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Summary

In digital speech-communication systems like mobile phones, public address
systems and hearing aids, conveying the message is one of the most impor-
tant goals. This can be challenging since the intelligibility of the speech may
be harmed at various stages before, during and after the transmission process
from sender to receiver. Causes which create such adverse conditions include
background noise, an unreliable internet connection during a Skype conversa-
tion or a hearing impairment of the receiver. To overcome this, many speech-
communication systems include speech processing algorithms to compensate
for these signal degradations like noise reduction. To determine the effect on
speech intelligibility of these signal processing based solutions, the speech signal
has to be evaluated by means of a listening test with human listeners. However,
such tests are costly and time consuming. As an alternative, reliable and fast
machine-driven intelligibility predictors are of interest, since they might replace
listening tests, at least in some stages of the algorithm development process.

Two important issues exist with current intelligibility predictors. (1) Many
of these methods cannot reliably predict the effect of more advanced nonlinear
signal processing algorithms on speech intelligibility. (2) Typically, these mea-
sures are based on very complex auditory models or use average statistics of
minutes of running speech, which makes it difficult on how to design new (real-
time) speech processing solutions in an optimal manner given such a measure.
To this end we propose several new measures which show good prediction re-
sults with the intelligibility of nonlinear processed speech. The newly proposed
measures are of a low computational complexity and mathematically tractable
which make them suitable for optimization of new signal processing solutions
which aim for improving speech intelligibility.

An important stage in many speech intelligibility predictors is the use of
an auditory model. In the first part of this thesis we show that a general so-
phisticated auditory model can be greatly simplified, while preserving accurate
predictions of psycho-acoustic listening experiments. The resulting simplified
model facilitates the computation of analytic expressions for masking thresholds
while advanced state-of-the-art models typically need computationally demand-
ing adaptive procedures. Its mathematical properties are successfully exploited
by optimally redistributing speech energy such that the speech intelligibility is
improved when played back in a noisy environment without modifying the
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signal-to-noise ratio.
In the design process of new intelligibility predictors we first analyse the

strengths and weaknesses of existing measures. In total, 17 different mea-
sures are evaluated for intelligibility prediction of time-frequency weighted noisy
speech. We show that, despite high correlation with the listening test scores,
several measures cannot predict the difference in intelligibility before and after
signal processing. We explain that a state-of-the-art measure was not able to
predict the intelligibility due to its sensitivity to the DFT-phase components.
Issues with existing measures for intelligibility prediction are highlighted and
a general normalization procedure as a pre-processing step is proposed which
improves their correlation with speech intelligibility.

We propose a new short-time intelligibility measure (STOI) which shows
high correlation with the intelligibility of time-frequency weighted noisy speech,
including noise-reduced and vocoded speech. In general, STOI shows better
correlation with speech intelligibility compared to five other state-of-the-art
objective intelligibility models. One important difference between STOI and
other measures is its analysis length which is in the order of a few hundreds
of ms rather than complete sentences or 20-30 ms length frames. Due to the
simple structure of STOI we show in the final part of this thesis that the
measure can be interpreted as a mathematical norm, which is applied in the
channel-selection technique with cochlear-implant simulations. Several intel-
ligibility predictors indicate large intelligibility improvements with the new
method based on STOI compared to a peak-picking algorithm.
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Chapter 1

Introduction



2 1. Introduction

An important goal in speech-communication systems is to record, transmit
and playback a speech signal such that it is correctly understood by the re-
ceiver. Examples can be found in the field of electronic broadcasting systems
like telephony, radio and television but also in public address systems such as
used in airports or train stations. This scenario also applies to devices which
compensate for a hearing-loss, like hearing aids and cochlear implants, where
conveying the message is one of the main goals. In addition to the requirement
that the speech should be intelligible, another important aspect is the quality
of the speech signal. Preferably, the speech signal should sound pleasant and
natural such that the speech signal can be understood with a similar effort as
with clean undistorted speech. Moreover, additional information like speaker
identity and emotion, should also be correctly interpreted by the listener.

For all these aforementioned examples of speech-communication systems,
the speech can get degraded at various stages before, during and after the
transmission process from sender to receiver. Typically, these degradations will
have a negative effect on speech intelligibility and/or speech quality. Impor-
tant causes for speech deterioration are environmental factors like background
noise at both sides of the communication channel, e.g., the sound of a passing
train or a noisy crowd in a restaurant [Fren 47]. But also properties of the
communication channel can lead to a speech degradation. For instance, due
to the bandwidth constraint in the case of a normal telephone line [Flet 50],
the lack of high frequencies in the speech signal might confuse the listener with
what was actually said by the speaker. Also for internet-based telephone calls,
like a Skype conversation, gaps in the speech signal may occur due to lost dig-
ital packets when transmitted over an unreliable and slow internet connection,
which negatively affects the intelligibility [Mill 50]. Another important factor
is the hearing impairment of the receiver, which might be compensated for by
means of an hearing aid or cochlear implant. Unfortunately, even with hearing-
aids, environmental sources like background noise and reverberation may still
have a strong negative impact on the perceived speech signal in both speech
quality and intelligibility [Chun 04].

A large area in the field of speech processing works on developing algo-
rithms which try to compensate for these types of speech degradations, see
[Dell 93a, Vary 06] for an overview. These algorithms aim for a restoration
of speech quality and/or intelligibility or make the speech signals more robust
when transmitted in such adverse conditions. For instance, one straightforward
way for improving speech understanding in a noisy environment would be to
detect the amount of noise and amplify the speech signal accordingly, before
playback in the noisy environment. However, when the noise is already present
in the recorded speech signal, more advanced solutions exist like sophisticated
noise-reduction algorithms which try to estimate the underlying clean speech
given the noisy observation [Loiz 06]. Moreover, relevant for the aforemen-
tioned telephony applications, a bandwidth extension method can be used to
restore the high frequencies [Iser 08] or lost packets can be revealed with a so-
called packet-loss concealment algorithm [Perk 98]. Hearing-loss compensation
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algorithms as used in hearing aids, typically restore speech understanding by
amplification and try to compress the dynamic range of the speech such that
the speech is audible again for the user [Dill 01].

To determine the perceptual consequences of these speech degradations and
the effects of the proposed signal processing based solutions, the speech signal
has to be evaluated by means of a listening test with human listeners. Many
types of listening tests exist where, for example, the change in speech quality
or speech intelligibility due to a certain type of processing can be evaluated
[Gran 08]. Although a listening test can lead to a judgment as observed by
the intended group of users, such tests are costly and time consuming. This
may be specifically an issue in the research and development process of a new
speech processing algorithm. For example, imagine the situation where one
proposes a new noise-reduction algorithm, which has one free parameter con-
trolling the ’amount of noise reduction’. Increasing this parameter leads to
more noise-reduction and may therefore improve the speech quality for the
end-user. Unfortunately, too much noise reduction also leads to removing un-
wanted components of the target speech, which can result in a decrease in
speech intelligibility. In order to determine the optimal setting for this simple
example with respect to an average group of users, many listening tests have to
be performed with different settings of the free parameter, which is undesirable.
In fact, the truth is that many speech processing algorithms have tens or even
hundreds of free parameters, rather than one. Moreover, many other aspects
which may change the algorithm behavior should also be taken into account,
like the noise type, the amount of noise, speaker gender and speaker type. This
variety of possibilities makes it impossible to optimize new algorithms solely
based on listening tests.

As an alternative, reliable and fast machine-driven evaluation methods are
of interest, since they might replace listening tests, at least in some stages of
the algorithm development process. Typically, such an evaluation method is
implemented as a computer program and acts like an artificial listener based
on some general model of the auditory system. As an output, one number is
generally reported as a function of one or more different inputs, like the clean
and distorted speech signals. These predictive models aim for a high correlation
with the results from an actual listening test like the average percentage of
correctly understood words or some kind of speech quality-based ranking score.
For the given example of the noise-reduction algorithm, such a measure could
be used to explore the space of possible parameter settings in a fast way.

More interestingly would be to use these predictive models for providing
hints on how to process the speech in a more fundamental manner, rather than
naive offline optimization of free parameters of already designed speech pro-
cessing algorithms. In other words, new signal processing strategies could be
designed in an optimal way given such a machine-driven evaluation method.
The latter approach will be referred to as online optimization in this thesis.
One requirement of the predictive model for designing these types of optimal
signal processing solutions is that the measure should be transparent and easy
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to understand, rather than a ’black box’ approach which would be more appro-
priate for offline parameter optimization. This transparency is needed in order
to provide hints on how to process the signal in an optimal manner, e.g., by
means of deriving closed form solutions. An additional important property is
that the measure should be of low computational complexity such that it can
be used in DSP processors, e.g., as in digital hearing instruments.

Many methods exist to predict either the speech quality [Quac 88] or speech
intelligibility [Koll 08] for a given type of speech degradation. Especially in the
field of speech quality prediction, reliable methods are present which can pre-
dict the effect of many types of speech distortions, e.g., [Rix 02], including the
effect of signal processing based solutions to compensate for the negative ef-
fect of, e.g., background noise. Moreover, several intelligibility measures are
developed which can accurately predict the impact of environmental degrada-
tions like background noise and reverberation or simple degradations like linear
filtering [Koll 08]. Unfortunately, it seems that these intelligibility predictors
have more difficulties with predicting the effect of more advanced signal pro-
cessing algorithms on the speech intelligibility. A clear example can be found
in the field of single-channel noise reduction, where there is typically no or
only little improvement in speech intelligibility due to the applied noise reduc-
tion algorithm [Jens 12, Hu 07a]. In fact, it turns out that several methods
even decrease the speech intelligibility due to the applied speech enhancement
method [Hu 07a, Hilk 12] (see [Kim 09] for an exception). Nevertheless, many
intelligibility measures report incorrectly the opposite result and predict that
the noise reduction algorithm did a good job and actually increased the speech
intelligibility [Ludv 93, Dubb 08, Gold 04]. As a consequence, these measures
can not be used reliably in the analysis and optimization process of a noise
reduction algorithm. Note that, in contrast to speech intelligibility, there is a
positive effect on speech quality due to the applied noise reduction algorithm
[Hu 07b]. In contrast to intelligibility, this benefit on speech quality is correctly
predicted by many speech quality measures [Hu 08a].

Besides the inconsistency between actual and predicted scores for some
speech processing conditions, another important difference is present between
the fields of speech quality and speech intelligibility prediction. That is, many
’simple’, i.e., mathematically tractable, measures with a relatively high corre-
lation with speech quality exist. As a consequence, many researchers develop
optimal signal processing algorithms for these measures which therefore im-
prove speech quality. These mathematically tractable measures hardly exist in
the field of speech intelligibility. Typically, they are based on very complex au-
ditory models or use average statistics of minutes of running speech, which make
it difficult on how to modify the speech signal locally in an optimal manner.
Perhaps this could be one of the reasons why in the field of speech processing
the focus has been on speech quality rather than speech intelligibility.
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1.1 Thesis Scope and Contributions

The focus in this work is on the analysis of existing measures and develop-
ment of new measures for predicting the effect of signal processing algorithms
on speech intelligibility which are applied in adverse conditions. We aim for
new measures which are mathematically tractable and of low computational
complexity such that they can be used for online optimization. Examples of
mathematically tractable measures (sometimes also referred to as ’simple’ mea-
sures in this thesis) include measures which provide closed-form solutions to
signal processing problems and/or may be expressed as a mathematical norm.
Although many types of speech degradations can occur, we look at speech
processing methods which process speech in noisy conditions. With noisy con-
ditions we assume that the speech is degraded by additive (background) noise.
These types of processing include noise reduction algorithms and algorithms
which process speech before playback in a noisy environment. We also look at
speech vocoders, where pure noise (or noisy speech at extremely low SNRs as we
will see in Chapter 4) is processed to simulate the properties of a cochlear im-
plant with normal-hearing listeners, see, e.g., [Wils 08, Dorm 02, Litv 07]. To
narrow the scope in this thesis we do not consider reverberated speech or speech
processing algorithms specifically meant for this type of environmental degra-
dation like de-reverberation. Moreover, only single-microphone algorithms are
considered where multi-microphone methods are not part of this thesis.

The main goal in this thesis can therefore be summarized as follows: the
development of new measures for intelligibility prediction of (non)-linear pro-
cessed speech in noisy conditions, which can be used for online optimization
in speech signal processing applications. The main contributions in this thesis
can be summarized as follows.

Simplification of auditory model An important aspect of every measure,
whether it is for signal detection, audio quality or speech intelligibility pre-
diction, is the use of an auditory model. In Chapter 3 we simplify a general
sophisticated auditory model such that it has reduced computational complex-
ity and is mathematically tractable. As a consequence it is suitable for online
optimization as we will show in Chapters 3 and 6.

Evaluation of existing measures for intelligibility prediction For many
measures it is not known how they perform with intelligibility prediction of
processed speech in noisy conditions. An extensive evaluation of 17 different
measures is therefore presented in Chapter 4. We show that, despite high
correlation with the listening test scores, several measures cannot predict the
difference in intelligibly before and after signal processing. We explain that
a state-of-the-art measure was not able to predict the intelligibility due to its
sensitivity to the DFT-phase components. Issues with existing measures for in-
telligibility prediction are highlighted and a general normalization procedure as
a pre-processing step is proposed which improves their correlation with speech
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intelligibility.

Proposal of several new intelligibility measures In Chapter 4 and 5
several new intelligibility measures are proposed which can predict the effect on
intelligibly of applied time-frequency weightings to speech degraded by additive
noise. Compared to the intelligibility measures evaluated in Chapter 4 higher
correlation is obtained with speech intelligibility. The newly proposed short-
time objective intelligibility (STOI) measure in Chapter 5 is suitable for online
optimization as we will shown in Chapter 7.

Speech energy re-distribution based on auditory model The mathe-
matical properties of the simplified auditory model in Chapter 3 are demon-
strated in Chapter 6. Here speech intelligibility is improved in a noisy envi-
ronment while maintaining good speech quality. Speech energy is redistributed
over time and frequency in an optimal manner for the simplified auditory model
which now facilitates an analytical solution to this problem.

Channel selection in cochlear implants based on STOI In Chapter
7 we show that STOI can be interpreted as a mathematical norm, which is
applied in the channel-selection technique with cochlear-implant simulations.

1.2 Thesis outline

The thesis consists of background information provided in Chapter 2, the pre-
sentation of the main results, described in Chapters 3-7, followed by a conclud-
ing discussion chapter. The main contributions are presented as a collection
of five papers. The first three papers presented in Chapters 3-5 are on the
development and evaluation of predictive measures for speech intelligibility,
while in the remaining two Chapters 6-7 these measures are used for online
optimization. More details per chapter can be found below.

Chapter 2 As an introduction this chapter provides an overview for three
different prediction measures, which all have an important role in the remainder
of this thesis. Each one of these measures is developed from a different research
field and has different applications, which will be explained. The first measure
consists of a sophisticated nonlinear auditory model and is meant for predicting
the detectability of one sound played in the presence of another sound. In other
words, it predicts the amount of masking of one sound due to the presence of
another sound. This model is typically used for detailed study of the human
auditory system as done by audiologists. The second measure is also based
on detectability and masking, however, a more simple auditory model is used.
As a consequence, the measure is mathematically tractable and facilitates the
use of optimal signal processing algorithms. In the final part of this chapter a
measure is explained specifically meant for speech intelligibility prediction for
simple degradations based on average speech and noise statistics.
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Chapter 3 (based on [Taal 12a]) In this chapter a mathematical expres-
sion is given for an advanced spectro-temporal auditory model. We will show
that, under certain assumptions, the model can be greatly simplified. As a
consequence, the model facilitates the computation of analytic expressions for
masking thresholds, while advanced spectro-temporal models typically need
computationally demanding adaptive procedures to find an estimate of these
masking thresholds. These perceptual models exploiting auditory masking are
frequently used in audio and speech processing applications like coding and
watermarking. However, conventional models only take into account spectral
information in short-time frames and discard time information. As a conse-
quence, these models may introduce undesired audible artifacts in the tempo-
ral domain (e.g., pre-echoes). Since the proposed model is based on a more
advanced spectro-temporal auditory model it will be shown that these artifacts
are not present when the proposed method is used.

Chapter 4 (based on [Taal 11b]) Existing objective speech-intelligibility mea-
sures are suitable for several types of degradation, however, it turns out that
they are less appropriate in cases where noisy speech is processed by a time-
frequency weighting as used in, for example, noise reduction. To this end, an
extensive evaluation is presented of objective measures for intelligibility pre-
diction of noisy speech processed with a technique called ideal time-frequency
segregation (ITFS) and single channel noise reduction. In total 17 measures are
evaluated, including advanced speech-intelligibility measures, speech-quality
measures and several more simple frame-based measures. Furthermore, several
additional measures are proposed. Several newly proposed algorithms turn out
to be good predictors of the listening experiment results. Moreover, a discussion
is provided why several algorithms were not able to predict the intelligibility
of the noisy and processed noisy speech.

Chapter 5 (based on [Taal 11a]) As a follow-up of the evaluation presented
in Chapter 4 a new short-time objective intelligibility measure (STOI) is pro-
posed. The measure shows high correlation with the intelligibility of noisy and
time-frequency weighted noisy speech (e.g., resulting from noise reduction) of
three different listening experiments. In general, STOI showed better correla-
tion with speech intelligibility compared to five other state-of-the-art objective
intelligibility models. In contrast to other conventional intelligibility models
which tend to rely on global statistics across entire sentences, STOI is based
on shorter time segments (386 ms). Experiments indeed show that it is bene-
ficial to take segment lengths of this order into account.

Chapter 6 (based on [Taal 12d]) In this Chapter an algorithm is presented
for intelligibility improvement in noise based on the proposed perceptual dis-
tortion measure from Chapter 3. The energy of a speech signal is optimally
redistributed over time and frequency given this model and the noise statistics.
Since this auditory model takes into account short-time information, transients
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will receive more amplification compared to stationary vowels, which is benefi-
cial for improving intelligibility in noise. Note that many other mathematically
tractable distortion measures do not take into account short-time envelope in-
formation. The proposed method is compared to the noisy unprocessed speech
and two reference methods by means of an intelligibility listening test. The
results show that the proposed method leads to a statistically significant im-
proved speech intelligibility and improved speech quality compared to the noisy
speech, while the reference method with most intelligibility improvement only
improves speech intelligibility at the cost of a decreased speech quality.

Chapter 7 (based on [Taal 12b]) The proposed STOI measure from Chapter
7 is simplified such that it can be expressed as a weighted ℓ2-norm in the
auditory domain. Due to the mathematical properties of a norm, STOI can now
be used with the matching pursuit algorithm in the n-of-m channel selection
technique as found in several cochlear implant (CI) coding strategies. With this
technique, only a subset of frequency channels (electrodes) are stimulated, such
that important channels can be updated more frequently and less significant
channels are omitted. Intelligibility predictions with acoustic CI-simulations for
normal-hearing listeners indicate that more intelligible speech is obtained with
the proposed method compared to a conventional channel selection method
based on peak picking.

Chapter 8 In this Chapter a summary and discussion of all the results in
this thesis is provided. Moreover, ideas for future research directions are given.
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2.1 Introduction

This chapter provides background information for reading the remaining chap-
ters of this thesis. One common element in all chapters is the use of measures
which try to quantify the perceptual consequences of introduced degradations
to audio, like speech, in a mathematical manner. To elaborate on this, three
different measures will be treated in detail which predict some kind of per-
ceptual dimension of a modified or degraded speech signal. Throughout the
thesis these three methods will be used as a baseline for comparison. Each
measure can be interpreted as a representative of a certain family of measures
which share an important property relevant to the main goal in this thesis: the
development of new measures for speech intelligibility which can be used for
optimization in speech signal processing applications. For this we distinguish
the following three properties: 1) the use of an auditory model, 2) the math-
ematical properties of a method which are important for online optimization
and 3) the method of signal comparison relevant to speech intelligibility, e.g.,
rather than speech quality or signal detectability.

The majority of prediction measures treated in this thesis have in common
that they use some type of auditory model, where certain stages of the audi-
tory periphery are simulated in order to obtain an internal representation. The
model developed by Dau et al. [Dau 96a, Dau 96b] contains the most sophisti-
cated nonlinear auditory model of all three measures. Due to the sophisticated
level of this auditory model, it can accurately predict the effects of forward
and backward masking [Zwic 90, Moor 03] and effects of phase changes in si-
nusoidal maskers in masking experiments [Dau 96b]. The original application
of the Dau-model was to predict the results from psycho-acoustical listening
experiments in order to study the human auditory system [Dau 96b]. Hence, it
was not necessarily meant for speech signals. However, later studies have shown
that the model can also be applied in the field of speech quality and intelligi-
bility prediction [Hans 98b, Hans 97, Kohl 08, Holu 96, Chri 10]. In Chapter
3 we will show that the auditory model can be greatly simplified for predict-
ing the results in masking experiments. This is an important step in making
measures more suitable for online optimization as we will see in Chapter 6. In
Chapter 4 we reveal that an intelligibility predictor based on the Dau-model
outperforms many other methods in intelligibility prediction of time-frequency
weighted noisy speech, e.g., as in single-channel noise reduction. Therefore the
Dau-model method is used for comparison with a newly proposed intelligibility
predictor in Chapter 5 which is of a more simple form.

The second model which is discussed is the perceptual model proposed by
Van de Par et al. [Par 05] and is inspired on a simple signal detection model
as proposed by Green and Swets [Gree 66]. Due to the fact that the Par-model
uses a very basic model of the auditory system it has certain mathematical
properties that facilitate the use of online optimization algorithms, e.g., least-
squares solutions. Note that these properties are not available with the Dau-
model. Therefore, many speech and audio processing algorithms have been pro-
posed which optimize for the Par-model, like sinusoidal coding [Heus 06], resid-
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ual noise modeling [Hend 04] and speech recognition feature selection [Koni 10].
However, this measure is not necessarily meant for intelligibility prediction. In-
stead it is based on the detectability of one sound in presence of another sound,
i.e., how much speech is audible in the presence of noise. In Chapter 3 we ex-
plain that its predictions may be less reliable than the Dau-model in certain
situations. Therefore a new method is proposed in Chapter 3 with similar
mathematical properties as the Par-model but with prediction results similar
to the Dau-model. As a consequence, we can also optimize speech intelligibility
in noise for this method as explained in Chapter 6.

The last model is the coherence speech intelligibility index (CSII), which
can be considered as a state-of-the-art intelligibility measure [Kate 05]. The
CSII can predict the effect on speech intelligibility of signal degradations like
background noise and nonlinear processing techniques as typically used in hear-
ing aids [Kate 05]. The good performance of CSII for specific degradations is
confirmed in recent evaluative studies [Ma 09, Chen 11]. Moreover, its corre-
lation based comparison between clean and degraded auditory representations
of speech signals is an important aspect used in many speech intelligibility
predictors as we will see in the Chapters 4 and 5.

2.2 Notation

To describe the three models, the following general notation is used. Let x and
y denote two finite length, discrete-time signals representing the original and
degraded audio signal, respectively. The majority of methods discussed in this
thesis aim for predicting some perceptual dimension, like speech intelligibility,
speech quality or detectability, of the degraded signal y. Several methods, like
the Par-model, assume an additive type of degradation which will be denoted
by y = x + ε, where ε denotes the introduced degradation by the system of
interest, e.g., background noise.

The following notation is used to describe an N -point discrete Fourier trans-
form (DFT) of x, say x̂, which is defined as,

x̂ (k) =
N−1∑
n=0

x (n) e−j2πkn/N , k = 0, ..., N − 1, (2.1)

where k represents the DFT-bin index, j the imaginary unit and n the time
index. Similar definitions hold for ŷ and ε̂. A linear convolution between two
signals, say x and h, will be denoted by x ∗ h, where the outcome for a specific
time sample of the convolved signal is defined as,

(x ∗ h) (n) =
∞∑

m=−∞

x (m)h (n−m). (2.2)
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Figure 2.1: How to obtain the internal representation in the Dau-model.

2.3 Dau-model

The perceptual model developed by Dau et al. [Dau 96a, Dau 96b] transforms
the audio signal which enters the outer ear into a spectro-temporal auditory
nerve response by simulating several stages of the auditory periphery. The
eventual output of this perceptual model can be interpreted as the information
which will be processed by the human brain. By calculating the internal repre-
sentations for two different signals, a comparison can be made in the auditory
domain in order to make a prediction about their perceptual difference.

Originally the Dau-model was proposed to act as an artificial observer to
study the auditory system by predicting results from psychoacoustic listening
tests as obtained with real listeners [Dau 96b]. However, it has been shown
in later studies that the internal representations obtained by the Dau-model
can also be used for predicting quality of degraded audio and speech sig-
nals [Hans 98b, Hans 97, Kohl 08] and speech intelligibility for normal-hearing
[Chri 10] and hearing impaired [Holu 96] people. Although all these approaches
use the same perceptual model as proposed in [Dau 96a], they differ in how and
which internal representations are compared.

In the next section it will first be explained how to obtain an internal repre-
sentation following [Dau 96a]. More specific details are given on the so-called
adaptation loops which are an important aspect of the Dau-model. These
adaptation loops mimic the neural adaptive properties of the auditory periph-
ery. Finally two different ways of comparing internal representations will be
highlighted: (1) the original decision device for predicting results from psy-
choacoustic listening experiments as explained in [Dau 96a] and (2) a method
proposed in [Chri 10] for predicting the speech intelligibility of degraded speech.

2.3.1 Internal Representation

The signal processing stages in the Dau-model, which model certain parts of
the auditory periphery, are illustrated in Figure 2.1. Roughly six stages can be
distinguished in order to obtain an internal representation:

• An auditory filter-bank mimicking the frequency dependent displacement
on the basilar membrane.

• An envelope extraction stage which simulates the transformation of the
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mechanical oscillations of the basilar membrane into receptor potentials
in the inner hair cells.

• A max-operator to introduce an absolute threshold in quiet.

• A series of feedback loops, refered to as adaptation loops, to include the
effects of neural adaptation and temporal masking effects.

• A low-pass filter for modeling the temporal integration as present in the
auditory system.

• The addition of internal noise to limit the resolution of the internal rep-
resentation due to, for example, spontaneous firing of neurons.

For the auditory filterbank a gamma-tone filterbank is used, e.g., [Patt 92],
where the notation hi is used to denote the impulse response of the gamma-
tone filter with frequency index i. Typically, the filterbank spans a relevant
frequency range for hearing, where their center frequencies are linearly spaced
on a perceptual relevant frequency scale like equivalent rectangular bandwidths
(ERBs) or critical bandwidths [Zwic 90, Moor 03]. After the auditory filter-
bank, a hair-cell model is applied which consists of halfwave rectification fol-
lowed by a low-pass filtering. Where the half wave rectifier discards all the
negative inputs, the low-pass filter will smooth the nonnegative signal over
time and reduces the temporal structure. As a result, the output will tend to
follow the envelope structure within each auditory filter.

Let the impulse response of the smoothing low-pass filter be denoted by hs1 ,
which is implemented as a one-pole IIR low-pass filter with a cutoff frequency
equal to 1 kHz. A mathematical description at the output of the hair-cell model
for an arbitrary input signal x is then given by,

H{x ∗ hi} ∗ hs1 , (2.3)

where the operator H represents half-wave rectification defined as,

H{x} (n) =
{
x(n) x(n) ≥ 0
0 x(n) < 0

. (2.4)

As illustrated in Figure 2.1, the hair-cell output is limited to a minimum
value c. This step can be interpreted as modeling internal sounds caused by,
for example, blood streams and muscle activity, which will introduce a mimum
hearing threshold. This means that below a certain playback level, the model
should not be able to detect the signal anymore. A second, more practical,
reason for clipping the hair-cell output is to prevent a division by a small
number in the adaptation loops as will be explained in the next section. The
notation x̃i is used to denoted the clipped signal at the output of the hair-cell
model within frequency channel i, that is,

x̃i (n) = max ((H{x ∗ hi} ∗ hs1) (n) , c) . (2.5)
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Figure 2.2: Structure of one feedback loop as used in the adaptation loops of
the Dau-model.

The neural adaptation stage models the response of a neuron, according to
its hair cell input stimuli. The adaptation properties are included such that
the model correctly predicts the temporal masking properties of the auditory
system, like forward and backward masking [Zwic 90, Moor 03]. This stage is
modeled by applying five feedback loops connected in series to the clipped hair-
cell output. Due to the fact that five adaptation loops are chosen, the system
will have a transform close to the logarithm for stationary input signals, which
is roughly in accordance with the auditory system. More details will be given
on this property later in this section.

The structure of one feedback loop is illustrated in Figure 2.2 where its
output is low-pass filtered and fed back into the system to act as a divisor on
its input. The output y in one feedback loop for a given input signal x is given
as follows,

y (n) =
x (n)

f (n− 1)
(2.6)

where f denotes a low-pass filtered version of y given by,

f (n) = by (n)− af (n− 1) (2.7)

and a and b are the filter coefficients for the one-pole IIR low-pass filter. In
[Dau 96a] the filter properties are given in terms of a time-constant τ measured
in ms which gives the following filter coefficients1,

a = e−1000/(τfs), b = a− 1, (2.8)

where fs denotes the sample-rate. The time-constant will affect the adaptation
time for the system, which is needed to respond to a sudden change in input.
This is illustrated in Figure 2.3, where the output is shown for various time
constants given an input signal with a sudden on and offset. It is clear that a
sudden onset will result in an overshoot while an offset gives an undershoot. As
a result the model is more sensitive to signal onsets, e.g., transients in speech,

1the relation between the time-constant τ and the cutoff frequency fc of a one-pole low-
pass filter is given by fc = 1000/ (2πτ), where fs denotes the sample-rate.
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Figure 2.4: Effect of one feedback loop for different input levels. On the left
different input signals are shown with corresponding outputs on the right.

and less sensitive to events occurring after a signal offset which may lead to
forward masking. When the input x(n) of an adaptation loop is constant, the
output of the (normalized) low-pass filter will eventually converge to its input
value, i.e., y(n) = f(n). Inspection of Eq. (2.6) reveals that the eventual output
of such a feedback loop will then converge to y(n) =

√
x(n). An illustration

is given in Figure 2.4 for four different input levels, where the region 0.4-
0.5 seconds illustrates such a convergence. From this example it can also be
concluded that at the signal onset the feedback loop results in a more linear
transformation rather than taking the square root. In total five adaptation
loops are applied connected in series with time constants between 10 and 500
ms [Dau 96a]. If a constant hair-cell output is encountered in Eq. (2.5), e.g.,
x̃i(n) = c, ∀n, we obtain the following input output relation,

A{x̃i} (n) = x̃i(n)
1/32, (2.9)

where the operator A denotes the signal transform due to the adaptation loops.
As shown in Figure 2.5 this approximates a logarithmic transform to Decibels
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which equals the human perception of loudness [Zwic 90].
Subsequently, a low-pass filter with impulse response hs2 and τ = 20 ms

is applied to the output of the adaptation loops to reduce the effect of high
temporal modulation frequencies. Finally, to include a loss of information
due to spontaneous neural firing, i.i.d. Gaussian noise with variance σ2 and
zero mean is added denoted by N . The following mathematical description is
therefore obtained for the internal representation within one auditory channel,

Φxi
= A{x̃i} ∗ hs2 +N . (2.10)

As an example, a spectro-temporal internal representation is shown for a
given input signal in Figure 2.6. For visual clarity the addition of internal noise
is omitted in this example. In total 32 gamma-tone filters are used where its
center frequencies are linearly spaced on an ERB-scale between 100 and 4500
Hz at a sample-rate of 20000 Hz. The input signal consists of two succeeding
windowed sinusoids both with a length of 200 ms. The first sinusoid is win-
dowed with a Hanning window and has a frequency equal to 400 Hz, where the
second sinusoid is windowed with a smoothed rectangular function and has a
frequency of 1000 Hz. A low amount of white noise is added to the sinusoids
in order to reveal the compressive behavior of the adaptation loops. One can
clearly observe the under- and overshoots due to the adaptation loops with the
windowed sinusoids. From the figure it can also be seen that the low-frequency
sinusoid excites a different region than the high-frequency sinusoid.

2.3.2 Defining a Perceptual Difference

Now that an internal representation can be obtained, an important question is
how to quantify a perceptual-relevant difference between the two signals. This
step would typically involve some kind of simplified model of the cognitive pro-
cesses occurring in the human brain. It is important to realize that this step
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Figure 2.6: Top figure denotes signal x consisting of a 400 Hz windowed sinu-
soid followed by a 2000 Hz sinusoid with corresponding internal representation
Φx in the lower figure.

may differ significantly depending on the task. For example, certain types of
degradations can be easily detected by a human listener but may not affect
the speech intelligibility, which is an important reason why different ways of
comparison are needed. An example could be to down-sample a speech signal
from 44.1 to 16 kHz which can be easily detected but will not affect the speech
intelligibility [Fren 47, Flet 50]. Many ways of signal comparison have been pro-
posed for the auditory model proposed by Dau et al. including methods relevant
to masking experiments [Dau 96a, Kohl 08, Plas 07], determination of speech
quality [Hans 98b, Hans 97] and speech intelligibility [Chri 10, Holu 96]. Two
different methods will be explained which are used for comparison throughout
this thesis. The first method is based on the original detection based approach
[Dau 96a] where subjects have to detect a signal in the presence of a masker.
The second approach is the method proposed by Christiansen et al. [Chri 10]
where the Dau-model is used for speech intelligibility prediction.

Masking

In the original approach, as proposed in [Dau 96a], the Dau-model is used
to predict results from psycho-acoustical masking experiments with human
subjects. In these listening experiments, the subjects have to detect a signal ε
in presence of a masker x. The goal of such an experiment is to find the signal
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level such that ε is just not noticeable in the presence of the masker [Dau 96b].
This level is called the masking threshold. Similar types of experiments are
conducted in the field of transparent audio coding [Pain 00] or watermarking
[Swan 98] where errors are introduced to a signal which should be just not
detectable. In this situation, the original clean audio signal acts as a masker
on the introduced error, e.g., the quantization error in an audio coder.

As proposed in [Kohl 08], the Dau-model can be used to predict the results
of these masking experiments by comparing the internal representations Φx

and Φy, where x is the clean signal and y a degraded version of x with intro-
duced error ε. In order to let the Dau-model predict these masking thresholds
correctly, it is assumed that the auditory system has knowledge of the average
internal representations, e.g., due to training. Due to the zero mean of the in-
ternal noise the average internal representation is simply the earlier described
representation in Eq. (2.10) without adding the internal noise. An optimal de-
tector is used [Gree 66] to decide whether an unknown realization corresponds
to the clean or degraded signal.

