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Summary

An audio fingerprint is a compact low-level representation of an audio signal [28]. An
audio fingerprint can be used to identify audio files or fragments thereof in a reliable
way. The use of audio fingerprints for identification consists of two phases. In the en-
rollment phase known content is fingerprinted, and ingested into a database, together
with all relevant metadata. In the identification phase, unknown audio content is fin-
gerprinted, and the fingerprint is used as a query. The query fingerprint is compared
to the fingerprints in the database. If a similar fingerprint is found in the database, the
relevant metadata corresponding to the fingerprint is returned.

In this thesis we develop models for audio fingerprints. The emphasis here is on
fingerprint extraction and the properties of the fingerprint, not on matching the query
fingerprint to the fingerprints in the database, and the actual identification. Neither do
we develop new practical fingerprinting algorithms.

There is a wide variety of applications for audio fingerprinting, including broad-
cast monitoring, audience measurement, forensic applications, blacklisting of unau-
thorized content, ‘name that tune’ services and linking of special offers to television
or radio commercials.

Content which uses the same recorded source material, but which is in different
representation, or is distorted in different ways, will generate similar audio finger-
prints. This distinguishes audio fingerprints from hashes and content-based retrieval.
The hash of an audio file changes even when one sample changes. Two perceptually
equal audio items can have completely different hash values, but will generate similar
fingerprints. Content-based retrieval looks for audio items which apply to a similar
concept, like the same genre, artist or style, while fingerprinting looks for the reuse of
the recorded content.

Of course, the exact requirements for a fingerprinting system strongly depend on
the application. Relevant aspects for the topics discussed in this thesis are the robust-
ness, uniqueness, accuracy (notably the False Acceptance Rate and False Rejection
Rate), granularity and the size of the fingerprints.

In this thesis we make three contributions in the form of models. First, we model
the structure of a particular type of audio fingerprint, the Philips Robust Hash (PRH)
[44]. The PRH fingerprint extracts a series of spectral energy related features from
the audio signal, which are represented efficiently but coarsely as a binary time-series.
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The time-series captures the temporal and spectral dynamics of the audio signal, and
has a very particular structure mainly depending on a limited number of parameters in
the fingerprint extraction.

The model describes the structure of the PRH as a function of a number of param-
eters [35]. It can be used for better understanding and potentially optimization of the
fingerprinting system. We experimentally verify the model on synthetic data in which
the samples are independent identically distributed (iid) and Gaussian, and conclude
that the model captures the structure of the PRH fingerprint well. This analysis was
reformulated and extended by Balado, Hurley, McCarthy and Silvestre [15, 52].

Second, we observe that distortions in the audio are reflected in changes in the cor-
responding fingerprint. This kind of distortion affects the quality of the audio signal
and changes the resulting fingerprint. The idea is to estimate the amount of distortion
on the audio signal by comparing the corresponding fingerprint to a reference finger-
print extracted from a high quality copy of the same audio [38]. In this way one could
extend the functionality of a fingerprinting system. We implement and compare the
behavior of a number of algorithms from literature, and observe similar behavior of
the distance between corresponding fingerprints due to compression.

We model the effect of particular distortions in the audio due to compression or
additive white noise on the difference introduced in the PRH fingerprints. The main
result of our modeling effort is a closed form relation between Signal-to-Noise Ra-
tio (SNR) and average fingerprint distance for PRH audio fingerprints of iid signals
[36, 38]. We also experimentally verify the developed models. The model fits per-
fectly for synthetic signals, and captures the behavior observed in a wider variety of
fingerprinting algorithms on actual music.

Third, we consider an information theoretical framework developed by Westover
and O’Sullivan (WOS) [104]. The main question is ‘how many signals can be iden-
tified by a fingerprinting system, under certain conditions’. The conditions relate to
characteristics of the fingerprint (size of the fingerprint, and representation of the fin-
gerprint), and characteristics of the environment in which the system operates (repre-
sentation and statistical characteristics of the signals that need to be identified, how
much distortion is allowed). We use the results of the model developed for the PRH
fingerprint to estimate up to how many signals can be identified with a binary fin-
gerprint like the PRH. Finally, we check whether the changes in the fingerprints we
observe in practice due to distortions in the audio signals, and which have been mod-
eled in this thesis, fit in the information theoretical framework of the WOS model. We
compare the WOS-model to practical implementations and outline the differences.

We finish with a list of recommendations on extending the models to jointly con-
sider distortion and uniqueness characteristics; to take more distortion types into ac-
count, and to extend to images and video; to develop an evaluation framework for
audio fingerprinting; to integrate psycho-acoustics; and to develop a theoretical frame-
work for comparing specific algorithms to the capacity bound.
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Chapter 1

Introduction

1.1 Background

The last decade has shown a tremendous increase in the exchange of audio-visual
information over the Internet. The popularity of content sharing portals like YouTube
[13] and the various BitTorrent networks are good examples. Not all content shared on
these networks are free of copyright restrictions. Rights holders often consider sharing
of their content as an illegitimate act. Sometimes, they are even taking legal action
against alleged violators infringing on their rights, or the platforms and networks that
facilitate the sharing of their content [12]. These platforms, however, can only prevent
unauthorized sharing of content if they can automatically determine whether content
offered on the platform is authorized. This calls for identification of unlabeled content.
A technique which can be used for this is audiovisual fingerprinting. An audiovisual
fingerprint is a compact low-level representation of a multimedia signal [28]. Such
fingerprints can be derived from, e.g., audio, video and images. In the content sharing
scenario rights holders can derive a fingerprint from their content and put them on a
black list. Content sharing platforms can then derive a fingerprint from the incoming
content to be shared on the platform, and compare it the to fingerprints on the blacklist.
If there is a match with one of the fingerprints on the blacklist, the associated content
is blocked from the platform.

As the name fingerprinting suggests, there is some resemblance with the use of hu-
man fingerprints for identification. A person can be identified using his fingerprints,
since his fingerprints are unique. That is, the probability that the fingerprints of two
individuals are similar is very small. Law enforcement agencies use this fact when
they find fingerprints at the scene of a crime. If the fingerprint is present in police
records (in other words: the police has seen these fingerprints before), the police can
identify the individual to whom the fingerprints belong, or can link crimes where the
same fingerprints were present. Human fingerprints and other biometrical character-
istics are widely used for identification and authentication, e.g., to gain access to a
building or device.

For the identification of audio-visual content using fingerprints a collection of ref-
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erence fingerprints is needed, together with the associated information (i.e., meta-
data). So, there are two phases as illustrated in Figure 1.1. In the enrollment phase, a
database is filled with the fingerprints and the associated metadata of a (large) number
of songs. In the identification phase, shown in Figure 1.1, the fingerprint of an un-
known song(fragment) is extracted and compared with the items in the database. If the
fingerprint of the song is present in the database, it will be found and hence identified.
The song-fragment is likely to be a distorted version of the song that was used to ex-
tract the fingerprint in the database, due to compression and regular audio processing.
These distortions in the audio signal result in differences in the fingerprints. There-
fore, classical database lookup procedures fail, and approximate database matching
procedures are needed.
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Figure 1.1: Using fingerprints for music identification: the extracted audio fingerprint
(query) is matched against a database with pre-computed fingerprints and metadata.

Such a fingerprint can be used to check whether two pieces of audio content are
‘the same’, or to identify an unlabeled audio file or audio being played, e.g., on the
radio. Although we loosely stated that by using fingerprinting you can determine
whether two songs are ‘the same’, it is not straightforward to specify what is ‘the
same’ or ‘similar’ content. Actually, in case of audio fingerprinting you are usually
determining whether two audio pieces are derived from the same recording. Most
fingerprinting systems are really sensitive: the same artist performing the same song
twice, will generate two distinct audio fingerprints. Of course, the songs are ‘the
same’, but on a semantic level. It also excludes the use of different modalities for
query and reference fingerprint, e.g., query-by-humming [24].

In this thesis we limit ourselves to audio fingerprints, and do not consider image
or video fingerprints. Audio fingerprints have been used extensively for content-based
identification of unlabeled audio [101, 81, 94, 100, 48, 70, 44, 79, 27, 2]. Audio fin-
gerprints are typically based on features computed from the audio signal. The audio
fingerprint extraction is different from, e.g., video fingerprinting, since the character-
istics, and thus the type of features, for audio are different from video. However, given
a representation of those features, the distance metrics, search methods and database
structures can be similar, see, e.g., [80].

Another typical audio fingerprinting application is the organization of music col-



1.2. Scope and contributions 3

lections on a storage device, such as a CD-ROM or an iPod. People digitally store
huge audio visual collections on their hard disks, instead of building collections of
vinyl, tapes and CDs. The combination with increasing bandwidth of Internet con-
nections and computer processing power has led to different distribution mechanisms
for music and video. During the years the emphasis has shifted from collecting entire
albums to a set of individual songs and now, due to increased bandwidths available,
slowly back to entire albums again. One used to know exactly what is on a compact
disc: it is always the same and it goes with a booklet and title page. Even if you
insert a CD into your computer, the player will consult the Compact Disc DataBase
(CDDB) on the Internet to check which CD is inserted [2]. On a hard disk, however,
you loose the intuitive connection between the content, the carrier and ‘the things that
go with it’ (information or metadata). Since most people compress their music using
their computer, there is a wide variety of representations of the same content: in differ-
ent formats, using different bit rates, at different qualities. So, people are confronted
with increasingly varying representations of increasingly diverse content. Here, fin-
gerprints can be used to identify and index the songs on the hard disk. What then
is needed is a large collection similar to the CDDB database, but now containing the
reference fingerprints.

1.2 Scope and contributions
In this thesis we focus on developing models for audio fingerprints and fingerprinting
systems. We do not develop new fingerprinting systems, nor do we consider video
or image fingerprints. Instead, we build and use three models for audio fingerprints.
The emphasis here is on fingerprint extraction and the properties of the fingerprint, not
on fingerprint identification and matching. These models can be used to understand
and quantify the effect of signal and system parameters on the fingerprint structure,
robustness to certain distortions, and capacity.

First, we model the structure of a particular type of audio fingerprint, the Philips
Robust Hash (PRH) [44]. This model describes the structure of the PRH as a function
of a number of parameters [35]. It can be used for better understanding and potentially
for optimization of the fingerprinting system. Furthermore, we experimentally verify
the model. This analysis was reformulated and extended by Balado, Hurley, McCarthy
and Silvestre [72, 73, 15].

Second, we observe that distortions in the audio are reflected in changes in the
corresponding fingerprint. We model the effect of particular distortions in the audio
due to compression or white noise on the distortions introduced in the fingerprints.
This kind of distortion affects both the quality of the audio signal and the fingerprint.
The idea is to estimate the amount of distortion on the audio signal by comparing
the corresponding fingerprint to a reference fingerprint extracted from a high quality
copy of the same audio [38]. In this way one could extend the functionality of a
fingerprinting system. In the Music2Share paper, the authors propose a system for
music distribution using Peer-to-Peer networks [56]. In this way, one could buy a
copy from another person instead of buying a copy in an online music store. But then
the customer would not only like to check the identity of the song for sale, but also the
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quality at which the song is offered. In this way, prices can be differentiated according
to the offered quality. In other words, pay less for a low quality version. The main
result of our modeling effort is a closed form relation between Signal-to-Noise Ratio
(SNR) and average fingerprint distance for PRH audio fingerprints of independent
identically distributed (iid) signals [36, 38]. Unless stated otherwise, in the models we
assume time alignment between the undistorted and distorted signal or fingerprint. In
this thesis we also experimentally verify the developed models.

Third, we consider an information theoretical framework developed by Westover
and O’Sullivan [104]. The main question is ’how many signals can be reliably iden-
tified by a fingerprinting system, under certain conditions’. The conditions relate to
characteristics of the fingerprint (size of the fingerprint, and representation of the fin-
gerprint), and characteristics of the environment in which the system operates (what
kind of signals need to be identified, how much distortion is allowed). We use the
model developed for the probability of an erroneous PRH fingerprint bit due to ad-
ditive noise, and integrate this model into the framework developed by Westover and
O’Sullivan (WOS). In this way we estimate up to how many signals can be identified
with a binary fingerprint like the PRH. We compare our bounds with the WOS bounds
in [104]. Finally, we check whether the changes in the fingerprints we observe in
practice due to distortions in the audio signals, and which have been modeled in this
thesis, fit in the information theoretical framework.

1.3 Organization of this thesis
In the following five chapters we present a survey of the state-of-the-art (Chapter 2);
build stochastic models for a particular audio fingerprinting algorithm (Chapter 3);
use this model to estimate the distortion in compressed audio (Chapter 4); estimate
the number of songs that can be identified by fingerprinting systems in general (Chap-
ter 5); and discuss the results of Chapters 2-5 (Chapter 6). In more detail:

Chapter 2: Audio fingerprinting: state-of-the-art
In this chapter we analyze the functionality and working principles of audio finger-
printing. The main building blocks that in general make up an algorithm are dis-
cussed. Furthermore, fingerprinting is compared to alternative technologies, differ-
ences and similarities are identified. In this chapter we present a thorough overview of
the current state-of-the art in audio fingerprinting and compare the algorithms found
in literature on several characteristics.

Chapter 3: Models for PRH generated fingerprints of iid signals
This chapter discusses one of the more successfully applied audio fingerprinting algo-
rithms, the Philips Robust Hash (PRH). The fingerprints generated by this algorithm
on audio have a particular structure. We show that the structure is predominantly
determined by algorithmic choices, and to a lesser extent by the input signal charac-
teristics. To be more precise, the structure of a fingerprint obtained from an iid signal
closely resembles the structure of a fingerprint extracted from music. Following this
observation, we relate the statistical properties of this fingerprint structure to a partic-
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ular fingerprint extraction parameter: the relative frame overlap. Some of the results
have been published in:

• P.J.O. Doets and R.L. Lagendijk, “Theoretical Modeling Of A Robust Audio
Fingerprinting System”, in Proceedings of the 4th IEEE Benelux Signal Pro-
cessing Symposium, pages 101-104, April 2004.

• P.J.O. Doets and R.L. Lagendijk, “Stochastic Model of a Robust Audio Finger-
printing System”, in Proceedings of the 5th International Conference on Music
Information Retrieval (ISMIR), pages 349-352, October 2004.

The second part of this chapter is related to the robustness characteristics of the
fingerprint. We consider the effect of additive white Gaussian noise on the fingerprint.
We derive a closed form expression for the probability of an erroneous fingerprint bit
as a function of the SNR, and experimentally validate the result. Some of the results
have been published in:

• P.J.O. Doets and R.L. Lagendijk, “Extracting Quality Parameters for Com-
pressed Audio from Fingerprints”, in Proceedings of the 6th International Con-
ference on Music Information Retrieval (ISMIR), pages 498-503, September
2005.

• P.J.O. Doets and R.L. Lagendijk, “Distortion Estimation in Compressed Music
Using Only Audio Fingerprints”, in IEEE Transactions on Audio, Speech and
Language Processing, vol. 16, no. 2, pages 302-317, February 2008.

Chapter 4: Distortion estimation in compressed music using only audio finger-
prints
A fingerprinting system should be robust to many distortions, such as noise and com-
pression. The fingerprint, however, changes slightly due to the distortion. We use
the model developed in chapter 3 to estimate the distortion due to compression. The
model was developed for the PRH algorithm only, but the other fingerprinting algo-
rithms show a comparable behavior. We experimentally compare the observed be-
havior due to additive noise and compression for three different audio fingerprinting
schemes. This chapter mainly consists of integral copies of sections from our paper:

• P.J.O. Doets and R.L. Lagendijk, “Distortion Estimation in Compressed Music
Using Only Audio Fingerprints”, in IEEE Transactions on Audio, Speech and
Language Processing, vol. 16, no. 2, pages 302-317, February 2008.

Some of the results have also been published in:

• P.J.O. Doets and R.L. Lagendijk, “Extracting Quality Parameters for Com-
pressed Audio from Fingerprints”, in Proceedings of the 6th International Con-
ference on Music Information Retrieval (ISMIR), pages 498-503, September
2005.

• P.J.O. Doets, M. Menor Gisbert and R.L. Lagendijk, “On the Comparison of
Audio Fingerprints for Extracting Quality Parameters of Compressed Audio”,
in Proceedings of Security, steganography, and watermarking of multimedia
contents VII, January 2006.
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• P.J.O. Doets and R.L. Lagendijk, “Extension of a Stochastic Model for the
Philips Audio Fingerprint”, in Proceedings of the 27th Symposium on Infor-
mation Theory in the Benelux, June 2006.

Chapter 5: Information theoretical models for fingerprinting
Fingerprinting systems are usually evaluated on their statistical properties. But how
many songs can be identified, and which factors determine this number? To answer
this question, we use an information theoretical model developed by Westover and
O’Sullivan. We use the model developed in Chapter 3 to analyze how far binary
fingerprints like the PRH are away from the maximum number of songs that can be
identified under certain conditions. Finally, we analyze whether the behavior observed
in the experimental comparison between algorithms fits in the information theoretical
framework. The results in this chapter are recent and unpublished.

