
We select min_cluster_size = 25 and min_samples = 5 as these parameters provide the
best possible Silhouette index of 0.4 and 0.15 for random and SECLEDS sampling, re-
spectively. The Silhouette index for randomly sampled Netflows is higher because the
sampling creates a distribution that is easier to separate compared to SECLEDS sam-
pling (see Figure 6.8 for the data distribution of both configurations). However, as we
show later, the Silhouette index is not an accurate representation of cluster quality for
sequential datasets.

5Instead of 16 hosts, we cluster only 13. The sampling process loses connections belonging to 3 benign hosts.
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Table 6.4: Behavior inventory derived from the MalPaCA clusters for random/SECLEDS sampled Netflows.

Cluster Behavior Cluster purity

Random Sampling

c1 Potential DNS C&C Mixed
c2 HTTP(s) Virut, Google requests Mixed

SECLEDS Sampling

c1 Internal C&C Botnet
c2 Spam, Click Fraud, Google requests Mixed
c3 HTTP(s) Virut, Google requests Mixed
c4 DNS C&C - periodic requests Mixed (Mostly botnet)
c5 DNS C&C - increasingly fast requests Botnet
c6 DNS C&C - fast and light requests Mixed (Mostly normal)

6.7.1. BEHAVIORAL PROFILING VIA RANDOM SAMPLING

MalPaCA discovers 2 clusters from randomly sampled Netflows. Both of the clusters con-
tain a mix of botnet and normal connections (see Table 6.4 for the behavior inventory).
By investigating the temporal heatmaps and collecting OSINT regarding the involved IP
addresses, we observe that the first cluster captures DNS traffic to server 147.32.80.9.
Lagraa et al. [37] classify it as botnet traffic. However, it is unclear why the benign hosts
also contact this server. The second cluster captures HTTP(s) traffic. The infected hosts
utilize HTTPs, while the benign ones utilize HTTP. The IP addresses suggest that the ma-
licious traffic is associated to a potential Virut malware infection and several web at-
tacks (port scan and click fraud). The normal traffic captures requests to benign services,
such as Google servers.

Figure 6.9a shows the directed acyclic graph (DAG) that represents the relationship
between the behavioral profiles of the 13 hosts. While we observe some behavioral dif-
ferences between infected and benign hosts, the profiles are too coarse to meaningfully
separate the two host types. We observe two meta-behavioral groups. The first group
contains 6 malicious hosts and 2 benign hosts. The second group contains 4 malicious
hosts and 1 benign host. The difference between these two groups is as follows: The
hosts in the first group contact the suspected (botnet) DNS server. The hosts in the sec-
ond group, in addition to contacting the DNS sever, also utilize HTTP(s) to conduct web
attacks and generate requests to benign web services.

6.7.2. BEHAVIORAL PROFILING VIA SECLEDS SAMPLING

MalPaCA discovers 6 clusters using the temporal pattern-preserving sampling. 2 clusters
contain only botnet traffic, while the other 4 contain a mix of botnet and normal traffic
(see Table 6.4 for the behavior inventory). By investigating the temporal heatmaps and
collecting OSINT regarding the involved IP addresses, we were able to assign labels to
all 6 clusters. Cluster 1 contains only botnet traffic, capturing requests to a C&C server
controlled by the CTU13 data collectors, i.e., 212.117.171.138. There are requests to
4 other IP addresses that have not been involved in any major attacks, to the best of our
knowledge. However, because of the behavioral similarity with the known C&C server,
we assume they also correspond to C&C traffic. Similarly, cluster 5 also contains botnet
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Figure 6.9: The DAGs show the hierarchical relationships between the normal and infected hosts based on
their behavioral profiles emerging from the two sampling configurations.

traffic. The IP address 147.32.80.9 has previously been speculated to be linked to a
botnet. The traffic captured in this cluster makes several DNS requests to this server.
While there is a uniform mix of botnet and normal traffic in cluster 2, the botnet traffic
connects to 74.117.116.126 and 92.43.56.151, which are linked to browser hijack-
ing and click fraud services. The normal traffic, although sending requests to Google
servers, seem behaviorally very similar to the botnet traffic. Cluster 3, in contrast, con-
tains HTTP(s) requests to an IP that has been involved in a Virut infection. Clusters 4
and 6 contain a mix of botnet and normal traffic to the suspected (botnet) DNS server
– cluster 4 predominantly contains botnet traffic with periodic requests, and cluster 6
predominantly contains benign traffic with fast requests (and small payloads).

Figure 6.9b shows the DAG that represents the relationship between the behavioral
profiles of the 13 hosts. The first observation we make is that although some of the clus-
ters are mixed, we can distinguish infected and normal hosts based on their behavioral
profiles with 100% accuracy, i.e., 6 cluster membership strings6 are associated to botnet
infected hosts, and 3 are associated to normal hosts. This implies that the collective clus-

6A binary string encoding the collective cluster membership of a host’s connections, see Chapter 5 for details.
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ter membership of a host can reliably indicate if it is infected. The second observation
is regarding the hierarchical relationship between the behavioral profiles. There is an
intrinsic relationship among malicious (resp. benign) profiles – there is an overlap in the
behavior of the various malicious (resp. benign) hosts. For instance, the malicious hosts
almost always contact the internal C&C server in addition to exhibiting other behaviors.
Similarly, the benign hosts almost always send benign requests to similar services in ad-
dition to exhibiting other behaviors. The only overlap between benign and malicious
profiles happens at the bottom of the graph, where both hosts (i.e., 147.32.84.164 and
147.32.84.206) send DNS requests to the suspected (botnet) server.

Overall, we observe three meta-behavioral groups. The first group contains 9 in-
fected hosts that contact the internal C&C server and the suspected DNS server, and are
involved in click fraud, spam, and a Virut infection. The second group contains 2 nor-
mal hosts that send benign requests to services like Google and Alexa. The third group
contains one infected and one normal host that contact the suspected DNS server with
varying time-delays between requests.

6.7.3. DISCUSSION

Keeping everything constant, the only difference between SECLEDS sampling and ran-
dom sampling is the preservation of the temporal order among Netflows. We observe
that the DAG produced by SECLEDS sampling is significantly more insightful than the
DAG produced by random sampling. This use case provides concrete evidence support-
ing the use of temporal pattern-preserving sampling for real-time behavior profiling. We
show that SECLEDS sampling leads to more detailed behavioral profiles compared to
random sampling, while incurring minimal computational overhead. Even when pro-
cessing Netflows without access to individual packet headers (as was the case in Chapter
5), SECLEDS sampling enables MalPaCA to produce more granular and specific behav-
ioral profiles, which can be used to profile benign and infected hosts. This is an impor-
tant finding since it is generally believed that aggregating packet captures into Netflows
loses too much behavioral information. We show that preserving the temporal order of
Netflows may still be sufficient to create relatively detailed behavioral profiles. In con-
trast, when already aggregated packet captures, i.e., Netflows, are further randomly sam-
pled, the behavioral information becomes so abstract that MalPaCA is unable to differ-
entiate between malicious and benign behaviors. Furthermore, we show MalPaCA’s abil-
ity to discover interesting behaviors using only 10 Netflows, which further demonstrates
that useful insights can be derived from fewer data if they are temporally related.

6.8. CONCLUSIONS

We propose an interpretable sequence clustering algorithm, SECLEDS, which is a stream-
ing version of k-medoids with constant memory footprint. SECLEDS uses a combination
of multiple medoids per cluster and a medoid voting scheme to create k-clusters that
evolve with evolving data streams. We also propose an explanation method for explain-
ing the clusters in streaming settings. Testing on several real and synthetic datasets and
comparing against state-of-the-art baselines, we demonstrate that i) SECLEDS achieves
competitive F1 score compared to the benchmark (BanditPAM) on streams without con-
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cept drift; ii) SECLEDS outperforms all baselines by 138.7% on streams with concept
drift, and iii) SECLEDS reduces the number of required distance computations by 83.7%
compared to the benchmark, making it faster than BanditPAM and CluStream for several
clustering tasks.