Under these assumptions the average prediction results of the model can be
described by the sensitivity index d′ [Kohl 08]. The sensitivity index (i.e., dis-
tortion detectability) is deterministic and a monotonically increasing function
of the probability of correctly detecting the error ε in presence of the masker
x [Gree 66]. A higher d′ implies a higher probability of correctly detecting the
probe in presence of the masker. Let the average internal representations of x
and y be denoted by Φ̄x and Φ̄y, respectively. A new distance measure equal
to the sensitivity index, say Ddau, is then given as follows ( see [Kohl 08] for
derivations),

Ddau (x, y) = d′ = σ−1

√∑

i

∥∥Φ̄yi
− Φ̄xi

∥∥2
2
, (2.11)

where ‖(·)‖2 denotes the ℓ2 norm, σ the standard deviation of the internal noise
as was given in Eq. (2.10) and i the band-index of the auditory filterbank. The
calibration of σ is based on the 1-dB criterion in intensity discrimination tasks
[Dau 96a].

Many applications are interested in a masking threshold of ε given x, i.e.,
the maximum level of ε such that it is just not detectable in the presence of
x. This threshold can be found by solving d′ (x, x+ αε) = 1 for α, where α is
a scalar controlling the level of the introduced error. Due to the complexity
of some nonlinear stages in the Dau-model, no closed-form solution exists for
this mathematical problem. Instead, a typical approach is to use adaptive
procedures similarly to what is done with real listening experiments [Levi 71].

Speech Intelligibility

More recently a method of comparing the internal representations have been
proposed by Christiansen et al., where the eventual outcome measure shows a



2.3. Dau-model 21

high correlation with speech intelligibility [Chri 10]. This method first deter-
mines the internal representations of the clean and degraded speech signal (as
explained in Section 2.3.1), denoted by Φx and Φy, respectively, where we are
interested in the intelligibility of the degraded speech.

Rather than using a squared error in the auditory domain, as used in
Eq. (2.11), a sample correlation-coefficient is applied between the clean and
degraded internal representations. This is one aspect which is changed in order
to make the model more appropriate for intelligibility prediction. Moreover,
the auditory filterbank only spans the frequency range between 100 and 8000
Hertz in order to exclude frequencies unimportant for speech intelligibility. In
addition, the intelligibility based approach analyzes the signal in short-time (20
ms) segments rather than the complete signal at once, as is the case with the
detection based approach.

The sample correlation coefficient is defined as follows for any arbitrary
signals x and y,

ρ (x, y) =

∑
n
(x (n)− x̄) (y (n)− ȳ)

√∑
n
(x (n)− x̄)

2∑
n
(y (n)− ȳ)

2
. (2.12)

where x̄ and ȳ denote the sample means of x and y, respectively. The use
of a correlation based comparison has the advantage that it is insensitive to
differences in signal energy. As a consequence, changing the playback level of y
independently of x will not change a correlation based outcome measure. This
is similar to a real intelligibility listening test where changing the playback level
within a certain audible range should not have a large impact on the results.

Another difference between the masking approach and the intelligibility
method is that the internal representations are first segmented in 20 ms, 50%
overlapping, frames where for each short-time frame a correlation-coefficient
is determined. The frame-dependent correlation coefficients are averaged to
obtain an overall intelligibility measure. Here only a subset of the time frames
are considered which contain a relatively high amount of speech energy. High-
level segments are defined here as having a root-mean-square (RMS) level of 0
dB or higher, relative to the overall RMS level of one speech utterance. Let m
denote the frame-index and M the set of high-level segments with cardinality
|M|, the outcome measure for one utterance, say Idau, is than given by,

Idau (x, y) =
1

|M|
∑

i,m∈M

ρ
(
Φxi,m

,Φyi,m

)
. (2.13)

Typically, Idau has to be determined for a large set of sentences for one given
degradation type in order to determine an accurate estimate of its average score.
This is also the case with real listening tests. This average score is expected to
have a monotonic increasing relation with speech intelligibility [Chri 10]. This
is also shown in Chapter 4.
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Figure 2.7: Basic structure of the Par-model [Par 05].

2.4 Par-model

As opposed to the Dau-model, the auditory model of the Par-model is of a very
simple form such that it leads to a tractable mathematical measure. For exam-
ple, it facilitates a closed-form solution for masking thresholds as we will see in
this Section. One aspect which simplifies the model is that no explicit stage is
included to model the nonlinear compressive behavior of the auditory system
(for example the adaptation loops in the Dau-model). Another property of the
Par-model to accomplish this simple form is that it ignores time-information
and considers the signals in the frequency domain only. As a consequence the
model is only meant for predicting perceptual differences in short-time seg-
ments, i.e. 20-40 ms, where most audio signals like speech are assumed to be
stationary and time-information plays a less important role.

The basic structure of the perceptual model proposed by van de Par et al.
[Par 05] is shown in Figure 2.7. As with most of the models discussed in this
thesis, the Par-model will compare two signals, say x and y. However, the Par-
model assumes that y = x + ε where ε is of some additive form and available
in isolation. Therefore, rather than calculating an internal representation of x
and y, the internal representation of x and ε is used. Note that the signals x, y
and ε are taken as short-time frames where we omit the short-time frame-index
for notational convenience.

2.4.1 Internal Representations

As illustrated in Figure 2.7 first a discrete fourier transform (DFT) is applied
to x and ε, resulting in signals x̂ and ε̂, respectively. Subsequently, a filter
is applied to simulate the properties of the outer and middle ear, denoted
by hom. For reasons which will become clear in Section 2.4.3 the frequency
response is taken equal the to inverse of the threshold in quiet, i.e., a frequency-
dependent curve which denotes the masking threshold of a sinusoid in quiet
[Fast 07, Moor 03]. The following equation can be used which approximates
the threshold in quiet [Pain 00],
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Figure 2.8: Threshold in quiet.

Tq (f) = 3.64(f/1000)
−0.8 − 6.5e−0.6(f/1000−3.3)2 + 10−3(f/1000)

4
(2.14)

where f denotes frequency in Hz. This curve is shown in Figure 2.8. By
compensating for the dB transform the following frequency response is obtained
for the outer-middle ear filter,

ĥom (k) = ν10Tq( kfs
N )/20, (2.15)

where k denotes the DFT bin index, N the DFT size in samples and fs the
sample rate. The scalar ν is used to normalize the frequency response such
that ĥom (k) = 1 for k corresponding to 1 kHz. After the outer-middle ear
filter an auditory filterbank is applied based on gammatone filters [Patt 92].
Let i denote the frequency band index, the magnitude response of such a filter
is well approximated by [Par 05],

ĥi (k) =

(
1 +

(
kfs/N − fc(i)

κERB (fc(i))

))−η/2

, (2.16)

where ERB denotes the transformation of the filter center frequency fc in Hz
to equivalent rectangular bandwidths (ERBs) as defined in [Glas 90], η the
filter order which is equal to 4 [Par 05] and κ is a normalization term defined
as,

κ = 2η−1 (η − 1)!/π (2η − 3)!!, (2.17)

where ! denotes the factorial and !! the double factorial (see [Grad 00, page-
xliii] for more details on the double factorial). Both the frequency responses
of the outer-middle ear filter and the auditory filterbank are shown in Figure
2.9. The filters are applied to the signals x and ε by means of a point wise
multiplication in the frequency domain which gives,

x̂i (k) = ĥom (k) ĥi (k) x̂ (k) , (2.18)
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Figure 2.9: Frequency responses of the the auditory filterbank (top) and outer
middle ear filter (bottom) as used in the Par-model.

and

ε̂i (k) = ĥom (k) ĥi (k) ε̂ (k) . (2.19)

Finally the power is determined within each band to obtain an internal repre-
sentation, which gives,

Xi =
1

N

∑

k

|x̂i (k)|2, (2.20)

and

Ei =
1

N

∑

k

|ε̂i (k)|2, (2.21)

for the clean and the error signal, respectively. Figure 2.10 shows an example
of these internal representations for two short-time frames, where x is a clean
speech vowel and ε windowed white noise. Note that because of the power
integration in Eqs. (2.20, 2.21) the internal representations are more smoother
than the actual power spectra and that the energy of higher and lower fre-
quencies is reduced significantly due to the outer middle ear filter. It is also
important to realize that the frequency responses of hom and hi are defined as
being real and positive, while normally there would be some phase component
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involved in a gammatone filter [Patt 92]. This is ignored in [Par 05] due to the
eventual integration stage in Eqs. (2.20, 2.21) where the absolute value is taken
and phase information is ignored.

2.4.2 Defining a Perceptual Difference

The clean and noise signal are compared in the internal domain where a per-
ceptual difference is determined related to the detectability of ε when played in
presence of x (similarly as with the Dau-model in Eq. (2.11)). This perceptual
difference in the Par-model is based on the energy detection model from the
field of signal detection as proposed by Green and Swets [Gree 66]. The de-
tectability within one band is defined as the noise-to-signal ratio in the internal
domain as follows,

di =
Ei

Xi +Nc1
, (2.22)

where Nc1 is added to introduce an absolute threshold in quiet. This step mod-
els internal sounds caused by, for example, blood streams and muscle activity.
Note that the outer-middle ear filter is responsible for making this threshold
frequency dependent.

Van de Par et al. [Par 05] suggested to combine the within-channel sen-
sitivity indices over all auditory bands by means of an additive operation in
order to mimic the spectral integration properties of the auditory system (see
e.g., [Buus 86, Lang 92]). This gives the following equation for the eventual
outcome of the distortion measure,

Dpar(x, ε) = lc2
∑

i

di = lc2
∑

i

Ei
Xi +Nc1

(2.23)

where c2 is a calibration parameter used to modify the sensitivity of the model
and,

l = min (300, 1000N/fs) , (2.24)

denotes a factor to include the maximum temporal integration properties of the
auditory system. As a consequence, increasing the playback length of a signal
will result in a higher predicted detectability, which is in accordance with a
human observer up till lengths of approximately 300 ms [Brin 64]. As shown in
[Par 05] the outcome of equation Eq. (2.23) is monotonically increasing related
to the probability of correctly detecting the noise ε in presence of the signal x
(i.e., a higher Dpar implies a higher probability of correctly detecting the probe
in presence of the masker).

The parameters c1 and c2 are calibrated such that the model correctly
predicts the masking threshold of a 1 kHz tone in silence and the 1 dB just
noticeable level difference for a 70 dB SPL, 1 kHz tone. The model is calibrated
such that Dpar = 1 corresponds to a distortion at the threshold of detection of
ε [Par 05].
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2.4.3 Mathematical Properties

Due to the simple structure of the Par-model it has certain mathematical prop-
erties which makes the measure very suitable for optimization in audio and
speech processing applications. For example, by defining the following weight-
ing function,

a (k) = lc2
∑

i

∣∣∣ĥom (k)
∣∣∣
2∣∣∣ĥi (k)

∣∣∣
2

∑
l

|x̂i (l)|2 +N2c1
, (2.25)

the measure can now be expressed as,

Dpar (x, ε) =
∑

k

|ε̂ (k)|2a (k). (2.26)

Note that the weighting function a is independent of ε and can be pre-calculated
within each short-time frame, stored and reused. The result is that, in order
to evaluate Eq. (2.26) for any ε, only one FFT has to be applied followed by
a simple linear weighting. Due to the low computational complexity of the
Par-model it is therefore very useful in the context of an audio coder where,
typically, the model has to be evaluated many times, e.g., in a rate-distortion
loop. Another important property is that the weighting function a is real and
positive so that, in fact, the perceptual distortion measure defines a norm. This
allows incorporating perceptual properties in least-squares optimization algo-
rithms like sinusoidal coding [Heus 06, Heus 02a] and residual noise modeling
[Hend 04].

In many applications, one is interested in a masking threshold given x, i.e.,
the maximum level of ε such that it is just not detectable in the presence of
x. This threshold can be found by solving Dpar (x, αε) = 1 for α, where α
is a scalar controlling the level of the introduced error. Due to the simple
mathematical form of the Par-model an analytic solution exists given by,

α =
1√

Dpar (x, ε)
. (2.27)

Note that this solution does not exist with many complex perceptual mod-
els, e.g., the Dau-model. Next to masking thresholds some applications, like
[Heus 06, Heus 02a, Swan 98], require knowledge of the masking curve, which
describes the masking threshold for a sinusoid as a function of frequency. This
masking curve will provide information on how to shape the spectrum of an
introduced error such that the perceptual impact of the error is minimized.
Such a sinusoid is described by,

εp (n) = αp cos (2πpn/N) , (2.28)

where N is the DFT-size, p/N the normalized frequency of the sinusoid and
αp its amplitude. In the DFT-domain we obtain the following description,
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ε̂p (k) =

{
N/2 k = {−p, p}
0 otherwise

(2.29)

The masking curve can now be found by solving Dpar (x, αpε) = 1 for all p,
which gives,

αp =

√
2

N
√
a (k)

. (2.30)

Hence, the masking curve can be easily obtained by inverting and scaling the
weighting function a as was defined in Eq. (2.25). At this point it is also easy
to see that the masking curve will be equal to the inverse of the threshold in
quiet in the situation that there is no masker, i.e., X = 0. First we use the
following property of the joint frequency response of the filterbank,

∑

i

∣∣∣ĥi (k)
∣∣∣
2

≈ 1, (2.31)

which is true when a sufficient number of auditory filters is used. Subsequently
we have the following weighting function,

a (k) =
lc2
N2c1

∣∣∣ĥom (k)
∣∣∣
2

(2.32)

which gives the following masking curve for the case that x = 0,

αp =

√
2c1
lc2

ĥom(k)
−1
. (2.33)

Hence, due to the fact that the outer-middle ear filter was taken equal to
the inverse of the threshold in quiet in Eq. (2.15) the model indeed correctly
predicts the threshold in quiet.

2.5 Coherence Speech Intelligibility Index

The Coherence Speech Intelligibility Index (CSII) was introduced by Kates and
Arehart in 2005 [Kate 05] and can be interpreted as an extension of the original
speech intelligibility index (SII) standardized in [ANSI 97]. While the original
SII was mainly meant for linear degradations like additive background noise
and linear time-invariant filtering, the CSII can also be used for nonlinear
processing artifacts like peak and center clipping [Kate 05]. These clipping
artifacts are related to distortions which, for example, may occur in a hearing
aid [Kate 05]. In contrast to the SII, the CSII uses the coherence function
[Cart 73, Kate 92] to estimate the speech and noise spectra, hence the name
Coherence SII.

First the basics of the SII will be explained followed by the proposed ex-
tensions by Kates and Arehart, which are based on the coherence function.



2.5. Coherence Speech Intelligibility Index 29

���x
xx

P
������ i

X

���ε
Pεε

������
i
�

�	
��
�

����
�����

�
������

��	��
�

��������
�

��
����	
��

������

��
������


�	
��

������	
��
i

SNR i
w

i
l

ˆ
i

h

ˆ
i

h

i
c

��	
�	���

������
i

X�

i
A

i

⋅�

SII

 !

"!

#!

$!

i
x

σ

i
εσ

i
′�

i
′′�

Figure 2.11: Basic structure of the Speech Intelligibility Index (SII)

2.5.1 SII

In the SII standard different versions exist where different types of filter-banks
can be used based on, for example, critical bands or octave bands. Here the
SII standard based on 21 critical bands will be explained which is the one used
in the CSII. The basic structure of the SII is illustrated in Figure 2.11 where
four different parts are highlighted by means of the numbered gray boxes. The
calculation process of the SII can be summarized by taking a weighted average
of clipped SNRs where a high SII implies highly intelligible speech. The rational
behind each stage will be explained together with their mathematical details.

In the first part the average long-term spectra of the speech and noise are
calculated. This is done in several critical bands and subsequently converted
to dB SPL, which can be interpreted as a very simple model of the auditory
system. Let x and y = x+ ε denote time-domain signals of the clean and noisy
speech, respectively, where ǫ denotes the noise signal. The short-time DFT
coefficient will be denoted by x̂(k) with frequency-bin index k. The speech
power spectral density (PSD) is then given as follows,

Pxx (k) = E

[
1

N
|x̂ (k)|2

]
, (2.34)

where N denotes the frame-length in samples and E the expectation operator.
In practice this PSD is not available and has to be estimated. Although there
are different approaches for determining the average spectra, we use a method
based on the periodogram which is also used in the CSII [Kate 05]. This
estimator is given by averaging the periodogram over several short-time frames,

P xx (k) =
1

MN

∑

m

|x̂ (m, k)|2, (2.35)

where M denotes the number of short-time frames, m the short-time frame
index and the underbar notation (·) denotes the use of an estimator. Similar
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definitions hold for estimation of the noise PSD denoted by Pεε. The estimated
noise and speech PSDs are then weighted and summed in order to get the
average power within a critical band. For the speech signal the average power
within a critical band is then defined as follows,

σ2
xi

= gi
∑

k

Pxx (k)
∣∣∣ĥi (k)

∣∣∣
2

(2.36)

where
∣∣∣ĥi (k)

∣∣∣
2

denotes the magnitude spectrum for a ro-ex filter which has

similar properties as the gammatone magnitude response as in Eq. (2.16) (see
[Moor 83] for more details on ro-ex filters). In total 21 filters are used where
the filter center frequencies, denoted by fc(i), are given in [ANSI 97] and the
bandwidths, denoted by fb(i), follow the critical bandwidths as explained in

[Zwic 80]. The term gi =
(
Nfb(i)

)−1
in Eq. (2.36) denotes a normalization

factor to compensate for the bandwidths. In order to account for the perception
of loudness the powers are converted to dB SPL. Here we assume that the RMS
of a digital signal with |x(n)| < 1 corresponds to a playback level of 96 dB SPL.
This gives,

Xi = 10log10
(
σ2
xi

)
+ 96, (2.37)

where similar definitions hold for the noise critical band power Ei. Note that in
practice the playback level may be unknown of a speech signal. To overcome
this a reasonable choice is to assume a playback level of 65 dB SPL.

Examples are shown in the top two plots in Figure 2.12 for noise with a
low-pass characteristic (left) and white noise (right) at an SNR of 10 and -5
dB, respectively. The clean speech spectrum is estimated from the complete
Timit database [Garo 93]. This database consists of 630 speakers of eight ma-
jor dialects of American English, each reading ten phonetically rich sentences
[Garo 93].

In the second gray box in Figure 2.11 the noise statistics will be slightly
smoothed over frequency in order to incorporate masking effects. Furthermore,
the noise spectrum will be clipped to a minimum value to include a threshold
in quiet. To include effects of masking the first step in the SII is to determine
the amount of self-speech spectrum masking. This means that if the speech
energy is relatively large in one band it may mask some speech in a neighboring
frequency band. This self-speech spectrum masking is defined by the original
speech spectrum minus 24 dB and is only taken into account when it exceeds
the noise level which gives the following intermediate outcome,

Bi = max (Ei, Xi − 24) . (2.38)

Subsequently for each band the value Ci is determined which equals the slope
per octave of the spread of masking, that is,

Ci = 0.6
(
Bi+10 log

(
fbw(i)

))
− 80. (2.39)
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Figure 2.12: Intermediate signals in the calculation process of the SII as il-
lustrated in Figure 2.11. Examples are shown for the noise with a low-pass
characteristic, 10 dB SNR (left column plots) and white noise, -5 dB SNR
(right column plots). See text for more details.
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The values Bi are then smoothed over the different frequency bands by means
of a power addition as follows for frequency bands i = 2...21,

E ′
i = 10log10

(
i−1∑

k

100.1(Ei+3.32Cklog10(fc(i)/hk))

)
, (2.40)

where E ′
1 = B1. Finally E ′

i, which represents the effects of masking, is com-
bined with the noise spectrum by means of a power addition and clipped to
include a threshold in quiet denoted by ci. This gives,

E ′′
i = max

(
ci, 10log10

(
10Ei/10 + 10E

′

i/10
))

. (2.41)

The second row of plots in Figure 2.12 illustrates the effects of the masking
and clipping stage on the noise spectrum. It is clear that the effect of masking
slightly increases the noise level but will only have a small effect. In the high
frequency band the noise with the low-pass filter characteristic falls below the
threshold in quiet and is clipped to ci. The adjusted noise spectrum and the
clean speech spectrum are then used to calculate an SNR within each frequency
band as illustrated in the third row of plots in Figure 2.12.

For the situation that the playback level of the speech is too loud, it is
assumed in the SII that this will have a negative impact on the speech intel-
ligibility. This is represented by the third gray box in 2.11 where a weighting
function li is calculated. When the speech is too loud, li will reduce the contri-
bution of this band to the eventual score. This is accomplished by comparing
the calculated speech spectrum Xi with the standard speech spectrum level at
the normal vocal effort denoted by X̃i, which can be found in the standard
[ANSI 97]. The weighting li is given as follows,

li = min
(
1, 1−

(
Xi − X̃i − 10

)
/160

)
, (2.42)

and is clipped between 0 and 1 where li = 1 implies that the speech signal
is not too loud and therefore will not affect the eventual outcome of the SII.
Examples are shown in Figure 2.12 in the two plots of the fourth row (note the
vertical axis on the right which is used to denote the value of li). In the left
plot the speech level is too loud where li drops below zero, while in the left plot
the speech is at a normal level which results in li = 1 for all frequency bands.

In the last part of the SII, denoted by the fourth gray box in Figure 2.11,
the SNRs per frequency are limited between -15 and +15 dB and subsequently
normalized between 0 and 1. This gives,

Ai = max

(
min

(
Xi − E′′ + 15

30
, 1

)
, 0

)
. (2.43)

In the final stage the clipped and normalized SNRs are summed and weighted
with the band importance functions as given in [ANSI 97] and the level distor-
tion as was given in Eq. (2.42) as follows,
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SII =
∑

i

liwiAi. (2.44)

The weighting functions have the property that
∑

i wi = 1. As a consequence,
the SII is also limited between 0 and 1 which equals 0% or 100% intelligible
speech, respectively. The last two plots at the bottom in Figure 2.12 show the
weighting functions together with the eventual, clipped, weighted and normal-
ized SNRs. Clearly, in the left plot the speech is less intelligible than the right
plot.

2.5.2 SII based on Coherence

One issue with the SII is that the noise spectrum is needed in isolation in order
to estimate the noise PSD. However, in practice this is not always available.
For example, in the case when nonlinear distortions are applied to the speech
signal, e.g., as in hearing aids, we only have access to y and it is not clear how
to determine ε. In the CSII this is solved by estimating the noise and speech
PSD by means of the coherence function [Cart 73]. The coherence function is
given as a normalized correlation measure in the frequency domain as follows,

γ (k) =
Pxy (k)√

Pxx (k)Pyy (k)
, (2.45)

where Pxx and Pyy denote the PSDs of the clean and degraded speech signal,
respectively, and Pxy equals the cross spectral density between x and y and is
defined as,

Pxy (k) = E

[
1

N
x̂ (k) ŷ∗ (k)

]
. (2.46)

Similarly as in Eq. (2.35) all the spectral densities in Eq. (2.45) are estimated
with a periodogram-based estimator. For the cross power spectral density
between x and y this gives,

P xy (k) =
1

MN

∑

m

x̂ (m, k) ŷ∗ (m, k), (2.47)

where the asterisk denotes complex conjugation. Subsequently, Kates and Are-
hart use the coherence function to estimate the speech PSD,

P xx (k) = |γ (k)|2Pyy (k) (2.48)

and the noise PSD,

P εε (k) =
(
1− |γ (k)|2

)
Pyy (k) . (2.49)

These estimated PSDs can then be directly used in the conventional SII
procedure as was explained in the previous section. One of the advantages of
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Figure 2.13: The CSII divides the short-time frames in three different level
ranges which are denoted by the dashed horizontal lines. The solid line shows
the energy within the short-time frames.

this approach is that for the case that the noise and speech are statistically
independent this will lead to the same results as the conventional SII.

One additional change which was also proposed in the CSII was to divide
the speech signal into three different level ranges and perform a separate SII
calculation for each subset of short-time frames. Subsequently, the individual
SII scores for each level range are then combined to form a new score. One
motivation for this is that some low-level regions, e.g., consonants, may have
relatively low energy but should be more important than high-energy regions.
The level division process is illustrated in Figure 2.13 where three levels are
used with level boundaries of -20, -5 and 5 dB. The level in each short-time
frame, denoted by the solid line, is determined by calculating its RMS-value
and convert it to a log scale. The results are shown in the figure together with
the underlying waveform of the speech signal. When the frames are grouped in
the three level ranges, the PSDs are estimated as previously explained in this
section and an SII value is calculated for each level-range. Finally, the three
scores are combined as follows to calculate the three-level CSII denoted by I3,

I3 = 0.16CSIILow + 0.84CSIIMid + 0.0CSIIHigh. (2.50)

which is expected to have a monotonic increasing relation with the speech intel-
ligibility of the degraded speech y [Kate 05]. Alternatively I3 can be converted
with a logistic function to predict absolute intelligibility scores [Kate 05].

2.6 Relation to Thesis Chapters

Three different models are explained which predict a perceptual impact of
introduced degradations to the audio signal like detectability or intelligibility.
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The Dau-model [Dau 96a] contains a sophisticated, nonlinear spectro tem-
poral auditory model and is suitable for predicting masking thresholds in
psycho-acoustic listening experiments. Due to the details of the auditory model
the method can also predict results of temporal masking experiments, e.g., for-
ward masking. However, because of the complexity and the non-linearity of the
auditory model, no closed-form solutions exist for, e.g., masking thresholds. In
Chapter 3 we propose a new method which shows similar masking predictions
as the Dau-model but includes closed-form solutions for masking thresholds.
In addition, the computational complexity is reduced significantly.

The Dau-model is also successfully applied for intelligibility prediction of
various (non)-linear speech degradations in the method proposed by Chris-
tiansen en Dau [Chri 10]. In Chapter 4 we reveal that this method is one of
the best performing intelligibility predictors of noisy speech signals which are
processed with a time-frequency varying weighing, e.g., as in single-channel
noise reduction. The Dau-model is therefore used as a baseline system for
comparison with our newly proposed intelligibility predictor in Chapter 5. The
Dau-model is also used for analysis of a newly proposed signal processing al-
gorithm relevant for cochlear implant users in Chapter 7.

The Par-model [Par 05] is based on signal detection of introduced errors
similarly as with the Dau-model. However, the spectral auditory model in the
Par-model is of a more simple form than the Dau-model and is therefore suitable
for online optimization algorithms. As a consequence it facilitates closed-form
solutions for masking thresholds and masking curves. However, time infor-
mation within short-time frames is ignored by this model. We will show in
Chapter 3 that the masking predictions are therefore less reliable for signals
which are non-stationary within short-time frames, e.g., transients in speech
signals. We propose a new method in Chapter 3 which has better masking
threshold predictions with similar mathematical properties and computational
complexity as the Par-model.

The coherence speech intelligibility index (CSII) [Kate 05] is specifically
meant for intelligibility prediction of nonlinear distortions. Recent evaluations
show indeed that this measure has high correlation with the speech intelligi-
bility of single-channel noise reduced speech, e.g., [Ma 09]. This is confirmed
in Chapter 4. The CSII is therefore used as a baseline system for comparison
with our newly proposed intelligibility predictor in Chapter 5. However, in this
Chapter 4 we also show that CSII is not suitable for intelligibility prediction
of vocoded speech due to its phase sensitivity.
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3.1 Introduction

It is well-known that the properties of the human auditory system play an
important role in the development of various audio and speech processing al-
gorithms. One such example is transparent audio coding where, by reducing
the bit-rate, errors are introduced to a signal such that the distorted signal
is perceptually indistinguishable from the original [Pain 00]. Here, a typical
approach is to shape the quantization error in the frequency domain, on a
frame-by-frame basis, according to the so-called masking threshold per audi-
tory band. As long as the error signal is below this threshold, the original
signal will act as a masker on the error signal. This phenomenon, called audi-
tory masking, is also exploited in the field of watermarking [Swan 98], where
some type of information is embedded (the watermark) by means of adding
noise in such a way that it is masked by the clean signal.

In order to determine whether an introduced error is audible, the sys-
tem under test typically uses a perceptual model. A well-known perceptual
model is the ISO/IEC 11172-3 (MPEG-1, layer I) psychoacoustic model 1
[Comm 93]. This perceptual model is typically used in the field of audio cod-
ing [Pain 00, Pan 95], but is also applied in the field of other audio and speech
processing applications like speech enhancement [Jabl 04] and watermarking
[Swan 98]. Here, the masking threshold per frequency band is found by first
separating the signal in tonal and noise maskers, after which for each of these
spectral components a spreading function is defined [Pain 00]. Then, by power
addition of these spreading functions, a masking threshold is obtained. This
method is based on the assumption that the detectability of a specific frequency
component is only determined by the auditory filter centered around that par-
ticular frequency. However, this assumption is not in line with various results
in literature (e.g. [Buus 86]), where it is suggested that the detectability of
a specific frequency component is also determined by off-frequency auditory
filters.

Van de Par et al. introduced a perceptual distortion measure, which we
will refer to as the Par-model, including spectral integration [Par 05]. That
is, the detectability of a specific frequency component is also determined by
off-frequency auditory filters. This method showed better correspondence with
data from psychoacoustic listening tests than the MPEG-1 model. Moreover,
it does not need to separate the signal into tonal and noise maskers. It has
been shown that the Par-model leads to better coding results compared to
the MPEG-1 model for various fixed bit-rates in the field of sinusoidal cod-
ing [Par 05]. In addition, the Par-model is defined as a mathematical norm,
which allows for incorporating perceptual properties in least squares optimiza-
tion algorithms. Examples are found in sinusoidal coding [Heus 02b] and
residual noise modeling [Hend 04]. Note that in the field of speech process-
ing, mathematical tractable distortion measures are also used, like the log-
spectral distance or distortion measures based on linear prediction (see e.g.,
[Gray 76, Quac 88] for an overview). Although these measures include some
perceptual properties they do not account for auditory masking effects.
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Many perceptual models, like the Par-model and the MPEG-1 perceptual
model, assume that the introduced error occurs simultaneously with the clean
signal within one short-time frame (20-40 ms) and, therefore, do not take any
temporal information into account. The consequence is that if an error is
introduced before an onset of the clean signal in the same frame, these spectral
models will consider the error to be masked, which is actually not the case.
In fact, this will lead to so-called pre-echoes which are unwanted perceptual
artifacts [Pain 00]. Although some backward masking may occur to mask the
pre-echo, this is typically not sufficient since backward masking is only present
a few milliseconds before the onset of the clean signal [Zwic 90, Moor 03]. A
solution to prevent pre-echoes is called temporal noise shaping [Herr 99], which
minimizes the squared error by means of frequency domain linear prediction.
However, this method is not based on a perceptual model. Other solutions are
window switching [Pain 00] and moving transient locations [Vafi 01]. These
methods are heuristic in nature and do also not take into account some type
of perceptual model.

There are more advanced perceptual models available which do take into
account time information. Examples can be found in the field of computational
auditory modeling where neural firing patterns are obtained by modeling cer-
tain stages of the auditory periphery, e.g., [Lyon 82, Dau 96a]. However, these
approaches are not meant for optimization algorithms in (real-time) audio and
speech processing applications and, as a consequence, may be computation-
ally demanding. For example, in the advanced auditory model developed by
Dau et al. [Dau 96a, Dau 96b] (Dau-model) a masking threshold for a given
error signal can only be found by using adaptive procedures [Levi 71], as is
done in [Dau 96b], and a closed-form analytic expression is not available. This
means that when used in a coding environment, for each newly introduced
quantization level the model must be applied several times in order to find
an estimation of its masking threshold, which is computationally demanding.
Another problem with these advanced models is that they are typically not de-
fined for short-time frames, this in contrast to the Par-model and the MPEG-1
model. These properties make it difficult to use these advanced models in the
applications we are interested in.

In this article a new distortion measure defined for short-time frames is pre-
sented based on a spectro-temporal auditory model. The measure is simplified
under certain assumptions valid for the applications of interest in this article
(e.g., coding, watermarking). This leads to a more tractable measure in the
sense that analytic expressions now exist for masking thresholds. Furthermore,
it will be shown that the proposed methods predict similar masking thresholds
compared to an advanced spectro-temporal model with a large reduction in
complexity.
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3.2 Preliminaries

Let x and y denote two finite length discrete-time signals of length N , rep-
resenting the original and degraded audio signal, respectively. The degraded
signal will be written as y = x+ε, where ε can be interpreted as the introduced
degradation by the system of interest (e.g., quantization noise). The N -point
DFT of x, say x̂, is defined as,

x̂ (k) =
N−1∑
n=0

x (n) e−j2πkn/N , k = 0, ..., N − 1, (3.1)

where k represents the DFT-bin index, j the imaginary unit and n the time
index. Similar definitions hold for ŷ and ε̂. Furthermore, circular convolution
will be denoted by x⊛ y. The ℓp-norm of x is defined as,

‖x‖p =

(∑

n

|x (n)|p
)1/p

. (3.2)

In this work we assume that all time-domain signals and filters are real valued.

3.3 Proposed Spectro-Temporal Distortion Mea-

sure

Fig. 3.1 shows the structure of the proposed method. First, an auditory model,
which mimics certain stages of the auditory periphery, is applied to the clean
and degraded signal in order to obtain their corresponding internal represen-
tations, denoted by Ix,i and Iy,i, respectively, where i denotes the auditory
channel. A perceptual difference is then defined by applying a distance measure
between the internal representations denoted by ’perceptual distance’ in the fig-
ure. Note that this approach of modeling stages of the auditory periphery and
comparing these signals in a spectro-temporal auditory domain is typically used
by more advanced perceptual models, e.g., [Dau 96a, Lyon 82, Rix 02, Thie 00],
and not by short-time models used in online optimization algorithms (like the
Par-model) due to complexity reasons. However, we will show that under
certain assumptions the complexity of such an advanced auditory modeling
approach can be greatly reduced.

In Section 3.3.1 more details will be given about the auditory model we
use, followed by defining a perceptual distance measure between these internal
representations in Section 3.3.2. Then, under certain assumptions, the model
will be simplified in order to reduce its complexity in Section 3.3.3, followed by
some implementational details in Section 3.3.4.

3.3.1 Auditory Model

The auditory model consists of a filter representing the frequency characteris-
tics of the outer and middle ear, followed by an auditory filter bank resembling
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Figure 3.1: Basic structure of the proposed model, which compares the inter-
nal representations Ix and Iy of the clean (x) and degraded (y) audio signal,
respectively. First an outer middle ear filter is applied followed by an auditory
filter bank. The haircell transduction staged is modeled by an envelope follower.
Finally, a log-transform is applied to mimic the compressive properties of the
outer haircells after which the internal representations are compared by means
of applying a distance measure (see text below for more details).
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the properties of the basilar membrane in the cochlea. An envelope extraction
stage is used to simulate the properties of the hair-cell transduction. Subse-
quently, a constant is added to represent physiological internal noise (caused
by muscle activity, blood streams, etc.) in order to introduce an absolute hear-
ing threshold. Finally, a log transform is applied to resemble the compressive
behavior due to the outer hair-cells.