Chapter 6: Results and recommendations
In the last chapter we highlight our results and draw conclusions. Finally, we reflect
on the work presented in this thesis and outline directions for future research.



Chapter 2

Audio fingerprinting:
state-of-the-art

This chapter provides a high-level overview of audio fingerprinting. Section 2.1 deals
with applications of fingerprinting. Section 2.2 relates fingerprinting to other content-
based retrieval and identification techniques which are commonly used in the same
context. In Section 2.4 we break down the fingerprint extraction and identification
procedure in smaller building blocks, and discuss each of these blocks in more de-
tail. Section 2.5 presents the main characteristics of state-of-the-art fingerprinting
algorithms found in literature. Finally, in Section 2.6 we discuss one state-of-the-art
algorithm, the Philips Robust Hash (PRH), in more detail. This algorithm plays a
central role in the remainder of this thesis.

2.1 Applications
Establishing the identity of content is a key component in many Digital Rights Man-
agement (DRM) applications. DRM refers to technologies that support the legal distri-
bution of digital media while protecting appropriate property rights [25]. So DRM can
be seen as the whole collection of commercial, legal, and technical measures to enable
trading of digital items on electronic infrastructures [54]. A typical DRM system uses
a number of key components: encryption, watermarking, fingerprinting, key manage-
ment, and a rights expression language [67, 41]. One of the main design philosophies
of a DRM system is the separation of content from the rights [93]. This allows the
content to be distributed or downloaded freely. However, it cannot be consumed with-
out a valid license, which specifies the permissions for the various ways the associated
content can be used.

Although DRM is an important application context, fingerprinting is used for a
wide variety of other applications, including [28]:
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• Broadcast monitoring
Advertisers spend money to have their commercials aired according to a con-
tract. However, it is very time consuming to manually check whether the com-
mercials are actually aired according to the agreed terms. Companies like CIvo-
lution [7] and Nielsen Broadcast Data Systems [10] offer a service called broad-
cast monitoring. They automatically monitor a number of radio and television
channels looking for specific content, e.g., advertisements, and register when,
where, how long etc. the content is aired.

• Audience measurement
Fingerprinting can be used for audience measurement: to identify which pro-
grams a selected panel is watching or listening to. Similarly, statistics can be
generated on what content is available on the internet. Statistics can also be
generated based on relations in the metadata collected using fingerprinting.

• Forensic applications
Special police teams are looking for video material of child abuse. When they
raid a house, they usually get hold of a vast collection of audiovisual material.
The police is interested in questions like: does the material contain child abuse
scenes? What is material that we haven’t seen before? Fingerprinting can assist
in finding copies that have been analyzed before [8].

• Locating unauthorized content and blacklisting
Rights owners are often interested in where there content is (mis)used, e.g.,
on content sharing platforms. A combination of web crawlers and fingerprint
can locate content on various platforms [9, 7]. This can also be combined with a
black list: content on the blacklist is blocked when being uploaded or distributed
[11].

• Name that tune
Another example is the ‘name that tune’ service: if you are wondering what
song your listening to, e.g., on the radio, you can collect and send a few seconds
of music using a cell phone. The service computes and matches the fingerprint,
and returns a text message containing metadata like artist, song name, album
etc. [90, 99]

• Metadata collection
People collect enormous amounts of music, through different channels like CDs
and downloads. Once stored on, e.g., a hard disk the metadata often is unavail-
able, making organization of the content very hard.

• Find duplicates
A straightforward application is to find duplicates in large multimedia archives,
and to reduce the amount of storage needed.
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Similarity The files have The files contain the The files contain
metric the same bits same source material the same concept
Tool or Hash (MAC) Fingerprint or AMAC Sematic retrieval
Algorithm (genre detection etc.)

Table 2.1: Content based retrieval techniques and associated similarity concepts.

• Added value services
Once the identity of a song or audio file is established, service can be offered
based on this information. Examples include an offer to buy the song you iden-
tified using ‘name that tune’, targeted advertisement in social networks based on
musical interests, offering of related information like biographies, lyrics, news
items etc. A recent example is to capture the audio of an advertisement on the
TV using a ‘name that tune’ service. The user is provided with a link on his cell
phone to a special offer related to the advertisement [91].

2.2 Related identification technology

2.2.1 Alternative content-based identification technology
Fingerprinting can be used for content-based copy detection. Whether fingerprinting
is the right technique to use depends on the notion of similarity: when are two pieces
of content considered ‘similar’. Usually, the aim of fingerprinting is to check whether
the content originates from the same source material. The following content based
identification technologies can be used to establish an increasingly wider notion of
similarity, also listed in Table 2.1. Comparing the bits or cryptographic hashes (also
known as Message Authentication Codes (MACs)) is relevant when one is interested
in establishing whether the digital representations of two songs are bit-wise identical.
Comparing waveforms, fingerprints or Approximate Message Authentication Codes
(AMACs) to some degree refers to (perceptual) similarity of the waveform. Finally,
semantic retrieval and classification approaches use similarity on a more conceptual
level, e.g., to retrieve music from the same genre, having a similar style, or from the
same artist.

We will now consider these technologies in more detail:

• Cryptographic hash
A cryptographic hash is also called a message digest, or a Message Authenti-
cation Code (MAC). Well known examples are the MD5 and SHA family. A
MAC is fixed-length (usually 128 or 160 bits), independent of message length.
For security reasons a secret key is input for the computation of the MAC, to-
gether with the input message. A hash is bit-sensitive, i.e. changing only one bit
in the message changes the entire hash. Two other important characteristics are
the pre-image resistance - the inability to find a second message which results
in the same hash - and the collision resistance - the probability that two arbitrary
messages result in the same hash.
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• Approximate Message Authentication Codes (AMACs)
An AMAC is also a binary digest of fixed length [42, 109, 106]. Contrary to
traditional cryptographic hashes and MACs, AMACs are distance-preserving:
the probability that a bit in the AMAC changes varies monotonically as func-
tion of the number of bit changes in the message. Therefore, AMACs can be
used for a probabilistic estimation of the degree of bitwise similarity of two dig-
ital messages. Usually AMACs work on binary messages, but recently AMACs
have been developed that work on N -ary alphabets [42]. Such an AMAC pro-
vides control of the sensitivity to a given distortion. An AMAC can be made
distance preserving, i.e., the distance between two authentication tags reflects
the distance between two messages.

Reported drawbacks of AMACs are the large variations around expected value
of AMAC differences and the inability to locate the changes in the content [109]
(which often is possible using audio fingerprinting). Some approaches create an
AMAC of a feature vector [106], others of an entire signal [42, 109]

• Comparison of waveforms
A straightforward method for identifying songs would be to compare its wave-
form to a series of waveforms of known songs. Besides the question what is ‘the
same’, there are several drawbacks to such an approach. First, storing a large
number of waveforms requires a lot of storage space. Second, songs that sound
similar can have a large variation in their waveform representations (interclass
variation). Thirdly, the computational complexity of waveform comparisons is
relatively large; although feature based comparisons can be seen as a two-tier
approach of the waveform comparison.

• Semantic, content based retrieval (SCBR)
The aim of content based retrieval is also to find similar multimedia content
items, but the similarity between content items is evaluated on a higher, se-
mantic level. An example of SCBR is query-by-example: given (an) example
song(s), find all songs that have been performed by the same artist. When com-
paring (A)MACs, fingerprints or waveforms the similarity is always low-level:
either (approximate) bit-wise or waveform similarity. Here the notion of simi-
larity relates more to a concept.

2.2.2 Alternative identification technology: watermarking
Watermarking is an identification technology alternative to fingerprinting. Water-
marking can be defined as the ‘imperceptible insertion of information into multimedia
data through slight modification of the data’ [30]. Literature surveys can be found in
[30, 63, 77]. It can be used for similar applications, like broadcast monitoring. How-
ever, since the signal needs to be actively altered it cannot be used for legacy content,
i.e. content that is already ‘around’, or for content over which the ‘identifier’ does not
have full control and is thus not able to embed a watermark in. Furthermore, since the
insertion needs to be imperceptible, it may potentially also be rendered undetectable
without changing the perceptual characteristics of the content.
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The embedded message is independent of the multimedia content, and thus can
have any meaning beyond content identification, e.g., transaction tracking [84, 4,
6]. Watermarking thus makes it possible to distinguish perceptually identical copies.
Three combinations of watermarking and fingerprinting are typically used in DRM
applications. First, self-embedding is a technique in which a fingerprint is embedded
as a watermark for authentication purposes [33, 32, 108, 43]. Second, the fingerprint
can be used as an input to the watermark embedding procedure [46, 75, 19]; in this
way the watermark becomes content dependent and can gain robustness to the so-
called copy attack [61]. Third, to locate the start of a watermark message in an audio
stream, the watermark contains markers. These markers, however, are easily located
and may be removed, and pose a security risk [31]. When the embedding locations are
known before-hand to the detector, there is no need for these markers. The embedding
location could be revealed to the decoder in the form of a fingerprint [47]. Contrary to
fingerprinting, watermarking theory is well-developed and there exist good theoretical
models, e.g., [78, 68, 83].

2.2.3 Identification of individual humans: biometrics

Audio fingerprinting is related to biometrics in more aspects than just the name. Bio-
metrics is a technology for establishing or verifying the identity of individuals based
on their physiological or behavioral characteristics [53]. Example characteristics are
the face, fingerprint, iris, but also gait and keystroke dynamics. Since the technical
goals - identification and verification - are the same as for multimedia fingerprinting,
the structure of biometrical identification systems show a lot of similarity with audio
fingerprinting systems. Again there are two phases: enrollment and identification.
The representations of the biometric features need to be compact for scalability.

However, there are some important conceptual differences. The biometric, e.g.,
a human fingerprint, is on the same conceptual level as a song. The similarity com-
parisons are usually carried out on features of the biometric, therefore putting these
features on the level of the multimedia fingerprint. Furthermore, due to imperfections
like sensor noise and personal behavior it is impossible to register the ‘true’ biometric,
or the prototype. One can only measure distorted versions of the biometric. In mul-
timedia fingerprinting, however, for many applications a registration of the content
extremely close to the ‘prototype’ can be made, e.g., master tapes of a recording, a
CD or high definition recording. Finally, security is a key issue in biometrics, but not
in most fingerprinting applications, although key-based audio fingerprinting schemes
have been published [75].

2.3 Requirements and trade-offs
Although in this thesis we do not develop or design a fingerprinting system, it is rel-
evant to list some of the typical requirements (desired properties) for fingerprint ex-
traction and the identification using a database of reference fingerprints. We follow
the terminology and definitions used in [28, 55].
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Requirements on the fingerprint extraction:

• Robustness
The ability of the fingerprint representation to withstand the effect of signal
processing operations, i.e. the changes in the fingerprint are limited.

• Uniqueness
The discriminating capabilities of the fingerprints. This is related to the colli-
sion probability: the probability that two dissimilar signals result in two similar
fingerprints.

• Accuracy
Extent to which the identification results are correct. The level of accuracy is
strongly dependent on the robustness and uniqueness properties of the finger-
print. Accuracy mainly relates to the False Acceptance Rate (FAR) and False
Rejection Rate (FRR) - see Section 2.4.5. A related aspect is the time localiza-
tion accuracy, i.e. the ability to precisely locate the starting and ending point of
a query fragment located in a reference recording.

• Fragility
The ability to control to which distortions the fingerprint is robust. For some
applications it is desirable that the fingerprint is only robust to certain content-
preserving operations.

• Granularity
The minimum audio fragment length needed for a reliable identification. Based
on a small fragment, an audio track can be identified. When a system is fine
granular this means that a system is capable of reliable identification of small
excerpts.

• Fingerprint rate (size)
The fingerprint rate is the amount of bits (or: elements) extracted per second (or:
song). To facilitate database and system scalability, the fingerprint size should
be small. The size of the fingerprint is also directly related to the number of
fingerprints that can be represented, and to the granularity: as a rule of thumb
one can say that the larger the fingerprint rate, the finer the granularity.

• Computational complexity
This refers to the amount and type of resources required for the extraction of the
fingerprint, or the comparison of two fingerprints. This is a relevant issue for
systems requiring real-time operation and for systems having limited computa-
tional resources. In some applications the computational burden can be divided
over a client extracting a fingerprint, and a server maintaining the database and
matching the fingerprints. Thus, either the fingerprint is computed locally (pos-
sibly low computational resources/bandwidth), or the query item is transmitted
over a network and the fingerprint is computed centrally (high computational
resources/bandwidth).
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Figure 2.1: Illustration of the relation between accuracy, granularity, and fingerprint
rate.

• Security
For some applications it is important that the derivation of the fingerprint from
the content is key dependent. One then should not be able to (mildly) change
the content without changing the fingerprint. It then also should not be easy to
find a different piece of content that generates the same fingerprint (collision),
or to learn the key given one or more content items.

In this thesis the security and computational complexity are not considered; these
are not relevant for the types of models we develop in this thesis. In the next chapter
we develop a model with describes the structure of the fingerprints generated by one
particular fingerprinting algorithm, the Philips Robust Hash (PRH). This structure de-
termines the uniqueness of the fingerprints. We also develop a model that describes
how fingerprints change due to additive noise, which relates to robustness. In Section
2.4.5 we discuss and illustrate detection statistics, which are coupled to granularity.
The relations between the fingerprint requirements on accuracy, granularity, and com-
pactness are related as follows, also illustrated in Figure 2.1:

(a) For a given granularity, a higher accuracy can be achieved by using a higher
fingerprint rate, i.e. extract more information from the audio signal. E.g., when
identifying 3 seconds of music, extracting more features from the same material
and keeping other parameters constant, may provide a higher accuracy.

(b) For a given accuracy, using a higher fingerprint rate enables a finer granularity,
i.e. the system is able to identify smaller audio fragments.

(c) For a given fingerprint rate, using larger minimum fragment length, i.e. a
coarser granularity, can result in a larger accuracy since there is more infor-
mation available in the audio fingerprint.

Although in this thesis we do not consider searching a fingerprint in a database, it
is an important aspect in the use of fingerprinting systems. We briefly list some of the
most important requirements for the database aspects:
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Figure 2.2: General structure of a fingerprinting system consisting of the fingerprint
extraction module, fingerprint identification module and a database containing finger-
prints and metadata.

• Scalability
The fingerprinting system should be scalable to a large number of fingerprints.
This is affected both by the database parameters (search speed, search efficiency,
indexing structures), but also by the fingerprint parameters itself (how many
fingerprints can be distinguished in a reliable way).

• Search complexity
Search complexity refers to the complexity of the database search or evaluation
of distance metric.

• Updatability
It should be easy to enroll new items in the database, or remove existing items,
and update the corresponding index structures.

2.4 Structure of audio fingerprinting algorithms
Most fingerprinting systems share a similar structure. In this section we analyze the
structure of a fingerprinting system for identification. Most of the analysis follows the
structure and terminology introduced in the survey paper by Cano et al. [28].

Figure 2.2 illustrates the elementary building blocks in a fingerprinting system,
consisting of the fingerprint extraction and the fingerprint identification modules. The
fingerprint extraction consists of two steps: extracting robust features (front end), and
building the fingerprint representation based on these features (fingerprint representa-
tion).

The fingerprint identification also consists of two steps. First, the fingerprint to be
identified needs to be matched against the database to retrieve potentially similar fin-
gerprints (database matching). Fingerprinting systems need to be able to scale to large
collections of fingerprints. Therefore, efficient database structures are needed. Sec-
ond, the fingerprint has to be compared to each potential match (fingerprint compari-
son). Therefore, we investigate commonly used similarity measures and the important
detection statistics.
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Figure 2.3: Fingerprint front end of the fingerprint extraction module.

Section 2.4.1 discusses the extraction of a feature sequences from the audio signal.
The representation of the feature sequence as a fingerprint is discussed in Section
2.4.2. The following three sections deal with the fingerprint identification. Section
2.4.3 discusses the database retrieval techniques, Section 2.4.4 lists the fingerprint
similarity measures, and Section 2.4.5 discusses the relevant detection statistics.

2.4.1 Front End
Figure 2.3 shows a break-up into five building blocks of the fingerprint extraction front
end:

• Pre-processing
The most important aspect in this step is the conversion to a standard inter-
mediate format from which the fingerprint is computed, e.g., a mono signal at
a specific sample rate. Other common operations aim a at dimension reduc-
tion, concentration on perceptually most relevant information and anticipation
on specific distortions. An example is the use of bandpass filtering, and down-
sampling. Down-sampling removes the high frequency information; the high
frequency components usually contain less energy, are therefore more sensitive
to distortion and thus are less stable.

