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Bij het ontwerpen van een digitaal compressiesysteem op basis
van onderbemonstering dient het gebruik van een
bandbegrenzend voor-filter zoveel mogelijk voorkomen te
worden.

(Dit proefschrift, Hoofdstuk 3, 4 en 5)

Digitale compressiesystemen op basis van onderbemonstering
zijn gevoelig voor hoogfrequente ruis.

(Dit proefschrift, Hoofdstuk 3, 4 en 6)

Binnen de klasse van compressiesystemen voor digitale
beeldsequenties gebaseerd op onderbemonstering verdient een
spatieel adaptief systeem met bewegingscompensatie de
voorkeur.

(Dit proefschrift, Hoofdstuk 7)

De op medische gronden vastgestelde limiet van maximaal twee
scéne-wisselingen per seconde is ook te verdedigen vanuit het
oogpunt van compressie.

Het blijven streven naar volledige benedenwaartse compatibiliteit
belemmert op den duur de vooruitgang van de techniek.

Het ‘student-proof” maken van een systeem vereist een grotere
inspanning dan het ‘fool-proof” maken.



10.

11.

Door de passieve houding van de politie ten opzichte van
fietsendiefstal is een fiets openbaar bezit geworden.

Technologisch onderzoek in ontwikkelingslanden dient zich niet
in eerste instantie te richten op de verbetering van de huidige
stand van de techniek, maar op het verwerven van een zelf-
standige positie ten opzichte van de ontwikkelde landen.

Het getuigt van arrogantie van de westerse beschaving om
Columbus te beschouwen als de ontdekker van het Amerikaanse
continent.

Ontwikkelingshulp is geen gunst aan ontwikkelingslanden maar
moet gezien worden als herstelbetaling voor de ontwrichting van
de sociaal-economische structuur gedurende 300 jaar kolonisatie.

Het hebben van principes is een luxe-probleem.
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SUMMARY

Recent developments in the area of digital signal processing hardware and the advent of
broadband digital communication channels have made it possible to offer new audio-visual
services to the consumer at home. These services cover almost every aspect of our daily life,
such as business, education and entertainment. High definition television (HDTV) gives a
better image and sound quality than conventional television. Other new audio-visual services
are, for instance, the videophone, interactive television and the digital video recorder. All of
these new services require the transmission of images, sounds and binary information. The
important role of data compression is to reduce the amount of information to be stored or
transmitted. If the information is coded as efficiently as possible, the transmission time or
storage requirements decrease and the costs of the services are reduced.

Subsampling can be used as a method to compress digital image sequences. A digital image
sequence consists of a spatial and temporal set of picture elements (“pixels”). In a
subsampling system the information to be transmitted is reduced by transmitting only part of
the pixels. At the receiver, the discarded pixels have to be recovered by using information
which was transmitted across the channel (interpolation). To facilitate a good interpolation, it
is important that the transmitted pixels contain sufficient information. This involves a trade-
off between the required quality, the compression factor and the complexity of the coding
system. In this thesis different subsampling methods are discussed.

An important choice in a subsampling system is the sampling lattice. This is a set of discrete
points in the three-dimensional space. Sampling lattices are used to define the pixel positions
in both the original and the subsampled image sequence. Different frequency components can
be emphasized or suppressed by adjusting the shape of the sampling lattice. The density of
the subsampling lattice determines the compression factor. The sampling lattice also
determines the positions of the spectral replica of the baseband introduced by the
subsampling process. To prevent aliasing errors, spectral replica should not overlap each
other. Therefore the frequency components which give rise to aliasing have to be suppressed
prior to subsampling with a lowpass filter, the prefilter. If there are no frequency components
which cause aliasing, the prefilter becomes obsolete. At the receiver the missing pixels are
recovered with a lowpass filter that recovers the original baseband spectrum: the interpolation
filter.

Systems that use a fixed subsampling lattice make up the first group of spatio-temporal
subsampling systems. In a simple fixed lattice subsampling system, fixed linear prefilters and
interpolation filters are used. The reason for using these kind of systems is the reduced
sensitivity of the human visual system for diagonal frequency components. These frequency
components are not transmitted if a guincunx sampling lattice is used. Another application of
simple fixed lattice subsampling systems is the subsampling of the color components of the
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image sequence. Usually the energy contribution of color components is relatively low,
allowing for the use of a lattice with a low sampling density. The simple fixed lattice
subsampling system is not suitable for the image sequence luminance information.

The image quality of fixed lattice subsampling systems can be improved by using an adaptive
interpolation filter instead of a fixed interpolation filter. The aim is to recover a part of the
resolution Jost during the subsampling process and therefore no prefilter should be used. The
absence of a prefilter can introduce spatio-temporal aliasing which may not be canceled by
the adaptive interpolation filters. Two classes of adaptive interpolation methods are
discussed, namely motion adaptive interpolation and nonlinear interpolation. The
interpolation can be adapted to motion in the image sequence by using motion compensated
interpolation. With a motion compensated interpolation filter the spatio-temporal passband of
the interpolation filter is adapted to the local motion vector. During the interpolation process
no spatial resolution is lost, so in this case the spatial resolution of the interpolated image
sequence is higher than for a fixed lattice subsampling system. For a good interpolation
result, it is, however, necessary that the motion vectors are estimated with a high accuracy
and correspond with the true motion. Because accurate motion estimation is not always
possible, there must always be a mechanism to detect this situation and to perform an
alternative interpolation. Detection can be done at the encoder by considering the magnitude
of the interpolation error. A simple fixed lattice subsampling system with non-adaptive
interpolation can serve as a fall-back system in the case of a locally inaccurate motion
estimate.

The second class of adaptive interpolation filters is that of nonlinear interpolation filters
which are based on the median filter. The advantage of these filters is that the interpolation
result is not determined by the weighted sum of pixel values in a spatio-temporal window
around the missing pixel. Instead, the pixel values majority determines the result. If the
missing pixel belongs to this majority then the interpolation result is better than the result
after fixed linear interpolation. The interpolation result can be improved further by using a
hybrid filter, consisting of a combination of linear and nonlinear filters. A motion
compensated interpolation filter can also be used in this context. Experiments show that
nonlinear interpolation filters offer only a slight improvement over linear interpolation filters,
mainly because of uncanceled aliasing.

The second group of spatio-temporal subsampling systems uses adaptive subsampling lattices
instead of a fixed subsampling lattice. In a system with a spatially adaptive subsampling
lattice the shape and the density of the local sampling lattice is adapted to the local image
contents. The image is divided into blocks and for each block the optimal sampling lattice is
determined. With the help of rate-distortion theory it can be shown that this approach always
leads to a lower distortion than the distortion of a fixed lattice subsampling system. This
theory can also be used to assign different sampling lattices to the blocks, when a target
compression factor is specified.



A consequence of spatially adaptive subsampling is that at the receiver, interpolation should
be done on a non-uniform sampling lattice. The sampling lattice within a block is, however,
uniform. Using these pixels, polynomials of different orders can be estimated with least-
squares estimation. At the decoder the polynomials are used to compute the missing pixels.
An alternative interpolation method builds a hierarchical pyramid. where the lattices with a
low sampling density are expanded to a lattice with a higher density. In this situation it is
required that each sampling lattice is a subset of the lattices with a higher sampling density.

A temporally adaptive lattice can be accomplished by using motion information. If a block
can be predicted from the previous image with the aid of motion information, there is no need
to retransmit that block. As a consequence, the temporal sampling frequency can be adapted
to the temporal activity. Experiments show an improvement with respect to fixed lattice
subsampling systems, and a quality improvement if the size of the set of possible local
sampling lattices is increased.

Another approach to obtain an adaptive subsampling lattice is to adapt the spatial lattice to
the presence of motion. A stationary area in an image does not change in time, therefore the
spatial sampling of this area can be spread over several images. The subsampling lattice is
shifted for every image in such a way that over a period of several images, every pixel of the
stationary area is transmitted. This technique is call “sub-Nyquist” sampling, because the
spatial sampling frequency of each image is lower than the prescribed Nyquist frequency.

Sub-Nyquist sampling is used in several standardized compression systems for HDTV,
namely the Japanese MUSE system and the European HD-MAC system. In practice, in a
system there should always be a fall-back mode in case the image sequence contains non-
stationary areas. In both systems, this is a fixed lattice subsampling system in combination
with spatial interpolation. In the HD-MAC system the subdivision into stationary and non-
stationary areas is done on a block basis, whereas in the MUSE system the subdivision is
done on a pixel basis. In the HD-MAC system the decision as to which mode is used is
transmitted as side information, but in the MUSE system the decision is repeated at the
decoder. Therefore, in the HD-MAC system the complexity is concentrated at the encoder,
whereas in the MUSE system both the encoder and the decoder have the same complexity.

Sub-Nyquist sampling can be applied to moving areas of the image sequence if the motion
information is taken into account and the problem of critical velocities is solved. If a fixed
sampling lattice is used, the combination of the subsampled images to obtain the original
stationary image is no longer possible for certain velocities. The use of an adaptive lattice
which is appropriately chosen solves this problem. An increase in the accuracy of the motion
vector improves the overall result. Experiments show that motion compensated sub-Nyquist
sampling outperforms non-motion compensated sub-Nyquist sampling because of the
suitability of the method for non-stationary parts of the image sequence.

Subsampling can be combined with transform coding to reduce the complexity of the

transform coding system. Combining the two systems can also be used to adapt the transform
coding system to the human visual system, namely by excluding certain spectral regions. The
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remaining part of the spectrum after subsampling can now be coded more accurately. Further,
a motion adaptive system can be constructed by combining sub-Nyquist sampling and
transform coding. In practice, only subsampling systems with a uniform sampling lattice can
be combined with a transform coding system. The mean square error of a fixed lattice
subsampling system combined with transform coding is always larger than the error of a
system with only transform coding. However, in practice, this objective quality criterion is
not the reason for combining these systems. When a transform coding system is combined
with a sub-Nyquist sampling system, a theoretical analysis shows that the mean square error
is always smaller than the error of a standard frequency transform coding system.
Experiments show that the conditions under which this theoretical analysis is made are not
valid in practice

When comparing different subsampling systems, we can conclude that the systems with a
fixed sampling lattice are always outperformed by systems which use an adaptive
subsampling lattice. An exception to this observation is the system with motion compensated
interpolation, which also gives good results. The best results are obtained when a spatially
and temporally adaptive subsampling lattice is used, because in this case the knowledge about
the local image contents is used most effectively.
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CHAPTER 1

INTRODUCTION

Recent technological innovations have made it possible to provide a broad range of new
visual communication services to the consumer at home. Fast digital signal processing
hardware and high speed digital communication channels make it possible that these new
services will be implemented in the near future, and will cover almost every aspect of our
daily lives (e.g. business, communication, education, entertainment). For example, high
definition television (HDTV) provides video with a better image and sound quality and has
applications in entertainment and education, while the videophone will change the manner of
long-distance communication in business environments and private homes. Information can
be gathered more flexibly and effectively using multimedia or interactive television. The
future digital video recorder will enable the storage of high quality video. Common to these
new services is the need to transmit sounds, images and binary data. The important role of
data compression is in reducing the amount of information to be transmitted. If the
information is transmitted as efficiently as possible, the transmission time decreases. The
effective capacity of the storage devices also increases and hence more efficient use is made
of the available resources. Further, the costs of the services are reduced and more services can
be offered to each consumer.

Visual communication services require the transmission of image sequences. In an image
sequence compression system, there are two reasons why the information which has to be
transmitted can be reduced. The statistical redundancy in the image sequence is removed by
exploiting the spatial and the temporal correlation. The information can be reduced even
further by transmitting only the information which is relevant to the application. In the past,
many different image coding system were proposed. Most originate from speech coding
[JayaB4]. Simple systems are, for example, pulse code modulation (PCM) and differential
pulse code modulation (DPCM). Examples of more advanced systems are vector quantization
[Gers92], transform coding (e.g. [Jaya84] {Jain89] [Wood91]) and hybrid coding systems
(e.g. [Nino82] [MPEG92]). In this thesis subsampling is discussed as an image coding
technique.

The outline of this chapter is as follows. First the principles of subsampling are briefly
discussed for a one-dimensional signal. Next the discussion is extended to the subsampling of
image sequences. There are many different ways to carry out the subsampling of image
sequences, and therefore an overview and classification is given of the different methods. The
chapter is concluded with a discussion and explanation of the structure of this thesis.



1.1 Subsampling principle

As real-life scenes are continuous in both space and time, prior to subsampling, sampling is a
necessary operation. Since sampling has such a close relation with subsampling, we first
briefly review the sampling of a continuous signal, and follow with a discussion on the
principle of subsampling.

1.1.1 Sampling

In digital signal processing, a signal is processed as a discrete set of samples. In Figure 1.1,
sampling is illustrated for a one-dimensional time-continuous signal (). On the left side
u (1) is shown and on the right side the time-discrete signal u(f). We see that the samples are

obtained by evaluating the continuous signal at regularly spaced instances in time, with a
distance of T seconds between each sample. Thus u(z) is equal to

{u(;(r) t=k-T
u(t)=

0 otherwise ’ kez (-

For perceptual purposes, the discrete signal should be converted back to a continuous signal
when displayed. This is done by filling up the gaps between the samples with a time-
continuous low-pass filter. This process is called interpolation. The dashed line in Figure 1.1
indicates the continuous signal that is obtained after interpolation. It can be observed that the
fine details, corresponding with the high frequency components in the continuous signal, are
lost in the sampling process. This yields a distortion of the original signal.

u (1) u(t)

— Prefilter | Sampling —

——
>

| t

Figure 1.1: Sampling of a time-continuous signal.

The distortion is reduced if the sampling distance is decreased, because the continuous signal
can now be followed more accurately. However, decreasing the sampling distance means that
the number of samples increases. For an efficient representation of the signal, the number of
samples must be as small as possible. The maximum distance between the samples is
prescribed by the Nyquist theorem [Nyqu28|. This theorem state that, in order to avoid
distortion, a signal has to be sampled with a sampling distance less than or equal to the
reciprocal of twice the bandwidth W of that signal:
<

2w
This relation effectively limits the number of samples necessary to represent a given time-
continuous signal.

T (1.2)



The meaning of Equation (1.2) can also be reversed. Given a sampling distance T it
determines the maximally allowed bandwidth W of the input signal. This explains the
necessity of the low-pass filter preceding the actual sampling process. This prefilter should
guarantee that there are no frequency components violating the Nyquist theorem. Note that
therefore a prefilter is only necessary if there actually are frequency components above the
maximal bandwidth. In practice, perfect low-pass filters cannot be realized, and therefore
there are always frequency components that violate the Nyquist theorem. The prefilter has to
be designed in such a way that the influence of these components is negligible.

1.1.2 Subsampling

Subsampling means that some of the samples of a discrete signal are discarded. Therefore
fewer samples are used to represent the same signal, thus yielding a data reduction.
Effectively this means that the sampling distance is increased. We saw in the previous section
that, according to the Nyquist criterion, if the sampling distance is increased, the bandwidth
of the signal should be decreased. A decrease of the bandwidth affects the fine details of the
signal, corresponding with the high frequency contents of the signal. Hence a data reduction
is achieved at the expensc of some distortion.

u(t) »
refi Sub-
| | ’ H J JJ I — Prefilter — sampling — ‘ ‘ ‘
L1y
‘ t | | | ll’) -+ | .,
1 N I '_7 [
I | |
I N [
1
l : |
! 3
R * Algorithm | ,| Interpolation
i filt
Signal Design rer
structure l
+ 4
! |
! |
| | 0, (1)
ATty Compression
Quality factor

| t
Figure 1.2: Subsampling of a time-discrete signal with a factor two.

An example of a subsampling system is given in Figure 1.2. The input of the system is the
discrete signal u(¢) from Figure 1.1. The sampling distance is increased in the subsampling
stage from T to 27, yielding a data reduction factor of two. The subsampled signal ug(?) is

now given by

u(t) t=k-2T
Uy (1) = ke Z (1.3)

0 otherwise’



hence the odd samples of the signal are discarded. Because the sampling distance is doubled,
the bandwidth should be reduced to '2W. This is done by the prefilter prior to the
subsampling. The time-discrete interpolation filter at the decoder is used to fill in the missing
samples which were present in u(f) but which are not present in u(f), hereby forming the

interpolated time-discrete signal u,(t). Note that this is a discrete variant of the time-
continuous interpolation from the previous section. In Figure 1.2 the dashed line connecting
the samples of u;,(f) represents the continuous signal which can be associated with the

interpolated signal. Compared to the time-discrete signal shown in Figure 1.1, we see that
more details are lost, which corresponds to a larger distortion.

The design of a subsampling algorithm is controlled by three major design parameters which
are also indicated in Figure 1.2. The first parameter is the structure of the input signal. As an
illustration of this consider the two discrete signals u(f) and u5(r) shown on the left side of

Figure 1.3. We see that u,(¢) contains more details than (7). The two signals are fed into the
same simple subsampling system which discards half the samples of the input signal. On the
right side, the subsampled version u(f) and u,(#) of the input signals are shown. 1 (1) is

distorted more than u . (¢) because most of the detail information is lost. In the design

s51
process, the fact that the same subsampling scheme has a different impact on different input
signals has to be taken into consideration. So the subsampling should be adapted to the

structure of the input signal.
[l SIREEIE

—{ Subsampling —
u,(1) pne (1)

! : : —t
Figure 1.3: The subsumpling of two different signals u (1) and uy(t).

The two other design parameters are the desired quality and the compression factor. These
parameters are usually prescribed by the application. In the simple subsampling system
shown in Figure 1.2, they determine the necessary subsampling factor, and the bandwidth of
the prefilter and interpolation filter. In every compression application the quality and the
compression factor have to be traded off against each other. An increase in the compression
factor leads to a decrease in the quality. Different compression schemes can be compared by
comparing the increase in quality for a given decrease in compression factor. In Figure 1.4, a
simple and a more advanced subsampling scheme are compared with each other. The
distortion is used as a measurement of the quality. We see that the distortion of the simple
scheme is generally larger than the distortion of the advanced scheme for the same



compression factor. Also the relative decrease in the distortion (increase in quality) caused by
a decrease in the compression factor is larger for the simple scheme.

|
= \ _ Advanced
S \
= scheme
i \ Simple
[a) scheme

I / Compression factor
Figure 1.4: The relation between the distortion and the compression factor for two
subsampling schemes.

1.2 Subsampling of image sequences

1.2.1 Relation to subsampling of one-dimensional signals

Subsampling, applied to image sequences, reduces the number of pixels to represent a given
image sequence. It is obvious that a decrease in the number of pixels, reduces the required
transmission bandwidth. ITn Figure 1.5 it is shown how subsampling can be integrated into a
complete coding system. The role of the prefilter and the interpolation filter was discussed in
the previous section. After applying subsampling, a set of samples, now called pixels, has to
be transmitted. This set may be transmitted either analog or digital. Digital transmission can
be done using PCM-encoding. If after subsampling there is still some correlation between the
pixels, an additional coding scheme can be used. This is indicated by the dashed boxes before
and after the channel in Figure 1.5.

A/D (—: Prefilter —| Subsampling —> Coding -
Channel
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Figure 1.5: General coding scheme.



In the previous section we saw that the structure of the input signal is one of the algorithm
design parameters. An important property of an image sequence is the spatial correlation
between the pixels. If the spatial correlation is large, the bandwidth of the signal is narrow,
and consequently the spatial sampling frequency can be reduced. In the extreme case that an
image sequence consists of images with a constant intensity value, only one pixel per image is
necessary to completely describe the image sequence. Another property is the amount of
motion within the image sequence, as it determines the temporal correlation between the
pixels. The temporal correlation is maximal if the contents of the scene are not moving. In
that case, the temporal sampling frequency (image rate) can be reduced.

Besides the correlation, the variance of the image also plays an important role. It requires
more information to represent a signal with a high variance than a signal with a low variance
given the same amount of permissible distortion. In image sequences, generally, the variance
of the luminance component is higher than the variance of the chrominance components.
Therefore a distinction is made between the subsampling of the luminance component and the
chrominance components. More sophisticated algorithms should be used for the luminance
component than those necessary for the chrominance components.

The above discussion focused on the number of samples necessary to represent an image
sequence, but another aspect of subsampling is the position of the samples. The main
difference between image sequence compression applications and speech compression
applications is that in image sequence compression we have a three-dimensional spectrum
instead of a one-dimensional spectrum. In one dimension, the only degree of freedom in the
sampling process is the distance between the samples. If the dimension is higher than one, the
position of the samples also becomes important. The sampling lattice prescribes the specific
location of the samples. The shape of the sampling lattice can be adapted to the spectrum of
the image. Consider, for example, an image which contains more frequency components in
the horizontal direction than in the vertical direction. The samples can then be distributed in
such a way that there are more samples in the horizontal direction than in the vertical
direction, hereby increasing the horizontal bandwidth.

The quality and the compression factor are controlled by the application. Some factors which
are important in this case are the image dimensions, the bandwidth of the communication
channel and the end-user of the image sequence. For instance, in a HDTV application, the
quality is more important than in a videophone application. HDTV images also have larger
dimensions than videophone images. These differences have to be taken into consideration in
the algorithm design.

1.2.2 Qverview of subsampling methods

There are various possibilities for the design of a subsampling algorithm for image sequence
cading. To facilitate a structured discussion of the different approaches, the tree structure
shown in Figure 1.6 is used. First a distinction is made between systems with a fixed
subsampling lattice and those with an adaptive subsampling lattice. In a fixed lattice system,
the most important aspect with respect to reducing the total distortion. is the interpolation.



Therefore a further subdivision is made based on the different interpolation methods. In a
system with an adaptive subsampling lattice, the most important aspect is the basis on which
the sampling lattice is adapted, namely spatially adaptive versus motion adaptive. Each of
these methods can of course be combined with the more sophisticated interpolation methods
from the other branch of the tree.
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Figure 1.6: Overview of subsampling methods.

The simplest form of subsampling is fixed lattice subsampling with non-adaptive
interpolation. The image is subsampled on a fixed lattice and reconstructed with a linear
interpolation filter without taking the local structure into account. The theory on multi-
dimensional sampling as described by Mersereau and Speake [Mers83] and by Dubois
[Dubo8&5] applies to this situation. In [Mers83] the conversion from one sampling lattice to
another lattice is discussed. In [Dubo85] the author elaborates more on this subject and
several examples of subsampling lattices are given. In [Tong81] and [Reut85] more examples
of fixed subsampling lattices are given. These are all applied to the luminance component of
the image sequence. Girod and Geuen show in [Giro89] that fixed subsampling can also be
applied to the chrominance components of the image sequence. Details about the necessary
linear prefilters and interpolation filters can be found in [Pirs83], [Tong81] and [Sioh91].

A first improvement to the fixed lattice subsampling can be made by adapting the
interpolation to the motion in the image sequence. Now motion compensated linear
interpolation filters are used instead of fixed lincar interpolation filters. In [Reut89] and
[Erns91] this technique is used to interpolate missing frames in an image sequence and in
|Giro85] motion compensation is used to convert an interlace scan image sequence into a
progressive scan sequence. In [Hagh88] motion compensated interpolation is proposed as a
branch in the HD-MAC encoding scheme to interpolate fields skipped at the encoder. In
[Golz90] motion compensated interpolation was used to interpolate temporally subsampled
high frequency components of an image sequence.



An alternative to linear interpolation is nonlinear interpolation. In [Hent89] a median filter is
used to convert an interlace scan image sequence to a progressive scan image sequence. The
advantage of nonlinear filters is the better preservation of high frequency details. Another
advantage is the relatively simple implementation compared to linear filters with the same
quality of the interpolation result. Median filtering does not work properly for all situations.
Therefore FMH (FIR-median hybrid) filters introduced by Heinonen [Hein87] can be used
instead. In [Leht90] and [Huuh92] these filters are used to interpolate an image subsampled
with a fixed quincunx lattice. The choice between a median filter and an FIR filter is based on
the local contents of the image. Therefore these filters fall into the class of adaptive
interpolation techniques. In [Wang90] and [Haav92] motion compensated interpolation is
combined with nonlinear filtering for de-interlacing.

The second major class of subsampling schemes are methods based on an adaptive
subsampling lattice instead of a fixed lattice. The first possibility is to adapt the subsampling
lattice to the local spatial frequency content. Tanimoto et al. [Tani88] describe a method
where two different lattices are used: a dense sampling lattice is used for detailed regions and
a sparse sampling lattice for regions containing little detail. In [Kish88], [Ashi88] and
{Saku90] systems with three different sampling lattices are described. The number of
different sampling lattices determines the efficiency of the algorithm. Increasing the number
of sampling lattices improves the adaptation to the local statistics. In [Hesp93] and [Belf93b]
a scheme is presented with an arbitrary number of sampling lattices. This system is extended
in |Belt94] by including temporal adaptivity.

An adaptive sampling lattice is also used in motion adaptive subsampling schemes. An
subsampling technique that is based on this approach is sub-Nyquist sampling [Tong87]
[Scha87]. For stationary and non-stationary parts of the image sequence, a different
subsampling lattice and interpolation filter is used. Sub-Nyquist sampling is used as an image
compression method for the standardized HDTV transmission systems MUSE [Nino87], and
HD-MAC [Vree89] [Hagh90], which are completely based on this technique. Recent
proposals use this technique in combination with transform coding [Scha90] [Vos92]. In
[Belf92a] motion compensated sub-Nyquist sampling is used instead of sub-Nyquist
sampling. By using this technique, the application range of sub-Nyquist sampling is no longer
limited to stationary parts of the image sequence. Sub-Nyquist sampling is now applicable to
all parts of the image for which the motion can be estimated accurately.

1.3 Thesis overview

The organization of this thesis globally follows the tree structure shown in Figure 1.6.
Chapter 2 concentrates on fixed lattice subsampling systems with linear non-adaptive
interpolation filters. This system is used to discuss the basics of subsampling. We look at the
different parts of the subsampling system, such as the sampling lattice. the prefilter and the
interpolation filter. Furthermore we analyze the different types of errors in a subsampling
system from a rate-distortion theory point of view. Also some properties of the human visual



system that are used in a subsampling system are pointed out. The chapter is concluded by
discussing some applications of fixed lattice subsampling.

The interpolation process is, as has already been pointed out, the only aspect in a fixed lattice
subsampling scheme open for improvement. Therefore, in Chapter 3, some alternatives for
the linear non-adaptive interpolation are discussed. The first alternative is motion
compensated interpolation where the interpolation is driven by an estimate of the motion
vector. First, motion compensated interpolation is discussed from a theoretical viewpoint,
where we look at the relation between the accuracy of the estimated motion vector and the
quality of the interpolation result. Then the practical aspects are covered, which include the
structure of the interpolation filer, the estimation of the motion and the handling of inaccurate
motion vectors. A second alternative for linear interpolation filters are nonlinear interpolation
filters based on median filters. Here we focus on the choice of the filter structure and the
image structures that can properly be interpolated by each filter structure.

The restriction of a fixed subsampling lattice prevents the effective use of all the image
characteristics. Therefore, in Chapters 4 and 5, adaptive sampling lattices are used instead. In
Chapter 4, the sampling lattice is adapted to the local image structure. This process is driven
by both the amount of local activity and the shape of the local spatio-temporal spectrum.
Rate-distortion theory is used to show the relative performance of this system compared to
fixed lattice subsampling. Practical aspects which we address are how the sampling lattice
can be adapted and how to perform the interpolation on a non-uniform sampling lattice.

In Chapter 5, sub-Nyquist sampling and motion compensated sub-Nyquist sampling is
discussed. In these schemes the locally selected sampling lattice and interpolation method are
directly coupled to the motion in the image sequence. In a sub-Nyquist sampling system. the
sampling lattice is influenced by motion detection. The MUSE system and the HD-MAC
system serve as an illustration of sub-Nyquist sampling. In a motion compensated sub-
Nyquist sampling system, the sampling lattice is based on local motion information. The
required accuracy of the motion estimate is an important topic in this chapter.

Chapter 6 considers the problem of combining transform coding with either fixed lattice
subsampling or sub-Nyquist sampling. For the transform coding stage, subband coding or
discrete cosine transform coding is used. The fundamental difference between subsampling
and transform coding is discussed and an investigation is made whether transform coding can
benefit from being combined with subsampling.

Finally, in Chapter 7, the different subsampling systems are compared with each other. This is
done by combining the experiment results obtained in the preceding chapters. Both objective
and subjective quality measurements are taken into consideration.
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Chapter 2

FIXED LATTICE SUBSAMPLING

Fixed lattice subsampling is the least complicated method of subsampling. Certain pixels are
simply discarded at the encoder and interpolated at the decoder without any regard for the
actual image contents. Fixed lattice subsampling does not take local image statistics into
account but relies on the three-dimensional frequency response of the human visual system.
The advantage of fixed lattice subsampling is the straightforward implementation. The topics
addressed in this chapter are not exclusively of importance for fixed lattice subsampling; they
are also the foundation for the description of more sophisticated subsampling schemes in the
following chapters.

The chapter starts with a concise description of the basics of multi-dimensional sampling
[Dubo83]. Some examples of sampling lattices are also given [Tong81] [Reut85]. Next the
different stages of a fixed lattice subsampling system are discussed in more detail. Special
attention is given to the structure of the different filters used. To classify the different types of
distortion introduced in the subsampling process, subsampling is described from a rate-
distortion point of view [Berg71| |Belf94]. Next, several characteristics of the human visual
system which are used in a subsampling system are reviewed [Kell79] [Nino87] [Giro88].