For the outer-middle ear filter a magnitude spectrum equal to the inverse
of the threshold in quiet is used to let the model correctly predict the absolute
hearing threshold. This threshold describes the playback level of a sinusoid,
such that it is just not perceived by an average listener. A mathematical
expression approximating the threshold in quiet can be found in [Pain 00]. For
the auditory filter bank the same gammatone-based approach as in [Par 05]
is used. In total 64 filters are used where the center frequencies are linearly
spaced on an ERB-scale between 0 and fs/2 Hz, where fs denotes the sample
rate.

Let hi denote the joint impulse response of the outer middle ear filter and
the ith auditory filter where x filtered by hi is denoted by xi = x∗hi. Similarly
we have yi = y ∗ hi. Per channel, the envelope extraction stage is included by
taking the absolute squared value followed by a low-pass filter, say hs. With
this, a mathematical description of the internal representation of x in the ith

auditory filter can then be written as,

Ix,i = log
(
|xi|2 ∗ hs + c1

)
, (3.3)

where c1 denotes the constant representing internal noise. Similarly, the inter-
nal representation of y can be defined as,

Iy,i = log
(
|yi|2 ∗ hs + c1

)
. (3.4)

3.3.2 Perceptual Distance between Internal Representa-

tions

In order to define a perceptual difference between x and y, their correspond-
ing internal representations Ix,i and Iy,i should be compared somehow. One
procedure is to apply an ℓp-norm on the difference between the internal repre-
sentations of the clean and degraded audio signal, where increasing p will give
more importance to high-energy regions in the eventual distance measure, e.g.,
spectral peaks in vowels. In this paper we choose p = 1. As we will show (see
Section 3.5), for this choice of p the measure can be simplified into a math-
ematical tractable distortion measure while predicting results with sufficient
accuracy are obtained compared to psychoacoustic listening experiments.

Applying an ℓ1 norm to the difference between the internal representations
gives a within-channel detectability defined by,

di (x, y) = ‖Iy,i − Ix,i‖1 . (3.5)
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These within-channel detectabilities are then combined by means of a sum-
mation in order to include the spectral integration properties of the auditory
system,

d (x, y) = c2
∑
i

di (x, y)

= c2
∑

i

‖Iy,i − Ix,i‖1

= c2
∑

i

∥∥∥∥∥log
(
|yi|2 ∗ hs + c1

|xi|2 ∗ hs + c1

)∥∥∥∥∥
1

,

(3.6)

where an additional calibration constant c2 is included in order to set the
sensitivity of the model (see Section 3.3.4).

3.3.3 Low-complexity Approximation

Eq. (3.6) can be approximated by a simpler form which leads to an analytical
expression for the masking threshold as we will show in Section 3.4. We assume
that x and ε are uncorrelated, i.e., E (XE) = 0, which gives the possibility to
discard certain cross-terms in the within-channel temporal envelope of y. This
assumption is typically valid for quantization noise in audio coders but also
in data-hiding applications like watermarking. The within-channel temporal
envelope of y can be expressed as,

|yi|2 ∗ hs = |xi + εi|2 ∗ hs = |xi|2 ∗ hs + |εi|2 ∗ hs + 2 (xiεi) ∗ hs. (3.7)

As a consequence of the averaging properties of the smoothing low-pass filter
hs and the assumption that x and ε are uncorrelated, it holds that,

2 (xiεi) ∗ hs ≈ 2E (XiEi) = 0 (3.8)

Motivated by this the following approximation is used,

|yi|2 ∗ hs ≈
(
|xi|2 + |εi|2

)
∗ hs. (3.9)

By combining Eq. (3.9) and Eq. (3.6) we get,

d (x, y) ≈ c2
∑

i

∥∥∥∥∥log
(
1 +

|εi|2 ∗ hs
|xi|2 ∗ hs + c1

)∥∥∥∥∥
1

. (3.10)

Next, we assume that only small errors are introduced to the clean signal which
is typically the case in masking situations. Therefore, a good approximation of
each element in the summation of Eq. (3.10) can be obtained by only taking
into account the first term of the Maclaurin series expansion of log (1 + z) ≈ z.
That gives us the final expression for the new simplified measure, which will
be denoted by D. That is,
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d (x, y) ≈ D (x, ε)
∆
= c2

∑

i

∥∥∥∥∥
|εi|2 ∗ hs

|xi|2 ∗ hs + c1

∥∥∥∥∥
1

. (3.11)

For high playback level, i.e., |xi|2 ∗ hs ≫ c1, the measure reduces to a spectro-
temporal, noise-to-signal ratio per auditory band. For very low playback levels,
i.e., |xi|2 ∗ hs ≪ c1, it can be observed that the constant c1 will dominate the
denominator and therefore an absolute threshold in quiet is introduced.

3.3.4 Implementation Details

The parameters c1 and c2 are calibrated such that the model correctly predicts
the threshold in quiet at 1 kHz and the 1 dB just noticeable level difference for
a 70 dB SPL, 1 kHz tone (see also [Par 05]). It is assumed that an additive
distortion ε is just not detectable when D = 1. For this procedure the playback
level of the audio signals must be known where we assume that the maximum
playback level is 96 dB SPL.

For complexity reasons the outer-middle ear filter, the auditory filter bank
and the smoothing low-pass filter are all applied by means of a point-wise
multiplication in the DFT-domain, where we assume that all filters have a
real-valued, even-symmetric frequency response, i.e., ĥ (k) = ĥ (−k). This
particular choice will lead to time-domain aliasing due to circular convolution,
however, proper windowing is used to minimize the effect of these unwanted
artifacts. For the smoothing lowpass filter hs the magnitude response of a one-
pole filter is used with cutoff frequency fc = 1000 Hz. The cut-off frequency
controls the sensitivity of the model towards the temporal structure of the clean
and degraded signals. The particular choice of fc = 1000 roughly simulates the
transduction properties of the inner hair cells [Dau 96a]. Let a = −e−2πfc/fs .
The frequency response of hs is then given by,

ĥs (k) =
(1 + a)√

1 + a2 + 2a cos (2πk/N)
. (3.12)

In order to save computational power the denominator in Eq. (3.11), i.e.,

|xi|2 ∗ hs + c1, can be pre-calculated independent of ε. The measure can then
be evaluated for any introduced error by just calculating the spectro-temporal
envelope of ε divided by this pre-calculated term. In fact, the following gain-
function can be pre-calculated independent of ε,

g2i =
c2

|xi|2 ⊛ hs + c1
⊛ hs, (3.13)

where the measure can then be expressed as follows (see Appendix 3.A),

D (x, ε) =
∑

i

‖εigi‖22. (3.14)

The measure can now be evaluated for any arbitrary error just by applying the
DFT-based filter bank followed by a spectro-temporal gain function.
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3.4 Masking

3.4.1 Masking Threshold

Many applications are interested in a masking threshold of ε given x, i.e., the
maximum level of ε such that it is just not detectable in the presence of x.
This threshold can be found by solving d (x, x+ αε) = 1 for α, where α is a
scalar controlling the level of the introduced error. Notice that with the dis-
tance measure as defined in Eq. (3.6) it is not straightforward to determine
a masking threshold. Instead of an analytical solution, a typical approach is
to use adaptive procedures similarly to what is done with real listening exper-
iments [Levi 71]. However, many iterations may be needed to determine an
estimate of the masking threshold which may be computationally demanding.
In addition, depending on the application the procedure has to be repeated
for many different error signals ε. Nevertheless, due to the introduced simpli-
fications for the proposed model, as explained in Section 3.3.3, we now have
the relation D (x, αε) = α2D (x, ε). This gives the following solution for the
masking threshold,

α =
1√

D (x, ε)
(3.15)

3.4.2 Masking Curve

In applications like [Par 05, Heus 06] knowledge of the masking curve is re-
quired which describes the masking threshold for a (windowed) sinusoid as a
function of frequency. This masking curve will provide information on how to
shape the spectrum of an introduced error such that perceptual impact of the
error is minimized.

Unfortunately, evaluating Eq. (3.15) for all frequencies of interest (from 0
to fs/2) may be computationally demanding. However, due to the introduced
simplifications of the model as explained in the previous section an efficient
DFT-based expression for the masking curve can be obtained. Let a windowed
sinusoid (e.g., Hann window) be denoted by εk (n) = w (n) cos (2πkn/N), where
N is the DFT-size and k/N the normalized frequency of the sinusoid. For
slowly time-varying windows the output of the auditory filter bank can be
approximated as,

εk ⊛ hi ≈ ĥi (k) εk. (3.16)

Note, that the auditory filters were defined such that they have a real-valued
spectrum. Hence, no phase shifts and group delays have to be taken into ac-
count. Fig. 3.2 shows an example where the actual within channel temporal
envelope, i.e., |εk ⊛ hi|2 ⊛ hs, and the estimated within channel temporal en-
velopes based on Eq. (3.16) are plotted for a 200 Hz and 2000 Hz sinusoid.
The plot only shows the auditory filter where its center frequency is closest to
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Figure 3.2: (a) Windowed sinusoid of 200 Hz with (c) corresponding temporal
envelope as defined in Eq. (3.16) and (e) approximated temporal envelope as
explained in Section 3.4.2. Similar plots are shown in (b), (d) and (e) for a
2000 Hz sinusoid. Only the auditory filter is shown where its center frequency
is closest to the frequency of the sinusoid.

the frequency of the sinusoid. The figure reveals that a good approximation is
obtained of the actual within channel temporal envelope for both frequencies.

In order to define a masking curve we have to solve D (x, α (k) εk) = 1 for
α (k). By using the approximation in Eq. (3.16) this gives,

1

α2 (k)
=
∑

i

ĥ2i (k) ‖εkgi‖22, (3.17)

which can be rewritten in the following form,
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1
α2(k) =

∑

i

ĥ2i (k)
∑

n

|(wgi) (n)|2
(
1

2
+

1

2
cos

(
4πkn

N

))

=
1

2

∑

i

ĥ2i (k)×
(
‖wgi‖2 +

∑

n

|(wgi) (n)|2 cos
(
4πkn

N

))
.

(3.18)

Eq. (3.18) can be expressed in terms of the DFT of the gain function for each

auditory band multiplied with the squared window function, i.e., ̂|wgi|2. That
is,

1

α2 (k)
=
∑

i

ĥ2i (k)

2

(
̂|wgi|2 (0) + Re

{
̂|wgi|2 (2k)

})
, (3.19)

where Re {·} denotes the real part of any arbitrary complex number. From this
equation we can conclude that a complete masking curve can now be obtained

by exploiting the (Fast) Fourier transform for ̂|wgi|2 for each auditory band.
Note, that this is a significant reduce in complexity compared to evaluating
Eq. (3.15) for each sinusoid individually with frequency k = 0, 1, ..., N/2.

3.5 Model Evaluation and Comparison

To evaluate the proposed method, comparisons will be made with a sophisti-
cated spectro-temporal model as proposed by Dau et al. [Dau 96a, Dau 96b]
and a simpler spectral-only model by van de Par et al. [Par 05]. We will demon-
strate that the proposed method shares some of the benefits of the complex
Dau-model with respect to predicting masking thresholds for non-stationary
signals, while it has a similar mathematical tractable form like the Par-model.
First both reference models are explained after which comparisons are made
by means of predicting masking curves and computational complexity.

3.5.1 Reference models

Par-model

The Par-model is based on the energy detection model from the field of signal
detection theory as proposed by Green and Swets [Gree 66], where the task is
to detect a probe (e.g., sinusoid) in the presence of some masker (e.g., white
noise). For this model it is assumed that at the output of an auditory filter, the
signal is absolute squared followed by a temporal integration procedure (note
that this model is of a simpler form than the one which is used in the proposed
method from Fig. 3.1). As a consequence, the listener observes the stimulus
power at the output of an auditory band which is considered to be stochastic
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(e.g., due to internal noise). Under the assumption that the stochastic processes
are i.i.d. Gaussian and that the auditory system uses an optimal detector to
detect the probe in presence of the masker it can be shown that the ratio
between the increase in probe power and the standard deviation of the masker
is defined as the sensitivity index d′ [Gree 66]. The sensitivity index (i.e.,
distortion detectability) is monotonically increasing related to the probability
of correctly detecting the probe in presence of the masker (i.e., a higher d′

implies a higher probability of correctly detecting the probe in presence of the
masker).

Van de Par et al. [Par 05] suggested to combine the within-channel sen-
sitivity indices over all auditory bands by means of an additive operation in
order to mimic the spectral integration properties of the auditory system (see
e.g., [Buus 86, Lang 92]). Temporal integration is included by multiplying this
summation with a factor N . As a consequence, increasing the playback length
of a signal will result in a higher predicted detectability, which is in accordance
with a human observer up till lengths of approximately 300 ms [Brin 64]. Simi-
lar as with the proposed method the auditory filters are implemented by means
of a point-wise multiplication in the DFT-domain, hence, a circular convolution
in the time-domain. This leads to the following perceptual distortion measure,

Dpar (x, ε) = Nc2
∑

i

1
N ‖εi‖22

1
N ‖xi‖22 + c1

, (3.20)

where c1 is included in order to introduce a threshold in quiet and c2 is used
to modify the sensitivity of the model. Both parameters are calibrated such
that the model correctly predicts the masking threshold of a 1 kHz tone in
silence and the 1 dB just noticeable level difference for a 70 dB SPL, 1 kHz
tone. The model is calibrated such that Dpar = 1 corresponds to a distortion
at the threshold of detection of ε [Par 05].

Note, that the Par-model also has an efficient implementation, where a gain
function only depending on x can be pre-calculated (similarly as in Eq. (3.14)).

By using Parseval’s theorem, i.e., ‖x‖2 = 1
N ‖x̂‖2, the following spectral weight-

ing function can be used,

ĝ2par (k) =
∑

i

h2i (k) c2
1
N ‖x̂i‖2 +Nc1

, (3.21)

to express the Par-model as an efficient frequency weighted ℓ2 norm [Par 05],

Dpar (x, ε) = ‖ε̂ĝpar‖22 . (3.22)

Van de Par et al. have shown that the masking curve for the Par-model
can be directly related to the inverse of this spectral weighting function ĝpar
[Par 05]. However, the masking curve in [Par 05] is based on rectangular-
windowed, normalized complex exponentials rather than sinusoids. By intro-
ducing a normalization factor

√
2/N a full masking curve for rectangular win-
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dowed sinusoids is given as follows (an efficient expression for the masking curve
for other types of windows is not defined in [Par 05]),

α (k) =

√
2

ĝpar (k)N
(3.23)

Dau-model

The Dau-model acts as an artificial observer and is originally used for accu-
rately predicting masking thresholds for various masking conditions [Dau 96a,
Dau 96b]. It has a similar approach as the proposed method in the sense that
it compares internal spectro-temporal representations. In order to obtain an
internal representation, a 64-channel auditory filterbank is first applied, where
the haircell transduction process is modeled by half-wave rectification followed
by a 1 kHz low-pass filter. To introduce an absolute threshold, the hair cell out-
put is limited to a minimum value. The auditory model is more advanced in the
sense that it also models the non-linear properties of the auditory system due
to neural adaptation. This is incorporated by means of the so-called adapta-
tion loops, which will put more emphasis on strong temporal fluctuations, e.g.,
transients, while more stationary sounds are converted approximately logarith-
mically [Dau 96a]. Temporal integration of the auditory system is included by
means of a 8 Hz low-pass filter per auditory band, followed by addition of inter-
nal noise simulated by Gaussian i.i.d. white noise. To let the model correctly
predict the threshold in quiet, an outer-middle ear filter is applied before the
auditory filterbank, similarly as with the proposed and Par-model.

In [Dau 96a], the perceptual distance between two signals is determined
by a correlation based comparison. Due to the addition of internal noise, the
internal representations are stochastic and therefore this perceptual distance
is also stochastic (similarly as with a real listener). Since we are interested
in the average behavior of the model we use the approach from [Kohl 08] and
[Plas 07], where it has been shown that the average detectability can be de-
scribed by summing the squared ℓ2 norms between the internal representations,
per auditory band. Let Ψx,i and Ψy,i denote the time-domain signals of the
internal representations for the ith auditory band of the clean and degraded sig-
nal, respectively. In line with [Kohl 08] its perceptual distance is then defined
by,

Ddau (x, y) =
1

σ

√∑

i

‖ψx,i − ψy,i‖22, (3.24)

where σ represents the standard deviation of the internal noise. The calibration
of σ and the used minimum value to limit the haircell output is done similarly
as with the proposed method and the Par-model.

Note that for the Dau-model no analytic expression exists to obtain a mask-
ing threshold, in contrast to the Par-model and the proposed model. Instead,
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we use the bisection method to estimate the masking thresholds. The itera-
tive procedure was stopped when the error was smaller than 0.1 dB. In order
to obtain a masking curve, the masking threshold is determined for a limited
set of 30 sinusoids, with frequencies logarithmically spaced between 100 and
10000 Hz. We found that 10-20 iterations was typically sufficient to obtain an
estimate of the masking threshold.
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3.5.2 Prediction of Masking Curves

To illustrate the correspondences and the differences between the two reference
models and the proposed model several masking curves will be predicted. For
all models a sample-rate of 44.1 kHz is used.

Masking curves are predicted for a 50 dB SPL, 1 kHz tonal masker with a
length of 200 ms including 10 ms ramps. However, in this case three different
time segments are analyzed as shown in Fig. 3.3, where masking curves are
predicted before, during and after the onset of the tonal masker, denoted by
Frame I, II and III, respectively, in the figure. The first frame contains only
silence, the second frame partly silence followed by a part of the sinusoid and
the last frame is the complete windowed sinusoid. The three plots on the right
show the predicted masking curves for all models. The bottom-right plot also
contains results from psychoacoustic listening tests [Zwic 82] to evaluate the
model predictions.

For the first frame it can be observed that the predictions for all three
models are in correspondence, where they correctly predict the masking curve
to be equal to the threshold in quiet. However, for the second frame a clear
difference is observed for the Par-model. While the proposed method and
the Dau-model both predict a masking curve close to the threshold in quiet,
the Par-model discards the preceding silence of the masker which leads to a
significantly higher masking curve. Since backward masking (see, e.g., [Zwic 90,
Moor 03]) is only present from a few milliseconds before the onset of the masker,
the masking curve for the second frame should be close to the threshold in quiet.
This is in correspondence with the results predicted by the proposed method
and the Dau-model. For the third frame, the sinusoidal masker is present
in the complete frame, therefore the predicted masking curves for all models
are similar. In the bottom right plot results from psychoacoustic listening
experiments are shown [Zwic 82] on top of the predicted masking curves, which
are in accordance with the predictions for all models.

A similar example is illustrated in Figs. 3.4 and 3.5, which show a short-
time segment of speech for a transient and a vowel region, respectively. In both
figures the spectrum is downscaled for visual clarity. For the transient region
one can clearly see that the masking curve is much higher for the Par-model
compared to the proposed method and the Dau-model. Hence, the proposed
method detects the sensitivity towards an introduced error before the onset of
the transient similarly as the advanced Dau-model. Employing this property
in an audio-coding context will lead to, e.g., less pre-echoes or more intelligible
consonants. All three models are more in correspondence for the predicted
masking curves for the vowel region as is shown in Fig. 3.5. This is due to
the fact that the within-temporal envelopes of the vowel have more or less
the same temporal structure as the windowed sinusoids which determine the
masking curve.

Notice that the masking curves for the Dau-model are slightly lower for
lower frequencies compared to the proposed model in Figs. 3.4 and 3.5. A
possible cause for this could be the sensitivity of the adaptation loops towards
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Figure 3.4: A short-time (40 ms) transient region of speech (top plot) with
predicted masking curves for the proposed method, the Par-model [Par 05] and
the Dau-model [Dau 96a] (bottom plot). The spectrum is down-scaled for visual
clarity.
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Figure 3.5: A short-time (40 ms) vowel region of speech (top plot) with predicted
masking curves (mc) for the proposed method, the Par-model [Par 05] and the
Dau-model [Dau 96a](bottom plot). The spectrum is down-scaled for visual
clarity.
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Table 3.1: Normalized processing-time.

Frame length N 128 256 512 1024 2048

1) Model evaluation
Par-model, Eq. (3.20) 0.55 0.69 1.00 1.64 3.99
Proposed, Eq. (3.11) 1.30 2.02 3.22 7.95 16.35
Dau-model, Eq. (3.24) 140.38 142.12 148.22 159.50 184.24

2) Model evaluation with fixed x
Par-model, Eq. (3.22) 0.26 0.26 0.28 0.29 0.35
Proposed, Eq. (3.14) 0.51 0.70 1.04 1.94 4.05
Dau-model, Eq. (3.24) 71.00 72.30 76.81 79.83 92.35

3) Masking curve prediction
Par-model, Eq. (3.23) 0.15 0.22 0.39 0.91 1.63
Proposed, Eq. (3.19) 0.86 1.34 2.46 9.07 21.48
Dau-model No analytic expression available

the preserved phase structure at lower auditory bands. However, the difference
between the proposed model and the Dau-model is much smaller compared to
the masking curve overestimation for the Par-model for the transient signal. We
also would like to add that the Dau-model can also predict masking effects due
to neural adaptation, i.e., forward and backward masking [Zwic 90, Moor 03].
This property is not present with the proposed method. However, we believe
that for the applications of interest in this work, these masking effects are less
important compared to the difference between a spectral-only and a spectro-
temporal model.

3.5.3 Complexity

To give an impression of the computational power needed for the proposed
method in relation to the two reference models, the computation time is mea-
sured for several frame lengths and conditions. All three models are imple-
mented in Matlab. For the Dau-model the IIR-based auditory filterbank in
[Patt 92] is used and the complex adaptation loops are implemented in a C++
- based MEX file for computational efficiency. In total three different processing
conditions are considered:

1. Evaluation of the perceptual distance for a given x and ε. This refers
to Eqs. (3.11), (3.20) and (3.24) for the proposed, Par and Dau-model,
respectively.

2. Evaluation of the perceptual distance for a given ε when x is fixed. This is
a relevant situation for, e.g., a rate-distortion loop in a coder. This refers
to Eqs. (3.14) and (3.22) for the proposed and Par-model, respectively.
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For the Dau-model Eq. (3.24) is used where ψx,i is pre-calculated once
and stored.

3. Evaluation of a complete masking curve given x. This refers to Eqs. (3.19)
and (3.23) for the proposed and Par-model, respectively. Note that the
Dau-model is not included in this test since no analytic expression exists
for a complete masking curve. A masking curve is typically used in data-
hiding and coding applications to spectrally shape the introduced error
in order to perceptually ’hide’ the introduced error more efficiently.

For each condition and model, Gaussian i.i.d. vectors of x and ε are gen-
erated1 for N ∈ {128, 256, 512, 1024, 2048}. These are typical frame lengths
relevant for digital audio and speech processing applications. The performance
for each model, condition and frame length N is obtained by taking an average
computation time over 100 evaluations. The results are shown in Table 3.1
where the processing times are normalized with respect to the first condition
for the Par-model where N = 512. Notice that the numbers given in Table 3.1
are rough estimates that are meant as an indication. In general they depend
on implementational details.

From the table it is revealed that the proposed method is a factor 10-100
times faster than the Dau-model, depending on the frame length and type of
test. The main reason for this difference in performance is most likely the use
of a log-transform instead of the sophisticated adaptation loops and the use of
an FFT-based filterbank instead of the IIR-based gammatone filters. Despite
the fact that the Dau-model has no analytic expression for the masking curve
available, an estimation of this curve could be obtained by means of an adaptive
procedure per sinusoid (as explained in Section 3.5.1). However, this means
that we have to evaluate the Dau-model for each of the (N/2 + 1) sinusoids,
multiplied with the number of iterations needed in order to obtain a masking
threshold for one sinusoid (10-20 in the experiments from the previous section).
Given that the evaluation of a complete masking curve for the proposed model
is already much faster than evaluating the Dau-model only once (see Table 3.1),
one can imagine the large reduction in complexity with the proposed method
when one is interested in a masking curve.

Taking into account short-time temporal information comes with a com-
putational cost compared to spectral-only models like the Par-model. This is
also what can be concluded from the table where the Par-model is, in general,
3-15 times faster than the proposed model depending on the frame-size and
type of test. However, this difference is much smaller than the difference in
performance between the proposed model and the Dau-model. Other ways to
reduce the computational complexity of the proposed model can be considered
by, e.g., reducing the amount of auditory filters.

1A more realistic scenario would be to use speech or music for x, however, this will not
affect its processing time
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3.6 Experimental Results

In this section we demonstrate the properties of the proposed model by means
of experimental results and make a comparison with the Par-model. The Dau-
model is not included in this comparison since it does not provide the analytical
expressions for masking thresholds and masking curves needed in order to gen-
erate the signals in the experiment, as will become clear in the remainder of
this section.

To illustrate the properties of the proposed model, several audio signals are
generated with degradations that are typical for audio and speech processing
applications where auditory masking is exploited. A common approach is to
spectrally shape the introduced errors according the masking curve in order
to perceptually ’hide’ the introduced error efficiently. For these applications
there is typically a constraint involved which influences the amount of added
noise. For example, the total number of bits in an audio coder or the amount
of information and robustness of an embedded watermark. For demonstra-
tion purposes, these errors are artificially introduced to several clean signals
based on the proposed model and the Par-model after which their results are
compared.

Clean signals are degraded by i.i.d. Gaussian noise where the noise-only
signal is first segmented into short-time (32 ms), 50% overlapping windowed
frames and filtered with the predicted masking curve belonging to the cor-
responding short-time frame of the clean signal. This filtering operation is
applied by means of a point-wise multiplication in the DFT-domain, where a
square root Hann analysis and synthesis window is used. The total amount
of noise that is added to the clean signal is controlled by a constraint on the
segmental SNR. The level of the masking-curve filtered noise is adjusted per
short-time frame, such that the summation of all individual frame-distortions
for the model under consideration is minimized. With this approach it is ex-
pected that the proposed method will put less noise in transient regions and
add more noise in more stationary frames, in contrast to the Par-model.

Let m denote the frame-index, M the total number of frames, r the seg-
mental SNR constraint in dBs and αmεm the masking-curve filtered noise for
the mth frame. Here αm is a scalar which controls the level of the noise in
that particular frame. The globally optimal distribution of all noise-levels (i.e.,
αm for m = 1, ..,M) is then given by finding the minimum of the following
constrained cost function,

J (α1,...,M , λ) =
∑

m

D (xm, αmε
′
m)+

λ

(
1

M

∑

m

20 log10

( ‖xm‖2
‖αmε′m‖2

)
− r

)
, (3.25)

where ε′m = εm ‖xm‖2 / ‖εm‖2 denotes a normalized version of εm, which im-
plies ‖xm‖2 = ‖ε′m‖2. As a consequence of this normalization and using the
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relation D (xm, αmεm) = α2
mD (xm, εm) of Eq. (3.11), the cost function can be

expressed as follows,

J (α1,...,M , λ) =
∑

m

D (xm, ε
′
m)α2

m + λ′

(∑

m

log
(
α2
m

)
− r′

)
. (3.26)

where,

r′ =
−M log (10) r

10
. (3.27)

In order to find the optimal distribution of the noise over the frames, given the
segmental SNR constraint, the minimum of Eq. (3.26) is found by setting the
derivative of the cost function to zero with respect to α1,...,M and λ, that is,

∂J(α1,...,M ,λ′)
∂αm

= 2D (xm, ε
′
m)αm + 2λ′

αm
= 0

∂J(α1,...,M ,λ′)
∂λ′

=
∑
m

log
(
α2
m

)
− r′ = 0

. (3.28)

Solving this gives,

α2
l =

(
er

′ ∏
m
D (xm, ε

′
m)

)1/M

D (xl, ε′l)
, (3.29)

where l is used to denote the frame-index of interest. Note, that due to the
similarity between the proposed model and the Par-model the derivations for
the Par-model in order to distribute the noise is identical. For the proposed
model the cutoff frequency of the lowpass filter hs was lowered to 125 Hz, which
resulted in a better noise distribution between transient and stationary frames.

3.6.1 Example

To illustrate the differences in noise distribution between the proposed model
and the Par-model, Fig. 3.6 shows the results for the castagnettes excerpt.
Here, the segmental SNR was set to 10 dB SNR. In subplot (b) the SNR is
plotted per frame, where it can be clearly observed that the proposed method
increases the SNR in the frames when a transient is encountered (i.e., the
proposed method adds less noise in these frames). The bottom two plots in
Fig. 3.6 clearly show that the Par-model adds a lot of noise in the transient
regions. The proposed method on the other hand adds more noise in the more
stationary regions in order to fulfill the constraint. As will follow from the
listening test (see the next section), adding more noise in the transient regions
is perceptually more disturbing than the small increment of noise in the non-
transient regions.
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Figure 3.6: Illustration of the noise distribution for the proposed model and the
Par-model for the castagnettes excerpt. Subplot (a) shows the clean reference
signal, where the distribution of the SNRs per frame for both models is shown
in (b). Plots (c) and (d) show the added noise for both models. Notice that the
proposed model detects the temporal structure within a short-time frame and
puts less noise within transient-frames in contrast to the Par-model.
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Figure 3.7: Average results and standard errors across all subjects for all of
the four excerpts. Noise was added to the reference signals at two different
segmental SNRs (5 and 10 dB) for the proposed model (Prop) and the Par-
model (Par). Higher scores imply better quality.

3.6.2 Listening Test

The proposed method and the Par-model are compared by means of an in-
formal subjective listening test. Several excerpts are degraded with the noise-
distribution procedure as explained in the previous section. A sample rate of
44.1 kHz is used. The excerpts consist of castagnettes, tubular bells, Kraftwerk
and Celine Dion which have a length of 7, 12, 12 and 13 seconds, respectively.
Here the first three signals have strong transient regions, for which it is expected
that the proposed model will show different performance than the Par-model.
The Celine Dion fragment contains less transient regions and therefore more
similar performance is expected between the two models for this excerpt. The
constraints are set to 5 and 10 dB segmental SNR. In total 10 subjects partic-
ipated in the listening test, which is similar to a MUSHRA (MUltiple Stimuli
with Hidden Reference and Anchor) test [ITU 01]. The signals were presented
via headphones, where the subjects were able to adjust their volume control
to a comfortable level. In total, five different versions for each excerpt had
to be ranked on a scale between 0-100 where a higher score denotes better
quality. The five signals consist of four degraded versions of the excerpt (2
SNRS for each model) and a hidden reference. The subjects were instructed
that a hidden reference was included and were asked to grade this signal with a
score of 100. Furthermore, the subjects had access to the clean reference signal
for comparison. The participants consisted of employees of Delft University of
Technology and have performed in similar listening tests before. They were
not connected in any way to this project.

The average scores of the listening test for all subjects are shown in Fig. 3.7
for each excerpt separately. From the results we can conclude that given a
segmental SNR, the subjects preferred the proposed method over the Par-
model for all signals, except for the Celine Dion excerpt. For Castagnettes
and Kraftwerk the proposed model has even similar performance at 5 dB SNR
compared to the Par-model at 10 dB SNR. Statistical analysis is performed to
verify whether these differences are significant by means of a statistical signifi-
cance paired t-test for two dependent samples [Shes 04]. The null hypothesis is
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Table 3.2: Details on the performed t-tests for the alternative hypothesis that
the subjective score for the proposed model is higher than the Par-model.

Segmental SNR = 10 dB Segmental SNR = 5 dB
Significant? p-value Significant? p-value

Castagnettes Yes 0.0011 Yes 0.0007
Tubular Bells Yes 0.0048 Yes 0.0470
Kraftwerk Yes 0.0106 Yes 0.0227
Celine Dion No 0.7700 No 0.8785

that both means are equal, while the alternative hypothesis corresponds to the
situation that the mean score of the proposed model is higher than the score
from the Par-model. Table 3.2 shows the p-values of the likelihood that the null
hypothesis is true. The alternative hypothesis is accepted at a significance level
of α = 0.05. From this analysis it can be concluded that the proposed method
shows statistically significant better performance for all excerpts, except Celine
Dion. For the Celine Dion fragment the difference between the Par-model and
the proposed model was not statistically significant, as was hypothesized.

3.7 Relation Between Proposed Model and the

Par-model

In the previous experiments it was shown that the proposed method is more
sensitive to transient regions compared to the Par-model. Notice that this
sensitivity of the model towards the temporal structure of the signal can be
controlled with the cutoff frequency fc of the smoothing filter hs. Here, a lower
cutoff frequency implies a lower sensitivity towards the temporal structure and
hence the model behaves more like a purely spectral distortion measure. In
fact, it can be shown that the proposed model and the Par-model are identical
when the cutoff frequency fc of the smoothing low-pass filter hs is set to 0 Hz
in Eq. (3.11). Inspection of Eq. (3.12) shows that for a cutoff frequency of 0
Hz, we get the following magnitude response of hs,

ĥs (k) =

{
1 k = 0
0 otherwise

. (3.30)

Recall that the smoothing low-pass filter was implemented as a point-wise
multiplication in the DFT-domain. Therefore the output of the within-channel
temporal envelope is now equal to its mean squared value,



3.8. Conclusions 61

(
|xi|2 ⊛ hs

)
(n) = 1

N

∑
k

|̂xi|2 (k) ĥs (k) ej2πnk/N

= 1
N |̂xi|2 (0) ĥs (0)

= 1
N ‖xi‖22 ,

(3.31)

Note that the within-channel temporal envelope of x is now a constant value
independent of time n. If we follow the same procedure for obtaining the
within-channel temporal envelope of the error ε, the distortion measure from
Eq. (3.11) can then be expressed as,

D (x, ε) = c2
∑

i

∥∥∥∥∥
1
N ‖εi‖22 u

1
N ‖xi‖22 u+ c1

∥∥∥∥∥
1

(3.32)

where u (n) = 1 for n = 0, ..., N − 1. The argument of the ℓ1 norm is now a
constant positive signal, independent of n. Therefore the summation over n in
this norm can be replaced by a multiplication with the total signal length N ,
which, in fact, gives the expression for the Par-model,

D (x, ε) = Nc2
∑

i

1
N ‖εi‖22

1
N ‖xi‖22 + c1

= Dpar (x, ε) . (3.33)

Note that the underlying auditory model of the Par-model is of a simpler form
than the auditory model of the proposed spectro-temporal distortion measure
(as explained in Section 3.3.1). For example, a hair-cell model and a log-
transform are not taken into account. With Eq. (3.33) we can conclude that the
Par-model can actually be derived from a more complex auditory model if and
only if fc = 0. Also of interest is the multiplication with N in Eq. (3.33), which
follows directly from the derivations. In the Par-model this multiplication was
artificially introduced in order to include the temporal integration properties
of the auditory system [Par 05].

3.8 Conclusions

A new perceptual distortion measure is presented based on a sophisticated
spectro-temporal auditory model, which is simplified under certain assump-
tions valid for auditory masking applications like coding or watermarking. This
led to a more tractable distortion measure in the sense that analytic expres-
sions now exist for masking thresholds. This is typically not the case for more
advanced spectro-temporal models, which need computationally demanding
adaptive procedures to estimate masking thresholds. Furthermore, the distor-
tion measure is of a simpler form since it can be evaluated for any arbitrary
error just by applying a DFT-based auditory filter bank, followed by a mul-
tiplication with a spectro-temporal gain function. This gain function is only
dependent on the clean signal and denotes the sensitivity to errors over time
and frequency and can be reused for any arbitrary error. The proposed method
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gave similar masking predictions as the advanced spectro-temporal Dau-model
with only a fraction of its computational power.