• Framing and overlap
The signal is framed in order to compute a feature sequence over time. An
important parameter is the frame rate: the rate at which frames or features are
extracted from the signal. Framing (or in general: discretization) introduces
synchronization issues. When comparing two signals that have the same source,
there is no guarantee that the frames have been put at the same location (bound-
ary synchronization). To minimize the effect of boundary desynchronization,
there commonly is a large overlap between successive frames (in the order of
50-96%). Many applications, e.g., coding, that assume (weakly) stationary sig-
nal characteristics use frames; these frames are usually in the order of 32 msec
in length. The frame length used in audio fingerprinting is commonly in the
order of hundreds of msec.

• Linear transforms: Spectral estimates
The Human Auditory System (HAS) reacts to spectral and temporal character-
istics of an audio signal. Since most music is man-made, it is intended to match
the HAS characteristics. Therefore, most fingerprinting algorithms introduce
windowed frames and make a time-frequency decomposition, often a FFT or
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MDCT. To facilitate the computation of a spectral transform, the frames are
windowed first. The time-frequency decomposition also results in decorrelation
and information packing, and thus enables a more compact representation. Note
that some algorithms use time domain features and thus do not compute features
in the spectral domain. However, the performance reported in literature for time
domain features for audio fingerprinting is worse than for frequency domain
features. This may be due to the fact that some typical distortions specifically
affect specific frequency regions.

• Feature extraction
Feature extraction mainly aims at dimensionality reduction in the form of effi-
cient and effective descriptions of the underlying signal. Furthermore, by us-
ing features that are based on the most robust signal elements it can increase
robustness to distortions. Popular features include Mel Frequency Cepstral Co-
efficients (MFCC) [88, 29, 86, 107], Spectral Flatness Measure (SFM) [70, 14]
and Haar features on spectral energies [44, 58].

• Post-processing
This step can be used to normalize the features, to emphasize the temporal evo-
lution of the feature sequence (derivatives) or to represent the data in an efficient
form.

The order of these steps may be different, repeated, or applied on different time
or frequency scales. In conclusion, we can say that each of the before-mentioned
building blocks aims at one or more of the following goals:

• Dimensionality reduction and compact representation
Examples include feature extraction, sample rate conversions and spectral rep-
resentations, e.g., PCA, OPCA and SVD.

• Increase robustness to distortion
Examples include the use of (invariant) features, coarse quantization, bandpass
filtering and down-sampling.

• Emphasize unique characteristics of the signal
Examples include the use of derivatives of feature time series.

• Match perceptual characteristics
There are two main reasons for a fingerprinting system to consider using the
perceptual characteristics and match the Human Auditory System (HAS). First,
many deliberately introduced signal distortions preserve the most important per-
ceptual characteristics. Second, some applications explicitly aim at ‘perceptual
similarity’, or fingerprints as a perceptual digest. However, some distortions
might be introduced by transmitting the signal to be identified to the fingerprint
extraction engine. In the ‘name that tune’ scenario, for instance, the distortion
introduced by the GSM channel does not necessarily preserve the perceptual
characteristics.
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These four goals match the requirements in Section 2.3 on compactness, robust-
ness, uniqueness, and fragility, respectively. A good combination of feature extraction,
fingerprint representation and similarity measure can increase the system’s robustness
to distortions.

2.4.2 Fingerprint representation
The feature stream time-series can be represented in different ways. Based on how the
representation follows from the temporal evolution of the fingerprint, we distinguish
three categories of fingerprint representations:

1. Fixed size fingerprints
The size of the fingerprint is independent of the song length. Examples include
taking the time-average over the extracted features [100] and the estimation of
the probability density function (pdf) underlying the extracted feature sequence
[86]. Music is non-stationary; parts with different signal and statistical char-
acteristics are mixed in the final representation. There are three drawbacks of
such a system. First, when different parts are mixed together in one model, the
discriminating characteristics of such fragments are lost in the modeling pro-
cedure; when identifying shorter fragments there is only a partial match with
the model derived for the entire system. Second, the timing information and
the temporal order of the features is a distinguishing feature of a signal. Third,
the fingerprint differences cannot be used to locate the differences between the
signals. One of the advantages of loosing the temporal information is that the
model potentially becomes independent of time scaling distortions.

2. Constant rate fingerprints
Most fingerprinting systems extract features on regular time intervals (frames).
Therefore, the fingerprint size is proportional to the song length. The main
advantage is that signal characteristics that are changing over time are not mixed
in the final fingerprint. Furthermore, the amount of information extracted in a
certain time window can be guaranteed. Finally, when comparing the fingerprint
of a distorted version to the fingerprint of the original undistorted recording,
the fingerprint difference can be used to localize the changes in the distorted
version.

3. Variable rate fingerprints
For efficient representation the rate of fingerprint varies with acoustical events.
In this way, the fingerprint only represents that salient characteristics of the un-
derlying acoustic signal. In the Shazam fingerprint, for instance, the spectral
peak locations that are most significant in both the frequency and in the tempo-
ral dimension represent the fingerprint [101]. This may result in very compact
fingerprints. However, one cannot guarantee the amount of information ex-
tracted in a certain time window. Also Kurth et al. [60] and Lebossé et al. [65]
use variable rate fingerprints.
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For the 2nd and 3rd type we adopt the following terminology introduced by Haitsma
et al. [45]. The part of the fingerprint that corresponds to a particular time instant is
called a sub-fingerprint. The fingerprint of a song is thus given by a time-series of
sub-fingerprints. A number of sub-fingerprints used for identification is called a fin-
gerprint block.

2.4.3 Database structures
Although the emphasis in this thesis is on properties of the extracted fingerprints,
the database search procedures are an essential part of any fingerprinting system for
identification. Therefore, we briefly summarize some of the important aspects and
characteristics.

Due to the potentially large number of items in the fingerprint database, exhaus-
tive search is infeasible. Therefore, efficient database structures and greedy search
algorithms are used. Since the fingerprint can have changes due to distortions in the
audio signal, the search is usually an approximate search: the exact query fingerprint
cannot be found in the database, but a similar fingerprint might be found. Therefore, it
is crucial to exclude unlikely candidates without excluding matching candidates. The
database search method may also affect the accuracy of the fingerprinting system: it
may miss actually matching fingerprinting candidates.

There is strong relation between the fingerprint representation, the distance mea-
sure and the used database search structure. Many papers found in literature focus on
the properties of the fingerprint itself, and do not consider matching strategies. Some
of the common techniques include:

• Inverted file index
This is a Lookup Table (LUT) of possible sub-fingerprint entries with pointers
to the fingerprints in database [44, 101, 29, 60]. The applicability depends on
the alphabet and the size of the sub-fingerprint. It might be infeasible to gener-
ate a list containing all possible entries (e.g., 232) and corresponding pointers.
Depending on the properties of the fingerprint, the LUT might be sparsely filled.
Therefore, the list might be based on another data type, e.g., cluster centers or
hash table entries derived from sub-fingerprints.
To facilitate the matching of fingerprints containing errors, either the query fin-
gerprint might be expanded to include more possibilities, or the LUT may also
contain entries corresponding to sub-fingerprint into which small errors have
been introduced. One has to be careful though that assumptions that are made
on the type and extent of the errors in the query fingerprint may lead to false
dismissals.

• Filtering out unlikely candidates
Filtering can be an efficient way to reduce the search space. Again, one should
be careful not to introduce false dismissals. Several well-known techniques can
be used to implement this idea. Unlikely candidates can be filtered out first
using a cheap similarity measure. The remaining set is evaluated using a more
complex and precise similarity measure. One could think of, e.g., computing
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a similarity on a sub-sampled version of the query fingerprint. Furthermore,
during the comparison process one can exclude candidates for which you know
beforehand that they have a worse score that the ones considered sofar. Some
tree based search methods exploit this.

• Hierarchical search
The query is first compared to the fingerprints of popular items. This can include
a ‘most wanted’ list, or a list of new releases. If there is no match in the short
list, the query is matched to the entire fingerprint database.

• Tree based search
Essentially, finding a similar fingerprint is a nearest neighbor search. Often trees
are used for locating nearest neighbors. A good example which was designed
specially for the PRH fingerprint is [76]. Here, each 5-second binary fingerprint
block (8192 bits) is considered to be a point in the fingerprint space. The fin-
gerprint block is split into 1024 8-bit patterns. The value of each consecutive
8-bit pattern determines which of the 256 possible children to descend to. A
path from the root node to a leaf defines a fingerprint block. When matching a
query fingerprint to the database, each 8-bit pattern is compared to the elements
of the tree; at each level in the tree, the error between the query fingerprint and
the best matching leaf below that node is estimated. As soon as the estimated
error is higher than the best found result sofar, the search is stopped.

2.4.4 Similarity measure
Fingerprinting systems typically use either a distance measure, or a probabilistic mea-
sure to compare two fingerprints. These similarity measures result in two distinct
identification rules for identifying an unknown fingerprint FY :

• Nearest neighbor decoding

ŵ = argmin
W

d(FW , FY )

• Maximum confidence score

ŵ = arg max
W

c(FW , FY )

• Maximum likelihood

ŵ = arg max
W

Pr[FW |FY ]

where FW denote the fingerprints stored in the database, ŵ is the index of the most
similar fingerprint, d(·, ·) represents a distance measure, c(FW , FY ) represents the
confidence score of the match between fingerprints FW and FY , and Pr[FW |FY ]
denotes the probability of occurrence for fingerprint FW , given the fingerprint FY .
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Typically, two aspects contribute to the confidence in a match between two fin-
gerprints: the length of the matching fragment, and the (dis)similarity between the
fingerprints.

To limit the number of false positives, each identification rule should be combined
with a threshold:

• Nearest neighbor decoding

d(FŴ , FY ) ≤ T1,

• Maximum confidence score

c(FW , FY ) ≥ T2.

• Maximum likelihood

Pr[FŴ |FY ] ≥ T3.

Furthermore, we can distinguish symmetric and asymmetric fingerprint identifica-
tion procedures. In symmetric procedures the same fingerprint model is used both for
enrollment and identification. Asymmetric procedures, on the other hand, use a differ-
ent fingerprint model for identification than for enrollment. Asymmetric procedures
usually occur in combination with probabilistic similarity measures, e.g., [29, 86]. For
instance, the fingerprint used for storage in [86] is a Gaussian Mixture Model (GMM)
estimated from an extracted feature sequence. In the identification procedure, for each
stored GMM, the probability is estimated that the feature sequence of the song to be
identified is the result of that particular GMM.

2.4.5 Detection statistics
In this section, we discuss the most important accuracy indicators. In a typical dis-
tance based fingerprint detector, two (conditional) PDFs are of interest. Firstly, the
conditional PDF of the distance between the fingerprints of similar content, i.e. the
fingerprints of the distorted and the original recording. Secondly, the conditional PDF
of the distance between the fingerprints of dissimilar content, i.e. between two ar-
bitrary, unrelated fingerprints. These two PDFs are illustrated in Figure 2.4. Two
probabilities are of special interest:

• False Acceptance Rate (FAR)
The probability that two perceptually dissimilar objects yield similar finger-
prints. This is also known as the False Positive Rate.

• False Rejection Rate (FRR)
The probability that two perceptually similar objects yield dissimilar finger-
prints. This is also known as the False Negative Rate.
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Figure 2.4: Illustration of fingerprint detector statistics, showing the conditional PDFs
of the distances between similar fingerprints and between dissimilar fingerprints, the
detection threshold and the resulting FAR and FRR.

Both probabilities are indicated in Figure 2.4. In practice, only the PDF of the distance
between unrelated fingerprints is sufficiently known. The PDF of the distance between
corresponding fingerprints is dependent on the distortion, and usually on the underly-
ing signal characteristics. In a typical fingerprint detector design, one sets a threshold
to achieve a certain FAR based on the PDF of the distance between non-corresponding
fingerprints.

Items that are close in some perceptual space should also be close in the feature
space; this is known in pattern recognition as the compactness hypothesis. Therefore,
the fingerprint space should have the same connectivity as the original space [39]. This
is illustrated in Figure 2.5. In practice, for identification one makes the assumption
the other way around: fingerprints that are close imply that the audio excerpts they
represent are also similar. In other words: similar features imply similar audio. The
symbols in the figure represent audio items and their corresponding fingerprints. The
compactness hypothesis only holds here for the symbols × and ♦. The fingerprints �
and © are close, although the underlying audio is dissimilar, potentially giving rise
to wrong identification. The opposite is true for the pair � and �, potentially leading
to a missed identification (� is isolated). The compactness hypothesis is not relevant
for all content-based identification techniques listed in Section 2.2. In cryptographic
hashing, for instance, the objective is the opposite of this assumption: items that are
close but not identical in their signal representation should be randomly distributed in
the hash space.

Some papers estimate the FAR and FRR for a specific algorithm, e.g., [44]. How-
ever, these figures correspond to one single detection. The system’s performance is
determined by the FRR and FAR in combination with the number of items in the
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Figure 2.5: Geometric illustration of spatial connectivity in the signal and fingerprint
space.

database. Now consider a database containing N items. The result of the identifica-
tion process is a result set, which contains one or more results, each of which may
be correct or not. The result set is obtained by computing the detection statistic and
applying a threshold. For instance, consider the case of nearest neighbor decoding
without applying the minimum operator but only applying a threshold on the detec-
tion statistic. In case the result set contains multiple items including the correct one,
the final result after applying the minimum operator may or may not be correct. The
final result is correct if the matching item is below the threshold and has the minimum
distance.

In case the unknown item actually is in the database, assume there is only one item
actually corresponding to the query, and N − 1 non-matching items. In this way, we
can consider four different outcomes:

1. No identification (1 false negative, no false positives)
The result set is empty; it thus does not contain the right item from the database,
neither does it contain any wrong items;

2. Wrong identification (1 false negative, at least one false positive)
The result set is non-empty, but does not contain the right answer;

3. Correct identification (1 true positive, no false positives)
The result set is non-empty, and only contains the right answer;

4. Mix (1 true positive, at least one false positive)
The result set is non-empty and contains multiple results, including the right an-
swer. This result may be avoided by filtering the result set and keeping only the
result in which the system has the highest confidence (applying the minimum
or maximum operator). Then the result is either the correct or not.
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Table 2.2: Illustration of fingerprint identification statistics in case the unknown item
actually (a) is in the database - one matching item, N − 1 non-matching items; (b) is
not in the database - N non-matching items. The result sets contains a number of true
positives (#TP), and a number of false positives (#TN)

(a)

Description of Result set Probability
identification result contains

#TP #FP
No identification 0 0 FRR × (1 − FAR)N−1

Wrong identification 0 ≥ 1 FRR × (1 − (1 − FAR)N−1)
Correct identification 1 0 (1 − FRR) × (1 − FAR)N−1

Mix 1 ≥ 1 (1 − FRR) × (1 − (1 − FAR)N−1)

(b)

Description of Result set Probability
identification result contains

#TP #FP
No identification 0 0 (1 − FAR)N

Wrong identification 0 ≥ 1 1 − (1 − FAR)N

In case the database actually does not contain the unknown item, we can consider
two different outcomes:

1. No identification (no false positives)
The result set is empty; it thus does not contain the right item from the database,
but also does not contain any wrong items;

2. Wrong identification (at least one false positive)
The result set is non-empty; it contains wrong items only.

Assume that the FAR and FRR values are known. Table 2.2 analyzes the overall
identification statistics as a function of N for two cases: the database contains the
item to be identified (Table 2.2(a)), or does not contain the item to be identified (Table
2.2(b)), respectively.

When inspecting the equations in the last column, it stands out that all results are
dependent on the expression (1 − FAR)N . Even for situations in which the FRR is
unknown, this expression is important to assess the expected performance for various
database sizes. Note that the expressions are valid only for an ‘exhaustive search’,
and does not consider the negative effect on the accuracy of, e.g., greedy search or
database pruning algorithms.

Since typically FAR � 1, we can use the Taylor series expansion for the natural
logarithm to get some feeling for the values of (1 − FAR)N :

(1 − FAR)N = eN ln(1−FAR) ≈ e−N FAR.
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So for different values of N , we get:

FAR � 1
N (1 − FAR)N ≈ 1 − N FAR

FAR = 1
N (1 − FAR)N ≈ 1

e

FAR � 1
N (1 − FAR)N ≈ 0

In conclusion we can say that it is a necessary condition for a fingerprinting system
that N FAR � 1.

Here, an item does not necessarily need to be an entire song, but it the basic unit
for which the detection statistics are computed. So, it can be a fragment for which
its corresponding fingerprint block is ‘sufficiently independent’ from other fingerprint
blocks. This could, for instance, refer to 3s song fragments. Furthermore, two sub-
sequent 3s fragment fingerprints from the same song having a 2.5s overlap already
may generate a sufficiently different fingerprint, depending on the fingerprint extrac-
tion procedure. N can thus be very large; in the before mentioned example a 3 minute
song would correspond to 355 overlapping 3 second items.

2.5 State-of-the-art algorithms
In this section we present a comprehensive overview of algorithms found in literature.
Table 2.3 contains the overview; the algorithms are listed in arbitrary order. Where
possible, we present the following characteristics of each algorithm:

• Affiliation and reference
The institute or company where the algorithm was developed, and the refer-
ence(s) to the relevant publication(s).

