Private Computing

and

Mobile Code Systems

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op dinsdag 21 november 2005 om 15:30 uur
door Kathy CARTRYSSE
elektrotechnisch ingenieur
geboren te Knokke-Heist (Belgié).

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. R.L. Lagendijk

Toegevoegd promotor:
Dr.ir. J.C.A. van der Lubbe

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr.ir. R.L. Lagendijk, Technische Universiteit Delft, promotor

Dr.ir. J.C.A. van der Lubbe, Technische Universiteit Delft, toegevoegd
promotor

Prof.dr. R.W. Wagenaar, Technische Universiteit Delft

Prof.dr. P.H. Hartel, Universiteit Twente

Prof.dr.ir. H.C.A. van Tilborg, Technische Universiteit Eindhoven

Prof.dr. A.A.C.M. Kalker, Technische Universiteit Eindhoven

Dr. C. Witteveen, Technische Universiteit Delft

ISBN-10: 90-90199-53-5
ISBN-13: 978-90-90199-53-5

Copyright © 2005 by K. Cartrysse

All rights reserved. No part of this thesis may be reproduced or transmitted in any form
or by any means, electronic, mechanical, photocopying, any information storage or
retrieval system, or otherwise, without written permission from the copyright owner.

Private Computing

and

Mobile Code Systems

Contents

Preface

1

Introduction

11
1.2
1.3
1.4
15
1.6

Mobile
Privacy
Privacy

Code versus Software Agents

and MobileCode

Problem Statement
ThesisOutline e
Contribution

Privacy Models
Introduction
2.2 AgentPrivacyModel

2.1

2.3

221
2.2.2
2.2.3
2.2.4
225
2.2.6
2.2.7
Mobile
2.3.1
2.3.2
2.3.3
2.3.4
2.35
2.3.6

Model
Trustand attackers
Threats e
Privacy Requirements
Problems Addressed inthis Thesis
RelatedWork
Conclusions
Code Privacy Model
Model
Assumptions
Threats
Problems Addressed and Approach
RelatedWork
Discussion

2.4 Conclusions e

Agent Communication
Introduction
Problem Statement

3.1
3.2
3.3
3.4

E-E-D:

Private Agent Communication

Example Applications o oo

i Contents
3.4.1 Data-Collecting AgentModel 35
3.4.2 Survey Model with Multi-Agents 36
35 Conclusions 38
4 Execution Privacy 39
4.1 Introduction 39
4.2 Problem Statement 40
4.3 Execution Privacy Solution 41
4.3.1 FunctionProtection. 41
4.3.2 Decision and Interpretation of Encrypted Data 43
4.4 Evaluation 45
45 Conclusions e 46
5 Agent Digital Signature 47
51 Introduction 47
5.2 ProblemStatement 48
5.3 SolutionOutline. 49
5.4 Agent Digital Signature 50
54.1 Introduction. 50
5.4.2 AgentDigital Signature Lo L 51

5.4.3 Agent Digital Signature and Solutions to Double Signing
Problem 54
5.5 Conclusions and Discussion 58
6 Secrecy Systems and Information Theory 61
6.1 Shannon’sSecrecy Model 62
6.2 Information Theoretic Preliminaries 63
6.3 PerfectSecrecy 65
6.4 UnicityDistance e 71
6.4.1 Approach: Shannon, 71
6.4.2 Approach: Stinsono 74
6.4.3 Approach:vanderlLubbe 78
6.44 Conclusion 80
6.5 CryptographicDilemma 81
6.6 Conclusions 82
7 Secrecy Systems and Plaintext Attacks 85
7.1 Introduction 85
7.2 Problem Statement and Assumptions 86
7.3 Plaintext Attacks Based on Usage of DifferentKeys 88
7.3.1 PerfectSecrecy 89
7.3.2 Properties of Perfect Secrecy 89
7.3.3 Unicity Distance 91
734 Conclusions. 95
7.4 Plaintext Attacks Based on Usage of Identical Keys 95

7.4.1 Definition of Maximum Secrecy 96

Contents iii

7.4.2 Properties of Maximum Secrecy 97

7.4.3 UnicityDistance, 104

744 Conclusions. 105

75 Conclusions 106

8 Mobile Code Privacy 107
8.1 Introduction 107
8.2 Ciphertext-only Protection 108
8.2.1 PerfectSecrecy 108

8.2.2 Exampleof PerfectSecrecy. 110

8.2.3 The Mobile Code Dilemma 111

824 Conclusions. 112

8.3 Plaintext Attacks and MobileCode 113
8.3.1 MaximumSecrecy 113

8.4 Conclusions 116

9 Unicity Distance in Mobile Code 117
9.1 Introduction 117
9.2 Definition Unicity Distance for Mobile Code 117

9.3 Unicity distance for mobilecode 118

9.4 Unicity Distance and Ciphertext-only attacks 119
9.5 Unicity Distance and plaintextattacks 122
9.6 Conclusions 124

10 Conclusions and Discussion 125
10.1 SummaryoftheResults. 125
10.1.1 AgentPrivacyModel L. 125

10.1.2 Conclusions on the Theoretical Approach 126

10.1.3 Theory and Practice Combined 128

10.2 DIiSCUSSION v v v o e 128

A Notations 131
B Perfect Secrecy 133
Samenvatting 143
Summary 147
Acknowledgments 149

Curriculum Vitae 151

Contents

Preface

The research for this thesis was conducted within the PISA project. PISA (Privacy
Incorporated Software Agent) was a European Union funded project within the fifth
framework, which started in January 2001 and finished in January 2004. The objective
of this project was to develop a software agent that was aware of the privacy risks and
could respond such that privacy of the user is guaranteed according to the European
directive on privacy.

In this multidisciplinary project the following parties participated: TNO, Global-
Sign (Ubizen), National Research Council Canada, Finsa, Sentient Machine Research,
Netherlands Data Protection Authority and Delft University of Technology.

The task of Delft University of Technology within the PISA-project was to pro-
vide cryptographic solutions to solve the privacy problems within a software agent
environment. The results of this work are presented in this thesis.

K. Cartrysse, Delft, October 2005.

Vi

Contents

Chapter 1

| ntroduction

In today’s society much of our communication involves mobile and wireless devices,
such as mobile phones and laptops with a wireless connection to the Internet. Besides
physical devices, (executable) code becomes mobile too. It is already common for
code or programs to be transmitted over networks to be executed somewhere else,
with java applets as the most common example. Agent technology may exploit this
mobility even further as mobile agents can roam over the network and perform tasks
on behalf of its user at a foreign host.

Being connected to the Internet also means that people are exposed to security
and privacy risks. Many applications require registration of personal data, much of
which is often not even necessary to run the application correctly. For example, a
subscription for a digital newspaper requires often a registration where the user must
provide his postal address, but this is not necessary to provide the service (an e-mail
address would be sufficient). The result is that an average civilian does not know
what kind of data about him/her is public and has no control over who can access
his/her data. The European Union took the initiative to issue a directive on privacy,
the data protection directive or directive 95/46 EC [34], which each member state
implemented in a national law. This law defines when and how parties may access
and collect personal data.

Most of these rules cover organizational aspects for collecting and processing per-
sonal data. However, if privacy can be guaranteed by technical solutions and tools,
this may add to the protection level of privacy provided.

Privacy protection in an agent environment, where agents can be mobile, is espe-
cially challenging as the location of the agent is not always known beforehand, and
therefore the level of trust may differ. The fact that an agent must sometimes execute
its code in an untrustworthy environment results in many privacy threats.

Informally, intelligent agents can be seen as an example of mobile code. This
thesis is about providing privacy in a mobile code environment, where not only eaves-
droppers are present, but the execution environment of the mobile code itself may also
be malicious.

2 1. Introduction

1.1 Mobile Code versus Software Agents

The terms ’software agents’ and ’mobile code’ are often used equivalently and may
cause confusion. Mobile code can be seen as code that is transported over the network
and executed at some foreign location, for example a simple Java applet. Furthermore,
a mobile software agent is also an example of mobile code.

Many definitions exist of ’software agents’ and not one is standardized [43]. A
definition of a software agent is given by Ted Selker [51] of IBM Almaden Research
center:

”An agent is a software thing that knows how to do things that you could
probably do yourself if you had the time”

Although this definition is very general, it covers the principle that an agent helps
to facilitate a certain task. A software agent may possess any combination of the
following characteristics, but is not limited to them [45]:

Autonomous To be able to act without direct external intervention. It has some de-
gree of control over its internal state and actions based on its own experiences.

Interactive To be able to communicate with the environment and other agents.

Adaptive The capability of responding to other agents and/or its environment to some
degree.

Sociable Interaction that is marked by friendliness or pleasant social relations, that
is, the agent is affable, companionable, or friendly.

Mobile To be able to transport itself from one environment to another.

Intelligent Its state is formalized by knowledge (i.e. beliefs, goals, plans, assump-
tions) and it interacts with other agents using symbolic language.

Cooperative The ability to coordinate with other agents to achieve a common pur-
pose.

When a software agent has the mobility property, it can be seen as an example of
mobile code. The term *mobile code” will be used to denote the general concept of
code that travels over a network and is executed at a remote location; the term "mobile
software agent’ will be used to emphasize the objective of facilitating a certain task
and all the corresponding consequences for this objective. For example, when mobile
code is programmed to buy a flight ticket, specific tools like a digital signature are
needed. In this case, the term 'mobile software agent’ will be used to demonstrate
its specific purpose. This means that the more practical solutions presented in this
thesis will be specifically based on mobile software agent technology, and the more
theoretical parts will be based on the general concept of mobile code.

1.2. Privacy 3

1.2 Privacy

Privacy is defined by Westin [98] as:

“the claim of individuals ... to determine for themselves when, how and
to what extent information about them is communicated to others.”

Privacy is one of the most important human rights issues of our evolving informa-
tion age [4]. Informational privacy has two distinct characteristics:

1. The right to be left alone.
2. The right to decide for oneself what to reveal about oneself.

The Data Protection Directive of the European Union [34] is one of the directives of
the EU that controls the informational privacy of an individual (others are the Directive
of Telecommunications 2002/58/EC and the Digital Signature Directive and non-EU
legislation 99/93/EC). Its purpose is twofold, namely providing a high level protection
of personal data and enabling the free movement of data within the EU.

Legislation on and a definition of privacy provide a background for understanding
the concept of providing privacy, but this knowledge does not provide insight into how
to provide privacy to an individual by technical means. To be able to design privacy
protection tools, one needs to define what type of data may provide a privacy threat.
This may depend on the current environment of an individual. For example, privacy
protection is not only about protecting the exchange of personal data (such as name,
address, diplomas), but also about protecting information about actions an individual
may take or orders he gives to other individuals. If an insurer can see that a client has
dinner at a fast-food restaurant everyday, this may be a reason for him to increase this
client’s health insurance fee. Then the action of having dinner in a fast-food restaurant
can be considered as private information.

The example above illustrates that privacy is more than just the protection of per-
sonal data. Privacy protection can be divided into four categories, such that in a system
design, privacy protection tools can be added in a systematic manner. The first cate-
gory is the individual’s identity, e.g. their name. It is evident that providing someone’s
identity may be seen as a privacy threat.

The second category is protection of data about the individual. This data may be
the type of degree he obtained, or which sports club he is a member of, etc...

The third type of privacy protection is protection of someone’s actions. As the
example above shows, when insurance companies start using access to data on a
client’s behaviour to ask a different fee, they invade that user’s privacy. In real life
it is impossible to follow everyone’s actions everywhere as this would require a mas-
sive amount of manpower. However, in the digital world it has become relatively easy
to track someone’s actions and obtain private information about an individual in this
way. Therefore, extra attention must be paid to this type of privacy protection.

The fourth is an extension of the third type of privacy, namely protection of actions
taken by someone else on behalf of an individual. For example, when a user deploys
his software agent, this agent has become an extension of the user and should protect

4 1. Introduction

the user’s privacy to some extent as the user would have done if he had performed the
task himself.

In this thesis, the focus is on mobile code and agent technology, where these can
be seen as concepts that are an extension of the user, i.e.. the fourth type of privacy
is especially relevant and addressed in particular. Looking from the perspective of
the code, it means that it must provide adequate privacy measures in the first three
categories as the code must provide a level of privacy equal to that the user would
have provided had he taken on the task himself.

1.3 Privacy and Mobile Code

The previous section gave a general explanation of the concept of privacy. As privacy
protection involves more than just protection of personal data, this means that privacy
protection in a mobile code environment is more than protecting the user’s name and
address.

Privacy protection for mobile code can best be explained by an example of mobile
code. Consider a mobile software agent system, where a user instructs his personal
agent to buy a flight ticket to New York if the price is less than $500,-. The agent
is mobile and travels to a platform owned by an airline company where it issues the
request to buy a flight ticket. It executes its program at the platform, where the input
to the program is the offer from the airline; the output is the result of the decision. As
the platform executes the code it is capable of observing it. It could therefore obtain
the agent’s strategy (e.g. buying a ticket less than $500,-) and change its offer for
maximum profit. It may offer a flight ticket for the price of $499,- instead of $300,-,
the price it would have offered if the strategy had not been visible. In this case, it is
not necessary to protect the objective (acquiring a flight ticket to New York), but the
strategy under which circumstances the purchase will be made requires protection.
This type of protection is typically necessary for mobile code as the strategy and other
personal information must be located in the code and this code will be executed at a
possibly untrustworthy location.

From this example, two topics must be explained. The first is the difference be-
tween privacy and security for mobile code. The second is why privacy protection for
mobile code differs from that for other systems.

The difference between privacy and security can be seen as follows. When secu-
rity mechanisms are provided, this does not mean that the privacy is protected, too.
For example, consider a database whose records contain personal information. The
security of this database is guaranteed by access control mechanisms. The records
may be encrypted such that only people with the correct key can have access. Privacy
protection in such a database can mean that records are not linked to an individual or
that different records are not linked to belong to one individual. Even the fact that it is
known that data about a person is stored in the database can compromise his privacy.
This example shows that when security mechanisms are provided, this does not mean
that privacy is protected.

To be able to provide privacy in mobile code it involves protection of the code such

1.4. Problem Statement 5

that hiding personal information is hidden during execution of this code and during
transport over the network. In the flight ticket case, this means that the strategy and
identity should be kept hidden from other parties.

The second issue that concerns privacy in mobile code is that what makes mobile
code protection different from protection of other systems. The main difference is that
the agent or mobile code is executed at an unknown location. The location may there-
fore be considered untrustworthy. As the execution environment is not trusted either, it
means that the owner of the mobile code should take into account that the environment
is capable of observing the entire code and its execution. In conventional IT systems,
on the other hand, the execution environment can be considered trustworthy, and only
during communication, one must provide privacy protection tools. Protecting mobile
code means that the code itself must be protected, even during execution.

For example, consider again the flight ticket case within a mobile software agent
system. When an agent purchases a ticket it may need to sign a document. The secu-
rity of a digital signature depends on the secrecy of the private key. Furthermore, the
private key can be considered personal information, as one can proof its identity by
using the private key, therefore keeping the private key secret is also crucial for pri-
vacy. In a system where the execution environment can be trusted, this is not much of a
problem as the access control mechanisms protect the secrecy of the private key. How-
ever, in the agent system, the execution environment cannot be considered trustworthy
and therefore the private key must be protected such that even during execution, the
private key is not accessible to the execution environment.

Concluding, the fact that privacy goes one step beyond security and, in case of
mobile code, the execution environment cannot be trusted, makes privacy protection
of mobile code a challenging research topic.

1.4 Problem Statement

The objective of this thesis is to develop tools and models to provide privacy to the
owner of mobile code, when the code is executed in a foreign environment. The level
of trustworthiness of the foreign environment is not known beforehand, and therefore
it is considered to be untrustworthy.

The approach taken here is twofold. Two models are described, one for a practical
approach and one for a theoretical analysis. In each of these models several research
questions are defined and solutions and analyses are given to these questions. In the
first model, cryptographic techniques are used to protect the privacy in a malicious
environment. One of the conclusions of this approach is that it remains unclear what
the limits of protection are in such an environment. To answer this question the second
model is used, where information theoretic aspects are used to define the theoretical
boundaries of protection in an untrustworthy computing environment.

6 1. Introduction

1.5 ThesisOutline

The two different approaches of practical and theoretical work are both described in
this thesis. In general, the outline is as follows. Chapter 2 describes two models that
will be used. In chapters 3, 4, and 5, solutions are given for the first model and in
chapters 6 up to 9, the second model is analyzed in detail. Conclusions are given in
chapter 10.

In chapter 2, two models are presented that will be used throughout this thesis.
The first model is the agent privacy model. It describes privacy protection for mobile
software agents. The second model is the mobile code privacy model. This model
is more general, so that it is is possible to derive theoretical boundaries for privacy
protection of mobile code.

Chapter 3 provides a solution for secure data communication within the context
of the agent privacy model. Not allowing the agent platform to view data it needs to
exchange with other parties in the system is a complicated problem, as the data must
be manipulated in such a way that only the receiving party can have access to it. This
process of transforming the data must be done in such a way that at no point in time
the agent platform has access to the clear text data.

In chapter 4, the problem of privacy in an agent’s task is described. When agents
perform tasks at a possibly untrustworthy host, the content of the task may need pro-
tection. This is called execution privacy. When the host knows the details of the
agent’s task, he may use these to his own advantage. A solution is presented in this
chapter and the problem of making decisions when located at an untrustworthy host is
investigated.

A third problem is providing an agent with mechanisms to obtain integrity and
source authentication to an agent. Ordinary cryptographic tools like digital signatures
do not fulfill the privacy requirements for an agent environment, and therefore a new
method to have agents sign documents is proposed.

These three solutions to privacy threats form the more practical approach of the
analysis of providing privacy in case of agent technology. The conclusions of this part
of the thesis are given in the first part of chapter 10.

The second part of this thesis (chapters 6 - 9) provides an information theoretic
approach to the concept of mobile code using the mobile code privacy model. The
objective of chapter 6 is twofold; on the one hand it provides the introductory aspects
of information theory that are necessary to understand the remaining chapters. On the
other hand, it also shows the various approaches within information theory and points
out the inconsistencies within these approaches by showing the differences.

Shannon provided a framework of information theoretic concepts for secrecy sys-
tems. One subject not taken into account is the concept of known-plaintext attacks.
Chapter 7 extends Shannon’s theory by using information theory to define levels of
secrecy in case of plaintext attacks.

In chapter 8, the information theoretic concepts of Shannon’s secrecy model are
applied to mobile code. Especially in mobile code, plaintext attacks cannot be avoided
and there the extension of Shannon’s model can be applied. A new definition of perfect
secrecy is given and a mobile code dilemma is derived.

1.6. Contribution 7

Chapter 9 extends the information theoretic approach for mobile code by adding
derivations for the unicity distance.

Finally, overall conclusions are given in chapter 10. In this chapter the practical
approach and information theoretic approach come together and conclusions are given
on the two models, but also on the consequences of results from one model to the other
model.

1.6 Contribution

In this thesis several contributions have been made:

* In terms of providing secure communication, this thesis proposes a solution
where the confidential data is not available to the agent platform at any time.
It is especially useful for secure data exchange. This is an improvement to
current solutions for providing confidentiality as in these solutions the platform
is capable of observing the communication [31], [50].

 The second contribution of this thesis is the application of function encryption
as provided by Sander and Tschudin [78]. They described how function encryp-
tion can be made possible and their solution is applied here to the practical case
of task privacy. Furthermore, an analysis is done on how decisions can be made
based on the outcome of encrypted functions.

» The final contribution within the agent privacy model is the development of
an agent digital signature. This signature is based on an existing signature
(ECDSA) [52], but by means of hiding the private key it provides a solution
to the problem of private key exposure on an untrustworthy platform.

» The mobile code privacy model provides a framework to derive theoretical
boundaries of mobile code protection. As far as the author knows this is the
first approach of using information theory to derive theoretical limits for the
protection of mobile code.

* Plaintext attacks cannot be prevented in the mobile code privacy model, there-
fore Shannon’s theory on secrecy systems [83] must be extended towards plain-
text attacks. This results in the notion of maximum secrecy, the minimum num-
ber of keys necessary to achieve this level of secrecy, and an expression for the
unicity distance.

 The final contribution is to apply the results (by using information theory) to
the mobile code privacy model. This provids theoretical limits of the level of
protection for mobile code.

1. Introduction

Chapter 2

Privacy Models

2.1 Introduction

This chapter describes two models used in this thesis. The first is called the agent
privacy model and considers an example of mobile code (e.g. agent technology). In
this model the mobile software agent is described and the other parties involved. It is
a model that can be used in practice and it serves as a framework to develop practical
solutions to privacy protection problems when making use of mobile software agents.
Several problems will be derived in this model and practical solutions will be given in
chapters 3, 4 and 5.

In the general case of mobile code a new model is developed that takes more the-
oretical concepts into account. Even if it is possible to obtain solutions in practical
cases, it is of interest to analyze what level of privacy protection can be provided in
theory. In this model attackers will be considered as attackers with infinite compu-
tation power and this approach will lead to the derivation of theoretical boundaries
of providing privacy to mobile code. Providing privacy will be done by providing
confidentiality. These theoretical boundaries are described in chapters 6 - 9.

Both models are explained in detail, followed by a list of threats and requirements.
Based on this, several problems are described that will be addressed in this thesis. This
is followed by related work on each model.

2.2 Agent Privacy M odel

Currently, agent technology is seen as one of the technologies that will play a key role
in future 1T-applications. Mobile agents can be seen as a special case of mobile code.
The objective of this section is to define clearly the important players in a mobile
agent system. Each of these players can involve or produce risks and based on these
risks we can define the requirements for the privacy enabled multi-agent system to
be designed. Furthermore, this section explains why conventional solutions are not
always solutions for agent technology.

10 2. Privacy Models

Agent Platform |

Host
%Fﬁm 1] ? Agent Platform 111

Figure 2.1: Overview of agent system

221 Modd

Figure 2.1 gives a general overview of an agent system. The following players can be
present in the system:

Mobile software agent: A piece of software that performs a certain task on behalf
of its user. It is a software agent with the property of being able to travel over
the network and being executed elsewhere. The agent may or may not have
other possible properties.

Users: Users are the agent owners. One user can own multiple agents. In general,
the agent performs a task on behalf of its user. The user can be in direct contact
with its agent(s).

Agent creator: The agent creator is the person who or organization that designed
and implemented the intelligent agent such that it can perform the tasks for
which the user wants to use it (not shown in figure 2.1).

Agent platform: An agent platform provides generic agents and the physical in-
frastructure in which agents can be deployed. This can be the user’s computer,
but also a mobile phone or some server on the Internet

Host: A host is an entity that hosts one or multiple agent platforms. Whenever
this does not cause confusion, the term "agent platform’ and "host’ may be used
interchangeably.

Each of these entities has its own role in the system and its level of trust. The
following scenario is used. At the user’s location, the agent is instructed to perform a
certain task. The user provides the agent with sufficient information to fulfil its job;

2.2. Agent Privacy Model 11

this may include personal information. The mobile agent leaves the user’s computer
and travels over the network to perform its task. After complete execution of its task,
the agent returns to its user and gives the result to its user.

Note that in this model, one user may own many agents and these agents can be
considered as the core elements in the model. All privacy protection tools developed
are to provide privacy with respect to the agent, as the agent can be considered as an
extension of the user.

2.2.2 Trust and attackers

Security and privacy solutions can only be designed with a good understanding of the
entities in the system and their level of trust as seen by the other entities. The amount
of trust is defined with respect to the agent and its owner. The amount of trust that
a user has in another element of the system is determined by the type of attacker the
user considers this element to be. Consider a system in which one user owns multiple
mobile agents located on an agent platform.

If an element is considered trusted, it means that the entity executes all protocols
correctly and does not attempt to attack other elements or eavesdrop on communica-
tions.

One type of attacker that is considered here is the passive attacker. This attacker is
curious, but does perform its attacks only in a passive way. The attacker is considered
to have polynomial computation power [67]. It executes protocols correctly but is
curious in the sense that it tries to eavesdrop on communications.

A second attacker is actively trying to attack the system. It has polynomial com-
putation power. It does not necessarily execute protocols correctly and whenever pos-
sible it will try to obtain knowledge of private information.

With respect to the user, the following assumptions are made about the type of
attackers the various entities can represent.

Agent creator: The agent creator is fully trusted, as the agent is seen as a product
one buys in full confidence. It is the agent creator who may add or provide
privacy protection tools.

Agent: The agent owned by a user is fully trusted by its user. Agents owned by
other parties than the user are considered to be untrustworthy. These agents are
attackers with polynomial computation power. These agents do not conspire
with the agent platforms.

Agent platform: The agent platform owned by the user can be considered to be
fully trustworthy. All other platforms are seen as untrustworthy in the sense
that they are curious. These platforms execute the agents correctly, but they are
interested in the agent’s content, its personal data, and the details of the task it is
supposed to perform. This curious host is also called a *passive attacker’, as it
does not actively change the agent’s content but eavesdrops on everything it has
access to. The agent platform has polynomial computation power. Furthermore,
it is assumed that platforms do not conspire with each other.

12 2. Privacy Models

Host: The trust level of a host corresponds to the trust level of the agent platforms
that are located on the host.

User: All other agent owners except the user whose privacy is protected are consid-
ered to have an equal trust level as their corresponding agents.

In the next section a list of threats is given. It is a general list that does not take
these assumptions on trust into account. The list of threats is followed by requirements
where these trust levels are taken into account.

2.2.3 Threats

For each player, a list of threats is given. The threats are general and for each threat
the list describes when this general threat can be considered a privacy threat. All these
are threats to the user’s privacy protection.

Threats towards agents
The threats towards agents can be divided in three different categories based on the
state of the agent in which a threat may occur. The three categories are data storage,
communication, and data processing. The first category, data storage, covers the stor-
age and access of static data in the agent. Examples are storing data in the agent at
initialization or the storage of computation results.

Threats in this category can be defined as:

Unauthorized access. If the agent is not well protected, other entities may have
access to confidential data. When this data is personal data, this becomes a
privacy threat.

Unauthorized altering of data. This threat occurs when other elements in the system
are capable of altering or erasing data that is stored in the agent. The result
may be that the agent cannot execute its tasks correctly anymore. For example
changing its computation results may be in the interest of other parties. This
general threat becomes a privacy threat when personal data is altered.

The second category is the category of communication. During its life cycle, the
agent needs to communicate with other entities in the system. Different threats are
present during communication.

Eavesdropping on communication. A third party may be capable of eavesdropping
on the communication line. Note that in the case of agent technology, also the
agent platform may eavesdrop on a communication. This makes this threat very
serious as the platform can also observe encryptions and decryptions. Obvi-
ously, when personal data or actions are involved, this is a privacy threat.

Masquerading. Other agents may pretend to be an agent they are not. By pretend-
ing this they might learn more about the original agent. This can be done by
talking to agents or sites the original agent is supposed to communicate with.
Communicating with other agents about the concerned agent may also reveal
information on the agent’s identity. This is typically a privacy threat.

2.2. Agent Privacy Model 13

Altering data during communication. If this is not prevented, other parties may alter
data during communication. This can be a privacy threat as it is important for
personal data to be exchanged that these are correct.

Fraud with user’s identity. This threat consists of a user falsely claiming to be an
agent’s owner. A consequence is that the agent will trust that user and may give
all its information to that user or respond to orders given by the malicious user.
This case poses a threat to the privacy of both user and agent.

The third category, processing of data, covers the actions of the agent. It involves
similar threats as in the other two categories and several additional ones.

Unauthorized access to an agent’s actions. \When third parties are capable of ob-
taining knowledge of the agent’s actions and strategies, this may be a serious
threat as these attackers can change their own actions according to their ob-
tained knowledge. This is the threat represented by the flight ticket example.

Duplication of the agent. 1t may be possible to clone the agent without permission.
The cause of this threat can come from all other entities of the system. This
threat may impact the network performance, but it may also cause serious prob-
lems for the user. If an agent is cloned, each clone can perform the same tasks as
the agent and therefore the task may be performed multiple times, which could
damage the user.

Duplicating agent’s actions. When an agent is executed at an agent platform, this
platform might gain control over the agent and send the agent to another plat-
form to perform the same function. In this case the agent would perform the
same function twice, which could have negative consequences for the user and
if the function is protected, it could obtain more information on the content of
the function. This can have privacy and security consequences.

Altering the agent’s functionality. When the agent has a lack of security it may be
possible for other entities to change one or multiple of its functions. A con-
sequence can be that the user loses control over his agent, without knowing it.
Two things should be considered: first it should not be possible for other enti-
ties to change the agent’s functionality. Second, if the first condition cannot be
guaranteed, somehow the user should be notified if his agent’s functionality has
been changed, as it is both a security and privacy threat. The change of func-
tionalities is a security threat, but when these changes affect the level of privacy
the agent provides, it also becomes a privacy threat.

This list is not an exhaustive overview of threats towards an agent, but the most
important ones are covered. For an extensive list, the reader is directed to [26]. The
list above is structured in categories and this will be helpful to set up requirements.
Note that in each category, altering and unauthorized access are considered serious
threats.

14 2. Privacy Models

Threats towards the User
The threats described in the previous paragraph involve the privacy of the user, only
indirectly as they are posed to the agent. However, there are also several threats that
use the agent to directly attack the user.

Access to the user through the agent. When the agent is not adequately protected,
it may be possible for other entities to gain access to the user via the agent.
They can either do this by accessing user data in the agent or by setting up a
communication link between agent and user. This threat has both security and
privacy implications.

Agent is set up against user. If a malicious entity is able to change the agent in such
a way that it is set up against the user, it may give information about the user to
this malicious entity. But it may also order the agent to perform in another way,
as it should have done if the original user were in control. The damage could
be enormous, because the agent could start doing illegal things without the user
knowing it. As the user still has trust in his own agent, privacy may easily be
compromised.

Threat coming from agent provider. If an agent provider owns the agent instead of
the user, the user should be aware of privacy threats caused by the provider.

Threats towards Agent Platforms
When agents operate on an agent platform, certain assumptions are made about the
trust level of the platform. Threats or attacks towards the agent platform may result in
false assumptions about the trust level and therefore privacy may be compromised.

Trust in the agent. When an agent platform trusts an agent while it is untrustworthy,
the agent may damage the platform (e.g. it may contain a virus) or pretend to
be an agent it is not.

Furthermore, the general threat exists that elements are not accessible (for example
in case of a denial of service attack). Based on this list of threats, we can create a list
of requirements.

2.2.4 Privacy Requirements

This thesis focusses on providing mechanisms to the software agent that guarantee the
user’s privacy when making use of agent technology. Hence from all possible privacy
and security threats, we only study those related to the agent, e.g. the threats to the
agent itself and its interaction with the various elements in the system.

To set up a list of requirements, we use the same categories as in the previous
paragraph.

Data storage. For data storage, the following requirements can be listed.

2.2. Agent Privacy Model 15

« Protection of the data stored in the agent should be such that no eavesdropper is
capable of obtaining this data.

« An integrity mechanism is required that prevents alteration or erasure of data.

 To perform its task, the agent may have to interact with other entities and this
can influence the computation result (result after execution of the code). These
computation results should be protected such that other entities cannot change
or read them.

Communication. The following requirements are set when the privacy incorpo-
rated software agent communicates with other entities in the system.

It should not be possible for a third party to eavesdrop on a communication
between the agent and its communicating partner such that the content of the
conversation can be observed.

< During communication, adequate integrity mechanisms must operate.

» During communication, an agent will receive private data from other entities
and it should have the means to securely store this data.

« A mechanism should be present allowing the communicating parties to authen-
ticate each other.

These requirements sound similar to the security requirements in an ordinary IT sys-
tem. However, the impact of our requirements and therefore the solutions are different
because the underlying computing platform may not be trustworthy.

For example, normally when two agents wish to set up a confidential communica-
tion, they will generate a session key using their public-private key pair. However, the
operation of generating a session key involves decryptions, and whenever a decryp-
tion takes place, the agent platform is able to gain access to the decrypted data. This
simple example shows that providing secure agent communication is not trivial.

Processing. For the category processing or actions, the following requirements
can be set:

« Execution privacy. This means that the code must be kept confidential from the
other parties. The agent must be able to execute functions and reason based on
the outcomes of these functions. Both processes should be protected against
eavesdroppers.

« It should not be possible to clone or duplicate an agent. For cases where this
cannot be prevented, a detection mechanism should be developed.

« Some integrity mechanism must be provided to prevent altering of the agent’s
functionality.

16 2. Privacy Models

2.2.5 ProblemsAddressed in thisThesis

Based on privacy threats and requirements, this thesis addresses three problems to
protect privacy in an agent environment. In all categories where requirements are
defined, the most important requirements are to provide

« confidentiality
* integrity
* authentication.

The problems addressed in this thesis are therefore problems with respect to these
requirements. The following problems are addressed to protect privacy in an agent
environment. With respect to confidentiality solutions are to be found in the cate-
gories communication and processing. The possibility to provide confidentiality is
absolutely necessary to be able to fulfill the definition of privacy as was given in sec-
tion 1.2. In order to obtain "the right to be left alone”one must be capable of hiding
information from other parties, which means mechanisms to provide confidentiality
should be present.

The first problem is the problem of secure communication between agents when
located on a possibly untrustworthy platform. The objective is to design a method for
communication that makes it impossible for the platform to eavesdrop on the com-
munication. During communication the agents exchange data. Securing the agent’s
communication is only useful when the data that is to be exchanged is stored in a
secure manner, otherwise the platform may have access to the data without having
access to the communication. Therefore, also the problem of confidential data stor-
age is addressed as secure communication is not provided in an agent system when
confidential data storage is not guaranteed.

The second problem addressed in this thesis is in the area of providing privacy
during processing of the agent. Each agent is programmed to execute a task, and this
task should be kept private from a third party but also from the agent platform. Only
the problem of confidentiality of a task is addressed here.

Finally, the problem of providing the agent with an integrity mechanism is ad-
dressed. Except from integrity the agent should be able to prove its identity, taking
into account the privacy issues mentioned above. A new agent signature will be de-
veloped for this purpose.

Problems like prevention of cloning and prevention of altering the agent’s func-
tionality are not addressed in this thesis. These problems are important to be solved,
but first the above three problems are addressed to provide solutions to the privacy
protection problem.

Only these three problems are addressed, because it is chosen to develop solutions
for the most important requirements with respect to privacy protection. Moreover, the
results that will be presented in this model give rise to questions about the theoretical
limits to providing privacy to mobile code in general. Therefore, the second part of
this thesis covers this subject.

2.2. Agent Privacy Model 17

2.2.6 Redated Work

Over the years, much research has been done in the area of privacy in conventional IT
systems, and many adequate solutions have been presented. The term PET (Privacy
Enhancing Technologies) is used to describe all types of technologies that provide
privacy to a user [47]. Typical cryptographic techniques that can be called PET are
blind signatures [27], [28], [17], partial blind signatures [2], and pseudonym systems
[60]. Each of these techniques has its own applications but they are all based on the
assumption that the computers where the computations are performed can be com-
pletely trusted, which is not the case in a mobile agent system. PET are mainly used
in applications where the privacy aspects determine the success of the product. An ap-
plication where privacy is of great importance is electronic voting. Several electronic
voting schemes make use of blind signatures. A blind signature allows one to sign
a message without being able to read the content of the message. For the electronic
voting application, this means that the voting committee signs the vote to declare it
is a legitimate vote, but it is not able to view who the voter voted for. Hence, by us-
ing blind signatures, anonymity can be provided. In electronic cash applications [28],
[13], [29], a partial blind signature [2] can be used to provide anonymity, in the same
way as in electronic voting, but here the amount of money should not be blinded, but
only the user’s name. A partial blind signature has this property: the amount of money
can be public, but the name is kept hidden. A fair blind signature [87] makes it possi-
ble to reveal the connection between the message and signature in case of dispute.