We also show how SECLEDS can be used as an intelligent temporal pattern-preserving
sampling technique capable of supporting high-bandwidth network streams of up to
1.08 GB/s using the expensive dynamic time warping distance. We utilize SECLEDS to
perform real-time capability assessment of bot-infected hosts, and show that the traf-
fic sampled by SECLEDS creates more comprehensive behavioral profiles compared to
the standard (random sampling) approach. These results reinforce the importance of
designing lightweight medoid-based stream clustering algorithms.

Acknowledgments. We thank Dr. Christian A. Hammerschmidt for providing an initial
implementation of the k-medoids algorithm, and Ruben te Wierik, Silviu Fucarev, and
Rami Al-Obaidi for their contributions to the SECLEDS algorithm.

6.9. SUPPLEMENTARY MATERIAL

6.9.1. DATASET GENERATION PROCESS

Sine-curve. The parameters used to create the 4 sine curves are: frequency = {(0.1,0.12),
(0.2,0.22), (0.4,0.42), (0.6,0.62)}, error = {0.2,0.4,0.7,0.1}, and phase = {5,12,−10,−20}. For
each curve i ∈ {1, . . .k}: (i) The phase value is phasei; (ii) a random frequency is selected
from frequencyi range, and (iii) a random error of factor errori is added at every time step
of the curve. Figure 6.10 shows the 2 dimensional representation of the dataset via a t-
SNE plot and temporal heatmap. 5 randomly sampled sequences from the 4 classes are
shown in the heatmap. The x-axis represents time, thus each row is a sequence. The
colors show the magnitude of the curve at each time step. Temporal heatmaps have pre-
viously been used to visualize temporal similarities in [12].

CTU13-9(A). The network traffic is divided into several sub-streams based on the
source IP address. There are 16 sub-streams, each collecting Netflows for one of the 16
hosts in the dataset (10 infected with Neris botnet, 6 benign). We assume that the Net-
flows arrive in sequences of length w = 100, which are constructed by sliding a window
w over each of the sub-streams with step_size = 1. This results in n = 213,386 Netflow
sequences. Using the two natural classes in the dataset, we follow [30] and label the
sequences coming from infected sub-streams as botnet, while the others as normal.

A preliminary feature engineering is conducted to find the Netflow feature(s) that
differentiates the two classes. There is extensive research studying the impact of var-
ious features in traffic classification. For simplicity, we consider a single feature at a
time. Searching for better feature combinations is left as future work. We visualize the
class separation obtained by i) Netflow duration, ii) total bytes, iii) total packets, iv) inter-
arrival time between Netflows, v) average bytes per Netflow, and vi) average packets per
Netflow. We select average bytes to separate the two classes. Figure 6.10 shows a t-SNE
plot of the sequences. The unclear class separation emphasizes just how challenging the
clustering task is.



6

172 6. REAL-TIME SEQUENCE CLUSTERING FOR NETWORK ATTACK SUMMARIZATION

6.9.2. CLUSTER INITIALIZATION QUALITY

Figure 6.11 shows the F1 scores over time for SECLEDS and SECLEDS-rand (randomly
initialized medoids) for two stream sizes. It is evident that poorly initialized clusters are
unable to perform optimally. Since the medoids in a single cluster are blind to each other,
once poorly initialized, the clusters never converge. Further investigation is required to
make the medoids aware of each other since the additional distance computations will
increase the complexity of SECLEDS.

6.9.3. NETWORK TRAFFIC SAMPLING WITH SECLEDS
The CTU13-9(A) dataset contains two big classes corresponding to the normal and bot-
net Netflows. However, the experiments with k = 2 indicate that there are several smaller
regions in the data distribution, reflecting to the various behaviors of the normal and
bot-infected hosts. We demonstrate this by setting k = 5. Similar to the k = 2 case,
BanditPAM finds all clusters in the normal class. Figure 6.12 shows the final medoids
obtained by SECLEDS-dtw and SECLEDS. It shows that SECLEDS-dtw finds four fully
pure clusters, i.e., two in the botnet class and two in the normal class. SECLEDS (with

(a) Blobs (overall) (b) Sine-curve (overall) (c) CTU13-9(A) (overall)

(d) Sine-curve (sampled) (e) Sine-curve-drifted (sampled) (f) CTU13-9(A) (sampled)

Figure 6.10: Experimental datasets: (a) Scatter plot showing the Blobs dataset (k = 10). (b) t-SNE plot showing a
2D representation of the Sine-curve dataset (k = 4). (c) t-SNE plot showing a 2D representation of the CTU13-
9(A) dataset (k = 2). (d) Temporal heatmap showing 20 randomly sampled sequences from Sine-curve. (e)
Temporal heatmap showing 20 randomly sampled sequences from Sine-curve-drifted. (f) Temporal heatmap
showing 10 randomly sampled sequences from CTU13-9(A).
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Figure 6.11: F1 score over time for SECLEDS and SECLEDS-rand. Randomly initialized clusters perform sub-
optimally regardless of stream size.

Euclidean distance) struggles to find more than one pure cluster. This experiment pro-
vides evidence for alignment-based distance measures, such as dynamic time warping,
to have superior performance than Euclidean distance for sequence clustering tasks.

6.9.4. CLUSTERING HANDWRITTEN CHARACTER STROKES

Despite the growing interest in sequential features over the years, one of the biggest bot-
tlenecks in clustering sequences is the choice of an apt distance measure. Euclidean
distance is by far the most popular metric used for clustering tasks. However, Euclidean
distance does not perform accurately for out-of-sync sequential data, which is a com-
mon property of sequences. Although expensive, alignment-based distances, such as
dynamic time warping, have instead been shown to be more accurate. Another ben-
efit of dynamic time warping is that it can handle sequences of arbitrary lengths. We
demonstrate this by clustering a dataset of handwritten characters from the UCI ma-
chine learning repository (Dua,2017). The UJI Pen Characters dataset contains 467 bi-
variate sequences from 13 classes, i.e., {C,O,S,U ,V ,W ,1,2,3,5,6,8,9}. The length of the
shortest character stroke is 15, while that of the longest stroke is 121. Figure 6.13 shows
the t-SNE plot of the dataset.

SECLEDS-dtw is the only algorithm that can cluster this dataset straight out-of-the-
box. The other baselines use Euclidean distance, which do not support arbitrary-length
sequences. Figure 6.13 also shows the 5-fold cross-validated F1 score over time for clus-
tering the character strokes. BanditPAM is used as a reference benchmark, which re-
quires the pairwise distance matrix of all sequences to cluster the dataset. Note that
such a distance matrix is not available in a streaming setting, since it requires the en-
tire dataset to be stored in memory. Additionally, we compare the performance with a
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(a) SECLEDS-dtw (b) SECLEDS

Figure 6.12: Visualizing the medoids of SECLEDS-dtw & SECLEDS on k = 5, p = 5. Each row is a medoid. The
label shows curve identifier|yi . The pure clusters are highlighted: green for normal and red for botnet class.

randomly initialized SECLEDS, referred to as SECLEDS-rand-dtw. BanditPAM obtains
the highest achievable F1 score of 0.294 since very few classes are properly separated.
SECLEDS-dtw obtains a comparable F1 score of 0.285, while SECLEDS-rand-dtw ob-
tains a score of 0.255. This experiment shows that dynamic time warping is indeed a
more suitable distance measure for sequence clustering.