• Fingerprint type
Indicates whether the fingerprint extraction is constant rate (CR), variable rate
(VR), or constant length (CL).

• Symmetric
Indicates whether the fingerprint representation stored in the database is the
same (yes) or different (no) from the representation of the fingerprint to be iden-
tified.

• Fingerprint representation
The way the fingerprint is represented: time-series (TS), vector, or a specific
model. In case the algorithm is asymmetric both the representation in the
database and the representation of the fingerprint to be identified are listed.
The models found in literature are: Gaussian Mixture Model (GMM), Hidden
Markov Model (HMM) and Vector Quantization Codebook (VQC).

• Metric
The type of (dis)similarity measure: nearest neighbor (NN), confidence score
(C), or maximum likelihood (ML).
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• Distance measure or confidence score
The measure that is used to compute the (dis)similarity of two fingerprints. Dis-
tances used: Bit error rate (BER), root mean square (RMS), mean square error
(MSE), Manhattan distance, Exponential Pseudo Norm (EPN) [75]. Confidence
scores used: recursive score function (SF), number of alignment spectral peaks
(#co-peaks), number of similar bytes (#co-bytes).

• Feature
Compact description of the features on which the fingerprint is based.

• Fingerprint size or rate
In case of a CL fingerprint, the fingerprint size is listed in Bytes. Otherwise the
fingerprint rate is listed in Bytes/sec. For a VR fingerprint this is the average
rate.

• Typical granularity
The typical fragment length used for identification as reported in the corre-
sponding reference.

2.6 Example Audio Fingerprinting System: Philips Ro-
bust Hash

The PRH algorithm developed by Haitsma et al. [44] has been reported to have good
performance and a simple and efficient structure. It was developed at Philips Research,
and sold to Gracenote, Inc. [2] Today, it is also used by Civolution [7], a Philips spin-
off.

The PRH fingerprint is derived in a number of steps from a time domain signal,
x(i), shown in Figure 2.6. In the PRH algorithm, the steps identified in Section 2.4.1
are easily recognizable. First, the signal is converted to mono and downsampled to
5,512.5 Hz. Then the signal is divided into frames of 371 ms (2048 samples). The
frames have 96% (31/32) overlap. This strong overlap is used to prevent temporal mis-
alignment of the frames used in the query and reference fingerprint (see Section 3.4.2).
The frames used for the fingerprint are shifted 11.6 ms. Therefore, the maximum level
of misalignment between the frames is 5.8 ms.

Each frame is windowed and the periodogram is estimated. The spectrum is di-
vided into 33 logarithmically spaced frequency bands in the range 300-2000 Hz. In
this way, each musical note has its own frequency band. The musical note ‘A’ is de-
fined to be at 440 Hz. Twelve notes fit into an octave, making the frequency of each
note being a factor α = 12

√
2 ≈ 1.06 higher than the previous one. The fingerprint is

based on the lower part of the spectrum since it contains most energy, which is usually
preserved in case of distortions. For instance, one use case for the algorithm is the
‘Name that tune’ service, where a user transmits a couple of seconds to a server using
a mobile phone connection. A typical telephone bandwidth is 300-3400 Hz.

Within each band the energy is estimated. Let us denote the energy in frequency
band m of frame n by Eb(n, m), where m = 0, . . . , 32 and n = 0, 1, . . .. Differences
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Figure 2.6: Fingerprint extraction stage of the Philips Robust Hash [44].

of these energies are taken in time and frequency:

ED(n, m) = Eb(n, m) − Eb(n, m+1)
−(Eb(n−1, m)− Eb(n−1, m+1)) (2.1)

These energy differences now vary around 0. The bits of the sub-fingerprint (see
Section 2.4.2) are derived by

F (n, m) =

{
1 ED(n, m) > 0
0 ED(n, m) ≤ 0,

(2.2)

where F (n, m) denotes the mth bit of the sub-fingerprint of frame n. In this way, the
fingerprint bits are invariant to scaling of the signal. Each sub-fingerprint now consists
of 32 bits, which can be efficiently stored as 4-Byte words.

Now consider the fingerprint block FN,M (p, q) containing bits corresponding to
M frequency indices and N sub-fingerprints, with lowest sub-fingerprint index being
p and lowest frequency band index being q. This N × M fingerprint block is thus
defined as the {0, 1}N×M matrix:

FN,M (p, q) �

⎡
⎢⎣ F (p , q) · · · F (p , q+M−1)

...
...

F (p+N−1, q) · · · F (p+N−1, q+M−1)

⎤
⎥⎦ (2.3)

In this way, the nth sub-fingerprint is described by F1,M (n, 0), and a time-series of
N fingerprint bits corresponding to frequency position m by FN,1(0, m).

Figure 2.7 shows an example of the resulting fingerprint block. In the white areas
the fingerprint bits are equal to one, in the black areas the bits equal to zero. Each
11.6 msec a 32 bit sub-fingerprint is computed. Due to the strong overlap there is
strong correlation in the temporal dimension. This corresponds to a fingerprint rate
of approximately 344.8 Bytes/sec. For identification, typically fingerprint blocks are
used consisting of 256 sub-fingerprints, extracted from 3.3 seconds of music.
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Figure 2.7: Example of a PRH fingerprint; indicated are the fingerprint block, the
sub-fingerprint, and fingerprint bit time-series.

Figure 2.8 shows the search structure introduced in [44]. A look-up table (LUT)
is maintained with pointers to each fingerprint position in the database containing that
particular sub-fingerprint. The size of the LUT is coupled to the number of possi-
ble sub-fingerprint realizations. Assuming that some of the query sub-fingerprints are
without errors, all pointers to a given sub-fingerprint can be easily retrieved. The
retrieval procedure thus consists of two steps. First a matching sub-fingerprint is lo-
cated based on the pointers provided in the LUT. Second, the other corresponding
sub-fingerprints in the fingerprint block are directly retrieved from the database.

The assumption that at least one sub-fingerprint is without errors may be relaxed
by also considering sub-fingerprints that have a certain Hamming distance, e.g., in
which one or two bits may be different. This increases the search space. An al-
ternative is to consider the energy differences on which the query sub-fingerprint is
based. Assuming that the s smallest energy differences are most likely to result in
erroneous bits, the search space can be expanded by considering all 2s alternative
sub-fingerprints. Instead of expanding the query, one may also include pointers to
non-exact matching sub-fingerprints. In this way, an over-represented LUT is made.

Using a look-up table containing 232 entries can be infeasible. Therefore, usually
a hash table is used instead. The size of the stored fingerprint is thus not limited to the
fingerprint itself, but also to the search structure. For each entry in the LUT a table
should be maintained containing pointers to a song identifier and a position within a
song. If both are represented by a 32-bit word, the effective size stored fingerprint is
three times as large as the raw fingerprint itself, excluding metadata entries.
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Figure 2.8: Search structure associated with the PRH [44].

An alternative search algorithm used tree-based pruning to reduce the search space
[76]. Each 8-bit part of the fingerprint is considered a node in the tree; a fingerprint
is represented as a path through a tree. All fingerprints in the database are then rep-
resented in one tree structure. Subtrees leading to a single child are efficiently repre-
sented. The method assumes that queries have a particular fixed length.

In the next chapter we analyze the PRH fingerprint extraction in more mathematical
detail, and develop a statistical model for fingerprints extracted from i.i.d. fingerprints.

2.7 Objectives
In Table 2.3 of this chapter we have seen that there is a large number of audio finger-
printing algorithms. These algorithms typically follow the set-up in Figure 2.2, and
the fingerprint extraction stage typically follows the set-up in Figure 2.3. Important
characteristics for the performance of fingerprint algorithms are: the accuracy of the
fingerprinting system (determined by the robustness of the fingerprint, the uniqueness
of a fingerprint, and the size of the database), the granularity and the fingerprint rate,
and the relation between these parameters.

There is little literature available with theoretical underpinning of the state-of-the-
art fingerprinting algorithms. The objective of this thesis is to develop models for
the fingerprint extraction stage, to increase the understanding of the design choices
at hand, to allow for optimizations to be made, and to better understand the behavior
observed in experiments. We develop these models for the PRH algorithm, which is
described in the previous section. The goal is to identify the extraction and distortion
parameters which affect the fingerprint and its recognition capabilities, and to analyze
the effect of these parameters on the structure of the PRH fingerprint, the distortion in
the fingerprint, and the identification capacity of the fingerprinting system.
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We develop three models. Each model analyzes and quantifies a different property
of the PRH fingerprint: the structure of the fingerprint, the effect of distortion of the
input signal on the fingerprint, and the number of fingerprints that can be distinguished
under certain conditions (capacity). The models have in common that they consider
a fingerprint as the realization of a stochastic process, follow the algorithmic steps in
Figures 2.2 and 2.3, assume Gaussian iid input signals, and are derived in particular
for the PRH fingerprint.

In addition, we apply the distortion model to add functionality beyond identifi-
cation. In this case, the goal is to estimate the quality of a distorted song (level of
degradation, e.g., due to compression) following its identification using fingerprints.
Here, we use the model for the distortion, and compare the predicted behavior to a
number of practical fingerprinting algorithms, and to real music.

We now consider each of the three models in more detail.

Model for the PRH fingerprint structure
The objective of this model is to relate the structure of the PRH fingerprint to a number
of parameters in the design of the PRH fingerprint.

The fingerprint structure is mainly represented by the temporal correlation be-
tween the fingerprint bits, illustrated by the black-and-white striped pattern in Figure
2.7. This structure is important for the uniqueness properties of the fingerprint; it af-
fects the distance between arbitrary unrelated fingerprints indicated by the conditional
PDF on the right-hand side in Figure 2.4. For a given fingerprint size, an increas-
ing amount of correlation widens the distribution of the distance between unrelated
fingerprints, but increases the robustness to temporal misalignment.

The model considers the PRH fingerprint as the output of a stochastic process; with
each possible realization is associated a probability. To do so, we model the effect of
each step in the fingerprint extraction process on the PRH fingerprint. We identify a
number of parameters in the fingerprint extraction stage [35]: the relative frame over-
lap, the window type used in the Fourier transform, the number of frequency bands,
and the bandwidth of the frequency bands. These parameters relate to the uniqueness
property, the fingerprint rate and the granularity. The model relates the values for these
parameters to the probability model for the structure of the fingerprint. The model is
expected to provide more insight in the effect of design choices in the fingerprint ex-
traction, and allow for subsequent optimization. The latter is not treated here in this
thesis.

Model for the effect of signal distortion on the PRH fingerprint
Distortions in the input signal are reflected by changes in the corresponding finger-
print. The objective of our second model is to quantify the effect of additive white
noise on the input signal and/or temporal misalignment on the difference introduced
in the fingerprints.

Also in this model we closely model the steps in the fingerprint extraction. Other
typical distortions commonly encountered in practice, in particular variations in the
play-out speed of the audio signal are not taken into account in this model. Again the
model assumes Gaussian iid input signals. The distortions considered in this model
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affect the distribution of the distance between related (but distorted) fingerprints indi-
cated by the conditional PDF on the left-hand side in Figure 2.4.

The model serves several goals. First, it relates the SNR of additive noise to the
distance between corresponding fingerprints. This effectively quantifies the relation
between distortion on the input signal and distortion on the fingerprint. It thus provides
an indication how much the fingerprint changes under certain distortion conditions.

Second, it can be used to relate the observed distance between fingerprints to a
coarse estimation of the quality difference of the input signals. It allows for new ap-
plications as mentioned in Section 1.2. The model is derived for the PRH fingerprint.
We apply a framework for practical comparison of implementations of several fin-
gerprint extraction algorithms (using the same operating point), to see whether the
relation between SNR and fingerprint distance can be observed for other algorithms
as well.

Model for the capacity of binary fingerprints like the PRH fingerprint
The main question for our third model is ‘how many signals can be reliably identified
by a fingerprinting system, under certain conditions’. The conditions relate to char-
acteristics of the fingerprint (size of the fingerprint, and representation of the finger-
print), and characteristics of the environment in which the system operates (what kind
of signals need to be identified, how much distortion is allowed). These characteristics
relate to the previous models: the size and representation of the fingerprint relate to
the models of the fingerprint structure; the effect of signal distortion is reflected in our
second model.

Knowledge of the identification capacity of fingerprinting schemes is important
since it provides upper bounds for the number of signals that can be identified. Fur-
thermore, it provides an indication of the effects of design choices on this number, e.g.,
if the representation of the fingerprint is simplified, how much reduction in identifi-
cation performance can we expect? How strong is the influence of certain conditions
(e.g., expected SNR level) on the number of signals that can be identified.

For our third model, we consider an information theoretical framework developed
by Westover and O’Sullivan (WOS) [104]. We use the model developed for the prob-
ability of an erroneous PRH fingerprint bit due to additive noise, and integrate this
model into this WOS framework. In this way we estimate up to how many signals
can be identified with a binary fingerprint like the PRH. We compare our bounds with
the WOS bounds in [104]. Finally, we check whether the changes in the fingerprints
we observe in practice due to distortions in the audio signals, and which have been
modeled in this thesis, fit in the WOS framework.
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Chapter 3

Models for PRH generated
fingerprints of i.i.d. signals

Parts of this chapter are based on the following publications:

• P.J.O. Doets and R.L. Lagendijk, “Distortion Estimation in Compressed Mu-
sic Using Only Audio Fingerprints”, IEEE Transactions on Audio, Speech and
Language Processing, vol. 16, no. 2, pages 302-317, February 2008;

• P.J.O. Doets and R.L. Lagendijk, “Stochastic Model of a Robust Audio Finger-
printing System”, in Proceedings of ISMIR 2004, pages 349-352, Oct. 2004;

• P.J.O. Doets and R.L. Lagendijk, “Extracting Quality Parameters for Com-
pressed Audio from Fingerprints”, in Proceedings of ISMIR 2004, pages 498-
503, September 2005.
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3.1 Introduction
The previous chapter introduced the PRH as an example audio fingerprinting algo-
rithm. It is one of the best described algorithms found in literature, has good perfor-
mance characteristics and is also used in commercial systems. Furthermore, it has a
simple algorithmic structure.

Figure 3.1(a) shows a typical example of a fingerprint generated by the PRH algo-
rithm. The fingerprint is computed on a 1.5 seconds of music. The fingerprint has a
striking black-and-white pattern which is the result of the parameters that have been
used in generating the fingerprint, and of the characteristics of the input signal. Figure
3.1 also shows the effect of MP3 compression at three different bitrates on the finger-
print of a song. Figure 3.1(a) shows the fingerprint of the original recording, while
Figure 3.1(b) shows the fingerprint of the same fragment, but now compressed using
MP3 at 128 kilobit per second (kbps). The fingerprints are largely the same, but there
are some small differences. These differences are illustrated in Figure 3.1(c) by the
black regions. Figures 3.1(d) and 3.1(e) show only the differences of the fingerprints
of the fragments compressed at 64 kbps and 32 kbps, respectively, with respect to the
original fingerprint.

From Figure 3.1 it is clear that the amount of fingerprint differences increase for
lower bitrates. This relates to the robustness of the fingerprint. At some point the
distortions in the song become dominant, and the differences between the fingerprint
of the compressed version and the original recording exceed the threshold. These
differences, on the other hand, might also be used to give some indication of the
differences in the underlying songs. This observation is exploited in Chapter 4.

In this chapter we develop two models for the PRH algorithm. In the first model
we capture the black-and-white structure of the PRH fingerprint by analytically com-
puting the transition probabilities that a fingerprint bit F (n, m) = 1 is followed by a
bit F (n + 1, m) = 1. The second model analyzes the probability that a fingerprint
bit is flipped due to additive noise, temporal misalignment, or a combination of both.
Additive noise has an effect on the fingerprint comparable to MP3 compression. Tem-
poral misalignment occurs when in computation of the fingerprint the frames are put
on a slightly different position in time than for the reference fingerprint.

In both models, we consider i.i.d. Gaussian input signals. Western music, how-
ever, typically consists of harmonic signals. Therefore, it would make sense to ana-
lyze the simple case of a fingerprint extracted from a single sinusoid. Figures 3.2(a)
and 3.2(b) show two typical fingerprints extracted from a single sinusoid with ran-
dom frequency and phase. The structure of the fingerprint is clearly different from
the fingerprints extracted from real audio signals. Therefore, we consider the case of
i.i.d. Gaussian signals. Figures 3.2(c) and 3.2(d) show two fingerprints extracted from
Gaussian white noise. The spectrum of white noise is flat: on average all frequencies
are equally strongly present in the signal. The structure of this type of fingerprints has
a strong visual resemblance with the fingerprint shown in Figure 2.7.