Then there are other cryptographic techniques that may be of importance for
providing privacy in a system. Zero-knowledge techniques [91], [90] allow one to
prove the knowledge of something without actually revealing the secret. Using zero-
knowledge techniques one can prove knowledge of a password without providing it.
A second useful concept to provide PET is secret sharing schemes [90]. A (t,w)-
threshold scheme is a method of sharing a message M among a set of w participants
such that any subset consisting of t participants can reconstruct the message M, but no
subset of smaller size can reconstruct M.

Privacy enhancing technologies can also be in the area of network privacy. Exam-
ples are the Mix network [30], onion routing [44], [69], and the crowds system [71],
[70]. Measuring the level of anonymity is shown in [37] and [82].

Many solutions have been proposed to protect the user’s privacy. However, these
have several drawbacks. First, the solutions described above all have the assump-
tion that the computations take place on a completely trustworthy computer. This is
an assumption that cannot be made in agent systems if full benefit is to be taken from
agent’s characteristics. A second drawback is that all these techniques provide privacy
to the user’s identity (blind signatures) or to privacy-sensitive data (zero-knowledge
techniques, secret sharing schemes), but they do not provide privacy about one’s ac-
tions, which is necessary in the case of agent systems. Nevertheless, these privacy
techniques will prove to be useful in the context of agent technology.

In addition to PET for conventional IT systems, many security techniques have
been invented for mobile software agents to protect them from malicious hosts [68].

18 2. Privacy Models

Several schemes have been described to provide integrity of partial results [88], [53].
In [53], a solution based on PRAC (Partial Result Authentication Code) is given.
A PRAC provides forward integrity of the agent’s partial results. Forward integrity
means that the results obtained at the previous hosts cannot be modified. A second
method to provide computation integrity is identifying a trusted host. Only if a host is
trusted, computation integrity is ensured, [74], [80]. A different approach to provide
integrity checks of code comes from the field of watermarking [32], [33]. A special
data structure is embedded in the program such that even after the execution of the
program the watermark can be detected by the user which makes it possible to detect
any malicious modification of the program. Many schemes provide accountability in
the sense that afterwards, the computations can be verified. In [95] and [9], execution
traces are computed by the host which can be verified later to detect whether suspi-
cious computations have taken place. Farmer et al. [40] describe a method to check
the state of the mobile agent for inconsistencies.

Many articles have been written about confidentiality, and most of them define
confidentiality for agents as protecting their code such that it is impossible to deter-
mine the agent’s strategy. Hohl [48] describes a mechanism called "time limited black
box security” where the idea is to obfuscate the source code such that it takes more
time to understand the code than the programmed time limit. A more cryptographic
method is presented in [76] where Sander and Tschudin encrypt functions that can
be executed in its encrypted form. This method works for polynomials and rational
functions [42]. Young et al. [79] extended the results to all functions computable by
circuits of logarithmic depth and further generalized to arbitrary functions, provided
they can be represented by a polynomial-size circuit. As far back as 1990, Abadi and
Feigenbaum [1] described a method that provides confidentiality for circuit evalua-
tion. A disadvantage of this method is that many interactions are required to provide
confidentiality. Many other solutions have been published to provide secure circuit
evaluation, but none of them is very practical and efficient. Loureiro et al. describe
how functions can be hidden using coding theory [58]. Several more practical meth-
ods have been proposed, but they are all based on either trusted hardware located at
the host [103] or on the presence of a trusted third party [3]. In addition protecting the
agent’s code, some data the agent receives must be protected against eavesdropping.
A method is to use sliding encryption [105]. It provides encryption for small amounts
of plaintext resulting in small amounts of ciphertext without loss of security.

2.2.7 Conclusions

This section described the context of the research done in this thesis. Assumptions
were made to set the boundaries in which the solutions to be presented should provide
an adequate level of security and privacy. The main assumption made here is that all
agent platforms (except the one owned by the user) are considered to be curious. The
agent’s code is executed correctly and is not changed by the platform. However, the
platform is interested in the agent’s content and his task. If the platform succeeds, he
can have access to the agent’s strategy, which could influence the agent’s actions. The
fact that the agent considers the platform to be curious means that the agent has some
level of confidence in the platform, but is not prepared to share personal secrets or

2.3. Mobile Code Privacy Model 19

information. Compare this to the daily situation where we are sometimes prepared to
show our passport, but we are not prepared to give it to another person. Furthermore,
solutions will only be considered that are implemented in the agent. The agent plat-
form is seen as a given environment, where no interference from outside is possible.

Based on the numerous threats to the privacy of the user in an agent environment, it
was possible to set requirements. A conclusion from these requirements is that mainly
three aspects will be addressed, namely secure communication, execution privacy and
the problem of an agent digital signature.

The assumptions made in the agent privacy model are realistic for practical ap-
plications, but the model is not based on the strongest possible attacker. Therefore,
to be able to define theoretical privacy protection limitations, a model is necessary
that considers an attacker that is not limited by practical issues, although again he is
considered to be curious. This is the case in the mobile code privacy model.

The following chapters (3, 4 and 5) propose a solution for each of these problems.
Most of the solutions proposed were also published in [24].

2.3 Mobile Code Privacy Model

The second model, called the mobile code privacy model, covers the general con-
cept of mobile code executed in an unknown environment. The model is generalized
compared to the agent model as it is no longer specific for an agent application. How-
ever, it is also more simplified to be able to derive theoretical boundaries for privacy
protection of mobile code.

231 Mode

Figure 2.2 shows the different elements that play a role in the mobile code model.
The mobile code is initiated in the user’s environment and afterwards travels over the
network to be executed at various hosts.

Host: The host provides the execution environment where the various mobile codes
can be executed.

User: The user is the owner of the mobile code. The mobile code is programmed
by the user and sent over the network to be executed elsewhere.

Trusted party: The trusted party is a party that can perform computations. It is
trusted by all players in the system.

Mobile code: Mobile code is defined as code that may travel over the network and
is executed at a foreign location. For this model, mobile code is seen as a set of
functions that is executed in an environment unknown beforehand. For reasons
of simplicity, the mobile code is modeled as one function, but the results can
easily be generalized towards multiple functions.

20 2. Privacy Models

Mobile
code
Mobile
code

User
Trusted
Party
Mobile
code

Mobile
code

‘I Mobile

code

Figure 2.2: Elements in mobile code privacy model.

The objective is to derive theoretical boundaries of the privacy level that can be
provided in this model. Privacy is protected by following the approach of providing
confidentiality to the mobile code.

A more detailed view of the model is shown in figure 2.3. The following process
takes place. A user wishes to execute function F' on a foreign host, but F' should
be kept confidential. The user protects its code F' by encrypting it. All the user’s
operations performed are done in a trusted environment as this environment is owned
by the user. The user encrypts code F' using a key K. The result of the encryption is
G, which is again a function that can be executed but in an encrypted form. G is in
this case equal to the protected mabile code (if the mobile code consists of multiple
functions, the protected mobile code will consist of multiple G functions). Function
G can be correctly decrypted by using key K. A third party (e.g. the host) may
provide some input parameter X to the encrypted function G. The result is denoted
by U = G(X). When F is executed with input parameter X, the result is denoted
by Y = F(X). The set of all (X,Y") coordinates represents the function F' as does
the set of all (X, U') coordinates for function G. Because F and G are related to each
other by key K, the sets of (X,Y") and (X, U) coordinates are related to each other
by the same key K. Therefore, in theory it will always be possible to decrypt U to YV
based on key K, although it does not mean an efficient algorithm exists to do so (table
look up may sometimes be the most efficient algorithm).

In general, after execution of function G a decision must be made what the next
action of the mobile code will be. In some cases it may be possible to make such a
decision based on the outcome of U (as is demonstrated in chapter 4). In this case, the

2.3. Mobile Code Privacy Model 21

Trusted host Untrustworthy host

Key
source

K Mobile code

Mobile code

Function| F Input
source solfrce
X
\ G Function
execution

G To

Figure 2.3: Mobile code model as it will be used in this thesis.

decision function will be stored as part of the mobile code and can be executed at an
untrustworthy location.

However, it may not always be possible to make decisions based on the encrypted
value U, such that U must first be decrypted to Y before a decision can be made.
It is not possible to let the mobile code perform this decryption as this would mean
that a key must be part of the code. This key is at least related to the key that can
correctly decrypt G or is equal to that key. Therefore, this decryption cannot be part
of the mobile code. The trusted party is added to perform this decryption. The user
provides the trusted party with the correct key to decrypt U values towards the correct
Y -values. These Y'-values are then sent back to the mobile code, where a decision
can be made (figure 2.4). It is important that the mobile code receives data on which
it can base a decision. The decision is not made at the trusted party for a practical
reason. If the decision would be made at the trusted party, the user must provide the
decision criteria to the trusted party each time it uses mobile code. By just providing
the decryption key, no interaction is necessary between the user and trusted party as
long as the same key is used.

A second reason why it is an advantage to include a trusted third party is that when
the mobile code receives Y from the TTP, it prevents the attacker from computing a
benificial X value. Because the attacker does not know the relation between U and
Y, he is not capable of computing an X value given Y. Note that a large advantage of
using public key encryption in practice is that the attack can be prevented where the
optimal input X can be computed from the output of the function. By encrypting X
using the user’s public key this attack is prevented, without the help of a trusted third

party.

Protection of mobile code is here seen as providing confidentiality to the functions
(F) stored in the mobile code. The decision criteria are outside of the scope of this
thesis, but the reasoning that sometimes U must be decrypted and sometimes not, is
important for the possible attacks in the mobile code privacy model.

22

2. Privacy Models

Untrustworthy host

Input
source

Function
execution

(Trusted Party

Untrustworthy host
Input
source

Function
execution

Untrustworthy host

Function
execution

Decryption
Untrustworthy host
Function
J execution
v /o

Input
source

Ju

Figure 2.4: A trusted party is added to the model to perform decryptions of U values

2.3. Mobile Code Privacy Model 23

2.3.2 Assumptions

The model of figure 2.3 contains several assumptions, which are listed in this para-
graph.

Host: All hosts are considered to be untrustworthy, except the host owned by the
owner of the mobile code (user). These untrustworthy hosts are curious in the
sense that they observe what the mobile code does that is executed in its envi-
ronment, but they do not alter the code. The code is executed correctly and only
once. The hosts may conspire with other elements in the system. Furthermore,
the hosts have unlimited capabilities for observing the codes, e.g. they have
unlimited computation power and memaory resources.

User: The user (owner of the mobile code) is considered to be completely trustwor-
thy.

Trusted party: This party is trusted by all participants and does not conspire with
any other element in the system.

Mobile code: Various assumptions are made in order to model mobile code.

Trust level: The mobile code itself is considered to be trusted by the user. It
is assumed that the code’s functionality is not altered during its lifetime.
This assumption is connected to the trust assumption about the hosts.

Content of mobile code: As described in the mobile code model, mobile code
is modeled as one mathematical function that can be executed elsewhere;
other parties may provide an input X to the code. This mathematical
function consists of an alphabet, which consists of numerical values and
operators. By placing them in a correct order, a function is generated. For
example an operator is followed by a number or variable. When the code
F' is encrypted, the result is an executable function G. Furthermore, mo-
bile code exists of decision logic, but privacy is provided by adding confi-
dentiality to the function F', therefore, the decision logic is not considered
itself. It is important to know that a decision takes place as the method that
is used determines whether or not U must be decrypted. Because privacy
protection means in this case encryption of F', the term "mobile code’is
used here to denote F'.

Encryption: The assumption is made that the encryption method used to en-
crypt the mobile code is based on a symmetric algorithm. This assumption
is based on the objective of the model. The objective is to define the theo-
retical limits of mobile code protection. This means that not only practical
attackers (i.e. those with limited resources) should be taken into account,
but also attackers with unlimited resources (e.g. the host), as we saw in
the assumption about the host. As this type of attacker is used in this
model, information theory will be used to derive the theoretical bound-
aries. However, Maurer derived an upper bound on the uncertainty of a

24 2. Privacy Models

key K generated by two parties Alice and Bob with a possible eavesdrop-
per Eve [64]:

H(K) <min(I(A; B),I(4; BIE)), (2.1)

where Alice, Bob and Eve know random variables A, B, and F, respec-
tively, which are jointly distributed according to some probability distri-
bution P4pr. When the random variables A and B are chosen indepen-
dently, no secrecy is possible for the key. From this it is clear that Alice
and Bob cannot generate an information-theoretically secure secret when
they do not share at least some partial secret information initially when
they can only communicate over a public channel (accessible by Eve). It
also means that there exists no unconditionally secure public key cryp-
tosystem or public key distribution protocol [65]. In a public key cryp-
tosystem no secret is shared initially by the sender and receiver, therefore
it is theoretically impossible to achieve perfect secrecy for a message by
public key encryption. By the same argument, it means that an informa-
tion theoretic approach cannot be used to determine theoretical limits of
privacy protection to mobile code when public key cryptography is used.
Other approaches as complexity theory can be used to determine levels of
secrecy [36] in practice. Therefore, it is assumed symmetric encryption is
used.

Using these assumptions and the presented model, we can now set up a list of
threats and describe the problems that will be addressed in this thesis within the con-
text of the mobile code model.

2.3.3 Threats

However, the threats in the mobile code privacy model are less general as the model is
such that the confidentiality of the code is protected and that protection takes the form
of symmetric encryption. The threats of section 2.2.3 were with respect to the various
elements, whereas here the solution to provide privacy (e.g. encryption of the function
F) is part of the model and therefore the threats are with respect to this solution. Given
this, the following threats can be defined.

The first threat is that the mobile code can be intercepted during transmission,
while it is travelling over the network, such that an attacker is capable of understanding
the content of the code. A similar threat exists to confidential messages that are sent
over a network.

The second threat is that the mobile code may be observed while being executed.
The host is capable of observing the code’s execution. Because it is assumed that the
host has unlimited resources, this is a serious threat.

These two threats can be considered the main threats when protecting the confi-
dentiality of mobile code. In more detail, for these threats two types of attacks can be

2.3. Mobile Code Privacy Model 25

considered.

Ciphertext-only attack. The first type of attack is the ciphertext-only attack. The
attacker has access to a ciphertext, in this case protected mobile code, and the
objective is to determine the plaintext or the key, or both.

Plaintext attack. In a plaintext attack, the attacker has access to a (part of the) plain-
text and its corresponding ciphertext. This plaintext can be chosen (chosen-
plaintext attack) or given (known plaintext attack). This distinction is not rele-
vant to the mobile code privacy model. The analysis will not be on a specific
algorithm, but on the general concept. The term plaintext attack will be used to
denote an attack where plaintext and corresponding ciphertext are known to the
attacker.

The information theoretic approach is used for secrecy systems based on sym-
metric encryption [83] and normally only ciphertext-only attacks are considered as in
these systems plaintext attacks can be prevented. However, this is different for mobile
code.

In the case that decisions can be made based on the value of U, plaintext attacks
can be prevented by not performing a decryption at an untrustworthy host.

However, in the case that a decision cannot be made on U, this must be decrypted
at a trusted location to value Y, where Y = F'(X). This value of Y is sent back to the
mobile code (e.g. at an untrustworthy location). It means that the malicious host has
obtained a (X, Y") pair. This pair provides information on F'. When the mobile code is
executed at several locations, these hosts may conspire and a number of (X,Y") pairs
are available. In case of sufficient (X, Y") pairs, the function F' can be reconstructed.
This attack shows that in particular circumstances it is possible for the hosts to obtain
F without breaking the encryption algorithm. It means that in the case of mobile
code, plaintext attacks cannot be prevented, and therefore, in the analysis they must
be taken into account. In order to be able to use Shannon’s secrecy theory it must first
be extended to plaintext attacks.

2.3.4 Problems Addressed and Approach

Based on the mobile code model, this thesis will address the problem of defining
the maximum level of confidentiality, such that the privacy of mobile code can be
protected. Essential is that attackers are considered to have unlimited resources and
time. Several concepts as perfect secrecy, cryptographic dilemma, and unicity distance
will provide theoretical boundaries. These characteristics will be derived for both
ciphertext-only attacks and plaintext attacks.

2.3.5 Redated Work

In this model, we will make use of information theory to derive theoretical boundaries.
In 1949, Shannon published an article on secrecy systems [83]. He used results of his
famous paper "A Mathematical Theory of Communication” [84] to describe a model
for a secrecy system and provided some measures to define the level of secrecy of

26 2. Privacy Models

such a system. This was the start of the use of information theoretic concepts in the
area of cryptography. Shannon based his work on the assumptions that the adversary
has unlimited time and manpower to attack the system.

Using the same assumptions, Hellman [46] extended Shannon’s approach in 1975
by introducing the concepts of spurious message and key decipherment?, as Shannon
used these concepts but did not give names to them. Based on these concepts, Hellman
derived several additional theoretical bounds. Beauchemin and Brassard [6] general-
ized Hellman’s approach in the sense that Hellman’s results hold with no restrictions
on the distribution of keys and messages. These information theoretic concepts are
also used to derive bounds on other techniques, such as authentication [85], [61] and
secret sharing [19].

Additionally, much research has been done on using information theory to derive
upper and lower bounds for secrecy systems, but the assumptions are slightly different
from Shannon’s assumptions; this does not make them less realistic, however. Most
of these approaches assume that the information available to the sender and receiver
is not equal to that to which the adversary has access. For example, the concept of a
noisy channel assumes that the adversary can tap the communication channel, but only
with some error probability [101], [62]. A second concept is the memory-bounded
adversary [16], where it is assumed that the adversary has limited memory capacity.
A third primitive is the usage of a quantum channel for applications like secret key
agreement [8], [14]. The secrecy of the key is guaranteed by the uncertainty relation
of quantum mechanics. The assumption that the information available to the adversary
and sender/receiver is not equal cannot be applied to mobile code, as the host is a
possible adversary and receiving the protected code is crucial for correct execution of
the code. Therefore this situation is not taken into account.

2.3.6 Discussion

This section presented the mobile code model to protect privacy. The most important
aspects of the model are the fact that the host is untrustworthy and has unlimited
computation power, memory resources, and time. This model and an information
theoretic approach will be used to derive levels of privacy (in this case confidentiality)
for both ciphertext-only and plaintext attacks.

2.4 Conclusions

This chapter presented two models as they will be used in this thesis. The first one,
the agent model, will be used to derive practical solutions and is therefore based on
practical assumptions. The location of the agent execution is considered to be un-
trustworthy; however, the attackers’ capabilities are limited by time and computation
power. This model does not provide insight into the maximum level of privacy that
can be provided. Therefore, the second model is introduced.

The second model, the mobile code model, considers the more general concept of
mobile code and is used to derive theoretical limits on providing privacy in a mobile

1These concepts are important to understand the meaning of the unicity distance.

2.4. Conclusions 27

code environment. The main difference between these two models is the difference in
capabilities of the attacker. In contrast to the agent model, in the mobile code model,
the attacker has unlimited resources and time.

Chapters 3, 4 and 5 will provide solutions to the problems described to the agent
model. The chapters 6 up to 9 will consider the mobile code model.

28

2. Privacy Models

Chapter 3

Agent Communication

Mobile agents can travel to different hosts and it is often not known beforehand where
the agent will migrate to. When located at an agent platform, the agent may need
to communicate with other agents. The problem of confidential communication be-
tween agents is addressed in this chapter with respect to the agent privacy model that
was described in section 2.2. In this model, confidential communication is especially
difficult to achieve as the agent platform cannot be considered as trustworthy.

This chapter proposes a solution for agent communication, which was also pub-
lished in [21], [24].

3.1 Introduction

Privacy during communication can be seen as preventing a third party from being able
to eavesdrop on the communication. In the agent privacy model, this includes the
agent platform.

Many solutions have been proposed in various papers on protecting mobile soft-
ware agents against untrustworthy hosts by providing confidentiality. The proposed
solutions can be divided into two categories, either they protect the data the agent
owns or collects, or they provide a solution towards the protection of the agent’s code.
Data protection is, for example, necessary when the agent collects data during the exe-
cution of its task, as this data should only be accessible to authorized entities. In [53],
Karjoth et al. define a number of security properties that define the protection of data
collected by an agent against an attacker. The collected data exists of a chain of encap-
sulated small pieces of data and these security properties can be among others: data
confidentiality, forward privacy, forward integrity, or non-repudiability. A number of
solutions have been proposed that offer (a subset of) these properties, see [53], [59],
[103], [105]. These solutions are based on public key encryption, digital signatures,
and hash chaining. In [75], flaws in some of these protocols are identified.

The second part of protection of mobile agents against untrustworthy hosts is pro-
tection of the code itself. Protection of the code means providing the code with secu-
rity properties such as integrity and confidentiality. When an agent’s code is executed,

30 3. Agent Communication

there should be a guarantee that the code is executed correctly. Tools like crypto-
graphic traces [95] and proofs of correctness [103], [9] have been proposed. These
solutions are generalized in [49] by using the concept of reference states. Confiden-
tiality of code can be achieved by using tools as code obfuscation [48]. Although in
theory this is impossible [5], it may provide an adequate level of protection for a lim-
ited amount of time. Furthermore, function hiding provides a cryptographic way to
achieve confidentiality for agent’s code [15], [78], [57].

These solutions provide various levels of protection to an agent against a malicious
host, but the subject of secure communication is not addressed. Tools like protection of
computation results or function hiding can be used to prevent the malicious host from
accessing the agent’s content or actions. However, when the communication between
agents is not protected against the host, the host may still be capable of obtaining
relevant information about the agent.

Although in today’s agent systems such as Jade [50], it is possible to provide con-
fidentiality during communication, it is assumed that the host can be trusted. Hence,
communication is protected against all eavesdroppers but the host. Claessens et al.
[31] have also proposed a solution to provide confidential communication based on
SSL/TLS, but again the host is assumed to be trustworthy.

This chapter provides a solution to the problem of confidential communication,
taking an untrustworthy platform into account. The solution proposed in this chapter
was first published in [21], followed by [24]. First, the problem statement is given
in section 3.2, followed by a proposed solution in section 3.3. Section 3.4 provides
two examples of how the solution can be used in practice. The first example shows
how agents can securely collect data to set up a confidential database. This may find
application in the area of privacy-sensitive databases. The second example shows how
an inquiry among agents can be carried out, such that it is, for example, possible to
know how many other agents are willing to communicate to an agent without actually
knowing the identity of the various agents. One must think of inquiries as to how
many agents are interested in a certain topic without the investigator knowing who is
interested, as he may abuse that information. Finally, conclusions are given in section
3.5.

3.2 Problem Statement

Within the context of the agent privacy model, the problem is defined as providing a
confidential communication between agents, where the confidential data to be com-
municated is stored securely in the agent. Beforehand it is not known with whom the
agent will communicate. Confidential communication means that at all times, no third
parties can eavesdrop successfully on the communication, not even the agent platform.

The condition that confidential data is stored securely in the agent is added, be-
cause if that is not the case, the agent platform is capable of reading data even before
communication starts and securing the communication would then be an empty ges-
ture. The condition is added explicitly to the problem statement as it is the starting
position of the problem and will be of great importance to the validity of proposed
solutions.

3.2. Problem Statement 31

data
ENCRYPTION DECRYPTION ENCRYPTION

pk2

Figure 3.1: Conventional way of providing confidentiality in communication

Confidential data that is stored in a software agent is usually protected by means
of encryption. Taking the untrustworthy host into account requires ensuring that at no
point in time the data is available to the host in clear text. Note that within the agent
privacy model, it is assumed that hosts do not conspire. Two solutions are given here
that demonstrate the complexity of the problem.

A first naive approach is having the agent send the stored encrypted data directly to
the communicating partner, and having it transfer in some way the key. The advantage
is that at no time during communication the data appears in clear text. However, each
piece of data must be encrypted separately to avoid one communicating partner from
having access to more data than he is entitled to. Encrypting each block of data sep-
arately is very inefficient and impractical, as it is necessary to transmit a key for each
piece of data. The key must be transmitted in a secure manner, which means that the
problem has shifted from protecting the data to a key exchange problem where many
keys (one for each type of data) must be transmitted confidentially. A simpler solution
would be encrypting the data during the setup of the agent using the communicat-
ing partner’s key. However, as in advance it is not known with whom the agent will
communicate, this is not possible. Obviously, this approach to provide confidentiality
during communication is not practical.

In the second approach, each piece of data is encrypted only once to keep the agent
as small as possible in terms of stored data, and at the moment of communication the
data is to be transformed such that only the receiving party is able to decrypt the mes-
sage. Here, we describe this approach for the case where all encryptions are done
using a public key algorithm. A similar solution can be described for a symmetric al-
gorithm. The public key of the agent is used to encrypt the information, and its private
key is used to decrypt it. Figure 3.1 shows the procedure for encrypting information
for storage in the agent and making the data ready to be sent to the communicating
partner. The first step is to encrypt the data that must be kept confidential using the
agent’s public key pkl: E,i1(data). This operation can be performed at the user’s
computer and the result can then be stored in the agent. The moment the agent needs
to send this confidential data to another party, it decrypts the data using its private key
sk1. The result of this operation is plaintext data. Then the data is again encrypted, but
this time using the communicating partner’s public key pk2: E, 2 (data). This may
also be a session key. At this point the data is ready to be sent to the communicating
partner and this entity can decrypt the data, because he has access to his private key

32 3. Agent Communication

(this last step is not shown in figure 3.1).

The advantage of this second approach is that it is very simple and efficient. All
the data to be stored is encrypted with the same key, and only when needed it is
transformed into an encryption with the appropriate key. It is also an advantage that
beforehand it is not known to whom the agent will talk, because the encryption for
the communicating partner occurs at the time of communication. A third advantage
is that no complex key management scheme needs to be used, because at the moment
the data is encrypted to be stored in the agent, only the agent’s public key is used.
Only the moment of data exchange with other parties it is necessary to obtain the
communicating partner’s key.

This solution would be sufficient and adequate in a scenario where the agent is
in a trusted environment and where confidentiality is not a priority, but this is not the
case in the agent privacy model. During the transformation from encryption with the
agent’s key to encryption with the communicating partner’s key, the plaintext data is
available to the host. Obviously, this situation should not occur. A second problem is
that not only the data is readable to the host and possibly to other parties at a certain
moment, but also the private key of the agent is accessible to the host during the
decryption process. Consequently the host has access to all encrypted data stored
in the agent. Concluding, this is only an adequate solution to provide confidential
communication in a fully trusted environment.

These two approaches show why confidential data storage and communication is
a complex problem. On the one hand the identity of the communicating partner is not
known at initialization of the agent. On the other hand, the solution to the problem of
not knowing in advance who the communicating partner will be gives the host access
to the plaintext data, as the data encrypted with the agent’s key is transformed at the
time of communication into data encrypted with that of the communicating partner,
creating a window of opportunity for the host. Therefore, a new method must be
developed to provide this level of confidentiality.

We propose performing a double encryption such that at no moment in time the
data is available in clear text to the host.

3.3 E-E-D: Private Agent Communication

The proposed solution to the problem of confidential data exchange is shown in figure
3.2. This solution entails that the data is first encrypted using the encryption key of the
agent. At the moment that data must be exchanged to another party, the data is again
encrypted, but this time with the encryption key of the communicating partner. A
decryption process follows where the decryption key of the agent is used, such that the
overall result is encrypted data which can only be deciphered by the communicating
party. This solution will further be referred to as E-E-D, which indicates the order of
encryption and decryption operations.

Usually it is necessary to first decrypt the final encryption in order to have a com-
plete correct decryption, but here it is the opposite. This means that in our approach,

3.3. E-E-D: Private Agent Communication 33

data
ENCRYPTION ENCRYPTION DECRYPTION

skl

Epkz(Epkl(data)

Figure 3.2: Confidentiality in agent communication.

the encryption algorithm should have the following property:
D (Epkz (Epkr (M))) = Epk2 (M), (31)

where pk1 and pk2 are the public keys of the agent and communicating party, respec-
tively. The corresponding private keys are sk1 and sk2.

The algorithm defined by ElGamal [39] is suitable for this application. As two
encryptions will be performed, two key pairs are generated. A large prime p is selected
and a generator « of the multiplicative group Z;, of the integers modulo p. The private
keys a; and as are selected such that 1 < aj,a2 < p — 2. The public keys are
computed as follows:

az

y1 = a® mod p; y2 = a”? mod p. (3.2

The public keys are y; and yo with the corresponding private keys a; and as. Pa-
rameters « and p are system parameters and known by all participating parties (public
parameters). The message is first encrypted using the EIGamal encryption algorithm.

First, a random integer k1, 1 < k1 < p — 2 is selected, and the ciphertext is
computed as:

y1 = o mod p; §; = myiCl mod p. (3.3

The ciphertextis ¢; = (71, d1).
Then a second encryption is performed, using the second public key, and the mes-
sage to be encrypted is now d;:

2 = a*? mod p; §; = 51y§2 mod p. (3.4)

The second ciphertext ¢, is then formed by the pair (1, d2). Note that -, is part
of the ciphertext cq, and not ~, as only then a correct decryption is possible. It is now
possible to decrypt it once using the first private key:

!/

m' = (77 ") d2 mod p = mys? mod p. (3.5)

The result is an encryption of m based on the second public key, e.g. y». This can
now be decrypted using the second private key:

m = (75 **) m’ mod p. (3.6)

Decryption of m’ must be done at a different location than where the E-E-D operation
took place, as decryption of m/ results in plaintext. The advantage of using the E-E-D

34 3. Agent Communication

algorithm is that it is possible to transform an encryption based on one key directly
into an encryption based on a second key without decrypting it first into plaintext. This
second key may be the public key of the communicating partner. Using E-E-D, one
need not know when setting up the agent with whom it will communicate. Although
this solution for confidential agent communication is promising, the way it is used
determines the actual security. For example, if the first decryption takes place at the
same location as the second encryption, the host may be capable of switching the order
of operations such that the clear text can be obtained. This can also occur when hosts
do conspire.

An additional property of E-E-D is the ability to add two different but similarly
encrypted messages while preserving confidentiality. When it is possible to compute
E(my + mg) from E(m4) and E(ms) without decrypting any of these values, the
encryption algorithm is denoted as being homomorphic in addition. This is possible
in EIGamal given that the security parameter & is equal for E(m4) and E(mz). In that
case, if two messages m and my are encrypted using an equal k, the ciphertexts will
look as follows:

yi=a"modp ; & =miy* modp (3.7
Y2 =a"modp ; & =may" modp, (3.8)

where y is the public key. Note that here 05 is computed using the original EIGamal
encryption scheme [39] and not by the E-E-D scheme. Adding ¢, and §, gives

81 + 62 = (my + ma)y* mod p, which is equal to the direct encryption of ms where
ms = my + me, hence it is possible to add two numbers without having to decrypt
one of the messages.

One of the conditions for using EIGamal is randomly choosing a new security
parameter k for each encryption. Only in certain cases it is allowed to use one &
twice. When one message is encrypted twice, separately, using an equal & will result
in two equal ciphertexts. Furthermore, given two ciphertexts and equal values for
k, it is possible to derive the ratio of the plaintexts (= it mod p). Two parties
that each encrypt a message use equal values for k and the publlc key. Then both
parties can compute the other party’s plaintext without knowing the corresponding
private key. Taking these risks into account, EIGamal encryption can only be used
with equal values for & when either the encrypting parties are one single entity or when
the encrypting parties fully trust each other, e.g. when protection is only necessary
towards a third party. The usage of E-E-D will be shown in the next section.

3.4 Example Applications

In the next two paragraphs, two examples are given of how the E-E-D algorithm can be
applied. The first example is given for an agent using E-E-D and acquiring information
located on untrustworthy hosts. The second example describes the usage of E-E-
D with the homomorphic property in addition when an agent collects and performs
additions within untrustworthy hosts. The presented examples are intended to describe
possible implementation of E-E-D within a practical application. The examples do not

3.4. Example Applications 35

Figure 3.3: Data-collecting agent model using E-E-D

provide a full secure system and therefore should not be seen as such, e.g. they do not
take into account authentication of the agents.

3.4.1 Data-Collecting Agent Model

Collecting data, in other words, acquiring information, is one of the applications mo-
bile software agents are being used for. Figure 3.3 shows a model of an agent T’
acquiring information from the agents of user A located on untrustworthy hosts. The
numbers in figure 3.3 indicate the order of operation.

For example, user A could be a police officer who has written a crime report on
a public computer. Agent T is deployed by the police station and has the objective
to collect information, like a crime report, to a secure database (db) while preserving
confidentiality when transporting this information on untrustworthy hosts. This could
be accomplished by E-E-D.

At number (I), user A deploys agent A; in possession of an encrypted message
Epra(mg) enciphered with the public key pka of user A. At a certain moment in
time, agent T" encounters agent A, who is willing to share his information m, with
agent T without the untrustworthy host (U H,,) acquiring any information about the
content (I1). Agent A, is not able to decipher E,, (m,) because this would make the
clear-text message m,, visible on the untrustworthy host. Therefore, agent 7" wants to
transform this encrypted message m,, and encrypts it with his public key pkt resulting
in Epgt (Epka(ma))-

Additionally, user A deploys a second agent, A, in possession of the private key
ska, dispatching it to a different location (host) than agent A, namely, (II1). It is
presumed that various untrustworthy hosts do not conspire with one another, which

36 3. Agent Communication

Homomorphic
E-E-D
in addition

(UH,)

Figure 3.4: Survey model with multi-agents using homomorphic E-E-D in addition
within untrusted environments

implies that the single encrypted data E,x, (m,) should never be on the same host at
the same time as the private key ska. This is the reason why agent 7" does not move to
another platform before protecting the data with his public key pkt, as was described
above. Note that storing a private key in an agent must be done carefully, but this key
ska is only used for decryption of data that is still encrypted after the first decryption.
In order to have a secure system this ska must be changed regularly.

When agent T" exchanges information with agent A, he also receives the location
of agent A5, who is in possession of the private key ska. Moving to the assigned
location (1V), agent T" sends his double-encrypted data to agent A5, who is capable
of deciphering the first encryption, Dgye (Epkt(Epka(me))). This computation will
result in a single encryption of the message m, with the public key pkt, E,r:(mq).

After collecting numerous pieces of data, agent 7" is able to store this data in a
database (db) (V). Database (db) saves all the encrypted information using the public
key of agent T'. If access is needed to this information, agent 7" must only use his
private key skt without first consulting other agents about their private key.

This example creates a uniform encrypted database, where all data is encrypted
with the same public key of agent T" even if this data was collected on untrustworthy
hosts. For the police case, the police officer can be confident that no information has
leaked to an untrustworthy host and that only the police station is able to read the
content of the database (db) and therefore his crime report.

3.4.2 Survey Modd with Multi-Agents

In figure 3.4, the survey model is given of an agent .S sending his transport agent 7'
around an untrustworthy network to survey for agents willing to communicate with
him. The numbers indicate the order of operation. In this case, the requirements
are to provide confidentiality when the data is collected and the ability to perform an
operation on this collected data. Homomorphic E-E-D in addition, as was described

3.4. Example Applications 37

at the end of section 3.3, fulfills these demands.

This survey model can also be used as a building block for other applications like
voting, e-commerce (market place) or polls. For example, a police officer deploys an
agent S who looks for some information about a certain criminal. Agent S queries the
network for agents willing to share information with him by deploying an transport
agent T". To count the number of agents willing to communicate with agent 7', the
homomorphic property of E-E-D is used without compromising confidentiality.