Toward the end of this chapter some applications and experiment results are discussed. A
distinction is made between the application of fixed lattice subsampling on either the
luminance or the chrominance components of the image.

2.1 Multi-dimensional sampling

Sampling is a basic operation in image processing and image communication systems. Figure
2.1. shows the sampling of an image sequence. First the continuous three-dimensional time-
varying scene is projected onto a plane, thus forming a continuous two-dimensional time-
varying version of the scene. For the purpose of digital processing and transmission, this
three-dimensional intensity function is sampled and becomes discrete in both space and time.
In this section first multi-dimensional sampling [Gaar72] [Dubo85] is discussed. Subsequent
discussions of subsampling and interpolation can be based on this general theory.
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Figure 2.1: The sampling of an image sequence.
2.1.1 Sampling lattices

Sampling an image sequence means that the value of the analog intensity function is

evaluated on a discrete set of points in R?; the lattice. First a method is given to formally
describe the lattice.

Consider the non-singular matrix S with dimensions DxD. A lattice L can be defined as the
set of all linear combinations with integer coefficients n; of the column vectors s; of the

matrix S:

L:{Hlsl +mSy+. AupSy |7 € Z ,i= l,D} 2.1)

Thus a lattice consists of a set of discrete points z in R b given by
z=Sn, ne”Z (2.2)

Note that the matrix S is not unique in describing the lattice L. If the matrix S is multiplied by
an arbitrary matrix E with \det(E) | =1, then the matrix E-S describes the same lattice. In the
one-dimensional case S degenerates to a scalar which represents the sampling distance. An
example of a two-dimensional lattice is given in Figure 2.2(a). A matrix corresponding with

this lattice is
2 1)
S= (2.3)

The matrix S is often chosen such that is has an upper diagonal structure. This choice is
possible for any given lattice. In digital image sequence processing, lattices are used to define
the sampling points of the analog three-dimensional image intensity function i.(x.f)
(x = (xy):

) i(,(x,t) (x,n)e L 54

i(x,1)= . .

(x.1) 0 otherwise 24)
where i(x,f) is the discrete intensity function describing the sampled image sequence. The
sampling density d(L) of a lattice is defined as

d(L) (2.5)

~ det(s))



The sampling density is unique for a particular lattice and thus independent of the specific
basis vectors. It gives a measure for the spacing of the samples in the D-dimensional space.
Increasing the value of the coefficients s;; of the matrix S causes the samples to be more
widely spaced. This is also reflected in the sampling density because the determinant of the
matrix also increases. Hence decreasing the sampling density implies a decrease in the
number of samples used to represent an image sequence.
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Figure 2.2: (a) Example of a two-dimensional lattice with basis vectors s; and s3. (b) The

cosets of the lattice. Sumples with the same color belong to the same coser

Let L, and L, be lattices in R D L, is a sublattice of L, if every element of L is an element of
L,. The set

{c+zlze Ly}, ce L, (2.6)
is called a coser of L, in L,,. In other words, a coset is a shifted version of a sublattice L;. Two

cosets are either identical or disjoint. The number of distinct cosets is always an integer and is
given by the ratio of the sampling densities of L; and L,,. Figure 2.2(b) illustrates the concept

of cosets. In this case L, is the lattice defined by the identity matrix, and L is the lattice
shown in Figure 2.2(a). In Figure 2.2(b) L is indicated by the light samples, which is
according to the definition also a coset of itself. The other coset is, for instance, obtained by
shifting L over the vector (1,0)7, corresponding with the dark samples in Figure 2.2(b). Note

that the union of all cosets completely covers L.

The D-dimensional Fourier transform /(f) of a signal i(z) defined on a lattice L is given by
[Dubo85] [Mers83]:

Ify= Yi(mexp(2mit’zy feRP (2.7)
ze L

where f is the D-dimensional frequency vector. Substituting z =S-n (n € ZP) for the lattice
point gives:
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If)= D.i(Sn)exp(—2mjf 'Sn) (2.8)
ne ZP
From the theory of sampling it is known that the Fourier transform of a sampled function has
an infinite number of replicas in the spectral domain. The center points of the spectral replicas
are located in the Fourier space on the points where the argument of the exponential function
in Equation (2.8) is an integer multiple of 2mj. From Equation (2.8) we conclude that these
points f are located on a lattice defined by the matrix R, which satisfies

R'S=T=R=")"! (2.9)

This lattice is called the reciprocal lattice LR of L. The reciprocal lattice of the example in
Figure 2.2(a) is defined by the matrix
o 0)

R= Y (2.10)
and is shown in Figure 2.3. A result of Equation (2.9) is that the sampling density of LR is the
reciprocal of the sampling density of L. Decreasing the spatial sampling density results in a
more densely packed spectrum.

)
@

r O

Figure 2.3: Reciprocal lattice with basis vectors v and r.

The above theory is not sufficient to mathematically describe all sampling lattices; a lattice
consisting of a combination of two lattice cosets cannot always be described. For more details
the reader is referred to the tutorial paper by Dubois [Dubo85].

2.1.2 Examples of sampling lattices

In this section some illustrative examples are given of three-dimensional sampling lattices
[Tong81][Dubo85][Reut85]. In Figure 2.4(a) an orthogonal lattice is shown. The basis
vectors form an orthogonal basis, so this lattice can be represented by the identity matrix. The
sampling density of this lattice is equal to 1. If this sampling structure is used to represent an
image sequence, the sequence is called progressively scanned. An image at each instance of
the time is called a frame. The spectral replicas are located on an orthogonal lattice in the
frequency domain.
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(c)

210
S=1021
00

(d)
Figure 2.4: Examples of subsampling lattices: from left to right the sampling structure, the
lattice matrix and the positions of the replicas in the frequency domain are shown for a:
(a) orthogonal, (b) interlace, (c) field quincunx and (d) line quincunx lattice.
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Figure 2.5: Quincunx sampling pattern and reciprocal lattice.

The scanning procedure which is commonly used in television is the interlace scan. The
corresponding lattice is depicted in Figure 2.4(b). Half the number of rows of the frame are
discarded, hereby reducing the vertical resolution. Effectively, this means that extra spectral
replicas are introduced between the existing spectral replicas in the vertical direction. The
pattern in which the rows are discarded is shifted from frame to frame. Therefore the extra
replicas have an offset in the f-direction. After subsampling, the individual images are called
fields instead of frames. The sampling density of this lattice is equal to Y. In practice,
interlace sampling is used to increase the temporal resolution. While maintaining the same
total number of samples as orthogonal sampling, the field rate is doubled with respect to the
frame rate in the case of orthogonal sampling, hereby doubling the temporal resolution. As a

result the last column vector of the lattice matrix S is changed to 0,137, yielding a
sampling density of 1 again.

Starting from an interlace input image sequence, two other subsampling structures are
possible to further reduce the sampling density to Y. These lattices are both of the class of
quincunx sampling lattices, which can be described in two dimensions by the matrix

20, 0,
s:(0 Q,vj 2.11)

The generic structure of a quincunx lattice is illustrated in Figure 2.5; also the corresponding
reciprocal lattice is shown. The transmitted pixels are located like the number five on a dice.
Another quincunx lattice has already been given in Figure 2.2(a).

The field quincunx sampling structure is shown in Figure 2.4(c). Half the pixels of a line are
alternately discarded. The pattern in which the pixels are discarded is shifted from field to
field. The consequence is that the resolution in the vertical and horizontal direction is the
same but the resolution in the diagonal direction is reduced. The quincunx structure can be
recognized by combining the two fields in the temporal direction. The /ine guincunx sampling
structure is illustrated in Figure 2.4(d). Again half the pixels of a line are discarded but now



the pattern is shifted from line to line within each field. The vertical and horizontal resolution
is again the same at the expense of the diagonal resolution. The difference between the field
quincunx lattice and the line quincunx lattice is that their temporal resolution is different.

2.2 Fixed lattice subsampling

By fixed lattice subsampling we mean the conversion from an image sequence represented on
an initial lattice L to a sequence represented on a new lattice Ly, where d(Ly) < d(L). The

data reduction factor is equal to d(L)/d(L,,). A simple subsampling scheme is shown in Figure

2.6. The original image sequence is first prefiltered and next subsampled prior to
transmission. The prefilter is enclosed by a dashed box because this filter is not always
necessary. The remaining pixels after subsampling are either transmitted or fed into another
coding scheme for a further data compression. This depends on whether the subsampling
scheme can be seen as a complete coding scheme or as a part of a larger scheme. At the
decoder the bandlimited image sequence is represented on the original lattice L by using a
linear spatial interpolation filter. The various operations are now discussed in more detail.

L

$

-
e

Original Prefilter Subsampling Interpolation

Figure 2.6: Basic subsampling scheme. The figures in the boxes illustrate the operations in
the spectral domain

2.2.1 Prefiltering

The purpose of the prefilter is to confine the image spectrum to a region in the three-
dimensional space. This region is the so-called unity cell. A unity cell U; of a lattice L is a
region in R D which satisfies the following two criteria:

« The copies of U centered at each lattice point completely cover R D,

U, +x)=R? (2.12a)

xe L

« The copies of U, centered at each lattice point do not overlap each other:
(U, +x U, +y)=92, xye Lxzy (2.12b)

In other words, R is partitioned into unity cells. In the literature a unity cell is also called a
Voronoi region or a Brillouin zone [Dubo85]. A unity cell is not unique. In Figure 2.7 two
different examples of unity cells are given for the reciprocal lattice shown in Figure 2.3.

The concept of the unity cell is relevant to both the sampling and subsampling of image
sequences. To avoid conflicts between the different spectral replicas after the sampling of an



analog image sequence, the spectrum of an image sequence should be confined to a unity cell

of the reciprocal lattice LR This prevents the different spectral replicas from overlapping each
other. The error caused by overlapping spectral replicas is called aliasing.
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Figure 2.7: Two examples of unitv cells for the reciprocal lattice shown in Figure 2.3. The
unity cells are marked by the dashed lines.

To prevent aliasing in the case of subsampling, the spectrum should be contined to a unity
cell of the new reciprocal lattice L”R. Essentially, the concept of the unity cell extends the

Nyquist sampling theorem (|Nyqu28] [Jerr77]) to multiple dimensions. If the spectrum of the
original image sequence is not already confined to a unity cell, a prefilter should be used. If
the original spectrum already has the shape of the unity cell, prefiltering is not necessary. The
shape of the unity cell determines the resolution of the subsampled image sequence in the
various directions. In Figure 2.7(a) the diagonal resolution is reduced in favor of the
horizontal and vertical resolution. In Figure 2.7(b) the horizontal frequency components are
over-emphasized compared to the vertical frequency components.

(b) ()
Figure 2.8: (a) Zone plate. (b,c) Quincunx subsampled and interpolated zone plates: (b) with
prefiltering and (b) without prefiltering.

In Figure 2.8 a zone plate is used to show the consequences of not using a prefilter. The zone

plate is used because as we can see in Figure 2.8(a) it contains a broad range of spatial

frequencies. The spatial domain now gives a good indication ot the consequences of
& o
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subsampling in the frequency domain. The quincunx subsampling lattice depicted in Figure
2.2(a) is used. In Figure 2.8(b) a diamond-shaped prefilter as defined by the unity cell shown
in Figure 2.7(a) is applied prior to subsampling. We see that the diagonal spatial frequency
components are attenuated by the prefilter. In Figure 2.8(c) no prefiltering is used, causing
clearly visible aliasing in the diagonal spatial frequency components. We see that the errors
caused by aliasing are far more severe than the artenuation of the frequency components
caused by the prefilter.

2.2.2 Subsampling

If the new sampling lattice is a sublattice of the original lattice, then the actual subsampling
can be implemented by simply discarding pixels not present in the new lattice. If this is not
the case, an intermediate sampling structure L; must be used, which has the following relation
with both the original and the new lattice:
LcLinL,cly (2.13)

with

d(L)2d(L)=2d(Lg,) (2.14)
The lattice L is first converted to the lattice ;. From this intermediate lattice the subsampling
lattice L, can be deduced [Reut86].

2.2.3 Interpolation

At the receiver the original image sequence has to be reconstructed at the original sampling
lattice, which corresponds to removing the extra replicas introduced by the subsampling
process. This is done with an interpolation filter. The most important design criterion of the
interpolation filter is that it should not cancel the frequency components within the unity cell.
Otherwise the interpolation causes an additional loss of resolution. Therefore, for the unity
cell in Figure 2.7(a) a diamond-shaped filter should also be used for the interpolation.

2.2.4 Filter requirements

In fixed lattice subsampling normally two filtering operations are necessary. The prefilter is
designed to suppress parts of the spectrum that would otherwise cause aliasing. The
interpolation filter has to be designed in such a way that the extra replicas introduced by the
subsampling process are canceled. Thesc considerations result in a specific shape for each of
the filters. In this design process some frequency components need extra attention. These are
the critical frequencies |Pirs83] [Sioh91], which are the center positions of the replicas
included in L_\._\.R and not in L? (LSSR N LR). These critical frequencies are replicas of the DC-
component of the baseband spectrum. In Figure 2.9(a) the critical frequencies are shown for a
quincunx lattice with Q, = I and Q,, = 2 which is interpolated to an orthogonal lattice.

In video applications, it is important that the DC gain of the overall system is equal to one,

otherwise annoying oscillation artifacts are introduced in areas with a constant luminance
[Pirs83|. The human visual system is especially sensitive to errors in this part of the
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spectrum. To obtain a unity gain, the filter should have a zero frequency response for the
critical frequencies. This should be the case for both the prefilter and the interpolation filter.
This design requirement can be translated to the spatial domain by demanding that the sum of
all the polyphase components [Croc75] should be equal. A filter design procedure that takes
this constraint into consideration is given in [Sioh91]. In Table 2.1 a filter is shown for the
interpolation of the quincunx lattice from Figure 2.9(a) to an orthogonal lattice. The
modulation transfer function of the filter is shown in Figure 2.9(b). The filter gain is zero for
(ffy) equal to (0,%2) and (¥2,%4). These points correspond with the critical frequencies.

J.

0.5 1.0 0.0

0.25 0.50
(a) (b)

Figure 2.9: (a) Position of replica. The open dots are the critical frequencies and the

dashed box indicates the baseband spectrum, (b) Modulation transfer function of the

interpolation filter (the dashed circles indicate the zeroes of the filter).

Table 2.1: Filter coefficients (multiplied by 64) of a two-dimensional interpolation filter
(taken from [Sioh91]).

RNy 0 b R

0 52 25 0
+1 41 19 -2
+2 19 s -4
13 3 3 4
14 -2 -2 -1

In an image sequence the unity cell is a three-dimensional region. This would imply that the
prefiltering and interpolation is done in three dimensions. However filtering in the temporal
direction is avoided in practical situations. Temporal filtering is also not always necessary
because of the high degree of tolerance of the human visual system to aliasing in the temporal
direction [Giro88]. This reduces the filtering process to a spatial operation which only
involves single images. A further simplification can be made by using two one-dimensional
filters operating in different directions instead of a non-separable two-dimensional filter. In
[Giro89] it is shown that if separable one-dimensional filters are used for the conversions



between an orthogonal lattice and a quincunx lattice then an intermediate sampling lattice is
necessary.

One particular class of one-dimensional filters which is interesting in a subsampling
application is the class of maximally-flat filters [Tong81] [Guma78]. One of the properties of
these filters is that for a filter 2(k) with 2N+1 filter taps:

MOY=Y2Ah(k)=0, k=244, N (2.15)

In the frequency domain this requirement can be interpreted as skew symmetry around the
cut-off frequency. If this filter is used on an alternating input source of zeroes and original
pixel values, the original pixel values are not changed by the filtering process. This property
is especially useful if the filter is used for interpolation.

2.3 Subsampling and rate-distortion theory

As subsampling is a data reduction method, its properties can be described by rate-distortion
theory. Although rate-distortion theory has a limited use in practice, it can give some insight
into the potentials of subsampling. The rate-distortion function R(D) [Berg71] provides a
lower bound for the bit rate R necessary to transmit a source with an average distortion D. We
derive the rate-distortion function for subsampling as a data reduction method to show the
conditions under which subsampling is appropriate and to study the source of the difterent
errors. The discussion in this section is done for the one-dimensional case.

S(w)

- 0 b1

Figure 2.10: Power density function.

We assume a PCM encoded spatially-discrete signal with a power spectral density function
S(w). An example of such a function is shown in Figure 2.10. According to Parseval’s

theorem the variance 67 of this source is
+
o2 =1 fS(w)d(n (2.16)
2n -
-
In a fixed lattice subsampling scheme, the spectrum of the input source is low-pass filtered

and the signal is then subsampled according to the Nyquist theorem. If the bit rate required to
transmit the original source using PCM coding is B,,, then the new rate B after subsampling is



s i
= B (bits/ pixel) (2.17)
where W is the radial bandwidth after prefiltering. Rewriting this relation gives

B .
W, = B Io (2.18)
0

We now define B/B,, as the relative bit rate R, so we can rewrite the previous equation to
W, =R-m (2.19)

Hence the relative bit rate is reduced proportionally to the bandwidth reduction.

S(w)

0

[] Inband distortion caused by filter

[ Loss of resolution

Figure 2.11: Power density function after subsampling. The shaded areas are the
components which contribute to the distortion.

We model the overall response of the system with the low-pass filter H(w) with a cut-off fre-
quency at W . This response includes both the prefilter and the interpolation filter. The

resulting mean square error distortion after interpolation is given by

W,
J’(lm!H(m)\)zS(m)dw+% T(l—|H(w))ZS(m)dm+TII T\H(m)\%(m)dm (2.20)
0 W, W,

1 2 3
where we have taken into account the symmetry of S(w) and H(®w) around the origin. The
three areas which contribute to the distortion are the shaded regions in Figure 2.11. The first
two parts of the equation represent the distortion introduced by the low-pass filter and the
third part is the aliasing error caused by an imperfect low-pass filter. The distortion can be
classified in the following way (the numbers correspond with the relevant part of Equation
(2.20)):
1. The interval from 0 to W, contributes to the inband distortion (|Berg71]). This is the

|
D=—
T

distortion of the part of the spectrum which is coded.
2.The interval from W to m contributes to the outband distortion which is the distortion

introduced by the part of the spectrum which is not coded.
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3. The aliasing error folds into the part of the spectrum which is coded and therefore
contributes to the inband distortion.

If an ideal low-pass filter is used with transfer function

L lol<w,
H(w)= - (2.21)
0, W,<lol<n
then the inband distortion is equal to zero and Equation (2.20) reduces to
1
=7 TS(m)dm (2.22)

W

58

leaving only the outband distortion. Substituting Equation (2.19) in (2.22) and using Equation
(2.16) gives the rate-distortion function D(R):

1 T
D(R)=¢" - JKS(w)dw (2.23)
0

An illustration of rate-distortion functions is given in Figure 2.12. The curves shown are
derived from an AR(1) process with a correlation coefficient p, driven by white noise with
unity variance. Hence the power spectral density function is equal to

S(o) = —l—~ (2.24)

We see that with increasing correlation between the samples the source can be coded more
easily.

S(avm ) D(R)
10

0 | .' S o
w/n R
Correlation: 08 =05 ----00
Figure 2.12: Examples of rate-distortion functions for AR(1) processes with different

correlation coefficients p. Left the power density functions are shown and right the
corresponding rate-distortion functions.

Let us consider the properties of the rate-distortion function. The first derivative of D(R) is
given by:
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The first derivative of the rate-distortion function is a/ways monotonically decreasing because
S(w) is always greater or equal to zero. Thus (2.25) is the trivial result that for each coding
scheme the distortion increases if the rate decreases. Another property of rate-distortion
curves is convexity. This is a required property because it implies that the parts of the
spectrum with the least relevance to the entire signal are discarded first. A function is convex
if the second derivative is monotonically decreasing. From Equation (2.25) we obtain:

oD =-nS’'(nR) (2.26)

where S'(.) is the first derivative of S(.). We see that if the power spectral density function
S(w) is monotonically decreasing with increasing o (i.e., S'(®w) < 0) then the rate-distortion
function is convex. Thus in subsampling schemes, convexity of the rate-distortion curve is
directly coupled to the decreasing character of S(w). If the power spectrum density is non-
decreasing the rate-distortion may become non-convex and subsampling is no longer optimal.

The above discussion can be extended to two dimensions. After filtering and subsampling

S((L)X,(D},), does not extend over a specific bandwidth but covers the unity cell prescribed by
the subsampling lattice. Equations (2.17) and (2.23) now become:

Area(U *)

B e

2 (2.27a)
(2r )=

(&

1
D=c" ”S(wx ®,)de do, (2.27b)

h 2
(2m) (0,0, )e ULR

Without any specific knowledge about the two-dimensional subsampling lattice it is not
possible to obtain a close form relation for the rate-distortion function.

2.4 Resolution of the human visual system

Fixed lattice subsampling will always result in a reconstructed image sequence with a lower
resolution than the original image sequence, unless the spectrum of the original image
sequence lies within a unity of the subsampling lattice. Therefore a fixed lattice subsampling
scheme has to take advantage of the spatio-temporal resolution of the human visual system
(HVS) in order to avoid a visible loss of resolution. Hence any perceptual irrelevancy should
be removed.

In Figure 2.13(a) the two-dimensional frequency threshold sensitivity of the HVS is shown.
We see that the sensitivity is lower for diagonal frequency components than for horizontal
and vertical frequency components. Even if the HVS was isotropic, on an orthogonal lattice
the resolution in the diagonal direction is V2 times larger than the resolution in the horizontal
and vertical direction. Therefore a quincunx pattern is better suited than an orthogonal lattice.
The spatial frequency support of an image with dimensions 1440x1125 sampled with a
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quincunx lattice (Q, =2, Q, = 1) viewed at a distance of three times the picture height is also

shown as the dashed line in Figure 2.13(a). We see that the resolution is still well within the
passband of the HVS. Also if a visible loss of degradation is permitted, quincunx
subsampling is the best possible choice because it represents the best compromise between
the resolution and the passband of the HVS.

In Figure 2.13(b) the threshold sensitivity of the HVS is shown for different velocities. The
relative sensitivity decreases with increasing velocity [Kell79] [Nino87]. This would imply
that for image sequences containing moving objects, the temporal resolution can be reduced.
However the characteristics in Figure 2.13(b) were measured for eyes which were fixed on
one specific position. If a scene contains moving objects, the human eye can track these
objects at high speed and will perceive them to be stationary [Giro88]. Thus the human eye
has the capability of compensating for the motion, and will still notice a loss of resolution.

Vertical Spatial
Frequency (c/deg)

L Relative Sensivity (dB)
S 01
200 N
N 0
’ .10t
2.2%sec
207
12.2%/sec
-30 19.6°/sec
0 10 20 0.09 0.3 0.9 3

Horizontal Spatial
Frequency (c/deg)
(a) (b)
Figure 2.13: (a) Spatial frequency threshold sensitivity of the human visual system. (b)
Threshold sensitivity of the human visual system for moving objects (both taken from
[Nino87]).

Spatial Frequency (c/deg)

2.5 Applications

In this section some applications are discussed that use fixed lattice subsampling. Interlacing
has already been discussed as a way to increase the temporal resolution at the expense of the
spatial resolution. Interpolation is not always necessary because the display devices can be
designed to be used with interlaced lattices. However, displaying an image sequence on an
interlaced display device gives annoying artifacts such as line crawl and line flicker (e.g.
[Hent89]). To avoid these artifacts, an interlaced sequence can be interpolated back to an
orthogonal lattice. This operation is referred to as de-interlacing [Giro85][Wang90].
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In Section 2.4 it was observed that a part of the diagonal resolution can be sacrificed without
introducing any visible degradation. This property can be used as a pre-processing operation
prior to the actual coding. For instance. in the MUSE system [Nino87] the highest transmitted
resolution of the luminance information is a quincunx lattice with O, =2 and Q, = I. In the

HD-MAC system [Vree89] the highest resolution of the luminance information is a quincunx
lattice with O, = and Q, = 1.

Another application of fixed lattice subsampling is the subsampling of the color information
of an image sequence. The representation of the image sequence in the YUV space
concentrates most of the energy in the Y-component of the image sequence. Therefore the U
and V components have a low variance and can be subsampled with a fixed lattice without
this leading to severe degradation. One factor which also works to the advantage of this
scheme is the low sensitivity of the HVS to degradation in the color information.

There are different sampling lattices which are used to subsample the color information. The
CCIR recommendation 601 [CCIR82] prescribes a horizontal decimation of both the color
components. This standard is referred to as the 4:2:2 standard. The MPEG standard
[MPEG92] {LeGa92] goes even further and proposes both a honizontal and vertical
decimation of the color information prior to coding. This is the so-called 4:2:0 standard. In
the MUSE system the color information is subsampled with a quincunx sampling lattice with
Q=3 and Q, =2 for each field, yielding an overall reduction of 2. In the HD-MAC system

two different sampling lattices are used for the color information. One of those lattices is a
quincunx lattice with O, =2 and Q, = 4 used for each field with an overall reduction of 16.

2.6 Experiment results

The purpose of the experiments is to illustrate different aspects of coding schemes to gain
some insight into their peculiarities and performance. Therefore throughout the thesis a
consistent set of experiments is reported. The same test sequences are used in many different
subsampling schemes. Thus the results presented in each chapter can be compared with each
other.

In this section the experiment results using fixed lattice subsampling are described. First,
some aspects of the experiments in general are discussed, namely the test sequences and the
way in which the subsampling methods are here evaluated. Next, experiments are done on
both the luminance and the chrominance components. These components are treated
separately because we show that the application of fixed lattice subsampling is useful for the
chrominance components, but has limited possibilities for the luminance component.

2.6.1 Description of the test images
For experiments that do not involve motion, the commonly used LENA image is used. This

image is chosen because of its status as a non-official standard image, which facilitates
comparison with other coding methods.



(a)

(b)
Figure 2.14: (a) First frame of MOBILE sequence. (b) Detail of the first frame of the
MOBILE sequence. The position of the detail is indicated in (a).
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In Figure 2.14(a) the first image of the MOBILE sequence is shown. The sequence is sampled

according to the CCIR 601 standard (720 pixels x 576 lines, 4:2:2 color sampling). This

sequence is used in experiments which require either single images or image sequences. The
sequence is chosen because of the following features:

* The sequence is progressively scanned. The advantage of this lattice is that different
subsampling lattices can easily be derived from this lattice.

e The sequence contains a considerable amount of high spatial frequencies. In most coding
schemes the high frequency content is affected. To better illustrate the different coding
artifacts a detail of the image is used as indicated by the rectangle in Figure 2.14(a). The
dimensions of this detail is 96x96 pixels and is shown in Figure 2.14(b). The detail
encompasses the entire spatial frequency range with emphasis on the high spatial frequency
components.

« A substantial part of the image is moving translationaly because of a camera pan. This is
useful if we consider schemes which use motion information. A completely stationary scene
or a scene containing only complex motion would not show the advantages of motion
adaptive schemes.

« To balance this advantage there are also objects moving in a non-translational manner (the
ball), areas which are occluded because of the motion (areas around the train) and objects
moving in a translational manner with a non-integer speed (the calendar).

« There is some noise in the sequence (approx. 28 dB).

« The image contains a broad range of different colors.

2.6.2 Evaluation of subsampling schemes

The reduction factor is chosen in such a way that coding artifacts are just visible. If an image
is coded with a high reduction factor, the relation with the original image is small and a
comparison with the original is harder.

In order to evaluate subsampling schemes, different approaches are chosen. An objective
measurement can be obtained by using the mean square error (MSE) defined as

MSE = #p Z( i (X, — (X, 1)) (2.28)

where i(x,f) is the original image intensity at the location (x.7) and i;,(x,t) the reconstructed

image intensity. To normalize the MSE, the signal to noise ratio (SNR) given by
’7

SNR = 10- mlog(m) (2.29)

can be used, where 6 is the variance of the original image.

It is, however, generally known that the SNR and MSE do not properly reflect the actual

image quality as it is perceived. Some of the aspects which are neglected by these objective

measures are:

« That the loss of fine detail and high spatial frequency components does not result in a high
error value because the energy contribution of these signal components is relatively low.
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o If the noise present in the original image is not properly reconstructed, the noise variance
will also contribute to the MSE. This is an undesirable effect because the noise should not
be considered as an essential part of the scene.

Thus besides the MSE or SNR we need some kind of other mechanism to evaluate the

different coding schemes. The approach taken in this thesis is to visualize the stretched

difference between the coded image and the original image. The advantages of this are:

« The stretching amplifies the artifacts and makes subtle errors more noticeable.

» The noise can be identified because for noise there is no correlation between the error value
and the image contents.

The stretching factor used throughout the thesis is equal to 4. For display purposes, an offset

of 128 is added to the difference.

2.6.3 Luminance subsampling

In this section only spatial sampling lattices are considered. As we will see in the remainder
of the thesis, three-dimensional sampling lattices require a more complex interpolation. Three
different subsampling schemes were used, all with a data reduction of two. These are
horizontal subsampling, vertical subsampling and quincunx subsampling. For the prefiltering
a 21-taps filter was used [Giro89] (Table 2.2) and for the interpolation a 7-taps maximally flat
filter [Guma78] (Table 2.3). The filter characteristics are shown in Figure 2.15. These filters
were chosen because the long prefilter gives a good suppression of the replica, whereas the
relative short interpolation filter prevents the occurrence of annoying ringing artifacts. For
horizontal and vertical subsampling the response at the critical frequencies is zero because of
the zeroes of the filters at @ = w. For quincunx subsampling the filters are used twice in both
the diagonal directions, canceling the critical frequencies at (®,,,) = (Xr,im).