6.9.5. CLUSTER EXPLANATIONS FOR MULTIVARIATE NETWORK TRAFFIC
We borrow the features from MalPaCA [12], and cluster multivariate network traffic from
CTU13-9(B) using SECLEDS-dtw. The features are sequences of average bytes per Net-
flow (bytes), inter-arrival times of the Netflows (iat), source ports (srcport), and destina-
tion ports (dstport). Each feature is assigned equal weight for clustering. We set k = 2 (for
the default botnet and normal labels), and p = 5 medoids per cluster. Figure 6.14 shows
the local and global explanations for the clusters obtained from SECLEDS-dtw. Overall,
the explanations show that the two clusters capture sufficiently different concepts. The
global explanations show that two clusters clearly represent different distributions of the
source port feature, while there is partial overlap in the distributions of average bytes,
inter-arrival time, and destination port numbers. The local explanation for each cluster
further breaks down the data distribution for each feature. We also plot the feature-wise
time-series of the most centrally located medoid. We observe clear differences between
the two central medoids in terms of the average bytes, source and destination ports. The
inter-arrival time has slight behavioral differences, though it is unclear whether these
differences translate to a meaningful concept.
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7
CONCLUSIONS, OUTLOOK, AND

SOCIETAL RELEVANCE

Understanding the tactics, techniques, and procedures (TTPs) employed by cyber adver-
saries is crucial for generating effective threat intelligence and detection mechanisms.
While the state-of-the-art relies on expert-driven measurement studies to characterize
the attacker TTPs, these characterizations of attacker behavior quickly become outdated
with the rapidly evolving cyber threat landscape. Data-driven approaches are becoming
increasingly important to automate behavior characterization and to reduce the strain
on the cyber workforce. However, understanding attacker behavior via cyber data is ex-
tremely challenging – cyber data is typically unlabeled, noisy, infrequent, and contains
intricate patterns that evolve over time. Effective feature representation addresses these
challenges, i.e., sequential features are widely acknowledged for their efficacy in behav-
ior modeling [1]. Although there is a growing interest in the use of sequential features for
various learning problems, they are expensive to process, and have limited algorithmic
support. Their high dimensionality also makes it difficult to visualize and understand
them. The interpretability of sequence learning models requires special consideration –
because the goal of these models is to gain insights into attacker behavior, it is counter-
productive if the resulting models are black-box (uninterpretable).

This thesis tackles the challenges of the cyber domain by following a two-pronged ap-
proach: 1) We develop algorithms that learn from sequential features, infrequent events,
and evolving data. 2) We develop interpretable tool-chains that utilize these learning al-
gorithms for modeling adversary behavior. We demonstrate interpretable unsupervised
sequence learning as a means to extract threat intelligence regarding attacker behavior
from cyber data (which is often of suboptimal quality). We present the effectiveness of
interpretable sequence learning by discovering attacker strategies from intrusion alerts,
and by constructing behavioral profiles of malware.

In contrast to the dominant research paradigm that utilizes out-of-the-box machine
learning models for classification, we show in Chapters 3 - 6 that it is possible to uti-
lize machine learning models for extracting insights regarding attacker behavior from
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network-induced cyber data. We also show that these models need not be black-box: We
develop interpretable models and explanation methods for complex time-series data.
We even develop an interpretable real-time sequence clustering algorithm. These mod-
els use minimal assumptions on the input data to aid generalizability: Instead of solving
toy problems, we use (pseudo-)realistic data to train the machine learning models. In
addition to validating unsupervised models using different metrics, we conduct thor-
ough qualitative analyses that often show the limitations of commonly used metrics in
capturing interesting behavioral insights.

In summary, we make the following contributions in this dissertation:

• We propose the first comprehensive taxonomy that defines the notion of explain-
ability within cybersecurity. By framing existing literature according to the stake-
holders and application objectives, we identify the lack of interpretable models by
design, and the exclusion of stakeholders from the ML pipeline. We provide a tu-
torial that shows the utility of common XAI methods for exposing weaknesses in
models, and also identifies potential pitfalls that may steer practitioners towards
misleading conclusions.

• We develop powerful interpretable models and explanation techniques that help
security practitioners understand sequential data for unsupervised analysis tasks,
i.e., we summarize attacker strategies in intrusion alerts, explain the behavioral re-
lationships among malware samples, and explain multivariate sequential clusters
in real-time.

• We demonstrate the effectiveness of sequential data for behavior modeling, i.e., we
develop sequential clustering models for attacker strategy and malware capability
discovery. We also show that sequential features obtain higher quality behavioral
clusters compared to commonly used statistical aggregates.

• We develop an interpretable suffix-based probabilistic deterministic finite automa-
ton (S-PDFA) to accentuate infrequent intrusion alerts and to model the semantics
of alerts. We show that the S-PDFA is effective at learning sequential patterns, and
is learned in under 0.5 seconds.

• We develop SAGE as a pioneering system that learns attack graphs from intrusion
alerts. We also develop a web-based dashboard with querying/prioritization ca-
pabilities to consolidate the alert-driven attack graphs, and highlight alerts that
might require the urgent attention of security practitioners. We show that SAGE
compresses over 1.4 million alerts in 401 attack graphs in under 5 minutes. The
S-PDFA identifies an average of 1.2 – 1.4 attack variations per attack graph.

• We show for the first time that the alert-driven attack graphs provide threat intelli-
gence regarding attacker strategies. They are useful for identifying strategic differ-
ences, scripted attacks, and fingerprintable attempts. They capture the increasing
expertise of the attackers, and are used to rank them based on this expertise.

• We develop MalPaCA as a novel tool-chain to automatically create behavioral pro-
files of malware samples, a task previously dominated by manual approaches. Us-
ing an industry-acquired dataset containing 1196 malware samples and 3.6 million
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packets, we discover 18 capabilities such as port scans, device broadcasting, and
the reuse of C&C servers. A global dendrogram is utilized to identify malware sam-
ples that do not adhere to their family labels, showing their noisy and unreliable
nature as ground truth.

• We develop SECLEDS, the first real-time interpretable sequence clustering algo-
rithm with support for concept drift. It reduces the required distance computa-
tions by 83.7% in order to utilize expensive alignment-based distance measures.
A novel medoid voting scheme is introduced to handle concept drift. SECLEDS
is evaluated on 3 synthetic and 2 real datasets. It outperforms 4 state-of-the-art
clustering algorithms by 138.7% when the stream contains concept drift.

• SECLEDS is utilized as a novel network traffic sampling technique that preserves
temporal relationships. We show that SECLEDS supports bandwidths of over 1
GB/s for network traffic summarization. We combine SELCEDS with MalPaCA for
(semi-) real-time malware capability assessment. By utilizing SECLEDS-sampled
network traffic, MalPaCA creates behavioral profiles from 6 discovered behaviors
that distinguish benign and malicious hosts with 100% accuracy.

7.1. ADDRESSING THE CHALLENGES OF CYBER DATA
In this section, we describe our contributions in the machine learning domain. We build
sequential learning algorithms that can handle infrequent events (S-PDFA introduced in
Chapter 3), and evolving data (SECLEDS introduced in Chapter 6).

7.1.1. S-PDFA FOR INFREQUENT DATA
Software logs, e.g., intrusion alerts, are usually highly imbalanced. The majority of the
data typically relates to low-severity events, while only a minority pertains to attacks or
failures. Other than conducting anomaly detection, it is very difficult to learn from this
data without the risk of discarding infrequent severe events. The task becomes even
more challenging when these infrequent events are in the form of sequences.