It has been shown that the proposed model can be interpreted as an ex-
tended version of the Par-model: a perceptual model based on spectral inte-
gration which ignores time-information. The benefits of the proposed method
compared to the Par-model are made clear in several experiments, from which
it can be concluded that for non-stationary frames (e.g., transients) the Par-
model underestimates the audibility of introduced errors and therefore overes-
timates the masking curve. As a consequence, the system of interest incorrectly
assumes that errors are masked in a particular frame which may lead to audi-
ble artifacts like pre-echoes. This was not the case with the proposed method
which correctly detects the errors made in the temporal structure of the signal.

3.A Derivation of spectro-temporal gain func-

tion gi

In this appendix it will be shown how to rewrite Eq. (3.11) to Eq. (3.14). Recall
that the distortion measure was defined as follows,

D (x, ε) = c2
∑

i

∥∥∥∥∥
|εi|2 ⊛ hs

|xi|2 ⊛ hs + c1

∥∥∥∥∥
1

. (3.34)

Next we use the fact that the argument of the ℓ1 norm in Eq. (3.34) is positive

and the property ‖z‖1 =
∥∥z1/2

∥∥2
2
when z ≥ 0. By defining the signal,

bi =
c2

|xi|2 ⊛ hs + c1
, (3.35)

the distortion measure can now be expressed in terms of an inner product,

D (x, ε) =
∑
i

∥∥∥∥
((

|εi|2⊛ hs

)
bi

) 1
2

∥∥∥∥
2

=
∑
i

〈((
|εi|2⊛ hs

)
bi

) 1
2

,
((

|εi|2⊛ hs

)
bi

) 1
2

〉

=
∑
i

〈
|εi|2⊛ hs, bi

〉
.

(3.36)

By applying Parseval’s theorem we get the following expression in the frequency
domain,

D (x, ε) =
1

N

∑

i

〈
̂

(
|εi|2 ⊛ hs

)
, b̂i

〉
. (3.37)

By using the duality of a circular convolution in the time-domain and a point-
wise multiplication in the frequency domain we have,
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D (x, ε)=
1

N

∑

i

〈(̂
|εi|2

)
ĥs, b̂i

〉
=

1

N

∑

i

〈(̂
|εi|2

)
, b̂iĥ

∗
s

〉
. (3.38)

Since ĥs was defined real (see Section 3.3.4) we have that ĥs = ĥ∗s. Therefore,
by applying Parseval’s theorem again the following measure in the time-domain
is obtained,

D (x, ε) =
∑

n

〈
|εi|2 , bi ⊛ hs

〉
(3.39)

Now let,

g2i = bi ⊛ hs =
c2

|xi|2 ⊛ hs + c1
⊛ hs, (3.40)

be defined as a spectro-temporal varying gain function. Due to the fact that
gi ≥ 0, the proposed method can now be written as a summation of weighted
ℓ2 norms per channel,

D (x, ε) =
∑

n,i

|εi (n) gi (n)|2 =
∑

i

‖εigi‖22 (3.41)
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4.1 Introduction

Speech processing systems often introduce degradations and modifications to
speech signals, e.g. quantization noise in a speech coder or residual noise and
speech distortion in a noise reduction scheme. To determine the perceptual
consequences of these artifacts, the algorithm at hand can be evaluated by
means of a listening test or an objective machine-driven quality assessment.
Although a listening test can lead to a judgment as observed by the intended
group of users, such tests are often costly and time consuming. Therefore, accu-
rate and reliable objective evaluation methods are of interest since they might
replace a listening test, at least in some stages of the algorithm development
process. Although it is not straightforward to describe the overall quality of
a speech processing system, people tend to divide the evaluation into the at-
tributes of speech quality, (i.e. pleasantness/naturalness of speech) and speech
intelligibility. The primary focus of this work is on speech intelligibility.

One of the first objective intelligibility measures was developed at AT&T
Bell Labs around 1920 and eventually published by [Fren 47]. [Kryt 62] made
the measure better accessible by proposing a calculation scheme, which is cur-
rently known as the articulation index (AI). The basic approach of AI is to
determine the signal-to-noise ratio (SNR) within several frequency bands; the
SNRs are then limited, normalized and subjected to auditory masking effects
and are eventually combined by computing a perceptually weighted average.
This approach evolved to the speech intelligibility index (SII) and was stan-
dardized under S3.5-1997 [ANSI 97]. Since AI is mainly meant for simple linear
degradations, e.g., additive noise, [Stee 80] proposed the speech transmission
index (STI), which is also able to predict the intelligibility of reverberated
speech and non-linear distortions. For this objective measure, a noise signal
with the long-term average spectrum of speech is amplitude modulated at sev-
eral modulation frequencies with a cosine function and applied to the commu-
nication channel. The eventual outcome of the STI is then based on the effect
on the modulation depth within several frequency bands at the output of the
communication channel. While the STI is based on changes in the temporal
modulation domain, the spectro-temporal modulation index (STMI) proposed
by [Elhi 03] takes into account joint specto-temporal modulations. They show
that STMI is also applicable for joint spectro-temporal distortions like phase
jitter distortions and phase shifts next to additive noise and reverb. The ma-
jority of recently published models are still based on the fundamentals of AI
[e.g. Rheb 05, Kate 05] and STI [for an overview see Gold 04].

In contrast to speech intelligibility, for speech-quality prediction a wide
variety of objective measures are available (see e.g., [Loiz 07a, Dell 93b] for
an overview). [Quac 88] evaluated a large amount of objective speech-quality
measures for a wide range of degradations and proposed various new objec-
tive quality measures. Typically, these quality measures are defined for short
time frames (≈25 ms), e.g., based on linear prediction coefficients and/or loud-
ness differences in some time-frequency (TF) representation. More recently,
[Beer 02] developed the advanced objective speech quality measure PESQ,
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which can be considered as state of the art in the field of speech quality pre-
diction. Several studies are available where PESQ is adjusted in order to as-
sess the intelligibility in stead of speech quality of several signal degradations
such like beamforming [Beer 04], low-bitrate vocoders [Beer 05] and speech-
enhancement systems [Kita 07, Yama 06]. Recent findings also show that other
objective speech-quality measures may be used for speech-intelligibility predic-
tion [Liu 08, Taal 09a, Ma 09].

Although there appears to be a relation between speech quality and speech
intelligibility [Prem 95], it is not that obvious that speech-quality measures
can be used for speech-intelligibility assessment. For example, [Liu 08] indi-
cated that for SNRs below −10 dB speech may still be partly intelligible, while
a lower bound for speech quality (a MOS equal to 1 indicating bad quality)
is already reached. Correlation between quality and intelligibility may there-
fore not be present in these regions. Furthermore, there are still many types
of signal degradations for which the relation between quality and intelligibil-
ity is not well understood, and perhaps not even present. For example, the
quality of noisy speech may be improved by applying a single-channel noise-
reduction algorithm [Hu 07b], while the intelligibility is typically not improved
or sometimes even decreased [Hu 07a]. Moreover, many objective intelligibility
measures still predict incorrectly a significant intelligibility improvement after
noise reduction [e.g., Ludv 93, Dubb 08, Gold 04, Taal 10c]. Only recently,
new promising intelligibility measures for single-channel noise reduction have
been proposed by [Ma 09], which are of great interest for the analysis of ex-
isting algorithms. However, for the development of near-future noise-reduction
algorithms which aim for intelligibility improvements, these measures should
be reliable for a wide variety of TF-varying gain functions applied to noisy
speech and not only the ones used in conventional systems. New algorithms
may involve different strategies for which it is unknown if the measures from
[Ma 09] are reliable.

In this work an evaluation is presented of objective measures for the in-
telligibility prediction of noisy speech processed with a technique called ideal
time frequency segregation (ITFS) [Brun 06]. ITFS is an approach from the
field of computational auditory scene analysis (CASA), simulating the remark-
able properties of the auditory system to segregate a target speaker from a
noisy environment. This technique is particularly of interest, since it delivers a
wide variety of applied TF-weightings which can have a much stronger effect on
speech intelligibility compared to single-channel noise reduction. An important
reason for this difference is that ITFS assumes knowledge of the clean speech
signal. Although it can therefore not be used as a practical noise-reduction
algorithm (i.e., the clean speech is unknown in practice), large intelligibility
improvements can be achieved with ITFS [Kjem 09]. Moreover, the evaluation
presented in this work also contains ITFS-settings which decrease the speech in-
telligibility of noisy speech to a larger extent than conventional noise reduction
systems. The variety of signals resulting from ITFS is also demonstrated by
the fact that ITFS can be applied to essentially noise-only signals, which gives
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fully intelligible speech [Kjem 09] somewhat similar to multichannel vocoded
speech [Shan 95]. Objective measures which can correctly predict all these dif-
ferent aspects of ITFS are therefore expected to be robust for a wide variety
of applied TF-weightings to noisy speech. Such measures may provide hints
on how, and how not to process noisy speech in future algorithms which aim
for intelligibility improvements. In addition, intelligibility prediction of the
vocoded speech signals in ITFS is of interest in the field of cochlear implants.
Namely, presenting vocoded speech to normal-hearing listeners has been a valu-
able method of simulating listening tests for cochlear implant users [Loiz 98].
Hence, such reliable measures could be used, for example, in the development
process of new speech-coding strategies for cochlear implants.

In total 17 objective measures are evaluated for the intelligibility prediction
of ITFS-processed noisy speech. This study comprises three state-of-the-art
measures for single-channel noise reduced speech as proposed by [Ma 09], the
Dau auditory model (DAU) [Chri 10] and the normalized subband envelope
correlation (NSEC) [Bold 09] which both show high correlation with ITFS-
processed speech, the advanced speech-quality measure (PESQ), and several
conventional frame-based speech-quality measures, e.g., segmental SNR. We
address some differences between quality and intelligibility prediction for ITFS-
processed speech and propose a general technique which improves the perfor-
mance of the frame-based quality measures when used for intelligibility assess-
ment. From the evaluation several new promising measures for intelligibility
prediction of ITFS-processed speech are revealed. To demonstrate the robust-
ness of these measures and the generality of ITFS-processed speech, we show
that they also show good prediction results for a listening test where several
single-channel noise reduction algorithms are evaluated.

4.2 Intelligibility Data

The intelligibility data is obtained from a study by [Kjem 09], where speech is
degraded with various noise types at various SNRs followed by ITFS-processing
as explained in [Brun 06]. ITFS is similar to conventional noise reduction in
the sense that a TF-varying gain function is applied to noisy speech. However,
instead of a continuous gain function, a binary TF-weighting is applied to
the noisy speech called the ideal binary mask (IBM) [Wang 05]. Since details
of ITFS systems differ, e.g., in thresholds used to determine the binary TF-
weighting, TF-decompositions, gain values used etc., we describe the specific
system [Kjem 09] used to generate the speech data underlying our study.

4.2.1 Signal Processing

The IBM has a value equal to one, when the instantaneous SNR within a certain
TF unit exceeds a user-defined local criterion (LC) and is zero otherwise. A
mathematical description for the IBM is given as follows,
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Table 4.1: The different SNRs in dB used for each noise type (taken from
[Kjem 09]).

SSN bottles cafeteria car
20% SRT -9.8 -18.4 -13.8 -23.0
50% SRT -7.3 -12.2 -8.8 -20.3

IBM (t, f) =

{
1 if T (t, f)−M (t, f) > LC
0 otherwise

, (4.1)

where T (t, f) and M (t, f) denote the signal power in dBs, at time t and
frequency f , for the target (clean speech) and the masker (noise only), re-
spectively. The TF decomposition is performed at a sample rate of 20 kHz,
by means of a gammatone filterbank [e.g., Patt 92] consisting of 64, 2048 tap
FIR filters followed by a time segmentation of 20 ms windowed frames with an
overlap of 10 ms. The gammatone filters are linearly spaced on an ERB scale
between 55 and 7500 Hz The value of each TF unit is then defined as the signal
energy within such a time segment. Next, the IBM is calculated, upsampled
to the original sample rate, and multiplied with the noisy signal in each band.
Finally, the signal is reconstructed by applying the time-reversed gammatone
filters and adding the auditory bands.

4.2.2 Test Material

The test signals are taken from the Dantale II corpus [Wage 03], which consists
of five-word sentences all spoken by the same Danish female speaker. The
sentences are of the grammatical form name-verb-numeral-adjective-noun (e.g.
Ingrid owns six old jackets), where each word in the sentence is picked randomly
from a list of 10 possible words. Before ITFS-processing, the speech signals
are mixed with four noise types: speech shaped noise (SSN), cafeteria noise,
noise from a bottling factory hall and car interior noise and mixed at three
different SNRs, including the 20% and 50% speech reception threshold (SRT)
and an SNR of -60 dB (The x% SRT is the SNR at which the average listener
achieves x% intelligibility). The SNR of -60 dB is included for the generation
of the vocoded speech signals. [Kjem 09] performed a different listening test
to determine the SRTs by finding the psychometric function for each noise
type with the adaptive procedure described by [Wage 03], where the noisy
signal energy was normalized before playback. The SRTs were then found by
sampling the psychometric function where the results are shown in Table 4.1.

Eight different values for LC are chosen, including an unprocessed condition
where only the noisy speech is presented, i.e. LC = −∞. LC is chosen such
that the percentage of ones in the IBM varies from approximately 1.5% to 80%.
In addition, an alternative way of calculating the IBM is included, which is only
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Figure 4.1: Intelligibility of ITFS-processed speech, degraded with speech shaped
noise [replotted from Kjem 09]. The percentage of correct words is plotted as
a function of the mask density, i.e., the total percentage of ones in the IBM.
The mask density of 100% refers to a binary mask with only ones and equals
the noisy unprocessed speech.

based on the clean speech. This so called target binary mask (TBM) is obtained
by comparing the clean speech power with the power of a signal with the long-
term spectrum of the clean speech, within a TF unit. Therefore, the noise itself
is not needed in order to determine the binary mask. Note, that the TBM equals
the IBM for the case that SSN is used, therefore the TBM is not included for the
SSN case. In total, this results in (4*IBM + 3*TBM)*(3*SNR)*(8*LC)=168
conditions to be tested in the listening experiment.

4.2.3 Listening Experiment

For the listening experiment, 15 normal-hearing native Danish speaking sub-
jects participated. The correctly recognized words were recorded by an opera-
tor without providing any form of feedback. The average score for all users in
each condition was consequently obtained by the average percentage of correct
words.

As an example, the results for all SSN conditions are plotted in Figure 4.1.
Here, the percentage of correct words is plotted as a function of the mask den-
sity, i.e., the total percentage of ones in the IBM excluding noise-only regions
[see Kjem 09, for how the noise-only regions are defined]. Note, that the right-
most point refers to a binary mask with only ones, i.e. LC = −∞, which equals
the condition where the noisy speech is unprocessed. It can be clearly observed
that the speech can be made fully intelligible when the mask density is ≈ 20%,
independent of the SNR. This is even valid for the −60 dB case, which will
be a challenging condition for the objective measures, since all temporal fine
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Table 4.2: The evaluated objective measures with their corresponding abbrevia-
tions and full names.

Objective measure name Abbr.

Dau auditory model [Chri 10] DAU
Normalized subband envelope correlation [Bold 09] NSEC
Coherence SII [Kate 05] CSII
Normalized covariance based STI [Gold 04] CSTI
Perceptual evaluation of speech quality [Beer 02] PESQ
Log likelihood ratio [Gray 76] LLR
Itakura saito distance [Itak 70] IS
Cepstral distance [Gray 76] CEP
Segmental SNR [Dell 93b] SSNR
Magnitude spectral distance MSD
Log spectral distance LSD
Frequency weighted SSNR [Trib 78] FWS1
Normalized frequency weighted SSNR [Hu 08a] FWS2
Weighted spectral slope metric [Klat 82] WSS
Van de Par auditory model [Par 05] PAR
Magnitude spectral correlation coefficient MCC
Log spectral correlation coefficient LCC

structure is lost. When the mask density is lowered the intelligibility actually
decreases, which can even drop below the intelligibility of the unprocessed noisy
speech. This is the case for the 50% SRT signals.

4.3 Objective Measures

An overview of the objective measures with their corresponding abbreviations
and references can be found in Table 4.2. DAU, NSEC, CSII and CSTI are
intelligibility measures, PESQ an advanced quality measure and the measures
LLR, IS, CEP, SSNR, MSD, LSD, FWS1, FWS2, WSS and PAR are speech-
quality measures based on short-time (≈ 20-40 ms)frames. MCC and LCC are
newly proposed measures based on spectral correlation in short-time frames.

4.3.1 Preliminaries

For each of the objective measures evaluated in this study, a general descriptive
notation was adopted. The outcome of an objective measure is denoted by
d (x, y), where x is the clean speech and y the processed speech. Let m, k and n
denote the time-frame, frequency-bin and time-sample index, respectively. The
nth sample of the mth Hann-windowed frame of x is then denoted by xm (n)
and its kth DFT bin by Xm (k). Similarly, ym (n) and Ym (k) represent the time
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frame and the DFT bin of the processed speech, respectively. Furthermore, let
M , N and K denote the total number of frames, the frame length and the total
number of DFT bins, respectively. For other frequency decompositions (e.g.,
critical bands), the band index will be denoted by j where J equals the total
number bands. For all objective measures, a sample rate of 10 kHz is used with
N = 256 and K = 512, unless noted otherwise.

4.3.2 Intelligibility Measures

Dau auditory model

The advanced auditory model developed by [Dau 96a] (DAU) has been used as
an intelligibility predictor by [Chri 10] and shows high correlation with ITFS-
processed speech. First, the spectro-temporal internal representations of x
and y are determined as described in [Dau 96a], followed by a segmentation in
short-time frames within each auditory channel. Subsequently, each frame is
compared by means of a correlation coefficient. Let Φx,m (n, j) and Φy,m (n, j)
denote the internal representations of the complete signals x and y, respectively,
for the mth frame. The measure is then simply defined as,

dDAU (x, y) =
1

M

∑

m

∑
n,j

(
Φx,m (n, j)− µΦx,m

) (
Φy,m (n, j)− µΦy,m

)

√∑
n,j

(
Φx,m (n, j)− µΦx,m

)2∑
n,j

(
Φy,m (n, j)− µΦy,m

)2 ,

(4.2)
where µΦx,m

and µΦy,m
denote the average value of Φx,m and Φy,m, respectively.

Coherence speech-intelligibility index

The coherence speech-intelligibility index (CSII) [Kate 05] is based on the mag-
nitude squared coherence function which is defined as the magnitude squared
of the normalized cross-spectral density between x and y, that is,

|γ (k)|2 =
|E [X (k)Y ∗ (k)]|2

E
[
|X (k)|2

]
E
[
|Y (k)|2

] , (4.3)

where the asterisk denotes complex conjugation and E [·] denotes the expec-
tation operator. [Kate 05] use a periodogram-based estimator for the spectral
densities in Eq. (4.3) (e.g., 1

M

∑
m
Xm (k)Y ∗

m (k) estimates the cross-spectral

density between X (k) and Y (k)). Eq. (4.3) can be used to express the SNR
within an auditory filter as follows [Kate 05],

SNR (j) =

∑
k

Wj (k) |γ (k)|2E
[
|Y (k)|2

]

∑
k

Wj (k)
(
1− |γ (k)|2

)
E
[
|Y (k)|2

] , (4.4)
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where Wj denotes the frequency weighting of an auditory band by means of
a ro-ex filter [Kate 05]. The eventual CSII is then calculated by using the
traditional SII [ANSI 97] with the SNR replaced by Eq. (4.4). We use the
implementation as proposed by [Ma 09], which shows high correlation with the
intelligibility of single-channel noise-reduced speech (referred to as CSIImid,
W4, p = 1 by [Ma 09]).

Normalized Covariance Based Speech Transmission Index

The normalized covariance based speech transmission index (CSTI) [Koch 92,
Gold 04] shows good results for several types of nonlinear signal degradations,
e.g., clipping and spectral subtraction. Let Ψx and Ψy denote the magnitude
envelopes, within an octave band, of the clean and processed speech, respec-
tively. The CSTI is then defined as the correlation coefficient between the band
magnitude envelopes within an octave band of the processed and clean speech,
that is,

rj =

∑
m

(Ψx (m, j)− µΨx
)
(
Ψy (m, j)− µΨy

)

√∑
m

(Ψx (m, j)− µΨx
)
2∑

m

(
Ψy (m, j)− µΨy

)2 , (4.5)

This correlation coefficient is then translated to an apparent SNR [Gold 04],

aSNR (j) =
r2j

1− r2j
, (4.6)

which is then clipped between -15 and +15 dB and normalized between 0 and
1. Let aSNR (j) denote the clipped and normalized apparent SNR, the overall
CSTI is then obtained by a weighted average,

dcsti (x, y) =
∑

j

aSNR (j)w (j), (4.7)

where we use w as proposed by [Ma 09] to improve its performance with respect

to single-channel noise reduced speech (referred to as NCM, W
(1)
i , p = 1.5 by

[Ma 09]).

Normalized Subband Envelope Correlation

Similarly as DAU, the normalized subband envelope correlation (NSEC) also
shows good correlation with ITFS-processed speech [Bold 09]. First, a 16 chan-
nel gammatone filterbank (80 Hz to 8000 Hz, equally spaced on the ERB scale)
is applied on the clean and processed speech, after which the normalized, com-
pressed and highpass filtered intensity envelopes Λ (m, j) are extracted. The
eventual distance between the clean and processed speech is then defined by
the normalized correlation over all time and frequency points, that is,
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dnsec (x, y) =

∑
m,j

Λx (m, j) Λy (m, j)

√∑
m,j

(Λx (m, j))
2 ∑
m,j

(Λy (m, j))
2
, (4.8)

where Λx and Λy represent intensity envelopes of the clean and processed
speech, respectively.

4.3.3 Speech Quality Measures

PESQ

Perceptual evaluation of speech quality (PESQ) [Beer 02] can be considered as
a state of the art speech-quality predictor. Because PESQ is rather complex, we
will only briefly describe its main aspects. First, the clean and processed speech
are time aligned in order to compensate for any delay differences, after which
both signals are processed by a psycho-acoustical model to obtain their internal
representations. After global and local normalization these representations are
compared resulting in so-called time-frequency dependent disturbance densi-
ties. By combining these values a PESQ-score is obtained. In this research,
the wide band implementation of PESQ from [Loiz 07a] is used.

Frame-Based Measures

The measures explained in this section are only defined for short-time frames,
i.e., d (xm, ym). For notational convenience, the frame index m is omitted for

these measures and the notation d̂ (x, y) is used instead of d (x, y). To obtain
for each objective measure one total distance measure, the individual frame
distances should be combined somehow. This is done by means of a simple
average. However, to eliminate the influence of any outliers, first all individual
frame distances are sorted, where the average is only taken over the 5%-95%
quantile range [Hans 98a]. This gives,

d (x, y) =
1

|M|
∑

m∈M

d̂ (xm, ym), (4.9)

where M denotes the set of frames in the 5%-95% quantile range and |M| its
cardinality.

Several basic and well-known speech-quality measures are included like the
segmental SNR (SSNR) [e.g., Loiz 07a, Dell 93b], where the SNR is deter-
mined within short-time frames and combined. The log-likelihood ratio (LLR)
[Gray 76], ceptral distance (CEP) [Gray 76] and the Itakura-Saito distance (IS)
[Itak 70] are also common speech-quality measures, which assume that speech
is an auto-regressive process for short-time segments which can be modeled
with linear prediction methods. In contrast to LLR and CEP, IS is also a func-
tion of the LPC gains, which implies that a linear scaling applied on the speech
will influence the outcome of the IS, which is not the case for the LLR. CEP
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is a function of the cepstral coefficients which can be estimated directly from
the LPC coefficients [Quac 88]. For more mathematical details for these three
measures see, e.g., [Quac 88, Hans 98a, Loiz 07a].

Critical-Band Based Measures Several measures evaluated in this re-
search use a perceptually motivated frequency analysis by means of a DFT-
based critical-band decomposition. This is implemented by applying an ℓ2-
norm on the critical-band filtered DFT spectrum, that is,

Γxm
(j) =

√√√√
K/2∑

k=0

|Hj (k)Xm (k)|2, (4.10)

where Γxm
(j) denotes the level within the jth critical band of xm and H repre-

sents an approximation of the magnitude spectrum of a 4th order gammatone
filter [e.g., Patt 92] as described in [Par 05]. The signal is decomposed into
32 different filter channels equally spaced on an ERB scale ranging from 150
to 4250 Hz to include, approximately, a relevant frequency range for speech
intelligibility [Fren 47].

One of the simplest distance measures applied on critical band spectra is
the magnitude spectral distance (MSD), where an ℓ2-norm is applied on the
difference between the clean and processed magnitude spectra, that is,

d̂MSD (x, y) =

√√√√
J−1∑

j=0

|Γy (j)− Γx (j)|2. (4.11)

The same distance measure is also applied on the log spectra, i.e. 20 log10 (Γ (j))
denoted by log spectral distance (LSD), which is more in line with how level
differences are perceived by the auditory system.

A logical extension of the SSNR is to determine an SNR within a critical
band. This approach is proposed in [Trib 78] and is known as the the frequency
weighted SNR (FWS) and is given by,

d̂FWS (x, y) =

J−1∑
j=0

w (j) 10 log10

(
Γx(j)

2

(Γy(j)−Γx(j))
2

)

J−1∑
j=0

w (j)

, (4.12)

where w denotes the AI-index weights [Kryt 62] as proposed by [Quac 88].
An adjusted version is also included as proposed by [Ma 09], which has better
performance with single-channel noise reduced speech (referred to as fwSNRseg,
p = 1 by [Ma 09]). Here, before applying the critical band filters in Eq. (4.10),
the DFT spectra of the clean and processed speech frames are first normalized
to unit length in the ℓ1-sense. Furthermore, weighting functions based on the
clean speech signal are used. We denote the approach with the AI weights by
FWS1 and the latter version with FWS2.
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Klatt et al. defined a distance measure known as the weighted spectral slope
metric (WSS) [Klat 82], which is based on the spectral slopes in each band.
First, the slope for each log-spectral critical band is calculated as follows,

s (j) = 20 log10 Γ (j + 1)− 20 log10 Γ (j) . (4.13)

Then, a weighting function per band is used which is based on the level dif-
ference between the current band and the band containing the closest peak,
and on the level difference between the current band and the band with the
maximum peak in the spectrum, that is,

w (j) =
cg

(cg + Γg − 20 log10 Γ (j))

cl
(cl + Γl (j)− 20 log10 Γ (j))

, (4.14)

where Γg denotes the global maximum log-spectral magnitude of all critical
bands and Γl the local log-spectral magnitude of the peak which is nearest
to band j. The values cg and cl are constants which were set to 20 and 1,
respectively [Klat 82]. The final outcome of the WSS is then defined as,

d̂WSS (x, y) =

J−1∑

j=0

w (j) (sx (j)− sy (j))
2
. (4.15)

[Par 05] proposed an auditory model based on spectral integration (PAR)
and combines the noise-to-signal ratio within the critical bands to determine
the eventual distortion outcome. The measure is defined as,

d̂PAR (x, y) = Nc2

J−1∑

j=0

Γε∗hom
(j)

2

Γx∗hom
(j)

2
+ c1

, (4.16)

where ε = y − x, hom denotes the outer-middle ear filter, and the constants
c1 and c2 are needed for calibration. Here, the constant c1 can be adjusted to
adapt the model sensitivity and c2 refers to the standard deviation of internal
noise responsible for an absolute hearing threshold in the absence of an input
signal (masker). The model is calibrated according to [Par 05].

4.3.4 Proposed Measures MCC and LCC

The correlation coefficient is a widely used outcome measure in the field of
objective intelligibility assessment. In fact, all of the intelligibility measures
explained in Section 4.3.2 are based on this correlation measure. While CSTI
and CSII investigate the temporal correlation within one critical band, DAU
and NSEC consider the correlation in the joint spectro-temporal domain. How-
ever, no measure based only on spectral correlation has been evaluated. Note
that FWS2 is perhaps the closest to such a spectral-correlation based measure
and shows indeed modest correlation with speech intelligibility [e.g. Taal 09a,
Ma 09]. However, FWS2 only normalizes the speech spectra energy before
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evaluation and does not compensate for its mean value, which is the case for
the correlation coefficient. Motivated by this, a measure based on the spectral
magnitude correlation coefficient (MCC) is included,

d̂MCC (x, y) =

J−1∑
j=0

(Γx (j)− µΓx
)
(
Γy (j)− µΓy

)

√
J−1∑
j=0

(Γx (j)− µΓx
)
2
J−1∑
j=0

(
Γy (j)− µΓy

)2
, (4.17)

where µΓx
and µΓy

denote the sample mean of the clean and processed critical
band values. The same TF-decomposition is used as with the critical-band
based measures. Similarly as with LSD the same procedure is also applied on
the log critical-band spectra (LCC).

4.4 A Critical-Band Based Normalization Pro-

cedure

For all the frame-based measures (SSNR, LLR, IS, CEP, MSD, LSD, FWS1,
FWS2, WSS, PAR, MCC, LCC), several issues can arise when using them
directly for intelligibility assessment. This is caused on one hand by certain
differences between speech quality and speech intelligibility prediction, but also
by the nature of some of the objective measures.

The first issue is that some of these measures are sensitive to global level
differences between the clean and processed speech. This is undesirable, since
the intelligibility will not be affected severely when the playback level is ad-
justed in a listening experiment. Initial results showed indeed that the perfor-
mance of several measures (e.g., SSNR, IS, FWS1, LSD, MSD) was completely
dominated by these large energy difference for certain ITFS-conditions (e.g.,
TF-weighted noisy speech at -60 dB SNR), which led to very poor correlation
with speech intelligibility. Hence, some kind of general normalization proce-
dure is desired. Note, that the more advanced measures DAU, CSTI, NSEC,
CSII an PESQ do not have this problem, since there is already some kind of
normalization procedure included.

Secondly, some of these frame-based measures are more sensitive for the
frequency regions where the speech energy is dominant. This means that the
low-energy high frequencies of speech (≈ 2-3 kHz) contribute less compared
to lower, more powerful, frequencies (≈ 500 Hz). Although this could make
sense in the field of speech-quality assessment, it turns out this is not appropri-
ate for speech-intelligibility prediction. Several studies have shown that these
high frequency components are actually of similar importance for the speech
intelligibility [e.g., ANSI 97, Stee 80].

The third issue is the fact that certain high (> 5 kHz) and low frequencies (<
200 Hz) are of less importance to speech intelligibility [Fren 47], while they may
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be relevant for speech quality. Some measures are sensitive to these frequency
ranges, which may bias the results after signal degradation.

To overcome these problems we use a typical procedure from the field of ob-
jective intelligibility assessment. This procedure consists of a normalization of
the processed and clean critical-band envelopes by its RMS-value before com-
parison. This approach is used for most of the STI-based [Gold 04] measures
and NSEC [Bold 09]. The normalization procedure is applied by pre-filtering
the speech signals before evaluation. In this manner, normalization can be
applied to any arbitrary objective measure. Let αj denote the normalization
factor for each critical band, which equals the reciprocal of its RMS value,

αj =

(
1

KM

M−1∑

m=0

K−1∑

k=0

|Xm (k)Hj (k)|2
)−1/2

, (4.18)

where H equals the spectrum of one critical band as in Eq. (4.10). The nor-
malized kth DFT bin of the mth frame, say X ′

m (k), is then obtained by an
addition of all scaled critical bands,

X ′
m (k) =

J−1∑

j=0

αjXm (k)Hj (k). (4.19)

The time-domain signal can now be reconstructed from the weighted short-
time DFT bins by means of a simple overlap-add procedure. The processed
speech y is normalized with the same procedure. The RMS within each critical
band is now fixed, which makes each measure insensitive for global energy
differences. Furthermore, each critical band will have an equal contribution
to speech intelligibility. Moreover, the total response of the sum of all critical
bands will only take into account the frequency range approximately between
150 and 4500 Hz, which is roughly a relevant range for speech intelligibility.

4.5 Evaluation Procedure

For each ITFS condition, 30 five-word sentences are randomly chosen from
the corpus, concatenated and ITFS processed. Before applying the objective
measures, the silent regions are removed between the five-word sentences. To
compare the results of the objective measures and the intelligibility scores, a
mapping is needed in order to account for a nonlinear relation. A widely used
mapping is the logistic function,

f (d) =
100

1 + exp (ad+ b)
, (4.20)

while for some measures a better fit was observed with the following function
[Taal 09a],

f (d) =
100

1 + (ad+ b)
c , (4.21)
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Figure 4.2: Performance with respect to correlation coefficient for all objective
measures (higher is better). For all measures except PSQ, CSII, CSTI, DAU,
NSEC the speech signals are first subjected to the normalization procedure as
explained in Section 4.4.

where a, b and c in Eq. (4.20) and Eq. (4.21) are free parameters, which are
fitted to the intelligibility scores with a nonlinear least squares procedure, and
d denotes the objective outcome. For each objective measure both mappings
are evaluated, where finally the best fit is used. For evaluation we use the
correlation coefficient (ρ) and a normalized version of the RMS of the prediction
error (σ) (RMSE),

σ =
1

100

√
1

S

∑

i

(si − f (di))
2
, (4.22)

where s refers to an intelligibility score, S denotes the total number of pro-
cessing conditions and i runs over all processing conditions. The factor 100
is included to make sure the RMSE is in the same range as the correlation
coefficient. The mapping functions may not show a good fit between the intel-
ligibility scores and the objective data for all objective measures. Therefore,
the Kendall’s Tau [Shes 04] is also included. This outcome measure is indepen-
dent of the applied (monotonic) mapping and solely tests whether there is a
monotonic relation between the intelligibility scores and the objective scores.
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Figure 4.4: Scatter plot for NSEC where the density of the IBM is highlighted
by the shading and size of the markers.

4.6 Results and Discussion

For each objective measure, the RMSE, the Kendall’s Tau and the correlation
coefficient is given in Table 4.3, where, except for DAU, CSII, CSTI, NSEC
and PESQ, the signals were first subjected to the proposed critical-band based
normalization procedure. To give a clear overview of the differences in perfor-
mance, the correlation coefficients are ranked in Figure 4.2. Also the scatter
plots and the fitted mapping functions are shown in Figure 4.3. We can observe
that the proposed measure MCC gave the best results, followed by NSEC, DAU
and LCC. The simple MSD correlated better with the intelligibility scores than
various other, more advanced objective measures (e.g., CSTI). Remarkably, the
more advanced measures CSII and PESQ performed relatively poor.