10"log!H(w)k 10"%logIH(w)!
0 0
-10f -10F :
\/\\

20} 20k \[\ I
-30F 30 : \/\
40+ 40+ \
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60 . — A . . . . . 60 : . . . \ . .
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w/n /1
(a) (b)

Figure 2.15: Filter transfer function of: (a) the prefilter and (b) the interpolation filter.

Table 2.2: Prefilter coefficients (x 512).

0 +/ +2 +3 +4 5 16 +7 +8 +9 +10
254 160 -3 -55 1 32 -5 -22 7 13 1

29



(a) N (b)

(e)
Figure 2.16: Image detail and stretched difference after subsampling and interpolation:

(a,b) horizontal subsampling, (¢.d) vertical subsampling and (e.f) quincunx subsampling.
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Table 2.3: Interpolation filter cocefficients (X 32).

0 +/ +2 +3

16 9 0 -1

In Figure 2.16 the results of the experiments are shown for the detail of Figure 2.14(b). The
stretched difference images are also shown. We see that each subsampling scheme result in a
loss of sharpness of specific edges of the image depending on the direction of the edge.
Visually the quincunx lattice gives the best performance because of the relative insensitivity
of the HVS to loss in diagonal detail. However, even at this low reduction factor the loss of
resolution is visible. The MSE and SNR are shown in Table 2.4. Thesc values can be used as
a reference for future experiments.

Table 2.4: Average SNR and MSE for fixed lattice subsampling using the MOBILE sequence.

Subsampling method | SNR (dB) MSE
Horizontal 18.1 26.5
Vertical 17.9 27.4
Quincunx 19.5 18.8

2.6.4 Chrominance subsampling

Color subsampling is one of the most widespread applications of fixed lattice subsampling.
To iltustrate the relevance of color subsampling, Table 2.5 lists the variance of the three color
components for the MOBILE scquence. We see that the relative energy contribution of the U
and V components is small compared to the contribution of the Y component.

Table 2.5: Average variance of the image components for MOBILE sequence.

Component | Variance Contribution
Y 1709.79 83.7 %

U 129.40 6.3 %

\Y 204.32 10 %

In Figure 2.17, the different subsampling schemes used in the experiments for color
subsampling are shown in the spatial and frequency domain. The original image has a 4:2:2
color sampling. First the image is subsampled in the vertical direction, resulting in a 4:2:0
sampling lattice (scheme 1). Next the image is repeatedly subsampled with a quincunx lattice
(schemes 2 to 4). Note that subsampling a quincunx lattice again with a quincunx lattice
yields an orthogonal lattice.

These different color subsampling schemes arc used on the MOBILE sequence. The resulting
average MSE is shown in Figure 2.18. Because of the relative insensitivity of the HVS to
distortions in the color information the first artifacts appear using subsampling scheme 3. The
artifacts are clearly visible if subsampling scheme 4 is used (i.e., a data reduction of 16). The
artifacts are a smearing of the colors over the edges which surrounds an object with a unique
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color and a vanishing of fine color details. The conclusion which can be drawn from these
experiments is that simple fixed subsampling schemes can be used for the chrominance
component. These simple schemes give a high compression at the expense of a small loss in
image quality.
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Figure 2.17: Color subsampling schemes: (a) Spatial domain (The numbers indicate which
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pixels are kept in each scheme), (b) Spectral domain (The numbers indicate the subsampling
scheme, and the dashed box is the support of the original spectrum).
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Figure 2.18: Average MSE for color subsampling using the MOBILE sequence.
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Chapter 3

ADAPTIVE INTERPOLATION TECHNIQUES

A simple subsampling scheme was introduced in the previous chapter. It used a fixed
sampling lattice in combination with a fixed linear interpolation filter. Before we introduce in
the next chapter more sophisticated subsampling schemes using spatially adaptive
subsampling, we first look at what improvements can be achieved when using fixed lattice
subsampling. Attention is focused on adaptive interpolation of the subsampled image
sequence. One important aspect of adaptive interpolation techniques is whether they are able
to recover some of the resolution lost because of the subsampling. If a prefilter is used prior
to subsampling, the high frequency information is permanently lost, and adaptive
interpolation acts as an image enhancement technique [Wang89]. Therefore the use of a
prefilter should be avoided as much as possible. The resolution is also not recovered if there
is any aliasing. Hence aliasing should also be avoided as much as possible. These two
aspects, namely the use of a prefilter and aliasing, are often in conflict with each other and a
choice should be made. In this chapter the choice is made to use no prefilter.

This chapter discusses two alternatives for the previously described linear interpolation. The
first alternative is motion compensated linear interpolation [Giro85] [Wang89] [Erns91]
[Reut89]. Motion compensated interpolation relies on the temporal correlation within an
image sequence. Even in regions where the spatial correlation is not large, the temporal
correlation can be large. If an image sequence is subsampled, the missing samples can be
interpolated by using the corresponding pixels along the motion trajectory in the previous or
the next image. This requires motion estimation. The use of motion information also enables
the use of three-dimensional sampling lattices as it provides a means to adapt the
interpolation filter to the three-dimensional spectrum. Special precautions have to be taken
when motion compensated interpolation is not possible (e.g. in occluded regions). The
detection of these situations and possible solutions are also addressed in this chapter.

The second adaptive interpolation method discussed in this chapter is nonlinear spatial
interpolation based on median filters instead of linear spatial interpolation [Renf90] [Leht90].
In a linear interpolation scheme all pixels in a specific window contribute to the output value:
each pixel value is multiplied by a filter coefficient and the sum is taken. This causes blurring
if the pixel values differ strongly from each other (e.g. at edges). If median filtering is used,
the pixel values majority determines the output, under the assumption that it is most likely
that the missing pixel belongs to this majority. If the pixel does indeed belong to the majority,
the output value is correct and there are no blurring artifacts. However, if the assumption is
not true the interpolation result is erroneous. These errors are again particularly noticeable at
edges.



Next, the two above interpolation techniques are combined into a single spatial interpolation
filter. This motion adaptive nonlinear spatial interpolation filter possesses the advantages of
both the interpolation techniques. The chapter is concluded with the discussion of the results
of several experiments using different interpolation methods.

3.1 Motion Compensated Interpolation

The main difference in a motion adaptive subsampling scheme as compared to traditional
subsampling is that in the interpolation stage a motion compensated interpolation filter is
used instead of a fixed interpolation filter. In this section the main features and advantages of
motion compensated interpolation are discussed. Fields where motion compensated
interpolation is also applicable are other three-dimensional interpolation problems, such as
de-interlacing [Giro85] [Wang89], temporal interpolative coding [MPEG92] and frame rate
conversion [Erns91] [Reut89].

3.1.1 Principle

The principle of motion compensated interpolation is first illustrated by an example. In
Figure 3.1(a) an image sequence is depicted containing an object moving with a constant
velocity in front of a stationary background. At the encoder, half the images of the sequences
are skipped, corresponding to a temporal subsampling with a factor two. At the decoder the
missing images have to be interpolated. The following simple temporal interpolation filter
just averages the previous and the next image:
i (X, 1) =Y20i(x,t = 1) +Y2i(x, 2 +1) 3.1

In Figure 3.1(b) the result i;,,(x,) of this filter is shown when it is applied to the image
sequence in Figure 3.1(a). The filter works well for the stationary background but produces a
blurred version of the moving object. Fixed temporal interpolation may be acceptable for
image regions moving at high velocities, but in regions with a low velocity, where the eye is
capable of tracking the motion, the blurring is visible. To obtain a good image quality both
the temporal and the spatial resolution must be preserved while maintaining the spatial
resolution.

The solution for this problem is to use motion compensated interpolation instead of fixed
temporal interpolation [Giro85] [Erns88]. A motion compensated interpolation filter
temporally interpolates the image sequence in the direction of the velocity, in this way
adapting the interpolation filter’s spatio-temporal passband to the spatio-temporal shape of
the spectrum of the subsampled sequence. The interpolation filter of Equation (3.1) now takes
on the following form:

ling (X, 1) =V2i(X—dp (x,0),1 = D+ V2i(x —d p (x,1).1 + 1) (3.2)

where d(x,t) is the displacement vector of the object from the image at time ¢ to the image at
t-1 and d{x,) the displacement from the image at time 7 to the image at time f+1. The
interpolation result of this filter is illustrated in Figure 3.1(c). Both the stationary background
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and the moving object are reconstructed correctly. This discussion shows that motion
compensated interpolation has the potential to improve both the spatial and the temporal
resolution after subsampling as opposed to using straightforward temporal interpolation.

(b)

(a) (c)
Figure 3.1: (a) The interpolation problem. Interpolation with: (b) a fixed temporal
interpolation filter, (c) a motion compensated temporal interpolation filter.

Note that the motion compensated interpolation filter from Equation (3.2) is equivalent to
applying a 3-taps one-dimensional FIR filter with coefficients %2, 1 and Y2 along the motion
trajectory. The most simple temporal interpolation filter is the 2-taps filter with coefficients 1
and 1. This filter is implemented as:

ljns (1) = I(X = dp (X, 0),0 = 1) (3.3)

This interpolation filter involves only the previous image, and is effectively a motion
compensated extrapolation.

3.1.2 Spectral analysis

In this section, we discuss motion compensated interpolation in the spectral domain and
compare it with fixed temporal interpolation. The information presented in this section is
used in the next section where we discuss the necessary accuracy of the motion estimation for
a given motion compensated interpolation filter. To simplify the discussion in this section and
the next section we assume an image sequence with only global motion and that all the
objects in the scene are moving with the velocity v = (V_\,,VV)T. The displacement vectors
dy(x.7) and d/(x,t) introduced in the previous section are linked to the velocity as being the
distance traveled between two consecutive images. We also assume that the illumination does
not change in time. The entire sequence is then described by the following equation:
ix,n)=i(x-v-1,0) (3.4)

To do a spectral analysis of motion compensated interpolation, it is first necessary to
determine the three-dimensional spectrum of an image sequence. According to the definition
of the three-dimensional Fourier transform, the three-dimensional spectrum /(®,,®,.©,) of

i(x,?) is given by
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I((x)x,(x)y,u),):_[ _[ _[i(x,t)exp(—j(mxx+0)ﬂ¥+(0,t)chfdydt 3.5)

—00 —00 —00

Substituting Equation (3.4) into Equation (3.5) gives after some basic manipulations

o0 o

(o, 0,,0,) = _[ Ji(x,O) exp(—j(@ x +wy y))dxdy -
e (3.6)
,[exp(—j(u)xvx +O, v, oy ))dt
which can be simplified to
Ho,0,,0;,)=1,(0,0,) 30V, +O,v, +0) 3.7

The first part of this equation, /,(®,.®,) describes the two-dimensional spatial Fourier
transform of the image i(x,0). This part of Equation (3.7) is not a function of the temporal
frequency, hence it is valid for every ®,. The second part of the equation represents a delta
function whose value is only non-zero when the argument is zero. Non-zero entries occur
only when

OV, +0v,+0, =0, loJl<W o<W, (3.8)

which denotes a plane in the three-dimensional Fourier space perpendicular to the vector

(V,I)T. Hence the resulting Fourier transform of an image sequence containing global motion
is formed by the spatial frequency components intersecting the plane perpendicular to the
motion vector. This plane is bounded in the ®, direction by the horizontal bandwidth W, and
in the wy direction by the vertical bandwidth W,. Figure 3.2(a) serves as an illustration of this.
The dark plane in Figure 3.2(a) indicates the support of the spectrum for a stationary
sequence, and the light plane indicates the support of the spectrum for an image sequence
which can be described by a velocity of v = (1,0)T. Because of the velocity the original image
plane rotates, introducing temporal frequency components.

(a) (b)
Figure 3.2: The effect of motion on the image spectrum: (a) The dark plane is support of
the spectrum when there is no motion, and the light plane is the support of the spectrum for
a velocity v = (1,0)". (b) Intersection of the light plane with the plane ®, = 0.
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To simplify the graphical representation, in this section only motion in the horizontal
direction is considered (v, = 0), so only the w,-0, plane is relevant. The intersection of the

support of the three-dimensional spectrum with this plane is the line
0, =-0,v, , o<W, (3.9

In Figure 3.2(b) an example is given for a velocity of 1 pixel/image in the horizontal
direction, so ®; = -,.
With this knowledge about the three-dimensional spectrum, we can discuss the different
aspects of motion compensated interpolation in the spectral domain. The same subsampling
lattice as in Figure 3.1(a) is used, so the images are alternately discarded. This subsampling
lattice introduces extra replicas between the original replicas in the direction of the ,-axis.
We assume a velocity of | pixel/image in the horizontal direction, as was already used in
Figure 3.2. The top half of Figure 3.3 illustrates a subsampling scheme in the spectral domain
in the case of a fixed temporal interpolation filter at the decoder, whereas the bottom half
depicts the situation in which motion compensated interpolation is used. Only the baseband
ranging from -7 to +7 is shown.

o, -TE‘\ ool L ©

(d) (e) (f
Figure 3.3: Spectral description of subsampling scheme. The lines show the support of the
spectral components. (a-¢) Fixed temporal interpolation. (d-f) Motion compensated
interpolation. The shaded areas are passbands of the necessary low-pass filters.

If a fixed temporal interpolation filter is used, high temporal frequency components may
cause aliasing, therefore these have to be eliminated prior to subsampling. To achieve this the
input images are temporally low-pass filtered, with a filter whose passband corresponds with
the shaded area in Figure 3.3(a). Next the image sequence can be properly subsampled in the
temporal direction (Figure 3.3(b)). The dashed lines in the figure are the replicas introduced



by the temporal subsampling of the image sequence. At the receiver, a temporal low-pass
filter is used to separate the baseband spectrum and the replicas without introducing aliasing
(shaded area in Figure 3.3(c)). In this case the unity cell is a rectangular region and both the
spatial and temporal resolution are reduced.

In the case of motion compensated interpolation (Figure 3.3(d-f)) no prefiltering is used prior
to subsampling (Figure 3.3(d)). In the subsampling stage (Figure 3.3 (e)) the replicas enter the
baseband, but do not overlap each other. The interpolation filter from Figure 3.3(c) would
give rise to aliasing at the decoder, causing degradation of the interpolated image sequence.
Therefore, at the decoder, a motion compensated interpolation filter is used to interpolate the
image instead (Figure 3.3(f)). The shape and the orientation of the unity cell is adapted to
support of the baseband spectrum of the subsampled sequence. Aliasing is now avoided in the
interpolation process without affecting the spatial resolution. It is however necessary that the
decoder knows the velocity, since the interpolation filter is applied in the direction of the
velocity.

3.1.3 Motion compensated temporal interpolation filters

Some properties of motion compensated temporal interpolation filters are discussed in this
section. First we consider the velocity range covered by an interpolation filter. If we know the
velocity range of one filter then we know what the distance between the interpolation filters
must be to cover all possible velocities. From this result the necessary accuracy of the motion
estimation can be derived. In this section we still assume a sequence with one global velocity,
but in contrast with the previous section we now consider velocities in both the horizontal and
vertical direction.

To cover the entire range of velocities it is not necessary to have a filter for each possible
velocity. The two-dimensional velocity plane depicting all the possible horizontal and vertical
velocity components can be subdivided into regular regions. Each region can be associated
with one specific motion compensated interpolation filter. The set of velocities required to

cover the entire velocity plane are called the nominal velocities ¥, = (V) -

First the velocity range covered by a given nominal velocity is derived for the two-
dimensional case using Figure 3.4, where we only take the ®,-®, plane into consideration.
The solid line is the support of the spectrum it the global velocity is equal to the nominal
velocity. In Figure 3.4 we use a velocity of | pixel/image. The shaded area is the passband of
the motion compensated interpolation filter used to cover the velocity range around the
nominal velocity. In the two-dimensional case the boundaries of the passband are the lines
given by
w, =V, 1B (B>0) (3.10)

where [ is the cut-off frequency of the one-dimensional interpolation filter which is applied
along the direction of the velocity. In Figure 3.4 a perfect low-pass filter is assumed, hence
B = Yam. The modulation transfer function of this filter is shown as the solid line in the bottom
part of Figure 3.4.
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Figure 3.4: Accuracy of the motion compensated filter. The top part shows the motion

compensated interpolation filter in the ® -, plane. The bottom part shows the modulation

transfer function for both a perfect filter and a simple 2-taps filter.

To determine which velocities are covered by the filter’s passband we vary the velocity v, of
the input signal, depicted by the dashed lines in Figure 3.4. The input signal is bounded by
the horizontal bandwidth W, so using Equation (3.9) the boundaries can be described by
o, =-Wv, (3.11)
Next we compute the intersection of the boundaries of the input signal with the filter’s
passband boundaries. Combining the Equations (3.10) and (3.11) gives for the intersections
Ve =v W, = +f (3.12)
which, if we take the exact condition under which each intersection occurs into account, can
be rewritten to
IVX - anlu/x = B (3.13)
The range covered by the nominal velocities is the distance between the two boundaries and
is equal to 2B/W,. All horizontal velocities are covered by the motion compensated
interpolation filters if the nominal velocities are chosen at
2
Vyy = %kﬂx . ke Z (pixels/image) (3.14)
X
where ¢, is an arbitrarily chosen constant. If the original image sequence was sampled

according to the Nyquist criterion (W, = m), then in Figure 3.4 the intersections are at v, = ¥4
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pixel/image and v, = 1% pixels/image. The distance between the nominal velocities is equal

to 1, therefore the nominal velocities can be chosen at integer locations (¢, = 0):

vax =k, keZ (pixels/image) (3.15)

The dotted line in the lower part of Figure 3.4 is the transfer function of a 2-taps temporal
interpolation filter. This filter can only be used for the region in which the passband
characteristic is reasonable flat. We see in Figure 3.4 that this is only the case for a small
region, so 3 should be chosen smaller than in the case of a perfect low-pass filter. The range
covered by a nominal velocity is therefore also smaller for this filter. Note that the short filter
has a zero for @, = . Hence in the case that the actual velocity exactly equals the nominal

velocity the aliasing is completely canceled, providing perfect reconstruction.

In the three-dimensional case the passband of a motion compensated interpolation filter is
bounded by planes instead of lines, so Equation (3.10) must be rewritten to

o =tf-v,® Vi 0y (B>0) (3.16)
The boundaries of the input signal in three-dimensions are equal to
@ ==y, W, —v W, (3.17)

where W, and W, are the horizontal and vertical bandwidths. Substituting Equation (3.17) in
Equation (3.16) gi\'es for the intersection points

Ve =V )0 + (v =V )0, = +f3 (3.18)
which can be rewritten to

W+, W, =B (3.19)

II\

’V.x ~Vax
This equation describes a diamond-shaped region covered by the nominal velocity in the
velocity plane. For an efficient subdivision of the velocity plane the regions covered by each
nominal velocity should not overlap with other regions and the entire velocity plane should
be covered. Therefore the nominal velocities should be chosen as follows:

2B 2B

Vo= k+cey, vy,=—l+c, kle Z (pixels/image) (3.20)
i g )

where ¢, and ¢, are arbitrarily chosen constants.

Since the velocity of a moving object is derived from the motion in a fixed time interval, the
accuracy of the velocity is coupled to the accuracy of the motion estimation. From Equation
(3.20) it follows that the necessary accuracy of the motion estimation is given by

2B 28 _
Ad, = W7‘ Ad_V = W (pixels) (3.21)

v
where Ad, is the accuracy in the horizontal direction and Ad, the accuracy in the vertical

direction. If the numerical values from the previous example are substituted in Equation
(3.21), then the required accuracy is
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Ad,=1. Ady=1 (pixcls) (3.22)

The values prescribed by Equation (3.21) are the minimally required accuracy. If it is possible
to realize a motion estimation with a higher accuracy, Equation (3.21) can be solved instead
for a different value of B. A lower value for Ad, and Ad, results in a smaller value for B,
making it possible to use a shorter temporal interpolation filter. This principle is explained by
giving an example.

Figure 3.5 illustrates the effect of increasing the accuracy of the motion estimation for the 2-
taps temporal interpolation filter. The horizontal frequency response of the filter is shown as a
function of the horizontal velocity. When the velocity is no longer within the range of one
nominal velocity, another nominal velocity takes over. In the case of a perfect interpolation
filter the frequency response is equal to 1 for all values of o, and v,. In Figure 3.5(a) pixel
accuracy is used for the motion estimation (Ad, = Ad, = 1 pixel). The horizontal velocity
range covered by each nominal velocity is the interval [v,u —Vav, + l/z]. We see that
especially for high-frequency components the filter response deviates much from the perfect
value of 1. This gives rise to blurring artifacts in the interpolated image.

R :‘\a\\‘ o
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Figure 3.5: Characteristics of the motion compensated interpolation filter as a function of

the horizontal velocity v, and the horizontal frequency o, for different accuracy of the

motion estimation: (a) Ad, = I pixel, (b) Ad, = V2 pixel

In Figure 3.5(b) half pixel accuracy is used instead (Ad, = Ad,, = V2 pixel). Solving Equation
(3.21) for half pixel accuracy and with W, = W, = &, gives a value of Yar for 3. The nominal
velocities are now given by

Voe =Y2k . vy, =Yl kle Z  (pixels/image) (3.23)
The horizontal velocity range covered by each nominal velocity in Figure 3.5(b) is now the

interval [vm—%,vn,‘,#ﬁ]. Over this smaller range the simple 2-taps filter is a good
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approximation of a perfect filter, effectively improving the overall filter response. Hence in
practice a short filter should be used in conjunction with a high motion estimation accuracy.

3.2 Motion compensated interpolation in practice

In the previous section, the properties of motion compensated interpolation filters were
derived under specific conditions. In this section we look at how these conditions must be
translated to a practical situation.

Motion compensated filtering is done by temporally filtering an image sequence in the
direction of the motion. In the previous discussions we assumed a constant velocity over a
number of images. In [Dubo92] it is shown that this is not a necessary assumption and that it
is sufficient to follow an object along a motion trajectory. The assumption made in this case
is that the characteristics of the object do not change dramatically from image to image
caused by variations in the illumination, object deformations or occlusions.

In Section 3.1.1 two temporal interpolation filters were introduced, namely the 2-taps filter
with coefficients 1 and 1, and the 3-taps filter with coefficients 1, 2 and 1. These filters have
a poor frequency response, but are particularly interesting because they impose small memory
requirements. If longer filters are used, the overall characteristics improve; however, also the
number of images involved in the filtering process increases, and thus more image stores are
required. Another disadvantage of long temporal filters is that the assumption that the objects
do not change in time is likely to be less valid over a longer period of time.

In the previous section we saw that the result of motion compensated filtering also depends
on the accuracy of the motion estimation. To apply motion compensated interpolation on a
subsampled image sequence, the displacement should be defined on the sampling lattice. In
order to meet this accuracy demand, it is therefore necessary to expand the spatial resolution
of the subsampled image sequence back to the spatial resolution on which the motion was
estimated. In the case of fractional accuracy of the motion vectors, this means that the original
image sequence has to be spatially upsampled to an image sequence with bigger dimensions.
If the upsampling filters involved in this process are not sufficiently long this may cause a
loss of resolution.

3.2.1 Motion estimation requirements

An important aspect of motion compensated interpolation is the estimation of the motion
vectors. If the motion estimation does not provide an accurate motion vector, an inaccurate
temporal interpolation filter is used and the result becomes useless.

A requirement for the motion estimation is that the estimation is done at the encoder side. At
the decoder side not all the samples of the image sequence are available so reliable motion
estimation may become difficult. A consequence of this requirement is that the motion
vectors are transmitted to the decoder as side information. To reduce the amount of side
information, the motion estimation is done on a block basis and only one vector is transmitted
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for each block. An alternative not chosen here is to estimate the motion on a pixel basis and
to encode the vector field prior to transmission. The fact that the motion information is
transmitted also limits the maximum accuracy of the motion estimation. Increasing the
accuracy increases the amount of side information.

If the 3-taps interpolation filter from Equation 3.2 is used, two motion vectors dy(x,t) and
df(x,t) are necessary. To reduce the amount of side information we can assume that df(x,t) is
equal to -d,(x.1) so only dy(x,f) is transmitted. This assumption is only valid if the object is

moving with a constant velocity and the estimated motion vector represents the true motion
vector. The last requircment imposes large constraints on the motion estimation algorithm.

3.2.2 Hierarchical block matching

There are several block based algorithms which are capable of estimating true motion, such as
hierarchical full search block matching [Bier88], recursive block matching [DeHa93] or phase
plane correlation [Thom87]. In this thesis hierarchical full search block matching is used. To
introduce hierarchical full search block matching we first discuss full search block matching
[Musm85]. The actual image is divided into blocks. Next a search is made for the best
corresponding block in the previous image based on some matching criterion. The difference
between the position of the block in the actual image and the position of the corresponding
block in the previous image is the estimated motion vector (Figure 3.6(a)). For computational
reasons it is not possible to search over the entire image. Therefore the search area is limited
to a region around the current block. The size of the region determines the maximal
displacement.

] — bd(x
,,,,, ‘// l - —dhl(xat)
t-1 E
t t t
(a) (b) (c)

Figure 3.6: (a) The principle of full search block matching. (b,c) The principle of two level
hierarchical block matching: (b) level 1, (¢) level 2.

This algorithm is easily distracted by the local image contents and does not necessarily
produces a motion field which corresponds with the true motion. In Figure 3.7(a) an example
of an estimated motion vector field is given. Figure 3.7(b) shows the result after motion
compensated interpolation, where -dy(x.7) is used instead of dx.7). The image contains a
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rotating object. We see that the estimated vectors do not correspond with the true motion

vector and the assumption that -d,(x,) is equal to d(x.7) leads in some places to large errors.

NEGN
ISR
NN

(c)

(d)

Figure 3.7: (a.b) Full search block matching: (a) vector field, (b) result of motion
compensated interpolation. (¢,d) Hierarchical block matching: (¢) vector field, (d) result of
motion compensated interpolation.

To obtain a motion estimation which corresponds better with the actual motion, the
hierarchical block matching algorithm [Bier88] can be used (Figure 3.6(b,¢)). The estimation

process starts with large blocks to make a rough initial estimate d,(x.r) of the motion vector.

This initial estimate is used in a following stage as a start point for a finer estimation d,2(x.?)

of the motion using smaller blocks than the initial estimate. The new estimate can be used
again to obtain a finer estimate. This algorithm is a compromise between the need for small
blocks for a good local motion estimate, computational complexity and homogeneity of the
motion vectors. On a coarse scale the estimation process is not easily distracted by the local
image contents, so the motion estimation corresponds better with the true motion vector. This
approach fails at edges of the motion field, because in this case the coarse scale motion vector

may not correspond with the local motion vector.
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The evaluation of the matching criterion for each block does not only use the pixels of the
block, but a window larger than the block is placed around it. Now the pixels in the window
are used for the computation of the matching criterion. This action increases the homogeneity
of the motion vector because information from the neighboring blocks is also considered, but
it increases the number of computations. The number of computations is reduced again by not
evaluating the error function for «l// the pixels in the window. Only the pixels at a regularly
spaced distance from each other on an orthogonal lattice are used. Aliasing is avoided by
using a mean filter prior to the motion estimation.

Figure 3.7(¢) and Figure 3.7(d) respectively show the estimated motion vector field and the
result after motion compensated interpolation. We see that the estimated motion field is more
homogeneous than the field obtained with full search block matching and corresponds better
with the true motion.

3.2.3 Handling inaccurate motion vectors

In motion compensated interpolation schemes, particular precautions have to be taken in
regions where the motion estimation is inaccurate. The motion estimation is inaccurate if the
interpolation result has no relation to the original image. This happens in occluded regions or
regions moving at high velocity. The question is how these situations can be detected and
what corrective actions should be taken. Therefore, first the errors resulting from motion
compensated subsampling are modeled. Two distinctive situations are considered: the case
when an accuratc motion estimation is made, and the situation when an inaccurate motion
estimation is made. These two situations each introduce different types of interpolation errors.

In a practical situation the intensity function describing an image sequence does not only
contain information about the actual scene, but also noise introduced during the image
acquisition process. The noise is modeled by an additive term:

i(x,1)=1i,(x,t)+n(x,1) (3.24)
where i,(x.r) is the actual intensity, i(x,t) the observed intensity and n(x,?) the noise. We
assume that the variance an of the noise is small compared to the variance Giz of the actual

intensity and that the noise is uncorrelated with the actual intensity. If an object is translating
in the image plane according to the vector dj,(x,#), then i ,(x.7) is equal to

ip(X,0) =iy (X—dp,(x,1),1 = 1) (3.25)
Now consider a,, (x.1) to be the estimated motion vector. If an accurate motion estimation is
made, &,, (x,t) is equal to dj(x,f). In practice i,(x — &b(x,t),f— 1) is approximated by the
observed pixel i(x —&,,(x,t),t — 1) in the previous image given by

i(x—dp (x,0),1 = 1) = i, (X = dp (X, 1), = 1)+ n(x = djy (X,2),t — 1) (3.26)

The interpolation error value e(x.r) is the difference between the observed pixel value and the
observed interpolated pixel value:

e(x.0)=i(X, 1) —i(x—dp(x.1),1 - 1) (3.27)
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Substituting Equations (3.24) and (3.26) into Equation (3.27) and using Equation (3.25) gives
e(x,1) = n(x,1) - n(x,~d, (x,1),t = 1) = An(x, 1) (3.28)

where An(x,t) denotes the part of the error introduced by noise. Thus in the case of a correct
motion estimation, the introduced error is equal to noise colored by the motion vector field. If
we assume white noise then the variance of the reconstruction error is approximately equal to

E[e(x,t)z] = E[An(xvt)z]
= 2E[n(x,0]* = 26,2

where E[] is the expectation operator. There are no clearly visible errors because the
interpolation error variance is of the same order as the original noise variance and has no

(3.29)

relation to the image contents.