Learning from infrequent sequences is an open problem. Sequential models, such as
Markov chains [2], finite state automata [3], and process mining models [4] are promis-
ing solutions. While Markov chains are easier to learn, they do not model the semantic
meaning between events, i.e., two identical events leading to a different future will be
modeled as the same state in a Markov chain. This is not desirable if the goal is to differ-
entiate between sequences based on their contextual meaning. Process mining models
suffer from the same shortcoming. Deterministic automata do not have such limitations.

In the experimental datasets in Chapter 3, we observe that the infrequent events are
always at the end of sequences, so by learning a suffix-based probabilistic deterministic
finite automaton (S-PDFA), we amplify their importance without disturbing the data dis-
tribution. The Alergia merge criteria ensures that states with similar pasts are merged.
The Markovian property further ensures that states have unique input transition sym-
bols, i.e., the immediate futures are identical. Furthermore, we discard “sink states”
(states that are too infrequent to learn anything from) to avoid arbitrary merges that
lead to a lower-quality model. Using the Perplexity metric, we show that the S-PDFA
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works better for modeling infrequent events compared to alternative models, such as
Markov chains and suffix trees. Because the Markov chain does not model context, it
makes vast over-generalizations. The suffix tree and the S-PDFA lie at two opposite ends
of the learning spectrum – the suffix tree is a larger model that represents the data as is,
while the S-PDFA is a smaller model obtained by making generalizations to merge dif-
ferent states. As such, the S-PDFA is both small and interpretable (see Figure 3.6). It is
also effective at modeling the training data and at generalizing to unseen test data. The
S-PDFA is learned using Flexfringe in under 0.5 seconds. These characteristics make the
S-PDFA a powerful model for mining infrequent patterns in sequential datasets.

LIMITATIONS AND FUTURE WORK

The suffix-based model does not entirely solve the infrequent event modeling problem.
For sparse datasets, such as the ones used in Chapter 3, we are still left with several in-
frequent events (some of which are interesting for further analysis) that form sink states.
These states essentially form sub-trees representing infrequent (sub-)sequences that are
not used during the learning process. It remains unclear what to do with sink states. In
Chapter 3, we still utilize their state identifiers in the attack paths. However, it creates
the problem that the state identifiers of the attack paths that originate from sink states
do not represent contextually different paths. This makes it difficult to identify the true
number of contextually different actions in an attack graph. We are currently exploring
the impact of merging sink states with the core S-PDFA model.

The comparison between the attack graphs resulting from the suffix tree and the S-
PDFA opens up a fundamental question: When is learning/making generalizations ef-
fective, and when is it sufficient to simply show raw data instead? There is probably a
threshold of data sparsity after which learning becomes more effective. However, iden-
tifying this threshold for different datasets and problems remains an open challenge.

7.1.2. SECLEDS FOR EVOLVING DATA
Sequence clustering is an important task for various domains, such as bioinformatics
and cybersecurity. The biggest challenge in clustering sequences is defining a notion of
similarity. Numerous distance measures exist to this end, e.g., dynamic time warping
(DTW), Fréchet distance, and sequence alignment algorithms. Because sequences can
be out of sync, these distance measures are typically computationally expensive, which
makes the whole task of sequence clustering time-intensive. This is why sequence clus-
tering is typically never done in a streaming setting, which requires fast-paced distance
computations. However, many applications require real-time sequence clustering, e.g.,
for classifying similar emerging attack campaigns, or categorizing collective anomalies.

In Chapter 6, we present SECLEDS, which is a lightweight (almost linear) algorithm
for clustering sequences in streaming settings. SECLEDS is a streaming variant of the
popular k-medoids algorithm that has commonly been used to cluster complex data
types. This is because the clusters are represented by medoids, allowing customized dis-
tances to be computed between two arbitrary data instances. This trait of k-medoids
enables it to operate on non-metric distance measures, e.g., DTW. In contrast, many
clustering algorithms, e.g., k-means, are required to use metric distances.

SECLEDS can use expensive distance measures in a streaming setting because of a
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neat property: In contrast to existing algorithms that use pairwise distances to identify
important medoids, SECLEDS estimates a cluster’s center of mass using a medoid vot-
ing scheme where the medoids close to newly observed data become important (by re-
ceiving votes) and outdated medoids are eventually forgotten (using exponential decay).
This way, SECLEDS reduces the required number of distance computations by 83.7%,
which allows us to use expensive distance measures, like DTW, in a streaming setting.

The medoid voting scheme also enables SECLEDS to handle concept drift, i.e., by al-
lowing the clusters to evolve with an evolving data stream. This is a novel property since
existing algorithms typically maintain fixed cluster definitions with arbitrary number of
clusters to capture different concepts. In contrast, we show that it is possible to capture
different concepts with a fixed number of evolving clusters. We demonstrate that SE-
CLEDS outperforms 4 state-of-the-art distance-based clustering algorithms by 138.7%
when the stream contains drift. As the clusters do not have a static definition, we need
a real-time explanation method to explain the evolving clusters at any given time. We
construct local and global cluster explanations based on the medoids, providing incre-
mental statistical insights into the multivariate sequence clusters as new data arrives
(see Figure 6.3).

LIMITATIONS AND FUTURE DIRECTIONS

SECLEDS’ clusters are characterized by multiple medoids. This is done to minimize the
probability of making mistakes, given a noisy stream. An open question is to estimate
the optimal number of medoids for clusters with varying densities. Another challenge is
to estimate the cluster density without storing the stream in memory.

The cluster medoids are updated at each iteration to keep up with an evolving data
stream. This means the traditional notion of convergence (i.e., no more cluster updates)
does not apply to SECLEDS. Although we empirically show that SECLEDS works well re-
gardless of concept drift, stream size, data dimensionality, and the number of clusters,
we have not formalized an objective function optimized by the algorithm. This function
is different from the traditional k-medoids, which minimizes the intra-cluster distances.
Because we update medoids based on the votes, we hypothesize that SECLEDS maxi-
mizes the collective votes of each cluster. However, since the votes do not monotonically
increase because of exponential decay, the objective function is non-linear. We have left
the formalization of the objective function as future work.

Finally, it is unclear how SECLEDS fares with extremely imbalanced datasets, such
as those seen in Chapter 3. It may be possible to combine the S-PDFA from Chapter
3 and SECLEDS from Chapter 6 for clustering infrequent patterns in an evolving data
stream. As such, the merge criteria of the S-PDFA can be used as a distance measure in
SECLEDS. However, this combination is not straightforward since the S-PDFA assumes
the knowledge of the future, which is unavailable for streams evolving in real-time. Fur-
ther research is warranted to combine the two approaches.

7.1.3. SOCIETAL RELEVANCE

A Python implementation1 of the SECLEDS algorithm is released as open-source. It can
be used out-of-the-box for clustering sequences in large data streams. Moreover, the S-

1SECELDS: https://github.com/tudelft-cda-lab/SECLEDS

https://github.com/tudelft-cda-lab/SECLEDS
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PDFA can be learned using the open-source tool, Flexfringe, for different alert datasets.
The S-PDFA model and the SECLEDS algorithm are not limited to the cybersecurity do-
main, thus making their impact much broader. For SECLEDS, we particularly experi-
ment with sequential datasets outside of the security domain, e.g., sine curves and hand-
written character strokes (see Figures 6.10 and 6.13). Moreover, the interpretable nature
of the S-PDFA and SECLEDS provides evidence that security solutions do not have to
rely on black-box models. As such, these algorithms can be used for behavioral analytics
in different domains: SECLEDS can be used to cluster sequences in real-time for, e.g.,
grouping similar trajectories in human activity recognition [5], and clustering similar
user preferences in recommender systems [6]. The S-PDFA can be used to cluster se-
quences that contain infrequent events for, e.g., modeling failures in automotive safety
[7], and modeling anomalous seismic waves in earthquake analysis [8].