For the measures CSII, CSTI and FWS2 the new band-importance functions
were used as proposed by [Ma 09]. However, we also evaluated the performance
with their original implementations (not shown). For CSII and CSTI we did
not observe any large changes in performance, while for FWS2 the performance
slightly dropped with the version proposed by [Ma 09]. In general, the conclu-
sions made in this work hold for both implementations of each model.

4.6.1 Detailed Evaluation of Intelligibility Measures

Out of the four objective intelligibility measures (DAU, CSII, CSTI, NSEC), the
best performance was obtained with DAU and NSEC, which both had similar
values for all three outcome measures. In fact, these two measures show the
best performance out of all objective measures, except for the proposed measure
MCC. CSTI also performed modestly well, while CSII did not perform well.
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Table 4.3: RMSE (σ), Kendall’s Tau (τ) and correlation coefficient (ρ) for all
objective measures.

Name σ τ ρ
PESQ 0.30 0.30 0.41
SSNR 0.27 0.38 0.58
MSD 0.16 0.70 0.88
LSD 0.32 0.19 0.30
FWS1 0.25 0.57 0.67
FWS2 0.24 0.54 0.69
WSS 0.26 0.43 0.60
PAR 0.28 0.34 0.52
MCC 0.12 0.77 0.93
LCC 0.15 0.73 0.88
LLR 0.31 0.24 0.35
IS 0.31 -0.08 0.33
CEP 0.32 0.12 0.19
DAU 0.15 0.73 0.89
CSII 0.29 0.37 0.45
CSTI 0.20 0.63 0.80
NSEC 0.15 0.74 0.89

DAU and NSEC

The good results of DAU and NSEC are in agreement with the results reported
in [Bold 09] and [Taal 09a], where it was already observed that both measures
appear to be good intelligibility predictors of ITFS-processed speech. Never-
theless, it was observed that both models have a similar weakness and are both
more reliable for the ITFS conditions where the intelligibility score is relatively
high (90%-100%). To get a better insight in this behavior, an additional scatter
plot of NSEC is given in Figure 4.4. Here the IBM density, i.e. the percentage
of ones in the binary mask, is denoted by the shading and size of the rectangular
markers. A larger and brighter marker indicates a higher density IBM, where
the large white squares refer to the mask density of 100%, i.e. the unprocessed
noisy speech. The plot clearly illustrates that for these unprocessed conditions,
the output of NSEC is much lower compared to the remaining ITFS-processed
conditions. This trend is also observed when the density is lowered to 80%,
which in general still have a lower objective output. As a consequence, the
predicted intelligibility scores for the noisy speech conditions were underesti-
mated. DAU has similar problems, however, from the scatter plot (not shown)
it was observed that this problem was only present for the bottles noise.



4.6. Results and Discussion 83

0 0.1 0.2 0.3 0.4 0.5 0.6

0

20

40

60

80

100

d
CSII

S
c
o

re
(%

)

 

 

SNR=−60 dB

SNR=SRT(20%) dB

SNR=SRT(50%) dB

Figure 4.5: Scatter plot of CSII with highlighted SNRs.

CSTI

CSTI yielded a relatively high ranking with respect to all other objective mea-
sures. This implies that the promising results of CSTI for clipping and spectral
subtraction [Gold 04], are maintained with ITFS-processed speech. Neverthe-
less, it is clear that the data points are less well fitted by the mapping function
than, for example, DAU and NSEC. More specifically, the CSTI turns out to
be less reliable for the high intelligible (90-100%) ITFS conditions than DAU
and NSEC.

CSII

CSII performed worse than the majority of the evaluated objective measures.
Figure 4.5 illustrates that the predicted scores for all -60 dB SNR conditions
are underestimated. In fact, most prediction results for these conditions are
clipped to 0, i.e., the model predicts the speech to be completely unintelligible.
A similar trend occurs for the 20% SRT conditions, which generally show lower
objective values than the 50% SRT conditions. This is not in line with the
intelligibility scores, where specific settings of LC can lead to fully intelligible
speech, even at low SNRs.

A possible explanation can be given, by rewriting Eq. (4.3) with an inde-
pendent phase and magnitude term. Let the polar representations of X and Y
with magnitude a and phase θ be denoted by aXe

jθX and aY e
jθY , respectively.

The frequency index k is omitted for notational convenience. This gives,

|γ|2 =

∣∣E
[
aXe

jθXaY e
−jθY

]∣∣2

E
[
|aXejθX |2

]
E
[
|aY ejθY |2

] , (4.23)

A reasonable assumption for speech is that the phase is independently dis-
tributed from its magnitude [Erke 07]. Eq. (4.23) can then be rewritten as,
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|γ|2 =
E [aXaY ]

2

E [a2X ]E [a2Y ]

∣∣∣E
[
ej(θX−θY )

]∣∣∣
2

. (4.24)

The right-hand term now indicates the sensitivity for the phase difference,
independently of the magnitudes.

For the situation where the clean speech magnitudes are preserved, i.e.,
aX = aY , but a different uniformly distributed phase is used, the right hand
term in Eq. (4.24) will be equal to zero. As a consequence, the CSII will report
that the clean speech is not intelligible. Since the TF weighting in the ITFS
procedure is real valued, the noisy phase will be preserved. Hence, the right
term will be very close to zero in Eq. (4.24) for the case that essentially pure
noise (-60 dB) is used. This is not in line with the observations described by
[Pali 03], where it is reported that, by using a different uniformly distributed
phase, the intelligibility is hardly affected.

4.6.2 Detailed Evaluation of Speech Quality Measures

PESQ

The low performance of PESQ was somewhat remarkable. Apparently, its
high correlation with speech quality does not guarantee a good correlation
with the intelligibility of the ITFS-processed speech signals. This result is
different from the observations reported by [Ma 09], where PESQ performed
modestly well in terms of predicting intelligibility of single-channel enhanced
noisy speech. A possible explanation for this difference is the fact that we used
relatively low SNRs, compared to the higher SNRs from [Ma 09], which were
set equal to 0 and 5 dB. When lowering the SNR, PESQ will converge to a
low value, predicting very poor speech quality; further lowering the SNR will
have little effect on speech quality. Nevertheless, in this SNR range a lower
bound for speech intelligibility is not necessarily reached yet, as was illustrated
in [Liu 08]. This explanation is also motivated by the low PESQ values, which
can be observed in its scatter plot in Figure 4.3. Given that PESQ is a reliable
predictor of speech quality, it is therefore likely that the intelligibility of ITFS-
processed speech does not correlate well with its speech quality.

Frame-Based Measures

Out of all frame-based measures the good performance of MSD was remarkable,
since it is probably the simplest measure used in this research. The models
FWS1 and FWS2 show modest correlation with intelligibility, which was also
reported by [Ma 09]. Poorer results were obtained with WSS and SSNR. The
remaining measures in ranking show poor correlation with the intelligibility of
ITFS-processed signals.

MSD has approximately the same results as the complex intelligibility mod-
els DAU and NSEC. Moreover, MSD shows even better performance than the
objective intelligibility measure CSTI. It is hypothesized that the proposed
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Figure 4.6: Scatter plot for FWS1, where the percentage of ones of the IBM is
denoted by the color and size of the markers.

critical-band based normalization plays an important role for these good re-
sults (See Section 4.6.3). Rather poor results were obtained with LSD. The
main reason for this is that the magnitudes close to zero tend to approach mi-
nus infinity due to the log-transform. This situation occurs frequently when the
IBM is sparse. This yields a large output value when evaluating the distance
between processed and clean speech. The quantile-based procedure which av-
erages all the individual frame distances (See Eq. (4.9)) was not sufficient to
take care of these outliers.

Despite their modest correlation, the scatter plots of FWS1 and FWS2 in
Figure 4.3 reveal that these measures are mainly reliable for high intelligibility
scores. In addition, an oversensitivity is observed for the conditions where an
IBM is used with a high percentage of ones as with NSEC. This is clearly
illustrated in Figure 4.6, where FWS1 tends to output a lower objective score
for most of the noisy unprocessed speech conditions. Figure 4.6 also shows an
additional problem, which was present for most of the SNR-based measures.
Analyzing the plot reveals that for the lower mask densities (e.g., 1.2% and
7.6%), the output of FWS1 tends to converge to 0 dB. This behavior is even
more present in the scatter plot of the SSNR in Figure 4.3, where a cluster
of points around 0 dB is observed. Indeed, it is easy to see that Eq. (4.12)
is lower bounded by 0 dB for the case where speech information is removed,
i.e. Γy(j) < Γx(j). By removing speech information, the speech will eventually
become unintelligible. This is not in line with the predictions of the SNR-based
measures, which make them less suitable for these types of degradations. Note,
that this unwanted behavior is less present with the FWS2. This is due to its
normalization procedure, where the DFT spectra of the clean and processed
speech frames were first normalized to unit-length in the ℓ1-sense [Hu 08a]. In
principle, the PAR-auditory model can be interpreted as the inverse of the SNR
within a critical band. However, the SNRs are not converted to a log scale,
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Figure 4.7: Scatter plot for MCC, where the density of the IBM is denoted by
the color and size of the markers.

which explains the large range of scores shown in the scatter plot in Figure 4.3
(Notice the log scale on the x-axis). PAR shows similar artifacts as with the
SSNR, and FWS measures for the sparse IBM conditions. For PAR, these
conditions tend to cluster around dpar ≈15.

The last frame-based speech-quality measures according the ranking are
LLR, CEP and IS, which all appear to share a similar problem as with the
SNR-based models. Where the SNR-based measures converged to a certain
value for sparse IBMs, these measures tend to output a large value, when much
speech information is removed. Similarly as with LSD, this is caused by the
fact that these measures are defined in the log domain.

Additional Proposed Measures MCC and LCC based on Spectral

Correlation

From the ranking in Figure 4.2, we see that the relatively simple measure MCC
has the best performance out of all objective measures. Despite its simplicity,
MCC outperforms both the complex DAU model and NSEC, which makes it
a new potential measure for objective intelligibility assessment. As already
mentioned, DAU and NSEC are mostly reliable for the ITFS conditions where
the intelligibility score is relatively high. As shown in Figure 4.7, this behavior
is less present with the MCC, where the mapping shows a better fit with the
data over the entire intelligibility range.

Comparable results with DAU and NSEC are obtained with LCC, which
is also mainly reliable for the high intelligibility scores. Using the log spectra
instead of the magnitude spectra, which is done in the MCC, the correlation
with the intelligibility decreases for the evaluated ITFS conditions. Note, that
DAU and NSEC also use some kind of compressive nonlinearity. In DAU this is
included by means of the adaptation loops, which behave as a log transform for
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Figure 4.8: (a) Ranking for all frame-based measures when normalization based
on RMS is used instead of the critical-band based normalization. The measures
not subjected to these normalization procedures are denoted by the white colored
bars. (b) The difference in performance between both normalization procedures.

stationary input signals [Dau 96a]. NSEC compresses the band intensity en-
velopes by raising them to the power 0.15 [Bold 09]. Therefore re-investigating
these band-compression stages for intelligibility assessment may be worthwhile.

4.6.3 Influence of Critical-Band Based Normalization Pro-

cedure

To determine the influence of the critical-band based normalization procedure,
a comparison is made with a normalization procedure based on the RMS, that
is x′ = x/RMS(x) and y′ = y/RMS(y). The RMS-procedure is chosen since
it is a straightforward and basic approach often used as an initial stage in
more advanced objective measures (e.g., PESQ). Results for the three outcome
measures for this experiment can be found in Table 4.4 and in Figure 4.8(a).
For comparison reasons, PESQ and the four intelligibility measures are also
included, denoted by the white bars (Note that these results are the same as in
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Table 4.4: RMSE, Kendall’s Tau and the correlation coefficient for all frame-
based objective measures when a normalization procedure based on the RMS is
applied on the speech signals.

Name σrms τrms ρrms

SSNR 0.30 0.28 0.44
MSD 0.24 0.54 0.70
LSD 0.30 0.24 0.41
FWS1 0.28 0.44 0.53
FWS2 0.26 0.51 0.63
WSS 0.27 0.42 0.58
PAR 0.30 0.25 0.43
MCC 0.27 0.44 0.58
LCC 0.27 0.45 0.59
LLR 0.30 0.32 0.43
IS 0.31 -0.05 0.38
CEP 0.32 0.21 0.29

Figure 4.2, since they were not subjected to the proposed normalization). The
difference in performance is shown in Figure 4.8(b), where the measures on the
right indicate a stronger improvement due to the proposed critical-band based
normalization procedure.

Observing the alternative ranking, none of the outcome measures of the
frame-based measures have as good performance as the intelligibility measures
CSTI, DAU and NSEC. The only measure which correlates modestly with
the intelligibility scores is MSD. Furthermore, as seen in Figure 4.8(b), most
of the frame-based measures benefit from the proposed critical-band based
normalization procedure, except LSD, CEP, IS and LLR. However, also with
the RMS-based normalization procedure these measures turn out to be poor
intelligibility predictors.

For the MCC and LCC, a clear problem was observed when the proposed
critical band based normalization procedure was not included. This is caused
by the already present correlation between the average clean and processed
long-term spectra. Car noise, SSN, and cafeteria noise have a strong low-
frequency content, similar to clean speech, which yields a positive correlation
between their average spectra. However, the bottles noise has a strong high-
frequency spectra, which shows a negative correlation with the average clean
speech spectrum. This is clearly illustrated in the left plot of Figure 4.9, where
the noise type is denoted by the marker type. For the conditions where the
speech is degraded with the bottles noise the intelligibility is underestimated,
while for the remaining noise types the opposite behavior is observed. This
problem is not present in the right plot, where the proposed normalization
procedure is applied. After normalization the clean and processed long-term
average critical-band spectra will be flat and therefore any global correlation



4.7. Generality of Results 89

0 0.2 0.4 0.6 0.8

0

20

40

60

80

100

RMS−based normalization

d
MCC

S
c
o

re
(%

)

 

 

0.2 0.4 0.6 0.8

Critical−band Based Normalization

d
MCC

 

 

Bottles

Cafe

Car

SSN

Figure 4.9: Difference in performance between RMS-based normalization (left
plot) and critical-band based normalization (right plot) for MCC with respect
to noise type.

is removed.

4.7 Generality of Results

From our results, several promising measures are revealed for ITFS-processed
speech like MCC, NSEC, DAU and LCC. An interesting conclusion from this
evaluation is that the good performing measures are all employing a correlation
coefficient in some TF-region. For example, MCC and LCC exploit spectral
correlation, while CSTI looks at the correlation between the temporal envelopes
within a frequency band. Moreover, DAU and NSEC are based on the corre-
lation in the joint spectro-temporal domain. One important property of the
correlation coefficient is its insensitivity to the mean value and the energy of
the input signals. This probably also explains the good results obtained with
the proposed normalization procedure, which eliminates the effect of the signal
energy per critical band.

However, a valid question is if this correlation-based approach will also
work with other TF-weighted noisy speech signals other than with ITFS, e.g.,
single-channel noise reduction. If we compare our findings with the results
from the single-channel noise reduction evaluation of [Ma 09], we can conclude
that CSTI and FWS2 show reasonable results for both types of processing.
As an initial step to indicate the robustness of the promising measures from
our study (MCC, NSEC, DAU, LCC and MSD) for TF-weighted noisy speech,
an additional listening experiment is conducted where two single-channel noise
reduction methods are evaluated. The prediction results from these best mea-
sures are compared with the three best performing measures from [Ma 09], that
is CSII, CSTI and FWS2, which can be considered state-of-the-art measures
for intelligibility prediction for single-channel noise reduced speech. The same
evaluation procedure is used as explained in Section 4.5.
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Figure 4.10: Average-user intelligibility scores for unprocessed noisy (UN)
speech, and two noise-reduction schemes (EM, SG) for (a) speech shaped noise
and (b) cafe noise.

4.7.1 Single-Channel Noise-Reduced Speech

The experiment comprises unprocessed noisy speech and noisy speech pro-
cessed by two different single-channel noise-reduction algorithms. That is, (1)
the standard MMSE-STSA algorithm by [Ephr 84] (EM) which was developed
under the assumption that speech and noise DFT coefficients are Gaussian, and
(2) an improved version [Erke 07] (SG), which assumes the speech and noise
DFT coefficients to be super-Gaussian and Gaussian distributed, respectively.
For both algorithms, the a priori SNR is estimated with the decision directed
approach [Ephr 84] with a smoothing factor of α=0.98. The noise PSD in EM
and SG is estimated using Minimum Statistics [Mart 01] and the noise-tracker
by [Hend 10], respectively. Maximum attenuation is limited to 10 dB in both
algorithms. In SG, the parameters describing the assumed super-Gaussian
density of the speech DFT coefficients are γ=1 and ν=0.6 [Erke 07].

The same listening test set-up is used as in Section 4.2. The speech signals
are degraded with additive speech-shaped noise (SSN) at a sample rate of 20
kHz. Five different SNRs are considered (-8.9 dB, -7.7 dB, -6.5 dB, -5.2 dB
and -3.1 dB), which were chosen such that the psychometric function of clean
speech degraded by SSN (based on earlier experiments [Kjem 09]) was sampled
approximately between 50% and 100% intelligibility. Fifteen Danish-speaking
listeners (normal hearing) were asked to judge the intelligibility of the noisy
signals and the two enhanced versions. The three processing conditions (i.e.,
UN, EM and SG), the two noise types and the 5 SNR values make up 3*2*5=30
conditions. For each of the 30 conditions, each listener is presented with 10
five-word sentences.

The results from the listening experiment are shown in Fig. 4.10. As can be
observed, the noise-reduction algorithms have a very small effect on the speech
intelligibility compared to the intelligibility of the noisy unprocessed speech. A
two-way ANOVA did not showed any significant changes in intelligibility due to
each noise-reduction algorithm for each noise type (See p-values in Table 4.5).
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Table 4.5: Two-way ANOVA p-values for the hypothesis that there is no effect
on intelligibility due to noise reduction for both algorithms (EM, SG) and noise
type(SSN, Cafe).

EM SG

SSN 0.2470 0.4177
Cafe 0.0702 0.4286

Table 4.6: RMSE, Kendall’s Tau and the correlation coefficient of the objective
measures for intelligibility prediction of the single-channel noise-reduced speech
signals.

Name σ τ ρ
MCC 0.06 0.75 0.93
CSII 0.06 0.83 0.92
MSD 0.07 0.74 0.90
LCC 0.07 0.69 0.90
FWS 0.07 0.67 0.89
CSTI 0.07 0.78 0.87
DAU 0.08 0.59 0.84
NSEC 0.10 0.62 0.75

This result is in line with the conclusions from [Hu 08a] where, in general, no
noise-reduction scheme could improve the intelligibility of noisy speech.

The prediction results for the objective measures are shown in Table 4.6.
From the results we can conclude that the proposed measures MCC, MSD and
LCC also have good performance with the single-channel noise reduced signals
contained in the listening test next to ITFS-processed speech. In fact, in terms
of the correlation coefficient and the RMSE the proposed MCC shows similar
performance as the CSII as proposed by [Ma 09], which can be considered as a
state-of-the-art intelligibility predictor of noise-reduced speech. Although not
as good as the proposed measures from [Ma 09], DAU and NSEC also show
moderate correlation with this dataset. Overall it can be stated that the good
performing measures for the ITFS-dataset also have good performance with
the single-channel noise-reduced set, but not vice-versa.

4.7.2 Other Types of Signal Degradations

We have proposed new objective measures, which show high correlation with
the intelligibility of noisy speech signals processed by a TF-varying weight-
ing, like ITFS and single-channel noise reduction. It is not guaranteed that
our results are also valid for other degradation types than TF-weighted noisy
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speech, e.g., reverberation. For example, [Liu 08] showed that some measures
can be very reliable for predicting the effect of speech coders on intelligibility,
while the same measures may be unreliable for predicting the intelligibility of
noise-reduced speech. This was also demonstrated for the CSTI by [Gold 04],
which shows good performance for clipping and spectral subtraction but not
for reverberated speech. In future research the promising measures from our
research will be evaluated for other types of distortions.

4.8 Conclusions

The focus of this study was the evaluation of various predictive models of intel-
ligibility using ideal-time frequency segregated (ITFS) noisy speech. In total 17
objective measures were evaluated consisting of four advanced objective speech-
intelligibility measures (DAU, NSEC, CSII, CSTI), an advanced speech-quality
measure (PESQ), and several more conventional frame-based measures (e.g.,
SSNR). Several of the measures were particularly sensitive to level differences
between processed and unprocessed speech. To overcome this problem a gen-
eral normalization procedure based on equalizing the RMS per critical band
was employed. All objective measures were evaluated by means of predicting
the intelligibility of 168 different conditions of noisy and ITFS-processed noisy
speech signals. From these results the following conclusions can be drawn:

1. Out of all 17 objective measures the highest correlation (ρ = .93) with
speech intelligibility was obtained with the proposed frame-based mea-
sure MCC. This measure was defined as a simple correlation coefficient
between the critical-band magnitude spectra of the clean and processed
speech.

2. Good results were obtained with DAU and NSEC (both with ρ = .89).
Nevertheless, these measures turned out to be too sensitive for the noisy
unprocessed speech compared to the TF-weighted speech. As a conse-
quence, both measures underestimated the intelligibility for noisy speech
compared to TF-weighted noisy speech.

3. LCC and MSD frame-based measures also showed high correlations (ρ =
.88).

4. The intelligibility measure CSTI gave reasonable results (ρ = .80). There-
fore, in addition to showing promising results with clipping and spectral
subtraction reported by [Gold 04], CSTI is also a reasonable intelligibility
predictor for ITFS-processed noisy speech.

5. Poor results were obtained with the CSII, which was not a reliable intel-
ligibility predictor for the ITFS-processed signals used in this research.
This was probably due to sensitivity to the DFT phase component.
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6. The advanced objective quality-measure PESQ showed a low correlation
with speech intelligibility. Since PESQ is a reliable predictor of speech
quality, it is therefore likely that the intelligibility of ITFS-processed noisy
speech from this study does not correlate with its speech quality.

7. Compared with an RMS-based normalization procedure, the proposed
critical-band based normalization improved the correlation with intelli-
gibility for almost all frame-based measures. In particular the measures
MCC, LCC and MCD had a large performance improvement due to the
proposed critical-band based normalization.

8. The frame-based measures IS, CEP, LSD, LLR, SSNR and PAR showed
low correlation (ρ < .60) with speech intelligibility. This conclusion holds
for both the proposed critical-band based normalization and the RMS-
based normalization procedure.

9. The good performing measures in this study (MCC, LCC, DAU, NSEC
and FWS2) also showed high correlation with the intelligibility prediction
of single-channel noise reduced speech.
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5.1 Introduction

Speech processing systems often introduce degradations and modifications to
clean or noisy speech signals, e.g. quantization noise in a speech coder or
residual noise and speech distortion in a noise reduction scheme. To determine
the perceptual consequences of these artifacts, the algorithm at hand can be
evaluated by means of a listening test or an objective machine-driven quality
assessment. Although a listening test can lead to a judgment as observed by the
intended group of users, such tests are costly and time consuming. Therefore,
accurate and reliable objective evaluation methods are of interest since they
might replace listening tests, at least in some stages of the algorithm develop-
ment process. Although it is not straightforward to completely characterize a
noisy or processed speech signal, people tend to divide the evaluation into the
attributes speech quality, (i.e. pleasantness/naturalness of speech) and speech
intelligibility. In this article we focus on speech intelligibility.

One of the first objective intelligibility measures was developed at AT&T
Bell Labs around 1920 and eventually published by French and Steinberg
[Fren 47]. Kryter [Kryt 62] made the measure better accessible by propos-
ing a calculation scheme, which is currently known as the articulation index
(AI). The basic approach of AI is to determine the signal-to-noise ratio (SNR)
within several frequency bands; the SNRs are then limited, normalized and sub-
jected to auditory masking effects and are eventually combined by computing
a perceptually weighted average. This approach evolved to the speech intel-
ligibility index (SII) and was standardized as S3.5-1997 [ANSI 97]. Since AI
is mainly meant for simple linear degradations, e.g., additive noise, Steeneken
and Houtgast [Stee 80] proposed the speech transmission index (STI), which is
also able to predict the intelligibility of reverberated speech and non-linear dis-
tortions. For this objective measure, a noise signal with the long-term average
spectrum of speech is amplitude modulated at several modulation frequencies
with a cosine function and applied to the communication channel. The even-
tual outcome of the STI is then based on the effect on the modulation depth
within several frequency bands at the output of the communication channel.
The majority of recently published models are still based on the fundamentals
of AI, e.g., [Rheb 05, Kate 05] and STI (see the work from Goldsworthy and
Greenberg [Gold 04] for an overview).

Although the just mentioned objective intelligibility measures are suitable
for several types of degradation (e.g., additive noise, reverberation, filtering and
clipping), it turns out that they are less appropriate for methods where noisy
speech is processed by some type of time-frequency (TF) varying gain func-
tion. This includes single-channel noise-reduction algorithms (see the work
from Loizou [Loiz 07b] for an overview), but also speech separation techniques
like ideal time frequency segregation (ITFS) [Brun 06], where typically a bi-
nary TF-weighting is used. For example, STI and various STI-based mea-
sures predict an intelligibility improvement when spectral subtraction is applied
[Ludv 93, Dubb 08, Gold 04]. This is not in line with the results of listening ex-
periments in literature, where it is reported that single-channel noise-reduction
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algorithms generally are not able to improve the intelligibility of noisy speech,
e.g., [Hu 07a]. Furthermore, measures like the coherence SII (CSII) [Kate 05]
and a normalized covariance-based STI procedure (CSTI) [Gold 04], both show
low correlation with the intelligibility of ITFS-processed speech [Taal 09a].

In a recent study, Ma et al. [Ma 09] showed that several intelligibility
measures could benefit from the use of new (signal-dependent) band-importance
functions (BIF). For example, the correlation of CSII and CSTI with the speech
intelligibility of single-channel noise-reduced speech increased significantly by
the use of these new BIFs [Ma 09]. It is of interest to see if these methods would
also work for other types of TF-weighted noisy speech, e.g., ITFS-processed
speech. Also two different methods have been proposed lately, which indicate
promising results for ITFS-processed speech [Chri 10, Bold 09]. These methods
have not been evaluated yet for intelligibility prediction of single-channel noise
reduced-speech.

Therefore, a reliable objective intelligibility measure which has high corre-
lation with the speech intelligibility of noisy and various types of TF-weighted
noisy speech is of great interest. Such a measure could be used for the analysis
of algorithms that process noisy speech. In addition, new algorithms could be
developed, which optimize for such an objective measure. To analyze the effect
of certain signal degradations on the speech intelligibility in more detail, an
objective measure must be of a simple structure. Nevertheless, some measures
are based on a large amount of parameters which are extensively trained for a
certain dataset. This makes these measures less transparent, and therefore less
appropriate for these evaluative purposes.

In this work a simple objective intelligibility measure is proposed which has
a strong monotonic relation with the intelligibility scores of various listening
tests where noisy speech is processed by some type of TF-weighting1. The
model has a simple structure in the sense that it is based on only two free
parameters. Moreover, it shows better performance than five other reference
objective intelligibility measures for these listening tests.

5.1.1 Rationale of Proposed Intelligibility Measure

A general approach in the field of objective intelligibility assessment is to make
some type of correlation-based comparison between the spectro-temporal in-
ternal representations of the clean and degraded speech signal. For example,
CSTI [Gold 04] determines a correlation coefficient between octave-band tem-
poral envelopes and CSII [Kate 05] is based on the coherence function, which
is a measure of correlation between complex Fourier-coefficients, over time, as
a function of frequency. Another example of a correlation-based measure is
the normalized subband envelope correlation (NSEC) proposed by Boldt and
Ellis [Bold 09]. In contrast to SNR-based measures (e.g., [ANSI 97, Rheb 05]),
the benefit of such a correlation-based approach is the fact that the introduced

1An intelligibility model can also predict absolute intelligibility scores (e.g., a percentage
of correctly understood words), however, for analysis and/or optimization monotonicity with
speech intelligibility is already of great interest.



98 5. An Intelligibility Predictor for TF-Weighted Noisy Speech

degradation (i.e., ’the noise’) is not needed as a separate signal in isolation from
the clean speech. Hence, in addition to speech corrupted by background noise,
a correlation-based comparison can also be used for other (nonlinear) types of
distortions, e.g., noise-reduced speech, where it is not that straightforward how
to separate the clean speech from its introduced distortion.

Several correlation-based measures estimate correlation values for the com-
plete signal of interest at once (e.g., [Bold 09, Gold 04, Kate 05]). Typically,
these signals have a length in the order of tens of seconds. A problem which
occurs with an analysis length of this order is the fact that a few signal regions
with high amplitudes (either from the clean or the degraded speech) may dom-
inate the eventual estimated correlation. There are also measures based on a
very short segment size (20-30 ms), e.g., [Chri 10]. However, as a consequence
of their poor modulation frequency resolution, certain low temporal modula-
tions are excluded which are important for speech intelligibility. According the
results from Drullman et al. [Drul 94a] temporal modulations below 2-3 Hz
can be removed without affecting intelligibility. Therefore, an analysis window
with a length around 333-500 ms would be more appropriate. This is also more
in line with the results from van den Brink [Brin 64] which suggest that the
temporal integration time of the auditory system has an upper bound of a few
hundreds of milliseconds.

Motivated by this we propose a short-time objective intelligibility (STOI)
measure, based on a correlation coefficient between the temporal envelopes of
the clean and degraded speech, in short-time (384 ms), overlapping segments.
Indeed, by experimenting with this segment-length we will show that one ac-
tually benefits using segments of this duration.

5.1.2 Further Outline

The remaining part of this article is organized as follows: first more details are
given about STOI in Section 5.2. Then, in Section 5.3, three different intelligi-
bility listening experiments are described for different types of processed noisy
speech. These results are used to evaluate the intelligibility prediction perfor-
mance of STOI. Next, more details are given in Section 5.4 about the general
evaluation procedure. Finally, the evaluation results are presented together
with a discussion in Section 5.5 after which conclusions are drawn.
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5.2 STOI

The basic structure of STOI is illustrated in Fig. 5.1. It is a function of the
clean and degraded speech, denoted by x and y, respectively. The output of
STOI is a scalar value which is expected to have a monotonic relation with the
average intelligibility of y (e.g., the percentage of correctly understood words
averaged across a group of users). A sample-rate of 10 kHz is used, in order to
capture a relevant frequency range for speech intelligibility [Fren 47]2.

First, both signals are TF-decomposed in order to obtain a simplified in-
ternal representation resembling the transform properties of the auditory sys-
tem. This is obtained by segmenting both signals into 50% overlapping, Hann-
windowed frames with a length of 256 samples, where each frame is zero-padded
up to 512 samples. Before evaluation, silent regions which do not contribute
to speech intelligibility are removed. This is done by first finding the frame
with maximum energy of the clean speech signal. Both signals are then re-
constructed, excluding all the frames where the clean speech energy is lower
than 40 dB with respect to this maximum clean speech energy frame. Then,
a one-third octave band analysis is performed by grouping DFT-bins. In total
15 one-third octave bands are used, where the lowest center frequency is set
equal to 150 Hz and the highest one-third octave band has a center-frequency
equal to approximately 4.3 kHz.

Let x̂ (k,m) denote the kth DFT-bin of the mth frame of the clean speech.
The norm of the jth one-third octave band, referred to as a TF-unit, is then
defined as,

Xj (m) =

√√√√√
k2(j)−1∑

k=k1(j)

|x̂ (k,m)|2, (5.1)

where k1 and k2 denote the one-third octave band edges, which are rounded
to the nearest DFT-bin. The TF-representation of the processed speech is
obtained similarly, and is denoted by Yj (m).

STOI is a function of a TF-dependent intermediate intelligibility measure,
which compares the temporal envelopes of the clean and degraded speech in
short-time regions by means of a correlation coefficient. The following vector
notation is used to denote the short-time temporal envelope of the clean speech,

xj,m = [Xj (m−N + 1) , Xj (m−N + 2) , ..., Xj (m)]
T
. (5.2)

where N = 30 which equals an analysis length of 384 ms (see Section 5.5.3 for
details on this particular choice). Similarly, yj,m denotes the short-time tem-
poral envelope of the degraded speech. As illustrated in Fig. 5.1, yj,m is first
normalized and clipped before comparison. The rationale behind the normal-
ization procedure is to compensate for global level differences which should not

2Note, that the sample-rate of 10 kHz is not critical. When the window length (in ms)
and the frequency-range of the critical bands is preserved the method can be extended to
other sample-rates.
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have a strong effect on the speech intelligibility (e.g., due to different playback
levels of x and y). The clipping procedure makes sure that the sensitivity of the
model towards one TF-unit which is severely degraded is upper bounded. As
a consequence, further degradation of a speech TF-unit which is already com-
pletely degraded (i.e., ’unintelligible’) does not lead to a lower intelligibility
prediction by the model.

Let x (n) denote the nth element of x, where n ∈ {1, ..., N} and ||·|| represent
the ℓ2 norm. The normalized and clipped version of y, say ȳ, is then given by,

ȳj,m (n)=min

(‖xj,m‖
‖yj,m‖yj,m (n) ,

(
1+10−β/20

)
xj,m (n)

)
. (5.3)

where β = −15 dB refers to the lower signal-to-distortion (SDR) bound. In-
deed, for this case we have that,

SDR = 10 log10

(
xj,m (n)

2

(ȳj,m (n)− xj,m (n))
2

)
≥ β. (5.4)

The intermediate intelligibility measure is defined as the sample correlation
coefficient between the two vectors,

dj,m =

(
xj,m − µxj,m

)T (
ȳj,m − µȳj,m

)
∥∥xj,m − µxj,m

∥∥ ∥∥ȳj,m − µȳj,m

∥∥ , (5.5)

where µ(·) refers to the sample average of the corresponding vector. Finally, the
average of the intermediate intelligibility measure over all bands and frames is
calculated,

d =
1

JM

∑

j,m

dj,m, (5.6)

where M represents the total number of frames and J the number of one-third
octave bands.

5.2.1 Example of Normalization and Clipping Procedure

To illustrate the effect of the normalization and clipping procedure an example
is given in Fig. 5.2, where subplot (a) shows a short-time temporal envelope of
a clean speech vector together with a noise corrupted version (one frequency
band is shown). A corresponding scatter plot is given in Fig. 5.2(b), where
dj,m = 0.81 denotes the outcome of the intermediate intelligibility measure
when clipping would be discarded, i.e., ȳ is replaced with y in Eq. (5.5) (note,
that the applied scaling due to the normalization does not directly affect the
correlation coefficient). The normalized and clipped+normalized vectors of
the degraded speech are shown in Fig. 5.2(c) together with a scatter-plot in
Fig. 5.2(d). From Fig. 5.2(c) it can be observed that the clipping procedure
is mainly effective in the noise-only regions (i.e., n < 11 and n > 23). As a
consequence, a higher correlation is obtained (dj,m = 0.96) compared to the



102 5. An Intelligibility Predictor for TF-Weighted Noisy Speech

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Frame index (n)

M
a

g
n

it
u

d
e

(a)

 

 
x
y

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Frame index (n)

M
a

g
n

it
u

d
e

(c)

 

 
x
y||x||/||y||
ȳ
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Figure 5.2: Example to illustrate the effect of the normalization and clip-
ping procedure. A clean (x) and noisy (y) speech vector of 30 time-frames
(386 ms) is shown in (a) together with a corresponding scatter-plot in (b).
Similarly, (c) and (d) show the results for the normalized (y||x||/||y||) and
clipped+normalized (ȳ) degraded vector (See text for more details). Notice that
the clipping procedure reduces the effect of the noise in noise-only regions.

situation when clipping would be discarded (dj,m = 0.81). This is desired,
since it is expected that degrading these regions (where speech is absent within
a sentence) will only have a minor impact on speech intelligibility.