At number (1), user A deploys an agent A, within a trusted host (T'H,,) in pos-
session of an encrypted message Epq (m,) encrypted with the public key pka of user
A. This message could contain a certain preference of the user and therefore it should
only be accessible to authorized agents, for example agent S. Because user A does
not know with whom he will communicate, he moves agent A; to a untrustworthy
host (UH,) (1) and waits for the appropriate agent to arrive. The user also deploys
an agent As which owns the users secret key ska and sends this agent to a different
untrustworthy host (U H..). Before both agents leave their trusted environments, agent
A, gives his destination location to agent Aj;.

The transport agent 7" moves around various platforms until he finds a suitable
agent to communicate with. Agent 7" and agent A; meet each otherat U H,, (I11). After
authentication, agent A, sends his encrypted message E,x(m,) and the location of
agent A, to agent T'. Before moving to the location of agent A; (IV), agent T first
encrypts the received data with his public key pkt, which results in Epx¢ (Epka (ma))-

Agent A, and agent 7" meet each other at U H,. (V). After receiving the data of
agent 7', agent A decrypts the first encryption using the private key of user A. It
is not a problem that the secret key to the untrustworthy host is exposed because we
consider the host to be curious and not conspiring with other untrustworthy hosts. The
result of the decryption, E,:(m,), is stored at agent T'.

When moving around the network, agent 7" identifies another agent with a similar
interest, agent By (owned by user B). Before moving to an arbitrary host, agent
T carries out a computation on message m; comparable to that on message m, as
mentioned above, where m;, is provided by user B.

Agent S is interested in the number of agents that want to communicate with him,
S0 messages m, and my represent the willingness to communicate. If the message is
equal to '1’ it stands for willing to communicate; ‘0’ stands for unwilling to commu-
nicate. To compute the total amount of agents willing to communicate, agent 7" must
simply add the collected messages together. Because the messages are uniformly
encrypted, which means that they are encrypted with the same key of agent 7', it is
possible to use the homomorphic property of E-E-D, resulting in E,x: (mg +msp) (V).

To obtain the result of the survey, agent 7" moves to his originator, agent .S, who is
in possession of the secret key skt (V1I). Agent S is located on a trusted host (T'H),
where he is allowed to use this private key without compromising confidentiality of
the obtained data.

In this example, agent T" collects information and transforms the encrypted infor-
mation into encrypted data based on 7"’s public key. After this transformation, all data
is encrypted based on the same key and security parameter k. Because no other parties
are involved in this process, it is not a problem if the same value is used for &, as is

38 3. Agent Communication

described in section 3.3.

This survey model gives an example of how E-E-D with the homomorphic prop-
erty can be used to add confidential data together within untrustworthy environments.
Using this model, the police officer is now able to communicate with users through
agents without losing confidentiality.

3.5 Conclusions

This chapter addresses the problem of secure agent communication within the context
of the agent privacy model. When agents need to communicate with each other and
the host is not entitled to have access to this communication, then conventional mech-
anisms do not provide an adequate level of security. Therefore, the concept of double
encryptions was proposed and it was shown how this concept can be applied by using
agents.

First, the results of the E-E-D algorithm were analyzed, followed by the meaning
of these results in the context of the agent privacy model.

The E-E-D algorithm provides a method to transform an encrypted message using
one key into a message encrypted with another key, while during transformation, the
message is never available in clear text. With E-E-D, data can be exchanged securely
without the platform having access to the clear text data. Furthermore, the E-E-D al-
gorithm removes the need to know beforehand with whom the agent will communicate
as the key for communication must only be decided upon the moment of communica-
tion.

However, with respect to the original problem statement of providing confidential
communication, the E-E-D algorithm does not fulfil all requirements. Using E-E-D,
it is possible to provide secure data exchange. However, communication is in two
directions. When receiving a message, a communicating partner should be able to
respond to this message. This is only possible if it understands and can interpret the
received message. When the E-E-D algorithm is used, the agent receives an encrypted
message. Processing the data usually requires decryption, but that would again give
the platform access to the clear text data. Therefore, a fully secure communication
can only be achieved when this processing of received data occurs based on encrypted
data. The additional advantage of the homomorphic property of E-E-D shows that
some progress can be made in this direction, as was shown in the second example.

Concluding, for the agent privacy model it was shown that data can be exchanged
securely can be achieved by using the E-E-D algorithm, and a start was made towards
secure interaction to provide confidentiality for full communication. However, full
communication requires privacy during processing of data, and this will be covered in
the next chapter of execution privacy.

Chapter 4

Execution Privacy

The agent privacy model was used to describe to the problem of providing privacy
during the execution of the agent. The host is capable of observing the agent’s actions
and by doing this may compromise the user’s privacy. This chapter covers this prob-
lem and proposes a solution using the approach of encrypting an agent’s task. The
results have been described in [25].

4.1 Introduction

The objective of the agent privacy model is to provide privacy to the user by providing
privacy to his mobile software agent. The possibility that the host may eavesdrop on
all actions of the agent is a serious threat. During execution of its tasks, the host is
able to observe the agent and therefore to obtain knowledge about its content. Hence
it is necessary to provide some privacy protection mechanism for the agent’s actions.

Furthermore, a result of the previous chapter on agent communication is that the
privacy of full interactive communication can only be protected when the agent is
capable of interpreting received protected data without performing a decryption. This
interpretation is also a type of action the agent must perform and therefore a privacy
protection tool is required to protect the privacy during an interactive communication.
The privacy protection of agent’s tasks or actions is here called execution privacy as
it covers all types of functions, actions or tasks that must be executed. The main
difference between data privacy and execution privacy is that data is static and does
not change over time. However, in execution privacy, data must be protected while it
is being processed.

More generally, the problem can be seen as protecting mobile software. Sander
and Tschudin [78] described a method to provide confidentiality to functions in the
form of a polynomial. In a later paper, they extended the results to all functions
computable by circuits of logarithmic depth [76] and further generalized them to arbi-
trary functions, provided these can be represented by a polynomial-sized circuit [15].
Already in 1990, Abadi and Feigenbaum [1] described a method that provided confi-
dentiality for circuit evaluation. A disadvantage of this method is that it takes many

40 4. Execution Privacy

interactions to provide the confidentiality. Many other solutions have been published
to provide secure circuit evaluation, but none of them is very practical or efficient [1].
Several more practical methods have been proposed, but they are all based on either
trusted hardware located at the host [103] or on the presence of a Trusted Third Party
[99], [3].

Algesheimer et al. state in [3] that according for their model non-interactive mo-
bile computing schemes do not exist. It is stated that any scheme in which some host is
to learn information that depends on the agent’s current state cannot be secure. What is
meant is that it is possible to secure the evaluation of the agent’s state but impossible to
secure the output from the agent to the host if it depends on more than its own input. A
TTP is suggested where computations are done, but in such a way that even the trusted
party does not learn anything substantial about the task. However, the underlying as-
sumption is that the hosts do not conspire with the trusted party. Obviously this is a
strong assumption; it would be preferable to have a system where only the originator
must be trusted and still the agent has guaranteed security and privacy. Summarizing,
no satisfying solution has been found to the security and privacy problems that does
not decrease the autonomy of the agent. Either the system does not provide protection
against multiple malicious parties, or it is limited in autonomy such that decisions to
determine the agent’s next action should be made at a trusted site.

In this chapter, the approach described by Sander and Tschudin is adopted. First,
the problem statement for this chapter is given. This is followed by a description of
how polynomials can be encrypted using a simple encryption algorithm like EIGamal.
Several constraints must be set for the usage of EIGamal; these are also explained in
section 4.3.1. Conclusions are given in section 4.5.

4.2 Problem Statement

In the previous section, the term execution privacy was used in the context of providing
privacy during the agent’s actions. It is important that actions are dynamic; to provide
confidentiality to these actions, they must be executed in an encrypted form.

The term *execution privacy’ consists of the two elements that define an agent’s
action, namely functions and decisions, i.e. the interpretation of the result of a func-
tion. When one agent needs to perform an action, one or more functions are executed.
Based on the result, the agent must interpret the result and decide on the next action.
A simple form of interpretation may be an if/else statement.

The problem statement for this chapter is then defined; how can execution privacy
be guaranteed within the context of the agent privacy model.

The approach to provide execution privacy is based on the following requirements
for execution. The first is that it should not be possible for the attacker (host) to
obtain knowledge on the function that is executed, besides knowledge on one input
and corresponding output. Knowledge on one input-output pair cannot be kept from
the attacker as he provides the input and can observe the output.

The second requirement is that the attacker should not be capable of deriving an

4.3. Execution Privacy Solution 41

optimal input given a certain end result. For example, the agent executes the task of
purchasing a flight ticket at a foreign host (in the flight-ticket case, an airline com-
pany). The function in the task requires input from the host, such as price, departure
time, available seats, etc... Obviously the host would be interested in the maximum
price at which the agent will still buy the flight ticket. In this case, the host is not
interested in obtaining the exact content of the agent’s task, but only in determining
what he should offer the agent such that the outcome is to his advantage.

A third requirement is that the decisions on the interpretation or the results should
be hidden from or be not clear to the attacker. Based on the agent’s decision criteria,
the attacker could be capable of obtaining knowledge of its content or the optimal
input.

Based on these requirements we chose the approach of function hiding. Func-
tion hiding provides confidentiality towards the function such as is required by the
first requirement. This approach can be extended such that also the second and third
requirement are fulfilled.

To develop a solution for the execution privacy problem, we confine ourself to
the following case, because of mathematical tractability. For the function hiding ap-
proach, an agent’s task consists of only one function. The results can easily be ex-
tended towards multiple functions. Furthermore, it is assumed that the function is
written in the form of a polynomial. This assumption is made because of the ho-
momorphic properties that are present in certain encryption algorithms. Finally, it is
assumed that each function is only executed once at a particular host. This assump-
tion is necessary to prevent an attack where the attacker executes the protected code
many times and observes the agent’s behavior, as this would allow him to determine
the agent’s content.

The next section describes a privacy solution to the execution privacy problem,
given the extra assumptions with respect to the agent privacy model.

4.3 Execution Privacy Solution

4.3.1 Function Protection

This section shows how functions in the form of polynomials can be encrypted. The
approach used is based on work in [78]. Polynomials only exist of two types of
operands, namely addition and multiplication. When an encryption algorithm has
the characteristic of being homomorphic in addition and multiplication, it can en-
crypt polynomials and execute the encrypted polynomial. The result can easily be
decrypted.

An encryption algorithm is said to be homomorphic in addition when it is possi-
ble to compute E(x + y) from E(z) and E(y) without decrypting E(x) and E(y).
Similarly, an encryption algorithm is said to be homomorphic in multiplication if it
is possible to compute E(zy) from E(z) and E(y) without decryption of E(x) and

E(y).

42 4. Execution Privacy

The public key encryption algorithm designed by EIGamal is suitable for this ap-
plication as it is homomorphic in multiplication. However, in general, EIGamal is not
homomorphic in addition; only if the security parameter & for each encryption of x
and y is equal. In general, this is a bad idea; as knowledge of the security parameter
makes it possible to decrypt all ciphertexts generated using this k-value (see section
3.3).

First, the algorithm will be given with which EIGamal can be used to encrypt
functions. Then, section 4.4 will show how the security parameter, &, should be used.

Key generation. The generation of the key is equal to the original EIGamal en-
cryption scheme and is performed by the agent’s user at a trusted location. The public
key is y and the private key is a, where the relation is y = a® mod p. Parameters p
and « are system parameters and are public.

Encryption. Let the function to be encrypted be a polynomial of degree n:
f(z) =37, ciz’ mod p. The user shall select at random a parameter k1,
0 < k1 < p — 2 and encrypt each of the coefficients separately:
E(¢;) = (e;y™ mod p, o mod p); and & = ¢;** mod p. 4.1)

In the agent, the following function is stored:
f(@)=>&i" mod p, (4.2)
=0

where the host or another agent delivers the encrypted input Z to the function f(.).

Encrypted function execution. The host or other agent selects at random a pa-
rameter ko, 0 < ko < p — 2 and encrypts its input and its powers:

E(z") = (2'y* mod p;a* mod p); (4.3)

¥ = z'y* modpfori=0,...n. (4.4

The encrypted function is f(#) = 3.7, &4’ mod p and is executed at the host. The

result of f(:z), 7 is then used to make a decision on the consequence of the executed
task.

Decryption The user is the only one able to decrypt function f(&‘:) and ¢ as he
only possesses the private key a. This is done by computing:

D(f(&)) = f(&)a~Frtk2)a mod p. (4.5)

It is easy to show that decryption works:

D(f(j:)) = lz Cixiyk1+k2‘| o~ (ki+ka)a mod p
=0

4.3. Execution Privacy Solution 43

n
= yFrthe o= (kitka)a E ¢;z' mod p
i=0

= icimi mod p = f(x).

=0

The advantage of using function encryption is that during execution none of the
parameters are at one point in clear text.

Section 3.3 explains how the security parameter & should be used. Here the differ-
ent ks are used according to these conditions. In the evaluation, it will be shown what
information is revealed by using the security parameter in this way.

Task confidentiality is not only provided to hide the function, but also to prevent
the host or agent platform from computing an optimal input. This is the reason why
the input « must be encrypted. If = were not encrypted, it would be possible for the
host to compute the optimal = value by inverting the function. In case z is encrypted
with the user’s public key, the host can compute an & value that corresponds to the
output value of the function that is optimal for him. Because the encrypted function
takes an encrypted value as input, it is for the attacker infeasible to compute « from a
preferred Z as that would mean he must decrypt z, but he has no access to the correct
private key.

4.3.2 Decision and Interpretation of Encrypted Data

A task consists of one or multiple functions, and when these functions have been
executed, typically an encrypted value is the outcome. The question is what the agent
can do with this value. Based on this value, the agent has to know how to proceed
to fulfill this objective. Therefore it must be able to reason based on the encrypted
values.

Consider again the flight-ticket example. The agent asks the airline for a price
offer (e.g. parameter « in the function f(z)) or an encrypted price offer (e.g. param-
eter i in the function f(z)). The function f(.) consists of coefficients that provide
weighting factors to the input. When the encrypted function f(Z) is executed, the out-
come is an encrypted value. Based on this value, the next action of the agent must be
determined. If functions and parameters were not encrypted, the outcome would be a
clear text value and correct interpretation would lead to the next action of the agent.
For example, when the output is lower than a certain threshold value, the flight ticket
will be purchased; but not otherwise.

Reasoning based on encrypted data is a rather complicated problem as it also con-
tradicts the objective of encryption. Encryption is meant to be such that an adversary
cannot obtain any information regarding the clear text, but reasoning requires some
knowledge based on which a decision can be made. Here, we describe a conceptual
but impractical solution.

A solution is storing all possible outcomes in an encrypted format linked to the
decision. This is possible in some cases (when the output set has a limited number

44 4. Execution Privacy

of elements) but always inefficient, and if this solution were used, some of the nice
properties of agent technology would be lost to us.

Given the following sequence of actions that forms a task when an agent is located
atahost:

y = f(x)
d = B(y);de{0,1},

where z is the input given by the host and B(y) describes the decision process, the
outcome of the decision is d € {0, 1}. The agent’s owner encrypts f(.) using his own
public key pko: .

f() = Epro(f(.)) (4.6)

Assume the following for the decision algorithm B(y). The decision space is formed
by a set S and its complement SN. For example, set .S is defined as:

S {y;1B(y;) =" 0"} (4.7)

The protection of the decision algorithm B(.) is defined as the encryption of each
element of .S or on the complement of S (depending on the length of the set):

S = {95195 = Epko(y;)} (4.8)

using the originators’s public key, pko. Both f(.) and S together with the origina-
tor’s public key pko are stored in the agent. When the agent is located at a host, the
encrypted value of the host’s input, z, is computed:

T = Epko(a:). (49)
This is used as the input for f(.):
j=f(@). (4.10)

The decision algorithm B’(.) now consists of comparing the elements of S to §. If a
comparison is found, the decision is *0’, which can be equal to the purchase of a flight
ticket. This approach can easily be extended to multiple decision values.

It is easily seen that this solution combined with the function encryption of the
previous section provides confidentiality to an agent’s task under the assumption that
the encryption algorithm used is secure. When the agent is located at the host, only
one encryption takes place and no decryptions, which provides the privacy of the task.
Because a decision is made based on comparison of the encrypted values, the host
cannot gain any knowledge about the original intervals and therefore cannot determine
its optimal offer.

The above solution does provide privacy and security, but it is not practical. The
number of encryptions to determine the set S is linear in the cardinality of set S. The
maximum number of encryptions is therefore |S|/2. This solution is only practical

4.4. Evaluation 45

in case where only a strongly limited amount of elements leads to one decision. The
time-consuming work may also be worthwhile if the task is highly confidential.

To decrease the number of encryptions needed to reason on encrypted data, one
encryption computation could be used for multiple elements of the set S. For example,
asubset of S is combined and encrypted in one go (e.9. $1; = Epko(y1l|y2l| - - - y;))-
This is more efficient as less encryptions must be computed beforehand, but a new
problem is created. The question has now how become how we can check whether §
is an element of S. In general, the following problem must be solved. Given a set A
and the encryption of a subset of A:

E(A) = E(aolla]| - - [lan), (4.11)

and E(b), find a method that makes it possible to check whether b € A without
decrypting E(A) or E(b). This is a problem to which no answer has been found yet.

From the above description, it is clear that reasoning on encrypted data is difficult,
as a simple check whether a value belongs to a certain set already requires too many
encryption operations in advance.

Obviously, it would be possible to let the agent return to the user, where ¢ can
be decrypted such that a decision can be made easily. However, this solution would
restrict the desirable autonomy characteristic of an agent to be autonomous.

Especially this concept of reasoning on encrypted data is an interesting area that
requires much more research.

4.4 Evaluation

The security of function encryption using EIGamal is largely based on the correct us-
age of security parameter k. Chapter 3 described how parameter % should be used. In
the case of function protection, two different k- values are used, k; and k. Each of
them is used by just one party. This was the condition given in chapter 3. However, it
must be noted that encrypting two messages using the same k-value provides knowl-
edge on the ratio between these messages. In the case of polynomial encryption, this
has the following consequence. It is possible to write each encrypted coefficient in
terms of ¢y and ¢g, €.9. ¢; = % Hence, the security level depends on the security
of one encrypted coefficient.

The solution proposed in this chapter has the following properties (based on the
requirements). First, using the EIGamal encryption scheme, it is possible to store
encrypted polynomials in an agent and these functions can be executed in encrypted
form. The level of security that is provided depends on the security of the EIGamal
encryption scheme. Using the approach of function encryption, the first requirement
is fulfilled of providing confidentiality towards functions.

Second, by encrypting the input 2, the method ensures that a host cannot determine
an optimal input given an ¢. This is because « is encrypted using a public key, and
the corresponding private key is not owned by the host. For an attacker it is possible
to compute z for a given §. When the attacker knows the best value for ¢, he can

46 4. Execution Privacy

compute the corresponding z, but because a decryption is need to compute x given z,
it is not possible to compute an optimal « value.

With the solution proposed here, it is not possible to decrypt ¢ and determine
the agent’s next action based on this decrypted value, because then require the agent
would have to carry a corresponding private key. This would allow the host to observe
this private key, and as it can also be used to decrypt the encrypted function, the agent
may not carry it. Therefore, it is necessary to make a decision based on the encrypted
output . A method was given, but it is inefficient in practice.

Providing privacy for an interactive communication requires some protected pro-
cessing techniques. When the interpretation on processing or received messages can
be described as polynomials encryption of functions can be used for this processing.
In that case, privacy protection is provided for two-way communication.

45 Conclusions

Based on the evaluation of the proposed solution, we can conclude that function en-
cryption in combination with decision making on encrypted data provides an adequate
level of execution privacy. However, because only polynomials can be used and the
decision making is inefficient, the practical possibilities are limited.

The limitations of this solution yield an interesting research question; to analyze
the theoretical boundaries of execution privacy. With these theoretical boundaries, it
may be possible to extend the approach that was discussed here of protecting func-
tions. These theoretical boundaries are derived in chapters 6 - 9.

Chapter 5

Agent Digital Signature

This chapter addresses the problem of providing integrity and source authentication
by introducing an agent digital signature. If an agent must sign a document at a for-
eign host, the host must not be able to obtain the agent’s private key. The private key
can be seen as the only information that can prove the identity of the agent; hence this
information should not be revealed to anyone. This chapter gives several solutions to
how an agent can sign a document without giving its private key to the host. Dou-
ble signing is a problem here, and also for this, some solutions are given that makes
it less attractive for the host to sign documents under the agent’s name without per-
mission. The solution can be seen as a new privacy enhancing technology for agent
applications. The results of this chapter were published in [20].

5.1 Introduction

In the agent privacy model, one of the problems is to provide integrity and authentica-
tion to agents while providing privacy. Consider the flight ticket example, where the
agent searches for a ticket based on conditions set by its user. When the agent decides
to purchase the ticket, a digital signature is required. In the agent privacy model, the
agent operates in a possibly untrustworthy environment. When the agent needs to sign
a document, its private key is used, which means that the agent platform may obtain
this key. At a later stage, the platform is capable of signing documents posing as the
agent signed them. Obviously, this is a serious privacy threat.

This chapter describes a signature mechanism that can be applied within the con-
text of the agent privacy model.

This chapter is organized as follows. Section 5.2 gives the problem statement and
related work. In section 5.3 the solution outline is presented, followed by the detailed
solution in section 5.4. Section 5.5 gives an evaluation on the proposed solution.

48 5. Agent Digital Signature

5.2 Problem Statement

The following problem is addressed in this chapter. How can a mobile software agent
sign a document while located at a possibly untrustworthy host within the context
of the agent privacy model? The solution to this problem should be such that both
integrity and authentication can be provided.

The main problem requiring a solution is the fact that an ordinary signature re-
quires an operation performed using the private key. Within the agent privacy model,
it is essential to prevent the platform from having access to personal data and this
includes the private key.

Therefore the requirements are to design a digital signature such that it has all
properties of an ordinary signature and the untrustworthy host is not capable of pre-
tending to be the agent. The latter is explicitly necessary because in contrast to con-
ventional digital signatures, where it is possible to hide the private key for anyone, in
the agent privacy model, this is not true.

Different approaches to provide a digital signature mechanism to mobile software
agents have been proposed. In [73], Ramao proposes to use proxy certificates. The
user has a private key for signing documents, but the key is not given to the agent.
Instead, the agent receives a new key pair. This key pair is certified by the user. The
lifetime of this certificate is short. It is based on the idea that it should be difficult for
an attacker to discover the private key before the certificate expires. Because the key
pair is certified by the user, the agent signature is linked to the user. This approach
prevents malicious usage of the user’s private key, but the host has access to the agent’s
private key and can therefore sign a document using this key and that compromises
privacy.

In [104], Yi et al. present a digital signature scheme where each time a message
must be signed, a different key pair is used. This key pair is certified by using a
long-term key pair. The fact that the keys used to sign messages are message related
makes this scheme less practical for the application of mobile software agents, where
beforehand it is not always known what messages must be signed.

Furthermore, the concept of forward digital signatures can be used in an agent
environment [7], [55]. In a forward signature scheme, the private key can be updated
over time, while the public key remains the same. This update is done in such a way
that once a private key is compromised, no signatures based on the previous private
keys can be generated, therefore the signatures in the past remain valid. This approach
has the advantage that once a malicious host has access to a private key, the past
signatures still remain uncompromised. However, the host is capable of observing the
private key used at that moment and of using it to sign documents in the agent’s name;
it may take time before it is noticed and detection afterwards may be too late.

In Sander and Tschudin’s original paper on mobile cryptography [78], the concept
of undetachable signatures is introduced. The idea is that the agent contains two func-
tions: the function it must execute and a function that has the property that when it
is executed, the result is a signature on the outcome of the first function. Hence, the
signature is attached to the function to be executed. Kotzanikolaou et al. [54] presents

5.3. Solution Outline 49

such an undetachable signature based on RSA. This is further extended towards un-
detachable threshold signatures by Borselius et al. [12], where multiple agents are
required to generate one signature.

Around the same time that the results of this chapter were published, Ferreira and
Dahab presented a solution to the agent signature problem in [41] based on the same
solution as this chapter, namely the approach of blinding the private key. Although
the approach is equal, the method of blinding is different, and in [41] the problem
of double signing is addressed by using a notary that owns a policy that restricts the
usage of the key.

5.3 Solution Outline

The approach to designing an agent digital signature is to hide the agent’s private
key such that the agent can sign a document with this hidden key. Knowledge of
the hidden or blinded key should not lead to the original private key. The signature
algorithms presented in the next section are based on the blind digital signature first
introduced by Chaum [29] and later extended to different algorithms [18] or with
additional properties [2] [87]. Blind digital signatures have the property that a message
can be signed by a party without that party being able to read the message, e.g the
message is blinded before signing. These signatures can be applied in applications like
untraceable payments [29], [13] or electronic voting, where privacy of an individual
is important.

The idea of blinding a parameter before signing is here applied to the private key
of the agent.

This signature will then consist of the following steps:

1. Key generation

N

. Blinding operation on private key
3. Signature operation

4. Activation of signature

5. Verification

Steps 1, 3 and 5 are necessary in any conventional digital signature algorithm.
Step 2 is the transformation of a private key into a blinded version and in step 4, the
signature is activated. This step is necessary because in step 3, a signature is set using
a blinded private key. This signature cannot yet be verified by using the agent’s public
key, because the blinded private key and the agent’s public key are not related as such.
Hence an activation procedure must be added.

Steps 1 and 2 must be performed in a trusted environment, e.g. the user’s computer.
Step 3 and 4 are done at the foreign host. Finally the verification can be done anywhere
in the system.

50 5. Agent Digital Signature

5.4 Agent Digital Signature

5.4.1 Introduction

The various digital signatures presented in this chapter are based on the elliptic curve
digital signature algorithm [52]*. In this section a small modification, similar to the
one in [18] is done in order transform the digital signature function into one where a
parameter is private. The following sections propose new signature algorithms.

The security in elliptic curve cryptographic systems is based on the hardness of
the discrete logarithm problem for elliptic curves. This problem can be informally
described as follows [81]: Given two points P and) on an elliptic curve such that
Q = dP, find the integer d. This problem is generally believed to be infeasible if
the space in which d is chosen is large enough. Certain curves are believed not to be
secure, such as supersingular curves [66]. To provide clarity in notation, for a point
on the curve, a capital letter is used, and integers are shown in lower-case letters.

In a conventional system, the digital signature consists of three steps: key genera-
tion, signature operation and signature verification (steps 1,3 and 5 in section 2). The
signer owns two kinds of keys: the private and public key. The private key, which
is only known to the signer, is used to sign a digital message, and the public key is
used to verify the validity of the signature [81]. In practice, the public key is certified
by a Trusted Third Party (TTP), such that the public key is connected to an identity.
Hence, the verification of the signature using the public key can prove who signed the
document and this entity cannot deny its signature afterwards. This property provides
non-repudiation.

1. Key generation
The key generation starts with the signer choosing an elliptic curve E defined
over Z,. The number of points on E(Z,) should be divisible by a large prime n.
The signer selects a point P on E(Z,) of order n and selects a random integer
d in the interval [1,n — 1]. Parameter d is the private key of the signer and must
be kept secret. Using the private key, the signer can compute its public key:

Q = dP over E(Z,). (5.1)
The public key is @, and E, P, and n are system parameters.

2. Signature generation
In order to sign a message m, the signer selects a random secret integer k& €
[1,n — 1] and computes:

R = kP= (l‘o,yo), (52)
r = xomodn,
s = km+rdmodn. (5.3)

The signature consists of the parameters (r, s) and is sent to the verifier in com-
bination with the message m. Parameter k£ must be different for each signature

1Considering the content of thisthesis, it would have been more consistent to base the proposed signature
scheme on the ElGamal signature algorithm. Thiswould be possible.

5.4. Agent Digital Signature 51

based on one private key d. In case k is equal for two different messages, d can
easily be computed [39].

3. Verification
By obtaining the right signature parameters, public key and digital signature,
the verifier can check the validity of the signature by computing:

T
t

(sP—rQ)m™" = (x1,71) (5.4)
z1 mod n

The signature is valid if and only if:

t=r.

5.4.2 Agent Digital Signature

In case a software agent needs to sign a document, it cannot follow the above proce-
dure, because there are some fundamental differences:

» The agent is the signer of the document but does not own the resources to be
able to compute the signature.

« The signer does not know whether it is located in a trusted environment.

If the agent lets the host compute a signature for it, using the algorithm described in
3.1, the host will have access to the agent’s private key d and allowing it to sign other
messages in the agent’s name or to pretend it is the agent (during authentication).
In this case, the property of non-repudiation is no longer present, because multiple
entities now have access to the agent’s private key, hence there is no guarantee that it
is the agent who signed the document.

As is described in the solution outline, the idea is to sign a document using the
host’s resources by using an agent’s hidden private key. After the signature is com-
puted, the host activates the signature. The user generates several blinding factors,
which hide the private key. These factors are then needed to activate the signature.
This can be accomplished by storing one part of the blinding factors in the agent and
the other securely at the user’s computer. How this can be achieved such that the ac-
tivation can take place at the host and the private key cannot be computed by the host
is shown in the description of the algorithm.

1. Key generation
An elliptic curve is defined over Z,,, of which the number of points on E(Z,,) is
divisible by a large prime n. The user selects a random integer d in the interval
[1,n — 1]. Parameter d is the agent’s private key and is securely stored at the
user’s computer. The user computes the agent’s public key:

Q = dP over E(Z,). (5.5)

52

5. Agent Digital Signature

The public key is @, and E, P, and n are system parameters. These are stored
in the agent and at the user’s computer. Besides a regular public key, the user
computes a “temporary” public key:

0 = dymodn, (5.6)
I' = 0P, over E(Z,). (5.7)

and here, y is a blinding factor and § can be seen as a temporary private key. The
parameters v and d are stored securely at the user and are not given to any other
element in the system. Parameter I" is also stored in the agent for verification
purposes.

Two extra parameters, o and), are chosen at random by the user in the interval
[1,n — 1] and the following is computed:

¢ = aymodn, (5.8)
A = JXcPover E(Z,). (5.9)
In the next steps, it will become clear why these parameters are necessary. The

parameters A and c are stored in the agent, while «, v and X are kept secret at
the user’s computer.

. Blinding operation on private key

This step, the hiding of the private key, is completed at the user’s computer. In
order to obtain a blinded private key, the user selects one other blinding factor
G at random in the interval [1,n — 1]. As in the digital signature algorithm, the
user also selects a parameter & at random in [1, n — 1] and computes:

R = kP= (70, %0), (5.10)
7 = xomodn,
R = cR+ (P = (z1,y1,) (5.11)
r = x1 modn,
d o~ 'd + X mod n, (5.12)

in which d is the blinded private key. The blinding factors «;, A and v must be
kept secret at the user’s computer, just like the agent’s private key. Parameters
d, k,r, (3 and c are stored in the agent and therefore known to the host. Param-
eters R and R are not necessary anymore for the remainder of the algorithm.
These parameters in combination with the system parameters give the agent the
opportunity to sign a document m while located at a foreign host and using its
computational resources without giving this host access to its private key. Also,
knowing these parameters, the host cannot compute d, as the parameters « and
A are not stored in the agent. Parameter « can only be obtained through ¢, but
that requires knowledge of ~ which is not available in the agent.

. Signature generation

During the signature generation, the agent is located at the host. The signature

5.4. Agent Digital Signature 53

on message m is then computed by:
§ = km + rd mod n. (5.13)

It can be seen in equation (5.13) that the signature operation the host must exe-
cute for the agent is equal to that in equation (5.3). The only difference is that
in (5.13), the hidden private key is used instead of the original private key.

In section 3.1 it was said that parameter & must be kept secret in order to prevent
the disclosure of the private key. Here, this would mean that the host either may
not have access to it or the user must trust the host not to abuse this knowledge.
Fortunately, this does not matter here, because the private key is not used. By
using the same k twice, the host would not gain any more knowledge about the
private key.

. Activation of signature

Because some of the blinding factors are stored in the agent, the host is able to
transform the signature towards a valid signature. By valid we mean, that the
signature must be verified using the agent’s public key as registered at a Trusted
Third Party (if a PKI is used). The signature can be activated by computing:

s = ¢§ + fm mod n. (5.14)

Parameters ¢ and 5 are known by the host, but this is not sufficient to compute
d or +. Substitution of parameters gives the following signature:

s = (ayk 4+ B)m + yrd + ayrA mod n. (5.15)

From (5.15), it can be seen that this signature is of the same form as (5.3). From
(5.15) it is seen that it is not important whether k is kept secret or not. If & is
known and kept at the same value for multiple signatures, it still depends on the
factor v whether d can be calculated. Because the factor A is not known by the
host, it is impossible for the agent platform to calculate d or §. Hence, neither
the private key nor the temporary private key can be computed.

However, it is possible for the host to compute e = ~d + ¢, but during the
verification process, it will be shown that this does not make it less secure. If
parameter A were not used, e.g., if no A occurred in (5.15), it would be possible
for the host to calculate the temporary private key 4.

. Signature Verification

The verification formulas are the same as in a conventional digital sighature
algorithm based on elliptic curves, only here the temporary public key must be
used in combination with parameter A:

T = (sP—r(A+T)m™ = (21,1) (5.16)
t = x1modn

The signature is valid if and only if:

t=r.

54 5. Agent Digital Signature

For the verification process it is important that I" and A are given to the verifier
as two distinct parameters instead of (A + I'), because the host can calculate
e = ~vd + ch and hence eP = A + T, but the host cannot calculate vd and cA
separately and therefore it cannot pretend to be the agent.

By introducing this temporary public and private key, we also achieve something
extra besides making it possible to activate the signature at the host. This temporary
key pair can be seen as a pseudo-identity of the agent. Parameter I must then be regis-
tered at the Trusted Third Party (TTP), just as I". Giving the agent multiple temporary
key pairs means actually giving the agent more identities. Hence, this algorithm can
be seen as a privacy enhancing technology [11] for agent-specific applications. Using
these types of pseudonyms has an advantage over the simple solution of registering a
temporary public key with the TTP and using the corresponding private key without
blinding it, because the host cannot compute the temporary private key in the above
proposed solution, and hence he or another agent cannot impersonate the agent. De-
pending on the amount of pseudonyms of an agent, extra overhead is added to the TTP
for key distribution and revocation.

Using the parameters known by the host, it is impossible to calculate the private
key, because of the hardness of the discrete logarithm problem for elliptic curves.
Therefore, the identity of the agent, d, is protected. However, this algorithm does not
give the user control over what the agent signs or how many times the host executes
this algorithm. The host could repeat the algorithm with different messages and all
the signatures would be valid. This drawback makes this algorithm only suitable for a
trusted environment. However, it is preferred to the conventional digital signature in
trusted environments, because the private key is not revealed at any time. The problem
of multiple signing can be compared to the double spending problem in applications
like digital anonymous cash [13]. Several solutions to this problem exist, two of which
are presented in the next section.

5.4.3 Agent Digital Signature and Solutionsto Double Signing
Problem

Hosts may be prevented from using an agent’s signature multiple time by including
the host’s identity in the verification of the signature. Each time a signature is verified,
the verifier can see at what location the document was signed. This solution does not
make the double signing operation impossible, but it will be an extra threshold to using
it. Two algorithms are proposed in this chapter to accomplish the idea. The first is one
without a signature from the host, only its identity is added to the verification formula.
The second algorithm gives two signatures on the message. Both solutions require the
agent to know beforehand which hosts it will visit. That knowledge may already be
a privacy threat, but this could be solved by providing encapsulated encryption of the
host’s identities [97].