To further motivate the use of Gaussian i.i.d. input signals in our modeling effort,
consider the number of differences between the fingerprint bits of dissimilar content.
When comparing two arbitrary fingerprint blocks, on average 50 % of the bits are
different. Around this average value there is some variation. This is also clear from
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(a) (b) (c) (d) (e)

Figure 3.1: PRH fingerprints of 1.5 seconds of music (a) of the original recording;
(b) of the same recording, but MP3 compressed at 128 kbps; (c) difference between
fingerprints of original and of MP3@128 kbps; the black positions mark the differ-
ences with respect to the fingerprint shown in (a); (d) difference between fingerprints
of original and of MP3@64 kbps; (e) difference between fingerprints of original and
of MP3@32 kbps. Illustration after [44].

(a) (b) (c) (d)

Figure 3.2: PRH fingerprints of: (a-b) Single sinusoid signals with random frequency
and initial phase; (c-d) Gaussian i.i.d. fragments.
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the conditional pdf distance between the fingerprints of dissimilar content in Figure
2.4 in the previous chapter. Suppose all fingerprint bits are independent, and have
equal probability of being ‘0’ or ‘1’. Then also the bits in difference (XOR) between
two arbitrary fingerprints have equal probability of being ‘0’ or ‘1’. In this case,
the number of fingerprint bits that are different between the two fingerprints follows
a binomial distribution. Figure 3.3 shows the cumulative distribution of differences
between arbitrary PRH fingerprints. As a reference the figure also shows the curve
for a binomial distribution. The curves for music signals and i.i.d. Gaussian signals
practically overlap. This supports the visual similarity between fingerprints from real
music and fingerprints from i.i.d. Gaussian signals, and is a motivation to use i.i.d.
Gaussian signals for our models.

This chapter is organized as follows. Section 3.2 discusses the PRH fingerprint
extraction in more mathematical detail. Section 3.3 derives the first model that predicts
the transition probabilities of subsequent fingerprint bits. Section 3.4 discusses the
second model that predicts the probability of an erroneous fingerprint bit due to noise
and misalignment. Section 3.5 looks for similarities between the PRH fingerprint and
other fingerprinting algorithms for which the similar models can be made. Section 3.6
draws conclusions and discusses potential extensions of the developed models.
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3.2 Philips Robust Hash: model setup
In Section 2.6 we introduced the PRH algorithm. In this section we present the al-
gorithm in more mathematical detail. It forms the basis for the development of the
two statistical models in Sections 3.3 and 3.4. Here, we only consider the fingerprint
extraction stage, and do not consider the matching and actual identification.

As a first step, the time domain signal is divided into overlapping frames of length
L. Each frame is shifted ΔL samples with respect to the previous frame, where 0 ≤
ΔL ≤ L. The signal in frame n is the defined as:

x(n, i) = x(nΔL + i),
n=0, 1, . . .
i =1, . . . , L − 1 (3.1)

The Fourier transform is taken of each frame. The Fourier transform of x(n, i) uses a
window w(i):

x̂(n, k) =
L−1∑
i=0

w(i)x(n, i)e−j2π k
L i, k = 0, . . . , L − 1 (3.2)

The Power Spectral Density (PSD) is estimated using a periodogram estimator. De-
noting the PSD of frame n at frequency bin k as SX(n, k), it is defined as:

SX(n, k) =
1
L
|x̂(n, k)|2 (3.3)

Within the PSD, M + 1 non-overlapping frequency bands are defined. The energy of
frequency band m of frame n is given by:

Eb(n, m) =
∑

k∈Km

SX(n, k)
n =0, 1, . . .
m=0, . . . , M,

(3.4)

where Km denotes the set of frequency indices which fall within frequency band m.
Differences of these energies are taken in time and frequency:

ED(n, m) = Eb(n, m) − Eb(n, m+1)
−(Eb(n−1, m)− Eb(n−1, m+1)) m=0, . . . , M−1 (3.5)

The bits of the sub-fingerprint are derived by

F (n, m) =

{
1 ED(n, m) > 0
0 ED(n, m) ≤ 0

, (3.6)

where F (n, m) denotes the mth bit of the sub-fingerprint of frame n.

In order to build a stochastic model the time delay operation, T , is shifted forward
yielding the equivalent arrangement shown in Figure 3.4. Here, the difference be-
tween samples in two subsequent periodogram estimates of the PSD is computed first
in time only:

EDs(n, k) = SX(n, k) − SX(n − 1, k) (3.7)
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Figure 3.4: Functionally equivalent configuration of the PRH fingerprint extraction
used for modeling purposes.

The differential energy in frequency band m is given by:

EDb(n, m) =
∑

k∈Km

EDs(n, k) (3.8)

Finally, we show that we can obtain ED(n, m) as:

ED(n, m) = EDb(n, m) − EDb(n, m + 1) (3.9)

The statistical analysis of the rearranged configuration is easier, because the corre-
lation between spectral samples in adjacent frames is taken into account from the
beginning.

It is easy to show that Eq. (3.9) is equivalent to Eq. (3.5):

ED(n, m)
(3.9)
= EDb(n, m) − EDb(n, m + 1)

=
∑

k∈Km

EDs(n, k) −
∑

k∈Km+1

EDs(n, k)

=
∑

k∈Km

(SX(n, k) − SX(n − 1, k))

−
∑

k∈Km+1

(SX(n, k) − SX(n − 1, k))

= Eb(n, m) − Eb(n, m+1)
−(Eb(n−1, m)− Eb(n−1, m+1))

(3.5)
= ED(n, m)
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3.3 Statistics of fingerprint bits
In this section, we present a stochastic model that describes the probability that an
i.i.d. Gaussian input source results in a particular binary fingerprint. The model as-
sumes that the energy differences ED(n, m) that result in the fingerprint bits, are also
Gaussian.

This section is organized as follows. Section 3.3.1 outlines the model. The model
is dependent on a correlation matrix with a particular structure; this is discussed in
Section 3.3.2. On its turn, the correlation matrix is dependent on one specific param-
eter: the variance as function of the frame shift; this is discussed in Section 3.3.3.
Finally, the transition probabilities for subsequent fingerprint bits are computed for
rectangular windows in Section 3.3.4, and for symmetric non-rectangular windows in
Section 3.3.5.

3.3.1 Notation and outline of the model
Each fingerprint bit F (n, m) in the fingerprint block FN,M (n, m) is the result
of thresholding the spectral energy difference ED(n, m). We denote the se-
ries of ED(n, m) values resulting in the mth sub-fingerprint as ED1,M (n, m) =
[ED(n, m), ED(n, m+1), . . . , ED(n, m+M−1)], and the ED(n, m) values result-
ing in a fingerprint block as the vector EDN,M (n, m) = [ED1,M (n, m),ED1,M (n+
1, m), . . . ,ED1,M (n + N − 1, m)]. Let us assume that Eb(n, m) is stationary in n;
hence E[Eb(n, m)] = E[Eb(n−1, m)] and E[ED(n, m)] = 0. Let us further assume
that the underlying ED(n, m) values are realizations of a Gaussian stochastic process.
Therefore,

EDN,M (n, m) ∼ N (0,CED), (3.10)

where CED = CEDN×M(n,m) ∈ R
NM×NM represents the covariance matrix, which

will be defined in Section 3.3.2. The underlying multivariate Gaussian probability
density function (pdf) fEDN,M (n) yields the probability density that EDN,M (n, m) =
n, and is fully characterized by the covariance matrix CED:

fEDN,M (n) =
1√

(2π)NM det(CED)
exp

[
−1

2
n′ CED

−1 n
]

(3.11)

where n′ denotes the transpose of n. The probability of a certain fingerprint block can
now be computed by integrating the pdf over the area Ψ(a) of the EDN,M (n, m)-
space associated with the fingerprint block FN,M (n, m) = a:

Pr
[
FN,M (n, m) = a

]
=

∫
Ψ(a)

fEDN,M(n,m)(n) dn (3.12)

For instance, assume we have a fingerprint block consisting of three times bit ‘1’ in the
temporal direction: F3,1(0, 0) = [F (0, 0), F (1, 0), F (2, 0)] = [111], we can compute
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the probability by:

Pr
[
F3,1(0, 0) = a

]
=
∫ ∞

0

∫ ∞

0

∫ ∞

0

fED3,1(0,0)(n1, n2, n3) d(n1, n2, n3) (3.13)

In practice, the number of closed-form solutions for integration of a Gaussian pdf
is limited to very specific cases, and for low dimensions only. For higher orders, the
Gaussian integration can only be obtained through numerical integration, or through
simplification of the model structure. One way is to describe the binary time-series as
a Markov chain. A simple example shows formulation of the bits in the mth band as
a first-order Markov chain.

Pr
[
FN,1(0, m) = a

] ≈ Pr [F (0, m) = a(0)]

×
N−1∏
i=1

Pr [F (i, m) = a(i)|F (i − 1, m) = a(i − 1)] (3.14)

where Pr [F (0, m) = a(0)] refers to the a priori probability of a value for the first
fingerprint bit F (0, m). The conditional probabilities correspond to the transition
probabilities in the Markov model, where the state is dependent on the value of the
previous fingerprint bit.

3.3.2 Structure of the correlation matrix
The goal of this section is to analyze the structure of the correlation matrix
CEDN,M(n,m). Since the energy differences are assumed zero-mean Gaussian, the
correlation matrix fully defines the pdf fEDN,M(n,m)(n). We separately consider the
correlation in the spectral and in the temporal dimension.

First consider the correlation in the spectral dimension. The correlation between
energy differences ED(n, m) and ED(n, m + 1) is mainly introduced because they
are both partly based on the same differential frequency band energy EDb(n, m+ 1).
Assuming the neighboring bands themselves are uncorrelated

COV
[
EDb(n, m), EDb(n + l, m + p)

]
= 0 p �= 0, ∀ l, n, m (3.15)

the correlation COV[ED(n, m), ED(n + l, m + p)] in neighboring spectral energy
differences is dependent only on the width of the frequency bands. Within one sub-
fingerprint (l = 0), the correlation then is given by:

COV [ED(n, m), ED(n, m + p)]
= COV

[
EDb(n, m) − EDb(n, m + 1),

EDb(n, m + p) − EDb(n, m + p + 1)
]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−VAR

[
EDb(n, m)

]
p = −1

VAR
[
EDb(n, m)

]
+ VAR

[
EDb(n, m + 1)

]
p = 0

−VAR
[
EDb(n, m + 1)

]
p = 1

0 otherwise

(3.16)
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PRH uses logarithmic frequency bands, i.e. the bandwidth of band m+1 is α > 1
times as large as the bandwidth of band m. These bands are designed such that each
band covers exactly one harmonic tone. Twelve tones fit in an octave. Therefore,
in PRH the scaling factor α = 12

√
2 ≈ 1.06. Of course, in practice the width of a

frequency band is an integer. PRH with uniform frequency bands can be considered
as a special case where α = 1. For a bandwidth scaling factor α, the variance of
EDb(n, m) can be approximated by:

VAR
[
EDb(n, m)

] ≈ α · VAR
[
EDb(n, m − 1)

]
= αm · VAR

[
EDb(n, 0)

]
(3.17)

This approximation is accurate if the spectral sample autocorrelation function falls off
rapidly as a function of the lag, compared to the bandwidth.

The variance of a spectral energy difference ED(n, m) can thus be written as:

VAR [ED(n, m)] = VAR
[
EDb(n, m) − EDb(n, m + 1)

]
= VAR

[
EDb(n, m)

]
+ VAR

[
EDb(n, m + 1)

]
= αm · VAR

[
EDb(n, 0)

]
+ αm · VAR

[
EDb(n, 1)

]
= αm · VAR [ED(n, 0)] (3.18)

Similarly, the covariance terms for p �= 0 in Eq. (3.16) can be computed.
Spectral correlation determines the prior probability of sub-fingerprint realiza-

tions, and is introduced by the computation of energy differences from non-overlapping
frequency bands. The amount of correlation is solely determined by the width of the
frequency bands through the bandwidth scaling factor α.

The correlation matrix for a single sub-fingerprint CED1,M is given by:

CED1,M = VAR [ED(n, 0)]

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − α
1+α 0 · · · 0

− α
1+α α − α2

1+α · · · 0
0 − α2

1+α α2 · · · 0
...

...
...

. . .
...

0 0 0 · · · αM−1

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.19)

The variable EDb(n, m) is stationary in n. To cover the temporal correlation in-
troduced by the overlapping frames, we define the temporal correlation coefficient.

ρl �
COV

[
EDb(n, m), EDb(n ± l, m)

]
VAR [EDb(n, m)]

(3.20)

In combination with Eqs. (3.15) and (3.17) we can now include the temporal correla-
tion in the expressions:

COV
[
EDb(n, m), EDb(n ± l, m + p)

]
=

{
ρl · αm−1 · VAR

[
EDb(n, 1)

]
p = 0, ∀ l, n, m

0 otherwise
(3.21)
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The overall correlations defining the correlation matrix become:

COV [ED(n, m), ED(n ± l, m + p)]

= ρl · αm−1 · VAR [ED(n, 1)] ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− 1

1+α p = −1
1 p = 0

− α
1+α p = 1
0 otherwise

(3.22)

which yields the overall correlation matrix CED as a block matrix:

CEDN,M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CED1,M ρ1 ·CED1,M · · · ρN−1 · CED1,M

ρ1 · CED1,M CED1,M · · · ρN−2 · CED1,M

...
...

. . .
...

ρN−1 · CED1,M ρN−2 ·CED1,M · · · CED1,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(3.23)

The temporal correlation is dependent on the relative temporal overlap between
successive frames, 1 − ΔL

L . Here, ΔL
L denotes the frame shift ratio. Therefore, the

correlation matrix CED is dependent on ΔL and L.
Given the bandwidth scaling factor α and the number of frequency bands and sub-

fingerprints considered, M and N respectively, the correlation matrix CEDN,M is fully
parameterized by the time correlation parameters ρl, l = 1, . . . , N−1 and the variance
VAR [ED(n, 1)]. The variance term linearly scales the covariance matrix, and has
no influence on probability computations. Estimation of ρl can be done through the
variance as a function of frame shift ΔL for a given frame length L.

As stated in the following theorem, the covariance COV[ED(n, m), ED(n +
l, m)] can be expressed in terms of the variance VAR[EDΔL′

(n, m)], where EDΔL′

denotes the variable ED generated with frame shift ΔL′ = lΔL. It is straightforward
that

VAR
[
EDΔL′

(n, m)
]

=

⎧⎪⎨
⎪⎩

0 ΔL′ = 0
VAR

[
EDlΔL(n, m)

]
ΔL′ < L

VAR
[
EDL(n, m)

]
ΔL′ ≥ L
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Theorem 1 (Expressing the covariance of spectral energy differences in terms of vari-
ances with variable frame shift).

COV [ED(n, m), ED(n + l, m)]
= −VAR [EDlΔL(n, m)

]
+

1
2
VAR

[
ED(l−1)ΔL(n, m)

]
+

1
2
VAR

[
ED(l+1)ΔL(n, m)

]
(3.24)

The proof of the theorem is given in Appendix A.2. By using this theorem, the
entire correlation matrix CED is defined by the variance as function of the frame shift
ΔL.

3.3.3 Expressing the variance as a function of the frame shift
The correlation matrix CEDN,M is fully defined by the scaling factor α, and the
variance VAR[EDb(n, m)] as a function of the frame shift ΔL. This variance of
EDb(n, m) =

∑
k EDs(n, k) is given by

VAR[EDb(n, m)] = Km CEDs(0) + 2
Km−1∑

l=1

(Km − l)CEDs(l) (3.25)

where CEDs(l) represents the covariance function of the sample-wise spectral differ-
ence:

CEDs(l) = COV[EDs(n, k), EDs(n, k + l)] (3.26)

where is assume that EDs(n, k) is stationary both in n and k. This covariance func-
tion is related to samples in the overlapping spectrograms:

CEDs(l) = E [EDs(n, k)EDs(n, k + l)]
= E

[
(SX(n, k) − SX(n − 1, k))

×(SX(n, k + l) − SX(n − 1, k + l))
]

= 2 E [SX(n, k) SX(n, k + l)]
−2 E [SX(n, k) SX(n − 1, k + l)] (3.27)

In order to express Eq. (3.27) in terms of L and ΔL, we first need to consider the
computation of the overlapping periodograms SX(n, k) and SX(n− 1, k). Figure 3.5
illustrates the frames n and n − 1 in time that are combined into EDs(n, k). Each of
these frames can be split into overlapping and non-overlapping regions:

x̂(n, k) =
L−1∑
i=0

w(i)x(n, i)e−j2π k
L i

=
L−ΔL−1∑

i=0

w(i)x(n, i)e−j2π k
L i

︸ ︷︷ ︸
â(n,k)

+
L−1∑

i=L−ΔL

w(i)x(n, i)e−j2π k
L i

︸ ︷︷ ︸
b̂(n,k)
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C D

LΔL

x(i)

x̂(n − 1, k)

x̂(n, k)

Figure 3.5: Illustration of two time frames split into overlapping and non-overlapping
regions.

and:

x̂(n − 1, k) =
L−1∑
i=0

w(i)x(n − 1, i)e−j2π k
L i

=
ΔL−1∑

i=0

w(i)x(n − 1, i)e−j2π k
L i

︸ ︷︷ ︸
ĉ(n,k)

+
L−1∑

i=ΔL

w(i)x(n − 1, i)e−j2π k
L i

︸ ︷︷ ︸
d̂(n,k)

Each sum corresponding to one of the four regions in Figure 3.5 can be split into
a real and imaginary part, e.g. â(n, k) = RA(n, k) + jIA(n, k), where RA(n, k) =
Re (â(n, k)) and IA(n, k) = Im (â(n, k)), respectively.