If an inaccurate motion estimation is made, Equation (3.25) no longer holds. The
reconstruction error is now given by

e(x,0) =i, (X, 1) —i, (X—d,(X,0),1 — 1) +n(x,0) = n(x—d, (x,1), = 1)

. (3.30)
= Ai, (X,1)+ An(x.1)

An extra error term Ai (x,7) is introduced as compared to Equation (3.28). The variance of the

interpolation error can now, again under the assumption of white noise, be approximated by:

Elex.n?] = B (aitx.0) + Ancx.n))’

(3.31)
= GAI'Z +2G,12

where GA,-Z is the variance of Ai,(x,r). If the intensity value changes dramatically from one
image to another in the direction of the estimated motion vector then i,(x — ab(x,t),t— 1)

differs significantly from i,(x,f) and GA,-2 is much larger than 0,12. The Ai,(x,f) term now
dominates, introducing conspicuous errors, because the variance of the error now depends on
the image sequence contents. From this discussion it is clear that the errors made in the case
of an accurate motion estimation differ significantly from the errors made in the case of an
inaccurate motion estimation. This result is illustrated next with an experiment.

The histogram of the error value e(x,r) was determined for the second image of the MOBILE
sequence. The sign of the error value is not relevant so the absolute error value is used. In
Figure 3.8 the histogram of the interpolatton error for a subsampling scheme with motion
compensated interpolation (MC-INT) is shown. As a reference, the histogram of the
interpolation error of a fixed subsampling scheme with a quincunx subsampling lattice is
shown (QNX-INT). The figure consists of three parts. On the upper part the complete
histogram is shown. The two bottom graphs both show a specific part of the horizontal axis.
The left part shows the behavior of the histogram for small error values whereas the right part
shows the behavior for large error values.

As can be seen from the figure the two bottom parts differ significantly. The motion

compensated scheme (solid line) has a high probability for small error values. This
corresponds with Equation (3.28) which described the characteristics of the reconstruction
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error when an accurate motion estimation is available. The interpolation error is equal to
An(x,t), which has a variance in the same order as the noise in the original image sequence.
However there is also a non-zero occurrence for large error values. These correspond to areas
with an inaccurate motion estimation as modeled in Equation (3.30). In this case the error
consists of Ai,(x,f) and An(x.7). These kind of errors cause a limited number of artifacts in the

interpolated image, which are nevertheless clearly visible.

The fixed lattice subsampling scheme (dashed line) has a smaller occurrence of small error
values but a zero occurrence of high error values. This results in a completely blurred
reconstructed image but without clearly visible isolated artifacts. Experiments on different
image sequences show similar results.
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Figure 3.8: Histogram of the interpolation error for the second image of the MOBILE
sequence.

In a practical coding scheme, a combination of these two histograms can be made in a system
with two branches (Figure 3.9). Subsampling is combined with motion compensated
interpolation if the interpolation error is small. In the case of large error values a fall-back
mode is used. A requirement for the fall-back mode is that it should not introduce clearly
visible artifacts. We saw in Figure 3.8 that fixed lattice subsampling satisfies this
requirement. The decision as to which branch to use is made at the encoder and transmitted as
side information to the decoder. Thus the interpolation is also done at the encoder. This
system gives a high resolution image in the case of an accurate motion estimation but without
clearly visible artifacts in the case of an inaccurate motion estimation.
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Figure 3.9: Motion compensated interpolation scheme with fall-back mode.

An additional step to improve the interpolation result is to reduce the variance GAiz, by
effectively reducing the area under the tail of the histogram. This can be accomplished by
improving the interpolator. An interpolator which is intended to give better results in areas
with occlusions is

(V2 itx—dy(x.0) = D+Y2itx—d f (0,1 +1)

b (X, ) = 10X —dp(X,0),0 - 1) (3.32)

ix—dy(x,0),0+1)
where the interpolator which gives the smallest interpolation error is chosen. If a region is
covered in the next image, some information about that region may be available in the

previous image. The same will hold for uncovered regions. The information as to which
interpolator to use should also be transmitted to the decoder.

3.3 Nonlinear spatial interpolation

3.3.1 Principle

Median filtering is a nonlinear filtering technique which is known for preserving sharp
intensity transitions in signals. The median is defined as the center sample of an ordered set
of samples arranged according to the magnitude. If the number of samples is even, there are
two center samples and the average of these two center samples is taken. In this section
median filters are used for the spatial interpolation of quincunx subsampled images [Renf90]
[Leht90]. The application of median filters is however not limited to spatial quincunx lattices
and the filters can be adapted to other lattices.

First, median filter interpolation is illustrated using the 3-point vertical median filter. The
missing pixels of the subsampling lattice are interpolated as follows

ooy oy (-]
z,n,(x)—med[z(x+ _q ), i(x+ | ),i(x + 0 )J (3.33)
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where med[.] stands for the median operator and i;,,(x) for the spatially interpolated result.
The pixels which are already present in the subsampling lattice are not changed. The 3-point
vertical median filter is demonstrated in Figure 3.10. A vertical edge is quincunx subsampled.
After applying the 3-point vertical median filter to the subsampled image the original edge is
recovered, shown by the interpolated image on the right side. The edge is preserved because
the proper edge pixels are always in the majority and thus determine the filter output. If a
two-dimensional FIR filter is used, the weighted sum is taken from the pixels surrounding the
discarded pixels. This causes a smearing of the edge. Hence, median filtering has the potential
for a better preservation of the high-frequency structures after interpolation.

OCCee O o cCocee
OOCee | Quincunx | | o ® ) 3-point | | OCee
00 @ @ Subsampling 'e) ® Vert. Median OO0 @ e
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Figure 3.10: lllustration of nonlinear interpolation using a 3-point vertical median filter.
3.3.2 Median interpolation filters

Median filters are nonlinear which complicates their mathematical analysis. In the past, the
study of median filters was based on their root signals. These are defined as the signals which
are unchanged after filtering [Gall81]. This approach is especially useful to study the noise
filtering capabilities of median filters. However, for interpolation we are more interested in
the signal structures which are properly interpolated by the median filter. In Figure 3.10 we
saw that a vertical edge is a signal structure which is properly interpolated by a 3-point
vertical median filter.
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Figure 3.11: Test image for nonlinear interpolation: (a) Original image, (b) Quincunx

subsampled image, (c) Interpolation with a 3X3 taps FIR-filter.

In Figure 3.11(a) a test image is shown which is used to show the interpolation qualities of
the different nonlinear interpolation filters. The image is constructed in such a way that it is
possible to see which image structures are interpolated by the different median filters. The
test image contains horizontal, vertical and diagonal edges and thin lines. The thin lines are
important because in a gray-value image they correspond to structures of one pixel wide with
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the same intensity. These structures occur frequently in images containing fine detail. The
quincunx subsampled test image is shown in Figure 3.11(b). No prefiltering is used prior to
subsampling. Prefiltering blurs the edges and the edge-preserving property of the median
filter is no longer apparent. The consequence is that there are some aliasing artifacts (e.g.
some diagonal lines disappeared). In Figure 3.11(c) the image is interpolated with an FIR
filter and we see that for this image FIR-filters are clearly not suitable.

In Figure 3.12(a), the interpolation result is shown after a 3-point vertical median filter is
applied on the subsampled test image. We see that both the horizontal and the vertical edges
are preserved. Also the vertical thin lines are preserved. However, the horizontal thin lines are
converted into vertical lines because of the vertical orientation of the filter. The diagonal
edges are also distorted. Figure 3.13 shows the cause of the distortion of thin lines. We see
that viewed on a small scale both vertical and horizontal thin lines produces the same output
on a quincunx sampling lattice. Thus with only the subsampled image available, it is not
possible to detect the proper orientation of a thin line and an arbitrary choice has to be made.

(a) (b)
Figure 3.12: Interpolation results: (a) 3-point vertical median, (b) 4-point median filter.
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Figure 3.13: Subsampling of horizontal and vertical thin line structures.

An alternative to the 3-point vertical median filter is the 4-point median filter which uses the
four pixels around the missing pixel:

, [ (-1 (1) 0y (o) ]
zim(x):medtz(er 0 ),i(x + 0 ).i(x+ -l ),z(}nw\1 )J (3.34)

Note that the number of samples involved is even, so the output value is not necessarily equal
to one of the input samples. In Figure 3.12(b) we see that again the horizontal and vertical
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edges are preserved. In the areas containing thin horizontal and vertical lines, a compromise
is made between a white and a black pixel and a gray pixel is chosen.

3.3.3 FIR-median hybrid interpolation filters

The main drawback of median filters is the poor interpolation in regions with thin details. To
solve this problem FIR-median hybrid (FMH) filters [Hein87] can be used [Leht90]. An FMH
filter consists of a set of FIR filters. The output values of these FIR filters are fed into a
median filter. The FIR filters are designed in such a way that they give a good reconstruction
for thin line structures with a specific orientation. An example of a filter capable of
reconstructing horizontal edges and thin line structures on a quincunx lattice is shown in
Table 3.1. The filter modulation transfer function, shown in Figure 3.14(a), confirms this. In
Figure 3.14(b) the filter is applied to the test image. We see that the horizontal edges and thin
lines are indeed reconstructed correctly. When the x and y coordinates of the filter coefficients
are exchanged the filter properly reconstructs vertical edges.

Table 3.1: Horizontally oriented filter ({Leht90]).
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Figure 3.14: (a) Amplitude transfer function of the filter from Table 3.1, (b) Filter output
from test image.

An example of an FMH filter is the following interpolation filter:

, [ -1y (oY (1) (o) 1 .
lj,1f(X):m€dLl<X+ 0 ) (X + —1 ), i(X+ 0 ) i(x+ | )sllzz);~(x)J (3.3

This a combination of the 4-point median filter with the output i;,,(x) of the horizontally

oriented filter. In Figure 3.13, we saw that the 4-point median filter was not able to make a
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decision for thin lines. For horizontal lines, the oriented filter now gives the decisive vote. We
see in Figure 3.15(a) that the horizontal edges and thin lines are well preserved. To improve
the result for vertical edges, the oriented filter can be applied in the vertical direction and the
result i, (x) can be included in Equation (3.35):

. (- 0y (1) (o) , 1 ‘
z,-m(x):medtz(er 0 )i(x+ 0 )i(x+ 0 )X+ 1 ),1,10,.(x),zw,,(x)J (3.36)

Figure 3.15(b) shows the result of this interpolation filter. The vertical edges are improved at
the expense of the horizontal edges.

In the literature, many other variations on FMH filters have been proposed (e.g. [Huuh93}).
They differ in the number of pixels involved in the interpolation and in the FIR filters which
are used. However the interpolation qualities of the filters do not differ much. To further
improve the performance, motion information needs to be brought into the nonlinear filters.

(a) (h)
Figure 3.15: Interpolation results: (a) horizontal FMH filter, (b) combined horizontal and
vertical FMH filter.

3.3.4 Motion compensated nonlinear interpolation

The main problem in nonlinear spatial interpolation is to detect whether a pixel belongs to a
particular edge in the image. In the section dealing with motion compensated interpolation,
we saw that the motion compensated pixel value from the previous image can be a good
estimate for the actual pixel. This temporally predicted pixel is now used to give the decisive
vote in the spatial median filter. Hence, a straightforward extension of the spatial nonlinear
interpolation filters from the previous section is

g (X.1) = med[i(., 1), i (x.1)] (3.37)
where i(_.t) stands for the necessary spatial pixels and with
b (X, 1) = iy (X —dy (X),7 = 1) (3.38)
Because the actual previous image is not available, the motion compensated interpolation is
based on the interpolated version of the previous image. Therefore the quality of the

interpolation result relies on both the quality of the previously interpolated image and on the
accuracy of the motion estimation. This interpolation filter has an implicit provision for



handling inaccurate motion vectors. If the predicted pixel value i, .(x,t) is inaccurate, its value

differs much from the other pixels in Equation (3.37), and in the median filter the motion
compensated pixel is automatically rejected. For instance, at the start of the sequence and at
scene changes motion compensation is not possible or not meaningful; then simple spatial
nonlinear interpolation filtering is automatically used as a fall-back option.

Another variation on the median filters is the class of weighted median filters [Y1i91]. In a
weighted median filter the input values are repeated, and a weight factor determines how
many times a particular sample is repeated. By adjusting the different weights an emphasis
can be placed on certain pixels. In [Haav92] an interpolator was proposed which uses a
spatio-temporal weighted median filter. This filter uses no motion compensation but a
detection of the motion activity. The corresponding pixel in the previous image i(X,-1) is
combined with pixels surrounding the missing pixel in the current image. If little motion
activity is detected, the weight of the pixel from the previous image is increased and when
there is much motion activity the weight is decreased. Hence the interpolator switches
between spatial and temporal interpolation depending on the temporal predictability of the
images.

This spatio-temporal weighted median filter can also be combined with motion compensated
interpolation. The following motion compensated interpolation filter can be constructed:

iy (%,0) = med[i (., 1),..., Wi (x,1)] (3.39)

where ¢ denotes the replication operator (e.g. 3 ¢ x = x,x,x). The weight factor w determines
how much emphasis is placed on the motion compensated pixel value. In a motion
compensated interpolation scheme the absolute displaced frame difference (IDFD!) defined as

| DFDI=1i(X,1) =i pye (X,1)] (3.40)

is an indicator of the accuracy of the motion vector. A low IDFDI may indicate a good motion
estimation and a high IDFDI a bad motion estimation. Because the actual pixel value is not
available at the decoder an estimate of the IDFDI is made by using the average of the [DFDI of
surrounding pixels. These pixels are available at the decoder. If the average IDFDI exceeds a
certain threshold, a low value is chosen for w and otherwise a high value is chosen. This
scheme switches adaptively between spatial and temporal interpolation based on the quality
of the motion compensated prediction.

3.4 Experiment results

In this section, both the results obtained with motion compensated temporal interpolation and
nonlinear spatial interpolation are discussed. The motion compensated nonlinear spatial
interpolation filters are discussed in a separate section.

3.4.1 Motion compensated linear interpolation

Here, the results obtained with motion compensated interpolation are presented. Half the
number of images is skipped at the encoder and reconstructed at the receiver. The motion is
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estimated with the hierarchical block matching algorithm with two levels and a full search on
each level. The settings at each level are summarized in Table 3.2. The block size at the
second level is equal to 8 x 8 pixels. Experiments are done with both pixel and half pixel
accuracy of the motion estimator. The necessary upsampling for fractional accuracy is done
with a 7-taps maximally flat filter, so that the original pixels are not distorted. The resulting
vector fields for pixel and half pixel accuracy are shown in Figure 3.16 for the second image
of the MOBILE sequence. We can see that especially the calendar is moving with a fractional
velocity.

Table 3.2: Hierarchical block matching parameters.

Level I  Level 2
Block size 16 x 16 8§x8
Window size 64x64 16x16
Maximum displacement +7 +3
Subsampling factor 4 |
Mean filter size 5x5 3x3

The following five interpolation schemes are used:
@: 2-taps interpolation filter from Equation 3.3, with pixel motion accuracy.

@: 2-taps interpolation filter from Equation 3.3, with half-pixel motion accuracy.

®: 3-taps interpolation filter from Equation (3.2), with half-pixel motion accuracy.

@: 3-taps interpolation filter from Equation (3.2), with half-pixel motion accuracy and -dj(x,!)
is used instead of df(x,r)

®: The combined interpolator from Equation (3.32), with half-pixel motion accuracy.

If the side information is not coded, interpolator @ requires twice the amount of side
information as interpolator @ because of the increased accuracy. Interpolator @ requires
twice the amount of side information as interpolator @ because two vectors are needed
instead of one vector. Interpolator @ requires the same amount of side information as
interpolator @ because again only one vector is needed. Interpolator ® requires the largest
amount of side information because beside the two motion vectors, also information about
which interpolator should be used is needed at the decoder.

Figure 3.17 shows the results of the different interpolators. The interpolated images are
compared with the original images. We see that for this sequence that there is a large benefit
if’ half-pixel motion accuracy is used instead of pixel accuracy, because the calendar is
moving with fractional velocity. This confirms the observation from Figure 3.5 that a closer
spacing of the nominal velocities improves the overall interpolation filter characteristic. The
benefit of using fractional motion accuracy can also be noticed if we compare the stretched
difference images in Figure 3.18. In Figure 3.18(a) the difference is shown for the second
image of the MOBILE sequence for interpolator @ and in Figure 3.18(b) for interpolator @.
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(b)
Figure 3.16: Backward estimated motion vectors dy(x,t) for the second image of the

MOBILE sequence: (a) pixel accuracy, (b) half-pixel accuracy.
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Figure 3.17: Interpolation results for the MOBILE sequence.

Experiments reported in [Iu92] and [Giro93] show that increasing the accuracy to Y pixel
accuracy does not improve the results as much as the improvement obtained by increasing the
accuracy from 1 pixel to a ¥2 pixel.

In Figure 3.17 we can also see that a 3-taps temporal interpolation filter improves the result if
we compare interpolator @ with ®. The filter cut-off frequency B of the longer interpolation
filter better approximates the required value of Ym, again improving the overall filter
characteristics. The stretched difference image (Figure 3.18(c)) also shows an improvement
compared to interpolator @.

(a)

Figure 3.18: (continued on next page).
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(c)
Figure 3.18: Stretched difference images for the second image of the MOBILE sequence for
interpolator: (a) @, (b) @and (c) O.
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We see that the loss in SNR because of using -d,(x.r) instead of dy(x.f) is not large by
comparing the results of interpolator @ with interpolator @. As the MOBILE sequences does
not contain accelerating motion, the motion field is more or less stationary in the temporal
direction. As can be expected, interpolator @ gives the best result at the expense of extra side
information. The gain is not large because the test sequence does not contain many uncovered
and covered regions.

Figure 3.18 also serves as a confirmation of the kind of errors encountered after motion
compensated interpolation. Namely, in regions where the motion is estimated accurately, the
interpolation errors arc more or less uncorrelated with the image content. However, in regions
which are not accurately interpolated the errors are dependent on the image content and also
more visible. Most of these regions correspond with areas which are occluded.

3.4.2 Nonlinear spatial interpolation

To clearly show the various artifacts at edges of a specific orientation, another detail of the
MOBILE sequence is used. This image is shown in Figure 3.19. We see that it contains edges
of different orientations. A quincunx subsampling lattice is used with L =M =1. Four
different interpolation methods are used. These are listed in Table 3.3 together with the
numerical interpolation results. Figure 3.20 shows the interpolated images and the stretched
difference images. Only, prior to interpolation with the FIR filter, a prefilter is used. In this
case the same prefilter and interpolation filter are used as in Chapter 2.

Figure 3.19: Detail of MOBILE sequence.

Table 3.3: Average SNR and MSE of the interpolation results for the MOBILE sequence.

Interpolation Method SNR (dB)  MSE
FIR filter 19.5 18.8
3-point horizontal median (Equation (3.33)) 17.0 33.5
4-point median (Equation (3.34)) 19.2 20.2
Horizontal and Vertical FMH filter (Equation (3.36)) 19.9 17.4
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(e) (f)
Figure 3.20: Interpolation results and stretched difference: (a,b) FIR filter, (c.d) 3-point
horizontal median filter, (e,f) 4-point median filter.
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(8) | o ()
Figure 3.20 (continued): Interpolation results and stretched difference: (g.h) combined
horizontal and vertical FMH filter.

The image in Figure 3.20(a) is obtained with an FIR filter. The difference image, shown in
Figure 3.20(b) contains the edge information which is lost because of the prefilter and
interpolation filter. A sharper image is achieved with a 3-point median filter (Figure 3.20(c)).
The difference image in Figure 3.20(d) shows an improvement for horizontal edges in the
image. The results for the 4-point median filter (Figure 3.20(e.f)) and the combined FMH
filter (Figure 3.20(g,h) do not differ much from each other. Both visually and numerically
there is a slight preference for the combined FMH filter. Most of the horizontal and vertical
details are recovered. The information about the diagonal edges is lost because of the aliasing.
The aliasing also causes the high frequency noise to fold back to the low frequencies, making
it more visible. Some of the edges are locally interrupted because the median filter uses
information from the wrong side of the edge. This artifact causes a temporal inconsistency of
the edges. If an edge is interrupted in one image and properly reconstructed in the next image
the interrupted edge is a more annoying visual artifact.

(a) ()
Figure 3.21: Interpolation results (a) and stretched difference (b) using a combined
horizontal and vertical FMH-filter.
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The result of the FMH filter for the standard detail image is shown in Figure 3.20. The
artifacts are similar to the artifacts described for the previous image. Because the image
contains more diagonal details, the overall quality is worse.

3.4.3 Motion compensated nonlinear spatial interpolation

In this section, the results obtained with a motion compensated nonlinear interpolation filters
are presented. Again a quincunx subsampling lattice is used. First the following two motion
compensated filters are used:

MC-MED4:  This is the filter from Equation (3.37) where the motion compensated pixel
value is combined with the 4-point median filter from Equation (3.34).

MC-FMH:  This filter is formed by combining the pixels involved in the combined
horizontal and vertical FMH filter (Equation (3.36)) with the motion
compensated pixel into the median filter.

The results are compared with the results of spatial nonlinear interpolation filters, namely the

4-point median filter (MED4) and the combined horizontal and vertical FMH filter (FMH).

The first image in the sequence is interpolated with the spatial interpolation filter. A vector

field estimated with pixel accuracy is used in all the experiments.

Figure 3.22 shows the results of the experiments. The result of the MC-FMH filter is always
better for all the images than the corresponding spatial FMH interpolation filter. Also for the
second half of the sequence where the motion becomes more violent the MC-FMH filter is
able to maintain a better quality. The MC-MED4 filter is not able to cope with the increased
motion activity and the result becomes worse than the spatial interpolation filter. This is
because with the MC-MED4 filter, four spatial pixels and one temporal pixel are involved,
whereas with the MC-FMH filter six spatial and one temporal pixel are involved. Hence the
ratio between temporal and spatial pixels is smaller for the MC-FMH filter and the filter
becomes less sensitive to the amount of motion.

SNR (dB)
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sl - FMH

(7L — MC-MED4
16F ----MED4

15 ' : f : :

l 6 . 16 21 26 31

image number

78]
)

Figure 3.22: Motion compensated nonlinear interpolation filter compared with spatial
nonlinear interpolation filters for the MOBILE sequence.
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Next, two other motion compensated nonlinear interpolation filters are used:

MC-WFMH:  This filter is similar to the MC-FMH filter but the motion compensated
pixel is weighted with a factor three.

MC-AWFMH: This filter is a combination of the MC-FMH filter and the MC-WFMH filter.
If the average absolute DFD is larger than four the MC-FMH filter is used
and the MC-WFMH is used if the average absolute DFD is less than or
equal to four.

The results for these filters are shown in Figure 3.23. The MC-WFMH filter outperforms the
MC-FMH filter for images which are predicted well but the performance deteriorates when
the motion becomes more complex. We sec that MC-AWFMH provides a good compromise
for all the images. Also shown in the figure is the switching behavior of the MC-AWFMH
filter between the two alternatives. The MC-WFMH [ilter is chosen relatively more often in
regions where the performance is better than the MC-FMH filter.

The dominating artifact in the interpolated image is again the aliasing because of the Tack of a
prefilter. No artifacts are visible which are caused by incorrect motion vecetors or covered and
uncovered areas. The median operator is aware that the predicted pixel from the previous
image is not reliable and properly switches to spatial interpolation.

The conclusion that can be drawn is that the quality gain of using nonlinear interpolation
techniques instead of linear interpolation is small. Because of the aliasing. it is not possible to
design a nonlinear interpolation filter which performs equally well for all edge directions.
Thus the simple fixed lattice subsampling system cannot be improved significantly. Therefore
in the next two chapters we look at more advanced systems which use an adaptive instead of a
fixed lattice.
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Figure 3.23: Results of the MC-WEMH filter and MC-AWFMH filter compared with the
MC-FMH for the MOBILE sequence. Also shown is the switching behavior of the MC-
AWFMH filter.



Chapter 4

SPATIALLY ADAPTIVE SUBSAMPLING

In a spatially adaptive subsampling scheme the local spatial sampling frequency of the image
is adapted to the local image contents [Tani88] [Kish88]. A larger number of samples is used
to make up the detailed regions of the image. and fewer samples are used to make up the
image regions with low spatial activity. The specific shape of the sampling lattice is also
adapted to the local spatial frequencies. By using this technique, at the same data reduction
factor, an improvement of the quality over fixed lattice subsampling can be obtained at the
expense of a greater complexity. A problem which arises is the division of the samples over
the different regions of the image at the encoder side. This is the mode allocation problem.
Another problem is the interpolation of the irregularly distributed samples at the decoder side.

In this chapter we start with a theoretical analysis of spatially adaptive subsampling. The
quality improvement of spatially adaptive subsampling over fixed lattice subsampling is
investigated. After that the practical implementation of a spatially adaptive subsampling
scheme is discussed. Two different approaches to the interpolation are presented in separate
sections: the least-squares interpolation and the hierarchical interpolation. Then the mode
allocation, which is the most essential part of a spatially adaptive subsampling scheme. is
discussed. We show that the mode allocation can only be solved analytically if only two
different sampling lattices are used. To increase the effectiveness of spatially adaptive
subsampling, the number of different lattices should be greater than two. Therefore two
algorithms are discussed which enable an increase of the number of different lattices.

Next an extension of the algorithm is presented which also uses temporal adaptivity [Belf93b]
[Belf94]. The same principles on which the spatial adaptivity is based can be used in the
temporal direction. If the temporal activity is low. a lower temporal sampling rate is required
then in the case of violent motion. The temporal adaptivity can be exploited further by using
motion compensation.

This chapter is concluded by reporting several experiment results. The various mode
allocation schemes and interpolation methods are illustrated. Also the effect of the ditferent
system parameters is investigated. The motion compensated system is compared with a
system with only spatially adaptive subsampling.

4.1 Theoretical analysis of spatially adaptive subsampling

The simple spatially adaptive coding scheme shown in Figure 4.1 is used to examine the
advantage of spatially adaptive subsampling over fixed lattice subsampling. The aim is to



show how a spatially adaptive subsampling scheme can take advantage of a non-stationary
input signal. For the sake of simplicity the analysis is done in one dimension using the results
derived for the rate-distortion function discussed in Chapter 2.

Subsampling

Input oo .

AN

A

!
1
)
Figure 4.1: A simple spatially adaptive subsampling coding scheme.

To account for the non-stationary nature of the input signal, we consider a one-dimensional
signal that is subdivided in N, distinct equally sized regions (e.g. lines in an image) with
different statistics, so that the power spectral density functions S;(w) differ from each other.
We assume that the power spectral density functions exist and are monotonically decreasing,
so the corresponding rate-distortion function Di(R;) of each region is convex. All regions
have the same number of samples and all samples are fed into a single coding scheme. The
coding scheme consists of parallel subsampling operations, where each individual operation
is applied to one region. The subsampling factor of each region varies. In Section 2.3 we have
seen that the bit rate varies proportionally with the subsampling factor. The regions are also
interpolated independently from each other.

The total relative bit rate R, is given by the average of the relative bit rate R, of each region:
N

YR, (R =0 4.1
F k=1

R - 1
=N
Because the regions are interpolated independently of each other, the total mean square error
distortion D,A(Rt) after coding is given by:

N,

1
DAR) =~ LD (Rp) 4.2)
k=l

The aim of the bit allocation is now to minimize the total distortion as defined in (4.2) under
the constraint of Equation (4.1). We define the optimal bit allocation as the point (Rl~-~~»RN,)
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in the N,-dimensional space for which the total distortion DzA(R,) is minimal. We now show

how we can express Ry as a function of Sy () for an optimal bit allocation.
The first part of the proof is similar to what was done for subband coding in [Pear91]. We
introduce the N,-dimensional vector p = (p],...,er) with the elements p; equal to:

Ry
N,R,

Pk (4.3)

Each p; represents the fraction of the contribution of each region & to the total average bit rate.

Substituting this relation into {4.1) gives

N,
Y=l (p =0 (4.4)
k=1
If we substitute Equation (4.3) into (4.2) then (4.2) can be rewritten as
1 N,
DA ="~ XD (PN, Ry) (4.5)
r k=1

where D,A is no longer a function of R, but of p.