7.2. EXPLAINABILITY IN CYBERSECURITY
In this section, we present our findings pertaining to Q1, and reflect on the scientific
implications of our systematization of XAI research within cybersecurity:

Q1: What are the challenges and opportunities for explainable artificial intelligence
(XAI) within cybersecurity?

Chapter 2 investigates the state-of-the-art XAI approaches for cybersecurity prob-
lems. We identify 3 stakeholders and 4 objectives of explanations, i.e., XAI-enabled user
assistance provides decision support to model users, XAI-enabled model verification and
explanation verification/robustness provide decision support to model designers, and XAI-
enabled exploitation provides decision support to adversaries.

While learning interpretable models, and explaining complex models using feature
importance by themselves are not a new concept, the field of XAI that consolidates them
and creates additional explanation methods is a nascent field with numerous open prob-
lems, especially within cybersecurity. For each stakeholder, we present opportunities for
future research by posing fundamental questions:

• Model users: While over half of the reviewed studies develop explanations for model
users, they are typically not included in the evaluation process. How can we incor-
porate model users in explanation evaluation without incurring excessive costs?

• Model designers: While model designers have a critical role in ensuring the se-
curity of the machine learning pipeline, they are typically ignored in the security
literature. To what extent can robust explanation methods help model designers
validate machine learning pipelines?

• Adversaries: Although adversaries can exploit explanations to further bolster their
attacks, there are limited works that investigate the robustness of explanations
against confidentiality, integrity, and availability attacks. Is it possible to develop
explanations that are useful to model users and designers, but not to adversaries?
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Additionally, considering the substantial role of model designers in the security of a
machine learning pipeline, we provide a tutorial that shows the utility of commonplace
XAI tools (e.g., LIME, SHAP, LEMNA) for discovering weaknesses in their models. With
the help of a network attack detection use case, we demonstrate how to discover spuri-
ous features and causes of misclassifications. We also highlight the pitfalls of post-hoc
explainability in potentially steering practitioners towards misleading conclusions.

7.2.1. LIMITATIONS

It was difficult to discover literature that solves similar problems but does not use stan-
dard terminologies. Although we try to limit this by including synonyms of known key-
words, we cannot ensure that we do not miss certain topics. There may also be bias in the
literature selection introduced by our own familiarity with certain topics. For instance,
AI-enabled reverse engineering literature was included primarily because we had been
exposed to this area for several years. In addition, we did not add some related works
since they did not solve security problems, e.g., model safety literature published in ma-
chine learning venues focusing on image and text data.

7.2.2. SOCIETAL RELEVANCE AND FUTURE DIRECTIONS

Overall, we find that there is substantial room for improvement in this field of research.
Black-box models are frequently used without understanding their risks, and applica-
tions typically apply off-the-shelf XAI methods without considering the stakeholders.
It is possible that related areas of research may not be getting attention just because
popular research overlooks them. For instance, reverse engineering applications at-
tempting to explain the input data from the model are an overlooked aspect of XAI.
We present methods for reverse engineering attacker strategies and malware capabili-
ties from network-induced cyber data in Chapters 3, 5, and 6, respectively.

An important takeaway from the reviewed literature is that most of the research (ap-
proximately 74%) utilizes black-box models that are supplemented with post-hoc ex-
planations. It makes sense since trying to obtain high accuracy inevitably makes the
pipeline black-box. The problem with black-box models is that they cannot be under-
stood on their own, and there are no guarantees that the post-hoc explanations are faith-
ful to the parent black-box model, or are robust to adversarial attacks. Research on cer-
tifiably equivalent robust explanations is severely limited [9]. In contrast, interpretable
models can directly be investigated, and do not require additional components to ex-
plain their behavior. This is why we recommend interpretable models for building trust-
worthy and deployable security solutions. Chapters 3 and 6 of this thesis present so-
lutions for adversary behavior analysis by developing interpretable models that explain
(complex) high-dimensional sequential data. Seemingly intuitive, it remains challenging
to build interpretable models for sequential data. Nonetheless, post-hoc explanations of
performant black-box models may guide the search for better interpretable models, e.g.,
by learning interpretable models from features that are suggested by post-hoc explana-
tions as being the main contributors to high performance.

The XAI literature specifies that effective explanations are tailored to a specific stake-
holder [10]. There is a general lack of understanding within the security literature of
what it means to create explanations for different stakeholders, i.e., the security liter-
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ature under-specifies who the explanations are for, and what is being explained. This
is in addition to the existing problem of interpreting the explanations correctly. Even
for simple methods, such as feature importance using LIME and local-SHAP, it is not
safe to assume that the explainee necessarily knows how to interpret the explanations
correctly. There are even cases where post-hoc methods still produce so-called expla-
nations for random models (that are not even trained) [11]. Meanwhile, XAI research is
rarely evaluated with human analysts even though it is clear that application-grounded
evaluation is the gold standard [12]. User studies are expensive and usually suffer from
low response rates, especially in the cybersecurity domain. This is because it is difficult
to engage security practitioners in such evaluations when they are already overworked
and fatigued with safety-critical tasks. While we also struggle with this challenge in this
thesis, we address it by evaluating our tool-chains with carefully selected metrics and
thorough qualitative analyses in Chapters 3 – 6. We are currently organizing follow-up
user studies to evaluate these tool-chains with security practitioners, see Section 7.3.3.

In terms of the research itself, there is a big overlap in security and machine learning
literature when it comes to model robustness. This is an important distinction because
the security community is not always exposed to the machine learning literature. Even
more importantly, realistic cyber adversaries and offensive security scenarios are rarely
discussed in the machine learning literature, most of which is applied on image and text
data. Security applications, in contrast, often deal with graphs and sequence data [1].
This means that many of the findings from the machine learning literature, albeit solv-
ing a similar problem, do not apply directly to a security context. Finally, it would be
naive to assume that XAI research is not interdisciplinary. Yet, very few works collabo-
rate with psychologists and criminologists to create effective explanation methods. This
is a missed opportunity since computer scientists typically do not have adequate train-
ing in cognitive sciences to foresee and correct potential issues in explanations before
deploying them. At the very least, drawing insights from psychology literature may pro-
vide clues for quantifying understandability (and developing a metric for interpretability
[13]), which remains a very important open problem in XAI.

7.3. ATTACKER STRATEGY DISCOVERY
In this section, we present our findings pertaining to attacker strategy discovery, and
reflect on the scientific implications of the proposed solutions for society at large.

7.3.1. ALERT-DRIVEN ATTACK GRAPHS
In this section, we answer Q2:

Q2: How can we learn attack graphs directly from intrusion alerts using interpretable
unsupervised sequence learning?

Traditional attack graphs are created using expert knowledge of network topology
and vulnerability reports, which do not provide sufficient incident response capabili-
ties. Learning attack graphs from intrusion alerts is a long-standing problem in the se-
curity domain since it is challenging to discover sequential constraints that do not re-
sult in a state-space explosion. We solve this problem in Chapter 3 by developing SAGE,



7.3. ATTACKER STRATEGY DISCOVERY

7

187

which is an unsupervised, interpretable sequence learning tool-chain that takes intru-
sion alerts as input, discovers attacker strategies in the data, and outputs them as at-
tack graphs. SAGE utilizes the S-PDFA (Section 7.1.1) to discover attacker strategies in
the alert datasets. The S-PDFA forms an integral part of the SAGE pipeline since it is
responsible for accentuating infrequent (severe) alerts, and modeling alert context. In
addition, the S-PDFA is interpretable, enabling analysts to graphically summarize the
entire alert dataset. Essentially, the S-PDFA is a clustering approach that merges similar
attacker strategies. Attack graphs are then extracted from the S-PDFA for each objective
exploited on the victim hosts in the network. The attack graphs provide actionable infor-
mation to analysts. For instance, the fraction of attack paths exploiting specific services
indicates the level of vulnerability of the target network (see Table 3.4). Moreover, the
S-PDFA identifies contextually different ways of exploiting an objective, which provides
an estimate for the number of required countermeasures (see Table 3.7).