5.3 Listening Experiments

In order to evaluate the performance of STOI, its output as described in
Eq. (5.6) is compared with the intelligibility scores from three different in-
telligibility listening experiments. In each of these listening tests noisy speech
is processed with different types of TF-weightings. While the first experiment
comprises a method where noisy speech signals are ITFS-processed [Kjem 09],
the second listening test evaluates the effect on speech intelligibility due to
two conventional single-channel noise-reduction schemes. The last experiment
evaluates the effect of modifying the applied TF-weighting based on ITFS with
artificially introduced errors [Li 08]. Next, more details will be given about
these three listening tests.
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5.3.1 Ideal Time Frequency Segregation

The intelligibility data from the first experiment is obtained from a listen-
ing test conducted by Kjems et al. [Kjem 09], where noisy speech signals are
ITFS-processed. ITFS is a technique which can improve the intelligibility of
noisy speech significantly by applying a binary modulation pattern in a TF-
representation 3. This binary modulation pattern has a value equal to one,
when the SNR within a certain TF-component exceeds a user-defined local cri-
terion (LC), and is commonly referred to as the ideal binary mask (IBM). The
IBM is given as follows,

IBM (t, f) =

{
1 if T (t, f)−M (t, f) > LC
0 otherwise

, (5.7)

where T (t, f) and M (t, f) denote the signal power in dBs, at time t and
frequency f , for the target (clean speech) and the masker (noise only), respec-
tively. The TF-decomposition is based on a 64-channel gammatone filterbank
linearly spaced on an ERB scale between 55 and 7500 Hz. The filterbank is
followed by a time segmentation of 20 ms windowed frames with an overlap of
10 ms.

Lowering the LC-parameter in Eq. (5.7) will increase the number of ones in
the IBM, where LC= −∞ will result in an IBM with ones only (i.e., the noisy
speech is unprocessed). High values for LC will result in sparse IBMs. Kjems
et al. showed that for certain settings of the LC-parameter as a function of the
global SNR, noisy speech can be made fully intelligible. This even holds for
the situation that essentially pure noise is modulated with the IBM [Kjem 09].
An alternative IBM is also included which is only based on the clean speech.
This so-called target binary mask (TBM) [Kjem 09] is obtained by comparing
the clean speech power with the power of a signal with the long-term spectrum
of the clean speech, within a TF-component. Therefore, the noise itself is not
needed in order to determine the TBM. For more details on the algorithm (e.g.,
signal reconstruction) the reader is referred to Kjems et al. [Kjem 09].

The test signals are taken from the Dantale II corpus [Wage 03], where each
excerpt consists of five words, all spoken by the same Danish female speaker.
These sentences are degraded by four different types of additive noise: speech
shaped noise (SSN), cafeteria noise, noise from a bottling factory hall and car
interior noise at three different SNRs: 20% and 50% speech reception threshold
(SRT)4 and an SNR of -60 dB, which represents essentially pure noise. Eight
different LC-values are chosen, including an unprocessed condition where only
the noisy speech is presented, i.e., LC = −∞ (see the work from Kjems et
al.[Kjem 09] for more details on the SNR values and LC-parameters).

3Note, that here the clean speech is needed separately from the noise source, therefore,
large intelligibility improvements are possible. Although this may not seem practical in real-
life noisy conditions, this type of processing will deliver a wide variety of processed signals
with largely varying intelligibility scores. This is of interest for evaluating STOI.

4The x% SRT is the SNR at which the average listener achieves x% intelligibility.
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Figure 5.3: Ideal time frequency segregation: average-user intelligibility scores
with standard errors of clean speech degraded with speech shaped noise (SSN) at
three different SNRs (20%SRT, 50%SRT, -60 dB), followed by ITFS processing
(replotted from Kjems et al. [Kjem 09]). The percentage of correct words is
plotted as a function of the ITFS algorithm’s LC-parameter corrected with the
global SNR (See text for more details). The leftmost point refers to an IBM
with only ones, i.e., LC = −∞, which equals the noisy unprocessed speech
(UN).

For the listening experiment, 15 normal-hearing native Danish speaking
subjects participated, where the correctly recognized words are recorded by an
operator without providing any form of feedback. Each subject listened to two
five-word sentences for each condition. The average score for all users for one
condition is then obtained by the average percentage of correct words. In total,
this gives (4∗IBM + 3∗TBM)∗(3∗SNR)∗(8∗LC)=168 conditions to be tested
in the listening experiment. Only three TBM conditions are included since the
TBM equals the IBM for the case that SSN is used, by definition.

As an example, the results for all SSN conditions processed with an IBM
are plotted in Fig. 5.3. Here, the percentage of correct words is plotted as a
function of the LC-parameter corrected with the global SNR. By subtracting
the global SNR from the LC-parameter one can observe from the figure that
the noisy speech becomes fully intelligible when the corrected SNR is close to
0 dB. Note, that the leftmost point refers to an IBM with only ones, which
equals the condition where the noisy speech is unprocessed (indicated by UN
in Fig. 5.3).

5.3.2 Single-Channel Noise Reduction

The second experiment comprises unprocessed noisy speech and noisy speech
processed by two different single-channel noise-reduction algorithms. That is,
(1) the standard MMSE-STSA algorithm by Ephraim-Malah (EM) [Ephr 84]
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Figure 5.4: Single-channel noise reduction: average-user intelligibility scores
with standard errors for unprocessed noisy (UN) speech, and two noise-
reduction schemes (EM, SG) for (a) speech shaped noise and (b) cafe noise.
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Table 5.1: Two-way ANOVA p-values for the hypothesis that there is no effect
on intelligibility due to noise reduction for both algorithms (EM, SG) and noise
type(SSN, Cafe).

EM SG

SSN 0.2470 0.4177
Cafe 0.0702 0.4286

which was developed under the assumption that speech and noise DFT coef-
ficients are Gaussian, and (2) an improved version by Erkelens et al. (SG)
[Erke 07], which assumes the speech and noise DFT coefficients to be super-
Gaussian and Gaussian distributed, respectively. For both algorithms, the a
priori SNR is estimated with the decision directed approach [Ephr 84] with
a smoothing factor of α=0.98. The noise PSD in EM and SG is estimated
using Minimum Statistics [Mart 01] and the noise-tracker by Hendriks et al.
[Hend 10], respectively. Maximum attenuation is limited to 10 dB in both algo-
rithms. In SG, the parameters describing the assumed super-Gaussian density
of the speech DFT coefficients are γ=1 and ν=0.6 [Erke 07].

As with the previous listening experiment from Section 5.3.1 the speech sig-
nals are from the Dantale II corpus [Wage 03], which are degraded by additive
speech-shaped noise (SSN) at a sample rate of 20 kHz. Five different SNRs
are considered (-8.9 dB, -7.7 dB, -6.5 dB, -5.2 dB and -3.1 dB), which were
chosen such that the psychometric function of clean speech degraded by SSN
(based on earlier experiments [Kjem 09]) was sampled approximately between
50% and 100% intelligibility.

Fifteen Danish-speaking listeners (normal hearing) were asked to judge the
intelligibility of the noisy signals and the two enhanced versions. The three
processing conditions (i.e., UN, EM and SG) and 5 SNR values make up 3*5=15
conditions. For each of the 15 conditions, each listener is presented with 10
five-word sentences. The average score for all users and for one condition was
consequently obtained by the average percentage of correct words.

The results from the listening experiment are shown in Fig. 4.10. As can be
observed, the noise-reduction algorithms have a very small effect on the speech
intelligibility compared to the intelligibility of the noisy unprocessed speech. A
two-way ANOVA did not showed any significant changes in intelligibility due
to each noise-reduction algorithm for each noise type (See p-values in Table
5.1). This result is in line with the conclusions from Hu and Loizou [Hu 08a]
where, in general, no noise-reduction scheme could improve the intelligibility
of noisy speech.
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5.3.3 ITFS with artificially introduced errors

As with Section 5.3.1 the last listening experiment is also based on ITFS. Since
the clean speech is needed in Eq. (5.7), the high intelligibility improvements
illustrated in Fig. 5.3 are generally not obtained in real-life noisy conditions. In
practice one has to estimate the IBM from the noisy speech, which will typically
lead to errors [Hu 08b]. In order to find implications for noise reduction, Li
and Loizou [Li 08] investigated the effect of artificially introduced errors in the
IBM for the case that LC = 0 dB. We regenerated these processed signals as
described by Li and Loizou [Li 08], which are used for the evaluation of STOI.

Three types of errors in the IBM were considered by Li and Loizou: (1)
A general error, which refers to the procedure where the value of a random
selection of TF-units (FFT-based) per time-frame (20 ms) is changed, i.e., a
zero in the IBM becomes a one and vice-versa. (2) A type-I error, where
a certain percentage of TF-units in the IBM, originally labeled as zero, is
changed into a one and (3) a type-II error, where a random selection of TF-
units, originally labeled as one, are changed into a zero. For the general errors,
five amounts of error in terms of percentage are used (5-40%) and three noise
types are considered (SSN, 2-talker babble noise and 20-talker babble noise)
all mixed at -5 dB SNR. For the type-I and type-II errors only the 20-talker
babble noise is used (also -5 dB SNR) and eight percentages are considered
(20-95%). Morover, the unprocessed noisy speech for all three noise types is
also included. This gives us a total of 31 conditions: (3 noise types∗5 error
values) + (2 error types)∗(8 error values) + 3∗unprocessed.

Seven normal-hearing listeners participated in the listening experiment from
Li and Loizou, where all subjects were native American English speakers. The
speech material consisted of sentences taken from the IEEE database, see e.g.,
[Loiz 07b], all produced by the same male speaker, where 20 sentences were
used per condition.

The results from Li and Loizou are replotted in Fig. 5.5 [Li 08]. Fig. 5.5(a)
illustrates that a general error in the IBM has a similar impact on intelligibility
for all noise types. That is, the gain in intelligibility due to the applied IBM
drops fast when the percentage of incorrectly TF-units is larger then 10%. In
Fig. 5.5(b) it can be clearly observed that a Type-I error has a stronger effect
on intelligibility compared to a Type-II error.

5.4 Evaluation procedure

In order to evaluate STOI, 30 sentences are taken from the relevant corpus
for each condition of the three listening experiments. That is, the Dantale
sentences [Wage 03] for listening experiment 5.3.1 and 4.7.1, and the IEEE
sentences (see, e.g., [Loiz 07b]) for listening experiment 5.3.3. These 30 clean
and processed sentences are then concatenated and resampled to 10 kHz. We
experimented with different values of N∈[10, 20, 30, 50, 100, 500] and β∈[-
∞ , -35, -25, -15, -10] only for the intelligibility data originating from the
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Figure 5.5: ITFS with artificially introduced errors: average-user intelligibil-
ity scores with standard errors for artificially introduced errors in the IBM
(replotted from the work of Li and Loizou [Li 08]). (a) The effect on speech
intelligibility due to a general error for three different noise types at -5 dB
SNR. (b) The effect on speech intelligibility due to a type-I or type-II error for
20-speaker babble noise at -5 dB SNR (see text for details). UN indicates the
unprocessed noisy speech.
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ITFS listening experiment from Section 5.3.1. Note, that β = −∞ equals
the condition without clipping and therefore without normalization (without
clipping the correlation coefficient from Eq. (5.5) is independent of the applied
normalization procedure).

Best performance was obtained with N = 30 and β = -15 dB. These settings
were used for evaluating STOI with respect to the remaining two listening tests.

5.4.1 Mapping

We are interested in measuring the monotonic relation between the outcomes
of STOI and the actual intelligibility scores. First, a mapping is used in order
to account for a nonlinear relation between the STOI outcomes and the intelli-
gibility scores. The main reason for this mapping procedure is to linearize the
data such that we can use merits like a linear correlation coefficient. Secondly,
with this procedure the STOI scores are mapped to an absolute intelligibility
prediction which makes it possible to reveal the distribution of prediction errors
amongst all the listening test conditions. For this a logistic function is used,

f (d) =
100

1 + exp (ad+ b)
, (5.8)

where a and b are free parameters, which are fitted to the data with a nonlinear
least squares procedure. Note, that a logistic function is also monotonic and will
therefore not influence the monotonicity between STOI and the intelligibility
scores.

While experiments 5.3.1 and 4.7.1 use the Danish Dantale sentences, lis-
tening experiment 5.3.3 uses the English IEEE database. In contrast to the
IEEE database, the Dantale sentences are taken from a closed set of words.
As a consequence, the Dantale sentences are easier to understand for equal
adverse listening conditions compared to the IEEE sentences. Objective mea-
sures, in general, do not exploit this a priori knowledge and will therefore need
a different mapping function for each corpus. Motivated by this, the mapping
procedure is applied independently for both corpora denoted by fDantale and
fIEEE . Moreover, for the Dantale corpus only the data from the ITFS listening
test is used to fit the mapping, which is then reused for the single-channel noise
reduction conditions.

5.4.2 Reference Objective Measures

The results of STOI are compared with five other reference objective measures
which are all promising candidates for intelligibility prediction of TF-weighted
noisy speech. In this section some details will be given for each model.

Dau auditory model

The perceptual model developed by Dau et al. [Dau 96a] (DAU) acts as an ar-
tificial observer and is originally used for accurately predicting masking thresh-
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olds for various masking conditions [Dau 96b]. More recently it is also shown
that the model can be used as a good intelligibility predictor for ITFS-processed
speech [Taal 09a, Chri 10]. We compare STOI with the intelligibility-model
based on the Dau auditory model as proposed by Christiansen et al. [Chri 10].
This model is already evaluated with the ITFS intelligibility data from Section
5.3.1 [Chri 10] where good prediction results were obtained. It is of interest
to see its performance compared to STOI. First, the spectro-temporal internal
representations of x and y are determined as described in [Dau 96a], followed
by a segmentation in 20 ms frames within each auditory channel. Subsequently,
the internal presentations within each frame of the clean and degraded speech
are compared by means of a correlation coefficient jointly over time and fre-
quency. As proposed by Christiansen et al. only a subset of frames with high
speech energy were considered from which an average correlation coefficient is
obtained.

Coherence speech-intelligibility index

The coherence speech-intelligibility index (CSII) [Kate 05] is based on the co-
herence function which equals the normalized cross-spectral density between
the clean and degraded speech. The coherence function is then translated to
several frequency-band dependent SDRs, which are combined to one score as in
the conventional speech intelligibility index (SII) [ANSI 97]. That is, the SDRs
are limited and normalized and are combined by computing a weighted average
based on perceptual band-important functions (BIFs). It is shown that CSII
can successfully predict the effect on speech intelligibility due to non-linear
types of speech distortions like peak-clipping and center-clipping [Kate 05].
Recent results show that by using signal-dependent BIFs instead [Ma 09], the
performance of CSII with respect to single-channel noise-reduced speech signals
will increase significantly. This CSII variant is also used for the comparison
with STOI (referred to as CSIImid, W4, p = 1 by Ma et al. [Ma 09]).

Normalized Covariance Based Speech Transmission Index

The normalized covariance based speech transmission index CSTI is based on
the correlation coefficient between the band magnitude envelopes within 8 oc-
tave bands [Koch 92, Gold 04]. The measure shows good results with respect
to various types of signal distortions, e.g., clipping and spectral subtraction
[Gold 04]. The correlation coefficients per band are translated to an SNR and
combined in a similar way as with the CSII. Also for this measure new BIFs
were recently proposed in order to improve its performance with respect to
single-channel noise reduced speech [Ma 09]. These BIFs are also used in this

article for comparison with STOI (referred to as NCM, W
(1)
i , p = 1.5 by Ma

et al. [Ma 09]).
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Table 5.2: Used values for the free parameters of the nonlinear mappings, for
the Dantale and IEEE corpus.

a b

fDantale (d) -14.5435 7.0792
fIEEE (d) -17.4906 9.6921

Frequency-Weighted Segmental SNR

The frequency weighted segmental SNR (FWS) is included for comparison as
proposed by Hu and Loizou [Hu 08a]. The measure determines the SNR within
several frequency bands in short-time frames (20 ms) which are limited and
normalized. Here, the clean and processed speech frames are first normalized
to have unit area. This normalization procedure was found to be of critical
importance in order to predict the speech quality of enhanced speech [Hu 08a].
In addition, FWS also showed promising results with respect to predicting the
speech-intelligibility of single-channel noise-reduced speech [Ma 09]. Again,
new BIFs are used as proposed by Ma et al. (referred to as fwSNRseg, p = 1
by Ma et al. [Ma 09]) in order to combine the clipped and normalized SNRs.

Normalized Subband Envelope Correlation

The final intelligibility measure is based on the normalized subband envelope
correlation (NSEC) [Bold 09]. This model is already evaluated with the ITFS
intelligibility data from Section 5.3.1) [Bold 09] where good prediction results
were obtained. Hence, it is of interest to compare its performance with STOI.
First, a 64 channel gammatone filterbank is applied on the clean and processed
speech, after which the normalized, compressed and highpass filtered intensity
envelopes are extracted. The eventual distance between the clean and processed
speech is then defined by the normalized correlation over all time and frequency
points. Similarly as with DAU, the correlation is determined jointly over time
and frequency.

5.5 Results

First the performance of STOI in terms of several correlation measures will be
reported for each listening test after which more details are given about how the
STOI intelligibility prediction errors are distributed over the various listening
tests and processing conditions. Then the effect of the clipping parameter β
and the analysis length N is analyzed followed by a comparison with several
other intelligibility models.
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Figure 5.6: Scatter plots between STOI and the speech-intelligibility scores from
three different types of TF-weighted noisy speech: (a) ITFS-processed noisy
speech (see Section 5.3.1), (b) single-channel noise-reduced speech (see Section
4.7.1) and (c) ITFS-processed noisy speech with artificially introduced errors
(see Section 5.3.3). At the top of each plot the correlation coefficient (ρ) and
the standard deviation of the prediction error (σ) is denoted.
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5.5.1 Correlation between STOI and Intelligibility Scores

The performance of STOI is evaluated by means of the correlation coefficient
(ρ) and the standard deviation of the prediction error (σ). A higher ρ denotes
better performance while for σ, lower values represent better results. Both
merits are applied on the mapped objective scores, i.e., f (d). The scatter-plots
for all three listening tests are shown in Fig. 5.6, where their corresponding
figures of merit are indicated at the top of each plot. In addition, the applied
mapping function f (d)is shown. Table 5.2 summarizes the obtained values for
the free parameters of the applied mappings.

The plots clearly show good performance by means of a strong monotonic
relation between STOI and the speech-intelligibility scores, for all three listen-
ing tests. This is reflected in the correlation coefficients which are all above 0.9
and the obtained standard deviations of the predictions errors, which are below
9%. It can be observed from the plots in Fig. 5.6 that the logistic function for
the IEEE sentences is shifted more to the right compared to the mapping func-
tion for the Dantale sentences: given a STOI score, the actual intelligibility
score for the IEEE sentences is slightly lower compared to the Dantale sen-
tences. As hypothesized in Section 5.4.1, this is probably due to the fact that
the Dantale sentences are generated from a closed set of words, which makes
them more intelligible than IEEE sentences under equal adverse conditions.
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5.5.2 Analysis of Absolute Intelligibility Predictions

As already mentioned in the introduction, the aim for STOI is to have a mono-
tonic relation with speech intelligibility and not necessarily to predict absolute
intelligibility scores. However, by mapping the STOI outcomes using the lo-
gistic function f (d), some insight will be gained in the distribution of the
prediction errors of STOI. The results are shown in Fig. 5.7, 5.8 and 5.9 for
the three listening tests from Sections 5.3.1, 4.7.1 and 5.3.3, respectively.

Fig. 5.7 shows the results for the first listening experiment for all noise-
types, SNRs and other specific ITFS-settings (similar to Fig. 5.3). The plots
reveal that STOI correctly predicts the effect of the LC-parameter on the speech
intelligibility, for almost all cases. This includes the extreme cases where essen-
tially a noise-only signal (-60 dB SNR) is ITFS-processed, resulting in almost
100% intelligible speech for specific LC-values. Note, that for this case all
fine-structure of the clean speech is lost and the signals sound rather artificial;
a challenging condition. Small problems are observed for both the bottles-
noise and the car-noise mixed at 50% SRT for the unprocessed noisy speech
(UN) and low SNR-corrected LC values (first, third, fourth and seventh plot
of top-row in Fig. 5.7). For these conditions, STOI underestimates the speech
intelligibility. An explanation for this could be the fact that these noise types
have a significantly different average spectrum compared to the clean speech.
Therefore, the errors are distributed in different frequency channels compared
to the SSN and cafe-noise conditions. Perhaps these problems can be solved by
introducing band-importance functions, see e.g., [Ma 09]. Nevertheless, these
problems are rather modest and generally STOI shows good agreement with
the data. Note, that STOI was developed with simplicity in mind: the goal
was to develop a model with very vew parameters. For this reason we did not
include any band-importance functions.

The absolute predicted intelligibility scores for the single-channel noise-
reduced speech are shown in Fig. 5.8. From this plot we observe that for low
SNRs the intelligibility scores for the SSN-conditions are slightly overestimated.
However, these small overestimations are approximately equal for both the
unprocessed noisy condition and the noise reduction algorithms EM and SG.
By comparing the relative difference in predicted intelligibility scores before
and after noise reduction, it can be concluded that STOI correctly predicts no
significant effect on the intelligibility. This is in line with the results from the
listening test. Similarly, for the cafe-noise no significant change in intelligibility
is reported. Note, that several STI-based speech-intelligibility measures report
an incorrect intelligibility improvement after noise reduction, e.g., [Ludv 93,
Dubb 08, Gold 04].

Fig. 5.9 shows the STOI predictions for the ITFS-processed speech with
artificially introduced errors from Section 5.3.3. From the plot we can observe
that STOI correctly predicts the effect of the introduced errors in the IBM.
Specifically, the Type-I and Type-II error predictions are in strong correspon-
dence with the actual intelligibility scores. For the general error introduced in
the IBM, the plots reveal small deviations between the different noise types,
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Figure 5.10: Influence of the clipping parameter β and the segment length N
for the intelligibility data originating from the ITFS listening experiment from
Section 5.3.1.

i.e., the 2-talker noise conditions are slightly overestimated and the 20-talkers
noise is slightly underestimated. However, these errors turn out be small.

5.5.3 Effect of parameters N and β

The correlation coefficients obtained for the different values of N∈[10, 20, 30,
50, 100, 500] and β∈[-∞ , -35, -25, -15, -10], with respect to the ITFS listening
experiment from Section 5.3.1, are shown in Fig. 5.10. From the plot it can
be observed that maximum correlation is obtained with N = 30 and β = −15
dB. The same conclusion holds for observing the standard deviations of the
prediction errors (not shown). In general, the segment length N has a bigger
impact on the results compared to the clipping procedure

The results with respect to N are in line with the rationale behind STOI
which was explained in Section 5.1.1. While an estimated correlation coefficient
based on very long segments (tens of seconds) may be dominated by outliers,
an analysis length which is too short (20-30 ms) may exclude important tempo-
ral modulation frequencies. Several listening experiments show that temporal
modulations above 2-3 Hz are important for intelligibility [Drul 94a, Arai 99].
For N = 30, STOI will be sensitive for temporal modulations of 2.6 Hz and
higher which is roughly in accordance with the results of these listening tests.
Moreover, the analysis length of N = 30 (384 ms) is also more in line with the
maximum temporal integration properties of the auditory system, which is in
the order of hundreds of milliseconds, e.g., [Brin 64].
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Figure 5.11: Performance of STOI compared with five other reference objective
intelligibility models. Each column of all subplots denotes one of the three
listening tests as described in Section 5.3, where the last row indicates the
average performance measure for all three listening tests. The rows represent
the correlation coefficient (ρ), Kendall’s Tau (τ) and the standard deviation of
the prediction error (σ).
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5.5.4 Comparison with Other Intelligibility Models

For the five reference objective measures the same evaluation procedure is used
as with STOI (as described in Section 5.4). An additional figure of merit is
included: the Kendall’s Tau (τ), e.g., [Shes 04], where a higher τ implies better
performance. The Kendall’s Tau is only based on the ranking and therefore
independent of the applied mapping from model output to predicted intelligi-
bility scores, as long as the mapping is monotonic. It is included to make the
results more transparent, since the mapping procedure may show a better fit
with the data for certain intelligibility models.

The results are shown in Fig. 5.11, where each column of subplots repre-
sents one of the three listening tests and each row represents a figure of merit.
The average of the three outcomes for each merit is shown in the last column.
From these results it can be concluded that STOI has the best average perfor-
mance for all three listening tests with respect to all figures of merit. Also for
the results with respect to each listening test independently, STOI has better
performance compared to almost all other measures. Only CSII has similar
performance for the ’single-channel noise reduction’ listening experiment and
DAU shows slightly better results for the ’ITFS with errors’ data. Less good
results were obtained with FWS which ended up lowest in ranking for the
average results for all listening tests. In general, the rankings based on the
correlation coefficient are roughly in accordance with the remaining two figures
of merit, except for CSTI and NSEC when evaluated for the single-channel
noise reduced speech. It turns out that for these two measures, the mapping
function fDantale, which was only trained on the ITFS-processed data, did not
fit the noise-reduction dataset.

The good results obtained with DAU and NSEC for the first listening ex-
periment (ITFS) are in accordance with the fact that these two measures were
also designed and optimized for the ITFS listening experiment by Kjems et al.
[Kjem 09]. Furthermore, the performance and ranking of CSII, FWS and CSTI
for the single-channel noise-reduction intelligibility data is in agreement with
the results from Ma et al. [Ma 09].

5.6 Discussion

One may argue that STOI has better performance compared to the reference
objective measures due to the fact that the parameters β and N have been op-
timized for. However, instead of extensively tuning these parameters, a limited
amount of settings have been tested only with respect to the first listening test.
Other settings than β = −15 dB and N = 30 for the last two listening experi-
ments have not been considered. Note, that also NSEC and DAU were designed
and optimized for the intelligibility data from Kjems et al. [Kjem 09]. Further-
more, the output signals of the single-channel noise-reduction algorithms from
the second listening experiment have different types of signal artifacts compared
to the ITFS-processed speech. Also the ITFS-processed speech with artificially
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introduced errors (the third listening experiment) is based on a different speaker
and different noise types. The latter two listening experiments contain a signifi-
cant amount of ’musical noise’ due to their DFT-based approach, in contrast to
the gammatone-based approach of the first listening experiment. In summary,
STOI has not been optimized for listening tests 2 and 3.

Next to STOI, DAU also showed good performance for all listening tests.
However, in contrast to STOI, DAU determines a correlation coefficient in
segments of only 20 ms. In line with the results from Section 5.5.3 this could
be a reason for their difference in performance with respect to the first two
listening tests where STOI shows better performance. However, this is not
in agreement with the results for the last listening experiment, where DAU
shows slightly better performance than STOI. Maybe this can be explained by
the use of the so-called adaptation loops in the DAU-model, which simulate
the adaptation properties of the auditory nerve [Dau 96a]. This stage shows
a log-compressive behavior for stationary input signals while fast fluctuations
are linearly transformed. As a consequence, DAU is more sensitive to transient
regions which are of importance for speech intelligibility. This unique property
of DAU is not represented in any of the other intelligibility models contained
in this research. It would be of interest to investigate the contribution of these
adaptation loops with respect to intelligibility prediction (e.g., by excluding
them or replacing this stage with a simple log-transform).

Although not as good as STOI and DAU, CSTI also showed good perfor-
mance with respect to all three listening tests. Note, that without the clipping
procedure CSTI and STOI are similar measures in the sense that they are both
based on a correlation coefficient per band. However, CSTI determines a cor-
relation coefficient for the complete signal at once instead of the short-time
segments used by STOI. In line with the earlier results shown in Fig. 5.10 this
difference in analysis window length probably explains their difference in per-
formance. The same holds for NSEC which also considers the correlation for
the complete signal at once.

CSII showed good results for the second and third listening experiment,
however, poor results were obtained with respect to predicting the intelligi-
bility scores for the ITFS processed speech data. It was observed that CSII
predicted incorrectly that all the ITFS-processed noisy speech signals mixed at
-60 dB SNR were unintelligible. An explanation for this is the fact that CSII is
sensitive for degradations in the temporal fine structure of the clean speech (in
contrast to STOI). This is a direct consequence of the coherence function, which
takes into account the phase component of the complex DFT coefficients. Note,
that for the ITFS-processed noisy signals mixed at -60 dB SNR, the temporal
fine structure is completely lost.

FWS is the only measure in this evaluation which is not based on a cor-
relation based comparison between the clean and degraded speech. Instead it
uses a conventional SNR per frequency band. This property and the relatively
short analysis window of 20 ms probably explains its low ranking compared to
all other intelligibility models.
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Although STOI is meant for predicting the intelligibility of TF-weighted
noisy speech, it would be of interest to investigate its performance with respect
to other types of degradations. A recent evaluative study [Schl 10] showed
promising results for STOI with respect to envelope thresholding: a nonlinear
operation that consists of setting to zero any samples of the original envelope
that are below a threshold [Gold 04]. Also CSTI showed good results with
respect to envelope thresholding [Gold 04]. As already explained, CSTI and
STOI are similar in the sense that they are both based on the correlation
coefficient between the temporal envelopes of the clean and degraded speech
per frequency band. Goldsworthy and Greenberg concluded that with this
correlation-based approach, CSTI was not capable to predict the intelligibility
of reverberated speech in quiet and low noise environments [Gold 04]. It could
be the case that this conclusion also holds for STOI. However, more research
is needed to investigate the effect of the clipping procedure and shorter anal-
ysis window length of STOI compared to CSTI. Note, that STOI does work
well for additive noise since each of the three different listening tests contain
unprocessed noisy speech for different noise types and SNRs.

STOI does not not take into account some type of absolute threshold in
quiet. Therefore, its predictions may not be accurate for operations which
significantly reduce the level per band and do not have a strong impact on its
temporal envelope (e.g., as with lowpass or highpass filtering).

5.7 Conclusions

A short-time objective intelligibility measure (STOI) is presented based on the
correlation between temporal envelopes of the clean and degraded speech in
short-time (382 ms) segments. This is different from other measures, which
typically consider the complete signal at once, or use a very short analysis
length (20-30 ms). Experiments with different segment lengths indeed show
the benefit of using segment-lengths in the order of hundreds of milliseconds.
Further extensive evaluation shows that STOI has high correlation with the
speech intelligibility for three different listening tests (ρ ≥ 0.92 for all listening
tests). For each of these three listening tests, noisy speech is processed by
some type of TF-varying gain function, including a signal processing technique
called ’ideal time frequency segregation’ and conventional single-channel noise
reduction algorithms. In general, STOI showed better correlation with speech
intelligibility compared to five other reference objective intelligibility models.
A free Matlab implementation is provided at http://siplab.tudelft.nl/.
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Figure 6.1: The pre-process algorithm improves speech intelligibility for the
near-end listener as a function of the near-end noise statistics. It is assumed
that a clean speech signal is available with far-end noise successfully removed
by noise-reduction.

6.1 Introduction

As illustrated in Fig. 6.1, the speech intelligibility for the near-end listener
can be affected by background noise from both sides of the communication
channel. That is, the noise can come from both the far end and the near
end. In order to eliminate the negative impact of the far-end noise, one would
typically apply a single-channel noise-reduction algorithm (see [Loiz 07b] for
an overview). However, the speech can also be pre-processed before playback
in order to become more intelligible in presence of the near-end background
noise, which is the focus in this work. Here we assume that a clean recording
of the speech is available and that the far-end noise is successfully removed
with noise-reduction. A relevant application would be a train-station where the
intelligibility of an announcement is degraded by a passing train. To improve
the speech intelligibility in a noisy environment, one obvious solution would be
to increase the level of the speech. However, at a certain point increasing the
playback level may not be possible anymore due to loudspeaker limitations.
Moreover, unpleasant playback levels may be reached which are close to the
threshold of pain. An alternative approach would be to fix the speech energy
and redistribute energy within the speech signal over time and/or frequency.

One straightforward and effective approach for improving intelligibility of
speech in noise is by boosting high frequencies at a cost of lower frequencies
[Grif 68, Nied 76, Hall 10, Skow 06]. For example, Griffiths [Grif 68] derived an
optimal linear filter for speech transmission relevant for the articulation index
(AI) [Fren 47, Kryt 62]. From this result it was concluded that the speech
spectra should be ’whitened’ which effectively results in a strong amplification
of high frequencies. Similar experimental results were found by Niederjohn
and Grotelueschen [Nied 76], where speech was first high-pass filtered followed
by fast and severe amplitude compression resulting in a large intelligibility
improvement of speech in noise. Also dynamic range compression without any
form of high-pass filtering was found to improve speech intelligibility in noise
[Rheb 09].

Many other approaches are based on the fact that transient-like parts of
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speech signals, e.g., consonants, play an important role in speech intelligibil-
ity. For example, Strange et al. showed that the center vowel in CVC words
is almost fully understandable based on the preceding and succeeding conso-
nant only [Stra 83]. Unfortunately, the energy of consonants is relatively low
compared to vowels and therefore, despite their importance, more vulnera-
ble to noise. In line with these findings are the experiments from Gordon-
Salant [Gord 86] and Hazan and Simpson [Haza 98], which found significant
intelligibility improvements in noise for normal-hearing listeners by amplifying
hand-annotated consonants. Similar results were found with hearing-impaired
listeners [Kenn 98]. The important perceptual cues of stop consonants are
identified in a recent study by Li et al. [Li 10]. A follow-up study by Li
and Allan [Li 11] shows that by identifying and amplifying these important
cues, as found in [Li 10], confusion between consonants can be prevented. The
results of these studies could be included in a near-end speech enhancement
method, however, similar as with [Gord 86] and [Kenn 98], the method by
Li and Allan is not automated [Li 11]. There are methods available which
automatically modify the vowel-consonant energy ratio. For example, before
amplification, transient regions can be detected with classification rules based
on spectral flatness [Skow 06, Huan 09] or the rate of variation of energy and
centroid frequency [Jaya 08]. Yoo et al. proposed to extract and amplify tran-
sient components from the speech based on time-varying filters whose center
frequencies and bandwidths were controlled to identify the strongest formant
components [Yoo 07]. Note that these methods 1) do not amplify the transients
in a frequency-dependent matter and 2) are not taking into account the noise
statistics. Based on the results from Li et al. [Li 10] it is clear that taking into
account these two properties should be more beneficial for improving speech
intelligibility.