5.4. Agent Digital Signature 55

Agent Signature Combined with Host’s Identity

The host’s identity must be added in the verification formula. In order to obtain this,
the public key is added to this formula. This means that the public key or the pri-
vate key must also be added in the signature. This solution does not include a host’s
signature and therefore the host’s public key, which represents its identity, is added
during the blinding operation on the agent’s private key. Adding the host’s identity
must occur at the user’s platform, because this will make it impossible for the host to
change its identity in the signature at a later stage.

1. Key generation
As in the previous algorithms, the key generation starts with selecting an elliptic
curve E over Z,, of which the number of points on E(Z,,) is divisible by a large
prime n. The user selects a random integer d,, in the interval [1, n — 1]. Param-
eter d, is the agent’s private key and is securely stored at the user’s computer.
The user computes the agent’s public key:

Qo = do P over E(Z)). (5.17)

In addition to calculating a regular public key, the user selects the first blinding
factor o and computes a “temporary” public key, and as in the previous section

parameter A:
0 = ~d, modn, (5.18)
I'n = JdPoverE(Z,), (5.19)
¢ = aymodn, (5.20)
A = XcPover E(Z,), (5.21)

where ~ is a blinding factor and the combination ~d,, can be seen as a temporary
private key. The parameters «a, v, A and d,, are stored securely at the user and
are not given to any other element in the system.

In this algorithm, also the host generates a key pair:
Q= dp P over E(Z,), (5.22)
where dp, is the host’s private key and @, is its corresponding public key.

2. Blinding operation on private key
This step is equal to the blinding operation in the previous section. Only to the
parameter R, the host’s identity is added in the form of its public key Q,:

R = kP = (z0,%), (5.23)
7 = xgmodn,

R = oayR+ (P (5.24)
R = R +Qn=(x1,11) (5.25)
r = 1 modn,

= a td, +Amodn. (5.26)

e

56 5. Agent Digital Signature

The parameters that are stored in the agent and therefore known to the host are
r,dg, k,cand 8 and for verification purposes, I.

3. Signature generation
Again the signature operation is equal to (5.3), with the exception that d is
replaced by d,:
§ = km + rd, mod n. (5.27)

4. Activation of signature The activation does not involve the host’s identity, and
therefore is equal to the activation in the previous algorithm:

s = c¢§+ fm mod n. (5.28)

Again parameters ¢ and 3 are known by the host, but this is not sufficient to
compute d,, or ~. Substitution of parameters gives the following signature:

s = (avk 4+ B)m + yrd, + ayrA mod n. (5.29)
Again the signature is of an equal form as in (5.3).

5. Verification
The idea is to add the host’s identity in the verification formula, such that it is
always possible to know where the signature operation was executed. Adding
the host’s identity is possible, because the public key of the host is already used
in the blinding operation:

T = (sP—r(A+To)m " +Qn = (z1,11) (5.30)
t z1 mod n

The signature is valid if and only if:

t=r.

This algorithm has the advantage that the host’s identity is attached to the agent’s
signature, which makes it less attractive for the host to sign documents in the agent’s
name without permission.

A disadvantage, however, is that the agent must know the identities of the hosts it
plans to visit. An easy measure to overcome this is storing several R’ parameters in
the agent and before roaming to another platform, it has the current host add the next
host’s identity to form parameter R. The signature proposed here is only from the
agent and not the host, because the host’s private key is not used. In the next section it
is shown how this can be achieved.

Combined Agent and Host Signature

This signature is similar to the previous one. In various stages, extra information is
added about the host, such that also the host signs the document.

5.4. Agent Digital Signature 57

1. Key generation
As in the previous algorithms, key generation starts with selecting an elliptic
curve E over Z,, of which the number of points on E(Z,) is divisible by a
large prime n. The user selects a random integer d,, in the interval [1,n — 1].
Parameter d,, is the agent’s private key and is securely stored at the user’s com-
puter. The user computes the agent’s public key:

Qo = do P over E(Z)). (5.31)

In addition to calculating a regular public key, the user also computes the “tem-
porary” public key for the agent and the parameter A:

6 = ~d,modn, (5.32)
', = JPoverE(Z,), (5.33)
¢ = aymodn, (5.34)
A = MXcPover E(Z,). (5.35)

and here, v € [1,n — 1] is a blinding factor and ¢ can be seen as a temporary
private key for the agent. Again, the parameters «, ~, d, and \ are stored
securely at the user and are not given to any other element in the system.

In this algorithm, also the host generates a key pair:
Qn = dp P over E(Z,,), (5.36)

where d}, is the host’s private key and @}, its corresponding public key.

2. Blinding operation on private key
This step is equal to the blinding operation in the previous section. Only to the
parameter R, the host’s identity is added:

R = kP= (70, %0), (5.37)
7 = x9modn,

R = oayR+ (P (5.38)
R = R+Qn=(x1,m) (5.39)
r = 1 modn,

d, = o td,+Amodn, (5.40)
¢ = aymodn. (5.41)

The user also computes a temporary public key for the host:
' = cQp over E(Zy,). (5.42)

The host can check whether the right public key is used by performing the same
operation as in (5.42). The parameters that are stored in the agent and therefore
known to the host are r, d,, k, ¢, ', and 3, and for verification purposes, T',,.

58 5. Agent Digital Signature

3. Signature generation
In this step, the signature operation is executed at the host and the signature
should involve the private keys of the agent and the host. This can be accom-
plished by the following operation:

§ = km + rd, + rdj, mod n. (5.43)

4. Activation of signature
The activation does not involve the host’s identity, and therefore it is equal to
the activation in the previous algorithm:

s = ¢§ + Sm mod n. (5.44)

Parameters ¢ and 5 are known by the host, but this is not sufficient to compute
d, or ~. Substitution of parameters gives the following signature:

s = (avk + B)m + yrd, + ayrdy, + ayrA mod n. (5.45)

Again the signature is of the same form as in (5.3), only now it has been signed
by two parties.

5. Verification The verification formula here is a little different, because also the
private key of the host is used to sign the message:

T
t

(sP—7(Tq +A) —rTp)m™t + Qn = (z1,91) (5.46)
z1 mod n

The signature is valid if and only if:

t=r.

This algorithm, like the previous one, makes it less attractive for a host to sign mes-
sages in the agent’s name without have permission. Here both the agent and the host
have signed the document and afterwards the host cannot deny having signed it.

5.5 Conclusions and Discussion

In this chapter, several solutions were presented to provide a digital signature mecha-
nism to mobile software agents. An approach was used to blind the private key in the
user’s trusted environment. The agent carries the blinded key and when necessary it
can perform a signature operation.

With this approach the host does not have access to the private key and cannot
compute the private key from the blinded private key as that problem is equivalent to
solving the discrete logarithm problem for elliptic curves.

The fact that calculation of the agent’s private key is not possible does not mean
that the host cannot forge the signature. It is capable of copying the algorithm and

5.5. Conclusions and Discussion 59

execute it using a different message. This double signing problem could be solved
by activating the signature at a trusted location, where the validity can be checked.
However, this would limit the autonomy of the agent while we seek a solution that
both provides privacy and profits from the advantages of agent technology.

The solutions proposed here to the double signing problem provide a threshold
to the host for performing a double signing operation. When each agent’s signature
includes the host’s identity, it is easy to detect malicious hosts.

Some solutions for a digital signature in agent technology are proposed in this
chapter, but this is only one of the steps towards securing intelligent software agents.
The next step in these digital signatures would be to provide non-repudiation not only
for the host, but also for the agent. Non-repudiation for the agent is not yet provided,
because if a malicious host intends to sell products, it can double sign an order and
the agent is not capable of proving whether it gave permission for this order, or it
cannot be proven that the agent gave its permission, because in this case it’s in the
host’s advantage to have its name on the signature. A solution must be found to this
problem in order to provide full functionality of a digital signature, which is equivalent
to solving the double singing problem.

60

5. Agent Digital Signature

Chapter 6

Secrecy Systems and
| nfor mation Theory

In the previous chapters several solutions were proposed to solve partial problems
to provide an adequate level of privacy to mobile code. These solutions could be
applied in practice, but they do not provide concrete limits for the maximum level
of privacy that can be achieved. In the following chapters, an attempt is made to
derive these theoretical limits to mobile code protection. The general mobile code
privacy protection model as described in chapter 2 is used for this purpose. Note that
the attackers in this model have unlimited computation power, memory resources and
time. The concepts of information theory are used to derive these boundaries.

This chapter contains two objectives. First, it provides the necessary preliminar-
ies of information theory. The definitions and results as proposed by Shannon [83]
are given for the concepts of perfect secrecy, unicity distance, and the cryptographic
dilemma [92]. In the conclusions an explanation will be given why these concepts are
relevant to mobile code.

The second objective of this chapter is to point out different interpretations of and
observations on Shannon’s results, and where these differ we argue which interpreta-
tion we choose for mobile code protection.

First, Shannon’s model of a secrecy system is given, followed by the preliminaries
of measures of information. A secrecy system provides confidentiality to the data
while it is in transmission. Based on the model, Shannon’s definition of perfect secrecy
is given (section 6.3), and different interpretations and results are discussed. Section
6.4 covers the unicity distance and 6.5 discusses one special interpretation, the so-
called cryptographic dilemma. Finally, conclusions are given in section 6.6.

62 6. Secrecy Systems and Information Theory

6.1 Shannon’s Secrecy Model

In figure 6.1 the secrecy model is shown as Shannon defined it, only a different no-
tation is used here®. The objective of the secrecy model is the possibility to derive a
theory on the level of confidentiality towards a message that can be provided, when
this message is exchanged between two entities. Secrecy is provided in terms of con-
fidentiality. A message M is encrypted using a key K. The result of this enciphering
is a cryptogram C'. This operation is described by

Ex(M) =C. (6.1)

The encryption function Ex (M) gives a one to one relation between the message
and ciphertext, such that a ciphertext can be uniquely decrypted based on the key K.
Parameter M represents a random variable and can take on values from a finite set M.
Capitals are used to represent the random variable and calligraphic letters to represent
the corresponding set. To denote the probability of a certain message Py, (M = m;)
the notation Py (m;) or Py (m); the latter we will use when no confusion is possible.
All messages have a non-zero probability of occurring. A message m consists of a
number of symbols. The parameter m” denotes that message m consists of L symbols
(L > 1). Superscript in combination with capital letters are used to denote the length
of a message or ciphertext. The set of symbols that can be chosen for the message is
denoted by A and exists of the elements {a1,az, ..., a4/}, Where |.A| represents the
cardinality of A. In appendix A, table A.1 and A.2, the notations are summarized as a
reference. Equivalent notations also hold for the ciphertext and key.

This ciphertext C' or cryptogram is transmitted over an unsecure channel to the
recipient. The receiver can transform C' into the original M only if the correct key K
is used. The key is sent over a secure channel to the receiver, for example via courier
service. An eavesdropper may listen in on the communication channel and intercept
the ciphertext C. The objective of the eavesdropper is either to determine the key
K or the corresponding plaintext, M. Furthermore, it is assumed that the attacker
knows what type of transformation (e.g. encryption) is done but not with which key.
In the information theoretic approach, the model of secrecy systems assumes that
the attacker has unlimited computation power and memory resources®. This is an
important assumption as many of today’s cryptographic algorithms depend on the
assumption that the attacker has limited resources and time.

The set of keys contains a limited number of elements, and each element has an
associated probability. The same holds for the set of messages, and each of these
messages has an a priori probability of occurring. Furthermore, it is important that
decryption of a ciphertext results in a unique message.

1page 661 in [83]. Shannon describes equation (6.1) as a one parameter family of operations, such that
E = T; M, which means that transformation 7; applied to message M produces cryptogram E. Theindex
1 corresponds to the particular key being used. We will use the notation of equation (6.1).

2pp 656/ 659/ 662 in [83]. "The adversary has unlimited time and manpower available for the analysis of
intercepted cryptograms.” This can nowadays be translated into unlimited computation power and memory
resources.

6.2. Information Theoretic Preliminaries 63

M. M C M L
Encrypter Decrypter Destination|
source
Enemy
cryptanalyst|
K
Key >) Secure channel)X
source

Figure 6.1: Shannon’s secrecy model [61].

6.2 Information Theoretic Preliminaries

In [84], Shannon gives a measure of information that provides a level of uncertainty on
some random variable. This measure is also called entropy. Using equivalent notations
to those introduced in the previous section, entropy is defined as:

Definition 1 (Entropy) Let X be a random variable, which takes on values from a
finite set X'. To every possible value x € X" a probability of occurrence Px(z) is
assigned, and), Px(x) = 1. The entropy or the average amount of information
is defined as:
H(X)= - Px(x)log Px(x). (6.2)
TeX

<

In case Px(x) = 0, 0log0 is defined to be 0. The logarithms are base 2. The
entropy gives an average level of information or uncertainty for variable X . It is easy
to see that the entropy satisfies

0 < H(X) < log|X].

where H (X)) = log |X| is only possible if and only if the distribution on X is uniform.
The entropy of X can only be zero if and only if for some i Px (x;) = 1 and

Px(xz;) = 0for j # 4, which means that there is no uncertainty on the outcome. It
is also possible to provide an average level of uncertainty for a combination of two
random variables.

Definition 2 (Joint entropy) Let X and Y be random variables, who take on values
from finite sets X and), respectively. The joint entropy is given by:

H(X,Y)=-Y_> Pxy(zy)log Pxy(z,y), (6.3)
TeEX yey

where Pxy (x,y) denotes the joint probability of and y. S

64 6. Secrecy Systems and Information Theory

Definition 3 (Conditional entropy) Let X and Y be random variables, who take on
values from finite sets X’ and), respectively. The conditional entropy is given by:

H(X|Y) ==Y Pxy(x,y)log Pxy(zly), (6.4)
reX yey

where Px |y (z|y) denotes the conditional probability of X taking value = given that
Y has value y. ©

H(X]Y) gives the average level of uncertainty of X given Y. A useful property
of conditional entropy is the relation:

H(X,Y)=HX[Y)+H(Y)=HY|X)+ H(X), (6.5)

and the relation
H(X,)Y|Z)=H(X|Y,Z)+ HY|Z). (6.6)

Furthermore, it always holds that H(X) > H(X|Y) as adding information of a
second variable cannot increase the uncertainty of the first variable.

Shannon also defined the rate of actual transmission. In the literature this is often
called mutual information and is defined as:

Definition 4 (Mutual information) Let X and Y be random variables, who take on
values from finite sets X and), respectively. To every possible value x € X and
y € Y probabilities of occurrence Px (z) and Py (y) respectively, are assigned. The
mutual information with regard to X and Y is given by:

Pxy(z,y)
I(X;Y)=HY)-HY|X)=— P y)log =221 (6.7
(X¥) = HY) =B == 3 3 Portep)los g p s, 67)
T yey
where Pxy (x,y) denotes the joint probability of and y. S

The quantity I(X;Y") can be interpreted as the amount of information that YV’
provides about X .
Here, Jensen’s inequality will be useful.

Corollary 1 (Jensen’s inequality.) Let f be a continuous strictly concave function
ontheinterval 7,and """ ; a; = 1and a; > 0;1 < i < n, then

Zaif(xi) <f <Z aﬂi))
=1 =1
where z; € I,1 < i < n. Equality occursifandonly if xy = ... = x,. o

For this inequality no proof is given here, but it can be found in most text books
on information theory [35]. What is important is that the function log, z is strictly
concave on the interval (0,00), hence Jensen’s inequality will be useful when we
work with entropies. It will be used for deriving the unicity distance.

6.3. Perfect Secrecy 65

Using these information measures we can determine theoretical boundaries for the
level of security or confidentiality a system can provide. The entropy of a message M,
H (M), can be interpreted as the average level of uncertainty of this message. Shan-
non stated that "from the point of view of the cryptanalysis, a secrecy system is almost
identical with a noisy communication system. The message (transmitted signal) is op-
erated on by a statistical element, the enciphering system, with its statistically chosen
key. The result of this operation is the cryptogram (analogues to the perturbed signal)
which is available for analysis” 3.

The above explains why it makes sense to use identical measures to represent
the elements in both systems (noisy communication systems and secrecy systems).
According to Shannon, two conditional entropies are important: one of the message,
H(M]|C), and one of the key, H(K|C), where H(M|C) and H(K|C) are called
the message and key equivocation, respectively. These entropies can be seen as the
average level of secrecy provided by the system. If H(M|C) = 0, this requires
that one probability Py (ms|c;) = 1 and all others 0. In this case no secrecy is
provided given the assumption that the adversary has unlimited computation power
and memory resources. Equivalent reasoning holds for H(K|C). Therefore, if the
adversary has unlimited computation power and memory resources, one should design
a secrecy system where it holds at least that H(K|C) # 0 and H(M|C) # 0 and
preferably the value for these equivocations should be as high as possible. When it
is assumed that the attacker has access to a limited amount of computation power, it
may be the case that H (K |C') = 0 and still confidentiality is provided. The fact that
H(K|C) = 0 may mean that on average, the key can be uniquely determined from
the given ciphertext, but this does not mean that it will indeed be found as the attacker
has limited resources to find the key. Today’s public key cryptography is based on this
assumption of limited computation power [38], [39], [72]. The level of secrecy is then
expressed by using complexity theory.

6.3 Perfect Secrecy

An optimal level of confidentiality in a secrecy system is defined in [83]*: "It is natural
to define perfect secrecy by the condition that for all ¢ the a posteriori probabilities are
equal to the a priori probabilities independently of the values of these.” Based on this,
we give the following definition for perfect secrecy.

Definition 5 (Perfect secrecy) Let C be the encryption of message M using key K.
Perfect secrecy is provided if and only if

Pujc(mle) = Pa(m), (6.8)

for all m and c. o

3p. 685in[83]
4pp. 679-680 in [83]. Some of the notations have been changed to correspond to the notations of this
thesis

66 6. Secrecy Systems and Information Theory

Using Bayes’ theorem, this is equivalent to Pcyas(c|m) = Pc(c) for all m and ¢
(P (m) # 0). This definition is used to prove whether or not systems provide perfect
secrecy.

Many textbooks and articles [100], [93], [62] define perfect secrecy in a system
where it holds that the mutual information between message and ciphertext is zero,
e.g. I(M;C) = 0. Based on probability theory, it is easy to show that these two
definitions are equivalent [36], therefore perfect secrecy is provided if and only if
H(M|C) = H(M) (see appendix B). When defining perfect secrecy for mobile
code, we will use the notation with entropies, but here in definition 5 probabilities are
used to denote the original definition given by Shannon.

According to Shannon, the definition of perfect secrecy® can be interpreted as "the
total probability of all keys that transform m; into a given cryptogram c is equal to
that of all keys transforming m; into the same c for all m;, m; and ¢.” The definition
of perfect secrecy leads to a number of important observations.

First, looking at the definition for perfect secrecy where I(M;C) = 0, e.g.
H(M) = H(M|C), we can also interpret it as follows. Knowing the ciphertext
will on average not contribute to knowledge of the message. Therefore, in a system
where perfect secrecy is provided, on average knowing the ciphertext will not help the
adversary to obtain the plaintext.

A second observation is that the definition of perfect secrecy only considers a
ciphertext-only attack. In the definition, the adversary may have access to the cipher-
text, but the case is not considered where he may have access to a part of the message
and its corresponding ciphertext. This observation is important as in the mobile code
privacy model plaintext attacks should be taken into account.

Furthermore, a third observation is that the definition of perfect secrecy provides
information on the minimum number of keys required to provide perfect secrecy.
Shannon shows that, because decryption with a specific key must always lead to a
unique solution, the number of different keys must be at least as large as that of the
messages to provide perfect secrecy®. Assume a fixed key, connecting each m to
a cryptogram. Then in order to obtain a unique decryption, one needs at least as
many cryptograms as plaintexts. Furthermore, it holds that in case of perfect secrecy
Peyn(cjlm;) = Po(cj) > 0 for any of these cryptograms and any message. For
any other message m,, it must also hold that Pc/(cjlmy) = Po(en) > 0, therefore
some other key must connect ¢; and m,,. Obviously this must hold for any u; hence
the number of keys must at least be equal to the number of messages.

The fourth observation is that using the definition of perfect secrecy a minimum
average level of uncertainty for the keys can be derived in case perfect secrecy is
provided. A lower bound on the uncertainty of the key can be set for systems that
provide perfect secrecy. An informal reasoning of this lower bound is described by

5pp. 680-681 in[83]
6p. 681in[83]

6.3. Perfect Secrecy 67

Shannon’, where he states that the entropy of a message is at most logn (n = |M|)
if all messages are equiprobable. This information must be hidden completely, which
can only be done if the key uncertainty is at least log n. He concludes that there is a
limit to what can be obtained given a uncertainty in the key, namely that the amount of
uncertainty introduced into the solution cannot be greater than the key uncertainty®.

In many textbooks and articles, this has been formalized as follows [100], [91],
[62], [61].

Theorem 1 When perfect secrecy is provided, then entropies of K and M are related
as:
H(K)> H(M). (6.9)

<

Proof. The conditional entropy H (K, M, C') can be written as:

H(K|M,C)=H(K,M|C)— H(M|C), (6.10)
and H(K|M, C) can be written as
H(K,M|C)=H(M|K,C)+ H(K|C). (6.11)
Substituting (6.11) in (6.10) and using H (M |K, C') = 0 gives:
H(K|M,C)=H(K|C)— H(M|C). (6.12)

A property of entropy is that it is always nonnegative, therefore H(K|M,C) > 0
and thus
H(K|C)> H(M|C).
Furthermore, it always holds that H(K) > H(K|C), hence
H(K) > H(M|C).

In case of perfect secrecy, H(M|C') = H(M), which concludes the theorem’s proof.
O

Hence, when the uncertainty of the key is greater than the uncertainty of the plain-
text, perfect secrecy can be provided. If all messages are equiprobable, the maximum
uncertainty on M is achieved. This implies that the key space must be larger than or
equal to the message space in order to be able to fulfil inequality (6.9). However, it
must be noted that when H (K) > H (M), this does not mean that perfect secrecy is
provided. It can only be stated, from theorem 1 that when H(K) < H (M), itis not
possible to provide perfect secrecy.

However, when H(K) > H (M), this again does not imply that perfect secrecy is
provided.

When perfect secrecy is provided in the special case where || = |[M| = [C|, two
characteristics are present:

7p. 682in [83]. Shannon describes this result by using the example with maximum value of H(M) and
from this the general principle follows.
8Where "solution”is the message in our case.

68 6. Secrecy Systems and Information Theory

1. Each message is connected to each cryptogram by exactly one line.
2. All keys are equally likely.

Hence the matrix representation of the system is a Latin square.

Other textbooks and articles have extended the above result and provide formal
proofs [89], [86]. They extend them by showing that not only perfect secrecy is char-
acterized by these two properties but that the opposite holds as well. Both books claim
this extended result to be Shannon’s; however, Shannon’s paper only proves the state-
ment in one direction. This result will be important for an example of perfect secrecy
for mobile code and therefore the proof is given here.

Theorem 2 Let (M, C, K') denote a cryptosystem with | M| = |C| = | K|, where | M|
denotes the total number of possible values m € M can have and Py, (m) > 0 for all
m. Then the cryptosystem provides perfect secrecy if and only if

« every key is used with equal probability ﬁ
« for eachm € M and ¢ € C there is a unique key k € K such that E(m) = c.

<&

Proof. Assume that the system provides perfect secrecy and that it is possible to find
two keys such that
Ey, (m) = Ey, (m). (6.13)

Furthermore, it is given that |[M| = |C| = |K|. This implies that given a particular
ciphertext, the maximum number of correct corresponding plaintexts is | KC|. Otherwise
a correct unique decryption is not guaranteed.

When (6.13) is true, this implies that a message and corresponding ciphertext can
be found where it holds that Py;c(Er(m) = ¢) = 0. In case of perfect secrecy,
this is not allowed, as in that particular case Pysc(m|c) # Pa(m). This contra-
dicts (6.13). Therefore it is not possible to find two different keys k1, k2 such that
Eyx, (m) = Ex,(m) when perfect secrecy is provided. Hence, for all m € M and
¢ € C, there is exactly one k € K such that E(m) = c. It needs to be shown that

1
Py (k) = IS forall k € K.

For a given ¢ € C and perfect secrecy, the probability of a message m; can be ex-
pressed as:

Pr(m;) = Pujo(milc) (6.14)
~ Popu(clmi) Pa(m;)
= (o) : (6.15)

The previous shows that for each key m;, there is a key k; such that Ey, (m;) = c.
The probability Pcja(c|m;) is determined by the probability of the key, hence

Prr(my) = Polc)

(6.16)

6.3. Perfect Secrecy 69

Hence, Po(c¢) = Pk(k;) for all . This implies that the keys are used with equal
probability, therefore P (k;) = |_11q for all <.

To prove the opposite direction, we must show that given the requirements to the
system (every key is used with equal probability and for each m € M and ¢ € C there
is a unique key & such that E(m) = c), perfect secrecy will be provided. The joint
probability Py (m, c) is

Pyrc(m,) = Pojpr(clm)Pa(m),

where Poyas(clm) = Pr(k), as the ciphertext ¢ € C is uniquely determined by & € K
when m € M is given, hence

1
Pyre(m, e) = P (k)Py(m) = WPM(W)-
Furthermore, the probability of a ciphertext c is the sum of the probabilities of all pos-
sible combinations of &£ and m that results in a particular c. As all keys are used with
equal probability and for each m and c there is a unique key & such that E(m) = ¢,
the probability of a ciphertext is given by

1
Pe(e)=) e P m)- (6.17)
meM
The Zme/\/t PM(m) =1, hence PC(C) — l%q

The conditional probability Py (m|c) can then be expressed as

o Penleom) _ pgPulm)
Py (mle) = Pl ﬁ = Py(m).

Hence, perfect secrecy is provided. O

An example of an encryption algorithm that fulfills theorem 2 (and therefore pro-
vides perfect secrecy) is the so-called one-time pad, patented by Vernam [94] in 1917.
A message m is chosen and represented as digits corresponding to the alphabet used
with cardinality n (if ordinary letters are used, *A’ is represented by 1, etc.). Atrandom
a key is selected of the same length as the message m. To compute the ciphertext, an
addition between plaintext and the key takes place. Let message m consist of r sym-
bols, m = ajas...a,, and key of » symbols k = b1bs ... b,, then the encryption is
defined as:

Er(m) = (a1 + by mod n,az + b mod n, ..., a, + b, mod n). (6.18)

Decryption is the inverse operation, e.g. subtraction of the ciphertext and key. Figure
6.2 shows a graphical representation of the one-time pad. Each message and cipher
text is connected by exactly one line (the key).

It can easily be proven that the one-time pad provides perfect secrecy according
to Shannon’s definition of perfect secrecy. The definition of perfect secrecy is only

70 6. Secrecy Systems and Information Theory

3

Figure 6.2: Visual representation of the one-time pad. Every message-ciphertext pair
is connected by exactly one key

concerned with being resistant against ciphertext-only attacks, it does not provide in-
formation whether or not the one-time pad is resistant against plaintext attacks.

Moreover, the one-time pad is vulnerable to known-plaintext attacks. In case the
attacker knows that multiple messages are encrypted using the same key, he needs
only one message-ciphertext pair to compute all plaintexts. Therefore, the key must
be chosen at random each time a message is to be encrypted.

The reasoning that in order to fulfill Shannon’s definition of perfect secrecy, dif-
ferent keys must be used for each encryption because the one-time pad is vulnerable to
plaintext attacks is not correct as is done in [89]. It is true that in order to fulfill Shan-
non’s definition of perfect secrecy, each time an encryption must to be done, a new
key needs to be generated at random, but the reason is not the vulnerability to plaintext
attacks as plaintext attacks are not considered in the definition of perfect secrecy.

The reason why a new key must be selected for each encryption to fulfill the def-
inition of perfect secrecy is the following. Consider two messages m; and ms. Each
of these messages of length r are encrypted using keys k1 and k2, respectively. If we
concatenate these two messages (and therefore concatenate the keys &, and k), the
result is a third message m3 = m1||mo (and k3 = ki||k2) of length 2. The uncer-
tainty of a message of length » is log r (given that each symbol in a message has an
equal probability of occurring). The uncertainty of the concatenated message is then
2logr, as my and my are chosen independently from each other. The same holds for
the keys. If these two keys are chosen independently, the uncertainty of the concate-
nated key is 2logr. However, when the keys for messages m and mo are chosen
to be equal on purpose, k- is completely dependent on &4, and only k; contributes to
the uncertainty of ks3; the entropy of the key is in this case only logr. In this case
H(K) < H(M), and perfect secrecy cannot be provided. Therefore, k; and ko, must
be chosen independently from each other.

6.4. Unicity Distance 71

6.4 Unicity Distance

The definition of perfect secrecy does not consider the length of the ciphertext. When
perfect secrecy is provided, it is not relevant whether the attacker has access to half of
the ciphertext or to the full length; he is not capable of obtaining the corresponding
message. In ciphers where perfect secrecy is not provided, it is easy to imagine that the
cryptanalyst will be able to obtain more knowledge on the key when the intercepted
ciphertext is longer. To be able to provide a measure of the secrecy level, we need to
describe the uncertainty of the key depending on the length of the ciphertext.

The length of the ciphertext where the key equivocation, H (K|C'), becomes zero
is called the unicity distance.

Definition 6 (Unicity distance (ciphertext-only attacks)) Let

(M*,CF, K) be a cryptosystem where Ex (M%) = CF is the encryption of message
M (of length L) based on key K resulting in ciphertext C~ (of length L). The unicity
distance is defined as UD = min{L € N|H(K|CL) = 0}. o

The set {L € N|H(K|CE) = 0} consists of all lengths of ciphertext such that
H(K|CY) = 0. The length with the minimum value is the unicity distance.

When the ciphertext length is equal to or larger than the unicity distance, on aver-
age there is a unique solution to determine the key.

Note that the unicity distance is expressed in terms of length of ciphertext whether
this length is expressed in bits or words (consisting of multiple bits) or another unit. If
the encryption is performed on a word-to-word basis, the unicity distance is expressed
in words. It is remarked here that for the definition of the unicity distance the under-
lying encryption algorithm is not relevant (it is only relevant in the case of computing
the value of the unicity distance).

There are different approaches in the literature to determine the unicity distance.
The original one (written by Shannon [83]) makes use of the random cipher model.
Hellman [46] extends Shannon’s approach as he determines the average number of
spurious key decipherments (the number of possible keys that lead to a meaningful but
incorrect message) and provides an upper bound on the probability that the number of
actual spurious keys differs (in the sense that there are less spurious keys than average
spurious keys) from the average number for spurious key decipherments. Stinson
[89] and Smart [86] also follow this approach of spurious keys. In [96] and [91],
the unicity distance is determined at the more conceptual level of entropies. First
Shannon’s approach is given, followed by the approach of Stinson [89], and finally
the approach of [91] and [96] is described. These three approaches are then analyzed,
and the one is chosen, which estimates the unicity distance most accurately.

6.4.1 Approach: Shannon

Shannon described the equivocation characteristic for the random cipher model and
derived the unicity distance for this model. The random cipher model describes an
ensemble of ciphers and is described as follows®.

9p. 691 in [83]. Again here we use different notations that are conform to those in the rest of this thesis

72 6. Secrecy Systems and Information Theory

Messages Cipher texts

A9

Figure 6.3: An example of the representation for a random cipher.

1. The number of possible messages of length L is G = 27N thus Ry = log, |.A|,
where |.A] is the number of symbols in the alphabet. The number of possible
ciphertexts of length L is also assumed to be G.

2. The messages of length L can be divided into two groups. The first group is the
group of likely messages (or meaningful messages) and can be approximated
well by a uniform distribution. The second group contains messages, which are
unlikely and the total probability of this group is negligibly small. The number
of messages in the first group is W = 27L where R = % (the entropy of
the message source per symbol).

3. An easy way to imagine the cryptosystem is as a series of lines that connects
the messages and ciphertexts. Each line represents a key. This is shown in
figure 6.3. The total number of different keys is denoted by ~ and all keys
are equiprobable. Furthermore, the letter r is introduced, which represents the
number of keys arriving at a particular ciphertext that have their corresponding
plaintext in the set of meaningful messages, hence the number of spurious keys
is » — 1. The random cipher is actually a whole ensemble of ciphers and the
equivocation is the average equivocation for this cipher.

Theorem 3 (Unicity distance (Shannon)) Let C be the encryption of message M us-
ing key K. Based on the random cipher model, the unicity distance is given by

_ H(K)
UD~ =5, (6.19)

H P . log G—log W
where D is the redundancy of the original language per symbol; D = =&=Z—C&—=,

where G and W are the number of messages and the number of meaningful messages,
respectively.

6.4. Unicity Distance 73

Proof. Using equation (6.4), the key equivocation is given by

H(K|C) ==Y Pyjc(kle)Pc(c) log Prc(klc). (6.20)
keK ceC

The probability pc(¢) must be determined.
The probability that at a specific ciphertext » lines come from the meaningful
messages can be expressed as:

OECH" e

Hence, the expected value of r becomes:

z:; C) <g>r (1 a %)Mﬂ " (6.22)

In case a ciphertext with such lines is intercepted, the conditional entropy is log r.
The probability that such a ciphertext is intercepted is ;”V—% because this ciphertext can
be generated by r keys from the set of high probability messages each with probability
Gﬂv. Therefore, the conditional entropy is given by:

H(K|C) = vc% i: (Z) (g) (1 - %)wnogr. (6.23)

r=1

Equation (6.23) can be simplified, based on some assumptions. Assume that - is large.
When the expected value of r is given by 7 = % the variation of log r over the range
where the binomial distribution assumes large values will be small. Therefore, logr
can be replaced by log 7. Using this and substituting the expected value as expressed

in equation (6.22) by % in equation (6.23) leads to
H(K|C) = logW — log G + log~. (6.24)

Let D be the redundancy per letter of the original language (D = loaG-loa Wy: then
(6.24) evolves in
H(K|C) ~ H(K) - DL, (6.25)

where L is the length of the ciphertext.
When it is assumed that 7 is small compared to +, it is possible to approximate the
binomial distribution by a Poisson distribution. Then

-\
y _ e A
< >qu” TR
r d

where \ = Y. Substituting this in (6.23) gives

IO
H(K|C)~ Xe*)‘zﬁrlogr.
7!

74 6. Secrecy Systems and Information Theory

To obtain a simpler expression, » can be replaced by r + 1:
H(K|C)~ e i Ao (r+1)
~ - T'! g)

which may be used in the region where X is near unity. When A <« 1, H(K|C) can
be approximated by only taking the term » = 1 (as that is the main contributor to
H(K|C) into account; all other terms are negligible). Then,

H(K|C) ~ e *Alog2
~ Alog?2
~ 271Plog2. (6.26)

When L = 0 H(K|C) = H(K) and it decreases linearly according to (6.25), e.g.
with a slope of — D, to the neighborhood of L. = %. Then a short transition region
follows, after which H (K|C') will act like equation (6.26).