We evaluate SAGE on 3 different security testing competition datasets (penetrating
testing and blue team exercises), and show that the selected S-PDFA accurately mod-
els the underlying alerts, and also generalizes to unseen alerts. We also show that SAGE
compresses over 1.4 million intrusion alerts in exactly 401 attack graphs in under 5 min-
utes (without a priori expert knowledge). Instead of investigating thousands of tabular
intrusion alerts, security analysts can triage alerts by analyzing attack graphs that show
how specific attacks transpired. This addresses the ‘alert fatigue’ problem commonly
faced by practitioners [14].

7.3.2. BEHAVIORAL ANALYTICS BY ALERT-DRIVEN ATTACK GRAPHS
In this section, we answer Q3:

Q3: What kind of threat intelligence can be extracted from alert-driven attack graphs
for discovering similarities and differences between attacker strategies?

Chapter 3 already shows SAGE as an alert-compression tool. In Chapter 4, we take a
deep-dive into the alert-driven attack graphs generated by SAGE in order to identify the
threat intelligence that they provide. We also build a web-based dashboard to consoli-
date the alert-driven attack graphs, and provide querying and prioritization capabilities
to analysts (see Figure 4.2).

We demonstrate that the attack graphs facilitate the visualization and comparison of
attacker strategies pertaining to a specific objective exploited on a victim. Having the
strategies of all the attackers that exploit an objective in a single attack graph helps to
find common attack paths and unique strategies (see Figure 4.7). Comparing attacker
strategies across different attack graphs provides clues regarding the tools used by the
attackers. For instance, if the attackers employ identical (or highly similar) strategies
to target multiple victim hosts, it likely points to a scripted attack (see Figure 4.9). In
contrast, if the attack paths are sufficiently different, or if there are long gaps between
attacker actions, then it is likely a manual attack (see Figure 4.8). Additionally, we rank
attacker expertise based on the fraction of severe alerts triggered by them (see Table 4.3).
We also fingerprint attackers based on the uniqueness of the attack paths they employ
(see Table 4.2).
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From a defense perspective, the S-PDFA inadvertently captures the increasing ex-
pertise of the attackers, e.g., by identifying objectives exploited using the least number
of actions (see Figure 4.7). We recommend to flag such paths as critical, requiring imme-
diate remediation. From a training perspective, we use the attack graphs to enumerate
all unique paths employed by red teams (see Figure 4.11). These paths help to inves-
tigate whether a shortest path exists to exploit an objective, or whether multiple team
members follow overlapping paths due to communication problems (see Figure 4.12).

7.3.3. FOLLOW-UP EFFORTS
Modeling assumptions. Since evaluating an unsupervised approach for modeling at-
tacker strategies is difficult, we relearn attack graphs with alternative modeling assump-
tions and compare against the output of SAGE. In [15], we study the impact of replacing
the S-PDFA with a PDFA on the attack graphs. As expected, the PDFA discards many
of the infrequent severe events as sink states, which results in larger attack graphs (i.e.,
due to sink state identifiers). The unexpected benefit is that the attack paths are more
spread-out, which has a positive impact on the readability of the graphs. The PDFA is
worse than the S-PDFA in terms of interpretability since it no longer learns from contex-
tually different infrequent events (i.e., sink states).

In [16], [17], we investigate the impact of merging sink states with the core S-PDFA
model on the attack graphs. When the sinks are merged with the model, there is a sig-
nificant decrease in the total number of states (and thus, state identifiers). The resulting
attack graphs are slightly smaller than the baseline attack graphs, with a negative impact
on the readability and interpretability, and a negligible impact on the complexity of the
graphs. Some of the merges cannot be logically explained, i.e., paths that were contex-
tually different are now merged (due to insufficient evidence to prevent merges). The
degree centrality of a vertex appears to be inversely proportional to the readability of an
attack graph. We find that the number of edges in the attack graphs effectively remains
the same while the number of vertices decreases, negatively impacting the readability of
the attack graphs, especially for longer attack paths.

There appears to be a trade-off between compactness and readability – paths that
are well-separated are more readable, but some merges are appreciated based on highly
similar futures and pasts. We apply constraints on the merging of sink states, i.e., instead
of merging arbitrary sinks, only the sinks that have the same distance to a specific state
are merged. Preliminary results show a small improvement, however the readability and
interpretability of the attack graphs remains worse than the baseline attack graphs.

Concurrent events. An important open question pertains to modeling concurrent eve-
nts. In the experimental datasets, we observe several attacker actions (with different at-
tack stages) that happen simultaneously. Because the S-PDFA is a sequential model, it
artificially creates a sequential order out of such concurrent actions, which leads secu-
rity analysts to misleading conclusions when reviewing the attack graphs. An informal
approach to address this is to show the time difference between the end of one action
and the start of the next action. Edges with negative gaps refer to overlapping or con-
current actions. However, the underlying problem still remains. One possible solution is
to utilize process mining to model concurrent events. The problem with process mod-
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els, however, is that they cannot model context. In a follow-up work [18], we combine
S-PDFA (for modeling context) and process mining (for modeling concurrent events) to
get the best of both worlds. The idea was to extract state sequences from the S-PDFA
that are already enriched with context information, and give them as input to a process
mining model. Although promising, the results of the follow-up study were inconclusive
because of the sparsity of the alert dataset.

Adversarial robustness. The S-PDFA cannot find valid paths for perturbed traces. This
is a major limitation of the S-PDFA since it will not be able to handle a noisy trace which
is otherwise very similar to other traces in the dataset. This happens because the traces
are replayed through the model using exact matching. In a follow-up work [19], we re-
place the exact matching with sequence alignment to enable the S-PDFA to still find a
valid path for traces with missing events or additional noisy events. The idea is to align
the perturbed traces with the S-PDFA, and to iteratively relearn the S-PDFA using the
perturbed traces until the model converges. This process maps infrequent traces (that
contain perturbations) with the frequent part of the S-PDFA model, and often results in
a more compact model capable of handling perturbations. Intuitively, the alignment-
based matching enables us to learn the core (frequent) behavior present in the traces.
For CPTC-2018, this sequence-to-model alignment results in a 49% smaller model than
the original model proposed in Chapter 3. This way, we robustify the S-PDFA model
against adversarial perturbations.

Dashboard evaluation. Application-grounded evaluation in the form of user studies
is required to understand the efficacy of the attack graphs in reaching correct conclu-
sions. For instance, concurrent actions are currently shown in a sequential order, which
causes analysts to reach misleading conclusions. Moreover, it is important for analysts
to recognize that the attack graphs do not show causality – they show the sequential and
probabilistic relationships between alerts. In a follow-up work [20], we conducted an
empirical study with a small set of security practitioners in the form of a virtual ques-
tionnaire. The survey asked the participants to solve various security tasks with the help
of the alert-driven attack graph dashboard. Although we could not collect statistically
significant number of responses, the preliminary analysis suggests that the dashboard is
more useful for analyzing attacker strategies compared to the currently employed alert
management tools. The participants also reported many usability issues in the user in-
terface, which points to a significant room for improvement in the dashboard design.