The correlation between overlapping frames can be expressed in terms of the real
and imaginary parts of the frames:

E [SX(n, k) SX(n, k + l)]

=
1
L2

E
[
(R2

X(n, k) + I2
X(n, k)) (R2

X(n, k + l) + I2
X(n, k + l))

]
=

2
L2

(
E
[
R2

X(n, k)
]

E
[
I2
X(n, k)

]
+ E

[
R2

X(n, k) R2
X(n, k + l)

])
=

4
L2

(
E
[
R2

X(n, k)
]2

+ E [RX(n, k) RX(n, k + l)]2
)

(3.28)

and overlapping regions:

E[(SX(n, k)SX(n − 1, k + l)]

=
1
L2

(
2E
[
R2

X(n, k) R2
X(n − 1, k + l)

]
+E

[
R2

X(n, k) I2
X(n − 1, k + l)

]
+ E

[
I2
X(n, k) R2

X(n − 1, k + l)
] )
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=
2
L2

(
2E
[
R2

X(n, k)
]2

+E [RX(n, k) RX(n − 1, k + l)]2 + E [IX(n, k) IX(n − 1, k + l)]2

+E [RX(n, k) IX(n − 1, k + l)]2 + E [IX(n, k) RX(n − 1, k + l)]2
)

=
2
L2

(
2E
[
R2

X(n, k)
]2

+ E [RA(k) RD(k + l)]2 + E [IA(k) ID(k + l)]2

+E [RA(k) ID(k + l)]2 + E [IA(k) RD(k + l)]2
)

(3.29)

where we use the fact that both RX(n, k) and IX(n, k) are Gaussian, so we can use
the characteristic function to derive the joint second moment:

E[X2 Y 2] = σ2
X σ2

Y (1 + 2ρ2
XY )

Combining the two yields the correlation function:

CEDs(l) = 2 E [SX(n, k) SX(n, k + l)]
−2 E [SX(n, k) SX(n − 1, k + l)]

=
4
L2

(
2E [RX(n, k) RX(n, k + l)]2

−
(
E [RA(k) RD(k + l)]2 + E [IA(k) ID(k + l)]2

+E [RA(k) ID(k + l)]2 + E [IA(k) RD(k + l)]2
))

(3.30)

In Sections 3.3.4 and 3.3.5 we derive expressions for Eq. (3.30) for rectangular
and symmetric non-rectangular windows, respectively. Based on these expressions,
we can compute the transition probabilities of subsequent fingerprint bits.

3.3.4 Transition probabilities for a rectangular window
In this section we derive an expression for the transition probabilities of subsequent
fingerprint bits. The expression is given in Eq. (3.38), and is indirectly based on Eq.
(3.30).

The rectangular window is simply given by wR(i) = 1, i = 0, . . . , L − 1. The
overlapping regions in two subsequent frames are related by:

d̂R(k) =
L−1∑

i=ΔL

x(n − 1, i)e−j2π k
L i

=
L−1∑

i=ΔL

x(i + (n − 1)ΔL)e−j2π k
L i

= e−j2π ΔL
L k

L−ΔL−1∑
i=0

x(n, i)e−j2π k
L i

= e−j2π ΔL
L kâR(k) (3.31)
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The real part RDR(k) and imaginary part IDR(k) can then be formulated in terms of
RAR(k) and IAR(k):

RDR(k) = cos
(
2πk ΔL

L

)
RAR(k) + sin

(
2πk ΔL

L

)
IAR(k) (3.32)

IDR(k) = cos
(
2πk ΔL

L

)
IAR(k) − sin

(
2πk ΔL

L

)
RAR(k) (3.33)

Using these expressions we can write down the correlation terms needed in Eq. (3.29):

E[RAR(k)RDR(k + l)] = cos
(
2π ΔL

L (k + l)
)

E[RAR(k)RAR(k + l)]

+ sin
(
2π ΔL

L (k + l)
)

E[RAR(k)IAR(k + l)]

E[RAR(k)IDR(k + l)] = cos
(
2π ΔL

L (k + l)
)

E[RAR(k)IAR(k + l)]

− sin
(
2π ΔL

L (k + l)
)

E[RAR(k)RAR(k + l)]

E[IAR(k)RDR(k + l)] = cos
(
2π ΔL

L (k + l)
)

E[IAR(k)RAR(k + l)]

+ sin
(
2π ΔL

L (k + l)
)

E[IAR(k)IAR(k + l)]

E[IAR(k)IDR(k + l)] = cos
(
2π ΔL

L (k + l)
)

E[IAR(k)IAR(k + l)]

− sin
(
2π ΔL

L (k + l)
)

E[IAR(k)RAR(k + l)]

Substitution in Eq. (3.29) yields the correlation function of the overlapping spectro-
grams:

E[(SX(n, k)SX(n − 1, k + l)]

=
2
L2

(
E[RA(k)RA(k + l)]2 + E[RA(k) IA(k + l)]2

+E[IA(k)RA(k + l)]2 + E[IA(k) IA(k + l)]2

+2 E[R2
X(n, k)]2

)
(3.34)

Under the assumption that the correlation terms are w.s.s., we can express the overall
sample-wise correlation function:

E[RA(k)RA(k + l)] = E[IA(k) IA(k + l)]
= CRA(l) (3.35)

E[RA(k) IA(k + l)] = −E[IA(k)RA(k + l)]
= CRA,IA(l), (3.36)

where the correlation functions are

CRA(l) =
1
2
σ2

X cos(lπ L−ΔL−1
L )

sin(lπ L−ΔL
L )

sin(lπ 1
L )

CRA,IA(l) =
1
2
σ2

X sin(lπ L−ΔL−1
L )

sin(lπ L−ΔL
L )

sin(lπ 1
L )
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Figure 3.6: Spectral sample correlation function, Cs
ED(l) as a function of the frame

shift ratio ΔL
L , for several lags l. The rectangular window was used to compute the

spectrum.

This finally yields

CEDs
R
(l) =

8
L2

(
C2

RX
(l) − (C2

RA
(l) + C2

RA,IA
(l)
))

= 2σ4
X

(
δ(l) − 1

L2

sin2
(
πl L−ΔL

L

)
sin2

(
πl 1

L

)
)

(3.37)

Figure 3.6 shows CEDs
R
(l) as a function of the frame shift ratio ΔL

L for several lags l,
in combination with experimentally estimated values. These estimations are obtained
by repeatedly simulating the signal processing path for Gaussian iid input signals, and
averaging the simulation results. The variance VAR[ED(n, m)] can be computed us-
ing Eq. (3.25) in combination with Eq. (3.37). In the computation of VAR[ED(n, m)]
the values of CEDs

R
(l) for higher values of l play a significant role. Therefore, the vari-

ance of ED(n, m) does not scale linearly with the increase in bandwidth for m. As a
result, the assumptions which were used to formulate the correlation matrix CED are
not valid: the temporal correlation varies as a function of m.

We further illustrate the characteristics of the PRH using a rectangular window
with the transition probability Pr[FP (n, m) = 1|FP (n−1, m) = 1] as a function of
the frame shift ratio ΔL

L . This conditional probability is based on Sheppard’s formula:

Pr[FP (n, m) = 1|FP (n − 1, m) = 1] =
1
2

+
1
π

arcsin(ρ1) (3.38)
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Figure 3.7: Transition probability Pr[FP (n, m) = 1|FP (n − 1, m) = 1] as a func-
tion of the frame shift ratio ΔL

L for a rectangular window.

where the temporal correlation is given by Eq. (3.24)

ρ1(ΔL) =
1
2

VAR
[
ED2ΔL(n, m)

]
VAR [EDΔL(n, m)]

− 1 (3.39)

This conditional probability is illustrated in Figure 3.7. As mentioned earlier, the tran-
sition probability for the rectangular window is dependent on m; the values presented
in Figure 3.7 are averaged over the M frequency bands. Also shown is the asymptotic
behavior of the transition probability as predicted by the model for extremely wide
frequency bands. Here the variance VAR[ED(n, m)] linearly scales with the frame
shift ΔL. Therefore, we can distinguish three regions:

1. When 0 ≤ ΔL ≤ 1
2L, the variance scales linearly with ΔL, so

VAR[ED2ΔL(n, m)] = 2VAR[EDΔL(n, m)] resulting in ρ1 = 0. The sub-
sequent energy differences ED(n − 1, m) and ED(n, m) are mutually uncor-
related, so naturally Pr[1|1] = Pr[1] = 1

2

2. As stated in Eq. (3.24), for 2ΔL > L the variance is constant with value
VAR[EDL(n, m)]. So, the correlation coefficient is equal to:

ρ1(ΔL) =
1
2

VAR
[
EDL(n, m)

]
VAR [EDΔL(n, m)]

− 1
1
2
L < ΔL ≤ L

3. Similarly, ρ1 = − 1
2 for ΔL > L, resulting in Pr[1|1] = 1

3 .
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3.3.5 Transition probabilities for a non-rectangular symmetric win-
dow

In this section we extend the correlation function Cs
ED(l) to non-rectangular symmet-

ric windows. Using this result we compute the transition probabilities of subsequent
fingerprint bits.

Since the PRH algorithm uses a discrete Fourier transform, the multiplication with
the window function in the time domain y(n, i) = w(i)x(n, i) results in the cyclical
convolution in the spectral domain ŷ(n, k) = ŵ(k) � x̂(n, k).

The cyclical convolution x(n) � y(n) is defined as:

x(n) � y(n) �
L−1∑
m=0

x((m − n) mod L)y(m) n = 0, . . . , L − 1

When the window w(i) is symmetrical (even), its spectral representation ŵ(k) has
no imaginary part. Then, also the real part of x̂(n, k) can be written as:

RX(n, k) = ŵ(k) � RXR(n, k)

Using these kinds of manipulation we arrive at the expression for the sample-wise
correlation function Cs

ED(l) as stated in the following theorem. The proof is given in
Appendix A.3.

Theorem 2 (Sample-wise correlation function Cs
ED(l) for a symmetric window). The

sample-wise correlation function Cs
ED(l) for a symmetric window with spectral rep-

resentation ŵ(k), k = 0, . . . , L − 1, is given by:

Cs
ED(l) =

8
L2

(RR2
X(l) − (RR1(l) + RI2(l))2

−(RI1(l) − RR2(l))2) (3.40)

where

RRX(l) = CRX (l) � (ŵ(l) � ŵ(l))
RR1(l) = CRA(l) � (cos(2π ΔL

L l)ŵ(l) � ŵ(l)
)

RR2(l) = CRA(l) � (sin(2π ΔL
L l)ŵ(l) � ŵ(l)

)
RI1(l) = CRA,IA(l) � (cos(2π ΔL

L l)ŵ(l) � ŵ(l)
)

RI2(l) = CRA,IA(l) � (sin(2π ΔL
L l)ŵ(l) � ŵ(l)

)
This formulation does allow for closed-form expressions of the sample-wise cor-

relation function Cs
ED(l) like Eq. (3.37) for the rectangular window case. However,

the expressions rapidly become complicated. For instance, PRH uses a Hann window;
its time-domain function:

w(i) =
1
2
(
1 − cos

(
2π
L i
))

i = 0, . . . , L − 1



50 3. Models for PRH generated fingerprints of i.i.d. signals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

lags = 0
lags = 1
lags = 2

Frame shift ratio ΔL
L

Sp
ec

tra
ls

am
pl

e
co

rr
el

at
io

n
C

s E
D

(l
)

Figure 3.8: Spectral sample correlation function, Cs
ED(l) as a function of the frame

shift ratio ΔL
L , for several lags l. The Hann window was used to compute the spectrum.

and spectral representation:

ŵ(k) = −1
4
δ(k − 1 mod L)

+
1
2
δ(k) − 1

4
δ(k + 1 mod L) k = 0, . . . , L − 1

gives the following expression for the variance VAR[EDs] = Cs
ED(0):

VAR[EDs] =
1
32

σ4
X

L2

(
(3L)2

−
((

3 − 2 sin2
(
π ΔL

L

))
(L − ΔL) +

(
3 − 2 sin2

(
π 1

L

)) sin
(
2π ΔL

L

)
sin
(
2π 1

L

) )2)

Figure 3.8 shows Cs
ED(l) for lags l = 0, 1, 2 together with the experimental data.

Roughly speaking, the graphs consist of two regions: the frame shift ratio being
smaller than, or larger than 1

2 , respectively. In the second region, the covariance terms
are more or less constant as a function of ΔL

L . In this region, one window has a neg-
ative slope, while the other has a positive slope. Apparently, this removes (almost)
all correlation between the subsequent frames. This will also show in the transition
probabilities.

Figure 3.9 shows the time-domain function w(i) for several window functions:

• Hamming window:

w(i) = 0.54 − 0.46 cos
(

2π
L i
)

i = 0, . . . , L − 1
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Figure 3.9: Illustration of several window functions.

• Blackman-Harris window:

w(i) = 0.359− 0.488 cos
(

2π
L i
)

+0.141 cos
(

4π
L i
)− 0.012 cos

(
6π
L i
)

i = 0, . . . , L − 1

• Tukey window, (half rectangular, half raised cosine):

w(i) =

⎧⎪⎨
⎪⎩

1
2

(
1 + cos

(
4π
L i − π

))
i = 0, . . . , 1

4L − 1
1 i = 1

4L, . . . , 3
4L − 1

1
2

(
1 + cos

(
4π
L i + π

))
i = 3

4L, . . . , L − 1

Using Eq. (3.40), we compute the correlation coefficient ρ1 and the transition
probability Pr[FP (n, m)|FP (n − 1, m)] using Eqs. (3.38) and (3.39). Figure 3.10
shows this transition probability for the window types listed above.

All curves in this figure have equal transition probability Pr[1|1] = 1 for ΔL
L = 0

and tend towards Pr[1|1] = 1
3 for increasing frame shift. For the first three raised

cosine windows, one can say that the wider the bell-shape (the smaller the frequency
smearing effect), the stronger the temporal correlation and hence the larger the transi-
tion probability. The Tukey window shows a mixed character; e.g. the effect that the
transition probability is constant at is asymptotic value is prominent from ΔL

L ≥ 3
4 .

This is because the slopes occupy only the first and last quarter of the window.
The relative positions of the curves for a given frame shift have a direct impact on

two aspects of the performance: the uniqueness and the robustness to misalignment.
This aspect is analyzed in more detail in Section 3.4.2. The larger the probability of
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Figure 3.10: Transition probabilities for several window types as a function of the
frame shift ratio ΔL

L , taking into account the full spectrum.

the same bit value in the temporal direction, the more robust the fingerprint is to mis-
alignment. On the other hand, more repetition in the temporal direction also implies a
larger variance in the distribution of the distance between arbitrary fingerprint blocks.

3.4 Probability of an erroneous PRH fingerprint bit
In this section we consider the probability Pe that a bit in the PRH fingerprint,
F (n, m), is flipped due to additive white gaussian noise, temporal misalignment,
or a combination of these two. Under the assumption of Gaussian i.i.d. input
signals, we derive closed form expressions. In case of the additive noise, the Pe

is dependent on the SNR. In case of temporal misalignment, the Pe is dependent
on the amount of misalignment Δi, the frame shift ΔL and the frame length L.
In the derivations of the closed-form expressions for Pe the following theorem is used.

Theorem 3 (Probability of sign change of a Gaussian random variable due to corre-
lated Gaussian noise). Let (A, B) denote two zero-mean Gaussian random variables,
drawn from a bivariate normal distribution, i.e. (A, B) ∼ N (0,CAB), with correla-
tion matrixCAB:

CAB =

⎡
⎣ σ2

A ρ σAσB

ρ σAσB σ2
B

⎤
⎦
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Now define C = A + B. The probability that the sign of C is different from the
sign of A is given by:

Pe = Pr [A ≤ 0, C > 0 ∨ A > 0, C ≤ 0]

=
1
π

arctan

(
σB

√
1 − ρ2

σA + ρσB

)
(3.41)

The proof of this theorem is included in Appendix A.4.

Section 3.4.1 considers additive noise, Section 3.4.2 discusses misalignment, and Sec-
tion 3.4.3 discusses the combination of the two noise sources.