Although not explicitly based on consonant detection, Sauert and Vary
recently proposed several algorithms [Saue 06, Saue 10], which do take into
account the noise statistics. These methods improve objective speech intelli-
gibility as predicted by the speech intelligibility index (SII) [ANSI 97]. Other
methods exploiting noise statistics exist, for example, based on the masking ef-
fects of the auditory system [Brou 08] or a loudness perception model [Shin 07].
Tang and Cooke [Tang 10, Tang 11] investigated several strategies where energy
is relocated based on local SNRs. Best results were obtained with a strategy
where only the high frequency regions (1800-7500) were amplified, when a local
SNR < 5 dB was observed. Interestingly, they also found that redistributing
the speech energy, such that the local SNR is made constant either over time,
frequency or jointly over time and frequency, may actually decrease the speech
intelligibility [Tang 11].

From all the noise-knowledge based methods we conclude that they pri-
marily change the spectrum of the speech and do not use some type of con-
sonant detection strategy. Therefore, the benefits from the earlier mentioned
transient-enhancement methods may not be present. One issue with these
noise-knowledge based approaches is that their spectral analysis is typically
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based on short-time segments (20-40 ms), where the envelope within these
frames is completely ignored. However, important information related to con-
sonants may be present within these short-time envelopes. For example, for
the identification of important cues of stop consonants in the study by Li et
al. [Li 10], a computational model was used with a time-resolution of 2.5 ms
based on Fletcher’s articulation index (AI) [Flet 50].

In this work we present a new method where the speech energy is redis-
tributed as a function of the near-end noise, based on a perceptual distortion
measure. The results we present in this article extend existing work due to
several reasons: (1) The considered perceptual distortion measure [Taal 09b,
Taal 12a] (see Section 6.2.1) takes into account short-time information, which
results in a higher sensitivity to transient regions compared to spectral-only
models as in, e.g., [Brou 08, Shin 07, Saue 06, Saue 10]. Therefore, the pro-
posed method does not only change the spectrum of the speech to improve
speech intelligibility in noise, but also automatically the consonant-vowel ratio
as a function of the noise statistics and the speech. (2) We provide an ana-
lytic solution to optimally redistribute speech energy relevant for a perceptual
distortion measure subject to a power constraint. This is different from the
majority of algorithms, which rather normalize the speech signal heuristically
after processing which may result in suboptimal solutions. (3) Some algorithms
are very effective in improving intelligibility of speech in noise, while they may
have poor speech quality (pleasantness or naturalness of speech). For example,
aggressive amplitude compression [Nied 76] results in very unnatural speech
but the SNR can be lowered down to 15 dB while preserving intelligibility. We
will show that the proposed method also has a positive effect on speech quality
rather than a negative impact.

The remaining of this article is organized as follows. First we will explain
the proposed algorithm and the used perceptual distortion measure in Section
6.2, followed by an evaluation and comparison of other reference methods in
Section 6.3. Finally, in Section 6.3.2, a discussion is provided followed by
conclusions.
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6.2 Proposed Speech Pre-Processing Algorithm

Let x denote a time-domain signal representing a speech signal and x+ε a noisy
version, where ε represents background noise. We assume that in isolation,
x is fully intelligible and that far-end noise is either absent or successfully
removed by a single-channel noise reduction algorithm. The distortion measure
considered in this work, denoted by D (x, ε), will inform us about the audibility
of ε in the presence of x. Hence, a lower D value implies less audible noise and
therefore more audible speech. Our goal is to adjust the speech signal x such
that D (x, ε) is minimized subject to the constraint that the energy of the
modified speech remains unchanged. First, in Section 6.2.1, more details will
be given about the considered distortion measure, after which in Section 6.2.2
we will formalize and solve the constrained optimization problem. In Section
6.2.4 some properties of the algorithm are revealed.

6.2.1 Perceptual Distortion Measure

The perceptual distortion measure is based on the work from [Taal 09b] and
[Taal 12a]. There are two important motivations why this particular distortion
measure is used. (1) The measure takes into account a spectro-temporal audi-
tory model and therefore also considers the temporal envelope within a short-
time frame (20-40 ms). As a consequence, the distortion measure is more sensi-
tive to transients than spectral-only models, e.g., as used in [Saue 06, Saue 10].
(2) The measure fulfills certain mathematical properties, which make it pos-
sible to derive an analytic solution in the eventual constrained optimization
problem (See Section 6.2.2).

To guide the reader, we give a brief summary of the perceptual distortion
measure presented in [Taal 12a]. The basic structure for the distortion measure
is shown in Fig. 6.2. First, a time-frequency (TF) decomposition is performed
on the speech and noise by segmentation into short-time (32 ms), 50% over-
lapping square-root Hann-windowed frames. Then, a simple auditory model
is applied to each short-time frame, which consists of an auditory filter bank
followed by the absolute squared and low-pass filtering per band, in order to
extract a temporal envelope. Here, the filter bank resembles the properties
of the basilar membrane in the cochlea, while the envelope extraction stage is
used as a crude model of the hair-cell transduction in the auditory system.

Let hi denote the impulse response of the ith auditory filter and xm the mth

short-time frame of the clean speech. Their linear convolution is denoted by
xi,m = xm ∗ hi. Subsequently, the temporal envelope is defined by |xm,i|2 ∗ hs,
where hs represents the smoothing low-pass filter. Similar definitions hold for
|εm,i|2 ∗ hs. The audibility of the noise in presence of the speech, within one
TF-unit, is determined by a per-sample noise-to-signal ratio [Taal 09b]. By
summing these ratios over time, an intermediate distortion measure for one
TF-unit is obtained denoted by lower-case d. That is,
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d (xm,i, εm,i) =
∑

n

(
|εm,i|2 ∗ hs

)
(n)

(
|xm,i|2 ∗ hs

)
(n)

, (6.1)

where n denotes the time index running over all samples within one short-time
frame. As an example, internal representations within one auditory filter are
shown in Fig. 6.2 for a windowed noise realization εm and a speech transient xm.
Also, the point-wise division in Eq. (6.1) of the internal representations before
summation over n is shown in the figure. Due to the fact that the measure
uses a per-sample (16 kHz) rather than a frame-based noise-to-signal ratio, the
measure is sensitive to the short-temporal structure. The benefit of this will
be revealed in Section 6.2.4. Note that the cutoff frequency of the low-pass
filter hs determines the sensitivity of the model towards temporal fluctuations
within a short-time frame.

The distortion measure for the complete signal is then obtained by summing
all the individual distortion outcomes over time and frequency, which gives,

D (x, ε) =
∑

m,i

d (xm,i, εm,i). (6.2)

6.2.2 Power-Constrained Speech-Audibility Optimization

To improve the speech audibility in noise, we minimize Eq. (6.2) by applying a
TF-dependent gain function α which redistributes the speech energy by scaling
of the individual (perceptually) filtered frames, i.e., αm,ixm,i, where αm,i ≥ 0.
Only TF-units are modified where speech is present. This is done in order to
prevent that a large amount of energy would be redistributed to speech-absent
regions. We consider a TF-unit to be speech-active when its energy is within
a 25 dB range of the TF-unit with maximum energy within that particular
frequency band. Note that with the near-end speech enhancement application
the clean speech is available and voice activity detection is a relatively easy
process (in contrast to the detection of speech already corrupted by noise).
The noise is assumed to be a stochastic process denoted by Em,i and the speech
deterministic (recall that the speech signal is known in the near-end enhance-
ment application). Hence, we minimize for the expected value of the distortion
measure. Let L denote the set of speech-active TF-units and ‖·‖ the ℓ2-norm,
the problem can then be formalized as follows,

min
αm,i,{m,i}∈L

∑
{m,i}∈L

E [d (αm,ixm,i, εm,i)]

s.t.
∑

{m,i}∈L

‖αm,ixm,i‖2 = r, (6.3)

where r =
∑

{m,i}∈L ‖xm,i‖2 is the total power measured at the output of the
auditory filters and E denotes the expected value. Two important reasons exist
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for fixing the speech energy r rather than any other constraint, for example,
based on loudness: 1) Typically, algorithms are compared with a listening test
by fixing the SNR for which the used global energy constraint is optimal. 2)
The used constraint is mathematical tractable in contrast to complex loudness
models for which closed-form solutions may not exist, resulting in suboptimal
and computational demanding methods, e.g., as in [Shin 07].

By using the method of Lagrange multipliers we introduce the following
cost function,

J =
∑

{m,i}∈L

E[d (αm,ixm,i, Em,i)]+λ


 ∑

{m,i}∈L

‖αm,ixm,i‖2−r


 . (6.4)

Due to the linearity of the convolution in Eq. (6.1) and the assumption that
α ≥ 0 we have that d (αx, y) = d (x, y) /α2. Therefore, in order to minimize
Eq. (6.4), we have to solve the following set of equations for α,

∂J
∂αm,i

= −2
E[d(xm,i,Em,i)]

α3
m,i

+ λ2αm,i ‖xm,i‖2 = 0

∂J
∂λ =

∑
{m,i}∈L

α2
m,i ‖xm,i‖2 − r = 0 (6.5)

The solution is given by,

α2
m,i =

rβ2
m,i∑

{m′,i′}∈L

β2
m′,i′ ‖xm′,i′‖2

, (6.6)

where,

βm,i =

(
E [d (xm,i, Em,i)]

‖xm,i‖2

)1/4

. (6.7)

In order to determine α, we have to compute the expected value E [d (xm,i, Em,i)],
which can be expressed as follows,

E [d (xm,i, Em,i)] =
∑

n

(
E
[
|Em,i|2

]
∗ hs

)
(n)

(
|xm,i|2 ∗ hs

)
(n)

, (6.8)

Here we used the linearity of the convolution and the summation in order to
move the expected value operator inside the distortion measure. To simplify, we
assume that the power-spectral density of the noise within the frequency range
of an (relatively narrow) auditory band is constant, i.e., has a ’flat’ spectrum.
As a consequence, the noise within an auditory band can be modeled by Em,i =
(wmNm,i) ∗ hi, where wm denotes the window function and Nm,i represents a
zero mean, i.i.d. stochastic process with variance E

[
N2

m,i (n)
]
= σ2

m,i, ∀n. By
combining this statistical model and the numerator of Eq. (6.8) we have,
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E
[
|Em,i|2(n)

]
= E

[∣∣∣∣
∑
k

hi (k)wm (n−k)Nm,i (n−k)
∣∣∣∣
2
]

=
∑
k

h2i (k)w
2
m (n−k)E

[
N2

m,i (n−k)
]

=
(
h2i ∗ w2

m

)
(n)σ2

m,i.

(6.9)

where h2i ∗ w2
m can be calculated offline and reused, and σ2

m,i can be estimated
with any noise power spectral density (PSD) estimator from the field of single-
channel speech enhancement [Loiz 07b] (see next section for more details). Here
we use the method from [Hend 10].

6.2.3 Implementation Details

An exponential smoother is applied to αm,i in order to reduce variations which
may negatively effect the speech quality, that is,

α̂m,i = (1− γ)αm,i + γα̂m−1,i, (6.10)

where good results were obtained with γ = 0.9. Note that the applied smooth-
ing in Eq. (6.10) will also prevent that too much energy is distributed to specific
TF-units. Hence, large energy differences between TF-units, which may vio-
late some of the motivations for including the power constraint (loudspeaker
limitations, unpleasant playback level), are reduced significantly. In rare cases
where specific TF-units receive too much amplification, the processed signal is
clipped within the available dynamic range.

The filter bank and the low-pass filter are applied by means of a point-wise
multiplication in the DFT-domain with real-valued, even-symmetric frequency
responses1. For the filter bank the approach as presented in [Par 05] is used
and for the low-pass filter the magnitude response of a one-pole low-pass fil-
ter is used. A total amount of 40 filters are considered spaced according the
equivalent rectangular bandwidth (ERB) [Glas 90] between 150 and 8000 Hz.
Furthermore, the speech signal is reconstructed by addition of the scaled TF-
units where a square-root Hann-window is used for analysis/synthesis.

As mentioned, a noise-tracker from the field of single-channel speech en-
hancement (i.e., estimating the underlying clean speech given a noisy observa-
tion) is used for estimation of the noise PSD. However, three important differ-
ences apply when using such a traditional noise-tracker in the field of near-end
enhancement:

1. The noise realization which degrades the TF-units in the set L is a future
event. Therefore only the noise PSD from the last known time-frame can
be used, which is estimated from previous time-frames. We assume that
the noise is stationary during the duration of L.

1This particular choice will lead to time-domain aliasing due to circular convolution.
However, the applied window function will minimize the effect of these unwanted artifacts.
See [Vary 06], page 399 for more details.
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2. The noise PSD tracker is applied on the processed speech plus noise rather
than on the clean unprocessed speech plus noise, where the latter equals
the situation in single-channel noise reduction.

3. The transfer function from microphone to loudspeaker should be known
in order to compensate for any introduced delay and coloration of the
signal. In our experiments this is ignored, however, this transfer function
can be easily measured offline and included in the algorithm.

Finally it is important to add that noise PSD estimation is significantly
easier in the field of near-end enhancement than in single-channel noise reduc-
tion, since we have access to the clean speech. Hence, a perfect voice activity
detector could also be used where noise statistics are estimated during speech
pauses.

The performance of the method depends on the amount of TF-units avail-
able in the set L. When this set contains a larger span over time and/or
frequency, a better redistribution of energy is possible and a lower final dis-
tortion as defined in Eq. (6.2) can be expected. The delay of the proposed
algorithm is directly related to the amount of future time-frames in the set L
with respect to the current time-frame. Increasing the lookahead in the set L
will result in a larger delay. Although the delay of the proposed method can
be adjusted, depending on the application, we will analyze the following two
extreme situations in the remaining of the article: (1) L contains all TF-units
in one entire sentence (say +/- 3 seconds) (PROP1) and (2) L only contains the
set of TF-units in one short-time frame (32 ms) (PROP2). PROP1 is relevant
in situations where the speech is pre-recorded and the noise is stationary, e.g.,
pre-recorded announcements in a car-navigation system, F16 cockpit or safety
instructions in a plane. PROP2 is relevant for real-time applications like mobile
telephony, or public address systems. For PROP1 the noise PSD is based on
averaging estimated noise PSDs over several frames and sentences offline. The
delay can be adjusted to anything in between these extreme cases, for example,
for mobile telephony where a limited amount of delay is not necessarily an issue
[ITU 03].
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Figure 6.3: Unprocessed and processed (PROP1) speech signal for three differ-
ent auditory model cutoff frequencies. The bottom plot indicates how the energy
is redistributed over time. Notice that transient parts are more amplified when
the cutoff frequency is increased.
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6.2.4 Properties and Examples

The cutoff frequency of the auditory model low-pass filter hs (see Section 6.2.1)
determines the temporal sensitivity of the distortion measure. A higher cutoff
frequency will result in a larger intermediate distortion value for transient sig-
nals, and therefore the algorithm will distribute more energy to these regions.
We investigated the amount of amplification received by transients as a func-
tion of the cutoff frequency. One example is shown in Fig. 6.3 for PROP1 with
speech shaped (SSN) noise at -5 dB SNR, where processed clean speech signals
are shown for three different cutoff frequencies (0, 125 and 250 Hz). Here, a
cutoff frequency of 0 Hz means that the short-time envelope is constant and
equals its average value. The bottom plot indicates how the energy is redis-
tributed over time where energy differences are calculated within individual
short-time frames independently of frequency. Note that only 0.8 seconds of
the entire 2.5 seconds long speech signal is shown. Although transients are also
amplified with a cutoff frequency of 0 Hz, this only results in small amplifica-
tions in the range of 3-6 dB. In contrast, when we use a cutoff frequency of
125 Hz, transients are amplified in the order of 6-12 dB. This is more in line
with results based on earlier research which found better results in this range
[Gord 86, Haza 98, Kenn 98, Skow 06].

As an example in Fig. 6.4, the time-domain signals are plotted together
with spectograms for the clean and noisy speech and the proposed algorithms
PROP1 and PROP2. All spectrograms show the same dynamic range of around
45 dB where the energy of all speech signals (before noise addition) is equal. For
this particular example one sentence of speech is used with a length of around
2.5 seconds which is degraded with white noise at 5 dB SNR. From the noisy
speech spectrograms we can conclude that the high frequencies are almost fully
masked by the noise. For example, the transients at approximately 0.7 and 1.8
seconds are hardly visible anymore and can be expected to be inaudible due
to the negative effects of the noise. For PROP1 it can be observed that the
transients are almost fully recovered, both in the time domain and spectogram
plots. Beside transient regions, the plots also reveal that PROP1 increases the
high frequencies of the vowel sounds at, e.g., 0.2 and 1 second(s). For PROP2,
this amplification of high frequency vowel sounds is also observed. However,
the amplification of transient regions is not present with PROP2, since only
energy could be redistributed within one short-time frame. For both PROP1
and PROP2 low frequency regions (around 100-250 Hz) are attenuated in order
to accomplish the amplification of high frequencies.

6.3 Experimental Evaluation

6.3.1 Speech Intelligibility

The proposed methods PROP1 and PROP2 are compared with two reference
methods by means of an intelligibility listening test. This includes the method
as proposed by Skowronski and Harris based on changing the vowel-consonant
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Figure 6.5: Average user intelligibility scores with standard errors of unpro-
cessed (UN) speech degraded with speech shaped noise (SSN) and processed
speech plus noise for the proposed algorithms PROP1 and PROP2 and the
reference methods ERVU [Skow 06] and SAU [Saue 06].

ratio referred to as energy redistribution voiced/unvoiced (ERVU) [Skow 06].
This particular method detects transients based on the spectral flatness mea-
sure where the transient part is amplified by 7.4 dB. After transient amplifica-
tion the signal is normalized such that it has the same energy as the original
speech signal. This method is independent of the noise statistics.

Secondly, the ”maximal power transfer” method is included as proposed by
Sauert et al. (SAU) [Saue 06]. This method is based on a simple model of
hearing where it is assumed that its noise reduction pre-processing stage in the
human brain acts at least as intelligent as a Wiener filter. Let x̂m,k denote the
kth DFT-bin of the mth short-time frame for the clean speech and σ2

n (m, k)
the noise PSD. The gain function applied to each DFT-bin is then given as
follows,

α2
m,k =

K1|x̂m,k|2

K1|x̂m,k|2 + σ2
n (m, k)

, (6.11)

where K1 = 0.01 to deliver the best possible speech intelligibility. The power-
constraint is included by normalizing the processed speech per short-time frame
such that it equals the energy of the unprocessed speech per short-time frame.
For SAU we use the noise-tracker as proposed in [Saue 06] which equals a
recursive average of the noise periodogram with an adaptively chosen noise
floor. Hence SAU assumes access to the noise realization. In order to make
a fair comparison the noise tracker in the proposed method is therefore also
applied on the noise only rather than the noisy speech.
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Table 6.1: p-values for comparing intelligibility scores between algorithms.

SNR Method > UN > ERVU > PROP2 > PROP1

-12.5

ERVU 0.035 - - -
PROP2 0.002 0.062 - -
PROP1 0 0 0 -
SAU 0 0 0 0.001

-10

ERVU 0.217 - - -
PROP2 0 0.007 - -
PROP1 0 0 0.086 -
SAU 0 0 0 0

-7.5

ERVU 0.094 - - -
PROP2 0.01 0.001 - -
PROP1 0.005 0 0.346 -
SAU 0.001 0 0.037 0.046

-5

ERVU 0.549 - - -
PROP2 0.01 0.021 - -
PROP1 0.002 0.007 0.022 -
SAU 0.015 0.038 0.5 0.967

Listening Test

Ten Dutch-speaking listeners were asked to judge the intelligibility of the un-
processed noisy signals and processed speech signals plus noise. The speech
signals were taken from the Dutch Matrix-test [Koop 07], which consists of
5-word sentences spoken by a female speaker. The sentences are of the gram-
matical form name-verb-numeral-adjective-noun (e.g. Ingrid owns six old jack-
ets) as proposed by Hagerman [Hage 82], where each word in the sentence is
picked randomly from a list of 10 possible words. This means that there is a
probability of 10% that the correct word is chosen in the case that the speech
unintelligible. The subject had access to the closed set of words by means
of a 10-by-5 matrix on a computer screen, such that the ith column contains
exactly the 10 possible alternatives for the ith word. The task of the listener
is to select via a graphical user interface the understood words. For each test
sentence, one word from each column must be selected where the sentence was
played once only. Signals are sampled at 16 kHz and degraded with SSN at the
SNRs of -12.5, -10, -7.5 and -5 dB and processed with PROP1, PROP2, ERVU
and SAU. The unprocessed noisy speech is also included in the test (UN). For
each condition the listener is presented with five, five-word sentences through
headphones (Sennheiser HD 280 pro) where each sentence was used only once.
As a consequence, each subject listened to a total of 5 sentences * 5 algorithms
* 4 SNRs = 100 sentences in total. The order of presenting the different algo-
rithms and SNRs was randomized. The score per user and for one condition
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was consequently obtained by the average percentage of correct words.

Results

The average user scores together with standard errors for all conditions are
shown in Fig. 6.5. We found that the differences between subject responses were
small, where between-subject correlations were found in the range of 0.76-0.95.
Statical analysis is performed per SNR condition by means of multiple paired
one-sided t-tests, where in total p-values are determined for ten hypotheses.
All four algorithms are tested whether they significantly improved intelligibil-
ity compared to the noisy speech. Furthermore, we compared whether PROP1
performed better than ERVU, PROP2 better than ERVU and PROP1, and
SAU better than PROP2, PROP1 and ERVU. A statistical significance level of
α = 0.05 is used with Holm-Bonferroni correction for testing multiple hypothe-
ses 2 [Holm 79]. Significant differences are denoted in Fig. 6.5 by a connection
with asterisk marker between the two corresponding bars. The p-values can
be found in Table 6.1. Note that for the -5 dB conditions the p-values are
relatively high in two situations (ERV>UN and SAU>PROP). This is due to
the fact that the ranking is the opposite than the one tested.

From the results we can conclude that for the lowest three SNRs the algo-
rithms have the same ranking in performance. That is, all algorithms improve
speech intelligibility compared to the noisy speech where SAU showed the best
performance followed by PROP1, PROP2 and ERVU. For the highest SNR of
-5 dB results were slightly different, which is probably due to ceiling effects,
i.e., most of the listeners had scores close to 100 percent. For the SNRs of -12.5
and -10 dB all algorithms significantly improve speech intelligibility compared
to the noisy speech, except for ERVU where the improvements where not sta-
tistically significant. The fact that ERVU has a smaller effect on intelligibility
compared to the other three methods is expected, since it is only limited to
changing the consonant-vowel ratio and not the spectrum of the speech as a
function of the noise, which is case with the other methods. Furthermore, as
hypothesized in Section 6.2.2, we found that in general PROP1 performs better
than PROP2, where a significant improvement was found for -12.5 dB SNR.
This is a direct consequence of the fact that the energy can be distributed over
the complete signal in PROP1 rather than only within one short-time frame as
with PROP2. Best performance was obtained with SAU which showed better
performance than all methods for the lowest three SNRs. As we will show in
the discussion in Section 6.3.2, the good performance of SAU comes with a cost
in speech-quality.

2The Holm-Bonferroni test is a sequentially rejective version of the more conservative
Bonferonni test, which can be applied in the same situations where the classical Bonferroni
test is usually applied [Holm 79].
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6.3.2 Speech Quality

From the listening test results we can conclude that the proposed methods
PROP1 and PROP2 both lead to intelligibility improvements of the speech,
when corrupted by SSN. However, we also found that one of the reference
methods (SAU) performed somewhat better than the proposed methods in
terms of speech intelligibility. This result is remarkable since SAU includes
a power constraint within one short-time frame which implies a much lower
algorithmic delay than PROP1, which distributes energy over a complete sen-
tence. One would expect better results with PROP1 since the energy could
be redistributed more efficiently over the complete signal rather than only one
short-time frame. It is hypothesized that one possible reason for this difference
is the fact that the considered distortion measure, as defined in Section 6.2.1,
is based on audibility rather than intelligibility [Taal 12a]. Although audibil-
ity shares some aspects of intelligibility, it is typically used as a feature for
speech quality predictive models, see, e.g., [Quac 88, Loiz 07b]. Perhaps our
method optimizes more for speech quality rather than intelligibility, while SAU
may be suboptimal in terms of speech quality despite its good intelligibility
performance.

The relation between quality and intelligibility, for the considered type of
processing artifacts in this article, is therefore further investigated in Section
6.3.2, where we indeed find a mismatch in algorithm ranking with respect to
quality and intelligibility. Furthermore, state-of-the-art intelligibility predic-
tors are analyzed whether they correctly predict the intelligibility listening test
results and could therefore be used for providing hints on why SAU performs
better than PROP1 in terms of intelligibility and not in quality. In the final
section in this discussion the algorithmic delay is inspected as a function of
speech intelligibly by one of the best performing intelligibility predictors.

Objective PESQ scores

Additional tests are performed to investigate the speech quality of the differ-
ent methods. Speech quality is predicted by PESQ [Rix 02] for 6 different
noise types at SNRS within the range of -15 and 10 dB. The wideband ver-
sion of PESQ is used, which is standardized as ITU-T recommendation P.862.2
[ITU 05] and is suitable many different degradations as typically encountered
in telephony applications. This includes (non-)linear degradations which share
similar properties as the proposed algorithm, e.g., the addition of background
noise, filtering [Beer 02] and applying TF-varying gain functions as used in
noise reduction [Hu 08a] and source separation algorithms [Mowl 12]. More-
over, the use of PESQ with the type of speech processing used in this journal
is validated with an additional listening test, where the results are in line with
the PESQ predictions.

The speech quality is predicted for UN, PROP1, PROP2, ERVU and SAU.
The noise types include babble, F16 cockpit, factory, white, speech shaped
and bottling factory noise. An average PESQ score is calculated based on 50
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Figure 6.6: PESQ based speech quality predictions for the different algorithms
and unprocessed noisy speech for six different noise types.

random sentences from the Timit database [Garo 93], which originates from
different types of speakers. The results are shown in Fig. 6.6. For lower SNRs
around -10 dB the results show that a lower bound for speech quality is reached
and the PESQ scores are more or less random which is in line with the findings
reported in [Liu 08]. For higher SNRs it can be observed that the proposed
methods PROP1 and PROP2 have a positive effect on speech quality for all
noise types and most of the SNRs. ERVU does not strongly affect the speech
quality and SAU even has a negative effect on speech quality for some noise
types.

Listening Test

As an initial step to see whether these PESQ predictions are in line with real
listening tests, the methods PROP1, SAU and UN are compared with each
other by means of an AB-preference test. Ten subjects listened to two versions
of the same speech sentence and were asked which sentence they preferred
in terms of speech quality, e.g., pleasantness and/or naturalness of speech.
These subjects were different than from the first experiment. We compared
UN with PROP1, UN with SAU and PROP1 with SAU. The order of the two
sentences was randomized where the subject listened to five different sentences
per algorithm comparison. Thus, in total each subject listened to a total of
3 algorithm pairs * 2 sentences per comparison * 5 sentences = 30 sentences.
Random sentences were taken from the Timit database [Garo 93] at a sample
rate of 16 KHz and corrupted by SSN at an SNR of 5 dB.

From the results of the listening test, as shown in Fig. 6.7, we can see that
the ranking is similar as with the PESQ predictions for SSN. That is, SAU
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Figure 6.7: Average users score of AB-preference listening test between the
unprocessed noisy speech UN and the algorithms PROP1, SAU for speech shaped
noise degraded at 5 dB SNR. The error bars denote the standard error of the
average user preference.

actually decreases speech quality compared to the unprocessed noisy speech
and PROP1 has better speech quality than SAU. Statistical analysis by means
of a Wilcoxon rank sum test (significance level of α = 0.05) indicates that the
comparisons of PROP1>SAU and UN>SAU are statistically significant with
p < 0.0005. The speech quality of PROP1 was better than UN, however, this
was not significant with p = 0.08.

6.4 Discussion

6.4.1 Speech Quality versus Intelligibility

One possible explanation for the difference in speech quality and speech intelli-
gibility for SAU in the SSN case, is its strong amplification of higher frequencies.
The amplification of high frequencies is also present with PROP1, however, to
a less extent. To get a better insight in these properties, the average spectra
are plotted in the top figure in Fig. 6.8 for the unprocessed speech, the pro-
cessed speech for SAU and PROP1 and the noise. Signals are mixed at -10
dB where 50 sentences are used for estimating the spectrum. We observe that
indeed the average spectrum of PROP1 is closer to the original speech and
therefore may sound more natural and has therefore better quality. However,
these high frequencies may be responsible for the good performance in terms
of intelligibility.

Besides SSN, which has a low-pass characteristic, also white noise and noise
from a bottling factory hall are included which contain more high frequencies
as shown in the bottom two plots of Fig. 6.8. From these spectra we can
clearly see that SAU tends to give the speech spectrum the shape of the inverse
noise spectrum. This is indeed in line with Eq. (6.11) where for low SNRs
the gain function will be dominated by the inverse of the noise PSD. This
is most visible for the bottling factory noise where the strong high frequencies
present in the noise (1000-2000 Hz) are attenuated in the speech. This probably
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explains its negative effect on speech quality of SAU for this noise type as
was predicted by PESQ. From the spectra we also observe that SAU does not
change the spectrum for the white noise, since the inverse of this noise spectrum
results in a flat gain function. Therefore, the benefits of SAU with SSN are not
expected with white noise. With PROP1 we observe a different effect for white
noise, where the high frequencies of speech are amplified instead. We know
that amplifying high frequencies in the case of white noise improves speech
intelligibility [Grif 68, Nied 76, Skow 06], therefore it is expected that PROP1
will also improve intelligibility and therefore will show better performance than
SAU for this particular noise type. In the future, additional tests will be
performed to test the algorithms for other noise types.

Based on the experiments we can conclude that intelligibility is more rel-
evant for lower SNRs and quality for higher SNRs. For example, the PESQ
scores in Figure 6.5 show a lower-bound convergence around -5 dB. Here, the
speech quality is probably dominated by the low SNRs and the added noise,
rather than the applied speech pre-processing algorithms. Moreover, a ceiling
effect can be observed with respect to speech intelligibility in Figure 6.5 around
-5 dB, where most of the conditions result in almost fully intelligible speech. We
would like to add that this SNR is relatively low because the speech material
is based on a closed set of words and is therefore more easy to understand. In
the case of more realistic sentence-based material the intelligibility can still be
harmed at 5 dB [Hu 07a] and in the case of non-native speakers this could even
go up to 15 dB [Wijn 02]. Note that announcements by non-native speakers is
very likely to happen at (international) airports and train stations.

In many applications a large range of SNRs can be expected. In a train
station, for example, speech can become unintelligible due to a passing train,
while little far-end noise will be present outside rush hour. As a consequence,
the algorithm should have good performance in both quality and intelligibility
over a wide range of SNRs like the proposed method. For applications where
speech is only presented at lower SNRs, or where speech quality is of minor
importance like military applications, one could argue that SAU should be
preferred over the proposed methods. However, as previously explained, this
argument may not be valid for all noise types since it is expected that the
proposed method will result in higher intelligibility than SAU in the case of
white noise.

6.4.2 Predicted Intelligibility versus Algorithmic Delay

In the experiments performed in this article we included two extreme cases
of the algorithm, that is PROP1 and PROP2, referring to a low and high al-
gorithmic delay, respectively. As hypothesized, we found that increasing the
lookahead, and therefore the delay, leads to more intelligible speech in noise.
An interesting question is how much lookahead is needed in order to reach
maximum intelligibility. To answer this question, an initial experiment is per-
formed where the speech intelligibility is predicted with STOI [Taal 11a] as a
function of algorithmic delay. STOI is used for prediction since it gave high
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Figure 6.9: STOI predictions versus listening test results (left) and predicted
intelligibility by STOI for SSN, -12.5 dB SNR as a function of algorithmic
delay (right).

correlation for the conditions PROP1, PROP2 and UN in isolation (ρ = 0.96)
as shown in the left plot in Figure 6.9. Here a scatter plot is shown between
the STOI predictions and the actual intelligibility scores of the listening test.
A logistic function is fitted which will be used to map the STOI predictions to
intelligibility scores for other algorithmic delays.

In total 50 sentences of the Dutch matrix test [Koop 07] are used, which are
degraded with SSN at an SNR of -12.5 dB, where we found the largest difference
in intelligibility between PROP1 and PROP2 in the listening test. We consid-
ered the following block lengths in which energy could be redistributed by the
proposed method: 125, 250, 500, 750, and 1000 ms. Furthermore, the versions
PROP1 (approximately 2-3 seconds) and PROP2 (32 ms) were also included
in the experiment. To prevent fast changing fluctuations between consecutive
blocks, a 50% block overlap together with a Hann window is used. The results
are shown in Fig. 6.9, from which we can conclude that from around 500 ms
the predicted intelligibility tends to converge to the performance of PROP1.
These predictions indicate that almost maximum intelligibility can be achieved
for certain voice applications, e.g., international telephone connection, when
taking into account the maximum tolerated network delay of around 400 ms
[ITU 03].

6.4.3 Algorithm Performance in Far-End Noisy Condi-

tions

In the proposed method we assume that we have access to a clean recording of
the far-end speech which has good quality and intelligibility. In the case that
the speech is still corrupted by (residual) background noise, the algorithm will
increase the audibility of the far-end noisy speech, rather than the far-end clean
speech. In this situation issues may occur, especially when the noisy speech
contains many noise-only TF-units. The algorithm will consider those TF-units
to be speech rather than noise and therefore energy may be distributed to the
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wrong TF-units. Nevertheless, initial (informal) experiments in far-end noisy
conditions do suggest that the intelligibility is still improved, though, to a less
extent compared to clean ideal conditions. Additional listening tests have to
be performed in order to confirm this. However, it is suggested to apply a
single-channel noise reduction algorithm, e.g., [Erke 07] to the far-end noisy
speech in order to improve the performance of the proposed algorithm.