The Kuhn-Tucker theorem states that if f(p) is a convex function over the convex region

defined by p = (p| ,...,er) (P20, 2:/:1 pr = 1), then for some constant 0 the conditions

26(p) 20, p; =0

W: . ke {l,....N,} (4.6)
L:G, pr >0

are necessary and sufficient for a minimum point of f(p). A proof of this theorem can be
found in [Gall68]. The constant 6 is the maximum value of the partial derivatives of f(p) at
the minimum point.

This theorem can be applied to Equation (4.5) to obtain the minimum of the distortion D,*(p)
because with Equation (4.4) the constraints for the p,'s are satisfied. We now get the

tollowing sets of relations:

9 ( | N, W JZ@, Py =0
o N—ZDk(/7sz,.R,) = . ke {l....N,} (4.7)
/?/(k rk=1 =0, p>0
which can be simplified to
20, p, =0
L 9D (PN Ry ke {l...,N,} (4.8)
N, Iy - e o
! Pk LZB . p >0

65



Solving this equation for the R}'s gives

[ o
ZV. Rk :0
DRy | K
Tk . ke {l,...N,} (4.9)
IR, | o
t:i, Rk >0
RI

Note that the threshold 8 is negative because the rate-distortion function is monotonically
decreasing. From Equation (2.25) we know that the first derivative of the rate-distortion
function is equal to -Si(R; ), so the previous equation can be rewritten to:

Sy (nRy) = . ke {l....N,} (4.10)

{: -——, R, >0
R,
This relation determines the number of bits assigned to each region at the optimal bit
allocation. The interpretation of this relation is as follows. If the power density function is
below the threshold -6/R; then the necessary part of the Kuhn-Tucker states that no bits are
assigned to this region and this region is not coded. Otherwise, if the power density function
intersects with the threshold, that region is coded. The bit rate assigned to this source is
proportional with the intersection value on the o-axis.

1S((z))

- 0 nR, TR, T

Figure 4.2: Physical interpretation of the optimal allocation. Shown are the power spectral
density functions of three different regions fed into one coding scheme.

An illustration of this is given in Figure 4.2. In Figure 4.2 region 3 is not coded because its
power spectral density function is below the threshold. At this specific bit rate the energy
contribution of this region is low, hence omitting it has little effect on the total distortion. The
intersection of region 1 is at a greater distance from the origin than region 2, so more bits are
assigned to region 1.
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The conclusion is that if the available bits are optimally divided over the different regions
instead of assigning a fixed amount to each region, the total distortion reaches a global
minimum. As the bit rate is directly coupled with the subsampling factor, this is the main
principle on which spatially adaptive subsampling is based. Different subsampling factors are
used for different regions in the image depending on the shape of the local power density
function.

If fixed lattice subsampling is used, the bit rate R; of each source is a priori fixed to
R, =—R, 4.11)

so the total distortion D,F is equal to
R
)

Df (R)= v (4.12)
r

N
1

N YDy (
rk=1

By using the same line of reasoning and using the necessary part of the Kuhn-Tucker

theorem, the conclusion is that fixed subsampling is Ol’]ly optimal if
A(TT—) = T—), v, ) e )
k N,. { Nr { r )

Only in this case the intersection of each source with the threshold is identical. However in
most of the practical situations the power spectral densities differ and the performance of
spatially adaptive subsampling is therefore better than the performance of non-adaptive
subsampling. Despite the fact that the above analysis is one-dimensional, the same conclusion
holds for the two-dimensional case.

4.2 Spatially adaptive subsampling in practice

Now that we have shown that theoretically spatially adaptive subsampling performs better
than fixed lattice subsampling, we consider its practical implementation. The ideal case
would be to segment the image into homogeneous regions which require the same spatial
sampling frequency and sample each region according to this frequency. Such a solution
would require a detailed analysis of the image and a large amount of side information would
be needed to transmit the shape of the regions. Therefore we subdivide the image into square
blocks and within each block one specific sampling lattice is used. The size of the blocks is
an important system parameter. If large blocks are chosen the amount of side information is
low, but the ability to adapt to the local spatial frequency contents would be insufficient.
Small blocks cause a large overhead but warrant a better adaptation.

Another consideration in a practical system is the sampling lattice which is used for each
block. Ideally each block should be sampled with a sampling lattice optimally suited to that
particular block. The algorithm described in [Cort93], which gives all the possible sampling
lattices given a specific compression factor, can be used for this purpose. Again this implies a
large amount of side information. Therefore only a limited set of possible sampling lattices is
used here. This set is designed in such a way that it gives a good coverage of the range of all
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necessary spatial frequencies. Following [Tani88] we call each specific sampling lattice a
mode. In Figure 4.3 some examples of modes are given with different data reduction factors.
For instance in mode 3 only one pixel is kept out of 16 pixels, giving a data reduction factor
of 16. Mode 1 can be used for highly detailed regions whereas mode 3 can be used for areas
with a slowly varying luminance. The number of possible modes is aftected by the block size,
because for decreasing block size the number of possible sampling lattices within the block
decreases as well. The minimum bit rate is achieved if the mode with the lowest sampling
density is assigned to all blocks. In this example the minimum relative bit rate is equal to
1/16.

[ el Je]
[S oo
®eC eO0
0000

Mode 1 Mode 2 Mode 3
Figure 4.3: Examples of different modes. The solid dots are the pixels which are
transmitted.
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Figure 4.4: Spatially adaptive coding scheme: (a) encoder, (b) decoder.

The overall encoding scheme is shown in Figure 4.4(a). The entire input image is first
prefiltered and subsampled for each mode. The subsampled images are fed into an
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interpolation module. After that the mean square difference with the original image is
evaluated for cach image block and each mode. These error values are used in the mode
allocation which assigns a particular mode to each block. Based on the mode allocation for
each block, one mode is selected and the corresponding samples are transmitted together with
the mode information. At the receiver the blocks are reconstructed again, where each mode
requires a different interpolation scheme (Figure 4.4(b)). Next the different blocks are
combined to form the decoded image.

The prefiltering operation in Figure 4.4(a) needs some special attention. The aim in a spatially
adaptive subsampling scheme is to adapt the sampling lattice to the local image contents. If a
block containing high spatial frequency components is sampled with only a few samples
without any prefiltering, then the aliasing causes large errors. These large errors make it easy
to detect this situation, and as a corrective action the mode allocation can assign more
samples to this block. If a prefilter is used, the severity of assigning a wrong number of
samples to a block decreases because of the absence of aliasing errors. Now only the loss of
resolution (the outband distortion) is used to detect the presence of high spatial frequency
components. This argument leads to the conclusion that a prefilter is not desirable.

There are, however, two other arguments in favor of a prefilter. First, the action of assigning
more samples to a block if there are any aliasing errors, implies that there are still samples
available. If however the desired bit rate is low, then it may not be possible to assign more
samples to the block. In this case the decoded image contains aliasing errors. This can be
prevented by the use of a prefilter. A second argument in favor of a prefilter is the fact that if
the aliasing errors are small, then these errors may not be detected by the mode allocation.
Especially the high frequency noise components cause this problem. Now the decoded image
also contains aliasing errors, which in the case of noise is visible as noise with a low spatial
frequency. In this situation a prefilter is also necessary. In practice a compromise can be made
by using a spatial prefilter with only a few filter taps. A short filter does not totally eliminate
the aliasing errors but only reduces them.

4.3 Interpolation

Figure 4.4(a) and 4.4(b) both contain a module that involves interpolation. The first
interpolation is done before the error computation block. To do an assignment of the different
modes to each block, the distortion of each mode for all blocks must be evaluated. This can
be done using either an a priori or an a posteriori estimator. An a priori estimation can be
done by defining some kind of defail parameter (see [EIme88]) and using this value as an
indicator of the expected distortion. This method will not be discussed further because of its
heuristic nature. An a posteriori estimation is based on the difference between the original
image and the reconstructed image, which requires interpolation at the encoder side. At the
receiver, interpolation is of course also necessary to reconstruct the subsampled image.

The problem of the interpolation at the decoder is that the subsampled image is only available
on a highly irregular sampling lattice because of the mix of modes used to represent the
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image. Therefore straightforward filtering methods cannot be used. A solution to this problem
is the introduction of a common intermediate sampling lattice into which each mode can be
converted. From this lattice the boundary pixels for the different modes can be deduced and
interpolation is possible. The problem of this method is that no optimal use is made of the
specific structure of the modes. Therefore next two alternatives are presented. namely the
least-squares interpolation and the hierarchical interpolation [Hesp93].

4.3.1 Least-squares interpolation

The least-squares interpolation method is an interpolation scheme which involves only the
pixels within each block. The pixels of each block can be represented by a two-dimensional
polynomial. If the order of the polynomial increases the estimation becomes more accurate,
but the number of coetficients of the polynomial also increases. In [Will91] this approach was
described for the coding of an image sequence at very low bit rate. The coefficients ¢y, of the
interpolating polynomial were transmitted instead of the image intensities. Here this method
is adapted for a subsampling application. The different modes are now formed by
constructing polynomials of different orders. For instance mode 2 from Figure 4.3 can be
represented by the polynomial
Fly) =yt Hegy+op ey (4.14)

For each mode the coefficients ¢y can be estimated at the encoder using a [east-mean-squares
estimation. With this method the interpolation error is minimized. In a subsampling
application it is not the polynomial coefticients that are transmitted but image intensities.
Thus the polynomial coefficients have to be converted to image intensities. The coefficients
can be transformed to intensitics using the fact that a set of PxQ samples uniquely prescribes
the coefficients ¢;; ot the two-dimensional polynomial f{x,v) given by

P—1 Q-
flay=2, %(,'Mxl_vk (4.15)

k=0 (=0
Therefore the image intensities can be obtained by evaluating the estimated polynomial f{x,y)
at regularly spaced positions. At the decoder, the missing pixels are obtained by transforming
the intensities back to a polynomial, followed by an evaluation of the polynomial on a tull
sampling lattice. Because the polynomial coefficients are real numbers and the pixel values
are integer numbers, there may be some truncation errors, causing a slight difference between
the polynomial estimated at the encoder and the decoder.

The method is first illustrated by a one-dimensional example. The 10 input samples u(r) are
given in Figure 4.5(a). In Figure 4.5(b) a fourth-order polynomial is estimated based on these
input samples. This polynomial can be described by five coefficients. Because we want to
transmit image intensities instead of polynomial coefficients, the estimated polynomial is
evaluated at five positions (Figure 4.5(c)). These sample values are transmitted. Thus
effectively the number of samples describing the original input samples is halved. At the
decoder, the fourth-order polynomial is estimated again, based on the five samples which are
transmitted. The missing samples are obtained by evaluating the polynomial at the missing
positions (Figure 4.5(d)).
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Figure 4.5: Example of least-squares interpolation: (a) Input samples, (b) Estimation of the
polynomial based on the input samples, (¢) Conversion of polvinomial to samples,
(d) interpolation ar the decoder.

Next we look at how the coefficients of the polynomial are estimated. We assume that a block
with dimensions P, xQ,, is subsampled to a block with dimensions P xQ,,. To represent this
block, a polynomial with order Q-1 in the x direction and order P-1 in the v direction is
necessary. This polynomial is estimated by constructing the polynomial matrix A with
dimensions P,Q xP Q.. where each row of the matrix consists of the evaluation of the
monomials x'v* (1 <7< Py 1 £k < Qg for each position (x,,,v,) (1 <x,<Q,. 1 <y, <P,)in
the original block. The image intensities i(x,.v,) of the original block are arranged in the
column vector i. The coefficient vector ¢ representing the coefficients ¢y, of f{x.y) are now
obtained by solving the matrix equation (c.g. [Stra76]):
c=(ATA) AT (4.16)

The polynomial prescribed by these coefficients can be used to interpolate the missing pixels
after subsampling at the encoder and the decoder side.

The advantage of this method is that the interpolation result at the decoder is the same as the
interpolation result at the encoder side because no information from neighboring blocks is
necessary. However this also implies that the interpolation is not continuous at block
boundaries, thus introducing annoying blocking artifacts in regions with slowly varying
intensities.
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4.3.2 Hierarchical interpolation

The blocking artifacts introduced by least-squares interpolation can be reduced by using
larger interpolation kernels which filter across block boundaries. At the encoder this is not a
problem because all the modes for all the blocks are available. However, at the decoder the
pixels necessary for the interpolation may not be available if a neighboring block is sampled
with a different mode. To avoid such problems, a hierarchical set of modes has to be used. In
a hierarchical set, mode n+1 is always a subset of mode n (we assume that the modes are
ordered by decreasing sampling density):
{xIx e mode; .} c {xIxe mode,}. ke {l,.... M -1} (4.17)

where M represents the number of modes. For instance. the modes given in Figure 4.3 form a
hierarchical set. The ditferent modes can now be interpolated by low-pass filtering the
previous mode in the hierarchy.

The interpolation process is illustrated in Figure 4.6. At the lowest level, the pixels
corresponding with the pixels necessary for the mode with the smallest sampling density
(mode 3) are combined into one image with a regular sampling lattice. This includes also the
pixels from blocks which are subsampled with a different mode. This image can be
interpolated because the required boundary pixels on this low resolution sampling lattice are
always present in the neighboring blocks. Next, the pixels necessary for mode 2 are added to
the interpolated image after which another interpolation tollows. Finally the same procedure
is repeated for mode 1. Hence the image is interpolated by building it up from the lower
resolution levels and by adding the necessary pixels at each level of the hierarchy.

Mode |

D Mode 2
D Mode 3

Figure 4.6: Hierarchical interpolation.

This interpolation scheme gives a poorer interpolation result at the decoder than the
interpolation made at the encoder when all the required pixels were available. This is because
an estimation of the boundary pixels is used. instead of the original boundary pixels.
However, the blocking artifacts are no longer dominating. Note that the blocking is a visual
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artifact and that an elimination of this artitact is not reflected in the MSE. The severity of this
loss of performance is cxamined in Section 4.6.

4.4 Mode allocation

The mode allocation is of great significance as it influences the output quality considerably.
The optimal mode allocation problem in a constant bit ratc application can be formulated as
follows:

In a system with M different modes and Ny, blocks, assign a mode k (ke {1,....M})
to each block I (le {I...Np}) in such a way that the total distortion is minimal

under the constraint that the bit rate is less or equal to the desired bit rate.

An alternative formulation in a constant guality application is to seek for the minimum bit
rate which achieves a given distortion. As the allocation process is driven by the total
distortion, the distortion measure used in the mode allocation process is an important factor.
In the ideal case the system should be driven by the HVS. Because of the lack of an objective
measure based on the HVS, the MSE is used as a distortion measurement.

The objective of minimizing the overall distortion implies that the total distortion can be
computed at the time the mode allocation is carried out. As we saw in the previous section,
this is not the case if hierarchical interpolation is used at the receiver. Using this interpolation
scheme, boundary pixcls of neighboring blocks are necessary and these are only available
after the mode allocation. Hence the mode allocation is performed on an estimate of the
distortion and not on the actual distortion. The effect of this approximation is investigated in
Section 4.6.

A brute force search for the mode allocation tries all the modes on each block and takes the
combination of modes with the smallest distortion. In a practical situation this is not feasible

because the number of possible allocations is equal to M™b. As the number of blocks Srows
linearly, the number of allocations increases exponentially. In a system with 3 different modes

and a block size of 8x8, an image with dimensions 720x576 pixels requires +]03091
iterations. Therefore in the following sections more sophisticated mode assignment schemes
are discussed.

4.4.1 Two-mode allocation

In this section a mode allocation scheme based on an analytical solution is described. The
equations which have to be satisfied in order to achieve a given relative bit rate R, are:

M M
Do =1r 2oy R =R, (4.18)
k=1 k=1

where oy is the fraction of the blocks which are assigned to mode &, and Ry, is the relative bit

rate associated with mode k (R;> Ry, ). The first relation states that a mode is assigned to
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every block and the second relation states that the weighted sum of the bit rates of all modes
should equal the total relative bit rate R,. This pair of equations with M unknowns can only

be solved analytically if the number of modes is equal to two [Tani88] or if the rate-distortion
functions Dy(R;) are known analytically [Huan63]. In the latter case the equations can be

solved using the Lagrange-multiplier method, which leads to the result in Equation (4.9).

If only two modes are used, then Equation (4.18) becomes
o +0y = 1

. 4.19
G]R1+G2R2:R[ ( )
From these equations ¢, and ¢, can be solved:
R, - R R —-R
o= gy = (4.20)
Rl -Ry © R-R

To minimize the distortion, first mode 2 is assigned to all the blocks. Next mode | is assigned
to a fraction o of the blocks with the highest distortion. This leads to an optimal mode
assignment in the sense of minimizing the overall distortion. In Section 4.4.3 we see that the
two-mode allocation algorithm is a special case of the convex hull allocation algorithm. A
system with only two modes is also not very useful.

4.4.2 Histogram mode allocation

In [Kish88] and [Saku90| a heuristic algorithm is presented to solve the mode allocation
problem. A variation of this algorithm for different mode structures was also described in
[Ashi88]. This algorithm is only suitable for three modes and is based on the two-dimensional
histogram of the error differences between the different modes. The algorithm has some
similarities with the greedy bit allocation algorithm used for vector quantization (e.g.
|Gers92]). The principle of this algorithm is illustrated using Figure 4.7.

Mode 2

Conversion loss

Mode 3

I

Conversion gain

Figure 4.7: The principle of the histogram mode allocation.
First for all blocks the distortions DD, and D4 are computed which are caused by assigning

respectively mode 1, 2 and 3 to each block. Next mode 2 is assigned to all blocks and for each
blocks two values are computed:
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o The conversion gain: the decrease of the distortion caused by the assignment of mode 1 to a
block instead of mode 2 (D5 - D).

« The conversion loss: the increase of the distortion caused by the assignment mode 3 to a
block instead of mode 2 (D3 - D).

These two values form a coordinate of a point in the two-dimensional histogram shown in

Figure 4.7.

Now two thresholds 7| and T are introduced:
o If the conversion gain of a block is higher than 7|, mode 1 is assigned to that block. A
decrease of this value lowers the distortion but increases the bit rate. The initial value of 7}

is equal to the maximum conversion gain.

« If the block is not assigned to mode 1 and the conversion loss is lower than 7>, mode 3 is
assigned to that block. An increase of this value raises the distortion and lowers the bit rate.
The initial value of 75 is equal to zero.

Note that the initial values of these thresholds are consistent with the initial mode assignment.

If the bit rate using the initial mode assignment is higher than the required bit rate, the bit rate
is decreased by increasing 75 until the desired bit rate is reached. If the bit rate is lower than

the required bit rate then 7' is lowered instead. Now the total distortion is computed. Next
mode 1 is assigned to the block with the highest conversion gain, increasing the bit rate but
lowering the total distortion. The bit rate is again lowered by increasing 75. hereby increasing
the total distortion. If changing the two thresholds decreases the overall distortion, the process
is repeated. The process stops when the overall distortion no longer decreases. An example of
a histogram allocation result is given in Figure 4.8. The dots characterize each individual
block of the image, and the shaded regions are prescribed by the final values of 7| and 75.

logm(D.‘._Dl)

3.5

]
n

¥

log

t=110

(DZ-D\)

Figure 4.8: An example of histogram mode allocation. The algorithm is used on the LENA

image with a block size of 1616 pixels and a data reduction factor of 4.

The two disadvantages of this algorithm are:
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« It is only suitable for a system with three different modes. This causes a poor adaptation to
the local image content because of the limited size of the set of modes.

« Optimality is not guaranteed because starting from an initial allocation no systematic
attempt is made to find a global minimum of the distortion and the algorithm stops in what
may be a local minimum.

4.4.3 Convex hull mode allocation

Here we describe a mode allocation algorithm that allows for an arbitrary number of modes

[Belt93b][Hesp93]. The algorithm is optimal if the blocks are interpolated independent of

each other. It is based on the convex hull bit allocation scheme used for assigning quantizers

to the subbands in a subband coding scheme |West88a]. Two translations have to be made to

this algorithm:

« The subbands which have to be coded correspond to the blocks into which the image is
subdivided.

» The quantizers correspond to the different modes.

The algorithm is based on the combined rate-distortion function D,A(R,) as defined in Section

4.1, which is formed by the lower convex hull in the plot of all possible mode allocations. All
the rate-distortion functions Di(R;) of the blocks contribute to this combined rate-distortion
function. According to the definition of the rate-distortion function, the optimal mode
allocation must lie on the combined rate-distortion function. By evaluating only the points
which lie on the combined rate-distortion function, eventually the optimal mode allocation,
given a required bit rate, must be reached.

First it is necessary to determine the convex hull of the rate-distortion function Di(R)) of each
block by removing the modes which cause the rate-distortion function to be non-convex. In
Section 2.3 we have seen that the rate-distortion function is not always convex and that the
convexity depends on the shape of the power spectral density function of the block. For an
entire image this may be a valid assumption, but for a small block in an image this no longer
holds in general. Convexity is also not possible if different sampling lattices with the same
sampling density are used. These lattices all give rise to the same bit rate but not necessarily
to the same distortion.

For the optimal mode allocation, next the combined convex hull of all the blocks together
must be determined. If each block is coded independently. then the total relative bit rate R, is

equal to the average of the relative bit rate of each block:

l "Vb
R =— 2R, (4.21)
N k=i
If the blocks are interpolated independent of each other, then the total distortion D, is equal to
| N,
DAR)Y=—— 2D (Ry) (4.22)
N =1
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Now suppose that a mode with a relative bit ratc Ry is assigned 1o the block & giving a
distortion Dyj. We assume that this point lies on the convex rate-distortion function of the
block. Next we choose a new mode for this block with a higher relative bit rate R;> and a new

distortion Dy,. The slope of the rate-distortion function D (Ry) in this point is equal to

(D> — Dy
slopey, = k2= 2kl (4.23)
(Ria = Ryy)
A change of the allocation of one block also affects the slope of the combined rate-distortion
function. The slope of the combined rate-distortion can be computed with the Equations
(4.21) and (4.22):

(Dy+.. +Dpo+.. 4Dy ) = (Dy+. 4D+ 4Dy )

slope, =
o (Rit AR+ ARy )= (R4 AR+ ARy )
(4.24)
(Dyr — Dkl)
(Rpr — Ry

The conclusion is that the block with the smallest slope on the block rate-distortion function
also gives the smallest slope on the combined rate-distortion function because the two slopes
are equal. Now we can usc the convexity of the rate-distortion function. If, starting from a
point on the combined rate-distortion function, we choose the transition with the smallest
slope, this new point must lie on the combined rate-distortion function because the slope of
this function is monotonically increasing. The same line of reasoning can be applied to any
subsequent transition. This gives us a method to combine the block rate-distortion functions
of each block into a combined rate-distortion function.

The mode allocation algorithm starts by assigning to each block the mode with the highest
distortion. This point gives the lowest bit rate and highest distortion so it is guaranteed that
this point lies on the combined rate-distortion function. Starting from this point for each block
the slope after assigning the next mode to this block is computed. The block with the lowest
slope is assigned a new mode. Because of the convexity of the combined rate-distortion
function this new mode allocation again lics on both the block rate-distortion function as the
combined rate-distortion function. Starting from the new allocation the described procedure is
repeated. The algorithm terminates when the desired bit rate is reached. Hence instead of
evaluating all the possible mode allocations, only those which lie on the combined rate-
distortion function are examined. This causes a drastic decrease of the computational load
while still guaranteeing optimality.

The complexity of each iteration step is of order log(N,), because it requires a search for a
minimum in an ordered list. The maximum number of iterations is equal to N;XM in the case

were every block traverses through each mode. An example of the points which are evaluated
is given in Figure 4.9. Also the points examined in a brute force allocation are shown. We see
that the convex hull allocation follows the lower convex hull of all possible mode allocations.
The brute force allocation requires 81 evaluations of the rate with the corresponding
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distortion, whereas the convex hull allocation requires maximally 9 iterations depending on
the required bit rate.

D (MSE)
500
400
x &
X %
300 gg X X Brute Force Allocation
x X ‘ .
& Convex Hull Allocation
X
200 %
100
0
0 0.25 0.5 0.75 1

R,
Figure 4.9: Evaluated points in a mode allocation with 4 blocks and 3 different modes
using the LENA image.

4.5 Motion compensated spatially adaptive subsampling

Motion compensation has been used in many coding schemes to exploit the temporal
correlation in image sequences (e.g. [Nino82[, [Wang92]). If a correct motion compensated
prediction is made then no additional information has to been transmitted besides the motion
vectors. A spatially adaptive subsampling scheme can benefit from this property if for a
particular region the spatial correlation is low but the temporal correlation is high. In this case
spatially adaptive subsampling would require a lot of samples, whereas motion compensation
requires none.

The overall system is shown in Figure 4.10. The shaded area contains the components which
were also present in the spatially adaptive subsampling scheme shown in Figure 4.4(a). A
motion compensated prediction of the actual image is made using the previously
reconstructed image stored in the image memory and the motion vectors. The prediction error
is determined by subtracting the original image from the motion compensated reconstructed
image. The prediction error is fed together with the interpolation errors from the other modes
into the mode allocation. The mode allocation now starts by assigning to each block a mode
with zero pixels. The interpolation for this mode is based on the motion compensated
reconstructed image. If the motion compensated prediction error is large, then only spatially
subsampling is applied without using any motion information. Hence both the spatial and
temporal correlation are exploited.

An advantage of this scheme is that it implicitly adjusts the threshold for the decision

between temporal and spatial subsampling. If the desired bit rate is high then the algorithm is
biased toward spatial subsampling, and if the bit rate is low temporal subsampling is
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preferred. Another advantage of this scheme is that there is a mode which requires no
additional pixels, so the maximal compression factor is no longer bounded by the block size,

as is the case when only spatially adaptive subsampling is used.

il

Made [nter-
Allocation

polation

. Motion [mage
Compensation Memory
=
Motion | ... oo S P
Estimation

Figure 4.10: Motion compensated spatially adaptive subsampling scheme.

4.6 Experiment results

In this section, the effects of the different system parameters are investigated for spatially
adaptive subsampling and motion compensated spatially adaptive subsampling.

4.6.1 Implementation details

Three different mode schemes are used in the experiments:

schemel:

scheme?2:

scheme3:

This scheme is the mode structure as shown in (Figure 4.11(a)).

The second scheme consists of five different modes (Figure 4.11(b)). Starting
from a block containing all samples, each time quincunx subsampling is used on
the previous block. This results in alternating orthogonal and quincunx sampling
lattices.

The third scheme is a modification of scheme! (Figure 4.11(c)). In between the
existing modes, two extra modes are introduced. One mode is a horizontal
subsampling of the previous mode and the second extra mode is a vertical
subsampling of the previous mode. The number of modes is increased to seven.
Note that this is not a hierarchical set, so for some modes an intermediate
sampling lattice is necessary. For example mode 7 is first interpolated to mode 4,
and from this image the necessary boundary pixels for mode 5 and 6 are
obtained.
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Figure 4.11: The different mode structures which are used (open dots are discarded pixels):
(a) scheme 1, (b) scheme2, (b) scheme3.

As a reterence in all experiments, unless otherwise stated, a system with the mode structure
schemel, a block size of 4 by 4 pixels and hierarchical interpolation is used. This system is
referred to as the standard system. The convex hull mode allocation scheme is used driven by
the mean square error. Side information is accounted for in all experiments by reserving
log,(M) bits per block if M different modes are used. To eliminate noise aliasing effects a
prefilter with three taps is used. For the interpolation a maximally flat interpolation filter with
seven taps is used.

4.6.2 Spatially adaptive subsampling

In Figures 4.12 and 4.13 a coded detail image of the first image of the MOBILE sequence is
shown together with the difference image and the mode assignment. The number of
transmitted pixels is halved with respect to the original number of pixels. The mode with the
highest sampling density is shown as a black block and the mode with the lowest sampling
density as a white block. It can be observed that the regions with a constant luminance are
assigned a mode with a low sampling density whereas detailed regions are assigned a mode
with a high sampling density.

The coding artifacts are the loss of isolated fine spatial detail (e.g. the fence posts in the
background) and elimination of noise in flat regions. Large areas of high spatial activity are
easily identified as such and are assigned a large number of pixels as far as the desired bit rate
permits. However, if the bit rate is low, some of the spatial detail has to be sacrificed. This
may result in spatial inconsistencies of the mode allocation. The corresponding artifacts are
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isolated blocks with a low sampling density surrounded by blocks coded with a high
sampling density. The coding results are also shown numerically in Table 4.1.

Table 4.1: Coding results of MOBILE detail.

Configuration Expected MSE  Actual MSE
Standard 26.2 329
Standard but with histogram allocation 26.5 31.9
Standard but with scheme3 19.7 235
Standard but with scheme3 and least-squares interpolation 13.6 13.9

Histogram allocation and convex hull allocation are compared with each other in Figure 4.12.
The difference between the two allocation schemes is small, which is also reflected by the
small differences in the expected MSE. Note that there is a difference between the expected
MSE and the actual MSE. The actual MSE for histogram allocation is even smaller than
convex hull allocation. This is caused by the distortion introduced by hierarchical
interpolation which is not accounted for in the mode assignment. The visual quality is not
good because there are still some image structures visible in the difference image. indicating
that significant parts of the image are distorted.

Hierarchical interpolation is compared with lcast-squares interpolation in Figure 4.13. The
number of modes is increased to seven. As can be theoretically expected, least-squares
interpolation gives a better performance. The image details are captured more efficiently than
they are in hierarchical interpolation. There is still a slight difference between the expected
MSE and the actual MSE because of truncation errors introduced by the conversion of the
polynomial coefficients to the pixel intensities. The blocking artifacts introduced by least-
squares interpolation are not visible in this example. The visual quality is significantly higber
as most of the image details are no longer present in the difference image.