Based on this, the unicity distance can be calculated. This is the distance where
H (K |C') approaches zero for the first time, hence for the random cipher this is roughly
H(K) O

D

6.4.2 Approach: Stinson

Hellman extended Shannon’s result on the unicity distance [46] but first showed that
a slightly different approach leads to the same approximation for the unicity distance.
He introduced the concept of spurious keys. Spurious keys are keys that are candidates
for the correct key, but are not the real one. When the number of spurious keys is equal
to zero, only one key remains as a candidate and that is the correct one, hence the
unicity distance is given by the minimum length of the ciphertext, where the number
of spurious keys is equal to zero. This approach differs from Shannon’s approach
in the sense that instead of determining when H(K|C) = 0, it determines when
the number of spurious keys is on average equal to zero. These two approaches are
equivalent, but the accuracy of the result depends on the estimation of the redundancy.
Stinson [89] also uses this concept to determine the unicity distance. The approach
given by Stinson will be explained here as to determine the unicity distance we will
refer to it elsewhere in this thesis.

In Stinson’s derivation for the unicity distance, an assumption is made with respect
to the message and the language model used. Here, Stinson’s theorem is given without
proof as it is followed by an improvement of this theorem where this assumption has
not been made.

Definition 7 Let M’ represent a message of L symbols. The entropy of a natural
language is defined as:
H(M"
chmg = Llim 7()

oo L7

(6.27)

6.4. Unicity Distance 75

and the redundancy of the language is defined as

Rla'rbg =1- (628)

where A represents the set of symbols in the language.

Corollary 2 (Unicity distance (Stinson)) Let C be the encryption of message M us-
ing key K. The unicity distance is given by

H(K)

UD ~ ——MM——.
Rignglog | Al

(6.29)

<

In the following theorem the parameter ¢ is introduced that provides a measure
until what extent a message corresponds to the language model, e.g. it’s statistics.
In the case that the characteristics of a message of length L correspond exactly to the
language statistics, the entropy of that message will be L- H,,,,,. However, because not
all messages fulfil these characteristics accurately (such as names and short words),
there will be a difference with respect to the ideal case, e.g. the entropy of a message
M of length L can be expressed as:

LHigng — € < H(M") < LHjqng — €. (6.30)

This is incorporated in the following theorem.

Theorem 4 Let C be the encryption of message M using key K. The unicity distance
is given by
H(K H(K
1og(2 ()fe) <UD < log(2 (>+e)
Rlang IOg |-A| o o Rlang IOg |-A| 7
where R;qng represents the redundancy of the language and A represents the set of
symbols used in the original language.

(6.31)

Proof. The set of plaintext messages is divided in two subsets of meaningful messages
and meaningless messages, where the elements of the set of meaningless messages
occur with negligible probability. Let s; be the average number of spurious keys
over all ciphertexts of length L and u(c) represents the number of keys for which ¢
is the encryption of a meaningful string of plaintext of length L. As the meaningless
messages have a negligible probability of occurring, the parameter p(c) can also be
interpreted as the number of candidate keys when a particular ciphertext is given. With
these parameters the average number of spurious keys can be computed. Note that the
number of spurious keys for a particular ciphertext is u(c) — 1, as of all the candidate
keys, one will be correct and the rest incorrect. Then the average number of spurious
keys over all possible ciphertexts of length L can be expressed as

se=Y Po(e)(u(e) - 1), (6.32)

76 6. Secrecy Systems and Information Theory

where C* represents the set of ciphertexts consisting of L symbols. Using the fact that
> eccr Po(c) = 1, equation (6.32) can be written as:

sL= Y [Pe(o)ulc)] - 1. (6.33)
ceclk

To determine the unicity distance we need an expression for H(K|C*), where C*
denotes a ciphertext of length L.

H(K,M* C*) = H(C* K, M*) + H(K, M*) (6.34)

Once the key and message are known, the ciphertext can be uniquely determined, e.g.
H(CY|K, ML) = 0. Furthermore, the key is chosen independently of the message,
hence equation (6.34) results in:

H(K,M* C*) = H(K)+ HM?"). (6.35)
Similarly, H(K, ML, C%) can also be expressed as
H(K,M* C*) = HM*|K,C*)+ H(K,C"), (6.36)

where H(M*|K,C*) = 0,hence H(K, M*,Cl) = H(K,C¥). Therefore equation
(6.35) can be rewritten as
H(K,Ct)= HM") + H(K). (6.37)
It follows from (6.37) and (6.5) that:
H(K|Ct) = H(K,CF)-H(CF)
= H(K)+ H(MY) - H(CF). (6.38)
The uncertainty of a message of length L, H(MY), depends on the language

model, which is represented by H,,,4. Parameter e describes until what extend mes-
sage M fulfills this model. The uncertainty of a message is therefore expressed as:

LHlang —e< H(ML) < LHlang — €.

First, consider the case where H (M%) = LHjang + €. The maximum entropy of
the ciphertext is L log|.A|. Then it follows that equation (6.38) can be written as

H(K|C") > H(K) + L(1 - Riang)log | A + ¢ — Llog ||,
which is
H(K|C*) > H(K) — LRjgnglog |A| + €. (6.39)
The conditional entropy H (K |C*) can be related to the number of spurious keys
as follows:
H(K|C") = Y Po(o)H(K]|o). (6.40)

ceck

6.4. Unicity Distance 7

The maximum uncertainty of a key given a particular ciphertext is determined by the
number of candidate keys, e.g. u(c). Hence H(K|c) < log u(c). Therefore equation
(6.40) results in an inequality:

H(E|C") < 3 Po(c)log (). (6.41)

cecl

Hence, Jensen’s inequality can be used:

H(K|C") <log Y Po(c)ule). (6.42)

cect
Combining equations (6.33), (6.39) and (6.42) gives
log(sz, +1) > H(K) — LRjgng log |A| + €.
This can be rewritten as
log s, > 2D 9= LBianglog|Al+e _ (6.43)

The unicity distance is the minimum L for which S, = 0. This is only possible if the
right term of (6.43) is smaller than 0. Hence,

9H(K) | 9—LRiang log|Al+e <1

Rewriting this gives
|A|LRla,ng Z 2H(K)+6

Y

which can be expressed as

log (2H(K) + e)

6.44
Rla'rbg IOg |-A| ()

The unicity distance is the minimum value of L for which s, can be zero. In this
log(2H<K>+e>

case the uncity distance would become I
og | Al

Because the uncertainty of the message has a lower and upper limit, the unicity

distance must also be computed for the lower Iimit which is analogues to the previous
0g (270 —c)

7}%, —TogTA where

derivation. This results in a unicity distance of !
H(M"Y) = LH4ny — € was used.

Now it must be proven that the unicity distance always takes a value between this
upperbound an lowerbound for all ¢, e.g.

log (2H(K) _
og (o) -
Rlang IOg |-A|

log (2H(K) + e)

UD <
o Rlang IOg |-A|

Because the function log x is a monotonic increasing function, this is the case for all
€. [l

78 6. Secrecy Systems and Information Theory

In the above theorem an equivalent approach was given to Stinson’s derivation of
the unicity distance. In the case that e = 0, corollary 2 and theorem 4 are equal. This
is the case where the message corresponds exactly to the language model. When the
message does not correspond exactly to the language model, e.g. ¢ # 0, this will
influence the unicity distance in a positive or negative way. If ¢ < 0, the unicity
distance will be smaller than when ¢ = 0. This is logical because when ¢ is negative,
the uncertainty on the message is smaller and therefore the unicity distance is smaller.

In the remaining of this thesis, we will assume that all messages and functions will
correspond to the language model made of that particular language.

The reason why Stinson’s derivation is used throughout the rest of this thesis is
that his approach to provide an expression of the unicity distance is very accurate as
the complete statistics of a language are taken into account and not only those of a
specific message length, (€.9. Hiang).

6.4.3 Approach: van der Lubbe

The third approach to determine the unicity distance is described in [91] and [96].
This approach can be explained using figure 6.4 [91], which shows how different
uncertainties depend on the length of the ciphertext. For the H(K|CL), where L
gives the length of the ciphertext, its maximum value is H(K). This will be true
when there is no ciphertext (L = 0). The larger the ciphertext, the smaller H(K|CL)
will be. It is possible for this value to become zero when on average it is possible to
uniquely determine the key from a ciphertext of length L.

A second equivocation that is of interest is H (M L|CL). It may be the adversary’s
objective to determine the message given the ciphertext. This line in figure 6.4 is very
similar to the one for H(K|C¥), with one exception; when the ciphertext is small,
there can only be a limited number of messages, hence the uncertainty of H (M~ |C¥)
for small L is small. The larger the ciphertext becomes, the more messages become
possible solutions and H (M~ |CL) will increase until L is sufficiently large for the
ciphertext to contain enough information and H (M *|C*) will no longer increase.
This curve will then coincide with that of the key equivocation, when the ciphertext
will contain sufficient information to retrieve the key from the found plaintext with the
same uncertainty and the other way around.

The third equivocation, H(K |M*%, CT), is similar to H(K|CT) with a maximum
uncertainty of H(K). This equivocation will in general be less than H (K |CT) but
has the same shape.

The length of the ciphertext where H (K |CF) = 0 gives the unicity distance. As
said before, the unicity distance of a cryptosystem is defined as the value of L which
represents the average amount of ciphertext that is required for an opponent to be able
to uniquely compute the key given enough computing time [89]. This value L can be
computed in the following way.

Theorem 5 (Unicity distance (van der Lubbe)) Let C be the encryption of message

6.4. Unicity Distance 79

HKIM(L) ,C(L)

\ 4

Figure 6.4: Equivocations with respect to the length of the ciphertext.

M using key K. The unicity distance is given by

H(K)

UD~ ——F~ 7
log |A| — H(M)’

(6.45)

where |.A| represents the number of symbols in the original alphabet and H (M) the
uncertainty of a message of length 1. o

Proof. Because of the one-to-one relation between ciphertext and plaintext, H (K, CL)
will always be equal to H (K, ML). The conditional entropy H (K |C*) can be written
as:

H(K|C*) = H(K,C")-H(CY),
H(K,M") — H(CF). (6.46)

It holds that H (K, ML) = H(K)+ H(M¥) because the keys and messages are cho-
sen independently from each other. Let |.A| be the number of symbols in the alphabet;
then an upper bound for the uncertainty of the ciphertext is

H(C*) < Llog|A|. (6.47)
Combining (6.46) and (6.47) gives
H(K|C*) > H(K)+ LH(M) — Llog|A|,

80 6. Secrecy Systems and Information Theory

where H(M*) is written as LH (M) because it is assumed that the message source
generates the symbols independently. The uncertainty H (K |C*) can only become
zero if

H(K)

The unicity distance is the minimum length of ciphertext where H(K|C*) can be-
come zero.]

6.4.4 Conclusion

The three described approaches lead to an approximation of the unicity distance. The
approaches by Shannon and van der Lubbe determine the unicity distance by deriving
when H (K |CF) becomes zero. Stinson’s approach determines the average number of
spurious keys. These approximations are equivalent. When they are zero on average
the key can be uniquely determined.

The three approaches all have results of the form UD =~ %, where A is a
measure for the redundancy. The approximation of A determines the accuracy of
the unicity distance. Therefore, all three approaches are equivalent, but for each the
redundancy is determined differently. This redundancy therefore determines which
approach will be chosen to model mabile code.

The approach by van der Lubbe uses H (M) to model the language statistics. As
H (M) represents the uncertainty of a message of length 1, the approach does not take
into account that certain combinations of symbols occur more often than others. For
example, in English, the letter g’ is usually followed by a ’u’; letters are not chosen
independently from each other. Therefore, H(M) is a good start to model a language,
but it does not provide a high level of accuracy.

Shannon’s approach is based on the random cipher model. It is this model that
makes the derivation of the redundancy not very accurate. In the random cipher
model, the messages are divided into two sets, a set of meaningful messages and a
set of meaningless messages. All the elements in the set of meaningful messages have
an equal probability of occurring. This can be seen from the expression for the re-
dundancy (D = '22¢-10sW) ‘and in equation (6.21) this can be seen as a binomial
distribution is used. Obviously, in practice this is once again not true as certain words
have a higher probability of occurring than others. Hence Shannon’s approach does
not model the language very accurately either.

The approach taken by Stinson is more accurate than the other two. The language
is modeled by Hqng, Which takes into account that certain combinations of symbols
occur more frequently than others. Moreover, for the derivation of the unicity distance,
no choice is made about the distribution of the messages. All the language character-
istics are taken into account by H;,,4 and when this is estimated accurately, Stinson’s
approach provides an accurate estimate of the unicity distance. Stinson assumes that
the plaintext fulfils this language model and states therefore that the entropy of a mes-
sage of length L can be approximated by L- H,,,4. If the message is sufficiently large,
it is highly probable that the plaintext will follow the language model. However, if the

6.5. Cryptographic Dilemma 81

plaintext does not consist of many symbols, it may not follow the language model
accurately and this approximation of entropy is not accurate anymore. Therefore, we
propose to use the unicity distance based on Stinson’s approach under the assumption
that the message will be according to the language model.

Because Stinson’s approach uses an accurate language model, this approach will
be used throughout of this thesis. It will be assumed that all messages consist of suffi-
ciently large number of symbols, such that H (M) can be approximated by L - Hjqpg.

6.5 Cryptographic Dilemma

Shannon showed that conditional entropy provides a good measure of the secrecy
of a system, as was also described in section 6.2. Especially the key equivocation,
H(K|C), and message equivocation, H(M|C), are important quantities. It is cru-
cial to have a certain level of uncertainty for the key when the ciphertext is known
and equivalent for the message; otherwise no secrecy is provided. These are the two
equivocations that Shannon finds significant, however, a third equivocation appears to
be important, namely H (K |M, C). This equivocation is especially relevant when a
secrecy level must be provided for a system that must be resistant against a plaintext
attack, because it describes the uncertainty of the key when a message and ciphertext
are given. This is exactly the situation for plaintext attacks. The relation between the
three equivocations is easy by making use of standard properties of entropy as was
described in section 6.2. The relation between the three equivocations is shown in the
following theorem.

Theorem 6 Let C be the encryption of message M using key K. Then the following
is true:
H(K|M,C)=H(K|C)— H(M|C). (6.49)

&
Proof. The joint entropy of the message, ciphertext and key can be written as

H(M,C,K) = H(C,K)+ H(M|C,K), (6.50)
= H(M,C)+ H(K|M,C). (6.51)

Rewriting the joint entropies of the ciphertext and key, and of the message and cipher-
text gives:

H(C,K) = H(C)+ H(K|C), (6.52)
H(M,C) = H(C)+ H(M|C). (6.53)

Using the fact that H (M |C, K') = 0, followed by substitution of (6.52) and (6.53) in
(6.50) and (6.51) leads to equation (6.49). H(M|C, K') = 0 because once the key and
ciphertext are known, the plaintext can be uniquely determined. If this were not the
case, the owner of the ciphertext and corresponding key would not be guaranteed to
obtain the correct plaintext. O

82 6. Secrecy Systems and Information Theory

However, this relation was first explicitly stated in [96]%°, followed by [91]*. In
the latter, it is interpreted for the first time as a dilemma, called the cryptographic
dilemma.

Equation (6.49) can be explained as follows. If an attacker has obtained knowledge
of a ciphertext and the goal is to provide confidentiality to the message, it is required
that the uncertainty of the message is high (given the ciphertext). If a high value
for H(M|C) is obtained equation (6.49) states that H(K|M, C) will be low given
that H(K|C) remains constant. In general if one value of equation (6.49) remains
constant, an increase of the second value will result in a decrease of the third value.
In practice it means that when a system is protected against a ciphertext-only attack
additional (physical) measures must be taken to prevent a plaintext attack.

6.6 Conclusions

This chapter gave several concepts for secrecy systems that make use of informa-
tion theory. The information theoretical approach takes into account an attacker with
unlimited resources. For that reason this approach can be used to derive theoretical
boundaries of the level of secrecy a system can provide. The definition of perfect
secrecy provides this maximum level. If this maximum level cannot be achieved in
practice, the unicity distance provides a good measure of the level of secrecy that can
be provided, depending on the length of the ciphertext that is known by the attacker.

Furthermore, the cryptographic dilemma provides insight into the relation between
protection against ciphertext-only attacks and against plaintext attacks.

These three concepts of perfect secrecy, unicity distance and the cryptographic
dilemma will be used to derive theoretical boundaries for mobile code privacy. As said
in the description of the mobile code privacy model (section 2.3), privacy is seen as
providing confidentiality to mobile code. Because confidentiality is providing secrecy,
concepts like perfect secrecy and the unicity distance provide a good measure of the
level of privacy that can be achieved.

In this chapter, three approaches for determining the unicity distance were given.
Furthermore, an extension to Shannon’s approach was given to take small messages
into account. The approach of Stinson appears to be the most accurate one and will be
used in the remainder of this thesis.

Based on Shannon’s work and the description given in this chapter, it can be con-
cluded that Shannon only considered ciphertext-only attacks. This can be seen in
the different concepts. The definition of perfect secrecy only considers the relation
between knowing a ciphertext or knowing no ciphertext. Only when there is no dif-
ference in the probability to find the correct plaintext, the maximum level of secrecy
is provided. There is no equivalent expression for the maximum level of secrecy that
can be achieved when some plaintext is known to the attacker.

10p. 112. In [96] this equation is given to show the relation between message and key equivocation, but
no interpretation is provided.
pp. 39-40

6.6. Conclusions 83

Furthermore, the unicity distance is defined to be the minimum length of the ci-
phertext for which H(K|C*) = 0. Again, only knowledge of the ciphertext is taken
into account, but no knowledge of (parts of) the plaintext.

Finally, Shannon considers the equivocations H(K|C) and H(M|C) as being
very important, but when plaintext attacks are taken into account H(K|M, C) be-
comes also relevant.

Until the development of mobile code, it was not necessary to extend Shannon’s
work to plaintext attacks as the attacker could be prevented from gaining access to
plaintext by practical means. However, the mobile code privacy model stated that
plaintext attacks cannot always be prevented. Therefore, to derive correct boundaries
for the mobile code privacy model, extending Shannon’s approach towards plaintext
attacks is necessary. The next chapter describes this extension and in the chapters 8
and 9, these results will be applied to mobile code.

84

6. Secrecy Systems and Information Theory

Chapter 7

| nformation Theoretic
Approach for Secrecy Systems
Taking Into Account Plaintext
Attacks

Shannon’s results on perfect secrecy and the unicity distance applied to ciphertext-
only attacks. In the mobile code privacy model, it is stated that plaintext attacks cannot
be completely prevented. To apply Shannon’s results to mobile code, his theory should
first be extended to plaintext attacks. This chapter presents the results of taking into
account plaintext attacks for the concepts of perfect secrecy and the unicity distance.

7.1 Introduction

The mobile code privacy model aims to derive theoretical boundaries of the maximum
level of privacy that can be provided to mobile code. Privacy is provided here by
means of confidentiality to the mobile code. Shannon’s results as discussed in the
previous chapter provide measures to express maximum boundaries of secrecy for
conventional secrecy systems.

Important is the observation in chapter 6 that Shannon’s definitions and results are
generally applicable to ciphertext-only attacks.

For conventional data protection, plaintext attacks were not that relevant as in prac-
tice the attacker could be prevented from access to message-ciphertext pairs, although
the implications can be great. In the mobile code privacy model of section 2.3, it was
stated that plaintext attacks cannot be prevented at all times; therefore they should be
taken into account. It is not true that when encryption algorithms can protect data
against ciphertext-only attacks, such data will also be resistant to plaintext attacks.
For example, when the one-time pad (OTP) is used correctly, for each encryption a
new key is chosen at random, and an attacker is not capable of obtaining a message

86 7. Secrecy Systems and Plaintext Attacks

ciphertext pair. However, if the key were the same for a number of encryptions, no
secrecy would be provided if the attacker had access to a part of the plaintext.

If public key encryption schemes are used, plaintext attacks cannot be prevented.
However, the level of secrecy is then given by using complexity theory as information
theory cannot be applied for public key cryptography (see section 2.3.2)[63].

In this chapter, Shannon’s results and concepts are used to derive theoretical bounds
to secrecy and privacy when plaintext attacks are taken into account, such that the at-
tacker has access to a number of ciphertexts and corresponding plaintexts.

Section 7.2 provides detailed information on the type of attack considered com-
bined with overall assumptions. It will be shown that two types must be distinguished,;
and each of these will be treated separately in section 7.3 and 7.4, respectively. For
both types, perfect secrecy is defined differently and it is shown under which condi-
tion such secrecy can be provided. It will be shown that the usage of the OTP and the
definitions of a plaintext attack and perfect secrecy will determine whether the OTP is
resistant against a plaintext attack. Also new expressions for the unicity distance are
given. Section 7.5 provides conclusions for this chapter.

7.2 Problem Statement and Assumptions

The objective of this chapter is to derive measures that give the limits of the maximum
level of secrecy that can be provided in a secrecy system which takes into account
plaintext attacks.

The results described in this chapter are based on Shannon’s model described in
section 6.1. A message M is encrypted using key K. This results in the cryptogram
C, which can only be correctly decrypted with the correct key K. An attacker has
unlimited computation power and resources available to break the system.

The following attack is considered. The attacker has obtained [pairs of mes-
sages and ciphertexts, and one ciphertext without knowing its corresponding message.
These messages and ciphertexts are all of equal length. The objective of the attacker is
to either determine the key used to obtain the ciphertext or the corresponding message.
This is called a plaintext attack.

No difference is made between a known plaintext and chosen-plaintext attack as
the results do not differ if this distinction is made; therefore just the general problem
of a plaintext attack is addressed. In case of chosen-plaintext attacks, the attacker can
decide what plaintexts are encrypted and he obtains the corresponding ciphertexts. For
a known plaintext attack, the attacker has access to [pairs of (m, ¢), but the plaintexts
of these pairs are not chosen by the attacker. We will explain why results for known
and chosen-plaintext attacks are equal when defining perfect secrecy is defined that
takes these attacks into account.

The following notation will be used to denote that | message- ciphertext-pairs
are known to the attacker. 7 represents the set of all possible message-ciphertext
pairs. Parameter 7" is a random variable that can take on values from the finite set

7.2. Problem Statement and Assumptions 87

7. Each element in 7 consists of a (m, c¢)-pair. The probability Py (T = t,) denotes
the probability that 7" takes the value ¢;, where t; consist of a (m, c)-pair. 7! is a
subset of 7 and consists of I elements. The notation 7" is short for Ty, ..., T}, e.g.
I elements of 7 or all elements of 7. The notation Py (t1, ..., ;) denotes the joint
probability of I (m, c) pairs. How these elements (based on which key) are generated is
dependent on the cryptosystem and will be explained in section 7.3 and 7.4. Note that
capital superscripts denote the number of symbols a message exists of (A~ denotes a
message of L symbols), while a lower case capital superscript denotes the number of
available messages (e.g. 7" denotes [message-ciphertext pairs).

As in the mobile code privacy model, it is assumed that the encryption algorithm
is deterministic. Relevant equivocations that provide a measure of secrecy are then
H(K|C,T"); HM|C,T" and H(K|M,C,T").

Two types of plaintext attacks must be distinguished in order to be able to extend
Shannon’s definition on perfect secrecy. The first is that no limitations are set to
the known message-ciphertext pairs. The attacker has access to [message-ciphertext
pairs and the keys that are used to transform these messages in ciphertexts can all
be different. The pairs of messages and corresponding ciphertexts are generated as
follows.

Protocol1 1. Select a message m; € M.
2. Selectakey k; € K at random.
3. Encrypt message m; using key k;: ¢, = Ey; (m;).

4, 1f (m;, cy) is an element of 7¢~1, repeat steps (1)-(3), else (m, c;,) is added to
the set of (m, c) pairs, resulting in 7.
Steps (1) - (4) are repeated fori = 1,2,...,1.

The protocol results in [pairs of messages and corresponding ciphertexts. The
messages can be selected at random or according to some protocol. The method used
to select the messages determines whether it concerns a chosen or known plaintext
attack. Different indices are used for m, k and ¢, because if message m; is selected
and encrypted resulting in ciphertext c;, encryption with a different key should lead
to co. For both pairs (mq,¢1) and (mq, ¢2) it should be possible to be elements of 7.
Therefore, different indices should be used. The source that generates messages of
length L can be considered memoryless.

The attacker’s objective is to derive the plaintext when a new ciphertext is given,
based on the { known (m, ¢) pairs and to derive the key used for that last encryption.

The second type is that where all the [obtained message-ciphertext pairs and the
new ciphertext have been encrypted using the same key. The objective is to obtain
the key or the message using these / message-ciphertext pairs. It is assumed that the
encryption algorithm is deterministic. If the same key is used for each encryption,
the encryption of one message will always result in the same ciphertext. In the model
the attacker can have access to ciphertexts and their corresponding plaintexts. If the

88 7. Secrecy Systems and Plaintext Attacks

sender encrypts a message twice, the attacker knows the corresponding message based
on a ciphertext he has seen before. Therefore, a sender will encrypt each message at
maximum once. Hence, the source to generate the messages will have the a priori
condition that once a message has been selected, the message will be removed from
the set of messages that can be selected in the futurel. The [pairs of messages and
ciphertexts are in this case generated using protocol 2.

Protocol 2 1. Selectakey k; € K at random.

(a) Select a message m; € M such that m; is not already an element of the
(m, c) pairs in 71,

(b) Encrypt message m; using key k;: ¢, = Ey, (m;).
(c) The pair (m;, cp,) is added to the set of pairs, resulting in 7°%.

The steps (a) - (c) are repeated fori = 1,2, ..., 1.

By following this protocol, a set of [pairs of messages and corresponding cipher-
texts are generated, which are known to the attacker. This type of plaintext attack
where the key is equal for each message-ciphertext pair is the more common approach
to assess encryption schemes with respect to plaintext attacks, because it is usually
considered in public key cryptography. Using this assumption, a measure can be given
of how many times a key can be used while an optimal level of secrecy is still obtained.

For these two types it is then possible to extend Shannon’s definition on perfect
secrecy to overcome the problem of knowledge of a limited number of plaintext-
ciphertext pairs. In the remainder of this chapter, these two types are treated sepa-
rately. First, the general case of no limitations to the keys used is analyzed, followed
by the case where only one key is used.

7.3 Plaintext Attacks Based on Usage of Different Keys

In this section the first type of plaintext attacks is considered. It is assumed that the
attacker has access to I message-ciphertext pairs, and one ciphertext of which the
attacker does not know the original plaintext. The keys used to generate the known
message-ciphertext pairs may be different. This assumption is important as this will
influence the definition of perfect secrecy. It is not necessary for the key used to
generate the ciphertext (of which the corresponding plaintext is not available) to be
one of the keys used to generate the [message-ciphertext pairs.

As an immediate consequence of this assumption the number of available message-
ciphertext pairs to the attacker can be as great as the total number of message-ciphertext
pairs available in the cryptographic system and still a maximum level of secrecy can
be provided. This will be explained in more detail later after we have defined perfect
secrecy.

1This can be compared to "sampling with replacement” as is known from probability theory [56]

7.3. Plaintext Attacks Based on Usage of Different Keys 89

7.3.1 Perfect Secrecy

Section 6.3 gave Shannon’s original definition of perfect secrecy. This definition can
easily be extended to known plaintext attacks where different keys are used. This
results in the following definition.

Definition 8 Let C be the encryption of message M using key K. The encrypted
message has perfect secrecy against a plaintext attack where [message-ciphertext
pairs are given if and only if:

H(M|C,T") = H(M), (7.1)

where T represents [pairs of corresponding plaintexts and ciphertexts. The [(m, c)
pairs are generated following protocol 1. o

The conditional entropy H (M |C, T") represents the average uncertainty of a mes-
sage once its corresponding ciphertext and [message-ciphertext pairs have been given.
It may be the case that c is a part of an element of 7, where 7' represents the set of [
message-ciphertext pairs.

This definition is equivalent to Shannon’s original definition from section 6.3, but
the attacker has more knowledge of the system, therefore perfect secrecy against this
kind of attacks is provided only if the attacker does not gain more certainty about the
plaintext when he knows the ciphertext and [message-ciphertext pairs compared to
the situation where he has no knowledge about these items.

Definition 8 can also be written as: perfect secrecy is guaranteed when it holds that
p(mle,t1, ..., 1) = p(m) for all messages, ciphertexts and all combinations of (m, ¢)
pairs. As this definition must hold for all known (m, ¢) pairs, it is independent of the
type of plaintext attack, known or chosen-plaintext attack. Therefore, the general term
"plaintext attack” may be used. The distinction between chosen and known plaintext
attacks only becomes relevant when discussing a particular encryption algorithm.

7.3.2 Properties of Perfect Secrecy

It is now possible to derive the minimum level for uncertainty of the key when perfect
secrecy is provided.

Theorem 7 A cryptosystem that provides perfect secrecy according to definition 8
will have the characteristic
H(K)> H(M). (7.2)

<

Proof. The joint entropy of the key, message, ciphertext and the [(m, ¢) pairs can be
written as:

H(K,M,C,T"Y = H(K|M,C,T"Y+H(M,C,T"), (7.3)
H(M|K,C,TY + H(K,C,T"), (7.4)

90 7. Secrecy Systems and Plaintext Attacks

where H(M|K,C,T") = 0 as knowledge of the key and ciphertext is sufficient to
obtain the corresponding plaintext. The joint entropies H (M, C,T') and H (K, C, T")
can be written as:

H(M,C,T") = H(M|C,T") + H(C,T"), (7.5)
H(K,C,T") = H(K|C,T")+ H(C,T". (7.6)

The equations (7.3) and (7.4) are equal and substituting equations(7.5) and (7.6) gives:
H(K|M,C,T") = H(K|C,T") — H(M|C,T"). (7.7)
As entropy is always non-negative, equation (7.7) fulfills:
H(K|C, T > HM|C,T").
Using H(K) > H(K|C, T"), the following holds:
H(K) > H(M|C,T"). (7.8)
Based on the definition of perfect secrecy, inequality (7.8) results in theorem 7. O

Theorem 7 gives the lower bound for the uncertainty of the key and this bound is
equal to the bound where plaintext attacks are not taken into account. This is logical as
each time an encryption takes place, a new key is selected, and hence the information
gained from the [(m, ¢) pairs will not contribute to the certainty of the message given
a ciphertext in case of perfect secrecy. If all messages have an equal probability of
occurrence (e.g. when a maximum level of uncertainty is achieved), the key space
must be at least as large as the message space.

It has been proven that the one-time pad (OTP) provides perfect secrecy according
to Shannon’s original definition when each key is used only once. Here it is proven
that the OTP fulfills definition 8 when for each encryption a new key is selected.

Theorem 8 Let (M, C, K) denote a cryptosystem based on the encryption scheme of
the one-time pad, where |[M| = |C| = |K|. Using protocol 1, I message ciphertext
pairs are generated. This system provides perfect secrecy in the sense of definition 8.
<

Proof. In the one-time pad encryption scheme all keys have equal probability, e.g. .

K
Furthermore, for each m € M and ¢ € C there is a unique key such that E(m) :| ‘c
To prove the perfect secrecy it is necessary to show that Py cqi (mlc,ty, ..., t) =
Py (m), which is equivalent to proving H(M|C,T') = H (M), see appendix B. The
joint probability of the ciphertext and [message-ciphertext pairs Pori(c,tq, ..., 1)
can be written as

PCTl (Catla s atl> = PC|Tl (C|t17 s 7tl)PTl (tla s atl>a (79)

The conditional probability of a ciphertext, given [pairs of (m,c), is determined
by how many combinations of (m, k) pairs result in that specific ciphertext. These

7.3. Plaintext Attacks Based on Usage of Different Keys 91

messages and keys are chosen independently following a uniform distribution. The
probability Py i (m = di(c)|t1,...,t;) is equal to one when the (k, c) pair leads
to that particular message and otherwise zero . Then the conditional probability
Peyr(clty, ..., t) can be expressed as

PC‘TL (clty,...,t) =

SN Pagre(mlty, . 1) Prygu (klta, - 1) Pags (m = di(c)|ta, . ., £1)7.10)
keK meM

For a one-time pad, the number of combinations of (k, m) that lead to a specific ci-
phertext is equal to | M|, therefore equation (7.10) can be written as

P, t1, .. t) = —. 7.11
C|Tl(c| 1,) l) |IC| ()
The probability of [(m,c) pairs is - Substitution of this and equation (7.9) in
equation (7.11) gives
1 1
PC L(C,tl,...,tl) =
’ KT
The conditional probability Py (mle, t1, . .., 1;) can be written as
P clm,ti, ... t)) Py (m,ty, ...t
PM‘CTL(m|C,t1,...7f,l) = C‘MTZ(| ! l) MTL(!) (712)

PCTl(cvtlv" '7tl)

The variables M and T are independent, as each message has equal probability to be
chosen once I message-ciphertext pairs are known, therefore

Py (m, t1,. .. ,tl) = PM(m)PTl (tl, . ,f,l). In addition, if ¢ = Ek(m), then
Poyri(clm,ta, ...) = Pg (k) = . Then (7.12) results in

IK]
1 !
L Pyr(m) L
K T
Pyrjeri(mle,t, ... t) = %,
K71
hence Py jori (mle,t1, ..., 1) = Par(m). O

The maximum number of allowed message-ciphertext pairs with which still per-
fect secrecy can be provided is equal to |7| = |M|?. Consider the one-time pad,
where the attacker knows all the possible message-ciphertext pairs. If the attacker re-
ceives a ciphertext, he will not be able to determine the corresponding message as in
his database, the ciphertext will occur |K| times, once for every key. As he does not
know the key, he will not be able to determine the original message.

7.3.3 Unicity Distance

Section 6.4 gave several methods to compute the unicity distance. The unicity distance
was defined as the minimum value of L (length of ciphertext) such that H (K |CE) = 0.
If the opponent has access to this amount of ciphertext on average he will be able to

92 7. Secrecy Systems and Plaintext Attacks

compute the key (given unlimited computation time). Important was the realization
that for a language, there is a set of meaningful and a set of meaningless messages,
i.e., a set of messages with a relatively high probability of occurring versus messages
with a low probability of occurring. Furthermore, the value of the unicity distance is
directly related to the level of redundancy in the language used. In this section, the
unicity distance will be derived for plaintext attacks. The model used here assumes
that the lengths of messages and ciphertexts (the ciphertexts as part of the pairs and
the one the attacker wishes to decipher) are of equal length. The derivation for the
unicity distance described by Stinson [89] will be used as it gives a clear relation be-
tween the number of spurious keys and the redundancy of a language. As in chapter 6,
a cryptographic system can be represented by a set of lines that connects messages to
ciphertexts. The cardinality of the set of plaintext symbols is equal to that of ciphertext
symbols.
The unicity distance taking plaintext attacks into account is given by:

Definition 9 (Unicity distance (plaintext attacks)) Let (M %, CF, K) be a cryptosys-
tem where Ex (M%) = CT is the encryption of message M (of length L) based on
key K resulting in ciphertext C (of length L). Let T denote [pairs of messages and
corresponding ciphertexts. The unicity distance is defined as

UD = min{L € N|JH(K|C*,T") = 0}.