6.5 Conclusions

A speech pre-processing algorithm is presented to improve the speech intelli-
gibility in noise for the near-end listener without adjusting the speech energy.
This was accomplished by optimally redistributing the speech energy over time
and frequency based on a perceptual distortion measure. Due to the fact that
the distortion measure takes into account short-time information, transient sig-
nals, which are more important for speech intelligibility than vowels, receive
more amplification. The lookahead of the algorithm can be adjusted to the
specific application. To verify the effect of this, two extreme versions were
considered of the proposed method: one with maximum lookahead, where en-
ergy is distributed over time and frequency jointly for a complete sentence
(PROP1), and one with minimum lookahead where energy is redistributed
over frequency within a short-time frame (PROP2). From the results we can
conclude that the proposed methods result in a large intelligibility improve-
ment compared to the noisy unprocessed speech. PROP1 performed better
than PROP2 due to the fact that PROP1 contains a larger time-span where a
better redistribution of energy is possible. However, this results in a larger al-
gorithmic delay. The proposed methods were compared with a method where
transients were amplified (ERVU) and a method which redistributes energy
over frequency within one short-time frame (SAU). PROP1 and PROP2 re-
sulted in higher intelligibility scores than ERVU. Best performance in terms of
speech intelligibility was obtained with SAU. However, additional tests reveal
that the good performance of SAU comes with a decrease in speech quality
in contrast to PROP1, where next to intelligibility, also a positive effect on
speech quality was found. Matlab code of PROP1 and PROP2 is provided at
http://www.ceestaal.nl/nrgredist.zip.
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7.1 Introduction

Reliable machine-driven predictors of speech intelligibly are of great interest in
the design process of new speech processing algorithms, e.g., as used in mobile
telephony, hearing aids or cochlear implants (CIs). They might replace costly
and time consuming listening tests, at least in some stages of the algorithm de-
velopment process. The drawback of many intelligibility predictors is that they
are complex [Chri 10, Chen 11] and do not have certain (mathematical) prop-
erties in order to derive optimal signal processing solutions, e.g., least-squares
solutions. In previous work we proposed a short-time objective intelligibility
(STOI) measure which can accurately predict the effect of background noise
and various (non-)linear speech processing algorithms on speech intelligibility
[Taal 11a]. We will show that STOI can be simplified to a weighted ℓ2 norm
in the auditory domain which makes the measure mathematically tractable.
Since STOI shows high correlation with the intelligibility of vocoded speech
[Taal 11a], as typically used in acoustic CI-simulations, the norm will be ap-
plied in the channel-selection technique with CI simulations [Wils 08, Dorm 02].

The channel-selection technique is also referred to as the n-of-m strategy
where n channels of the available m frequency channels (electrodes) are stim-
ulated, such that important channels can be updated more frequently and less
significant channels are omitted. Several strategies exist to select those chan-
nels, e.g., based on peak-picking [Seli 95], psychoacoustic models [Nogu 05]
and other techniques [Wils 08]. However, these techniques optimize for cer-
tain (psychoacoustic) criteria which exclude important properties relevant for
speech intelligibility [Taal 11b]. For example, criteria relevant for speech intel-
ligibility should take into account temporal modulation frequencies important
for intelligibility (4-32 Hz) [Drul 94b] and correlation based comparisons should
be used rather than comparisons based on squared errors [Taal 11b]. The pro-
posed norm based on STOI takes into account these aspects.

Due to the mathematical properties of a norm, the channel selection can now
be solved in an optimal manner for STOI with the matching pursuit algorithm
[Mall 93]. Within this framework the electrical spread per electrode can also be
easily taken into account, which is typically not part of the optimization process
in existing n-of-m strategies. It will be shown that the proposed method leads
to more intelligible speech compared to a general peak-picking algorithm by
means of acoustical CI-simulations with normal-hearing listeners.

7.2 Derivation of Intelligibility Metric

We will first introduce a general notation and explain the auditory model as
used in STOI. Let x (n) and y (n) denote a clean and degraded speech signal,
respectively, with time-sample index n, where y is a vocoded version of x. A
basic auditory model is applied to both signals in order to obtain an internal
representation. Here, we only explain the notation for the internal representa-
tion of x. Similar definitions hold for y. Let x̂m (k) denote the kth DFT-bin of
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xwm, where wm denotes a Hann-window function with frame-index m. Here, a
frame length of 16 ms is used with 50% overlap. The short-time DFT spectrum
is converted into auditory bands as follows:

Xi,m =
∑

k

∣∣∣ĥi (k)x̂m (k)
∣∣∣
2

, (7.1)

where i denotes the auditory band index and ĥi represents an approximation
of the magnitude response of a 4th order gammatone filter as described in
[Par 05]. The value Xi,m will be referred to as a time-frequency (TF) unit.
In total, 32 filters are used with center frequencies linearly spaced on an ERB
scale between 150 and 5000 Hz. STOI compares the clean and degraded speech
in the auditory domain in blocks of approximately 400 milliseconds (see next
section for more details). The following vector notation is used to denote such
a block within one auditory band,

xi,m=
[
Xi,m−M+1 Xi,m−M+2 · · · Xi,m

]T
, (7.2)

whereM can be used to control the length of such a speech segment, depending
on the sample rate and window size. In this work, a sample rate of 16 kHz
is used where M = 48. Vectors are concatenated over all auditory bands to
denote a complete TF-block as:

xm =
[
xT
1,m xT

2,m · · · xT
I,m

]T
, (7.3)

where I = 32 denotes the total amount of auditory filters. The operator no-
tation xm = Im {x} is used to denote the complete transform from the time-
domain to one TF-block in the auditory domain.

7.2.1 STOI Background and Simplification

As proposed in STOI [Taal 11a], an intermediate measure relevant for speech
intelligibility of one TF-unit is defined as the sample correlation coefficient
between the clean (xi,m) and degraded (yi,m) speech temporal band envelopes
in one block. Blocks of a few hundreds of milliseconds are used to include
important modulation frequencies for intelligibility [Drul 94b]. The correlation
coefficient is used, rather than, e.g., a squared error, to make sure that the
measure is insensitive to band-level differences between x and y, which should
not have a strong impact on speech intelligibility [Taal 11b]. To simplify, the
correlation coefficient is defined on the magnitude squared envelopes rather
than the magnitude envelopes, as was originally proposed in STOI [Taal 11a].
The benefit of this choice will become clear in Section 7.4. This gives:

ρi,m (x, y) =

〈
xi,m − µxi,m

,yi,m − µyi,m

〉

σxi,m
σyi,m

, (7.4)

where 〈·, ·〉 denotes the inner product with ‖·‖ as its induced ℓ2-norm, µxi,m
the

sample mean of xi,m and σxi,m
=
∥∥xi,m − µxi,m

∥∥. Similar definitions hold for
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the degraded speech. The correlation coefficients ρi,m(x, y) are then combined
into one number by computing its average over all TF-units:

D =
1

M
∑

i,m

ρi,m (x, y), (7.5)

where M denotes the total number of TF-blocks. It is expected that D is
a monotonically increasing function of the speech intelligibility of y. In com-
puting D only those TF-blocks are considered in the summation where speech
is present, see [Taal 11a] for more details. An additional clipping procedure
in STOI, which was included to limit the intermediate intelligibility range, is
discarded in this work for simplicity.

7.2.2 Interpretation as weighted ℓ2 norm

To rewrite the intelligibility measure as a norm we first express (7.4) as an
inner product:

ρi,m (x, y) = 〈x̄i,m, ȳi,m〉 , (7.6)

where a general normalization procedure is denoted by (̄·) =
(
(·)− µ(·)

)/
σ(·).

Hence, the inner product 〈x̄i,m, ȳi,m〉 can be used to induce the following norm:

‖x̄i,m − ȳi,m‖2 = ‖x̄i,m‖2 + ‖ȳi,m‖2 − 2 〈x̄i,m, ȳi,m〉
= 2− 2ρi,m (x, y).

(7.7)

It can now be observed that maximizing ρi,m implies minimizing the norm

‖x̄i,m − ȳi,m‖2. However, its minimizing argument only determines the optimal
yi,m up to a scaling σyi,m

and amplitude shift µyi,m
. In this work we aim for

the solution where the clean speech is the target, with the assumption that
µxi,m

≈ µyi,m
and σxi,m

≈ σyi,m
. This is motivated by the fact that we are

working in blocks of a few hundreds of milliseconds, and it is expected that
the errors introduced to yi,m will average to a minimal impact when summing
over all its elements in the calculation of the scaling σyi,m

and amplitude shift
µyi,m

. This gives:

‖x̄i,m − ȳi,m‖2 ≈ ‖ai,m (xi,m − yi,m)‖2 (7.8)

where ai,m = σ−1
xi,m

. By vector concatenation as in (7.3) the summation over
frequency i in (7.5) can be replaced by defining a new norm over a complete
TF-block. First, a diagonal weighting matrix is defined as:

Am = diag
(
a1,mIM a2,mIM · · · aI,mIM

)
, (7.9)

where IM is the identity matrix of size M . A weighted norm for one TF-block
is then given as follows:

‖Am (xm − ym)‖2 =
∑

i

‖ai,m (xi,m − yi,m)‖2. (7.10)
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These weighted norms are then combined by a summation over time, where
for optimization purposes the averaging constant M in (7.5) can be discarded.
Note that Am is only a function of the clean speech xm. As a result, it only
has to be calculated once for each frame after which the norm can be evaluated
for any arbitrary ym.

7.3 Application to CI channel selection

The proposed intelligibility metric will be used in the CI channel-selection tech-
nique with the matching pursuit algorithm [Mall 93]. With this algorithm, a
signal x is synthesized as a weighted sum of functions (sometimes called atoms
or elements) which are chosen from a dictionary [Mall 93]. The algorithm is
iterative, where for each iteration p the best matching function g from the dic-
tionary D is chosen and subtracted from the residual at the previous iteration.
Since only one element is considered per iteration, the algorithm is greedy. The
eventual synthesized speech signal can be described by:

x ≈
∑

p

α(p)g(p), (7.11)

where the selection of the best dictionary element and weighting coefficient α
is based on minimizing some norm of the eventual residual r. For the (p+ 1)

th

iteration this residual is given as follows:

r(p+1) = r(p) − α(p)g(p), (7.12)

where for the first iteration the residual is taken equal to the target signal, i.e,
r(1) = x. The optimal solution for the weighting coefficient and selection of the
dictionary element in each iteration is given by [Mall 93],

α(p) =
〈g(p),r(p)〉
‖g(p)‖2

g(p) = argmax
g∈D

|〈g,r(p)〉|
‖g‖

(7.13)

7.3.1 Intelligibility Relevant Matching Pursuit

Since all diagonal elements of Am in (7.10) are real and positive a new norm
relevant for speech intelligibility can be defined, say ‖·‖Am

, which is induced
from the following inner product:

〈xm,ym〉Am
= 〈Amxm,Amym〉 . (7.14)

Now we can insert the proposed norm and inner product based on STOI in
(7.12) and (7.13). Here, the dictionary will be defined by D = g(γ)γ∈Γ, where
Γ denotes the set of CI frequency channel indices. Each element represents
the internal representation of a short-time pulse within a specific CI channel
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and will be used to model xm. One can choose the dictionary according to the
properties of the CI and include aspects like the pulse duration, channel center
frequencies or the amount of current spread. To imply low algorithmic delay
no future time-samples are taken into account in these internal representations
for a given pulse.

For the first iteration where no channel selection has been made yet, the

residual is set to r
(1)
m = xm, where for the next iterations we have:

r(p+1)
m = r(p)m − α(p)g(p). (7.15)

The solution for the best dictionary element and optimal weighting for each
iteration relevant for the proposed metric is then given by:

α(p) =
〈g(p),r(p)m 〉

Am

‖g(p)‖2

Am

g(p) = argmax
g∈D

∣

∣

∣〈g,r(p)m 〉
Am

∣

∣

∣

‖g‖
Am

.

(7.16)

After the channels have been selected, the eventual residual rm is stored and

shifted one time-frame overm for the initial residual r
(1)
m+1. In this manner, past

channel selections are also taken into account for the decisions of the current
time-frame.

7.4 Vocoder Details

CI simulations are performed with a vocoder based on sinusoidal carriers similar
to [Dorm 02]. In this vocoder 20 channels are used with logarithmically spaced
frequencies between 150-5000 Hz. Each sinusoid is segmented into 8 ms length,
50% overlap Hann-windowed frames, which implies a channel simulation rate
of 250 Hz. Note that these settings simulate the properties of the CI-processor
and are chosen independently of the auditory model from Section 7.2.

First we will show that the time-domain additivity of the TF-spaced sinu-
soids in the vocoder can be preserved in the auditory domain, which validates
the use of (7.11) in the auditory domain. Let a TF-spaced sinusoid be described
as follows:

sγ (n) = cos (ωγn+ φ)ws (n) , (7.17)

where ωγ denotes the angular frequency for channel γ, respectively, and ws its
window function (the subscript s of this vocoder window is used to denote its
difference with the auditory model window wm from Section 7.2). For read-
ability, the vocoder relevant frame-index is omitted and we assume that ws

represents the current frame of interest. Since the phase is of minor impor-
tance for intelligibility in these short time frames [Liu 97], φ is assumed to be
i.i.d. uniformly distributed between 0 and 2π and only the average internal
representation is considered. The expected value of sγ for one TF-unit in the
auditory domain, as in (7.1), equals:
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Eφ

[
(Sγ)i,m

]
=

1

2

∑

k

∣∣∣ĥ (k) ̂(wsejnωγ )m (k)
∣∣∣
2

. (7.18)

Recall the operator notation Im {·} defined in (7.3), which denoted the com-
plete transform from the time-domain to one TF-block in the auditory domain.
The expected value of the internal representation of a sum of weighted sinusoids
weighted is then given by:

Eφ

[
Im
{∑

γ

aγsγ

}]
=
∑

γ

|aγ | 2Eφ [Im {sγ}], (7.19)

where αγ denotes a real and positive weighting function for channel γ and the
cross terms between the weighted sinusoids in the auditory domain are zero due
to the i.i.d. assumption. This is a direct consequence of taking into account
squared magnitudes in (7.1) rather than the squared root of this term. Hence,
the weighted sum of sinusoids results in a squared weighted sum of average
functions in the auditory domain. Note that a realization of this internal rep-
resentation is expected to be close to its expected value, since the proposed
metric discards all DFT-phase information in (7.1). Motivated by this, each
element in the dictionary D = g(γ)γ∈Γ is defined as g (γ) = E [Im {sγ}]. The
frame index m is taken equal to the last frame which still overlaps with ws.
This means that the dictionary depends on the alignment between ws and the
chosen m. Since the support of wm (16 ms) is double the support of ws (8 ms),
two possible alignments exist for which the dictionaries, say D1 and D2, can be
pre-calculated and stored. Two example dictionary elements are shown for both
dictionaries in Figure 7.1. This figure also illustrates how m is chosen given
ws by highlighting the windows of the auditory model. The eventual vocoded
speech signal for time-frame ws is then synthesized as1 x ≈∑

p

√
α(p)sγ(p) .

7.5 Experimental Results

The proposed matching pursuit (MP) algorithm is compared with the peak-
picking (PP) algorithm which is currently still the basis of several existing
coding strategies in CIs [Wils 08]. Signal processing details of the peak-picking
algorithm can be found in [Dorm 02].

Three intelligibility predictors are used to assess the intelligibility of MP
and PP where the number of selected channels is varied between 1 and 5.
These predictors consist of STOI [Taal 11a] (the model which was simplified
in Section 7.2), a model developed by Christiansen and Dau (DAU) [Chri 10]
and the normalized covariance metric (NCM) [Chen 11]. These measures are
recently proposed and can be considered as state-of-the-art for intelligibility

1In rare cases it may occur that the optimal α for a specific iteration is negative. Since
a negative amplitude in the auditory domain does not have a meaning in the time-domain
these channels are discarded.
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Figure 7.1: Two example elements for each dictionary D1 and D2 where γ =
{5, 15}. Left plots show realizations of sγ and right plots the average internal
representations.
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Figure 7.2: Prediction results for proposed matching pursuit (MP) and peak
picking (PP) algorithm (a higher score denotes more intelligible speech). The
predictors STOI [Taal 11a], DAU [Chri 10] and NCM [Chen 11] are all known
to be reliable with vocoded speech.

prediction of vocoded speech. The results are shown in Fig. 7.2 from which we
can conclude that all three measures predict that the intelligibility of MP is
higher than PP. A result which is in line with informal listening tests. Largest
improvements are predicted with STOI, which is not that surprising since this
is the measure initially used for optimization. NCM and DAU predict that the
speech intelligibility for MP with 1 sinusoid is roughly equal to the intelligibility
with PP for 2 and 3 sinusoids, respectively. In the near-future real listening
tests will be performed to quantify the absolute difference between MP and
PP.

The main differences between MP and PP are illustrated in Figure 7.3,
where one TF-block of clean speech is used and only one channel was selected
per time instant. For comparison, the clean internal representation is shown
together with the internal representations for both methods, denoted by ym,
and their corresponding channel selections. From the plots it is clear that
PP tends to select the same channel independently of the previous selected
channel. As a result the two formants between 0.1-0.2 seconds and channel
16-24 are completely discarded with PP, which is not the case with MP. There
are two important reasons for this different behavior: (1) The proposed metric
has a longer integration time such that channels selections from the past are
taken into account for the current channel selection. (2) The weighting matrix
Am ’whitens’ the speech and will therefore give a similar importance to high
frequencies compared to low frequency content. Another important difference is
the fact that the proposed method considers the spread over time and frequency
of the sinusoids. Therefore, MP will less often select neighboring channels
compared to PP.

Note that the channel stimulation rates in real CI-processors can be much
higher than the rate of 250 Hz as used in the vocoder from [Dorm 02]. In a
real CI also the channels are typically stimulated sequentially in an interleaved
manner, rather than simultaneously, in order to avoid electrical field interac-
tions [Wils 08]. These properties of the CI cannot be included in a vocoder
since no acoustical signals exist with such short-time duration and narrow fre-
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Figure 7.3: Auditory representations of clean and vocoded speech and channel
selection for MP and PP. One channel is selected per time-instant for both
algorithms.
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quency support. It is important to add, however, that these are constraints
of the use of any vocoder and not of the proposed channel selection method.
Namely, the dictionary can be easily extended to shorter pulse durations in a
real CI environment.

7.6 Concluding Remarks

In this paper it is shown that the existing short-time objective intelligibility
(STOI) measure can be expressed as a weighted ℓ2 norm in the auditory do-
main. Due to the mathematical properties of this norm it facilitated the use of
the matching pursuit algorithm in the channel selection technique in cochlear
implants (CIs). Acoustic CI simulations are generated based on a sinusoidal
vocoder where a large intelligibility improvement was found by three state-of-
the-art intelligibility predictors compared to a peak-picking algorithm.
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In this thesis the focus was on the development of new machine-driven
measures for intelligibility prediction of (non)-linearly processed speech in noisy
conditions. An important aspect was the aim for new measures which are
mathematical tractable and can therefore be used for online optimization. With
online optimization we mean developing new signal processing strategies in an
optimal way given such a machine-driven evaluation method, rather than naive
offline optimization of free parameters of already designed speech processing
algorithms. To this end we successfully proposed several new measures in
Chapter 3-5 which show good prediction results in line with subjective listening
tests and state-of-the-art objective measures. The newly proposed measures are
of low computational complexity and mathematical tractable which make them
suitable for online optimization as demonstrated in Chapters 3, 6 and 7.

8.1 Results

In Chapter 3 we analyzed a general procedure of modeling the auditory sys-
tem, e.g., [Lyon 82, Dau 96a], which is an important aspect of every predictive
measure, whether it is for signal detection, audio quality or speech intelligibil-
ity prediction. We showed that, under certain assumptions, the model can be
greatly simplified when predicting results from psychoacoustic masking experi-
ments. The resulting model facilitates the computation of analytic expressions
for masking thresholds and masking curves, while advanced spectro-temporal
models, like the Dau-model [Dau 96a], typically need computationally demand-
ing adaptive procedures [Levi 71] to find an estimate of these masking thresh-
olds. We showed that the proposed method gives similar masking predictions
as the advanced spectro-temporal Dau-model (with maximum errors around 10
dB), while being a factor 10-100 times faster, depending on the frame length
and type of test. An important property of the proposed method compared to
existing measures which are suitable for online optimization like the Par-model
[Par 05], is its sensitivity to the temporal envelope within short-time frames
(20-40 ms). As a consequence, the measure is very sensitive to introduced
errors in transient parts of speech which are of great importance in speech
intelligibility. From our results we concluded that the proposed model can
be interpreted as an extended version of the Par-model [Par 05], which is a
mathematical tractable perceptual model based on spectral integration only.

In Chapter 3 the simplified auditory model is used for online optimization
where a fixed amount of noise was redistributed over time and frequency. The
redistribution is done such that the distortion measure based on the simpli-
fied auditory model was minimized, i.e., the audibility of the noise was mini-
mized. This is a typical scenario in the field of audio coding (compression) or
data-hiding like audio watermarking. A comparison was made with the Par-
model. It can be concluded that for non-stationary frames (e.g., transients)
the Par-model underestimates the audibility of introduced errors and therefore
overestimates the masking curve. As a consequence, the system of interest in-
correctly assumes that errors are masked in a particular frame which may lead
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to audible artifacts like pre-echoes. This was not the case with the proposed
method which correctly detects the errors made in the temporal structure of
the signal.

In Chapter 4 an extensive evaluation is presented of objective measures
for intelligibility prediction of noisy speech processed with a time-frequency
(TF) varying gain function. Two speech processing techniques are used. In
one case binary gain functions are applied in the time-frequency domain with
a method called ideal time-frequency segregation (ITFS). In the second case
several single-channel noise reduction algorithms are evaluated. Out of all
measures, the proposed frame-based measure based on the correlation between
the critical-band magnitude spectra (MCC) of the clean and processed speech
gave the best results with ρ = .93. Good results were also obtained with the
Dau-model [Dau 96a] (DAU), namely ρ = .89. Poor results were obtained
with the coherence speech intelligibility index [Kate 05] (CSII), which turned
out to be an unreliable intelligibility predictor for the ITFS-processed signals
used in this research. This was probably due to sensitivity to the DFT phase
component. We also showed that the correlation predictions between simple
predictive measures and speech intelligibility can be improved significantly by
applying a normalization procedure independently of the predictive measure.
An important conclusion from this evaluation is that the complexity of the
auditory model is of minor importance. Some measures based on simple TF-
representations performed better than sophisticated nonlinear auditory models.
Moreover, two important aspects are found which matter in how the internal
representations are compared. (1) Correlation-based comparisons perform bet-
ter than SNR-based measures or measures based on squared errors. (2) Using
a longer temporal integration time than short-time (20-30 ms) frames tends to
give better performance.

A new short-time objective intelligibility (STOI) measure is proposed in
Chapter 5 which is based on the previously mentioned evaluative study of
objective measures in Chapter 4. STOI shows high correlation with the in-
telligibility of noisy and time-frequency weighted noisy speech (e.g., resulting
from noise reduction) of three different listening experiments. In general, STOI
showed better correlation with speech intelligibility compared to five other ref-
erence objective intelligibility models. Several follow-up studies are published
independently of our work where the good performance of the STOI is con-
firmed [Mowl 12, Schl 10, Cass 11, Xia 12, Gmez 12]. In contrast to other con-
ventional intelligibility models, which tend to rely on global statistics across
entire sentences, STOI is based on shorter time segments in the order of a few
hundreds of milliseconds. Experiments indeed show that it is beneficial to take
segment lengths of this order into account. Moreover, STOI uses a very simple
linear DFT-based auditory model which makes the method more suitable for
online optimization.

In Chapter 6 the simplified auditory model from Chapter 3 was used for
optimizing a speech pre-processing algorithm for speech intelligibility improve-
ment in noise for the near-end listener. The algorithm improved the intelligi-
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bility by optimally redistributing the speech energy over time and frequency
for the proposed simplified auditory model. Since this auditory model takes
into account short-time information, transients will receive more amplification
compared to stationary vowels, which is beneficial for improving intelligibility
in noise. Note that the proposed distortion measure based on the simplified
auditory model from Chapter 3 is based on audibility. Although audibility
shares some aspects of intelligibility, it is typically used as a feature for speech
quality predictive models, see, e.g., [Quac 88, Loiz 07b]. This could be a reason
why our method also improved speech quality in addition to intelligibility. As a
consequence, the proposed method may be suboptimal in terms of speech intel-
ligibility optimization. Another important aspect of audibility is the fact that
the measure needs the noise and speech in isolation. This makes the method
suitable for near-end enhancement but less suitable for intelligibility prediction
of single-channel noise reduced speech where speech and noise are not isolated
anymore.

We showed that the STOI predictions have high correlation with the in-
telligibility of vocoded speech, as typically used in acoustic cochlear implant
(CI) simulations. In Chapter 7, STOI is therefore used for online optimiza-
tion in the n-of-m channel selection technique as found in several cochlear
implant (CI) coding strategies [Seli 95]. With this technique only a subset
of frequency channels (electrodes) are stimulated, such that important chan-
nels can be updated more frequently and less significant channels are omitted.
STOI is further simplified such that it can be expressed as a weighted ℓ2 norm
in the auditory domain. Due to the mathematical properties of a norm, STOI
can now be used with the matching pursuit algorithm in the n-of-m channel
selection technique. Intelligibility predictions with acoustic CI-simulations for
normal-hearing listeners indicate that more intelligible speech is obtained with
the proposed method compared to a conventional channel-selection method
based on peak picking. Reasons for this difference in performance are: (1)
STOI considers an analysis window of a few hundreds of milliseconds in or-
der to account for low temporal modulations which are important for speech
intelligibility and (2) spectral leakage per channel is accounted for in the math-
ematical optimization process. It is important to add that these results are
based on the validity of the speech vocoder which predicts the results for CI
users with normal-hearing users. Although speech vocoders have shown to be
valuable in predicting trends of average user results, they do not predict indi-
vidual results for CI users. However, the basis functions used in the matching
pursuit algorithm could be adjusted to include user specific behavior.

In order to simplify STOI we found that the measure could be expressed
as a weighted ℓ2 norm in the auditory domain. Here the weighting function is
based on the reciprocal of the total energy within one auditory band of the clean
speech. This finding probably explains the good performance of the simple
measure based on the magnitude squared difference (MSD) in combination
with the proposed critical-band based normalization procedure in Chapter 4.
The measure MSD was based on the ℓ2 norm in the auditory domain where
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the proposed critical-band based normalization procedure also normalizes the
energy within each auditory band based on the reciprocal of the total energy
within one auditory band.

The analysis length of STOI equals a few hundreds of milliseconds which is
in line with results of several listening experiments where temporal modulations
above 2-3 Hz are important for intelligibility [Drul 94a, Arai 99]. With the
current analysis length which is close to 400 milliseconds, STOI is sensitive for
temporal modulations of 2.6 Hz and higher which is roughly in accordance with
the results of these listening tests. Moreover, the analysis length is also more in
line with the maximum temporal integration properties of the auditory system,
which is in the order of hundreds of milliseconds, e.g., [Brin 64]. Note that the
analysis length of a few hundreds of milliseconds in STOI is an important
difference with the simplified auditory model proposed in Chapter 3 which was
based on short-time segments (20-40 ms). Therefore, in Chapter 6 where we
optimized for this simplified measure an heuristic smoother had to be applied
to the gain function over time. This is not necessary when optimizing for STOI.

8.2 Directions of Future Research

Based on our results we have the following recommendations for future research:

Application of Critical-Band Based Normalization Procedure It has
been shown that the critical-band based normalization procedure from Chapter
4 improves the correlation with speech intelligibility of simple measures based
on squared differences. Many speech processing algorithms in speech com-
munication systems are based on squared differences due to its mathematical
tractability. One could simply transform the speech signal with the proposed
normalization procedure before transmission in a speech communication sys-
tem. The magnitude spectrum of errors introduced by the system, e.g., due to
quantization in a speech coder, will be shaped in such a way that intelligibility
is expected to be less harmed. At the receivers side an inverse filter should be
applied to restore the original speech spectrum.

Single-Channel Noise Reduction In the field of single-channel noise re-
duction, there is typically no or only little improvement in speech intelligibility
due to the applied noise reduction algorithm [Jens 12, Hu 07a]. As mentioned
in the introduction, many intelligibility measures report the opposite result
and predict that the noise reduction algorithm did a good job and actually
increased the speech intelligibility [Ludv 93, Dubb 08, Gold 04]. We showed
that is not the case with STOI [Taal 10c]. Also another study showed excellent
results with STOI for speech intelligibility prediction of single-channel noise
reduced speech [Xia 12]. It seems logical to derive an optimal noise reduction
scheme for STOI (or the weighted ℓ2 norm based on STOI). However, this may
be challenging since STOI is a function of the clean speech signal which is not
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available. A typical approach is to assume some type of statistical model where
the underlying speech signal must be estimated, see, e.g., [Loiz 07b].

Understanding of Speech Processing Mechanism in the Auditory

System In this thesis we showed that speech intelligibility can be success-
fully predicted with STOI. However, it does not explain the actual underlying
mechanism of speech understanding in the auditory system in full detail. For
example, the clipping procedure in STOI is a heuristic approach to improve
the performance of STOI and may not be directly explained with actual pro-
cessing going on in the auditory periphery. However, we believe that the good
performance of STOI, which is confirmed in several different studies, should
be reproducible with a more accurate modeling and motivation of the auditory
system. This could be of interest to answer more fundamental questions on how
speech is perceived and why, for example, current noise reduction algorithms
are not able gain large improvements in speech intelligibility.

Binaural Intelligibility Prediction Model All measures treated in this
work are monaural models and are based on the assumption that the left and
right ear receive the same speech signal. However, it is well known that human
listeners can benefit from using the spacial configuration where the signals are
perceived binaurally [Bron 00]. It would be of interest to extend STOI such
that it can also handle binaural input, for example, based on interaural cross-
correlation [Lyon 83]. We found that using a segment length of a few hundreds
of milliseconds is of importance. One could investigate whether this conclusion
is also relevant in a binaural intelligibility predictor.
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Samenvatting

In digitale spraak-communicatie systemen zoals mobiele telefoons, publieke om-
roepsystemen en gehoorapparaten is het overbrengen van de boodschap één van
de belangrijkste doelen. Helaas kan de verstaanbaarheid van de spraak aange-
tast worden voor, tijdens en na het verzenden van de boodschap van de zender
naar de ontvanger. Belangrijke oorzaken hiervoor zijn bijvoorbeeld achter-
grondruis, een slechte internet verbinding tijdens een Skype gesprek of een
gehoorbeschadiging van de ontvanger van de boodschap. Om hiervoor te com-
penseren bevatten veel spraak-communicatie systemen signaalverwerkingsalgo-
ritmes die proberen de verstaanbaarheid van de boodschap te herstellen. Om
het effect van een dergelijk algoritme op de spraakverstaanbaarheid te bepalen
is het gebruikelijk om een luistertest af te nemen met een groep gebruikers.
Het nadeel van deze luistertesten is echter dat ze veel tijd kosten en daarvoor
kostbaar zijn. Als een alternatief, kan een computer algoritme gebruikt worden
om de resultaten te voorspellen van een echte luistertest. Op deze manier kan
het ontwikkelingsproces van nieuwe signaalverwerkingsalgoritmes aanzienlijk
versneld worden.

Veel van de huidige maten die de verstaanbaarheid voorspellen van ver-
stoorde spraak kennen twee belangrijke nadelen: (1) Ze zijn niet accuraat in
het voorspellen van het effect van geavanceerde niet-lineaire signaalverwerk-
ingsalgoritmes en (2) ze zijn veelal gebaseerd op ingewikkelde, rekenintensieve
modellen van het auditieve systeem. Deze twee aspecten maken het moeilijk om
nieuwe signaalverwerkingsalgoritmes te ontwikkelen welke wiskundig optimaal
zijn voor een gegeven verstaanbaarheidsmaat. In deze thesis introduceren we
daarom een aantal nieuwe maten welke succesvol de verstaanbaarheid kunnen
voorspellen van verschillende niet-lineaire signaalverwerkingsalgoritmes. Deze
nieuwe maten vergen weinig computer rekenkracht en zijn op een wiskundig
handelbare manier uitgedrukt. Als gevolg hiervan zijn deze nieuwe methoden
zeer geschikt voor het afleiden van nieuwe signaalverwerkingsoplossingen welke
zich richten op de verbetering van spraakverstaanbaarheid.

Een belangrijk onderdeel in veel spraakverstaanbaarheidsmaten is het au-
ditieve model waarbij verschillende onderdelen van het gehoor worden gesimu-
leerd. In het eerste deel van deze thesis wordt daarom een algemeen complex
auditief model vereenvoudigd met behoud van goede voorspellingen van psy-
choakoestische luisterexperimenten. Door deze vereenvoudiging is het mogelijk
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om maskeerdrempels analytisch uit te drukken terwijl state-of-the-art mod-
ellen vaak rekenintensieve adaptieve procedures nodig hebben voor het vin-
den van een maskeer drempel. De wiskundige eigenschappen van het vereen-
voudigde model worden succesvol toegepast bij het verbeteren van spraakver-
staanbaarheid in ruis. Dit wordt bereikt door de energie van het spraaksignaal
her te verdelen over tijd en frequentie, optimaal voor de gegeven maat zonder
verandering van de signaal-in-ruis verhouding.

Een uitgebreide evaluatie heeft plaatsgevonden van 17 verschillende maten
voor de verstaanbaarheidsvoorspelling van tijd-frequentie gewogen ruizige spraak.
Een voorbeeld hiervan is spraak welke bewerkt is met een ruisonderdrukkingsal-
goritme. We laten zien dat, ondanks hoge correlatie, verschillende maten niet
geschikt zijn voor het voorspellen van het effect van signaalverwerkingsalgo-
ritmes op de spraakverstaanbaarheid. Daarnaast wordt aangetoond dat een
state-of-the-art methode niet geschikt is voor het voorspellen van bepaalde
tijd-frequentie gewogen ruizige spraaksignalen. Een mogelijke verklaring hier-
voor is de gevoeligheid van de maat voor fase informatie. Problemen met
huidige maten worden uitgelicht en een nieuwe normalisatie procedure is ont-
wikkeld die toegepast kan worden als een pre-processing stap om de prestaties
van bestaande maten te verbeteren.

We presenteren een nieuwe spraakverstaanbaarheidsmaat gebaseerd op de
analyse van korte tijdssegmenten genaamd STOI (short-time objective intel-
ligibility measure). De voorspellingen van STOI hebben hoge correlatie met
de spraakverstaanbaarheid van tijd-frequentie gewogen ruizige spraak inclusief
ruisonderdrukte spraak en spraaksignalen afkomstig van een vocoder. Over het
algemeen geven de STOI voorspellingen een hogere correlatie met de spraakver-
staanbaarheid vergeleken met vijf andere state-of-the-art spraakverstaanbaar-
heidsmaten. Een belangrijk verschil tussen STOI en andere maten is de signaal
analyse lengte welke in de orde is van een aantal honderden milliseconden in
plaats van complete zinnen of 20-30 milliseconden wat vaak het geval is bij
bestaande methodes. Door de simpele vorm van STOI laten we in het einde van
deze thesis zien dat de maat uitgedrukt kan worden in een wiskundige norm.
Deze norm is succesvol toegepast in de kanaal-selectie techniek in cochleaire
implantaten door middel van simulaties met normaalhorenden. Verschillende
verstaanbaarheidsmaten laten een grote verbetering zien met de op STOI-
gebaseerde techniek vergeleken met een veel gebruikte peak-picking techniek.
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