If we compare Figures 4.12 and 4.13 the real benefit of convex hull allocation compared to
histogram allocation becomes clear. The performance of the histogram allocation does not
differ much from the optimal allocation. However, using the convex allocation scheme it is
also possible to benefit from the fact that increasing the number of modes has a positive
influence on the performance.

4.6.3 Effect of the system parameters

The parameters of a spatially adaptive subsampling system are now discussed in more detail.
This is done using the LENA image. The results of the different experiments are shown in
Figure 4.14. To compare the experiments with each other, in all the experiments the solid line
represents the standard configuration as defined in Section 4.6.1.

First, spatially adaptive subsampling is compared with fixed lattice subsampling for different

bit rates in Figure 4.14(a). For the fixed lattice subsampling, either horizontal, vertical or
quincunx subsampling is used and each time the sampling lattice which gave the best result is
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(c) (f
Figure 4.12: Comparison with mode scheme "schemel” between histogram allocation: (a)
coding result, (b) mode assignment, (c) stretched difference image, and convex hull
allocation: (d) coding result, (e) mode assignment, (f) stretched difference image.



(c) (f)

Figure 4.13: Comparison with mode scheme "scheme3" between hierarchical interpolation:
(a) coding result, (b) mode assignment, (¢) stretched difference image, and least-squares
interpolation: (d) coding result, (e) mode assignment, (f) stretched difference image.
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Figure 4.14: Simulation results of LENA with different, (a) subsampling schemes, (b) block
sizes, (¢) mode schemes, (d) interpolation methods.

selected. We see that spatially adaptive subsampling gives a significant improvement over the
best fixed subsampling result. The difference decreases with decreasing rate because
eventually, for zero rate, the mean square error is equal to the image variance in both coding
schemes.

In Figure 4.14(b) the effect of different block sizes is shown. Small blocks give a better
performance than large blocks because of a better adaptation to the local spatial frequency
contents. For low bit rates, the advantage of small blocks decreases because of the relative
increase of the amount of side information compared to the total bit rate. In Figure 4.14(c) the
effect of different mode structures is shown. If the number of different modes increases, the
SNR increases as well. This is because a better adaptation is possible and a closer match can
be found between the necessary local spatial sampling frequency and the available sampling
frequencies. In Figure 4.14(d) different interpolation methods are used. Least-squares
interpolation gives a better result than hierarchical interpolation.
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The optimal combination which follows from the investigated variations in this experiment is
a system with a block size of 4 by 4 pixels, the mode structure scheme3 and least-squares
interpolation.

4.6.4 Motion compensated spatially adaptive subsampling

Motion compensated spatially adaptive subsampling (MC/SA-SS) is compared with the

following other coding schemes:

SA-SS: Spatially adaptive subsampling. This scheme uses #no motion information and
was discussed in the previous section.

MC/NSS:  Motion compensated coding with no subsampling. In this scheme there are only
two modes: if a good prediction is made then no additional information is
transmitted and if a bad prediction is made the original image is transmitted.
Hence this scheme uses only temporal and no spatial adaptivity.

The simulations were done using the MOBILE sequence. The size of the blocks was 4 by 4
pixels and for the spatially adaptive subsampling the mode scheme scheme3 was used with
least-squares interpolation. This configuration of the parameters is chosen because the
experiments in the previous section indicated that these parameters give the best result. The
motion vectors were estimated using hierarchical block matching with two levels with pixel
accuracy of the motion vectors (for details see Chapter 3). The results are averaged over the
entire sequence and shown in Figure 4.15 for five different relative bit rates.

Average SNR (dBy

20
HKSA-SS

) +MO/NSS
. * MC/SA-SS

0.1 0.2 0.3 0.4 0.3
R

Figure 4.15: A comparison of the different algorithms. The average SNR for the MOBILE
sequence is shown.

We see that spatially adaptive subsampling without motion compensation gives the poorest
performance. This is what can be expected because no use is made of the temporal correlation
in the image sequence. At zero bit rate the SNR will be equal to 0 dB. After motion
compensation, the redundancy in the sequence is reduced considerably as is shown by the
MC/NSS scheme. Now the SNR at zero bit rate is no longer dictated by the 0 dB boundary but
controlled by the prediction error variance and the image variance. Finally, motion
compensated spatially adaptive subsampling gives the best SNR results because both the
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spatial and temporal correlation can be exploited. The difference with the other schemes
increases for low bit rate when the efficiency of the algorithm becomes more important.

Typical artifacts which are introduced in the motion compensated spatially adaptive
subsampling system, compared to the spatially adaptive subsampling system, is that besides
spatial inconsistencies, also temporal inconsistencies are introduced. If a block cannot be
predicted temporally then it is coded spatially, which gives different visual artifacts.
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Chapter 5

MOTION ADAPTIVE SUBSAMPLING

In this chapter we focus on a subsampling technique known as sub-Nyquist sampling and
some of its variations. Using this technique, the image sequence is spatially sampled with a
frequency lower than the necessary Nyquist frequency, without taking precautions against
aliasing. The aliasing can be undone at the decoder using temporal interpolation instead of
spatial interpolation. In this way the full spatial resolution is preserved. Sub-Nyquist
sampling can only be used for the stationary parts of the image sequence. If the image
sequence contains regions with non-stationarities, for example because of motion, an
alternative subsampling method has to be used. Hence, motion detection has to be used to
segment the image into the two types of regions. Two practical coding schemes which use
sub-Nyquist sampling are discussed: the Japanese MUSE [Nino87] system and the European
HD-MAC system [Vree89] [Hagh90].

Motion compensated sub-Nyquist sampling [Belf92a] can be used to enlarge the velocity
range for which sub-Nyquist sampling is possible. Now motion estimation has to be
performed instead of motion detection. A problem which has to be solved is the problem of
the critical velocities [Giro85] [Belf91]. These prevent a straightforward use of motion
information. Aspects which are also addressed are how motion compensated sub-Nyquist
sampling can be modified to incorporate motion information estimated with fractional
accuracy [Belf93a] and what precautions have to be taken in case of an inaccurate motion
estimate.

In the experiment results section, a comparison is made between fixed lattice subsampling,
sub-Nyquist sampling and motion compensated sub-Nyquist sampling. The latter scheme is
investigated in more detail.

5.1 Sub-Nyquist Sampling

First, the principle of sub-Nyquist sampling is discussed. Next, a specific explanation is given
for image sequences. A description is given in both the spatial and frequency domain.

5.1.1 Principle

The principle of sub-Nyquist sampling is illustrated using a simple example [Anne86]. For
the reason of simplicity we consider only the horizontal spatial dimension. We assume a two-
dimensional spatially-continuous and time-discrete signal i.(x,r) with a spatial bandwidth W.
We assume that the signal does not change in the temporal direction, therefore the time index



is dropped in the following discussion. This signal is spatially sampled according to the
Nyquist theorem with a sampling period T equal to 1/2W, which gives at each instance of the
time the discrete signal i(x) (see Figure 5.1(a)):
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Figure 5.1: The principle of sub-Nyquist sampling in two dimensions: (a) normal
sampling, (b) sub-Nvquist sampling.

In the spectral domain, sampling gives rise to replicas spaced by a distance 2W, so the Fourier
transform /(w) of the sampled signal is (see Figure 5.2(a)):
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where / (®) is the Fourier transform of i (x). From this sampled signal the original spatially
continuous signal can be recovered with a perfect low-pass filter with a cut-off frequency at
w=W.
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Figure 5.2: (a) Original spectrum, (b) Spectrum at t = 0, (¢) Spectrum at t = 1.

In sub-Nyquist sampling, data reduction is achieved by using a sampling period which is
larger than 7. In this example the continuous signal is sampled with a sampling period of 2T
and the first sample is taken at x = 0. We call this signal iy(x) (see Figure 5.1(b)):

88



+oo
io(x)= i (2KT)8(x—2kT) (5.3)

k=—oco
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The first part of this expression is equal to the expression given for /(w) in Equation (5.2).
The second part represents the extra replicas introduced at o =2m-(k+Y%2)/T which are
responsible for the aliasing. These components are shown with dark shading in Figure 5.2(b).
Since the Nyquist criterion is not satisfied, the original signal can not be recovered.

At =1 the same signal is sampled again with a sampling period of 27 but with the first
sample taken at x = 7. This sampled signal i4(x) (see Figure 5.1(b)) is:
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It is obvious that the original discrete signal i(x) can be reconstructed by taking the sum of
ip(x) and i7{x):
i(x) :l()(Y)+l[(.X) (5.6)

This argument of course holds in the frequency domain as well. The Fourier transform /()
of ix{(x) is (see Figure 5.2(c)):
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This expression has the same form as Equation (5.4) but the extra replicas have a negative
phase with respect to the extra replicas of /y(w). Adding /(®) and I{®) cancels out the extra
replicas and gives the spectrum /(w) of the originally sampled signal.

In conclusion, in sub-Nyquist sampling data reduction is achieved by using the fact that at
each time instance only a part of the total number of required samples are taken. At the
decoder, the original signal can be recovered by combining the samples taken at the different
instances in time. This operation can be seen as a simple temporal interpolation filter.
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5.1.2 Sub-Nyquist sampling of image sequences

Consider an image sequence that contains two identical consecutive images (Figure 5.3).
Now sub-Nyquist sampling is applied to this sequence. The original image is defined on an
orthogonal lattice L,. The lattice used for the subsampled image at 1 = k-1 is L. The
sampling density is halved compared to the original orthogonal sampling lattice. At ¢t = k the
lattice

Ly ={xeL,Ix¢g L;_,}

5.
= xIx=y+(10) .ye L;_} (5.8)

is used instead of L;_;. The second line of this equation shows that Ly is a coset of the lattice
L. As was shown in Section 2.1.1, the union of these two lattices completely covers the
entire image. Thus if these two lattices are combined using a fixed 2-taps temporal
interpolation filter, the original image can be reconstructed exactly at the receiver. Hence this
technique results in an output image with the full original spatial resolution. This is only true
if the content of the scenc is stationary.
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Figure 5.3: Sub-Nyquist sampling of an image sequence using a quincunx lattice.

If the sampling lattice [;_; contains more than two cosets, i.e. the sampling density is lower,
then the number of image involved in the interpolation increases. A higher compression ratio
can be achieved at the expense ot a longer temporal interpolation filter. As a consequence, the
image sequence has to be stationary over a longer period of time.

In Figure 5.4, sub-Nyquist sampling is described in the spectral domain for a completely
stationary image sequence using the same sampling structure as Figure 5.3. For the sake of
simplicity, only the intersection of the spectrum with the w-axis is shown. The replicas
introduced because of the spatial subsampling are indicated as dashed lines. They are located
in the empty space between the original temporal replica. Because of the quincunx
subsampling lattice, the replicas are shifted along the w,-axis with respect to the original
spectral components. The temporal space is empty because there is no motion causing the
temporal bandwidth to be equal to zero. Therefore it can be said that in this case the temporal
resolution is sacrificed in favor of the spatial resolution. It the sampling lattice has a lower
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sampling density, more replicas are introduced and the area between the original replicas will
become more densely packed. The shaded area in Figure 5.4 indicates the passband of the
temporal filter. After temporal filtering only the replicas from the original image sequence are
retained. Note that the original replicas cannot be recovered by using a spatial interpolation
filter.
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Figure 5.4: Sub-Nvquist sumpling in the spectral domain in the case of no motion. The
shaded area indicates the pass band of the temporal inferpolation filter.

5.1.3 Velocity range

Sub-Nyquist sampling is not limited to completely stationary image sequences but is also
possible for a small range of velocities. Although a fixed temporal interpolation filter is used
and no further motion information is taken into account, it is also applicable to image
sequences containing little motion. The velocity range for sub-Nyquist sampling directly
depends on the interpolation filter used. If a low-pass filter is used with cut-off frequency B
then, using Equation (3.20), the velocity range for perfect interpolation is given by

¢ = iwi, vy = J_r—“iL (pixels/ image) (5.9
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In the case that W, = W, = m and a perfect low-pass filter with a cut-off frequency at Y2m is
used, the range is +%2 ]Sixels/imuge in horizontal and vertical direction. If a lattice with a
lower sampling density is used, the replicas come closer to the origin. In this case  must also
decrease, reducing the velocity range.

If the scene contains a camera pan, a large portion of the screen is moving with the same
velocity. To still use sub-Nyquist sampling in this situation, an estimate of the global motion
vector for the entire image is required. The global motion vector is used to compensate the
entire image, hereby increasing the stationary area. Essentially this means that a single fixed
motion compensated interpolation filter is used for the entire image.
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5.2 Implementation of sub-Nyquist sampling

The problem encountered in a practical implementation of sub-Nyquist sampling is that sub-
Nyquist sampling is only useful for a limited range of velocities. Therefore some kind of fall-
back mode has to be used for non-stationary regions. Also motion detection is necessary. In
this section two practical implementations of sub-Nyquist sampling are discussed. The
schemes are simplified versions of the Japanese MUSE system [Nino87] and European HD-
MAC system [Vree89]. Other examples of sub-Nyquist sampling can be found in [Tong87]
and [Scha87].

5.2.1 MUSE

The first system is the MUSE (Multiple sub-Nyquist Sampling Encoding) system. It was
developed by the Japanese broadcasting corporation (NHK) for the analog transmission of
HDTYV signals through direct broadcasting satellites using FM modulation. The scanning
format of the input signal is 1125 lines/1440 pixels/60 fields/2:1 interlace with an aspect ratio
of 16:9. The bandwidth of the input signal is 22 MHz, but the signal is sampled at a sampling
frequency of 48.6 MHz. The reason for this is explained later on. A variation on the MUSE
system is narrow-MUSE | Tana90] which is intended for terrestrial broadcasting.
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Figure 5.5: Simplified version of the MUSE encoder and decoder.

A simplified version of the encoding and decoding scheme is shown in Figure 5.5. The
encoding strategies for stationary and non-stationary parts differ and are therefore discussed
separately. The segmentation in a stationary and non-stationary part is in this case done on a
pixel basis. This detailed information can obviously not be transmitted to the decoder, as it
would cause a large overhcad. Therefore a scheme has been devised which enables the
detection of motion at the decoder based only on the transmitted pixels. The consequence of
this is that the subsampled stationary parts should have the same sampling structure as the
subsampled non-stationary parts.

The steps taken to encode the stationary parts are shown in Figure 5.6. The sampling lattice in

the spatial domain, the spectrum along the horizontal frequency axis and the support of the
two-dimensional spectrum are shown. The original image is shown in Figure 5.6(a). First the
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Figure 5.6: Encoding of the stationary parts in the MUSE system (the number behveen the
parenthesis indicates the horizontal sampling frequency): (a) original (48.6 MHZ), (b) field
quincunx subsampling (24.3 MHz), (¢) 12 MHz low-pass filter (48.6 MHz), (d) 4:3
conversion (32.4 MHz) and (¢) line quincunx subsampling (16.2 MHz).

area of the stationary parts of the image is increased by using one global motion vector to
compensate for camera panning. Next the frame is prefiltered using a diamond-shaped filter
and subsampled according to the field quincunx sampling lattice (Figure 5.6(b)). The
sampling lattice is shifted for the following frame, so this is the first sub-Nyquist sampling
stage. The subsampling causes the horizontal high-frequency components to fold back. Next.
an interpolation filter is applied in the horizontal direction, hereby converting the image back
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to the original sampling lattice (Figure 5.6(c)). Next the sampling lattice is modified by
changing the sampling frequency in the horizontal direction with a factor 3/4 (Figure 5.6(d)).
On this new sampling lattice line quincunx subsampling is applied which is also shifted for
the following frame, folding back the spectrum another time (Figure 5.6(e)). This is the
second sub-Nyquist sampling stage. Now it can be seen that the 3/4 sampling structure
conversion and the initial oversampling was intended to keep the frequency region around the
DC frequency free of any aliasing. At the decoder, this part of the spectrum is used for motion
detection.
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Figure 5.7: Encoding of the non-stationary parts in the MUSE svstem (the number between
the parenthesis indicates the horizontal sumpling frequency): (a) original (48.6 MHz), 4:3
conversion (32.4 MHz), (¢) line quincunx subsampling (16.2 MHz).

The encoding of the non-stationary parts is illustrated in Figure 5.7. Because of the non-
stationarity, each field has to be processed individually because successive fields belong to a
different instance in time. A field has half the resolution of an entire frame and the
corresponding original lattice and spectrum are shown in Figure 5.7(a). Starting from this
image, the sampling lattice is converted to the sampling lattice used for the stationary image
in Figure 5.6(d). The conversion is done by changing the sampling frequency in the
horizontal direction with a factor 3/4 (Figure 5.7(b)). To avoid aliasing, prefiltering is
necessary. Next, after another prefiltering operation, line quincunx subsampling is applied
(Figure 5.7(c)), giving the same sampling structure as the stationary branch.
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At the receiver. motion is detected based on the low-frequency part of the signal spectrum
which does not contain aliasing. Because the detection is based on a different signal then the
detection performed at the transmitter, the detection result may differ. At the receiver there
are again two branches. One branch uses a filter to interpolate the image spatially. The second
branch uses temporal filtering to undo the ditferent sub-Nyquist subsampling stages.

5.2.2 HD-MAC

The second system is the HD-MAC (High Definition - Multiplexed Analog Components)
system which is also originally intended for transmission through direct broadcasting
satellites. The scanning format of the input signal is 1250 lines/1440 pixels/50 tields/2:1
interlace with an aspect ratio of 16:9. The HD-MAC system is designed to be downward
compatible with D2-MAC |Anne86] [Bern90]|, which is the reason for some of the choices
made in the algorithm design. A D2-MAC receiver simply displays the samples which are
transmitted for the HD-MAC system without any interpolation.
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Figure 5.8: Simplified version of the HD-MAC encoder and decoder.

A simplified version of the encoding and decoding scheme is shown is Figure 5.8. HD-MAC
distinguishes between three different transmission modes instead of the two modes used in
the MUSE system. These modes vary with the amount of motion in the image sequence. Each
trame 1s divided into blocks of 8 by 8 pixels. Every block is subsampled according to one of
the three modes. The choice as to which mode is used for each block is transmitted as side
information in the DATV (Digitally Assisted TeleVision) channel, which uses the time
during the vertical blanking interval. At the decoder, the different modes are interpolated and
combined to form the complete, reconstructed image. As we see from this simple discussion,
HD-MAC results in a simple decoder because no motion detection is necessary at the
decoder. However, with the MUSE system, the detection is done on a pixel basis which
makes it easier to adapt to variations in the local displacement at the expense of a more
complex decoder.
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Figure 5.9: HD-MAC subsampling: (a) original, (b) mode 1, (¢) mode 2 and (d) mode 3.

An illustration of the different modes is given in Figure 5.9. The figure shows the sampling
structures over a period of two frames (80 ms) for a quarter part of a block. The sampling
structure for the entire block is formed by tilling this part over the entire block. The resolution
in the spatial frequency plane is also depicted. The original image is shown in Figure 5.9(a).
The different modes are used in the following situations:

e Mode 1 (Figure 5.9(b)) is used for stationary parts and has a periodicity of 80 ms. The input
images in this branch are processed on a frame basis. The diagonal trequency components
are sacrificed by using a quincunx subsampling lattice. The remaining samples are
transmitted using sub-Nyquist sampling. The transmission of the necessary samples is
divided into four parts. The numbers in Figure 5.9(b) indicate the order in which the
samples are transmitted.

o Mode 2 (Figure 5.9(c)) is used for slowly moving parts and has a periodicity of 40 ms. In
practice, this mode is used for parts of the image for which a proper motion estimate can be
made. This branch processes the sequence on a field basis. Again the diagonal frequency
components are discarded. Only pixels from one field are transmitted over a period of two
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fields. The missing field is interpolated at the receiver using motion compensated
interpolation. Therefore this mode requires the transmission of a motion vector.

e Mode 3 (Figure 5.9(d)) is used for moving parts for which no proper motion estimate can
be made. Now each subsampled field has to be transmitted without any delay. The
periodicity is therefore equal to 20 ms. Compared to mode 2. the horizontal resolution is
halved.

5.3 Critical velocities

If an image sequence contains little or no motion, then after subsampling the sequence can be
reconstructed using sub-Nyquist sampling. It the image sequence contains motion, direct
combination of the pixels from the different subsampled images is not possible. This problem
can be partially solved by using motion information for the interpolation. A motion
compensated interpolation filter is used instead of a fixed temporal tnterpolation filter.

Unfortunately, perfect reconstruction using motion compensated interpolation cannot be
achieved in all situations. For a given spatial subsampling lattice, there are certain object
velocities, called critical velocities [Giro85], which do not allow for a perfect reconstruction
of an object moving at that velocity. An example using the sampling lattice from Figure 5.3 is
given in Figure 5.10. In Figure 5.10(a) the horizontal velocity is equal to 1 pixel/image. We
see that after subsampling the replicas overlap with the original spectrum. It is now no longer
possible to recover the original spectrum. To show that this effect depends on the velocity, in
Figure 5.10(b) a velocity of 2 pixel/image is assumed. Now the replicas do not overlap with
the original spectrum and the image can be reconstructed with a motion compensated
interpolation filter. The conditions under which these critical velocities occur are discussed in
the next section.
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Figure 5.10: Critical velocities shown in the frequency domain: (a) v, = 1, (b) v, = 2. For
clarity only the relevant replicas are shown.
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5.3.1. Relation between critical velocities and the sampling lattice

In this section, an expression is derived for the critical velocities given a certain subsampling
lattice [Belf91]. It is assumed that the original sequence was sampled on an orthogonal
sampling lattice and that the subsampling factor is equal to 2. The lattice points (x,y,7)T after
subsampling can always be described as follows:

o e f
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The upper diagonal matrix S with elements s;; determines the structure of the subsampling
lattice. Atz =0and 7 = 1 all possible sampling positions X, and x| are given by
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This result is arrived at by substituting the values for r and eliminating the variable m. If the
velocity v is defined as the displacement of a pixel between two consecutive frames, then v is

equal to
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Two conclusions follow from Equation (5.12). In the first place, if a pixel moves at a velocity
v that satisfies Equation (5.12), and if the pixel also satisfies Equation (5.10), i.e. its position
is an element of the subsampled lattice, then we can always associate a certain pixel on the
same subsampling lattice in any other image with the pixel considered. Secondly, if, however,
a pixel is moving with a velocity v and is not an element of the subsampled grid, then we can
never associate any other pixel on the same subsampling grid in any other image with this
pixel, otherwise contradicting the first conclusion. The latter conclusion implies that if a pixel
(or object) moves with a velocity satisfying Equation (5.12), it can never be perfectly
recovered using a motion compensated interpolation filter, unless such a pixel does not exist.
If the matrix S described a lattice with only temporal subsampling, then the individual images
do not contain discarded pixels and the above argument no longer applies. Hence Equation
(5.12) gives an expression for critical velocities given a certain spatial subsampling lattice.

The conclusion that can now be drawn is that every regular sampling lattice using spatial
subsampling possesses the problem of critical velocities. In the next section different
solutions to this problem are introduced. It should be noted that the method described in this
section does not necessarily give all the critical velocities for an arbitrary subsampling factor.
If a higher subsampling factor is used, it may be possible to go from one sampling point to
another sampling point while skipping some intermediate images. The method described in
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this section can then be extended straightforwardly by taking more than just pairs of image
into account.
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Figure 5.11: Hlustration of critical velocities. A cross-section in the x  t plane is shown.
In this figure v = 1 is a critical velocity.

As an example of critical velocities consider the following matrix S:

(201)

S=(0 1 0 (5.13)
Lo 0 1J

The subsampling lattice associated with this matrix is the discarding of every other column in
the image, and shifting this pattern for every image (Figure 5.11). According to Equation
(5.12) the critical velocities v,. are:

2p+1
v,.= g ) p.geZ (5.14)

c

Figure 5.11 illustrates that it is indeed impossible to interpolate the shaded pixel for the
velocity v, =1 irrespective of v,, because in this direction only discarded pixels are

encountered.
5.3.2 Possible solutions for critical velocities

In the previous section the problem of critical velocities was examined. In this section some
possible solutions for this problem are argued. These solutions are illustrated in the spectral
domain in Figure 5.12. The subsampling structure used for the example in Figure 5.11 is used
again, It was shown in the previous section that not all the velocities are critical velocities.
Therefore, in Figure 5.12, velocities of 1 pixel/image in the horizontal direction and 2
pixels/image in the horizontal direction are used in order to illustrate the implications of the
different solutions for different velocities. The dashed lines are the replicas introduced by
subsampling the image sequence.

The following solutions are possible:

o In Figures 5.12(a) and 5.12(b), the spatial resolution of all the moving regions is reduced in
order to avoid critical velocities. This is done by low-pass filtering the image prior to
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subsampling. As we saw in Section 2.4, this is objectionable in the case of slowly moving
objects because of the loss of resolution.
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Figure 5.12: Possible solutions for critical velocities shown in the frequency domain: in
(a) and (d) the velocity is I pixel/image. In (b) and (c¢) the velocity is 2 pixels/image.

e An alternative solution is to reduce the spatial resolution only if objects are moving with a
critical velocity. Figures 5.12(a) and 5.12(c) apply to this situation. A similar solution is
generally used in the case of motion compensated de-interlacing |Giro85] [Erns88], where
for critical velocities a spatial interpolation filter is used. For a subsampling system, this
possibility is rejected using the same argument as applied to the first solution.

e The cause of the critical velocities is the fact that in the interpolation stage only discarded
pixels are encountered in the direction of the motion. To avoid this situation, we can use a
spatially adaptive subsampling lattice [Belf92a]. The idea is to shift the subsampling
structure depending on the amount of motion. This is illustrated in Figure 5.13. Different
subsampling lattices are used for different velocities. The Figures 5.12(d) and 5.12(c) show
this solution in the frequency domain. In Figure 5.12(d), we see that because of the
horizontal shift in the subsampling lattice for a velocity of 1 pixel/image, the replicas
introduced by the subsampling are positioned at different locations, causing no interference
with the other replica. No shifting is required for a velocity of 2 pixels/image as Figure
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5.12(c) shows. The advantage of this solution is that the image can be subsampled without
reducing any spatial or temporal resolution.
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Figure 5.13: Subsampling structures (a) v is even. (b) v, is odd.

5.4 Motion compensated sub-Nyquist sampling

In the previous section we saw that critical velocities can be avoided by adapting the
subsampling structure. This idea of a motion adaptive subsampling lattice is further explored
in this section.

5.4.1. Principle

In a motion compensated sub-Nyquist sampling scheme, the sub-Nyquist principle is
modified so that it can be applied to non-stationary regions. The pixels which are transmitted
are (using the same notation as in Section 5.1.2):
Ly ={xe L,Ix—-d,(x.k)e L,_,} (5.15)

The vector dj(x.k) is the cstimated displacement vector for the pixel (x.k). After motion
compensated interpolation, the union of Ly and L;_; form L,. This is because no discarded
pixel is present in the direction of the motion so it is always possible to reconstruct the
current image based on the previous image and the subsampled current image using motion
compensated interpolation. Note that Equation (5.15) degenerates to Equation (5.8) in the
absence of motion. Therefore this method can be called motion compensated sub-Nyquist
sampling. Equation (5.15) however does not guarantee a constant data reduction as is always
the case with non-adaptive sub-Nyquist sampling. Further, dj(x,k) has to be transmitted as
additional side information.

Starting from a fixed subsampling grid, a recursive update is made of the subsampling
structure. This principle is illustrated in Figure 5.14. The subsampling structure of image & is
based on the subsampling structure of image k-1 and the displacement vector dy(x.k). If the
pixel at (x-dj(x.k),k-1) of the previous image was not an element of L, ;. then the
corresponding pixel (x,k) in the current image is transmitted. If the pixel was not discarded in
the previous image, then the corresponding pixel along the motion trajectory in the current
image is not transmitted.

101



k
Figure 5.14: Motion adaptive sub-Nyquist sampling.

5.4.2 Motion compensated sub-Nyquist sampling and fixed lattice subsampling

In a subsampling system it may be desirable to combine motion compensated sub-Nyquist

sampling with fixed lattice subsampling [Belf92b]. There are two reasons for this:

o The fixed lattice subsampling stage can be used as a first step to reduce the number of
pixels.

¢ [n the next section we see that it enables the use of fractional motion estimation accuracy.

A simple scheme to combine these two data compression methods is shown in Figure 5.15(a).
Without loss of generality we only consider the x-t dimensions and assume a constant
velocity of 1 pixel/image in the horizontal direction. What is shown in cach step of the figure
is one line of two consecutive images.

The image is first prefiltered in the horizontal direction, reducing the horizontal bandwidth
W, from 1 to Y2m. Because of this prefiltering the image may be subsampled by discarding
half the columns of the image. These two operations are illustrated in the second step of
Figures 5.15(a). By substituting W, = Yam in Equation (3.20) and again assuming a perfect
interpolation filter with a cut-off frequency at ¥m the nominal velocities in the horizontal
direction v,,, are now

=2k, ke Z (pixels/image) (5.16)

VHX
Therefore a displacement of 1 pixel/image has to be truncated to either O pixel/image or 2
pixels/image. In the third step of Figure 5.15(a). the displacement of 1 pixel/image is assigned
to a region covered by the nominal velocity of 0 pixel/image. Using this nominal velocity,
motion compensated sub-Nyquist sampling is applied on the subsampled grid. resulting in an
overall data reduction with a factor of 4. This is shown in the third step of Figure 5.15(a). At
the receiver, the image is interpolated with a motion compensated filter (step four in Figure
5.15(a)), followed by a spatial interpolation filter.