Theorem 9 Let (M, C, K') denote a symmetric encryption scheme such that E, (m) =
c; | pairs of messages and ciphertexts are generated by executing protocol 1. Then the
unicity distance is given by:

H(K)

UD~ ———
Riang log | A|

(7.13)

where Rj.ng represents the redundancy of the plaintext, and A is the set of symbols
used to construct a message. o

Proof. Let u(c, 1) represent the number of candidate keys for a given ciphertext ¢ and
[pairs of (m,c) (based on protocol 1). The number of spurious keys is then for a
particular ciphertext equal to u(c, 1) — 1. The average number of spurious keys for a
given ciphertext of length L as a function of [is then given by

s.(l) = Z Z Z Pogi(e,ty, ..., t)(p(e,l) — 1),

ceC(L)t1€T (L) t,€T (L)

where C(L) and 7 (L) represent the sets of ciphertexts of length L and of message
ciphertext pairs of length L, respectively. This can be represented as

st = > > - Y [Popletr,.. . t)pl o)) -1, (7.14)

c€C(L)t1€T(L) t€T(L)

7.3. Plaintext Attacks Based on Usage of Different Keys 93

because > ccr) 2t er(n) " 2nerr) Pori (et ...)] = 1. To determine
the unicity distance when plaintext attacks are allowed, one should not just con-
sider the conditional entropy H (K |CT) but should also take into account that the
attacker has access to | message-ciphertext pairs. Hence, it is important to determine
H(K|CE, T, the uncertainty of the key given a ciphertext of length L and [(m, c)
pairs (all of length L), H(K|CT,T"). This conditional entropy can be written as

H(K|CF, T = H(K,CcF, T") — H(C®, T. (7.15)

The joint entropy H (K, C*, T"), can be rewritten. The joint entropy
H(K, MY CF T is equal to

H(K,M" ct 1Y = HMYK CETHY+HK CETY (7.16)
H(CH|K,ME, 1Y + H(K, ML, TY (7.17)

The conditional entropy H (M| K, C*, T') is equal to zero as knowledge of the key
and ciphertext makes it possible to compute the corresponding message. The con-
ditional entropy H (C*|K, ML, T') is also equal to zero, because knowledge of the
message and key makes it possible to encrypt the message resulting in C'“. There-
fore, from equations (7.16) and (7.17) and these conditional entropies it is derived that
H(K,Ct,T" = H(K, M, T"). Using this and rewriting the joint entropy in the
form of conditional entropy, equation (7.15) evolves in

H(K|CE*, T = HM* K, T") + H(K,T") — H(C*,T"). (7.18)

According to protocol 1, each time a message must be encrypted, the key is chosen at
random, therefore

H(K,M* 1Y = H(K|M:TY+HME T
H(K)+ H(ME, T (7.19)

The joint entropy H (K, ML, T") can also be written as

H(K,M"TY = HMYK,T)+HK,T"
= HM* KT+ H(K)+ H(TY. (7.20)

The latter is true because the key is chosen at random for each encryption. Combining
equations (7.19) and (7.20) results in

HM* K, T = HM", T" — H(T"). (7.21)
Hence, H(M*®|K,T') = H(ME|T?).
Furthermore, the joint entropies H (K, T") and H(CL,T") can be written as con-

ditional entropies. Equation (7.18) then becomes:

H(K|C*, T = HM"|T") + H(K|T") — H(C*|T?). (7.22)

94 7. Secrecy Systems and Plaintext Attacks

Because the cardinality of the sets for plaintext symbols and ciphertext symbols
is equal, the maximum value H(CZ|T") can take is equal to Llog|.A|, where A is
defined as the set of symbols for the plaintexts. Therefore:

H(C*|T") < Llog|Al. (7.23)

This upper limit of the conditional entropy is equal to the upper limit of H(C*). This
is realistic, because each time, the message is chosen independently from the known
(m, c) pairs, therefore knowledge of the (m, ¢) pairs will not influence the uncertainty
of a certain ciphertext. Using inequality (7.23), equation (7.22) results in:

H(K|Ct, T > H(M"|TY + H(K|T") — Llog|A|. (7.24)

Now an expression for H(M|T") is needed. Because where different keys are cho-
sen for each encryption, each message can also be chosen independently from the
previously selected messages, hence H(ME|T!) = H(MF). Let Hy,p, denote the
entropy of the language per symbol and is defined as Hjung = 1 — Rigng log|A|, s
was given in section 6.4. Provided L is reasonably large, H(M*) can be approxi-
mated by H(M™) ~ LHjuny. Hence, H(ME|TY) = L(1 — Riang) log |.A|, equation
(7.24) results in

H(K|C*,T') > H(K|T") = LRiang log | A|. (7.25)

As this is an expression in terms of the ciphertext length L, we want to relate the num-
ber of spurious keys to H (K |C%, T") because this will relate to the unicity distance.
H(K|CE, T can also be written as:

HE|CHTY= > > o Y Pop(ch ty, . t)H(E|" 1,).
ceC(L)t1€T(L) ©€T(L)
(7.26)
The entropy H(K|c",t1,...,t;) provides the uncertainty of the key given a specific
ciphertext and [pairs of (m, ¢). This uncertainty is determined by the number of can-
didate keys e.g. p(c,1). The maximum value of this conditional entropy is therefore
log(u(e,1)). Therefore, equation (7.26) can be rewritten as:

HECETY< Y > o > Poplch ta,. .. 1) log(p(e,1)). (7.27)

ceC(L)t1€T(L) teT(L)
Using Jensen’s inequality, this results in
H(K|CL7TZ) Slog Z Z Z PCTL tla"'7tl)/j/(cal)
ceC(L)t1€T(L) t,€T(L)
Hence, using equation (7.14), it results in

H(K|CE,T" <log(5.(1) +1). (7.28)

7.4. Plaintext Attacks Based on Usage of Identical Keys 95

Combining equations (7.25) and (7.28) results in a relation between the ciphertext
length and the average number of spurious keys:

log(51,(1) +1) > H(K|T') — LRjang log | A.
Then the average number of spurious keys becomes

oH(K|T")
s(l) > m - (7.29)
Furthermore, the choice of keys is independent from the I (m,c) pairs, therefore
H(K|T") = H(K), the average number of spurious keys becomes

~ 9H(K)
SL(l) Z |A|Lle,,g -
The unicity distance is given by the minimum value of L for which s, (1) can be zero,
hence the unicity distance is equation (7.13).

O

Equation (7.13) is equal to the unicity distance, as was derived in section 6.4 where
no plaintext attack was allowed. This can be explained as follows. The attacker will
gain more knowledge through this access to [(m, ¢) pairs, but because these pairs are
generated with keys that randomly selected for each encryption, they will not provide
extra knowledge on the ciphertext of which the attacker wants to compute the key.
This results in the same expression for the unicity distance as that where the attacker
does not know the (m, ¢) pairs. If all keys are equiprobable H (K') can be replaced by
log |K].

7.3.4 Conclusions

In this section, Shannon’s secrecy model was adapted such that it takes into account
that an attacker may have access to a number of message-ciphertext pairs. However,
for each encryption a new key is generated at random. Because of this assumption,
the requirement to obtain perfect secrecy is equal to Shannon’s original requirement.
Equivalently, the unicity distance is expressed by the same equation used in the model
where plaintext attacks are not taken into account.

Concluding, it can be said that when keys are chosen independently for each en-
cryption, terms like unicity distance and perfect secrecy are independent from an at-
tacker’s access to previously encrypted messages and their corresponding ciphertexts.

7.4 Plaintext Attacks Based on Usage of | dentical Keys

This section shows how the original definition of perfect secrecy can be extended to
include plaintext attacks, but here the known message-ciphertext pairs are generated
using one key. These pairs are generated using protocol 2. A new definition of perfect

96 7. Secrecy Systems and Plaintext Attacks

secrecy must be given, as it will be shown that Shannon’s original definition will
not be adequate anymore. Several options for this extended definition are explored
and arguments are given why one particular definition for perfect secrecy has been
chosen. Then we will derive the number of keys necessary related to the number of
possible messages and of known message-ciphertext pairs. Using this, we will then
give an example of such a system and provide proof of perfect secrecy. Similar to
the previous section, the unicity distance is determined to give the minimal length
of ciphertext that must be available on average to be able to uniquely determine the
corresponding key.

7.4.1 Defi nition of Maximum Secrecy

When plaintext attacks, based on one key, are taken into account, the definition of
perfect secrecy is

Definition 10 (Perfect secrecy.) Let C be the encryption of a message M using key
K. The encrypted message has perfect secrecy against a plaintext attack where [
message-ciphertext pairs are given if and only if

H(M|C,T" = H(M), (7.30)

where T represents [pairs of corresponding plaintext - ciphertext pairs, generated
following protocol 2.

The definition of perfect secrecy states that finding the correct message is inde-
pendent of acquired knowledge (of ciphertext and message-ciphertext pairs). This
corresponds to the definitions of perfect secrecy given previously. However, the defi-
nition of perfect secrecy is only a useful measure of a level of secrecy if this level can
be achieved in practice. For the previous definitions of prefect secrecy, examples such
as the one-time pad can be given that provide this level of secrecy.

In the case of definition 10, however, it is impossible to design a system that sat-
isfies this definition. It would mean that for the attacker, it does not make a difference
whether or not he has access to these I message-ciphertext pairs and the extra cipher-
text; the uncertainty of finding the correct message will not change. In section 7.2, it
is stated that it is assumed that the encryption algorithm is deterministic. This means
that when the attacker receives a ciphertext that corresponds to a ciphertext in the I
message ciphertext pairs, he knows the corresponding plaintext. In that case no un-
certainty exists about the plaintext, hence the knowledge of these I (m, c¢)-pairs does
influence the probabilities for the plaintexts. In the case where ciphertext C is also
part of an element in 7!, knowledge of C will influence the uncertainty of the mes-
sage, therefore in these cases, Pyscri (M|C,T") # Py (M). This means that in
theory, equation (7.30) cannot be fulfilled, and therefore the maximum level that can
be achieved in practice is less than perfect secrecy.

To provide a measure for the level of secrecy we need a new definition that defines
the maximum level of secrecy that can be achieved when plaintext attacks are taken
into account. The definition of the maximum level of secrecy that can be achieved is

7.4. Plaintext Attacks Based on Usage of Identical Keys 97

Definition 11 (Maximum secrecy) Let C be the encryption of a message M using
key K. The encrypted message has perfect secrecy against a plaintext attack when [
message-ciphertext pairs are given if and only if

H(M|C,T") = H(M|T"), (7.31)

where T represents [pairs of corresponding plaintext - ciphertext pairs, generated
following protocol 2.

When maximum secrecy is provided, the probability of obtaining the correct mes-
sage is independent of knowledge of the ciphertext, but dependent on knowledge of
the | message ciphertext pairs. Because all known messages are encrypted using the
same key, the number of candidates for the correct key will decrease when more of the
(m, c) pairs are known. Therefore, the maximum level of secrecy that can be achieved
depends on the number of known (m, ¢) pairs.

Definition 11 states that the ciphertext is independent of the message in case of
maximum secrecy.

Note that there are situations where definition 11 is fulfilled but no secrecy is
available. When the attacker has access to | M| — 1 pairs of messages and ciphertexts,
there is no secrecy with respect to a new ciphertext. If this new ciphertext is part of
one of the known pairs, the message is known and if this is not the case, only one
message is candidate as that is the only message that is not an element of the known
pairs.

In the remainder of this thesis, definition 11 will be used to determine the maxi-
mum level of secrecy taking into account plaintext attacks when only one key is used
to encrypt the various messages.

7.4.2 Properties of Maximum Secrecy

This new definition of maximum secrecy obviously has implications for the require-
ments of a secrecy system that is to achieve this level of security. The following
theorem can be derived from this definition.

Theorem 10 A cryptosystem that provides maximum secrecy according to definition
11, will have the characteristic

H(K)> H(M|T". (7.32)
<&
Proof. Using the general properties of entropy, the following equations can be set up:

H(K,M,T' C) H(K|M,T',C)+ H(M,T',C) (7.33)

= HM|K,T',C)+ H(K,T',C). (7.34)

98 7. Secrecy Systems and Plaintext Attacks

Combining equations (7.33) and (7.34) and using the fact that H (M |K,T!,C) = 0
gives
H(K|M,T',C) = H(K|T',C) — H(M|T'",C). (7.35)

The measure of information is always non-negative, therefore H (K |M, T, C) > 0.
This results in
H(K|T',C) > H(M|T',). (7.36)

Because H(K) > H(K|T!,C), itis true that:
H(K)> H(M|T',C).
In case of perfect secrecy, H(M|T!,C) = H(M|T"); this means that:
H(K)> H(M|T"). (7.37)
g

Inequality (7.32) states that when maximum secrecy is achieved, the uncertainty
of the key is equal to or greater than the uncertainty of the message given [message-
ciphertext pairs. It provides a property at the moment [(m, ¢) pairs are known but
not a measure of how many keys are necessary to provide maximum secrecy, as was
the case with perfect secrecy in chapter 6. One can only say that when the attacker
has access to I message - ciphertext pairs and all messages that are not part of 7'
are chosen with equal probability, then the number of candidate keys must be at least
equal to the number of messages that can be chosen, e.g. |M| — L.

Based on the proof of theorem 10 the inequality H (K |T") > H(M|T") will hold
in case maximum secrecy is provided. As H(K|T') > H(K|T',C) and inequality
(7.36) holds, this leads to

H(K|T"Y) > HM|T',C).

If maximum secrecy is provided it means that H (K |T") > H(M|T"). This inequality
provides a minimum bound on the uncertainty of the key when [pairs of messages and
ciphertexts are known. It provides more insight in the number of keys necessary to
provide maximum secrecy. If all messages are equiprobable it means that the number
of candidate keys (for the attacker) when [pairs are known to the attacker should be
equal or larger than the number of possible messages at that point in time.

To derive the total number of keys needed in a secrecy system to provide maximum
secrecy, one must take several observations into account. First, when a system is
resistant against knowledge of at maximum [pairs, it must also be resistant against
knowledge of [— 1 pairs and [— 2 pairs, etc. This is important to derive the minimum
number of keys necessary to achieve maximum secrecy.

Second, it must be clear that an encryption scheme that is resistant against a plain-
text attack, need more keys between one message and ciphertext pair. If this were not
the case, then it would be possible to uniquely determine the key with knowledge of
one plaintext-ciphertext pair as for the OTP. Each message and ciphertext is connected

7.4. Plaintext Attacks Based on Usage of Identical Keys 99

by exactly one line (the key) in figure 6.2. Knowing one (m, c¢) pair results therefore in
knowledge of the key. In the case where multiple keys can be responsible to transform
one message in a particular ciphertext, still uncertainty exists on the used key, which
may prevent correct decryption of a second ciphertext.

The remainder of this section is a discussion on the number of keys necessary
to transform one plaintext into its corresponding ciphertext related to the number of
known message-ciphertext pairs. The reason why the number of keys needs to de-
pendend on the number of message-ciphertext pairs is that the attacker has unlimited
computing power and memory storage. It must therefore be assumed that the attacker
might be able to compute all the possible keys that connect one message to a particular
ciphertext. Only by using multiple keys for one pair one can obtain maximum secrecy
in case of a known plaintext attack.

The parameter n (1) will denote the minimum number of keys between one plain-
text and ciphertext pair such that it is still possible to obtain maximum secrecy when
I (m,c) pairs are available to the attacker. This number depends on the number of
plaintext-ciphertext pairs known to the attacker. The relation between the necessary
number of keys and achieving maximum secrecy is given by the following theorem.

Theorem 11 Let C be the encryption of message M using key K, and |[M| = |C].
The probability of selecting a message is defined as follows.

0 ifme 7!

PIVI|Tl(m|t15"'atl):{ if m ¢ T!

1
[M[-1
For every ¢, at least one key exists to decrypt ¢ that results in a unique message for
that particular key. Before any (m, c) pairs have been made publicly available, all
keys are equiprobable. The minimum number of keys that connect one (m, ¢)-pair is
denoted by (1) such that the total number of keys is || = n(l)|M|. Perfect secrecy
is possible if and only if

l . .
n(z):{ llTizl(llez) :;llzgég M| - 2. 7.38)

<

Proof.

First it is proven that when perfect secrecy is provided, the minimum number of
keys connecting one (m, ¢)-pair is equal to equation (7.38). It must be shown that
when perfect secrecy is provided, n(l) should be of equal value for each (m, c)-pair.
Initially, all keys are equiprobable. It means that when a message is selected, followed
by a key selection; it should be possible to encrypt that message with any key resulting
in a valid ciphertext. In a graph representation as was first shown in section 6.4.1, it
will be the case that from each message an equal number of lines are leaving (e.g.
|KC]). This implies that at each ciphertext an equal number of lines are arriving. If
this were not the case, some ciphertexts would not result in a unique plaintext after
decryption. Therefore, n(l) is equal for each (m, c)-pair.

100 7. Secrecy Systems and Plaintext Attacks

m3

[=2

Figure 7.1: When (m1, ¢1) is a pair known to the attacker, the number of lines between
that pair must be at least 2 as these lines must be divided over the two remaining
ciphertexts in order to obtain perfect secrecy when [= 1.

In case [= 0, no plaintext attacks are allowed and the situation is equal to the
conventional Shannon encryption scheme: n(0) = 1.

A system is designed to be robust against an attack where [(m, c¢) pairs are known.
This means that the system must be capable of resisting attacks where [or less (m, ¢)
pairs are known. Let A(«) denote the number of candidate keys for the attacker when
a (m, c) pairs are known, where o < I. When A\(a) = 1, there is a unique solution
for the key, which means that no security is guaranteed. When A(«) > 1 forall o <1,
the system is resistant against a plaintext attack with I known (m, ¢) pairs. Now it will
be proven what minimum value A(a)) must have, which is directly related to n(l). It
is an iterative process which starts witha = 0uptoa =1+ 1.

Consider the situation of a system designed to be resistant against a plaintext attack
where [(m, c) pairs are known. In case o = 0, this is equal to the conventional case
where no plaintext attack is taken into account, and the number of candidate keys for
a good solution, A(0), is then |XC|. When the attacker has access to one (m, c)-pair,
the number of candidate keys has been reduced to % as only the keys that connect
that particular (m, c)-pair are now possible candidates. Therefore the value for A(1)

will be at least % (see figure 7.1).

When the attacker has access to two (m, c) pairs and A(2) > 1, the number of
keys that were candidate for one (m, c)-pair (e.g. A(1)) must be divided over | M| —1
messages as the message chosen for the first pair cannot be chosen again, hence i /&(lﬂ)l
must be an integer. The minimal number of candidate keys for o = 2 becomes

A(L)

7.4. Plaintext Attacks Based on Usage of Identical Keys 101

This continues until oo = [, where it must still hold that A(I) > 1 as the system is to
be resistant against a plaintext attack where [(m, ¢) pairs are known:
Al —1) n(l)

A

M0 T MI =)

As the system is resistant against [(m, ¢) pairs, it may be the case that A(I + 1) = 1.
The expression for A(I + 1) is

A n(l)
MU= =D T T, M=)

When A\(I+ 1) = 1, this means that there is only one candidate for the correct key and
when A(a) > 1 forall o <, this provides the minimum number of keys between one
message ciphertext pair. Hence in case of perfect secrecy,

n(l) = [, (M| —4) for1<I<|M|-2.

Parameter can only take on values up to | M| — 2, because this is the maximum
number of (m, ¢) pairs allowed to be public while secrecy can still be provided to the
remaining two messages.

Now it is necessary to provide proof in the opposite direction.
The following provides proof that when n(l) is given by equation (7.38) and
the basic conditions of the theorem are met, perfect secrecy is provided, therefore

Py (mlty, ... t) = Paerr(mle, ta, ...). As is defined in the theorem

Pyyri(mlty, ... 1) = ﬁ when m is not part of an element in 7. The condi-
tional probability Py cqi (mle, t1, ..., 1) is equal to the probability of a key & such
that Dy (c) = m when ¢4, ..., ¢ are given. As there are \({) candidates for the key

and [known (m, ¢) pairs only one of these candidates will fulfill this condition for this
new c that is given, hence

PM‘CTL(m|C,t1,...,tl) = W (739)
When the number of keys between one (m, c)-pair is given by n(l) and all keys are
divided equally, then A(«) can be computed as follows: A(1) = n(l) as there are n(l)
candidates for the correct key when one (m, c)-pair is given. A(2) is then equal to the
number of candidates when o = 1, divided over the remaining number of messages.
A1)

M= M-y

Following this reasoning, \({) can be determined and is expressed as

n(l)
M) = —=———. 7.40

102 7. Secrecy Systems and Plaintext Attacks

|
|
2 wN P
o]
I

[N
(=)
|

10 10 107 10 10
Number of Messages

Figure 7.2: The number of keys per (m, ¢) pair necessary related to message length
and known (m, ¢) pairs.

Substituting (7.40) in (7.39) leads to

[T (IM]i) 1
P i(mle,ty, ...) = == 7
wier(mies T : Hé:1 (M| —i) M=
which is equal to Py 7 (mlti, ...,), hence perfect secrecy is provided. O

Figure 7.2 shows the relation between the number of messages and the mini-
mum number of keys necessary to connect one (m, c)-pair when perfect secrecy is
required. The value of parameter [is chosen relatively small to demonstrate the enor-
mous amount of keys needed. Even when [is small (e.g. I = 3) and the number of
messages is equal to a hundred, the number of keys between one message and cipher-
text is already a factor 10* larger than the size of the message space. The one-time
pad is not often used in practice because the key length must be equal to the message
length. Here, the key space must be even larger than the message length, and therefore
this type of system is not practical, even though it provides a high level of secrecy.

In the previous sections we always assumed that when a system is designed such
that maximum secrecy is achieved when an attacker has access to I/ message ciphertext
pairs, this attacker will have access to [(m,c) pairs. However, the case where an
attacker has access to « (« < [) pairs of (m, c¢) when the system is designed for a
maximum of [(m, ¢) pairs is interesting too.

7.4. Plaintext Attacks Based on Usage of Identical Keys 103

10

HKIT())

o L | | | | |
10 20 30 40 50 60 70 80 90 100
Number of (m,c) pairs, |

10
0

Figure 7.3: The relation between H (K |T") and the number of (m, c) pairs.

Figure 7.3 gives the relation between the entropy H (K |T") and the number of
message-ciphertext pairs that are known to the attacker. The cardinality of the mes-
sage space is equal to 100 and the total number of keys in the system is set tot
the level where maximum secrecy is achieved when [has a maximum value. In
this case, the maximum value of [is 98 and therefore the total number of keys is
MITTizy (M =),

The uncertainty of the key given by H (K|T'%) represents the uncertainty of the key
when the humber of message - ciphertext - pairs known to the attacker is o (« < 1).

All keys are chosen at random; hence the uncertainty of the key given « (m, c)
pairs is given by

H(K|T®) = log(A()),

where A(«) represents the number of candidate keys when « (m, ¢) pairs are known.

When « = 0, the number of candidate keys is equal to the total number of keys
IK]. When a = 1, A(«) is reduced to % as was shown in the proof of theorem
11. When 99 pairs of (m, ¢) are known to the attacker, no uncertainty exists about the
message when a ciphertext is given. Note that the messages and ciphertexts in these
pairs are of equal length to the ciphertext of which the attacker wishes to obtain the

corresponding plaintext.

104 7. Secrecy Systems and Plaintext Attacks

7.4.3 Unicity Distance

Similar to section 7.3.3, it is possible to determine the unicity distance if the system is
designed to be resistant against plaintext attacks and the publicly known (m, ¢) pairs
have been generated using the same key. It is assumed that the cardinality of the set
of plaintext symbols is equal to that of ciphertext symbols. The unicity distance is
defined according to definition 9.

Theorem 12 Let (M, C, K) denote a symmetric encryption scheme, where Ey(m) = c.
An attacker knows [message-ciphertext pairs, generated by executing protocol 2.
Then the unicity distance is given by

H(K|T!
U HET)

o B 7.41
Rianglog | Al (7.41)

where | < |[M(L)| and Ryqnq represents the redundancy of the language and A is
the set of symbols used to construct a message. o

Proof.

The proof of this theorem is analogous to the proof of theorem 9, but because the
knowledge of the attacker is based on the execution of protocol 2 instead of protocol
1, several aspects of the proof are not trivial and are pointed out here.

As in the proof of theorem 9, the number of spurious keys is equal to (¢, 1) — 1,
where p(c,1) provides the number of candidate keys given a certain ciphertext and [
pairs of (m, ¢). Equation (7.14) therefore also holds in this case.

Equations (7.16) and (7.17) are based on general characteristics of information
theory and are valid in all cases. Furthermore, H(M%|K,C*,T') is said to be equal
to zero, which also holds in this case as knowledge of the ciphertext and key leads to
the corresponding message, hence

H(K|C*, T = HM*|K,T") + H(K,T") — H(C*,T"). (7.42)

Protocol 2 describes how the [pairs of (m, ¢) are generated. The messages are se-
lected at random with the condition that they should not already be in the set 7%, These
messages are chosen independent from the key, hence H (M *|K, T') = H(M*|T").
Equation (7.42) can then be written as:

H(K|C*, T = HM"|T" + H(K|T") — H(C*|T?). (7.43)

The upperbound for H(CE|T") is Llog |.A| where A represents the cardinality of
the set of symbols for the plaintext, but this is equal to the cardinality of the set of
symbols for the ciphertext. Hence,

H(K|Ct, T > H(M"|TY + H(K|T") — Llog|A|. (7.44)

The entropy H (M (L|T") can be estimated. To compute the entropy of one symbol
of plaintext the language statistics were taken into account. However, the new plain-
text is chosen according to protocol 2, which states that only messages can be chosen

7.4. Plaintext Attacks Based on Usage of Identical Keys 105

that are not part of 7. Only when | < |M(L)], the number of known messages
will not influence the uncertainty of A/Z. Then H(M*|T") = H(M*) and therefore
H(MY|TY = L(1 — Ryang log |A|. Therefore,

H(K|CE,TY > H(K|T") — LRigng) log | Al. (7.45)

The remaining of the proof is equal to the one of theorem 9. The average number of
spurious keys is:
oH(K|T")

gL(l) Z |A|Lle,,g -

(7.46)

The unicity distance is the minimum length of the ciphertext when s,(I) = 0, hence

l
U HET)

o R 7.47
Rla'rbg 1Og |-A| ()

O

The unicity distance is the minimal number of ciphertext symbols such that the
entropy H(K|T"!) equals zero. It provides a measure of the number of symbols that
can be encrypted using the same key such that secrecy still can be provided. In the
case where plaintext attacks are taken into account, the attacker has access to [(m, c)
pairs. When the ciphertext of which he does not know the corresponding plaintext
is of length of unicity distance, and therefore all known messages and corresponding
ciphertexts are of this length too, it means that based on this information it is on
average possible to uniquely determine the correct key.

In general, in case of ciphertext-only attacks the unicity distance will be larger than
in case of plaintext attacks as in the latter, the attacker does not only have information
about one cipher text but also about (m, ¢) pairs.

7.4.4 Conclusions

This section considered the case where the attacker has access to I message ciphertext
pairs and each ciphertext is generated using the same key. A definition of perfect
secrecy was given. However, it is not possible to achieve this level of uncertainty in
practice. Therefore, we defined the maximum level of secrecy.

Based on this definition of maximum secrecy, several properties could be derived.
First, when maximum secrecy is provided, H(K) > H(M|T"). Second, because
the assumption is made that each ciphertext is generated based on the same key, the
number of keys that relate a particular message to a particular ciphertext must be
larger than 1. Finally, when maximum secrecy is achieved, it is possible to derive the
minimum cardinality of the key space. However, the necessary number of keys is so
large that in practice it will not be feasible to achieve the level of maximum secrecy
either.

Finally, an expression for the unicity distance was given. This distance provides
a good measure of how many ciphertexts can be encrypted using the same key while
still being able to provide confidentiality.

106 7. Secrecy Systems and Plaintext Attacks

7.5 Conclusions

This chapter gave several results on the requirements for a secrecy system that must
be resistant against a known plaintext attack. Two types of plaintext attacks were
distinguished. The first one is the type where the known message-ciphertext pairs are
generated using different keys, followed by the type where these pairs are generated
using only one key.

For the first type, it is theoretically possible to achieve perfect secrecy. However,
this is not possible for the second type and for this therefore a maximum level of
secrecy was defined.

Based on perfect secrecy (first type) and maximum secrecy (second type), several
properties of such systems can be derived of which the minimal number of keys is an
important one. Furthermore, we obtained the unicity distance for these two types.

In the next chapter, the theory derived here will be applied to the mobile code
privacy model.

Chapter 8

| nformation Theoretic
Approach for Mobile Code
Privacy M odel

This chapter uses the theory of chapters 6 and 7 to derive theoretical boundaries of the
level of privacy that can be provided in the mobile code privacy model of section 2.3.
Terms like perfect secrecy, maximum level of secrecy and cryptographic dilemma are
used for this purpose.

8.1 Introduction

Section 2.3 described the mobile code privacy model. This model will be used to apply
the information theoretic concepts of the previous chapters. An essential characteris-
tic of the model is the assumption that the attacker has access to unlimited computing
resources and time. Furthermore, mobile code privacy is seen as providing confi-
dentiality to mobile code by means of encryption. Mobile code is represented by a
function F. The function F is encrypted using a key K; G = Ex (F'). The encrypted
function G is then executed with parameter X as input; U = G(X).

Two types of attacks are considered: ciphertext-only attacks and plaintext attacks.
These cases will be treated separately.

This chapter is organized as follows. First an information theoretic approach is
taken to derive the theoretical boundaries of mobile code protection against ciphertext-
only attacks. This is followed by a similar approach for plaintext attacks. Finally,
conclusions are given.

108 8. Mobile Code Privacy

8.2 Ciphertext-only Protection

With ciphertext-only attacks the attacker only has access to ciphertext. The attacker
wants to derive the corresponding plaintext or the key that was used to encrypt the
message. The plain function F' is encrypted using key K, resulting in cipher function
G: Ex(F) = G. The attacker has access to cipher function G, input X and output U.

In the next sections, a definition will be given of perfect secrecy, its properties and
the cryptographic dilemma with respect to the mobile code privacy model. The results
with respect to ciphertext-only attacks were also published in [22].

8.2.1 Perfect Secrecy

Section 6.3 gave Shannon’s definition of perfect secrecy, which was suitable for ciphertext-
only attacks, which is the case here. Perfect secrecy is achieved when knowledge of

the ciphertext does not give the attacker an advantage over an attacker without such
access. A similar definition of perfect secrecy can be given in the case of mobile
code. However, in the mobile code privacy model, the attacker may have access to

the cipher function, but also to some input parameter of the cipher function and the
corresponding output. Perfect secrecy is then defined as follows.

Definition 12 (Perfect secrecy mobile code) Let G be the encryption of mobile code
F using key K. The result of G, using input X, after execution is U. The encrypted
mobile code has perfect secrecy if and only if

H(F|G,X,U) = H(F). (8.1)

It is important that after encryption the code is still executable, as the original
intention is to execute code at a remote location. Therefore, the function G should be
of such a form that when given an input value X an output value, U, can be computed,
e.g. the symbols of G should form a function again. Based on this definition of perfect
secrecy, properties can be derived to provide perfect secrecy.

Theorem 13 A mobile code cryptosystem that provides perfect secrecy will have the
characteristics

H(K)
H(K)

H(F)and (8.2)
H(U|X). (8.3)

(AVARY

Proof.
To prove inequality (8.2), the joint entropy H (K, F, G, X, U) can be written as:

H(K,F,G,X,U) = H(K|F,G,X,U)+H(F,G,X,U) (8.4)
= H(F|K,G,X,U)+ H(K,G,X,U). (8.5)

Combining (8.4) and (8.5), rewriting the joint entropies, and using the fact that when
K and G are known, F' can be computed (e.g. H(F|K,G, X,U) = 0) gives

H(K|F,G,X,U) = H(K|G,X,U)— H(F|G, X, U). (8.6)

8.2. Ciphertext-only Protection 109

Since entropy is non-negative, H(K|F, G, X,U) > 0. Substituting this in (8.6) and
noting that H(A) > H(A|B) and thus H(K) > H(K|G, X, U) results in

H(K) > H(F|G, X,U). (8.7)

Using the definition of perfect secrecy (8.1), equation (8.7) evolves in inequality (8.2).
For the second inequality (8.3), the following equality can be used:

H(K|F,X,U) = H(K|F,X) — HU|F, X), (8.8)

which can be derived in a similar manner as (8.6), but taking into account that
H(U|K, F, X) = 0. Due to the non-negative property of entropy, H (K |F, X, U) > 0.
After substituting this into (8.8), it is clear that

H(K|F,X)> H(U|F, X), (8.9)
and in general it holds that H (K') > H(K|F). Then (8.9) evolves in
H(K) > H(U|F, X). (8.10)
The joint entropy H (F, X, U) can be written as

H(F,X,U) = H(U|F,X)+H(F|X)+ H(X) (8.11)
= H(F|U,X)+ HU|X)+ H(X), (8.12)

which results in
H(U|F,X)+ H(F|X)=HU|X)+ H(F|U, X).
In case of perfect secrecy, H(F|G, X,U) = H(F), therefore
H(F|U, X) = H(F|X) = H(F),

hence
H(U|F,X)=H(U|X). (8.13)

Substituting (8.13) in (8.10) completes the proof. O

Theorem 13 can be interpreted as follows. When the occurrence of all functions
is equiprobable, a maximum for H(F) is reached, e.g. H(F') = log|F]|. In order to
achieve perfect secrecy, it is among others necessary for the key space to be at least as
large as the function space.

The second property (H (K) > H(U|X)) gives a condition on the average uncer-
tainty of the key with respect to the output given a certain input. When U and X are
completely independent (H(U|X) = H(U)) and all possible outputs are equiproba-
ble, the key space must be as large as or larger than the output space /. In most case
this situation where H(U|X) = H(U) is likely to occur as one value of X will not
provide information on the value of U. Only combined with information about G, U
can be determined (H (UG, X) = 0).

110 8. Mobile Code Privacy

8.2.2 Example of Perfect Secrecy.

This section gives an example of an encryption scheme that provides perfect secrecy
to a function. In this example, the set of functions consists of polynomials. A function
is constructed by selecting elements from different sets, and these are combined in a
sequence of which the order of the elements obeys some rules. For example, a plus
operator will always be followed by a number.

The following encryption scheme provides perfect secrecy [22].

Definition 13 (One-time pad for polynomials) (OTPP) Three sets are defined:

* Numbers: N :={0,1,2,3,4,5,6,7,8,9},

* Operators: O := {+, x,—, +},

* Variables: V := {z}.
A function f is defined as a combination of elements of the three sets. The encryption
of f is given by

Ep(f)=fok, (8.14)

where o can be seen as addition defined over the various alphabets. The key is chosen
according to the symbols of the function. If the symbol at position j is an element
of the set IV, then the key at position j will also be an element of the set V. The

encryption operation for set NV is equal to addition mod10. In set O, the encryption
operation o is defined as:

+o+ =X ; —0— = =
+oX =4+ — 0+ = —
Xo+=+ ; +o—=—
XoX =X — o0+ =

The encryption scheme OTPP can be used as follows. Let f(z) be
f(x) = 72 + 42 + 3; then encryption and decryption are respectively:

fl@):Txexr+4xc+3
k(x):24+axxaex3+x+2
gx):94+axxax+T+xx5

and

gx): 94z xax+T+x x5
E(x):24xxaxx3+x+2
fl@):Txexe+4dxaz+3

In the above example it is clear that g(«) can be executed.

Theorem 14 The encryption scheme OTPP provides perfect secrecy for mobile code
if the mobile code is a (set of) polynomial(s).

8.2. Ciphertext-only Protection 111

Proof. To prove perfect secrecy equation (8.1) must hold. This is equivalent to

Pria x,u(flg,z,u) = Pp(f). (8.15)

To compute the probability P x,u(f|g, 2, w) itis important to note that knowl-
edge of (z,) does not contribute extra knowledge to the knowledge of g as (z,u)
is a point on the curve of g. Knowledge of ¢ does not provide knowledge on all
points. Therefore Ppq, x v (flg,2,u) = Ppic(flg). The probability Ppic(f|g) is
determined by the number of keys that decrypts g with result of f. Therefore, the
probability Prc, v (flg, u) can be expressed as:

Prig.xu(flg, wu) = Pi(k)Pr(di(g) = f), (8.16)
keKx

where | K| is the cardinality of K and dj(g) denotes the decryption of g using key k.