3.4.1 Bit-errors due to additive noise
We thus consider the following situation. Denoting the undistorted signal to be fin-
gerprinted by x(i) and the additive, normally distributed noise by w(i), the distorted
signal y(i) is given by:

y(i) = x(i) + w(i) (3.42)

We are interested in the relating the difference between the corresponding fingerprints
of x(i) and y(i), FX(n, m) and FY (n, m), respectively, to the statistical characteris-
tics of x(i) and y(i). The probability of bit error, Pe, can be expressed in terms of the
energy differences, EDX(n, m) and EDY (n, m) (see Eq. (3.6)):

Pe = Pr [FX(n, m) �= FY (n, m)]
= Pr[EDX(n, m) ≤ 0, EDY (n, m) > 0

∨ EDX(n, m) > 0, EDY (n, m) ≤ 0] (3.43)

We split the calculation of Pe into two parts. First, using Eq. (3.43), the follow-
ing equation expresses Pe in terms of variances of EDX(n, m) and EDY (n, m) −
EDX(n, m):

Pe =
1
π

arctan

(√
VAR [EDY (n, m) − EDX(n, m)]

VAR [EDX(n, m)]

)
(3.44)

This relation is based on Theorem 3 from the previous section. The additive noise
B = EDY (n, m) − EDX(n, m) and the signal A = EDX(n, m) are uncorrelated,
i.e. ρ = 0. Here, we assume that EDX(n, m) and EDY (n, m) are drawn from
normal distributions and have mean value zero. Appendix A.5 states a simplified
version of Theorem 3 specifically for the case ρ = 0.

In the next step, we have to relate VAR [EDY (n, m) − EDX(n, m)] and
VAR [EDX(n, m)] to the variances σ2

X and σ2
W of the original signal x(i) and com-

pression distortion w(i), respectively. Therefore, we analyze how each of the two
components x(i) and w(i) contribute to EDY (n, m). To do this, we repeat the steps
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in Eqs. (3.3), (3.7), (3.8) and (3.9), but now for the model in Eq. (3.42). First, the
short-time Fourier transform, ŷ(n, k), is computed for each frame n:

ŷ(n, k) = x̂(n, k) + ŵ(n, k) (3.45)

Second, the PSD is estimated using the periodogram:

SY (n, k) � 1
L
|ŷ(n, k)|2

=
1
L

(
|x̂(n, k)|2 + |ŵ(n, k)|2

+ 2 Re
(
x̂(n, k)ŵ(n, k)

))
= SX(n, k) + SW (n, k) + 2Re (SXW (n, k)) (3.46)

where SXW (n, k) is the (complex) cross-spectrum. Its real part is also known as the
coincident spectral density or co-spectrum. Third, the difference between two spectral
frames is computed:

EDs
Y (n, k) � SY (n, k) − SY (n − 1, k)

= SX(n, k) + SW (n, k) + 2Re (SXW (n, k))
−(SX(n − 1, k) + SW (n − 1, k)

+2Re (SXW (n − 1, k)))
= EDs

X(n, k) + EDs
W (n, k) + 2Qs(n, k), (3.47)

where Qs(n, k) is given by:

Qs(n, k) = Re (SXW (n, k) − SXW (n − 1, k))

Finally, the subband energy difference, EDY (n, m), is computed:

EDY (n, m) �
∑

k∈Km

EDs
Y (n, k) −

∑
k∈Km+1

EDs
Y (n, k)

= EDX(n, m)+EDW (n, m)+2Q(n, m), (3.48)

where Q(n, m) is defined as:

Q(n, m) =
∑

k∈Km

Qs(n, k) −
∑

k∈Km+1

Qs(n, k)

Using Eq. (3.48) we obtain the following expression for the numerator under the
square root in Eq. (3.44):

EDY (n, m)−EDX(n, m) = EDW (n, m)+2Q(n, m). (3.49)

In Appendix A.6 we show that the variables EDW (n, m) and Q(n, m) are mutually
uncorrelated, yielding:

VAR [EDY (n, m) − EDX(n, m)]
= VAR [EDW (n, m)] + 4VAR [Q(n, m)] (3.50)
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In Appendix A.7 we show that, if we assume x(i) and w(i) to be normally distributed,
the variances in Eq. (3.50) are proportional to VAR [EDX(n, m)]:

VAR [EDY (n, m) − EDX(n, m)]

=
(

σ4
W

σ4
X

+ 2
σ2

W

σ2
X

)
VAR [EDX(n, m)] (3.51)

Finally, the combination of Eqs. (3.44) and (3.51) results in:

Pe =
1
π

arctan

(√
σ4

W

σ4
X

+ 2
σ2

W

σ2
X

)
(3.52)

Note that this expression is independent of the frame index n and the frequency
band index m. The first was to be expected since the input signals are assumed station-
ary. In other words, since the statistical characteristics of x(i) and w(i) are constant
over time, Pe is also constant over time. The latter is true if the subband energy differ-
ence ED(n, m) satisfy the assumption that they are normally distributed. In practice
this is the case if the frequency bands on which ED(n, m) is based, m and m + 1,
have sufficiently large bandwidth. Eq. (3.52) was derived for Gaussian i.i.d. signals.
Analyzing the assumptions necessary for the theorems to hold, it is sufficient to as-
sume that the signal and noise are wide sense stationary (w.s.s.), zero mean, mutually
uncorrelated, and have the same spectral structure, expressed in Eq. (A.25).

In the derivation of the model, the structure of the fingerprint is not taken into
account. Due to the large frame overlap, the fingerprint has a slowly varying binary
structure. This dependency does not have to be taken into account in the models, since
we are computing the average probability of error Pe, not its variance.

Figure 3.11 shows the SNR-Pe relationship for the model of Eq. (3.52) along
with experimental results on synthetic data. When the SNR is formulated as
20 log10(σX/σW ) and the Pe is plotted on a logarithmic scale, for sufficiently large
SNR (σ2

X � σ2
W ), the SNR vs. Pe relation is a straight line. For these small distor-

tions, the Pe as formulated in Eq. (3.52) is approximately inversely proportional to
σX/σW :

Pe ≈ 1
π

arctan
(√

2
σW

σX

)
≈

√
2

π

σW

σX
(3.53)

In practice this means that for a 20 dB increase of SNR, the Pe is expected to drop by
a factor 10. The region in the curve showing the ’linear’ SNR-Pe relation is of par-
ticular interest, since most audio compression algorithm operate in this region. From
a quality estimation perspective, the low-SNR region is of no interest, since there the
audio is degraded too severely. Furthermore, signals in the low-SNR regime generate
fingerprint differences around or above the detection threshold for identification.
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Figure 3.11: Analytical relation between SNR and Pe for the PRH. The indicated
detection threshold is equal to 0.35 in [44]

3.4.2 Bit-errors due to temporal misalignment
In this section we consider bit-errors due to the misalignment of Δi samples. A single
time frame of the reference signal x(n, i) and the shifted signal y(n, i) are given by:

x(n, i) = x(i + (n − 1)ΔL) i = 1, . . . , L − 1
y(n, i) = x(i + (n − 1)ΔL + Δi) Δi = − 1

2ΔL, . . . , 1
2ΔL − 1.

The effect of misalignment in the time domain results in additive distortion in the
spectral energy differences:

EDY (n, m) = EDX(n, m) + EDWmis(n, m) (3.54)

In the following derivations we will omit the time and frequency indices (n, m). In
two steps we derive a closed form expression for the probability of error PΔi

e in terms
of the variance VAR[EDX ], based on Eq. (3.41) in Theorem 3.

1. Express Pe in terms of the variances of EDX and EDWmis .
Since EDY is the result of a time-shifted version of the signal that generated
EDX , the variances of EDX and EDY are identical. This leads to the follow-
ing observation:

VAR[EDY ] = VAR[EDX ] + VAR[EDWmis ] + 2COV[EDX , EDWmis ]
= VAR[EDX ]

Therefore, we can express the covariance in terms of the variances:

COV[EDX , EDWmis ] = −1
2

VAR[EDWmis ],
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and thus for the correlation coefficient ρ:

ρ =
COV[EDX , EDWmis ]

σEDX σEDWmis

= −1
2

σEDWmis

σEDX

(3.55)

This relation can be plugged into the expression for Pe – Eq. (3.41) in Theorem
3 – with σA = σEDX and σB = σEDWmis

:

Pe =
1
π

arctan

(
σEDWmis

√
1 − ρ2

σEDX + ρσEDWmis

)

=
1
π

arctan

⎛
⎝
√√√√4σ4

EDX
− (2σ2

EDX
− σ2

EDWmis
)2

(2σ2
EDX

− σ2
EDWmis

)2

⎞
⎠

=
1
π

arccos

(
2σ2

EDX
− σ2

EDWmis

2σ2
EDX

)
(3.56)

where we used the relation:
1
π

arctan
(√

c2 − 1
)

=
1
π

arccos
(

1
c

)

2. Express the variance of EDWmis in terms of the variance of EDX .
We can rewrite the variance of EDWmis using Eq. (3.54):

VAR[EDWmis ] = VAR[EDY − EDX ]
= 2VAR[EDX ] − 2COV[EDX , EDY ] (3.57)

Like in the temporal correlation in Eq. (3.24), the covariance term can be ex-
pressed in terms of variances with different frame shift ratios:

COV[EDX , EDY ]

= −VAR[EDΔi
X ] +

1
2
(
VAR[EDΔi−ΔL

X ] + VAR[EDΔi+ΔL
X ]

)
(3.58)

Plugging Eq. (3.58) back into Eq. (3.57) leads to:

VAR[EDWmis ] = 2
(
VAR[EDΔL

X ] + VAR[EDΔi
X ]
)

− (VAR[EDΔL−Δi
X ] + VAR[EDΔL+Δi

X ]
)

(3.59)

which finally yields the result:

PΔi
e =

1
π

arccos

(
− VAR[EDΔi

X ]
VAR[EDΔL

X ]

+
1
2

VAR[EDΔL−Δi
X ] + VAR[EDΔL+Δi

X ]
VAR[EDΔL

X ]

)
(3.60)
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Figure 3.12: Probability of error Pe due to maximum misalignment as a function of
the frame shift ratio ΔL

L . The curves are generated for several window types.

The variances were computed in Section 3.3.4 for rectangular windows and in
Section 3.3.5 for non-rectangular windows.

Figure 3.12 shows the probability of error P
ΔL/2
e due to maximum misalignment

as a function of the frame shift ratio ΔL
L . Figure 3.13 shows the probability of error

due to misalignment as a function of the amount of misalignment Δi for a given
frame shift ratio ΔL

L = 1
32 and frame length L = 2048. In practice, each amount of

desynchronization is equally likely:

Pe =
1

ΔL

1
2ΔL−1∑

Δi=− 1
2ΔL

PΔi
e .

3.4.3 Bit-errors due to additive noise and temporal misalignment
In this section we derive an expression for the probability of error Pe due to a combi-
nation of additive noise and temporal misalignment. For this combination the starting
point becomes:

EDY = EDX + EDW (3.61)

where now the noise component consists of contributions from additive noise and
misalignment:

EDW = EDWmis + EDWadd
(3.62)

In two steps we derive a closed form expression for the probability of error Pe in
terms of the variance VAR[EDX ] and the SNR, based on Eq. (3.41) in Theorem 3.



3.4. Probability of an erroneous PRH fingerprint bit 59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Misalignment Δi [×ΔL]

P
Δ

i
e

Figure 3.13: Probability of error Pe due to misalignment as a function of the amount
of misalignment Δi for a given frame shift ratio ΔL

L = 1
32 . The curve is generated for

the use of a Hann window.

1. Express Pe in terms of the variances of EDX and EDW .
An observation similar to Eq. (3.55) can be made: the variance of the spec-
tral energy differences due to misalignment and additive noise is equal to the
variance of the spectral energy differences due to additive noise alone:

VAR[EDY ] = VAR[EDX ] + VAR[EDW ] + 2COV[EDX , EDW ] (3.63)
= VAR[EDX + EDWadd

]
= VAR[EDX ] + VAR[EDWadd

] (3.64)

The additive noise is independent of the signal itself: COV[EDX , EDWadd
] =

0. By comparing Equations (3.63) and (3.64) it can be seen that the covariance
of the signal and the total noise is equal to:

COV[EDX , EDW ] =
1
2

(VAR[EDWadd
] − VAR[EDW ])

= −1
2

VAR[EDWmis ] (3.65)

Therefore the parameters of the Gaussian PDF become:

σ2
EDX

= VAR
[
EDΔL

X

]
(3.66)

σ2
EDW

= VAR [EDWmis ] + VAR [EDWadd
] (3.67)

ρ = −VAR [EDWmis ]
2σEDX σEDW

(3.68)
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This relation can be plugged into the expression for Pe (Eq. 3.41) in Theorem
3 with σA = σEDX and σB = σEDW :

Pe =
1
π

arctan

(
σEDW

√
1 − ρ2

σEDX + ρσEDW

)

2. Express the variance of EDW in terms of the variance of EDX and the SNR.
The variances of the additive noise and misalignment noise are given in the
previous sections by Eqs. (3.51) and (3.59), respectively:

VAR[EDWadd
] =

(
σ4

W

σ4
X

+ 2
σ2

W

σ2
X

)
· VAR

[
EDΔL

X

]
VAR[EDWmis ] = 2VAR

[
EDΔL

X

]
− (VAR

[
EDΔL+Δi

X

]− VAR
[
EDΔL−Δi

X

])
Filling in the parameters from Eqs (3.66 - 3.68) we get for the nominator:

σEDW

√
1 − ρ2

=

√
4σ2

EDX

(
σ2

EDWadd
+ σ2

EDWmis

)
− σ4

EDWmis

2σEDX

=

√
4σ2

EDX

(
σ2

EDX
+ σ2

EDWadd

)
−
(
2σ2

EDX
− σ2

EDWmis

)2

2σEDX

(3.69)

and denominator:

σEDX + ρσEDW =
2σ2

EDX
− σ2

EDWmis

2σEDX

(3.70)

We finally end up with:

PΔi
e =

1
π

arctan

⎛
⎜⎜⎝
√√√√√√4σ2

EDX

(
σ2

EDX
+ σ2

EDWadd

)
(
2σ2

EDX
− σ2

EDWmis

)2 − 1

⎞
⎟⎟⎠

=
1
π

arccos

⎛
⎝VAR

[
EDΔL+Δi

X

]− VAR
[
EDΔL−Δi

X

]
2
(
1 + σ2

W

σ2
X

)
VAR

[
EDΔL

X

]
⎞
⎠ (3.71)

Figure 3.14 illustrates the probability of error Pe due to additive noise and maxi-
mum misalignment Δi = 1

2ΔL in Eq. (3.71) as a function of SNR for various frame
shift ratios ΔL

L . For low SNR-values the additive component is dominant, and the
curves resemble the curve for additive noise only shown in Figure 3.11. For high SNR-
values the Pe converges to the values that correspond to misalignment only, shown in
Figure 3.12.
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Figure 3.14: Probability of error Pe due to additive noise and maximum misalignment
as a function of SNR for various frame shift ratios ΔL

L . The curves are generated for
the use of a Hann window.

3.5 Relation with other binary fingerprinting algo-
rithms

Several other audio fingerprinting algorithms use binary energy features, e.g. [58,
65]. These algorithms might be modeled in a similar fashion. In these algorithms,
including the PRH, fingerprint bits are derived by filtering the spectrogram. In the
following, we use the matrix notation introduced in Section 2.6, but the time indices
will be omitted. The computation of the binary features consists of three steps:

1. Computation of coarse spectrogram.
Within each frame, the energy within frequency bands are computed. The result
is a coarse spectrogram EN,P , consisting of N frames and P frequency band
energies over time. Let EN,1(m) denote the energy in the mth frequency band
over time.

2. Convolution with a filter.
The spectral energy differences are computed by filtering the spectrogram in the
temporal direction:

EDN,1(m) = EN,wm(sm) ∗ Htm,wm
m m = 1, . . . , M

where Htm,wm
m denotes the mth filter with tm coefficients in the temporal di-
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rection, and wm coefficients in the frequency direction:

Htm,wm
m =

⎡
⎢⎢⎢⎣

h(1, 1) . . . h(1, wm)
...,

...

h(tm, 1) . . . h(tm, wm)

⎤
⎥⎥⎥⎦

and Ewm(sm) denotes a selection of wm frequency bands from the spectro-
gram:

EN,wm(sm) = [EN,1(sm), . . . ,EN,1(sm + wm − 1)]

where sm denotes the lowest frequency band index of the selection. These
filtered time series are concatenated into the spectral energy differences block:

EDN,M = [EDN,1(1), . . . ,EDN,1(M)]

3. Binarization
The fingerprint bits are the result of applying a filter-dependent threshold to the
spectral energy differences:

FP (n, m) =

{
0 ED(n, m) < Tm

1 ED(n, m) ≥ Tm

Usually, the threshold Tm is chosen equal to the median of fED(m)(t), the distri-
bution of the samples in time for frequency band m. PRH uses a fixed threshold
T = 0; for a zero-mean Gaussian distribution this is equal to the median value.

PRH uses one specific Haar filter of fixed size for each time-series:

H2,2 =

⎡
⎣ 1 −1

−1 1

⎤
⎦ .