A major disadvantage of this scheme is that a velocity of 1 pixel/image falls in the transition
band of the temporal interpolation filter, resulting in a poor attenuation of the replicas and a



distortion of the baseband. Another disadvantage is that no benefit is taken from the extra
available accuracy in the displacement estimate, which is lost because of the necessary

truncation.
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Figure 5.15: Two possible solutions to combine motion compensated sub-Nvquist sampling

with fixed subsampling (v= 1 pixel/image): (a) with loss of the resolution of the motion
vector and (b) without loss of the resolution of the motion vector.

A more attractive alternative is shown in Figure 5.15(b). It is based on the discussion in
Section 3.1.3, which showed that a decrease in distance between the nominal velocities
improves the result of the motion compensated interpolation. After the spatial low-pass
filtering the images are nof immediately subsampled. On this sampling structure a velocity of
1 pixel/image is still defined, and the nominal velocities in the horizontal direction are given
by

vie=k. ke Z (pixels/image) (5.17)

so truncation of the velocity is not necessary. Now the subsampling following the spatial low-
pass filter is combined with the motion compensated sub-Nyquist sampling. The algorithm is
modified in such a way that after spatial interpolation a sequence of three consecutive
discarded pixels may not exist, thus satisfying the sampling theorem. This is illustrated in the
third step of Figure 5.15(b). Because the images are not yet subsampled, a velocity of 1
pixel/image can be used, exploiting the full accuracy of the displacement estimate. If now
motion compensated interpolation is used at the receiver (step four in Figure 15(a)). a
velocity of | pixel/image will fall in the middle of the passband of interpolation filter at the
receiver, achieving a better suppression of the replicas.



This scheme can be extended to two dimensions straightforwardly. Only the shape and the
size of the region which should not contain discarded pixels must be adapted to the sampling
lattice used.

5.4.3 Fractional motion accuracy

The above scheme also presents a way to use motion compensated sub-Nyquist sampling
using motion vectors estimated with a higher accuracy. The modifications which have to be
made to the original algorithm are illustrated in Figure 5.16.

— it —»(iﬁMC-SNS)l—* ——*<’A[—C,+MC‘)T‘_’ i‘l F'

Figure 5.16: Motion compensated sub-Nyquist sampling combined with fractional

accuracy of the motion estimate.

If the accuracy of the motion estimate is Ad pixel, then first the original sequence is spatially
upsampled with a factor 1/Ad. On this sampling lattice, the motion accuracy is defined on a
pixel basis. This concept was previously discussed in Section 3.2. At this higher spatial
resolution, the motion compensated sub-Nyquist sampling (MC-SNS) is combined with a
downsampling of a factor [/Ad. The downsampling with a factor 1/Ad cancels the upsampling
with a factor 1/Ad, so the net result of these operations is the subsampling factor of the
motion adaptive sub-Nyquist sampling. At the receiver these operations are inverted,
replacing the subsampling with maotion compensated interpolation (MCI) and an upsampling.

5.4.4 Motion compensated sub-Nyquist sampling coding system

A system incorporating motion compensated sub-Nyquist sampling is described in this
section. In Chapter 3, we have seen that large interpolation errors in the motion adaptive
branch were caused by an inaccurate motion vector, giving noticeable artifacts in the
interpolated image. Theretore when the motion vector is inaccurate, special precautions have
to be taken to provide an acceptable image quality while still realizing the same data
reduction.

This leads to a system with two branches (Figure 5.17):

e The lower branch is used if a correct motion estimate (ME) is made, using motion
compensated sub-Nyquist sampling (MC-SNS) to subsample the image. At the receiver,
motion compensated interpolation (MCIJ) is used in the reconstruction process.

s The upper branch is the fall-back method which is used in the case of an incorrect motion
vector. In this case low-pass filtering (LPF1) and a fixed quincunx subsampling lattice is
used (QNX-SS). At the receiver spatial interpolation (LPF2) is used to reconstruct the

image.
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Figure 5.17: Svstem overview.

The interpolation quality of the motion adaptive branch controls the switching process
between these two modes. This guarantees that the highest possible resolution is always
chosen, regardless of the spectrum of the current image. The error analysis in Chapter 3
validates this principle. In order to be able to make a decision, the image is also interpolated
at the transmitter side (MCI12). The decision 1s made on a block basis using the same blocks
as the motion estimation. Smaller blocks improve the interpolation quality but also increase
the amount of side information. Now there are two streams of side information which can be
multiplexed into each other: the motion vectors necessary for the upper branch and the
segmentation information to determine in which state the switch between the two branches is.

5.5 Experiment Results

The expcriments consist of a comparison between the different subsampling schemes
discussed in this chapter and a more detailed investigation of motion compensated sub-
Nyquist sampling. Fixed lattice subsampling, sub-Nyquist sampling and motion compensated
sub-Nyquist sampling are investigated and compared with each other. Also motion
compensated sub-Nyquist sampling with fractional motion estimation accuracy is considered.
The experiments are done using the MOBILE sequence.

5.5.1 Implementation details

Three different schemes are used for the experiments. Several details of these systems are
described in this section. The first system uses spatial fixed lattice subsampling. A block
diagram of this system was given in Chapter 2. A quincunx subsampling lattice is used with
O, = Q, = 1, yielding a data reduction factor of 2. This system is used as the fall-back mode
in all the systems described in this section. The purpose of the system is also to serve as a
reference for the other systems.

The second system is a sub-Nyquist sampling scheme. Again a quincunx subsampling lattice

is used which is shifted for each image, so all the cosets of the lattice are used. Instead of
spatial filtering, a temporal interpolation filter with two filter taps is used. With this system
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also a data reduction of two is achieved. The input image sequence is compensated for the
global pan in order to make the image sequence more stationary. This is especially useful if
the entire sequence is moving which is the case for the MOBILE sequence.

The third system employs motion compensated sub-Nyquist sampling. Two variants of this
system are considered. One uses motion vectors with pixel accuracy, whereas the other one
uses motion vectors with half pixel accuracy. In Section 5.4.3 it was shown that to utilize
fractional accuracy, spatial upsampling is necessary. For this purpose 7-taps maximally-flat
filters were used, so the original input samples are not changed by the filtering process. For
the interpolation, a motion compensated interpolation filter with two taps was used.

5.5.2 Comparison between different subsampling schemes

In Figure 5.18, the stretched differences between the second image of the MOBILE sequence
and the different interpolated images are shown. To evaluate the performance under all
conditions, no fall-back mode is used. In Figure 5.18(a) the result for fixed lattice
subsampling is shown. As can be expected, the difference image shows that the errors are
mainly concentrated around the object edges thus causing a noticeable loss of resolution. This
has already been observed in Chapter 2. In Figure 5.18(b) the difference in the case of sub-
Nyquist sampling is shown. As can be seen sub-Nyquist sampling works well for a large
region of the image but fails if the actual motion deviates from the global pan.

The results of the motion compensated sub-Nyquist sampling system are shown in the
Figures 5.18(c) and 5.18(d). In Figure 5.18(c) integer accuracy is used for the motion estimate
and in Figure 5.18(d) half pixel accuracy is used. The results show that motion compensated
sub-Nyquist sampling works better than non-adaptive sub-Nyquist sampling. The area with
low error values now consists of the regions which move according to the global pan and
regions for which an accurate motion estimate is possible. In the case of a good motion
estimate only the noise component is present, whereas in the case of a bad motion estimate
more clearly visible artifacts are introduced. The results also show that if half pixel accuracy
is used for the motion estimate the result improves. An image detail is shown for the pixel
motion estimation accuracy case in Figure 5.19. This detail also shows the improvement in
visual quality compared to fixed lattice subsampling because of the preservation of the high-
frequency contents.

The SNR and the MSE for the different coding methods are shown in Table 5.1. A distinction
is made between the result achieved with and without a fall-back mode. As can be expected,
motion adaptive sub-Nyquist sampling with half pixel motion estimation accuracy results in
the smallest error value because the temporal correlation can be exploited more efficiently.
This has also a positive influence on the subjective quality because the area subsampled with
a fixed subsampling lattice is decreased. We see that the fall-back mode improves the
numerical results for all the systems and avoids clearly visible artifacts in the interpolated
image. A remaining artifact is aliasing caused by the noise which is folded back to the
baseband and which is not properly attenuated by the motion compensated interpolation filter.
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(b)

Figure 5.18: Stretched error using: (a) quincunx subsampling, (b) sub-Nyquist samplin
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(d)
Figure 5.18 (continued): Stretched error using: (¢} motion compensated sub-Nyquist

sampling with integer motion vector accuracy (d) motion compensated sub-Nyquist
sampling with half pixel motion vector accuracy.
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(a) (b)
Figure 5.19: Detail of image after using motion compensated sub-Nvguist sampling:
(a) coded image (b) stretched difference.

Fable 5.1 Average SNR and MSE of the different coding methods using the MOBILE

sequence.

Coding method Without fall-back: With fall-back:
SNR (dB) MSE SNR(dB) MSE

Quincunx subsampling 18.9 21.9 - -
Sub-Nyquist sampling 15.5 49.2 19.9 17.8
Motion compensated sub-Nyquist 19.5 19.2 20.4 15.5
sampling (pixel accuracy)
Mation compensated sub-Nyquist 21.8 11.3 227 94
sampling (half-pixel accuracy)

In Section 5.4.1 we argued that the compression factor of motion compensated sub-Nyquist
sampling is not constant. However, in practice, the compression factor deviates very little
around the desired value of two. For motion compensated sub-Nyquist sampling with pixel
accuracy, the average compression factor was exactly equal to 2 and with halt-pixel accuracy
the average compression factor was equal to 2.02.

5.5.3 Motion compensated sub-Nyquist sampling

In this section the performance of motion compensated sub-Nyquist sampling is investigated
in more detail. We use motion compensated sub-Nyquist sampling with integer motion vector
accuracy combined with fixed lattice quincunx subsampling as a fall-back mode.

First we investigate the behavior of the switch which either decides to use motion
compensated sub-Nyquist sampling (MC-SNS) or fixed lattice quincunx subsampling (QNX-
SS). The division between the two branches is illustrated in Figure 5.20. Also shown is the
prediction error of the motion estimate. The prediction error, defined as the difference
between the original image and the motion compensated previous image, is used as a
reference for the quality of the motion estimate. The correlation between the classification
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type of the blocks and the MSE of the motion estimate is equal to 0.94. Therefore, as the
correlation between these values is high, we can state that a high prediction error causes an
increase in the use of the fall-back mode, as was to be expected.

Percentage of each block MSE
100%
60
I ﬂ A % ’MMHNF'
75% g M I
|1 55
,
{ CIMC-SNS
S0% B QNX-SS
- Prediction error
25%
0%

image number
Figure 5.20: The division of the two modes as d function of the prediction error of the

motion estimate.

The SNR of each branch is shown in Figure 5.21. The overall SNR is increased by adaptively
combining both branches. The SNR increases because, for the regions contributing the most

to the

interpolation error, the non-adaptive branch is used. The SNR is also less sensitive to

errors introduced by the motion estimator. The overall SNR does not fluctuate as much as the
SNR of the motion adaptive branch.

SNR (dB)

————— Combined

2 4 6 g 10 12 14 1o 18 20 22 24 26 28 30

image number

Figure 5.21: SNR of each branch and the combination of both branches.
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Chapter 6

SUBSAMPLING AND TRANSFORM CODING

In this chapter we investigate the possibilities of combining subsampling with transform
coding. Some of the benefits of combining the two approaches are the adaptation to the HVS,
the incorporation of motion adaptivity into the transform coding system and the
simplification of the coding system. In [Scha90] a combined subsampling-transform coding
system is proposed based on the discrete cosine transform. In [Vos92] a different approach is
taken, and subband coding is used. The discussion in this chapter is on frequency transform
coding in general. However, the implementation aspects of both the discrete cosine transform
coding and subband coding are discussed.

The chapter starts with a brief introduction of the basics of transform coding. The issue of the
bit allocation is discussed in a separate section where we also consider the fundamental
differences between subsampling and frequency transform coding. For the purpose of
completeness, an overview is given of subband coding and discrete cosine transform coding.
Next, some general aspects of combining subsampling with frequency transform coding are
covered. Then we focus on two cases, namely the combination with either spatial
subsampling or spatio-temporal subsampling. The chapter is concluded with the results of the
experiments carried out with subband coding.

6.1 Transform coding

6.1.1 Principle

In a transform coding scheme, a signal is represented by a set of components which are more
or less uncorrelated with each other. This is dome by applying a (nearly) orthogonal
transform. Uncorrelated components can be coded more efficiently than correlated
components because the statistical redundancy is removed and the signal’s energy is
concentrated into fewer components. A generic transform coding scheme is shown in Figure
6.1. After the transform each component is coded independently and then transmitted across
the channel. At the decoder the information is decoded and the inverse transform is applied,
forming the reconstructed image. Data compression is achieved because the components
containing much energy are generally coded with more bits than the components containing
less energy.
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Figure 6.1: Generic transform coding scheme.

The optimal transform in the sense of a maximum decorrelation of the components is the
Karhunen-Lo¢ve transform (KLT) (e.g. [Jaya84]). The KLT is signal dependent and requires
correlation measurements, therefore several sub-optimal transforms which decompose the
signal into different “frequency” bands have been proposed (Figure 6.2). The frequency bands
are now the different transform components of the signal. so in this situation we speak of
frequency transform coding. Examples of frequency transform coding are the discrete Fourier
transform (DFT), the discrete cosine transform (DCT) and subband coding (SBC). In the rest
of this chapter we focus only on frequency transform coding systems.

S(w)

D Outband distortion D Inband distortion

Figure 6.2: Power spectral density function of a signal divided into 4 frequency bands.
6.1.2 Bit allocation in a frequency transform coding system

In a frequency transtorm coding system, the frequency bands are quantized with non-uniform
quantizers. The number of quantization levels is coupled with the bit rate and can be varied
for each frequency band. During the bit allocation, quantizers have to be assigned to the
different frequency bands under the constraints of a minimum mean square error and a
constant bit rate. The convex hull allocation algorithm discussed in Chapter 4 was originally
designed for this purpose |West88al]. It optimally assigns the quantizers over the frequency
bands, based on the variance and the distribution of the transform coefficients in each
frequency band. The variance is an indicator of the energy contribution of each frequency
band to the total signal. More bits are assigned to frequency bands with a high variance
because these frequency bands contain more energy and are therefore more significant in the
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overall signal. The distribution of the transform coefficients is an indicator of the redundancy
within each frequency band. If the distribution is peaked around a single value then the
frequency bands can be coded more efficiently than in the case where the distribution is flat.

The division of the bits over the different frequency bands is a fundamental difference
between fixed lattice subsampling and transform coding. In a fixed lattice subsampling
scheme, a part of the spectrum is discarded without taking the power spectral density function
into account. We saw in Chapter 2 that this approach is only optimal if the power spectral
density function is monotonically decreasing. In a frequency transform coding scheme. a
frequency band is quantized based on the activity in the frequency band. Effectively this
means that an analvsis is made of the power spectral density function and it is no longer
necessary for this function to be monotonically decreasing.

The area under the power spectral density function in each frequency band is proportional to
the variance in that frequency band. Therefore the variance 6;~ of the kth frequency band,
ranging from ;" to %, is equal to

;%
sz = . JS((.))d(o (6.1)
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where we have taken into account the symmetry of S(m) around the origin. We have already
seen that the variance of the frequency bands is one of the inputs of the bit allocation
algorithm. From the rate-distortion theory [Berg71] [Jaya84] we know that in the optimal
case the bit allocation acts as a threshold operation on the power spectral density function. If
the power spectral density function lies below the threshold 7, in a particular trequency band,
then the variance in that frequency band is too low, and no bits are assigned to that frequency
band. As the bit rate decreases, the value of 7, increases and more frequency bands are
assigned no bits. We see that in Figure 6.2 no bits are assigned to the frequency bands 3 and 4
because they lie entirely below the threshold. In the two-dimensional case, the threshold does
not describe a line but a plane acting on the two-dimensional power spectral density function.
The underlying principle, however, remains the same.

The total distortion Dy, introduced during the quantization stage in a frequency transform
coding scheme is equal to ([Jaya84]):

+
Jﬂmin[S(u)).Ta]d(x) (6.2)

~T

|
Dpe =52
The area under the power spectral density function in the frequency bands 3 and 4 in Figure
6.2 is called the outband distortion as defined in Chapter 2. The frequency bands 1 and 2 are
coded, and the distortion in these frequency bands is the inband distortion. We see that the
distortion is as far as possible evenly distributed over the entire frequency range. In [Berg71]
it is shown that this is the optimal solution in the sense of the rate-distortion theory. This is
again in contrast to fixed lattice subsampling. We showed in Chapter 2 that in a fixed lattice
subsampling scheme the inband and the outband distortion depends on the prefilter and the
interpolation filter. If these filters have an ideal frequency response, the inband distortion is
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equal to zero. As a consequence, the distortion is not evenly distributed over the entire
frequency range.

6.1.3 Subband coding and DCT coding

Two popular frequency transform coding systems are discussed in this section, namely
subband coding (e.g. [Wood86]) and DCT coding. In a subband coding system, the signal is
globally divided into different frequency bands, and each band-pass filtered and
downsampled frequency band is called a subband. In an image coding system, each image is
divided into subbands of different spatial frequencies. A required property of the filters used
for the subdivision into the different subbands is that aliasing introduced during the
subdivision into subbands is (almost) entirely canceled out when the subbands are combined
to form the reconstructed signal. A special class of FIR filters satisfying this criterion are the
quadrature mirror filters (QMF filters) [John80]. Attractive properties of these filters are that
the filtering can be implemented efficiently and that the same filters can be used for
decomposition and reconstruction.

The spatial correlation in the subbands is usually low. except for the lowest subband which
contains a low-pass version of the input signal. Therefore the subbands are typically PCM
coded with non-uniform quantizers, except for the lowest subband which is DPCM encoded.
The bit allocation assigns the quantizers to the different subbands where the variance in each
subband determines the number of quantization levels. The redundancy after quantization is
removed by applying a variable length coding on the quantizer output symbols. At the
decoder, first the inverse variable length coding and the inverse quantizer are applied. After
that the subbands are interpolated and combined, forming the reconstructed signal. The
interpolation is again done with QMF filters. It should be noted that here we discussed only
one of the possible implementations of a subband coding system. Numerous other
possibilities have been proposed in the past (e.g. [Wood91], [West88b] (vector quantization),
[Diab90] (block bit allocation), [Zafa93] (wavelets)).

In a discrete cosine transform coding system, the different frequency transtorm coefficients
are obtained by convoluting the input signal with sampled versions of cosine functions. The
frequency band associated with a coefficient is determined by the frequency of the cosine
function. The convolution is done on a block basis: this in contrast to subband coding where
the entire image is used. The discrete cosine transform can therefore be implemented more
efficiently. A popular approach taken in DCT coding schemes is to assign the bits over the
different transform coefficients for each block without taking the other blocks into
consideration [Penn93]. This does not guarantee that the minimum mean square error
measured over the entire image is achieved. The method chosen here is to combine the
corresponding transform coetficients from each block into frequency bands. These frequency
bands are treated in the same way as the subbands in subband coding, and the transform
coefficients can be coded using a global bit allocation which takes all the blocks into
consideration.
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6.2 Subsampling combined with frequency transform
coding

Subsampling is combined with frequency transform coding in this section. Distinction is
made between the combination of transform coding with spatial subsampling and the
combination with spatio-temporal subsampling. First we consider some general aspects
relevant for both situations. We here call a frequency transform coding system without any
subsampling a stundard frequency transform coding system.

An advantage of combining subsampling with frequency transform coding is that the
subsampling can be used to selectively exclude a part of the spectrum. The remaining part of
the spectrum can now be coded more efficiently. For example, diagonal frequency
components can be discarded because of the reduced sensitivity of the HVS to these
frequency components. As a result, the distortion of the horizontal and vertical frequency
components is smaller than in a standard frequency transform coding system. As already
pointed out in Chapter 2, subsampling the chrominance components prior to coding is already
common practice in a lot of applications [MPEG92]| [Penn93]. Combining subsampling with
frequency transform coding can also serve to adapt the image dimensions at the encoder side
to the dimensions of the display device at the decoder side. If the image is too big for the
display device, then the image can be subsampled to match the dimensions of the display
device. Another advantage is that motion adaptivity can be brought into a frequency
transform coding system when it is combined with spatio-temporal subsampling. The main
motivation given in [Scha90] is the reduced complexity of the frequency transform coding
system, because the frequency transform is done on a smaller image.

6.2.1 Implementation aspects

There are two possible configurations for combining subsampling with frequency transform
coding. The first configuration (Figure 6.3(a)) is to place the subsampling stage after the
frequency transform coding stage and to subsample the different frequency bands. This is
only useful for the lowest frequency band which contains a low-pass version of the image. It
was pointed out in Section 6.1.3 that there is still some spatial correlation left in the lowest
frequency band. The spatial correlation in the other subbands is usually low and subsampling
is not useful. This configuration is therefore rejected because of its limited possibilities. The
second configuration (Figure 6.3(b)) is to consider the subsampling stage as a front end of the
frequency transform coding stage. The output of the subsampling is a low-pass version of the
input image. Because there is still some spatial correlation left, additional coding is
appropriate. In the rest of this chapter we confine ourselves to this configuration.
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Figure 6.3: Svstem configurations: (a) Frequency transform coding before subsampling and
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(b) Subsampling before frequency transform coding.

Another implementation aspect is the sampling lattice used as input for the frequency
transform coding stage. In the previous chapters we saw that there are two possibilities: a
fixed sampling lattice or an adaptive subsampling lattice. In this particular application the
principal advantage of a fixed sampling lattice over an adaptive subsampling lattice is the
ease of implementation. It is much easier to define a frequency transtorm on a fixed sampling
lattice than on an adaptive sampling lattice. Another advantage in this situation of a fixed
subsampling lattice is the homogenous correlation structure. It an image is sampled on an
adaptive sampling lattice, the geometric position of the samples is not constant and
neighboring pixels are less likely to be correlated with each other. Another problem of
adaptive sampling lattices in this context is that it is complicated to divide the available bits
over the different stages. If fixed lattice is used, then most of the coding effort is left to the
frequency transform coding stage. The conclusion is that a fixed sampling lattice is better
suited for this particular situation than an adaptive subsampling lattice.

We now consider how to divide the available bit rate over the two coding stages. First the
one-dimensional case is investigated. If a signal is prefiltered and subsampled to a bandwidth
of W, then the relative bit rate is reduced to W /m (See Section 2.3). The total relative bit
rate R, of the entire system is equat to the product of the relative bit rate in the subsampling
stage and the relative bit rate in the frequency transform coding stage:
R, = & R 4 (6.3)

t - fre WD~
where Ry is the relative bit rate of the frequency transtorm coding stage. We see that for a
fixed R, there are /W, more bits available for the frequency transform coding stage than in a
standard frequency transform coding system. Therefore the remaining part of the spectrum is
coded more accurately. Therefore Equation (6.3) is a quantification of the main motivation
behind combining subsampling with frequency transform coding. If an image defined on a
two-dimensional sampling lattice L is subsampled to the lattice L, then Equation (6.3)
becomes

Area(l/ X )

R =—""Ry,. 6.4
! Area(U ;») Ji ©4)
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where LR and Lﬁ. are the reciprocal lattices of L and L. The ratio between the areas of the
unity cells in the frequency domain is the relative bit rate of the subsampling stage (see
Section 2.3).

6.2.2 Spatial subsampling combined with frequency transform coding

In this section, a fixed lattice spatial subsampling system is combined with a frequency
transform coding system. First, a qualitative relation between the mean square error distortion
Dy fie(R,) of the combined system and the mean square error distortion Dg(Ry) of a standard
frequency transform coding system is examined for the one-dimensional case, using Figure
6.4. We assume a perfect overall response of the fixed lattice subsampling system, so the
subsampling system only has an outband distortion component. This component is equal to

two times the area under the power spectral density function in the interval [Wss,n] (see

Section 2.3). If the rest of the spectrum is coded without any distortion then this is the only
component contributing to the total distortion. Therefore the distortion of the subsampling
stage imposes a lower bound on the distortion in the total system.

S(w)
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l:l Subsampling distortion E Frequency transform coding distortion

Figure 6.4: Power spectral density function of a signal coded with subsampling and
subband coding.

First we define the threshold 7, */¢ us the allocation threshold of the combined system. If in
the interval [W,,, | part of the power spectral density function is above 7,”* a part of the
spectrum is discarded which would otherwise be coded in a standard frequency transform
coding system. The distortion of the combined system is then higher than the distortion of a
standard subband system, otherwise contradicting the fact that the bit allocation minimizes
the total distortion. If the bit rate is lowered, then the allocation threshold increases. At some
point the part of the power spectral density function discarded in the subsampling stage is
completely below T("“'fotc. The part discarded in the subsampling stage would now also be
discarded in a standard frequency transform coding system. In this situation the distortion of
the combined system is equal to the distortion of the standard frequency transform coding
system. As the allocation threshold is coupled to the bit rate, the conclusion is that
theoretically for the same bit rate R,. the relation between the different distortions is
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Dygy e (R) 2 D o (Ry) (6.5)

where the equality holds for low bit rates. In practice, the filters used in a subsampling
scheme have a better response than the filters used for the splitting into frequency bands. A
prefilter is designed to minimize the amount of aliasing, whereas QMF filters allow for some
aliasing. Therefore for low bit rates Dy, ;(R;) is a fraction smaller than Dy (R,).

The question of whether the relative increase of the mean square error distortion in the
combined system is objectionable depends on the application. If the combination of
subsampling and frequency transform coding is used to suppress certain frequency
components, then a deliberate choice is made and therefore the objective distortion is no
longer relevant. The chrominance components usually do not contain many high-frequency
components. Therefore the part of spectrum that is discarded in the subsampling stage is
usually not coded in a standard frequency transform coding scheme. In this case, the equality
in Equation (6.5) usually holds and combining subsampling with frequency transform coding
gives a simpler system with the same distortion.

If the spatial output lattice from the fixed lattice subsampling stage is an orthogonal lattice
then the DCT transform can be applied straightforwardly. In the previous chapters we saw
that the quincunx lattice is a frequently used sampling lattice. If this lattice is used, the
implementation of the DCT transform is no longer trivial. There are several possible ways to
implement the DCT transform on a quincunx lattice [Scha90]. Figure 6.5 shows some
possibilities for a block size of 4x4 pixels. In Figure 6.5(a) the pixels are treated as if they
were defined on an orthogonal lattice, and the odd lines are shifted in the horizontal direction.
The shifting introduces artificial high-valued vertical transform coefficient for vertical edges
in the image and therefore reduces the coding efficiency. No shifting is required for the
configurations shown in the Figures 6.5(b) and (c). However, there are two main drawbacks
for the configuration from Figure 6.5(c). The first drawback is that the correlation between
the pixels is lower than the correlation of the configuration from Figure 6.5(b). The other
disadvantage is that the memory requirements are larger because more image lines are

involved.
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(a) (b) (c)
Figure 6.5: Configuration of DCT blocks: (a) rectangular blocks, (b) diagonal blocks and
(c) rotated blocks.
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The division of an image sampled with a quincunx lattice into different subbands is also not
straightforward. The problem is that QMF filters are designed to cancel the aliasing of images
sampled on an orthogonal lattice and not on a quincunx lattice. In [Bamb90] an algorithm is
described to transform a one-dimensional QMF filter designed for an orthogonal lattice to a
one-dimensional directional filter suitable for a quincunx lattice. This new filter is again a
QMF filter so the aliasing is still canceled. Because the filter is separable it can be
implemented in an efficient way.

6.2.3 Spatio-temporal subsampling combined with frequency transform coding

In this section we extend the system as described in the previous section by using spatio-
temporal subsampling instead of spatial subsampling. Two possibilities for spatio-temporal
subsampling were discussed in Chapter 5: sub-Nyquist sampling and motion compensated
sub-Nyquist sampling. The choice between these two methods is based on the discussion
from Section 6.2.1 were it was argued that the input lattice of the frequency transform coding
stage should be a fixed sampling lattice. A sub-Nyquist sampling can be designed in such a
way that the output lattice is a fixed sampling lattice (e.g. the MUSE system). However in a
motion compensated sub-Nyquist sampling system the sampling lattice is adapted to the
motion, causing the sampling lattice to be non-uniform. In conclusion, motion compensated
sub-Nyquist sampling is not suited to this application and only standard sub-Nyquist
sampling is used.

The sub-Nyquist subsampling stage is placed before the frequency transform coding stage,
and the signal is first subsampled without any prefiltering. After that the signal is divided into
the different frequency bands and each frequency band is coded. Equations (6.3) and (6.4) are
also valid in this situation. Therefore the number of available bits for the coding of the
different frequency bands is increased. At the decoder, the signal is reconstructed from the
different frequency bands. A temporal interpolation filter is used afterwards to cancel the
alias caused by the absence of a prefilter.