For each key, there is an equal probability of occurrence TR Kl

Z Pr(dk(g) = f). (8.17)

keK

Pria xu(flg,x,u)
| |K|

The probability Pr(di(g) = f) can only take the values 1 or 0. Either the key &
is responsible for the transformation of f into ¢ or not. As the transformations are
uniquely defined, only one key per transformation is possible, hence

S" Pr(dilg) = f) = 1. (8.18)
kek
This leads to)
Prig.xu(flg,z,u) = w Pr(f). (8.19)
Concluding, the above system is perfectly secure with respect to f. O

It must be said that it is easy for the attacker to know what type of function has
been encrypted (e.g. whether it is a polynomial and of what degree), but even when
this knowledge is available, perfect secrecy according to definition 12 is still provided
to the mobile code.

Knowledge like that described above is comparable to that obtained when the OTP
is used. There, an attacker can know the length of the message from the length of the
ciphertext. An easy method to prevent the attacker from obtaining this knowledge is
by adding words or plaintext to the text to be encrypted. In mobile code, this can be
done by adding auxiliary polynomials to the polynomials to be encrypted as is shown
in [77].

8.2.3 The Mobile Code Dilemma

Chapter 6 described the cryptographic dilemma, which relates message, key and key
appearance equivocation. In the case of mobile code, various important equivocations

112 8. Mobile Code Privacy

can be related to each other. The relevant equivocations in mobile code are H (K |G),
H(K|F,G), H(F|G) and the conditional entropies related to the extra knowledge
aboutU; e.q9. H(K|F,U), H(F|K,U), H(K|U) and H(F|U). These equivocations
are related such that they result in two dilemmas.

By means of equivocations one can show that text cannot be equally be protected
against all possible attacks at the same time. This results in two dilemmas.

Theorem 15 (Cryptographic dilemmas for mobile code) Let
(F,G, K, Ek(.), Dk (.)) denote a mobile code system protected by encryption, Fx (.),
and decryption, D (.) with key K. Then the following dilemmas exist:
H(K|F,G) = H(K|G)- H(F|G) (8.20)
H(K|F,U) = H(F|K,U)+ H(K|U)—- H(F|U). (8.21)

Proof. To prove (8.20), H(K, F, G) can be written as
H(K,F,G)=H(K|F,G)+ H(F,G)=H(F|K,G) + HK, Q). (8.22)
Using the property H (F| K, G) = 0, (8.22) evolves in:
H(K|F,G)=H(K,G) — H(F,G). (8.23)

Rewriting the joint entropies results in (8.20).
The proof of (8.21) is similar. The entropy H (K, F,U) can be written as

H(K,F,U)=H(K|F,U)+ H(F,U) = H(F|K,U) + H(K,U). (8.24)
Equation (8.24) can be rewritten as

H(K|F,U)=H(F|K,U)+ H(K,U) — H(F,U). (8.25)

After rewriting of the joint entropies, (8.25) results in (8.21). d

The first dilemma (8.20) is equal to Shannon’s original approach and states that
increasing the protection of the system against a known-plaintext attack (H (K| F, G)
will increase) will result in a decrease of protection against a ciphertext-only-attack
(H(F|G) will decrease), when H(K|G) remains constant. The second dilemma
(8.21) combines the knowledge on U and the code to be protected F' and key K.
Increasing the uncertainty of the key when F and U are known immediately results
in the decrease of the entropy of £ when U is known, when H(F|K,U) + H(K|U)
remains constant.

8.2.4 Conclusions

This section applied the information theoretic concepts provided in chapter 6 to the
mobile code privacy model. Only the case of ciphertext-only attacks was considered.
Concepts similar to perfect secrecy and the cryptographic dilemma could be defined
for mobile code. The main difference of mobile code encryption from conventional

8.3. Plaintext Attacks and Mobile Code 113

data encryption is that the input parameter X and U may contribute to knowledge on
the original function.This is the reason why perfect secrecy for mobile code has two
properties and why the cryptographic dilemma is given by two equalities.

In the next section, similar concepts will be derived but for a system to be protected
against plaintext attacks.

8.3 Plaintext Attacks and Mobile Code

Within the mobile code privacy model, plaintext attacks cannot be completely pre-
vented and therefore they must be taken into consideration. They influence the theo-
retical boundaries for mobile code protection. The results are also published in [23].

Chapter 7 described the information theoretic approach for secrecy systems con-
sidering plaintext attacks. A distinction was made between plaintext attacks based on
different keys and attacks based on one key. In practice, the latter is more interesting
as it provides information on how many times a certain key can be used while a level
of secrecy is guaranteed. For this reason, this is the only case that will be considered
to derive theoretical boundaries for the protection of mobile code. The method to gen-
erate the [pairs of functions and corresponding cipher functions is, therefore, equal
to protocol 2 on page 88. Message m is replaced by function f and ciphertext ¢ by
cipher function g. The length of the functions and cipher functions is equal. Then the
following protocol is used to generate a set of [pairs of (f, g).

Protocol 3 1. Selectakey k; € K at random.

(@) Select a message f; € F such that f; is not an element of the (f, g) pairs
in7T1,
(b) Encrypt message m;; using key k;: g = Ex; (fi).
(c) The pair (fi, g) is added to the set of pairs, resulting in 7.
The steps (a) - (c) are repeated fori = 1,2,...,1.

In section 7.4 it was shown that perfect secrecy cannot be provided if text is pro-
tected against plaintext attacks using one key. Therefore the definition of maximum
secrecy was proposed. This concept of maximum secrecy will be used here for mobile
code.

This definition leads to a number of properties a mobile code system needs to
provide maximum secrecy.

8.3.1 Maximum Secrecy

The following definition of maximum secrecy for mobile code is proposed, where the
attacker has access to [pairs of functions and cipher functions. One pair of function
and cipher function is denoted by (£, g); I pairs of (f, g) form the set 7.

Definition 14 (Maximum secrecy) Let GG be the encryption of mobile code F' using
key K. The result of G with input X after execution is U. The encrypted mobile code

114 8. Mobile Code Privacy

has perfect secrecy, in the sense that it is resistant against a plaintext attack where [
(f, g) pairs are known to the attacker, according to protocol 3, if and only if

H(F|G,X,U,T") = H(F|T". (8.26)

<&
This definition states that maximum secrecy is provided if the probability to obtain
the correct function F' is independent of knowledge about its encrypted version G and
the output and input of G. Informally, when the attacker has access to G and U this
will not give him better chances of finding the correct F'. The only parameters that
may provide an advantage are the I (f, g) pairs (e.g. 7%). In equation (8.26) the
term H(F|T") is used for the same reason as H (M |T") in definition 11 (chapter 7)
H(M|T").
When an encryption algorithm provides maximum secrecy according to definition
14, the system will have specific properties.

Theorem 16 A mobile code cryptosystem that provides maximum secrecy has the fol-
lowing characteristics

H(K) > H(F|T") and (8.27)
H(K) > HU|X,TY. (8.28)
<&
Proof.
H(K,F,G,T"Y = H(K|F,G,T")+ H(F,G,T" (8.29)
—= H(F|K,G, T+ H(K,G,T" (8.30)

where H(F|K,G,T") = 0 as G and K uniquely determine F'. Combining (8.29)
and (8.30) leads to

H(K|F,G,T") = H(K|G,T") — H(F|G,T". (8.31)
As entropies are non-negative, H (K |F, G, T") > 0, hence
H(K|G,T") > H(F|G,T"). (8.32)
Using H(K) > H(K|G,T") leads to
H(K)> H(F|G,T"). (8.33)

The definition of maximum secrecy is that H(F|G, X,Y,T") = H(F|T"). This also
means that H(F|G,T") = H(F|T!) because H(F|G,T') > H(F|G, X,U,T") , but
H(F|G,T") < H(F|T"). As the cryptosystem provides maximum secrecy, equation
(8.33) leads to

H(K) > H(F|T"Y. (8.34)

To prove the second inequality we give an equivalent proof, but based on the equation

H(K|F,X,U,T") = H(K|F,X,T") — H(U|F, X, T"). (8.35)

8.3. Plaintext Attacks and Mobile Code 115

As entropies are non-negative and H (K) > H(K|F, X, T"), it follows that
H(K)> H(U|F,X,T"). (8.36)
H(F,X,U,T") can be written as

H(F,X,UTY = HU|F,X,T")+ H(F,X,T") (8.37)
= H(F|IX,UTY+HX,UT" (8.38)

Combining (8.37) and (8.38) gives
HU|F, X, T+ H(F|X,T") = H(F|X,U,T" + HU|X,T").

In general it holds that H (F| X, T") > H(F|X,U,T")and H(F|X,T") < H(F|T"),
but because in the case of maximum secrecy H (F|X, U, T') = H(F|T"), it holds that
H(F|X,U,T") = H(F|X,T"). Then it follows that

HU|F,X,T" = H{U|X,T"). (8.39)
Substitution of (8.39) in (8.36) gives (8.28) O

The inequalities of theorem 16 provide minimum conditions to provide perfect
secrecy, although when these conditions are fulfilled, perfect secrecy is not necessarily
provided. Note that both conditions provide a minimum uncertainty of the key when
pairs of f and g are known to the attacker.

If maximum secrecy is provided it will hold that H(K) > H(F|T). It does not
mean that the minimum amount of keys necessary to provide maximum secrecy is
equal to | F|. From equation (8.32) it can be seen that

H(K|TY) > H(F|G,T"), (8.40)

because H(K|T') > H(K|G,T"). If maximumsecrecy is provided H (F|G, X, U, T")
equals H(F|T") (see equation (8.26)), therefore H(F|G,T') = H(F|T") if max-

imum secrecy is provided. Hence, it will hold that H(K|T') > H(F|T"). Thus,

if maximum secrecy is provided the cryptosystem will have the characteristic that

H(K|T') > H(F|T"). It means that at any time an observer or attacker observes

the system the uncertainty of the key should be equal or larger than the uncertainty

with respect to the original function. If all functions are equiprobable it means that the

number of candidate keys when [pairs are known should be equal or larger than the

number of possible functions.

An equivalent interpretation holds for the second inequality in theorem 16. The
uncertainty of the output U given the corresponding X value and [(f, g) pairs, pro-
vides a lower bound for the uncertainty of the key. Again this condition provides the
required status for the moment when [(f, g) pairs are known. The condition does not
directly provide the minimum number of keys, however, it can be derived similar to
the list for the first condition (given that all outputs are equiprobable).

Based on the assumption that each function has an equal probability of occurring,
it is possible to derive the minimal number of keys necessary to protect the mobile
code against knowledge of [(f, g) pairs.

116 8. Mobile Code Privacy

8.4 Conclusions

This chapter defined perfect secrecy for mobile code. The definition is similar to
Shannon’s definition of perfect secrecy for static data, but the context is different as
the attacker can be located in the execution environment. Based on this definition
of perfect secrecy it is possible to derive conditions under which perfect secrecy is
possible. A condition to provide perfect secrecy is that the key space should be at
least as large as the function space and the output space. Furthermore, an example
encryption scheme was given that provides perfect secrecy.

Using the properties of entropy, it is possible to derive two cryptographic dilem-
mas, where increasing the uncertainty of one parameter decreases the entropy of a
different parameter.

Furthermore, this information theoretic approach was extended with the approach
of chapter 7, where plaintext attacks are taken into account. This led to a definition
of maximum secrecy and to minimal conditions under which perfect secrecy can be
provided.

Chapter 9

Unicity Distancein Mobile
Code

In this chapter, the unicity distance is derived for the situation where mobile code must
be protected against ciphertext-only and plaintext attacks. These cases are treated
separately.

9.1 Introduction

In chapters 6 and 7 we derived expressions for the unicity distance in the situations of
ciphertext-only and plaintext attacks for classical secrecy systems. For mobile code
we can also derive an expression for the unicity distance. The model of figure 2.3 is
used to define and to derive the expression for the unicity distance.

At this stage, it is not yet investigated what cipher data contributes to the unicity
distance. The function F' is encrypted based on key K resulting in G, therefore G is
cipherdata that is relevant for the unicity distance. However, the output values U may
also contribute to the unicity distane. In this chapter it is analyzed whether this is the
case.

The outline of this chapter is as follows. First, the unicity distance is defined for
the application to mobile code. This is followed by a discussion in section 9.3 on what
data contributes to the unicity distance in the mobile code privacy model. Section 9.4
derives the unicity distance in the case where ciphertext-only attacks are taken into
account; section 9.5 gives it for plaintext attacks. Finally, in section 9.6, conclusions
are given.

9.2 D#fi nition Unicity Distance for M obile Code

It is assumed (as in figure 2.3) that the relation between the function F' and cipher
function G is given by Ex(F) = G and G(X) = U. The following definition

118 9. Unicity Distance in Mobile Code

provides a formal definition for the unicity distance for mobile code.

Definition 15 (Unicity distance mobile code (ciphertext-only attacks)) Let

(FL, G, K, X,U) be a mobile code system where Ex (F*) = G is the encryption
of function F (of length L) based on key K resulting in cipherfunction G (of length
L), and G(X) = U. The unicity distance is defined as

UD = min{L € N|H(K|G*) = 0}.

<&
If the attacker has access to a cipherfunction of length U D, on average he will
be able to compute the key (given unlimited computation time). The unicity distance
does not provide a guarantee that the attacker will succeed in obtaining the key as
at unicity distance the equivocation H (K |GL) equals to zero and this is an average
value.
The definition for unicity distance in case of plaintext attacks for mobile code is
then given by the following definition.

Definition 16 (Unicity distance mobile code (plaintext attacks)) Let

(FL, G, K, X,U) be a mobile code system where Ex (F*) = G is the encryption
of function F (of length L) based on key K resulting in cipherfunction G~ (of length
L). Let T" denote [pairs of functions and corresponding cipherfuntions. The unicity
distance is defined as

UD = min{L € N|H(K|G*,T") = 0}.

<&

In conventional cryptosystems, the attacker only has access to ciphertext, and the

unicity distance is determined by the number of symbols of this ciphertext. In the

mobile code privacy model, however, the attacker has access to more types of data,

e.g. the cipher function, and input-output pairs of this function. This chapter analyzes

whether the case of message encryption or function encryption leads to a different
expression for the unicity distance.

In the next sections the unicity distance is derived for the case of ciphertext-only
and plaintext attacks. Shannon derived the unicity distance based on the random ci-
pher model (section 6.4.1). If the unicity distance is derived for a particular cipher, it
is reasonable to assume that formulas derived for the random cipher may be applied
in such particular cases. However, in some cases it is necessary to apply certain cor-
rections, such as when letter frequencies are preserved in the ciphertexts [83]. In this
chapter, these corrections for particular ciphers are not taken into account, as here the
general derivation for unicity distance is given and not for one particular algorithm.

9.3 Unicity distance for mobile code

The unicity distance is expressed in terms of length of ciphertext. Dependent on what
parameters form the cipher text, the unicity distance can be derived. Possible rele-
vant parameters are the cipherfunction and the results of the executed cipherfunction.

9.4. Unicity Distance and Ciphertext-only attacks 119

Decisions based on the outcome, U, of the encrypted function, can either be made
directly from U or via a decryption of U to Y such that Y = F'(X). Access to mul-
tiple (X, Y')-coordinates may lead to reconstruction of F' (section 2.3.1). This could
possibly influence the unicity distance.

The attacker has access to the encrypted function G and can execute the function
based on the choice of X. Knowledge of G leads to knowledge on the output of the
function, e.g. H(U|G, X) = 0. Since the joint entropy H (G, X, U) can be expressed
as

H(G,X,U)=H(G,X)+ H(U|G, X),

it follows that H (G, X,U) = H(G, X). To express the influence of different param-
eters or knowledge of the key, we can express H (K, G, X) as

H(K,G,X)=H(K,G X)+HU|K,G,X)=H(K,G,X,U),

because H(U|K,G,X) = H(U|G, X) = 0. Rewriting the expressions for the joint
entropies leads to

H(K|G,X)+ H(G,X)=H(K|G,X,U) + H(G, X),

and therefore H(K |G, X) = H(K|G, X, U). This means that knowledge of U does
not contribute to knowledge of the key once the function G is known. Therefore, for
the unicity distance only the cipher function G influences the uncertainty of the key.

The unicity distance is only determined by the cipher function G and therefore it
is not relevant whether decisions can be made on U or whether first a decryption is
necessary. Furthermore, as only G contributes to the unicity distance, this situation
is equivalent to the one of classical cipher systems (chapter 6). The function G may
consist of symbols from a different alphabet compared to classical ciphertext, but this
is irrelevant for the derivation of the unicity distance (although the redundancy in the
language is relevant). For the case of ciphertext-only attacks the same reasoning holds
and will therefore be equal to the unicity distance as was given in section 7.4.3.

As the U-values do not contribute to the value of the unicity distance, the unicity
distance for mobile code will be equal to the distance for classical secrecy systems.
Although it is debatable whether these expressions for the unicity distance should
be considered as theorems or corollaries, we present them as separate theorems to
emphasize the semantic difference between a classical secrecy system and the mobile
code privacy model.

9.4 Unicity Distancein the Case of Ciphertext-only At-
tacks

The following theorem gives the unicity distance for mobile code in the case of ciphertext-
only attacks.

120 9. Unicity Distance in Mobile Code

Theorem 17 Let (F,G, K, X,Y,U, Ex(.), Dk(.)) denote a mobile code system pro-
tected by encryption, E'x(.), and decryption, Dk (.), with key K. Function F' is en-
crypted using key K: G = Egx(F). The code G is executed based on input X:
U = G(X). The unicity distance is given by

H(K)

UD~ —— 7~
R funclog|O|’

(9.1)
where O represents the set of function symbols and R ¢,,,,. the average redundancy in
the functions. o

Proof.

To be consistent with our previous notation, we let the entropies H(F*) and
H(GY) represent that of a function ' and G of length L, respectively. The joint
entropy H (K, F'*, GF) can be expressed as

H(K,F' Gy = H(G*|K,F*) + H(K, FF).

Because H(GY|K, FF) = 0, therefore H(K, FF Gl) = H(K,FF). Key K is
chosen at random (e.g. H(K,FL) = H(K) + H(FL). The joint entropy can be
written as

H(K,F* G')= H(K)+ H(FL). (9.2)

Furthermore, the joint entropy can also be expressed as
H(K,FF G') = H(FYIK,GY) + H(K,G"), (9.3)
where it holds that H (F'*|K, G*) = 0. Combining equations (9.2) and (9.3) gives
H(K,G*) = H(K) + H(F").
This can be rewritten as
H(K|G*) = H(K) + H(F') — H(G"Y). (9.4)

The uncertainty of a function depends on the probability distribution of the possible
symbols of which a function consists and the amount of redundancy in a function. The
redundancy is given by
Hfunc
log |O]’

where H .. represents the uncertainty of a symbol in a function and O is the set of
symbols used to construct a function. The average uncertainty of a function of length
L, H(FT), can then be approximated by L - H fyn.:

H(FY) ~ L(1 — Ryync) log|O|.

Furthermore, it holds that H(G) < Llog|O|. Substituting these values in equation
(9.4) results in
H(K|G") > H(K) = LR funclog |O|. (9.6)

9.4. Unicity Distance and Ciphertext-only attacks 121

Following Stinson’s approach, the average number of spurious keys is determined.
Let u(g) represent the number of candidate keys when a cipher function is given.
The minimum length of the cipher function whose number of spurious keys is zero
determines the unicity distance. The average number of spurious keys is given by

so= Y. (Palg)ulg)) — 1. 9.7)

The conditional entropy H (K |GL) can be expressed as

HEK|G") = > Pua(g)H(Klg)
9€G(L)

> Palg)log(u(g)).

9€G(L)

IN

Using Jensen’s inequality, this can be rewritten as

H(K|G") <log > Pa(g)u(y).
g9€g(L)

Combining this inequality and the expressions in (9.6) and (9.7) gives
log(5r, +1) > H(K) — LR funclog|O]. (9.8)

The unicity distance is the minimum value of L for which the number of spurious keys
is zero. This results in the following expression for the unicity distance:

H(K)

UD~ ——M——.
Rfunclog|O]

(9.9)

O

When all keys are equiprobable, H (k) can be replaced by log |K|. Here the en-
cryption of a function can be considered as encryption of data; only the language used
is different. The difference in language is expressed in the terms R ync and H pypne. A
smaller value of R ¢, will contribute positively to the unicity distance. Less redun-
dancy results in a larger value of the unicity distance, which positively influences the
security of a system. This means that more cipher functions (encrypted with identical
keys) can be used while privacy is provided.

122 9. Unicity Distance in Mobile Code

9.5 Unicity Distancein the Case of Plaintext Attacks

In chapter 7 the unicity distance was derived when plaintext attacks are taken into
account. This result will be used in this section to derive the unicity distance for
mobile code protection against plaintext attacks. Important is that the pairs (f, g)
are generated according to protocol 3 (section 8.3). The length of the functions and
corresponding cipher functions are all equal to that of the cipher functions and corre-
sponding plain functions, which the attacker knows and the cipher function of which
he does not know the corresponding plain function.

Function F' is encrypted using key K, which results in an encrypted function G.
When G is executed on a certain input X, it results in parameter U. The unicity
distance is then as given in theorem 18.

Theorem 18 Let (F,G, K, X,Y,U, Ex(.), Dk(.)) denote a mobile code system pro-
tected by encryption, E'x(.), and decryption, Dk (.), with key K. Function F' is en-
crypted using key K: G = Ex(F). The code G is executed based on input X:
U = G(X). The attacker has access to ! (f, g) pairs, generated by protocol 3. The
unicity distance is given by

l
U~ I

N — 1
Rfunc IOg |O| ’ (9 O)

where O represents the set of function symbols and R ... the redundancy in the
functions. <

Proof. The proof of this theorem is a combination of the proofs of theorem 12 and
theorem 17, that provides the unicity distance in case of plaintext attacks and mobile
code respectively. Although the proof is a combination of these two theorems, full
proof is given here to provide more clarity.

Let u(g, 1) represent the number of candidate keys when a certain ciphertext g and
L (f,g) pairs are given. The number of spurious keys is then for a particular ciphertext
equal to u(g,1) — 1. The average number of spurious keys for a given ciphertext of
length L as a function of [is then given by:

gL(l): Z Z Z PGTl(gvtlv"'vtl)(:u’(gal)71)3

geG(L) t1€T (L) t,€T (L)

where G(L) and 7 represent the sets of cipher functions of length L and of (£, ¢) pairs
of length L, respectively. This can be represented as

ss)= > > - > [Per(g.tr---t)ul,g)] 1, (9.12)

geG(L) t1€T (L) t,€7T(L)

bec_:a_use deg(L) ZtleT_(L) o 2ner Per(g it)] = 1. To determine the
unicity distance when plain-text-attacks are allowed one should take into account that

9.5. Unicity Distance and plaintext attacks 123

the attacker has access to [message-ciphertext pairs. Hence, it is important to deter-
mine H (K |G, TY), where GL denotes function G existing of L symbols. This can
be written as:

H(K|GF, T = H(K,GF, T") — H(G®,T"). (9.12)
The joint entropy H(K,G% T') is equal to H(K,FL, T') as one key connects a
particular message and ciphertext, e.g. a key represents a one-to-one relation for a

particular message and ciphertext. Using this and rewriting the joint entropy in the
form of conditional entropy, equation (9.12) evolves in

H(K|G*,T" = H(F'|K,T" + H(K,T") — H(G",T"). (9.13)
Because the keys and messages are chosen independently

H(FLK,TY = H(FL|T"). The joint entropies H(K,T"') and H(G*,T") can be
written as conditional entropies. Equation (9.13) then becomes:

H(K|GE, T = H(F*|T") + H(K|T") — H(G*|T"). (9.14)

The maximum value H(G|T") can take is equal to [log |B|, where 1 is defined as
the set of symbols for the ciphertexts. We assume that the number of symbols for the
ciphertext is equal to the number of symbols of the plain function, where the set of
plaintext symbols is denoted by A, hence H(GL|T') < Llog|A|. Then, equation
(9.13) results in

H(K|G*,T" > H(FYTY + H(K|T") — Llog|Al. (9.15)

Incase | < |M(L)| itwill hold that H (F*|T") ~ H(F*) ~ LH fyne, Where H pyne
is defined as the entropy of the language per symbol (H unc = (1 — Rfunc) log | A|).
R #unc denotes the redundancy of functions. Equation (9.15) results in:

H(K|GE,TY > H(K|T") — LR jynclog | Al (9.16)

As this is an expression in terms of the ciphertext length L, it is desirable to relate
the number of spurious keys to H(K |G, T") because this will relate to the unicity
distance. H (K |GT,T") can also be written as:

HEIGET) = > > - > Popn(Gh ity t)H(K|G" 1)

9g€G(L) t1€T(L) t,€7T(L)

SN o > Por(GE ity) log(u(g. 1))

geG(L) t1€T (L) t,€7T(L)

IN

Using Jensen’s inequality, this results in

HE|GH T <log Y Y -+ Y Poru(GF ta ... t)ulg, 1)

G(L)t1€T(L) €T (L)
Hence, using equation (9.11) it results in

H(K|G*,T" <log(s.(1) +1). 9.17)

124 9. Unicity Distance in Mobile Code

Combining equations (9.16) and (9.17) results in a relation between the ciphertext
length and the average number of spurious keys:

log(52(1) +1) > H(K|T") — IR funelog|Al.
Then the average number of spurious keys becomes:

oH(K|T")

§L(l) >

> A (9.18)

O

The unicity distance is proportional to the uncertainty on the key given [pairs of
(f,9). In general, the uncertainty of the key given [pairs of (f, g) will be lower than
that when these pairs are not known (ciphertext-only attack). Therefore, the unicity
distance for plaintext attacks will be smaller than for ciphertext-only attacks.

9.6 Conclusions

The unicity distance is an important measure for designing a cryptosystem, as it pro-
vides a measure of how many times a key can be used to encrypt functions and still
confidentiality can be provided. An increase of the unicity distance means that more
functions of a specific length can be encrypted based on the same key.

This chapter gave expressions for the unicity distance in the case of ciphertext-
only and plaintext attacks. They differ in the factors H(K) and H(K|T"). This is
logical as in the case of plaintext attacks knowledge of several plain functions and
cipher functions reduces the uncertainty on the key, which has influence on the value
of the unicity distance (the unicity distance becomes smaller).

The unicity distance for mobile code or classical message encryption are equal
as the output values U do not contribute to the unicity distance. Therefore, for the
derivation of the unicity distance the output of the cipher function does not influence
the unicity distance, it is not relevant whether an algorithm exists to decrypt U.

Chapter 10

Conclusions and Discussion

The objective of this thesis was to provide solutions to privacy protection and theo-
retical limits to the level of privacy provided for mobile code. This chapter gives the
conclusions in the form of a summary, separately for the agent privacy model and the
mobile code privacy model. This is followed by a section on the consequences how
the first model influences the second model and vice versa. Finally, recommendations
are given for future research.

10.1 Summary of the Results

10.1.1 Agent Privacy M odel

The first model described was the agent privacy model, which describes a more prac-
tical approach to finding solutions for practical applications. An agent environment
consists of different players, and each of these players may have a different level of
trustworthiness. Software agents run on an agent platform that is operated by a host.
As agents are assumed to have the capability of being mobile, it is not always known
beforehand to where they will travel. The host that an agent visits may not be trust-
worthy, and in this thesis, it is assumed that the host is untrustworthy in the sense that
it is curious about the actions and content of the agent. The hosts are considered to
be trustworthy in the sense that they execute the agent’s code correctly and do not
alter its code, but by observing the agent’s actions, it will try to obtain advantageous
information.

Communication.
The first problem was the problem of communication between agents. In an agent
environment this is a difficult challenge when one must take into account that even the
platform where the code is executed may not be able to successfully eavesdrop on the
communication between agents. A double encryption such that a key transformation
on the encrypted data can take place in such a way that at no moment in time the data
is available in clear text, provides a solution to this problem. It is possible to perform

126 10. Conclusions and Discussion

this operation using the EIGamal encryption scheme; however how the algorithm is
used mainly determines the level of security that can be provided during this data
exchange.

Execution Privacy.
The second problem addressed was the protection of the agent’s tasks. An agent is
programmed to perform a certain task on behalf of the user. When this task or certain
of its parameters are accessible to the agent platform, this may be to his advantage,
especially if he must provide some input to the task. Using the EIGamal encryption
scheme, it is possible to encrypt polynomials and perform computations in the encryp-
tion domain. The reasoning part is harder, and in this thesis, a simple start has been
made by proposing a secure but impractical solution.

Because of the outcome of our research on execution privacy we used informa-
tion theory to obtain more knowledge on the maximum level of privacy that can be
provided; the results of this are described in the next section.

Agent Integrity Mechanisms

If agents are not capable of signing a document without compromising privacy, this se-
riously limits the success of agent technology. One of the mechanisms used to provide
integrity and source authentication is the digital signature. In an agent environment
with a curious host, however, using a digital signature poses a particular risk as signing
a digital document involves a computation with the private key. To prevent the host
from accessing the private key, a new agent digital signature was proposed, using the
concept of a blind signature to hide the private key. Using this agent digital signature it
is possible to let the agent sign a document on the untrustworthy host, without the host
being able to compute the original private key. A drawback of this signature is that an
agent platform may repeat the process of signing a document, on a second message of
his own choice and the signature will still be valid. A solution is proposed to prevent
this, but it is only a threshold for the platform ensuring that it is not to his advantage
to perform such double signing.

10.1.2 Conclusionson the Theoretical Approach

The second part of this thesis focussed on deriving theoretical limits of the extent in
which mobile code can be protected. The mobile code privacy model was used for this
purpose. Instead of the term agent’, the term mobile code’ was used to emphasize
the generality of the approach used. Here, for mobile code, information theory was
used and compared to Shannon’s original approach.

Shannon’s approach of using information theory actually only covers ciphertext-
only attacks. In chapter 7, Shannon’s results were extended to plaintext attacks. New
definitions of perfect secrecy and maximum secrecy were given for plaintext attacks.
Especially in the case where all the ciphertexts are encrypted with the same key, it is
concluded that when perfect secrecy is required, the relationship between the message
and ciphertext should not be given by one key but multiple keys. The number of keys
needs to stand between one message and one ciphertext depends on the number of

10.1. Summary of the Results 127

ciphertext pairs to which the attacker has access. This lower bound of the number of
keys is derived in chapter 7. Because plaintext attacks are considered, it also influences
the requirements for providing perfect secrecy.

The main difference between providing confidentiality to mobile code compared
to conventional data is that the code is executed in its encrypted form. Especially
in mobile code plaintext attacks are relevant, as code may be executed at multiple
hosts, these hosts may conspire and combining the separate observations may result in
knowing the exact behavior of the code. This characteristic of mobile code protection
leads to different theoretical results than those of conventional data protection.

In chapter 8, information theory was used in the mobile code privacy model. In
the case of ciphertext-only protection, a new definition of perfect secrecy was given,
combined with the condition under which perfect secrecy can be provided. In the case
of mobile code protection, the attacker possibly has knowledge of the input and output
of the function, which may provide an advantage in obtaining the key. This knowl-
edge is taken into account in the definition of perfect secrecy. From the definition of
perfect secrecy it can be concluded that in case of ciphertext-only attacks and when
all functions are equiprobable, not only should the key space be at least as large as
the function space, but also the output space. Furthermore, a mobile code dilemma
was derived consisting of two dilemmas. Increasing the protection of the key when
both the function and cipher function are known (e.g. a plaintext attack) will decrease
the uncertainty of the function when only the cipher function is known (ciphertext-
only attack), given that the uncertainty with respect to the key given cipherfunction
remains constant. Similarly, increasing the uncertainty of the key when the function
and output value are given, will decrease the uncertainty of the function when only
the output value is given, given that all other uncertainties remain constant. Both sit-
uations are undesirable, and when designing a protection for mobile code, one must
take this knowledge into account as a trade-off must be made in order to provide an
adequate level of confidentiality.

In case of protection against plaintext attacks, the situation is a little different. A
definition of maximum secrecy was given for mobile code protection. This entails
that multiple keys must be responsible for the transformation of one message into a
particular ciphertext. The amount of keys that are necessary to achieve this maximum
level of secrecy was given. As the amount of keys grows exponentially with respect to
the number of possible messages, it is not practical to have a system with maximum
secrecy.

Chapter 9 extended the approach from the previous chapter by deriving the unic-
ity distance for mobile code to be protected against both ciphertext-only attacks and
plaintext attacks. Although a classical secrecy system (as defined by Shannon) dif-
fers from the mobile code privacy model in the fact that an encrypted function can be
executed, the unicity distances for these two systems are equal.

Concluding, it can be said that in this theoretical approach, information theory was
successfully used to derive theoretical limitations to the protection of mobile code.

128 10. Conclusions and Discussion

However, this did not always result in conditions that can be used in practice.

10.1.3 Theory and Practice Combined

The first part of this thesis discussed practical solutions for mobile code protection.
All of these solutions were based on public key cryptography. Because information
theory cannot be used to model public key systems, these solutions do not fulfill the
requirements for perfect secrecy or any of the other limits derived in the second part
of this thesis.

However, these practical solutions do demonstrate that a certain level of protection
of mobile code can be achieved. Using public key cryptography in an untrustworthy
environment has at least the advantage that encryptions can be done in such an envi-
ronment. But the level of secrecy provided depends on the computation power of the
host. In theory it is possible to provide perfect secrecy for mobile code, but as was
shown in the analysis for plaintext attacks, a massive number of keys is required to
provide this level of secrecy, rendering mobile code systems that provide this maxi-
mum level of secrecy impractical. As is common in cryptography, a trade-off must be
made between the level of practicality and security.

10.2 Discussion

Although it was tried in this thesis to present a complete part of research, still many
recommendations for future research can be given.

Agent privacy model
The objective of providing confidentiality during data exchange was achieved, but
some recommendations can still be given. The solution provided in this thesis only
considers the one-way communication of the exchange of confidential data, while one
is actually also interested in providing confidentiality during an interactive communi-
cation. If an agent receives a message from another agent, it should be able to respond
to this message. Within the agent privacy model, this would mean that the response
and the reasoning how to respond would have to occur in the encrypted domain. The
concept of execution privacy may be useful here, but more research is necessary to
obtain knowledge what is the maximum level of confidentiality one can achieve for a
two-way communication.

In the agent model, the agent was seen as the extension of the user and it would
perform all the tasks as if it were the user. A different approach is to let the user
employ multiple agents and by co-operation of these agents they perform one task.
A result is that the model changes and therefore also the requirements to guarantee
privacy. By distributing several security techniques it may be possible to improve on
the level of security that can be achieved. A technique like multi-party computation
[102] may provide solutions.

This approach may help to prevent the double signing problem. If two agents
instead of one are used to sign a document, it may be possible that the activation of

10.2. Discussion 129

the signature is now a procedure of combining the results of these two agents, and by
dividing the signing process into smaller parts it may result in a higher security level.