7.3.4. LIMITATIONS AND FUTURE DIRECTIONS
The attack graphs generated by SAGE may not be complete since it cannot model attack
paths for which no alerts are raised. Although SAGE shows the alerts generated by an in-
trusion detection system (IDS) in the attack graphs, it is impossible to show attack paths
that the attackers employ after bypassing the IDS. A potential solution can be to merge
alert-driven attack graphs with traditional (static) attack graphs. Since the static attack
graphs are based on vulnerabilities in the network, they can enrich alert-driven attack
graphs with paths that are not yet exploited, or paths that have been exploited but did
not raise alerts. This approach can also help identify “unknown unknowns”. Another
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idea is to conduct a penetration test on the target network, and investigate the resulting
attack graphs for missing attack paths. If a specific attack was conducted for which no
attack path is generated, it may indicate missing or faulty IDS signatures. It is also im-
portant to note that the attack graphs do not filter false alarms, i.e., the alerts are shown
regardless of their status. Characterizing these false alarms in the attack graphs is left
as future work. Moreover, the experiments are currently conducted on security testing
datasets where we are certain that attacks are occurring. The alerts that SOCs receive on
a regular basis likely have a significantly different distribution. We are currently coordi-
nating with an industrial SOC to learn attack graphs on their alerts [21].

The attack graphs have only been used for behavioral analytics. We are currently
investigating the use of these graphs for attack prediction. The S-PDFA cannot directly
be used for predicting the next likely attacker action since it is a suffix-based model –
it predicts the past based on the future, while we need a model that predicts the future
based on the past. We are working on an expectation maximization approach that tra-
verses the S-PDFA in reverse (bottom to top) in order to predict the potential severe event
that will likely occur next based on a partial path. Note that the S-PDFA becomes non-
deterministic when traversing it in reverse. This makes the prediction task significantly
more expensive, requiring us to limit the length of the prediction path. Another open
problem is to utilize the fingerprintable paths as detection signatures. Whether such
signatures hold across different datasets and infrastructures remains to be seen. An-
other interesting direction is to utilize neuro-symbolic AI, e.g., for enriching the vertices
of the attack graphs with a knowledge graph (KG) learned from security advisories. Fi-
nally, aligning the terminologies used in the alert-driven attack graphs with the standard
attack/fault tree/graph terminology may help other fields to leverage them as well.

With regards to the dashboard, we aim to create recommended action-items for each
attack stage highlighted in the recommender matrix, making the insights generated by
SAGE even more actionable. Additionally, the optimal way to compute alert urgency is
left as future work. Preliminary work [22] suggests that a criterion based on the in-degree
of the attack graph vertices can be used to measure alert urgency. This way, we identify
vertices that form central junctions in the attack graphs, i.e., common vertices visited by
numerous attack paths. Deploying countermeasures to eliminate such junctions may
disrupt the cyber kill-chain more efficiently than handling high-severity alerts alone.

7.3.5. SOCIETAL RELEVANCE

We successfully bridge the gap between dynamic alert management and static attack
graph generation with SAGE and the alert-driven attack graphs. Consequently, we solve
a long-standing problem in the cybersecurity and formal methods community [23]. In
contrast to existing research that utilizes machine learning to merely summarize alert
datasets, we go beyond analyzing the model and construct alert-driven attack graphs
that link the model’s insights back to the input alert signatures. This way, the attack
graphs reduce the workload of security analysts by correlating alerts, facilitating the dis-
covery of critical alerts that would otherwise be time-consuming to discover, and provid-
ing actionable intelligence regarding the strategies of the attackers. They also capture at-
tacker behavior dynamics, which enables them to distinguish between novice and expert
attackers based on the kind of strategies they employ. This has direct military applica-
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tions, and is interesting for criminologists. We have released SAGE in a docker container
for cross-platform support2. It can be used out-of-the-box to learn attack graphs with
minimal parameter tuning.

Since we released SAGE, it has garnered attention from industry: SAGE obtained the
Best Demo Award at ICT.Open, 2023 (the national Dutch Computer Science conference
attended by academics and industry members), and has been presented at the One Con-
ference, 2023 (a European security conference attended by academics, industry mem-
bers, and government employees).

7.4. NETWORK ATTACK ANALYSIS
In this section, we present our findings pertaining to network attack analysis, and reflect
on the scientific implications of the proposed solutions for society at large.

7.4.1. MALWARE CAPABILITY ASSESSMENT
In this section, we answer Q4:

Q4: How can we leverage unsupervised sequence clustering to characterize the net-
work behavior of malware in order to discover similarities and differences between
malware capabilities?

Malware behavior analysis is largely done manually. Chapter 5 answers this question
by developing MalPaCA – an unsupervised, explainable sequence clustering tool-chain
to automate malware capability assessment. The first question is to identify the unique
capabilities (behaviors) present in the malware dataset. MalPaCA clusters sequences of
unsampled network packets (called network connections) generated by malware sam-
ples using a combination of density-based clustering and DTW/ngrams. Each cluster
represents a unique behavior, which is hand-labeled by investigating the network con-
nections it contains. The next question is to characterize the behavioral profile of each
malware sample. This is done by recording the cluster membership of a malware sam-
ple’s network connections. We use the behavioral profiles to explain the capabilities of
malware samples, thus drastically reducing the time it takes to analyze them. We also
create a global dendrogram using these profiles that shows similarities and differences
between the capabilities of different malware samples.

MalPaCA operates on abstract sequential features extracted from malware’s network
packet headers, e.g., packet sizes, inter-arrival times, and port numbers. These features
are available even when traffic is encrypted, and have previously been shown to cap-
ture behavioral attributes [24]. We empirically show that MalPaCA characterizes net-
work behaviors using as little as 20 packet headers. To our knowledge, this is the shortest
sequence size utilized in the literature. We also show that MalPaCA is able to create ac-
curate behavioral clusters because of the sequential features, i.e., aggregating network
connections produces faster but inaccurate clustering.

We show the efficacy of MalPaCA on an industry-acquired financial malware dataset.
A total of 1196 malware samples resulting in 3.6 million network packets are grouped

2SAGE: https://github.com/tudelft-cda-lab/SAGE

https://github.com/tudelft-cda-lab/SAGE
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in 18 clusters. With only the abstract sequential features, MalPaCA accurately identifies
the transmission direction of the traffic. The clusters capture capabilities, such as port
scans, device broadcasting, and the reuse of C&C servers. We observe clear differences
between malware families in terms of their behavior diversity: The profile created for
Gozi-ISFB contains 16 distinct behaviors, while those for Dridex Loader, Gozi-EQ,
Zeus-P2P, and Zeus-v1 contain only a single behavior. Some of this discrepancy can
be explained by the (in)activation of the malware samples during data collection. The
global dendrogram for the malware samples (see Figure 5.6) identifies a number of mal-
ware samples whose behavioral profiles do not adhere to their traditional family names
– 2 Blackmoon and 5 Zeus-Panda samples are observed communicating with the same
C&C server. It is unclear whether this happens because of incorrect labeling or because
of substantial overlap in their behavior. Regardless, it highlights the unreliable nature
of malware family labels as ground truth, and shows how behavioral profiles effectively
complement them.

7.4.2. NETWORK ATTACK SUMMARIZATION
In this section, we answer Q5:

Q5: How can we characterize the network behavior of malware in real-time using
interpretable unsupervised sequence clustering?

To the best of our knowledge, there are currently no methods that support real-time
sequence clustering. We answer this question in Chapter 6 by first developing SECLEDS
– the first real-time interpretable sequence clustering algorithm with support for evolv-
ing data streams (Section 7.1.2). We empirically evaluate SECLEDS on 3 synthetic and
2 real datasets, and compare its performance against 4 state-of-the-art distance-based
clustering algorithms. We show that SECLEDS creates high-quality clusters regardless of
concept drift, stream size, data dimensionality, and the number of clusters.