First we consider the relative performance of the combined system compared with a standard
frequency transform coding system. In this discussion we ignore the possible aliasing errors
introduced in the frequency transform coding stage, as the aliasing introduced in the sub-
Nyquist sampling stage has a greater magnitude. In Figure 6.6 we see that after the
subsampling the high frequency components fold back into the baseband spectrum ranging
from [O,Wss] because no prefilter was used. Some of the high-frequency components are

present in frequency band #1 whereas some are folded into frequency band #2. The
corresponding parts of the power spectral density function are added to each other so it is no
longer possible to make a distinction between the aliasing components and the low-frequency
components. As a result the exact location of the allocation threshold 7,/ is not as
precisely known as in Figure 6.4. If all the frequency bands are coded, the aliasing introduced
in the sub-Nyquist sampling stage is canceled out by the temporal interpolation filter at the
decoder. The distortion is lower than the distortion of a standard frequency transform coding
system, because effectively a larger part of the spectrum is coded. However, if a frequency
band is not coded, the corresponding aliasing is not canceled. Now the distortion is higher
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than a standard frequency transform coding system. The magnitude of the quality gained by
combining the two systems depends on the magnitude of the aliasing. If the region from

[Wss,n] does not contain much energy then the gain is low.

S(w)

- -W, 0 W T

s
‘:| Inband distortion D Uncanceled Aliasing

Figure 6.6: Power spectral density function of a signal coded with sub-Nyquist sampling
and subband coding.

We saw in Chapter 5 that in a sub-Nyquist sampling system there should always be a fall-
back mechanism for the non-stationary parts of the image sequence. In this case, spatial
subsampling combined with frequency transform coding as discussed in Section 6.2.2 can be
used as a fall-back mode. In [Scha90] an a priori mechanism is used to detect whether the
fall-back mode is necessary or whether sub-Nyquist sampling can be used. The motion is
detected by taking the difference between successive images on a pixel basis and averaging
the values over a block. When the average value exceeds a certain threshold, spatial
subsampling is used.

An alternative method is to use an a posteriori mechanism instead. First the average of two
successive images is computed thus forming one single image. For stationary parts the
combined image contains no artifacts, but for non-stationary parts the combined image is
distorted. Now the average distortion between the combined image and the original images is
computed on a block basis. Next the original images are prefiltered and the average distortion
is computed. Based on these distortion values, a choice is made between sub-Nyquist
sampling and spatial subsampling.

In a DCT coding system the image is already divided into blocks and the division between
sub-Nyquist sampling and the fall-back can be based on these blocks. No information from
neighboring blocks is necessary at the encoder and the decoder. If subband coding is used, the
transform filters are applied to the whole image. This complicates the division into blocks
because information from neighboring blocks is required. At the encoder the blocks from the
two coder branches are multiplexed into on single image. After that the combined image is
decomposed into different subbands. If the neighboring blocks do not belong to the same
branch of the coding scheme, incorrect information is used. The consequence is that some



artificial frequency components are introduced. The same problem arises at the decoder
where the subbands have to be interpolated.

6.3 Experiment results

In the previous sections both DCT coding and subband coding were discussed in combination
with subsampling. In this section experiments are done only for subband coding. The reason
for this is that although there are some implementation differences, no significant qualitative
difference is expected between the two systems. This is because both systems as implemented
in this case use a global bit allocation to assign the different quantizers to the frequency
bands.

6.3.1 Spatial subsampling combined with subband coding

In this section fixed lattice spatial subsampling is combined with subband coding. The fixed
lattice subsampling stage consists of a quincunx subsampling lattice with L = 1 and M = 1.
Hence the data reduction factor of this stage is equal to 2. The 21-taps prefilter and 7-taps
interpolation filter described in Chapter 2 are used. For the subband splitting, the scheme
from Figure 6.7 is used without subband #9, because this part of the spectrum is not present in
the quincunx subsampled image. The splitting is done with a 16-taps one-dimensional QMF
filter denoted as the filter 16C in [John80]. Max-Lloyd quantizers are used for the
quantization of the subbands. The coding scheme is compared with a standard subband
coding scheme using the splitting scheme from Figure 6.7 with subband #9 included.

2
o
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2 8
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Figure 6.7: Subband splitting scheme. Subband #9 is not present in the combined system.

The results obtained with the LENA test image are given in Figure 6.8 for both the combined
system and standard subband coding. In Figure 6.8(a) the SNR is shown for both systems and
in Figure 6.8(b) and 6.8(c) the number of bits assigned to each subband for the different bit
rates. As was expected from the theoretical analysis, the two SNR curves converge as the bit
rate decreases. For high bit rates the combined system converges to an upper bound which is
equal to the distortion of a coding scheme without subband coding. We see in the Figures
6.8(b) and 6.8(c) that for high bit rates the number of bits assigned to the subbands in the
combined system is higher than in a standard subband coding system. Hence more emphasis
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subband coding system. Hence more emphasis is placed on the remaining subbands. As
the bit rate is lowered, we see that at a bit rate of 1.4 bits per pixel the difference between
the combined system and standard subband coding decreases abruptly. In Figure 6.8(b)
we see that this is the point where no more bits are assigned to subband #9. If we look at
the assignment of the bits to the difterent subbands then we see that from this point on
approximately the same number of bits is assigned to each subband. The quality
difference between the systems is influenced by the different filter characteristics. At very
low bit rates, the combined system is slightly better than standard subband coding. In
Figure 6.9 the detail images and difference images are shown for standard subband coding
and the combined system at a bit rate of | BPP. We see that the errors of the combined
system are more concentrated around the diagonal frequency components.

bit rate

SNR (dB)

Subband

1 L L

5
0 0.5 1 I.5
bit rate (BPP)

b

+ SBC > Quincunx and SBC
(a)
Figure 6.8: (a) SNR of quincunx subsampling combined with subband coding compared with
standard subband coding. (b,c) Bit allocation with the bit rate along the horizontal axis and
the subband number along the vertical axis for: (b) standard subband coding, (¢) quincunx
subsampling combined with subband coding. The gray value corresponds with the bit rate in
each subband (white = 0 bits per pixel).

{c)

The conclusion from these experiments is that the behavior of the combined system
corresponds with the expectations from the theoretical analysis. Experiments done with DCT
coding gave similar results. Based on a mean square error criterion, a standard subband
coding system performs better than the combined system. However, as have already been
pointed out, the motivation behind the combined system is that the evaluation of the
reconstructed image is not always based on a mean square error criterion. In that case the
experiments show that the penalty in a mean square error sense is acceptable for a broad
range of bit rates.



(c)
Figure 0.9: Coding result and difference image at a bit rate of 1 BPP for: (a) standard
subband coding and (b) the subband coding combined with quincunx subsampling.

6.3.2 Spatio-temporal subsampling combined with subband coding

In this section sub-Nyquist sampling is combined with subband coding. A quincunx lattice is
used together with its coset, so the entire image is coded over a period of two images. The
same subband coder settings as in the previous paragraph are used.

The first experiment illustrates what happens to the stationary parts of an image sequence.
These are the regions for which sub-Nyquist sampling is appropriate. For this we assume that
the LENA test image is an image sequence consisting of two identical images. Thus this
experiment gives the theoretical lower bound for the distortion of the coding system. The
simulation results are shown in Figure 6.10. For high bit rates, sub-Nyquist sampling
combined with subband coding gives better results than standard subband coding. This is the
range of the bit rate for which the aliasing is canceled. Below a bit rate of 0.6 bits per pixel
the two curves coincide. This coincides with the point where the highest subbands containing
the aliasing information are no longer coded. The conclusion from this experiment is that
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based on theoretical grounds combining spatio-temporal subsampling with frequency
transform coding is meaningful.

Next, experiments are done with a complete system with a fall-back mode. For the fall-back
mode a quincunx subsampling lattice is used with spatial interpolation at the decoder. The
choice between sub-Nyquist sampling and the fall-back mode is based on the a posteriori
method. The distortion in each branch determines which branch is used. The input image
sequence is compensated for the global pan.

SNR (dB)

bit rate

Subband

SO R w0 —

A%
x

0 0.5 I 1.5 2 (b)
bit rate (BPP)
+ SBC ¢ Sub-Nyquist and SBC
(a)
Figure 6.10: Sub-Nyquist sampling combined with subband coding compared with standard
subband coding: (a) SNR, (b) Bit allocation with the bit rate along the horizontal axis and
the subband number along the vertical axis (see also Figure 6.8).

The results are shown in Figure 6.11 for the first two images of the MOBILE sequence. We
observe that sub-Nyquist sampling combined with subband coding is only better than
standard subband coding for a small range of bit rates. This was expected for the low bit rates
where the results suffer from uncanceled aliasing. For the high bit rates, there are several
aspects which limit the quality of the combined system. First of all some parts of the image
are coded with the fall-back mode. The distortions in these parts influence the overall
distortion in a negative way. In Chapter 3 and in Chapter 5 we saw that the noise is the
remaining error part after temporal interpolation of a stationary image. This error imposes a
lower bound on the overall distortion.

Because of the interpolation stage after the frequency transtorm decoding stage, the artifacts
introduced during the frequency transform coding are magnified. The artifacts introduced by
the uncanceled aliasing are therefore clearly noticeable. The high frequency noise
components are folded back into the low frequencies and are also clearly noticeable. The
conclusion which can be drawn from these experiments is that although the theoretical
analysis was promising, in practice sub-Nyquist sampling combined with subband coding is
not worth pursuing further.
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Figure 6.11: Result of sub-Nyquist sampling combined with subband coding for the first two
images of the MOBILE sequence. Also shown are the results for a standard subband coding
scheme.






Chapter 7

CONCLUSIONS

In this chapter we compare the different subsampling systems presented in this thesis. We
base the comparison on the set of consistent experiments described in Chapters 2 to 5. The
experiment results are also compared with the results obtained with another sequence. namely
the KIEL sequence. The first image of this sequence, which has a length of 20 images, is
shown in Figure 7.1. The image dimensions are the same as for the MOBILE sequence. The
sequence describes a camera zoom on a highly detailed scene with a significant number of
edges. This is the worst-case situation for most of the subsampling methods discussed in this
thesis as the assumption of only translational motion is violated. Therefore this sequence is an
indicator for the robustness of the different methods.

: 2 . - ;
Figure 7.1: First image of KIEL sequence.

In Figure 7.2(a), the average SNR of the different subsampling systems from the previous
chapters are compared using the MOBILE sequence. To give an indication of the usefulness
of the average value, given also are the maximum and minimum SNR values. The data
reduction factor is equal to two. Each time, the best representative from a class of methods is
chosen. A reference is given as to in which chapter a description of the specific system can be
found.



The first three systems are fixed lattice subsampling systems with quincunx subsampling. The
worst performance is obtained for the simple system with linear interpolation (QNX-SS). The
result is marginally improved by using a spatially adaptive interpolation filter such as the
FMH filter (FMH). A further improvement is obtained when motion information is taken into
account, which results in the use of the motion adaptive weighted FMH filter (MA-WFMH).
The fourth system (MCI) uses temporal subsampling and relies completely on motion
information for the interpolation. This system gives the best result among all the fixed lattice
subsampling systems. Even in regions where the spatial correlation is low, the temporal
correlation can still be high. A motion compensated system can benefit from this property.

The last three systems use adaptive subsampling lattices instead of a fixed lattice. These
systems all outperform the fixed lattice subsampling systems, because better use can be made
of the local signal structure. Motion compensated sub-Nyquist sampling (MC-SNS) does not
differ much from the system with temporal subsampling and motion compensated
interpolation as both systems rely on the motion vector. The additional benefit ot the motion
compensated sub-Nyquist sampling system is that because the images are not entirely
discarded also some spatial information is available to the decoder.

A significant improvement is obtained if spatially adaptive subsampling (SASS) is used, as
the difference in the SNR between the spatially adaptive subsampling systems and the other
subsampling systems is quite large. This is because an analysis is made of the local image
structure, whereas, for example, the MC-SNS system implicitly assumes that the all the parts
of the image are equally important. On the basis of spatial analysis of the local image
structure, a better trade-off between quality and the compression factor can be made. If we
extent the SA-SS system with the use of motion information to a motion compensated
spatially adaptive subsampling system (MC-SASS), the overall result improves even further.
The sampling lattice is now based on a spatio-temporal analysis of the local image structure.

The results of the experiments with the KI/EL sequence are given in Figure 7.2(b). Because of
the fine details, the quality after quincunx subsampling combined with linear interpolation is
much lower than the MOBILE sequence. The results are somewhat improved if an FMH filter
is used. The MA-WFMH method, which relies partly on the motion estimate, does not give a
further improvement. The first substantial improvement is obtained if motion compensated
interpolation is used. Especially with a camera zoom, the use of fractional accuracy and a
3-taps interpolation filter are advantageous. The SASS and MC-SASS systems give the best
results. The MC-SASS can still benefit from the motion information, as is indicated by the
difference between the two spatially adaptive systems. However, there is still some difference
if we compare the results with those obtained with the MOBILE sequence. Motion
compensated sub-Nyquist sampling suffers the most from the complex motion and the large
amount of detail information. This system was for the MOBILE sequence better than the MC/
system, but for the K/EL sequence temporal subsampling is favorable. because of the longer
temporal filters.
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QNX-SS
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MC-SNS

FMH MA-WFMH MCI SASS  MC-SASS MC-SNS

Subsampling method

(b)

: Quincunx subsampling with linear interpolation (Ch. 2).

: FIR/median hybrid filter (Ch. 3).

: Motion adaptive weighted FIR/median hybrid filter (Ch. 3).
: Motion compensated interpolation (Ch. 3).

: Spatially adaptive subsampling (Ch. 4).

: Motion compensated spatially adaptive subsampling (Ch. 4).
: Motion compensated sub-Nyquist sampling (Ch. 5).

Figure 7.2: Comparison of the SNR of the different subsampling methods for: (a) the
MOBILE sequence and (b) the KIEL sequence. The lines indicate the mean values and the

bars the maximum and minimum values.
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The purpose of all the subsampling systems discussed was to preserve as much as possible
the high-frequency detail information. The images in Chapter 2 show that in the ONX-S§
system the high-frequency information was not recovered. In Chapter 3 we saw that the
systems with a fixed subsampling lattice in combination with a nonlinear interpolation filter
(FMH, MA-WFMH) did not totally succeed in preserving the high frequency information. The
other systems (MCI, SASS, MC-SS, MC-SN) all performed equally well.

Because of the absence of a prefilter (FMH, MA-WFMH, MC-SN, MCI) or the use of a weak
prefilter (SASS, MC-SASS), the noise plays an important role if we look at the visual artifacts
of the different systems. The relative small variance of the noise compared to the image
variance makes it difficult to detect high frequency noise and therefore no extra precautions
can be taken. The consequence of this is that high-frequency noise folds back into the low-
frequency components and becomes more clearly visible. The visibility is maximal in areas of
the image with a constant luminance. The fixed lattice systems with nonlinear interpolation
(FMH, MA-WFMH) sutfer the most from this problem. In the other systems, except for the
MCI system, the noise which is folded back is also the most dominating visual artifact but the
magnitude of the distortion is smaller.

We have seen throughout this thesis that subsampling methods in general are not suitable for
applications which requires a high compression factor. In most of the experiments, a
compression factor of two was used. Only for the systems with spatially adaptive
subsampling were higher compression factors possible. If, for example, we look at the
distortion of the MCI and the MC-SN system for a compression factor of two, then the same
distortion is reached in the MC-SASS system for a compression factor of approximately 5.

The required compression factor can also not be adjusted flexibly. In most systems, changing
the compression factor requires the design of a new system. For example in sub-Nyquist
sampling systems, a decrease of the compression factor means different subsampling lattices
and longer temporal interpolation filters. The spatially adaptive subsampling systems are an
exception. The compression factor can be varied freely because of the presence of a mode
allocation.
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SAMENVATTING

De opkomst van breedbandige digitale communicatiekanalen en recente ontwikkelingen op
het gebied van de digitale signaalverwerkingsapparatuur hebben het mogelijk gemaakt dat
een groot aantal nieuwe audio-visuele diensten kan worden geboden aan de consument. Deze
diensten hebben ecn grote invloed op allerlei dagelijkse activiteiten, zowel zakelijk en
educatief als in de ontspanningssfeer. De “High Definition Television” (HDTV) geeft
vergeleken met de huidige televisie een betere beeld- en geluidskwaliteit. Ander nieuwe
diensten zijn onder andere de beeldtelefoon, interactieve televisie en de digitale
videorecorder. Al deze nieuwe diensten vereisen het verzenden van beeld-, geluid- en digitale
informatie. Datacompressie richt zich op het efficiént overzenden van de informatie. Door de
toepassing van datacompressie komt de informatie sneller bij de consument en worden de
kosten die verbonden zijn aan dc nieuwe diensten verminderd.

Een methode die gebruikt kan worden voor het comprimeren van digitale
beeldsequenties is onderbemonsteren. Een digitaal beeld bestaat uit een verzameling van
beeldelementen (“pixels”). In een onderbemonsteringssysteem wordt de hoeveelheid te
verzenden informatie verminderd door een deel van de pixels niet te verzenden. Aan de
ontvanger moeten vervolgens op basis van de pixels die wel verzonden zijn de ontbrekende
pixels worden teruggewonnen (interpolatie). Het is nu belangrijk dat de verzonden pixels
voldoende informatie bevatten om een goede interpolatie mogelijk te maken. Hierbij moet
een afruil worden gemaakt tussen de vereiste kwaliteit, de compressie factor en de
complexiteit van de methode. In dit proefschrift worden verschillende mogelijkheden voor
onderbemonsteringssystemen besproken.

Een belangrijke keuze in een onderbemonsteringssysteem is het bemonsteringsraster. Dit is
een (regelmatige) verzameling van discrete punten in de drie-dimensionale ruimte. Het raster
definieert de positie van de pixels in zowel de originele als de onderbemonsterde
beeldsequentie. Door de vorm van het raster te vari€ren kunnen bepaalde frequentie-
componenten worden benadrukt of juist worden onderdrukt. De dichtheid van het raster
bepaalt de compressiefactor. Uit het raster kunnen ook de posities in het frequentiedomein
van de herhaal spectra, die onstaan door het bemonsteren van de beeldsequentie, worden
afgeleid. Om vouwvervorming te voorkomen, mogen de herhaal spectra elkaar niet
overlappen. Daarom moeten de frequentiecomponenten die vouwvervorming kunnen
veroorzaken voor het onderbemonsteren worden onderdrukt met een bandbegrenzend
laagdoorlaat filter. Als er geen frequentiecomponenten zijn die aanleiding geven tot
vouwvervorming dan is het bandbegrenzend filter overbodig. Bij de ontvanger worden de
ontbrekende pixels weer teruggewonnen met behulp van een interpolatie filter, wat in essentie
weer een laagdoorlaat filter is.

Een eerste groep van spatio-temporele onderbemonsteringssystemem, zijn systemen die
gebruik maken van een vast bemonsteringsraster. In een eenvoudig onderbemonsterings-



systeem met een vast bemonsteringsraster worden lineaire niet-adaptieve bandbegrenzende en
interpolatie filters gebruikt. Het eenvoudig systeem maakt gebruik van de eigenschap dat het
menselijk visueel systeem minder gevoelig is voor diagonale spati€le frequentiecomponenten.
Bij gebruik van een zogenaamd quincunx bemonsteringsraster worden deze
frequentiecomponenten niet overgezonden. Een andere toepassing van het eenvoudige
systeem is het onderbemonsteren van de kleurinformatie. De energiebijdrage van de kleur-
componenten is vaak laag, waardoor een raster met een lage bemonsteringsdichtheid kan
worden gebruikt.

De kwaliteit van het eenvoudige systeem kan worden verbeterd door adaptieve interpolatie
filters te gebruiken in plaats van vaste (d.w.z. niet-adaptieve) interpolatie filters. Het doel
hierbij is om een deel van de resolutie die verloren is gegaan bij het onderbemonsteren terug
te winnen. Om dit mogelijk te maken mag er geen bandbegrenzend filter worden gebruikt, en
kan er dus vouwvervorming optreden. De interpolatie kan adaptief gemaakt worden aan de
beweging in de beeldsequentie door bewegingsadaptieve filters te gebruiken. Bij
bewegingsadaptieve filters wordt de spatio-temporele doorlaatband van het interpolatie filter
aangepast aan de lokale bewegingsvector, en wordt er ook bij de interpolatie geen spatiéle
informatie weggefilterd. De resolutie van de geinterpoleerde beeldsequentie is daarom hoger
dan in het eenvoudige onderbemonsteringssysteem. Voor een goed interpolatieresultaat is het
noodzakelijk dat de geschatte bewegingsvectoren voldoende nauwkeurig zijn en goed
overeenkomen met de echte beweging. Omdat bewegingsschatting niet altijd correct verloopt,
moet er een mechanisme zijn dat foute bewegingsvectoren detecteert en in dat geval een
alternatieve interpolatie uitvoert. Foutdetectie kan worden gedaan door bij de zender al te
kijken naar de grootte van de interpolatiefout. Het eenvoudige onderbemonsteringssysteem
met niet-adaptieve interpolatie kan dienen als een alternatieve terugval mogelijkheid.

Een andere klasse van adaptieve filters omvat de niet-lineaire interpolatie filters welke
gebaseerd zijn op het mediaan filter. Het voordeel van deze filters is dat het interpolatie
resultaat niet bepaald wordt door het gewogen gemiddelde van de pixelwaarden in een spatio-
temporeel venster om het te interpoleren pixel, maar dat de meerderheid van de pixelwaarden
bepaalt wat het uiteindelijke interpolatie resultaat is. Als het te interpoleren pixel tot de
meerderheid behoort, is het interpolatie resultaat beter dan wanneer lineaire interpolatie filters
worden gebruikt. Het interpolatieresultaat kan nog verder worden verbeterd door een hybride
filter te gebruiken, bestaand uit een combinatie van lineaire en niet-lineaire filters. Hierbij kan
ook het bewegingsadaptieve interpolatie filter gebruikt worden. Experimenten tonen aan dat
de prestaties van de niet-lineaire interpolatie filters geen grote verbetering geven ten opzichte
van lineaire interpolatie filters. Vouwvervorming blijkt hierbij de beperkende factor te zijn.

Een tweede groep van spatio-temporele onderbemonsteringssysteem gebruikt voor het
verkrijgen van beter resultaten een adaptief bemonsteringsraster in plaats van een vast
bemonsteringsraster. In een systeem met een spatiéel adaptief raster wordt de vorm en de
dichtheid van het lokale bemonsteringsraster aangepast aan de beeldinhoud. Het beeld wordt
in blokken opgedeeld en voor elk blok wordt bepaald wat het optimale bemonsteringsraster
is. Met behulp van de produktie-vervormingstheorie kan worden aangetoond dat deze aanpak
altijd een lagere vervorming geeft dan een systeem met een vast bemonsteringsraster. Deze
theorie kan ook worden gebruikt voor het toewijzen van de lokale bemonsteringsrasters aan
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de verschillende blokken, onder de randvoorwaarde van een vooraf vastgestelde data-
compressie factor.

Het gevolg van spatiéel adaptief onderbemonsteren is wel dat aan de ontvangstzijde de
interpolatic uitgevoerd moet worden op een onregelmatig bemonsteringsraster. Binnen één
blok is er wel een regelmatig bemonsteringsraster. Gebaseerd op de pixel binnen één blok
kunnen met behulp van de kleinste-kwadraten-methode polynomen van verschillende orde
worden geschat, welke gebruikt worden om de ontbrekende pixels te berekenen. Een ander
interpolaticmethode is het opbouwen van een hi€rarchische piramide, waarbij het beeld vanuit
de bemonsteringsrasters met een lage bemonsteringsdichtheid steeds wordt uitgebreid naar
een hogere bemonsteringsdichtheid. Een voorwaarde hierbij is dat elk lokaal bemonsterings-
raster steeds een deelverzameling is van de rasters met een hogere bemonsteringsdichtheid.

Het systeem kan ook adaptief in de temporele richting gemaakt worden door gebruik te
maken van bewegingsinformatie. Als een blok met behulp van de bewegingsvector voorspeld
kan worden uit het vorig beeld, dan hoeft dit blok niet nog een keer te worden verzonden. Op
deze manier wordt de temporele bemonsteringstrequentie aangepast aan de aktiviteit in de
temporele richting. De experimenten tonen aan dat het systeem betere resultalen oplevert dan
een systeem met een vast bemonsteringsraster, en dat de kwaliteit toeneemt naarmate er meer
verschillende lokale bemonsteringsrasters zijn waaruit gekozen kan worden.

Een andere manier om een adaptief bemonsteringsraster te verkrijgen is door het raster aan te
passen aan de aanwezigheid van beweging. Een niet-bewegend gebied in een beeld verandert
niet in de tijd, waardoor de bemonstering van het beeld verdeeld kan worden over een aantal
beelden. Elk beeld wordt onderbemonsterd met een bepaald onderbemonsteringsraster,
waarbij het raster voor elk beeld zodanig verschoven wordt dat alle pixels van het stilstaande
beeld over een periode van een aantal beelden overgezonden worden. Bij de ontvanger
worden de verschillende beelden gecombineerd in én beeld met een temporeel interpolatie
filter. Dit principe heet “sub-Nyquist” bemonsteren, omdat de bemonsteringsfrequentie lager
is dan de voorgeschreven Nyquist-frequentie.

Sub-Nyquist bemonsteren wordt gebruikt in verschillende compressiesystemen voor
HDTYV, zoals het Japanse MUSE systeem en het Europese HD-MAC systeem. In een
praktisch systeem moet er altijd een alternatieve onderbemonsteringsmogelijkheid zijn voor
het geval dat er wel sprake is van beweging. Bij beide systemen wordt in dit geval gekozen
voor een vast onderbemonsteringsraster in combinatie met spati€le interpolatie. Bij het HD-
MAC systeem wordt de onderverdeling in bewegende en niet-bewegende gebieden gedaan op
blok-basis en in het MUSE systeem op pixel-basis. In het HD-MAC systeem wordt deze
beslissingsinformatie als zij-informatie verzonden, terwijl het MUSE systeem de beslissing
apart herhaalt bij de ontvanger. De complexiteit is daardoor in het HD-MAC systeem
geconcentreerd bij de zender, terwijl in het MUSE systeem zowel de zender als de ontvanger
dezelfde complexiteit hebben.

Het principe van sub-Nyquist bemonsteren kan met behulp van bewegingsinformatie
worden uitgebreid naar bewegende gebieden. Dan treedt echter wel het probleem van de
kritische snelheden op. Als een vast bemonsteringsraster wordt gebruikt is het voor sommige
gebieden die bewegen met een bepaalde snelheid niet langer mogelijk om door combinatie
van de verschillende onderbemonsterde beelden het oorspronkelijk beeld terug te winnen. Dit
probleem wordt opgelost door een adaptief bemonsteringsraster te gebruiken, zodanig dat
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combinatie van de verschillen onderbemonsterde beelden wel mogelijk wordt. Ook hier geldt
dat een toename van de nauwkeurigheid van de bewegingsvectoren een positieve invloed
heeft op het eindresultaat. Uit de experimenten blijkt dat het bewegingsadaptieve sub-Nyquist
systeem betere resultaten oplevert dan het niet-adaptieve systeem omdat het ook kan worden
toegepast op bewegende gebieden in de beeldsequentie.

Onderbemonsteren kan gecombineerd worden met transformatiecodering met als doel de
complexiteit van het transformatiecoderingssysteem te verlagen. Een andere motivatie is de
aanpassing van het transformatiecoderingssysteem aan het menselijk visueel systeem. Het
overgebleven spectrum na onderbemonstering kan nauwkeuriger worden gecodeerd. Verder
kan het transformatiecoderingssysteem bewegingsadaptief gemaakt worden door combinatie
met sub-Nyquist bemonstering. In de praktijk komen alleen onderbemonstering systemen met
een vast bemonsteringsraster in aanmerking voor combinatie met transformatiecodering. De
gemiddelde kwadratische vervorming van een systeem bestaande uit een vast bemonsterings-
raster gevolgd door transformatiecodering is altijd groter of gelijk aan de vervorming van een
systeem met alleen transformatiecodering, maar de keuze voor het gecombineerde systeem is
in de praktijk niet altijd gebaseerd op dit objectieve kwaliteitscriterium. Wanneer een
transformatiecoderingssysteem gecombineerd wordt met sub-Nyquist bemonstering dan valt
met theoretische argumenten aan te tonen dat de gemiddelde kwadratische fout altijd kleiner
is dan in een standaard transformatiecoderingssysteem. In de experimentele evaluatie blijkt
dit theoretische resultaat echter niet op te gaan.

Wanneer de verschillende besproken onderbemonsteringsmethodes met elkaar worden
vergeleken, dan blijkt dat de systemen die gebaseerd zijn op een vast onderbemonsterings-
raster slechtere resultaten oplevert vergeleken met de systemen die gebruik maken van een
adaptief onderbemonsteringsraster. De uitzondering hierop is het systeem met een
bewegingsadaptieve interpolatie filter, dat ook een goed resultaat oplevert. Het beste resultaat
wordt verkregen met een spatio-temporeel adaptief bemonsteringsraster, omdat in dit geval de
lokale beeldinhoud goed wordt benut.
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