Furthermore, the task may be divided over a set of agents, but even with these
subtasks the agent must be able to make decisions based on data it receives. There-
fore, it is of high interest to perform more research in this area. To be able to make
decisions based on encrypted data it requires that some information is present in the
encrypted data on which a decision can be made. However, it is against the fundamen-
tals of an encryption algorithm that information about the data should be present in
the ciphertext as the objective of an encryption algorithm is to make that link between
ciphertext and plaintext invisible. Therefore, it seems unlikely to be able to develop
an algorithm that can make decisions on encrypted data, and provide an optimal level
of confidentiality at the same time. However, it may be possible to develop an encryp-
tion algorithm that can make decisions based on encrypted data at the cost of a lower
level of confidentiality. If this is possible, it is important that a measure or quantity
is present that can represent this trade-off between security level and autonomy of the
agent such that the user can tune the system towards his preference.

Mobile code privacy model
Several recommendations can be given for further research within the mobile code
privacy model.

In this thesis a theory was developed that takes plaintext attacks into account,
such that it was possible to derive properties like maximum secrecy and the unicity
distance. However, not one example could be given of an encryption scheme that
has the property of maximum secrecy. Although, it is known beforehand that such a
scheme will be impractical due to the large amount of keys, it would be of high interest
to know whether such a scheme exists. The main requirement is, that one message
must be linked to a particular ciphertext by multiple keys, but a second message should
be linked to a second ciphertext by a different set of keys. These two sets may overlap,
but may not be equal. It is a question whether a more efficient encryption algorithm
can be developed than a look-up-table.

The mobile code privacy model was designed to provide privacy towards the user,
when he makes use of mobile code. Based on this the solution was proposed to provide
confidentiality to the mobile code to protect privacy. Characteristics and properties
were set up with an attacker in mind that has unlimited resources and time. However,
the strategy of the attacker was not taken into account. The concept that the attacker
operates according to a strategy was first introduced by [10], where error probability
is used as a measure to compute the (inverse of) success of the attacker. Because the
attacker in the mobile code privacy model has so much power and opportunities to
attack the system, it is of interest to research this strategy of the attacker with respect
to its probability of success.

130 10. Conclusions and Discussion

Appendix A

Notations

Table A.1: Explanation of the used letters, most of them can be written according to
the various notations of table A.2

Letter Explanation
A Symbols of message
C Ciphertext
G Cipher function
F Plain function
K Key
L Length
M Message
T (m,c)or (f,qg) pairs
U Output of encrypted function
X Input function
Y Output function

132

A. Notations

Table A.2: Notations used in chapters 6 - 9

1 | General notation for a message (notation for a random variable) M
2 A message* m; orm
3 | Set of all messages M
4 | Number of messages in the set M |M|
5 | Asetof I messages (is a subset of M) M
6 | Number of messages in a set of I messages M| =
7 | General notation for [(respectively a number of) messages from M | M!
8 General notation to denote a i-th message M;
9 | A message of the subset of | messages* m! of m!
10 | Notation for [messages from M miy,...,my
11 | General notation for a symbol (notation for a random variable) A
12 | A specific message from the set of messages a
13 | A symbol a; ora
14 | Set of all symbols A
15 | Number of symbols in the set A A =«
16 | A subset of I symbols Al
17 | A number of symbols that form together a message m=aias...ar
18 | General notation for a message existing out of L symbols ML
19 | A message consisting of L symbols m¥

* Where no confusion is possible, the notation without indices will

be used.

Appendix B

Perfect Secrecy

Several expressions are equivalent [36].

Theorem 19 Let (M, C, K) denote a cryptosystem. The following expressions are
equivalent:

1. The cryptosystem provides perfect secrecy, according to definition 6.3.
2. Pyc(mlc) = Py(m).
3. HM|C)=H(M).

<

Proof. First it is proven that when Py ¢ (m|c) = Py (m), it holds that I(M; C) = 0.
Using the definition of conditional entropy, H (M |C') can be expressed as

H(M|C) =~ > > Pujc(mle)Po(c)log Py (mle).
meM ceC

Because Pysjc(m|c) = Ppr(m), this results in

HM|C) = = > > Pu(m)Pc(c)log Pysjc(mlc)
meM ceC
= —ch(c) Z Pyr(m)log Prc(mlc)
ceC meM
= — Z Prr(m)log Py (m) = H(M).
meM

When we look at the definition of mutual information, it is clear that when M and C'
are independent, (M ; C) = 0. To prove the opposite direction it must be shown that
when I(M;C) = 0, the variables M and C are independent. When I(M;C) = 0, it
holds that H (M) = H(M|C). The joint entropy can be written as

H(M,C) = H(M|C) + H(C).

134 B. Perfect Secrecy

In case of I(M; C) = 0, this becomes
H(M,C)=H(M)+ H(C). (B.1)

Therefore, if equation (B.1) can be proven to be true only when A and C' are indepen-
dent, it is also proven that when I(M; C') = 0, M and C are independent. According
to the definition of entropy, H (M) can be written as

H(M) =~ Y Py(m)log Py (m),

meM
HM)=—- Z ZPIVIC(mvC) log Pys(m). (B.2)
meM ceC
An equivalent relation holds for the entropy of the ciphertext:
H(C) ==Y > Puc(m,c)log Po(c). (B.3)
ceC meM

Adding equations (B.2) and (B.3) results in
H(M)+H(C) =~ YY" Puc(m,c)log(Pu(m)Pe(c)).
meM ceC
The joint entropy is given by
H(M,C) = - Z ZPMc(m,C) log Pryre(m, c).
meM ceC

And it holds that
H(M,C) < H(M) + H(C), (B.4)

and based on corollary 1, equation (B.4) is an equality if and only if Py;c(m,c) =
P (m)Pc(c). Hence I(M; C) = 0 if and only if M and C are independent. There-
fore, the two definitions of perfect secrecy are equivalent. O

Theorem 20 Let (M, C, K) denote a cryptosystem. Protocol 1 is used to generate !
pairs of (m, c¢). The following expressions are equivalent.

1. The cryptosystem provides perfect secrecy according to definition 8.
2. PM‘CTL (m|c, tl, ce ,tl) = PM(m)
3. HM|C,T") = H(M)

Proof. The proof is equivalent to the one of theorem 19, but the extra variable T is
incorporated. |

Bibliography

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptology,
2:pages 5-21, 1990.

[2] M. Abe and E. Fujisaki. How to date blind signatures. Advances in Cryptology
- Asiacrypt’96, pages 244-51, 1996.

[3] J. Algesheimer, C.Cachin, J.Camenisch, and G.Karjoth. Cryptographic security
for mobile code. Proceedings 2001 IEEE Symposium on Security and Privacy,
IEEE, pages 2-11, 2001.

[4] D. Banisar. Privacy and human rights. Electronic Privacy Information Center,
Washington/London, 2000.

[5] B. Barak and O. Goldreich. On the (im)possibility of obfuscating programs.
Crypto 2001, Lecture Notes in Computer Science, pages 1-18, 2001.

[6] P. Beauchemin and G. Brassard. A generalization of hellman’s extension to
shannon’s approach to cryptography. Journal of Cryptology, 1(2):129-1132,
1988.

[7] M. Bellare and S.K. Miner. A forward-secure digital signature scheme. In
Advances in Cryptology - CRYPTO’99, volume Lecture Notes in Computer
Science, 1666. Springer-Verlag, New York, 1998.

[8] C.H. Bennett, F. Bessette, and G. Brassard. Experimental quantum cryptogra-
phy. Journal of Cryptology, (1):pages 3-28, 1992.

[9] I. Biehl, B. Meyer, and S. Wetzel. Ensuring the integrity of agent-based com-
putations by short proofs. Mobile agents, Lecture Notes in Computer Science
1477, pages 183-94, 1998.

[10] D.E. Boekee and J.C.A. van der Lubbe. Error probabilities and transposition
ciphers. In Ninth Symposium on Information Theory in the Benelux, pages
155-162, 1988.

[11] J.J. Borking and E.P. Siepel. Intelligent agents and privacy. Technical report,
Achtergrondstudies en verkenningen, nr 13, Registratiekamer, 1999.

136 Bibliography

[12] N. Borselius, C.J. Mitchell, and A. Wilson. On mobile agent based transactions
in moderately hostile environments. In Advances in Network and Distributed
Systems Security - Proceedings of IFIP I-NetSec’01, pages 173-186. Kluwer
Academic, 2001.

[13] Stefan Brands. Untraceable off-line cash in wallet with observers (extended
abstract). In Douglas R. Stinson, editor, Advances in Cryptology — CRYPTO
’93, volume 773 of Lecture Notes in Computer Science, pages pages 302-318.
Springer-Verlag, 22—26 August 1993.

[14] G. Brassard and C. Crépeau. 25 years of quantum cryptography. SIGACT news,
27(3):pages 13-24, 1996.

[15] C. Cachin, J. Camenisch, J. Kilian, and J. Miller. One-round secure com-
putation and secure autonomous mobile agents. Proceedings of the 27th In-
ternational Colloquium on Automata, Languages and Programming (ICALP),
Lecture notes in Computer Science, 1853:512-23, 2000.

[16] Christian Cachin and Ueli M. Maurer. Unconditional security against memory-
bounded adversaries. Lecture Notes in Computer Science, 1294:pages 292—,
1997.

[17] J.L. Camenisch, J-M. Piveteau, and M.A. Stadler. Blind signatures based on
the discrete logarithm problem. Advances in Cryptology - Eurocrypt’94, pages
428-32,1994.

[18] J.L. Camenisch, J-M. Piveteau, and M.A. Stadler. Blind signatures based on the
discrete logarithm problem. In Advances in Cryptology - Eurocrypt’94, pages
428-32. Springer-Verlag, 1994.

[19] R.M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of
shares for secret sharing schemes. In Advances in Cryptology - Crypto 91,
volume LNCS 196, pages 101-113, 1992.

[20] K. Cartrysse and J.C.A. van der Lubbe. An agent digital signature in an un-
trusted environment. Proceedings of the 2nd International Workshop on Secu-
rity in Mobile Multiagent Systems, pages 12-17, 2002.

[21] K. Cartrysse and J.C.A. van der Lubbe. Providing privacy to agents in an un-
trustworthy environment. Handbook of Privacy and Privacy-Enhancing Tech-
nologies, pages 79-96, 2003.

[22] K. Cartrysse and J.C.A. van der Lubbe. Secrecy in mobile code. 25th Sympo-
sium on Information Theory in the Benelux, pages 161-168, 2004.

[23] K. Cartrysse and J.C.A. van der Lubbe. Information theoretical approach to
mobile code. In International Symposium on Informaton Theory ISIT2005,
20065.

Bibliography 137

[24] K. Cartrysse and J.C.A. van der Lubbe. Privacy in mobile agents. First IEEE
Symposium on Multi-Agent Security and Survivability, August 2004.

[25] K. Cartrysse and J.C.A. van der Lubbe. Privacy in agents: theory, deliverable
13b. Technical report, PISA-project, Delft University of Technology, February
2003.

[26] K. Cartrysse, J.C.A. van der Lubbe, and A. Youssouf. Privacy protection mech-
anisms, deliverable 11. Technical report, PISA-project, May 2002.

[27] D. Chaum. Blind signatures for untraceable payments. Advances in Cryptology
- Crypto’82, Springer-Verlag, pages 199-203, 1983.

[28] D. Chaum. Achieving electronic privacy. Scientific American, pages 96-101,
August 1992.

[29] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances in
Cryptology - Crypto’88, pages 319-327, 1990.

[30] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. CACM, 24(2):pages 84—-88, February 1981.

[31] J. Claessens, B. Preneel, and J. Vandewalle. Secure communication for se-
cure agent-based electronic commerce. E-commerce Agents: Marketplace So-
lutions, Security Issues, and Supply and Demand, Lecture Notes in Computer
Science, vol. 2033, 2001.

[32] C. Collberg and C. Thomborson. On the limits of software watermarking.
http://www.cs.arizona.edu/Collberg.

[33] C. Collberg and C. Thomborson. Software watermarking: models and dynamic
embeddings.

[34] European Commission. EC. Directive 95/46/EC of the European Parliament
and of the council of 24 October 1995 on the protection of individuals with
regard to the processing of personal data and on the free movement of such
data.

[35] T.M. Cover and J.A. Thomas. Elements of information theory. John Wiley &
Sons, 1991.

[36] H. Delfs and H. Knebl. Introduction to cryptography. Springer, 2002.

[37] C. Diaz, S. Seys, J. Claessens, and B. Preneel. Towards measuring anonymity.
In Springer-Verlag, editor, Privacy Enhancing Technologies, 2002.

[38] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transac-
tions on Infromation Theory, 22(6):pages 644—654, 1976.

[39] T. ElIGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory, 31(4):pages 469—
72, 1985.

138

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

W. Farmer, J. Guutman, and V. Swarup. "Security for mobile agents: Authenti-
cation and State Appraisal”. In ”’In proceedings of the 4th European Symposium
on Research in Computer Science (ESORICS’96)”, pages 118-130, September
1996.

L.C. Ferreira and R. Dahab. Blinded-key signatures: securing private keys em-
bedded in mobile agents. Proceedings of the 2002 ACM symposium on Applied
computing, pages 82—86, 2002.

P.A. Fouque, J. Stern, and G.J. Wackers. Cryptocomputing with ratio-
nals. Financial-Cryptography.-6th-International-Conference, Lecture-Notes-
in-Computer-Science-Vol.2357. 2003: pages 136-46, 2002.

S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy
for autonomous agents. In Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages. Springer-Verlag, 1996.

D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding Routing Informa-
tion. In Ross Anderson, editor, Information hiding: first international work-
shop, Cambridge, U.K., May 30-June 1, 1996: proceedings, volume 1174 of
Lecture Notes in Computer Science, pages 137-150. Springer-Verlag, 1996.

Object Management Group; Agent Platform Special Interest Group. Omg doc-
ument agent/00-09-01. Technical report, September 2000.

M.E. Hellman. An extension of the shannon theory approach to cryptography.
IEEE transactions on information theory, 23(3):289-294, May 1977.

R. Hes and J. Borking. Privacy-enhancing technologies: The path to anonymity.
Achtergrondstudies en Verkenningen 11, 2000.

F. Hohl. Time limited blackbox security: Protecting mobile agents from ma-
licious hosts. Mobile agents and security, Lecture notes in computer science,
pages 92-113, 1998.

F. Hohl. A framework to protect mobile agents by using reference states. Pro-
ceedings ofthe 20th International Conference on Distributed Computing Sys-
tems CICDS2000, 2000.

JADE. Java agend development framework. http://jade.tilab.com.

P. Janca. Pragmatic application of information agents. BIS Strategic Decisions,
Norwell, United States, 1995.

D.B. Johnson and A.J. Menezes. Elliptic curve dsa (ecdsa): an enhanced dsa.
Technical report, Certicom.

G. Karjoth, N. Asokan, and G. Glc. Protecting the computation results of free-
roaming agents. Mobile agents *98, Lecture Notes in Computer Science, pages
195-207, 1998.

Bibliography 139

[54] P. Kotzanikolaou, M. Burmester, and V. Chrissikopoulos. Secure transactions
with mobile agents in hostile envirionments. Information Security and privacy,
Proceedings of the 5th Australasion Conference, ACISP2000, Lecture Notes in
Computer Science, pages 289-297, 2000.

[55] H. Krawczyk. Simple forward-secure signatures from any signature schme. In
Proceedings of the seventh ACM conference on computer and communications
security, pages 108-115, 2000.

[56] A. Leon-Garcia. Probability and random processes for electrical engineering,
volume second edition. Addison-Wesley, 1994,

[57] S. Loureiro and R. Molva. Function hiding based on error correcting codes.
In Proceedings of the CryptTEC’99 International Workshop on Cryptographic
Techniques and Electronic Commerce, pages 92-98, 1999.

[58] S. Loureiro and R. Molva. Privacy for mobile code. Proceedings of distributed
object security workshop, OOPSLA’99, Lecture Notes in Computer Science,
pages 184-99, November 1999.

[59] S. Loureiro, R. Molva, and A. Pannetrat. Secure data collection with updates.
Proceedings of the workshop on agents in electronic commerce, pages 121-130,
1999.

[60] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems.

[61] J. L. Massey. An introduction to contemporary cryptology. IEEE proceedings,
76(5):pages 533-549, May 1988.

[62] U. M. Maurer. The role of information theory in cryptography. In Fourth IMA
Conference on Cryptography and Coding, pages 49-71. IMA, 13-15 1993.

[63] U. M. Maurer. Information-theoretic cryptography (extended abstract). Lecture
Notes in Computer Science, 1666:pages 47-64, 1999.

[64] U.M. Maurer. Secret key agreement by public discussion from common infor-
mation. IEEE Transactions on Information Theory, 39:pages 733-742, 1993.

[65] U.M. Maurer. Information-theoretic cryptography. In Advances in cryptology -
crypto’ 99, pages 47-64. Springer-Verlag, 1999.

[66] A.J. Menezes. Elliptic curve public key cryptosystems. Kluwer Academic Pub-
lishers, 1993.

[67] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied
Cryptography. CRC press, 1997.

[68] S.-K. Ng. Protecting mobile agents against malicious hosts. PhD thesis, "Chi-
nese University of Hongkong”, June 2000.

140 Bibliography

[69] M.G. Reed, P.F. Syverson, and D.M. Goldschlag. Anonymous Connections
and Onion Routing. 1EEE Journal on Special Areas in Communications,
16(4):pages 482-494, May 1998.

[70] M. Reiter and A. Rubin. Crowds: anonymity for web transactions. ACM trans-
actions on information and system security, 1:pages 66-92, 1998.

[71] Michael K. Reiter and Aviel D. Rubin. Anonymous Web transactions with
crowds. Communications of the ACM, 42(2):pages 32—-48, February 1999.

[72] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-
natures and public key cryptosystems. Communications of the ACM, 21:pages
120-126, 1978.

[73] A. Romao and M.M. Da Silva. Proxy certificates: a mechanism for delegating
digital signatue power to mobile agents. In Proceedings of the workshop on
Agents in Electronic Commerce, pages 131-140, 1999.

[74] V. Roth. Secure recording of itineraries through cooperating agents. In ”’Pro-
ceedings of the ECOOP workshop on distributed object security and 4th work-
shop on mobile object systems: Secure Internet Mobile Computations”, pages
147-154, France, 1998. INRIA.

[75] V. Roth. On the robustness of some cryptographic protocols for mobile agent
protection. Mobile Agents 2001, Lecture Notes in Computer Science, pages
1-14, 2001.

[76] T. Sanderand C. F. Tschudin. Protecting mobile agents against malicious hosts.
Mobile agents and security, Lecture Notes in Computer Science, pages 44—60,
1998.

[77] T.Sander and C.F. Tschudin. On software protection via function hiding. Infor-
mation hiding, Lecture Notes in Computer Science 1525, pages 111-23, 1998.

[78] T. Sander and C.F. Tschudin. Towards mobile cryptography. Proceedings 1998
IEEE symposium on security and privacy, pages 215-224, 1998.

[79] T. Sander, A. Young, and Y. Moti. Non-interactive cryptocomputing for nc;.
40th Annual Symposium on Foundations of Computer Science, IEEE, pages
554-66, 1999.

[80] Fred B. Schneider. Towards Fault-tolerant and Secure Agentry (Invited paper).
In Proceedings of the 11th International Workshop on Distributed Algorithms,
Saarbucken, Germany, September 1997. Also available as TR94-1568, Com-
puter Science Department, Cornell University, Ithaca, New York.

[81] B. Schneier. Applied cryptography, second edition. John Wiley & Sons Inc.,
1996.

[82] A. Serjantov and G. Danezis. Towards an information theoretic metric for
anonymity. In Privacy Enhancing Technologies, 2002.

Bibliography 141

[83] C. E. Shannon. Communication theory of secrecy systems. Bell Systems Tech-
nical Journal, 28:pages 656—715, 1949.

[84] C.E. Shannon. A mathematical theory of communication. Bell Systems Tech-
nical Journal, 27(3):pages 379-423 and 623-656, 1948.

[85] G.J. Simmons. A survey of information authentication. In Proceedings of the
IEEE, volume 76, pages 603-620, 1988.

[86] N. Smart. Cryptography: an introduction. McGraw-Hill, 2003.

[87] Markus A. Stadler, Jean-Marc Piveteau, and Jan L. Camenisch. Fair blind sig-
natures. Lecture Notes in Computer Science, 921:209+, 1995.

[88] William Stallings. Cryptography & Network Security: Principles & Practice.
Prentice Hall International, 3rd edition edition, 2003.

[89] D.R. Stinson. Cryptography, theory and practice. CRC press, 1995.

[90] W. Trappe and L.C. Washington. Introduction to Cryptography with Coding
Theory. Prentice-Hall, Inc., 2002.

[91] J. C. A. van der Lubbe. Basic methods of cryptography. Cambridge University
Press, 1994,

[92] J.C.A. van der Lubbe. Information Theory. Cambridge University Press, 1997.

[93] H.C.A.van Tilborg. An introduction to cryptology. Kluwer acdemic publishers,
1988.

[94] G.S. Vernam. Cipher printing telegraph systems for secret wire and radio tele-
graphic communications. AIEE, 45:pages 109-115, 1926.

[95] G. Vigna. Cryptographic traces for mobile agents. Mobile agents and Security,
Lecture Notes in Computer Science, pages 137-153, 1998.

[96] D. Welsh. Codes and Cryptography. Oxford science publications, 1988.

[97] C.U.D. Westhoff, M. Schneider, and F.Kenderali. Methods for protecting a
mobile agents route. In Proceedings of the Second International Information
Security Workshop, pages 57-71, 1999.

[98] A. Westin. Privacy and freedom. Atheneum, New York, 1967.

[99] U.G. Wilhelm, S. Staamann, and L. Buttyan. Introducing trusted third parties
to the mabile agent paradigm. Secure Internet Programming, Lecture notes in
computer science, 1603:pages 469-89, 1999.

[100] S. Wolf. Unconditional security in cryptography. Lectures on Data Security,
LNCS 1561, Springer-Verlag:pages 217-250, 1999.

142 Bibliography

[101] A.D.Wyner. The wire-tap channel. Bell System Technical Journal, 54(8):pages
1355-1387, 1975.

[102] A.C. Yao. Protocols for secure computations. FOCS, 1982.

[103] B. Yee. A sanctuary for mobile agents. Secure Internet Programming, Lecture
notes in computer science, 1603:pages 261-73, 1999.

[104] X.Yi, C.K. Siew, and M.R. Syed. Digital signature with one-time paiir of keys.
Electron. lett., pages 130-131, 2000.

[105] A. Young and M. Yung. Sliding encryption: a cryptographic tool for mobile
agents. Proceedings of Fast Software Encryption Workshop 1997, Springer-
Verlag, Lecture Notes in Computer Science, pages 230-241, 1997.

Samenvatting

Dit proefschrift heeft als doelstelling het geven van oplossingen om de privacy te waar-
borgen in het geval dat mobiele code wordt gebruikt. Mobiele code is software code
dat zich kan verplaatsen over het netwerk en uitgevoerd kan worden op platformen
op andere locaties. Een voorbeeld van mobiele code is een "mobile software agent”.
Deze agent is in staat om taken uit naam van zijn gebruiker uit te voeren. De agent
reist over het netwerk en wordt op verschillende plaatsen uitgevoerd, maar het is niet
altijd vooraf bekend of deze locaties vertrouwd kunnen worden. Een software agent
voert taken uit, uit naam van zijn gebruiker en daarom is het noodzakelijk dat deze
agent zich bewust is van de privacy risico’s voor de gebruiker. Een voorbeeld is dat
een agent de taak heeft om een vliegticket voor zijn gebruiker te kopen. Als de plat-
formen, waar de agent wordt uitgevoerd bijvoorbeeld een vliegtuigmaatschappij is,
is het niet de bedoeling dat dit platform ziet wat de strategie van de agent is om een
vliegticket te kopen.

In dit proefschrift worden een aantal oplossingen voor dit probleem gepresenteerd.
Daarnaast wordt ook in een analyse beschreven welk niveau van privacy theoretisch
maximaal haalbaar is. Hetgene waar privacy voor mobiele code zich onderscheidt van
privacy voor klassieke softwaresystemen, is dat het onderliggende platform waar de
mobiele code wordt uitgevoerd niet vertrouwd kan worden. Dit onderliggend platform
wordt gezien als nieuwsgierig. Het is nieuwsgierig naar de inhoud van de code, maar
brengt geen wijzigingen aan in deze code.

Dit proefschrift beschrijft twee benaderingen. De eerste is een praktische aanpak,
waarbij enkele oplossingen worden gegeven voor verschillende privacy problemen.
Deze oplossingen geven een vorm van privacy, maar deze geven geen informatie over
het niveau van privacy dat hiermee gegarandeerd kan worden. Om hier meer duideli-
jkheid over te krijgen is een tweede benadering gebruikt om te analyseren welk niveau
van privacy theoretisch gewaarborgd kan worden.

Bij de praktische aanpak zijn oplossingen voor drie problemen gegeven. Het eerste
probleem is het probleem van agent communicatie. Als een agent door zijn gebruiker
geinitieerd wordt, is het vaak niet bekend met welke agenten hij zal communiceren.
Als agenten met elkaar wensen vertrouwelijk te communiceren vormt dit een prob-
leem. Als de te communiceren data in vercijferde vorm is opgeslagen in de agent,
dient deze eerst ontcijferd te worden en vervolgens weer vercijferd met de sleutel van
de communicatiepartner. Tijdens dit proces is er een moment waarbij de vertrouweli-

144 Samenvatting

jke data in klare tekst toegankelijk is voor het platform. Dit kan een privacy risico
zijn. In dit proefschrift wordt een oplossing voorgesteld waarbij gebruik gemaakt
wordt van dubbele encryptie. Tijdens de communicatie wordt de vercijferde data in
de agent nogmaals vercijferd (nu met de sleutel van de communicatiepartner). In de
voorgestelde oplossing is het nu zo dat het mogelijk is om een decryptie uit te voeren
zodanig dat het resultaat data is die alleen nog vercijferd is met de sleutel van de com-
municatiepartner. Op deze manier is de vertrouwelijke data op geen enkel moment
beschikbaar in klare tekst.

Het tweede probleem waar een oplossing voor gegeven wordt is het probleem dat
agenten in staat moeten zijn om software programma’s uit te voeren op onbeveiligde
platformen zonder dat deze platformen de inhoud van deze programma’s mogen weten.
Een oplossing wordt gegeven in de vorm van het vercijferen van programma’s. Het
encryptie-algoritme ElGamal wordt gebruikt om polynomen te vercijferen. Vervol-
gens wordt een oplossing gegeven hoe beslissingen gemaakt kunnen worden gebaseerd
op vercijferde data. Deze oplossing is door zijn hoeveelheid aan berekeningen niet
praktisch.

Bij het derde probleem wordt gekeken naar hoe agenten digitale documenten kun-
nen ondertekenen zonder dat de privacy van zijn gebruiker in gevaar komt. Het zetten
van een digitale handtekening vraagt om het gebruik van een geheime sleutel, maar
deze data is erg privacy-gevoelig. Een digitale handtekening voor een software agent
wordt voorgesteld, waarbij er gebruik gemaakt wordt van het idee achter "blind signa-
tures”. De geheime sleutel wordt verborgen op een zodanige manier dat het platform
niet in staat is om de geheime sleutel te achterhalen. Een nadeel van deze digitale
handtekening is echter dat het platform het proces van het plaatsen van een handteken-
ing kan herhalen en daarmee een tweede document uit naam van de agent kan on-
dertekenen zonder zijn toestemming. Enkele oplossingen worden aangedragen om
deze situatie te voorkomen, waaronder het toevoegen van de identiteit van het plat-
form tijdens het ondertekenen.

De hiervoor genoemde oplossing om polynomen te vercijferen zorgt voor con-
fidentialiteit, maar het geeft geen maat over het maximale niveau van privacy dat
behaald kan worden. Om deze maat te kunnen geven, is gebruik gemaakt van de
informatietheorie binnen een mobiele code privacy model. Hierbij wordt aangenomen
dat een aanvaller toegang heeft tot onbeperkte rekenkracht en tijd.

Een eerste observatie binnen dit mobiele code privacy model is dat klare-tekst-
aanvallen niet voorkomen kunnen worden. Echter Shannon’s model houdt hier geen
rekening mee en in dit proefschrift is dit model aangepast zodanig dat klare-tekst-
aanvallen wel hierin passen. Dit leidt tot een nieuwe definitie van absolute veiligheid
en de daarbij behorende karakteristieken. Ook de uniciteitsafstand is gegeven voor het
geval van klare-tekst-aanvallen.

De theorie met betrekking tot klare-tekst-aanvallen is toegepast op de situatie van
privacy voor mobiele code. Privacy wordt bereikt door middel van vercijfering van de
functies in de mobiele code. Grenzen worden bepaald voor het maximale niveau van
privacy dat behaald kan worden. Ook geeft het informatie over het minimum aantal
sleutels dat noodzakelijk is om dit niveau van privacy te behalen. Ook de uniciteitsaf-

Samenvatting 145

stand is gedefinieerd en afgeleid voor het mobiele code privacy model.

Door gebruik te maken van informatietheorie was het mogelijk om theoretische
grenzen te geven voor het mobiele code privacy model. De belangrijkste aanbeveling
van dit proefschrift is om onderzoek te verrichten wat deze resultaten betekenen in
de praktijk, of het mogelijk is om een algoritme te ontwikkelen waarbij het maximale
niveau van privacy bereikt kan worden.

146 Samenvatting

Summary

This thesis’ objective is to provide privacy to mobile code. A practical example of
mobile code is a mobile software agent that performs a task on behalf of its user.
The agent travels over the network and is executed at different locations of which
beforehand it is not known whether or not these can be trusted. Because a mobile
software agent performs actions on behalf of its user, agent must be protected in order
to provide privacy to the user. For example, a software agent must purchase a flight
ticket. Other parties like airlines are then not entitled to know the agent’s strategy
when the agent will purchase the ticket.

In this thesis, several solutions are provided to this problem, and to obtain more
in depth knowledge on protecting privacy in mobile code a theoretical analysis was
performed. Essential in this problem is that the execution environment cannot be
trusted. It is curious in the content of the mobile code, although it does not change the
content.

Two approaches are covered in this thesis. First, a practical approach is given
that presents several solutions to various aspects of the mobile code privacy problem.
These solutions provide a level of privacy protection, however, it does not provide
knowledge on what level of privacy can be provided. To answer this question a the-
oretical analysis is made to derive limits of the maximum privacy level that can be
achieved.

For the practical approach three problems are addressed. First, the problem of
agent communication is investigated. If an agent needs to communicate to other
agents, but beforehand it is not always known with whom it will communicate, a
problem rises when the data to be transmitted is confidential. If the confidential data
is stored encrypted in the agent, it normally requires first a decryption and then an
encryption with a session key before it can be transmitted. However, this means that
at some point in time the host will be able to see the data in clear text. A solution is
proposed to this problem that makes use of double encryption. Based on the encrypted
data a transformation is performed such that the result is again encrypted data but the
key is the correct key such that the other party can decrypt the message. This trans-
formation is done such that at no point in time the clear text is available, and therefore
the host cannot access the data anymore.

The second problem is that agents should be capable of executing programs, but
the host, where the program is executed, should not be able to know the content.

148 Summary

A solution is to encrypt the program. By using ElGamal’s encryption scheme it is
achieved that polynomials can be encrypted. Furthermore, a solution is given how
decisions can be made on encrypted data, although this solution is impractical.

Software agents should be able to sigh documents when they are located at a re-
mote host. However, a signature requires usage of the private key. It means that the
host can have access to the agent’s private key, which is the agent’s most private data.
Therefore, an agent digital signature is proposed that is based on the concept of blind
signatures. The private key is blinded such that the host cannot have access to this
private key. Based on this agent digital signature it is for the host possible to sign
a second document without the agent’s consent. Several solutions are proposed to
prevent this situation.

The solution to encrypt polynomials does provide confidentiality, however, it pro-
vides little insight on the maximum level of privacy that can be achieved. Therefore,
a mobile code privacy model was designed, such that by using information theory
theoretically boundaries can be derived. An attacker is considered with unlimited
computation power and memory resources.

A first result is that for the mobile code privacy model plaintext attacks cannot
be prevented. Shannon’s secrecy model does not take these into account. Therefore,
Shannon’s theory was extended to plaintext attacks. New definitions of perfect secrecy
were given as well as characteristics when systems provide these levels of secrecy.
Furthermore, the unicity distance is derived in this new situation.

The theory of incorporating plaintexts is then applied to the mobile code privacy
model, as well as the theory for ciphertext-only attacks. Privacy is provided by en-
cryption of the functions in the mobile code. It provides boundaries on the level of
privacy that can be achieved. Moreover, it also provides information on the minimum
amount of keys necessary to obtain a maximum level of secrecy. Furthermore, the
unicity distance is derived for the possible types of protection.

By using an information theoretic approach theoretical bounds were given in case
of mobile code privacy, taking into account the attacker with unlimited computation
power. The most important recommendation for future research is the question what
these results means in practice; whether or not an algorithm exists that fulfills this
maximum level of secrecy.

Acknowledgments

Many people contributed in one way or the other to this thesis.

First, I would like to thank my supervisors Jan van der Lubbe and Inald Lagendijk.
They have been of great help throughout the years by supporting my ideas and asking
critical questions.

I would also like to thank all the participants of the PISA project. The people in
the project helped me to stay focussed and | learned a lot from this multidisciplinary
project. Here, | would like to thank Martijn van Breukelen and Paul Verhaar in partic-
ular.

I always enjoyed working at the Information and Communication Theory Group,
because of the great atmosphere. | would like to thank everyone who has been part of
that group over the last five years. A few people | would like to thank in particular.
Annett and Anja were of great help for all administrative tasks and the many nice
conversations we had. Ben, Hans, Robbert, Erik and Janroel have always been of
great help for the many computer problems | had over the years. | always enjoyed the
conversations on cryptography and many cultural aspects with Bartek and Kosmas.
Furthermore, 1 would like to thank Jesper, Mark and Peter-Jan for the numerous breaks
I had with them. Thanks to Geerd for all the discussions and fun we had throughout
our studies and work at the ICT group.

A special thanks goes to Annelies as she designed the cover of this thesis. Further-
more, we have been such good friends for so many years, that | thank her for much
more than just the cover. | would like to thank all my other friends for their support.

The family Blomjous | would like to thank for their sincere interest in my PhD.
and everything that comes with that.

To my sister, Anouk, thanks for all the support of course, but also for the many
times she listened to my mathematical and technical problems. Although she often
did not have to give the answers, just the listening provided me the solutions.

The cliché that there are not enough words to say thanks, definitely holds for my
parents. Thanks for all the opportunities you gave me and the support. The fact that
they always believed in me, made me come this far.

Finally, I would like to thank Willem-Jan for his love and patience. He is the one
that had to deal with all my mood swings and the times I thought I would never finish
this thesis. Thanks and | hope we will have many more great years together.

150 Acknowledgments

Curriculum Vitae

Kathy Cartrysse was born in Knokke-Heist (Belgium) on April 17, 1977. She obtained
her VWO-diploma at the Aloysiuscollege in Den Haag in 1995.

This was followed by a study of electrical engineering at Delft University of Tech-
nology. During these studies she was an exchange student at Worcester Polytechnic
Institute, Massachusetts, USA, in 1998 - 1999, where she received a master of science
degree in 2000. For Delft University of Technology she graduated in 2000 with a
master thesis entitled "Payment scheme providing privacy in a mobile environment”.
The research for this thesis was conducted at ING Group, Amsterdam.

In January 2001 she started as a PhD.-student at the Information and Communi-
cation Theory Group at Delft University of Technology in the research area cryptog-
raphy. Her work for this thesis was conducted within the PISA-project funded by the
European Union. Since April 2005, she holds a postdoc position in the same group.