Second, we use SECLEDS to tackle the network traffic sampling problem, i.e., net-
work traffic is often randomly sampled to reduce storage requirements. Typically, only
1 out of N Netflows are stored, losing the temporal patterns in the data that could have
been useful for downstream behavioral analytics. We use SECLEDS as a novel temporal
pattern-preserving traffic sampling technique, i.e., it summarizes the network traffic in
a way that preserves their temporal relationships. By clustering network traffic from a
real botnet, we show that SECLEDS supports network bandwidths of over 1 GB/s. We
also investigate the quality of the clusters obtained by using DTW (a sequence-specific
distance measure) and Euclidean distance (the default distance measure used by typi-
cal clustering algorithms). We show that the clusters obtained from SECLEDS-dtw are
purer than those obtained from SECLEDS-Euclidean. This provides evidence in favor of
sequential data-specific distance measures.

Third, SECLEDS is used in combination with MalPaCA to perform (semi-) real-time
capability assessment of bot-infected hosts. The idea is to sample network traffic in
real-time with SECLEDS, and MalPaCA utilizes the sampled cluster medoids to construct
behavioral profiles of the hosts in the network. The intuition is that the hosts infected
with the same botnet will have a similar behavioral profile. We compare the quality of
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the behavioral profiles obtained using SECLEDS-sampling against those obtained using
random-sampling. We show that SECLEDS-sampling is able to discover 6 unique be-
haviors in the sampled network traffic, while random-sampling is only able to discover
2 broad behaviors. As a result, the behavioral profiles created using SECLEDS-sampling
are more detailed, and are able to identify similar bot-infected hosts.

Note that existing literature aims to create clusters that either represent malicious or
benign hosts. Since MalPaCA’s clusters are defined at the behavior granularity, we often
obtain clusters that contain network connections from both benign and malicious hosts
since they exhibit the same behavior. This is the intended objective as we split network
connections into chunks and cluster them such that the clusters represent behaviors.
Interestingly, when we look at the behavioral profiles that show the overall cluster mem-
bership, we are often able to distinguish between malicious and benign hosts with 100%
accuracy (see Figure 6.9). This is because while malicious and benign hosts exhibit over-
lapping behaviors, they typically do not coexist in all the same clusters. This establishes
the behavioral profiles as a neat technique to fingerprint hosts.

7.4.3. LIMITATIONS AND FUTURE DIRECTIONS

Both MalPaCA and SECLEDS create network behavioral profiles of malware. We choose
network traffic since it is practical and non-invasive. It is also easy to collect and has a
low overhead on end-hosts compared to system logs. However, prevailing research over-
whelmingly utilize system logs for malware analysis [25]. Creating holistic behavioral
profiles that capture both the system and network behavior is left as future work. In ad-
dition to challenges in feature engineering, additional challenges may arise due to the
multi-modal aspect of the feature space.

Further research is required to understand whether the system and network profiles
are always consistent, and whether the discrepancies discovered in Chapter 5 are be-
cause of this inconsistency. More specifically, why do the behavioral profiles present a
different picture than the malware family labels? A related question is about differentiat-
ing between malware samples that do not activate their capabilities as an evasion tactic
versus those that truly have fewer capabilities.

In Chapter 6, we combine SECLEDS and MalPaCA to create (semi-) real-time behav-
ioral profiles of malware. SECLEDS can cluster network traffic in real-time but only using
k clusters. The density-based clustering algorithm used in MalPaCA (i.e., HDBScan) can
create arbitrary number of clusters but only in an offline setting. Replacing HDBScan
with SECLEDS will limit MalPaCA’s ability to discover arbitrary behaviors. We leave this
as future work. Furthermore, although we empirically show that this combination can be
used to cluster network traffic in a streaming setting in order to create (semi-) real-time
behavioral clusters, the impact of concept drift on the behavioral profiles could only be
tested for about 5.5 hours. Investigating whether such real-time behavioral profiling can
help detect evolving behavioral profiles is left as future work.

7.4.4. SOCIETAL RELEVANCE

SECLEDS is the first interpretable algorithm that clusters sequences in real-time. Mal-
PaCA is the first tool-chain of its kind that automatically characterizes malware behav-
ior. This is important for malware analysts since malware behavior characterization is
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mostly done manually, and there is no standardized way to label behaviors. In 2020,
MITRE announced its Malware Behavior Catalog (MBC)3 that enumerates malware ob-
jectives and behaviors. The catalog is regularly updated as they manually investigate
newly discovered malware code. MalPaCA essentially automates this process by discov-
ering unique behavioral groups in malware traces. We opt for a dynamic approach since
only the behaviors that are exhibited by malware are relevant for behavior profiling. A
practitioner only needs to analyze a fraction of a cluster to label it with a capability. Be-
havioral profiles are automatically assigned to malware samples based on the cluster
membership of their traces. Together with SECLEDS, MalPaCA has the ability to discover
new behaviors as new malware is discovered. This substantially reduces the amount of
time it takes to characterize malware behavior. We release MalPaCA as open-source4.
It works out-of-the-box for creating behavioral profiles using network traces. Also, it is
not limited to malware behavior profiles – it can essentially be used to create behavioral
profiles for any entity that produces network traffic, e.g., network hosts, and IoT devices.

Moreover, we empirically show the power of sequential features in Chapters 5 and
6 for behavior characterization. To this end, we demonstrate that it is not required to
have long sequences or sequences with privacy-intrusive features. We even show that
sequences of raw packet captures (Pcaps) and aggregated network flows (Netflows) are
both sufficient to characterize behavior. This provides a strong recommendation to the
community to consider temporal pattern-preserving sampling over random sampling.

7.5. FINAL WORDS ON ADVERSARY BEHAVIOR ANALYSIS
Understanding adversary behavior is the first step towards building better detection tools.
This thesis contributes to the growing body of literature on ML-based cyber threat intel-
ligence, and provides several solutions for understanding attacker behavior: We create
a novel paradigm of alert-driven attack graphs to investigate how attacks transpire, and
create behavioral profiles of malware samples that are much more descriptive than their
family labels. To this aim, we develop special algorithms that learn sequential patterns
from infrequent events, and evolving data in an unsupervised setting.

In essence, this thesis advocates for the use of interpretable models, and highlights
the power of sequential features in behavior modeling. It demonstrates that by consid-
ering the appropriate stakeholders and rigorously defining the problem, it is possible
to develop competitive interpretable solutions, even for sequential data in an unsuper-
vised setting. All solutions proposed in this thesis are open-source, and can be used
out-of-the-box for analyzing attacker behavior in previously unexplored datasets. The
proposed solutions facilitate practitioners by automatically discovering intricate pat-
terns that would otherwise be too time-consuming to discover manually, ultimately re-
ducing their workload. Furthermore, in contrast to popular research, this thesis shows
that an over-reliance on performance metrics can be detrimental, especially for unsu-
pervised sequence clustering tasks. For instance, we have observed that the Silhouette
index prefers fewer clusters, and the clustering that achieves the best scores is qualita-
tively inferior to other clustering configurations that produce more clusters. This is why

3MITRE MBC: https://github.com/MBCProject
4MalPaCA: https://github.com/tudelft-cda-lab/malpaca-pub

https://github.com/MBCProject
https://github.com/tudelft-cda-lab/malpaca-pub
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we advocate for interpretable settings in behavior analysis, and do not recommend to
replace human intelligence with performance metrics.

This thesis stands as a testament to the possibilities that arise when metrics are not
utilized as mere crutches. It serves as a catalyst for further research in the application of
interpretable machine learning for understanding attacker behavior. We encourage the
security community to look beyond accuracy scores, and focus on extracting actionable
insights from machine learning models in order to create AI-assisted practitioners.
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