Let 1n,m represent a matrix of all ones of size n×m. Lebosse et al. use a filter which
combines the average of a series of neighboring frequency bands with the instanta-
neous value of the next frequency band:

H2,m+1 =

⎡
⎣ 1

m 11,m −1

− 1
m 11,m 1

⎤
⎦ ,

Ke et al. learn a set of filters from training data by employing Adaboost, a pair-
wise boosting algorithm known from computer vision. The consider the following
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(a) (b) (c) (d) (e)

Figure 3.15: Illustration of the prototype filters employed in [58]. White regions
represent filter coefficients equal to ’1’, black regions represent filter coefficients equal
to ’-1’. PRH uses the leftmost type of filter.

five prototype filters, also illustrated in Figure 3.15:

H2t,2w
1 =

⎡
⎣ 1t,w −1t,w

−1t,w 1t,w

⎤
⎦

Ht,2w
2 =

[
1t,w −1t,w

]

H2t,w
3 =

⎡
⎣ 1t,w

−1t,w

⎤
⎦

Ht,3w
4 =

[
−1t,w 1t,w −1t,w

]

H3t,w
5 =

⎡
⎢⎢⎢⎣

−1t,w

1t,w

−1t,w

⎤
⎥⎥⎥⎦

The algorithm selects M filters from a set of filters from the above types with different
widths wm, heights tm, and frequency locations sm.

We expect that the two models developed for PRH can also be used for the algo-
rithms of Lebosse et al. and Ke et al.

Also Mihçak et al. [75] and Kim et al. [59] both compute binary features. How-
ever, Mihçak et al. compute their features on the MDCT and use error correcting
codewords. Kim et al. use the spectral centroids which they optimize and convert to
a binary representation in a way similar to Ke et al. We believe that our models might
be extended to these algorithms as well.
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3.6 Conclusion and discussion
In this chapter we have developed two statistical models for PRH when the input signal
is i.i.d. Gaussian. The first model predicts the structure of the PRH fingerprint. The
second predicts the probability of an erroneous bit in case of temporal misalignment
and additive noise. We have experimentally verified that the models provide accurate
predictions. We have also shown that the predictions from the first model apply to
real-life data as well.

In a series of publications, McCarthy, Silvestre, Hurley and Balado have modeled
and optimized several individual aspects of the PRH fingerprint [71, 72, 73, 15, 16,
51, 52], such as the method for converting the real-valued features into a binary rep-
resentation [71], the optimal window for the smallest desynchronization effect [15],
and the collision probability [52]. The first models [72, 73, 15] follow our approach
to a great extent, but the elegant and compact formulation in quadratic form allows for
optimizations, and extensions to Gaussian signals which are more complex than iid.
The collision probability is not limited to binary fingerprints, but can also be modeled
for M -ary fingerprints.

We expect that the models can be extended to other types of distortions, e.g. vari-
ations in play-back speed of the audio signal, and to other audio fingerprinting algo-
rithms. These other algorithms are expected not to be limited to fingerprints based
directly on the spectral energy. Also other types of features, e.g. MFCC or spectral
centroid features may be modeled in a similar fashion. The main assumption is that
the features before binarization follow a Gaussian distribution.
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4. Distortion Estimation in Compressed Music

Using Only Audio Fingerprints

4.1 Introduction
One of the applications of fingerprinting is to identify music on the Internet. How-
ever, if two copies of the same song are identified as being the same music, they can
still differ in quality to a large extend. Therefore, one would like to discriminate be-
tween qualities of songs identified. A consumer prefers to obtain the version with the
highest quality. A platform moderator, however, might want to block high quality ver-
sions of copyrighted content, but allow a low-quality preview version to be uploaded.
Therefore, it is desirable to use the same mechanism for quality discrimination.

In this chapter, we extend the functionality of fingerprinting to estimate the Signal-
to-Noise Ratio (SNR) between the original recording and a compressed version. This
SNR-estimation can then serve as a simple, yet coarse quality indicator, using fin-
gerprints only. The SNR-estimation is based on the way the fingerprint reflects the
changes in the audio signal introduced by compression, as will be explained next.

Figure 4.1(a) schematically shows the procedure proposed in this chapter for es-
timating the SNR of compressed content using fingerprinting technology. After the
song on the Internet has been identified, we have two fingerprints: the fingerprint of
the original high quality recording from the database, FX , and the fingerprint of the
compressed version of the same song from the internet, FY . Due to compression,
the waveform of the compressed recording, Y , is slightly different from its original
recording, X . This difference in waveform then results in a difference in the cor-
responding fingerprints, d(FX , FY ). Figure 4.1(b) shows an illustration of the rela-
tionship between fingerprint differences and audio quality. In this example, we can
roughly estimate the audio quality of the compressed music from the difference be-
tween FX an FY , i.e. d(FX , FY ). The accuracy of the estimation is dependent on the
spread in d(FX , FY ) - indicated here by the shaded area - for a given quality level,
and vice versa.

At first sight, there are several alternatives to obtain the quality of compressed
audio, e.g. the bitrate from the compressed audio file header and perceptual quality
assessment algorithms [96]. The bitrate, however, like other metadata is unreliable.
The bitrate is not a required parameter for decoding in every audio compression format
(e.g. Ogg Vorbis [5]) and therefore not always present. Furthermore, the quality of
the compressed audio content is a result of the selected compression bitrate, within the
limits and settings of the specific implementation. Even compressing the same song
with the same algorithm at the same bitrate but using different implementations may
result in significantly different quality. The variability is even larger when comparing
versions compressed with different algorithms at the same bitrate.

Another alternative that comes to mind is to use an algorithm that estimates the
perceptual quality of the compressed version with respect to its original recording.
A wide variety of algorithms can be found in literature [23, 22, 95, 49], some of
which are used in the Perceptual Audio Quality (PEAQ) measure adopted by the ITU
[96]. These algorithms use elaborate psycho-acoustic models to mimic the effects of
the Human Auditory System (HAS). They need, however, the original uncompressed
version as a reference. Because in our envisioned application scenario’s this reference
is unavailable, in our proposed technique the fingerprint of the original uncompressed
recording takes the role of the reference. In this way the resulting quality indication is
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Figure 4.1: Using fingerprints for music quality assessment; (a) Relating differences
in audio fingerprints of two versions of the same recording, X and Y , to differences in
perceptual quality of these recordings. (b) Example relationship between fingerprint
differences and a quality indicator (compression bitrate).

only indirectly based on the difference between the original and compressed version.
Our technique does not intend to predict the subjective quality or to match the

capabilities of subjective quality predicting algorithms. These are much more accu-
rate and reliable, and have a better correlation with human perception, but they need
information that is not available in our scenarios. Furthermore, for our envisioned ap-
plication scenarios outlined in this introduction, such accuracy also is not needed. The
only common factor with perceptually motivated techniques is the use of a reference
to give a content-based indication of the difference between the compressed content
and its original.

This chapter is organized therefore as follows. Section 4.2 provides an overview of
fingerprinting algorithms described in literature. Three algorithms which are consid-
ered representative for the field are reviewed. In Section 4.3 we model the distortion
introduced by compression as additive noise and develop a model that expresses the
fingerprint differences in terms of the SNR for one of the three algorithms. This model
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provides the theoretical foundation for experiments in Section 4.4 that relate the bitrate
used for compression, and the resulting SNR, to the distance between the fingerprints.
Section 4.5 draws conclusions and outlines directions for future research.

4.2 Audio Fingerprinting Algorithms
In the last decade, several fingerprinting systems have been developed. Cano et al.
present a good survey of fingerprinting algorithms [28]. A fingerprinting system has
to meet three requirements:

• Robustness: The fingerprint of a distorted piece of music has to be sufficiently
close to the fingerprint of the undistorted recording,

• Collision-resistance: The fingerprints of two different pieces of music should
be sufficiently different.

• Database search efficiency: In order to keep the database scalable, the finger-
print representation has to allow for efficient database search.

These requirements are primarily concerned with identification. To use fingerprints
for indicating the quality (SNR) of compressed music, the fingerprinting system has
to meet a fourth criterion: the distance between the fingerprints of the original and
compressed version should also reflect the amount of compression.

Each algorithm tries to meet these requirements in a different way. However, in
their paper Cano et al. identify a number of steps and procedures common to the
fingerprint extraction of almost all audio fingerprinting systems. Figure 4.2 shows
a schematic view of these steps in the fingerprint extraction process. In the pre-
processing step the audio signal is usually converted to mono, filtered using a low-
pass filter and downsampled to a (lower) standard sample rate. Then, the signal is
divided into (strongly) overlapping frames. The frame lengths range from 50-400 ms,
the overlap varies from 50% to 98%. Each frame is multiplied by a window and con-
verted to a spectral representation. In many algorithms the spectrum is divided into
several frequency bands. Features are extracted from each frequency band in every
frame. Each feature is then represented by a number of bits in the post-processing
step. The compact representation of the time-frequency features of a single frame
is called a sub-fingerprint. Due to the large overlap, subsequent sub-fingerprints are
(strongly) correlated and vary slowly in time. The fingerprint of a song consists of
a sequence of sub-fingerprints, which are stored in a database. A song-fragment is
identified by matching a sequence of sub-fingerprints, called a fingerprint block, to
the items in the database. A fingerprint block usually corresponds to several seconds
of music.

The main differences between the algorithms found in literature are due to the
(time-frequency) features that are used [28]. Based on the information used for ex-
tracting the feature sequence, we have divided fingerprinting algorithms into three
categories [34]. From each category we selected one algorithm we consider to be rep-
resentative for the category. Next, these three algorithms will be presented in more
detail and they are used in the experiments presented in Section 4.4.
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Figure 4.2: Fingerprint extraction procedure.

The three categories differ in the way they combine spectral information. The first
category extracts a feature from each frequency band, the second category extracts
features that are combined from multiple frequency bands and the third category ex-
tracts features that are based on the entire spectral range, while the combination is
obtained through off-line training.

4.2.1 Systems that use features based on a single band
Shazam uses the locations of peaks in the spectrogram to represent the fingerprint
[101]. This algorithm does not reflect the distortions related to compression, espe-
cially at medium and high bitrates. Özer et al. use periodicity estimators and a Sin-
gular Value Decomposition of the MFCC matrix [81]. Sukkittanon and Atlas propose
frequency modulation features [94]. These papers do not address the response to com-
pression. MusicDNA uses global mean and standard deviation of the energies within
15 subbands of 15 seconds of music, thus creating a 30 dimensional vector [100]. The
effect of moderate compression is shown to be minimal. Both Fraunhofer’s AudioID
and the algorithm developed by Mapelli et al. use spectral shape descriptors to rep-
resent the fingerprint: the Spectral Flatness Measure (SFM) and Spectral Crest Factor
(SCF) [48, 70]. The latter algorithm is well-defined and the response to compression
is discussed in literature. Based on its reported response to compression and its full
description, we have selected the latter SFM/SCF algorithm to represent this category.
In the remainder of this chapter we refer to this algorithm by the abbreviation SSD
(Spectral Shape Descriptors).

Figure 4.3 shows the SSD fingerprinting algorithm proposed by Mapelli et al. [70].
The algorithm extracts features from the periodogram estimate of the Power Spectral
Density (PSD). The PSD of frame n at frequency bin k, S(n, k), is estimated from the
length-L windowed Fourier transform of the corresponding frame X̂(n, k):

S(n, k) =
1
L

∣∣∣X̂(n, k)
∣∣∣2 (4.1)

The extracted features are the mean energy (ME), the Spectral Flatness Measure
(SFM) and the Spectral Crest Factor (SCF). We follow the approach in [48] to extract
the features within each of several subbands per frame. The features are based on the
arithmetic and geometric means of (subband) energies. Define the arithmetic mean of
signal x(i), i = 1, . . . , N , as:

Ma (x) =
1
N

N∑
i=1

x(i) (4.2)
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Figure 4.3: Fingerprint extraction stage of Cefriel SSD [70]

and the geometric mean as:

Mg (x) = N

√√√√ N∏
i=1

x(i) (4.3)

In frame n and subband m the ME, SFM and SCF features are extracted from the
periodogram S(n, k) are then given as:

Feat(m, n, 0) = ME(n, m)
= Ma (S(n, k)) , k ∈ Km (4.4)

Feat(m, n, 1) = SFM(n, m)

= 10 log10

(
Mg (S(n, k))
Ma (S(n, k))

)
, k ∈ Km (4.5)

Feat(m, n, 2) = SCF (n, m)

= 10 log10

(
maxk (S(n, k))
Ma (S(n, k))

)
, k ∈ Km (4.6)

where Km is the set of frequency bin indices belonging to subband m.
Within each band, each feature is quantized using a (different) 4-bit Non-Uniform

Quantizer (NUQ). For more information the NUQ please refer to [70]. The fingerprint
is thus defined as the quantization level index of each feature of the three features:

F (n, m, p) = NUQp (Feat(m, n, p)), p = 0, 1, 2 (4.7)

The distance between two fingerprint blocks is computed using the Mean Square
Error (MSE):

MSE=
1

3MN

M−1∑
m=0

N−1∑
n=0

2∑
p=0

(FX(m, n, p)−FY (m, n, p))2 (4.8)
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4.2.2 Systems that use features based on multiple subbands
The PRH algorithm presented in Section 2.6 uses the sign of the difference between
energies in Bark scaled frequency bands [44]. While it is reported to be highly ro-
bust against distortions [44], the difference between fingerprints of original and com-
pressed content also reflects compression artifacts [37].

The distance between two realizations FPX(n, m) and FPY (n, m) is computed
as the Bit Error Rate (BER):

BER =
1

MN

M−1∑
m=0

N−1∑
n=0

Fdiff (n, m), (4.9)

where

Fdiff (n, m) = XOR(FX(n, m), FY (n, m) ). (4.10)

4.2.3 Systems that use optimized subband- or frame-combinations
Batlle et al. use Hidden Markov Models (HMMs) to describe their fingerprint [20].
The HMMs are trained based on audio examples. In a second algorithm from the same
authors, the states sequences of the HMMs are interpreted as ’Audio Genes’ [79]. Both
systems use complex distance measures, use the Viterbi algorithm for identification
and implementation is far from straightforward. Microsoft Research uses dimension-
ality reduction techniques to extract the fingerprint in their Robust Audio Recognition
Engine (RARE) [27]. The two-stage dimension reduction is based on training using
examples. Compression artifacts are reflected in the distances between fingerprints of
the original and the compressed content. Therefore, we select Microsoft’s RARE to
represent the third category of algorithms.

Figure 4.4(a) shows the fingerprint extraction of RARE, which uses the log
power spectrum of the Modulated Complex Lapped Transform (MCLT) for the time-
frequency representation of the data. The log power spectra are pre-processed to re-
move the effects of equalization and volume adjustment. A second pre-processing step
removes the non-audible frequency components from the spectrum based on a simple
Psycho-Acoustic Model (PAM) [69]. The entire pre-processing procedure is shown in
Figure 4.4(b).

Features are extracted by means of a two-stage projection of the log power spec-
tra. Each projection is the result of Oriented Principle Component Analysis (OPCA)
which uses both undistorted and distorted data for a one-time, off-line training. OPCA
projects the data onto those directions in the MCLT-frequency space that maximize the
ratio of signal energy and distortion energy in the training data. These directions are
the result of the eigenvalue decomposition of the covariance matrices of pre-processed
log-power spectra of the training data. The first OPCA projection is based on the pre-
processed log-power spectra of the training data, the second OPCA projection is based
on a number of concatenated, projected spectra from the first OPCA projection. The
fingerprint consists of the floating point representation of the trace of features, i.e. the
trace of projected spectra. The distance between two fingerprints is computed using
the Euclidean (Root Mean Square) distance.
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Figure 4.4: Microsoft’s Robust Audio Recognition Engine (RARE) [27] (a) Finger-
print Extraction (b) Pre-processing.

4.3 Stochastic Models of the Philips Robust Hash
Each algorithm reviewed in the previous section has been developed for the identifica-
tion of music. In the introduction we motivated that we want to use fingerprinting al-
gorithms for estimating the quality of compressed music as well, as an add-on feature
after the music has been identified. We base the quality estimation on the difference
between the fingerprint stored in the database and the fingerprint extracted from the
compressed content for identification.

In this section, we model the compression artifacts as additive white noise. We
shall show that this relatively simple model for compression degradations leads to ex-
pressions that match experimental data very well. For the binary fingerprints of the
PRH, we derive an expression for the probability of bit error, Pe, in terms of the SNR
due to additive noise. We choose to model the PRH algorithm for three reasons. First,
this algorithm is proven to be robust and used in practical applications [3, 2]. Second,
it is well-documented [44] and therefore the subsequent steps in the fingerprint algo-
rithm can be well understood. Finally, these steps can be modeled for simple signal
models (uncorrelated and correlated stochastic signal models). Although the model is
based on one specific algorithm (PRH) we expect the behavior to be indicative for the
other algorithms as well, since the features in SSC, PRH and RARE are also based on
linear combinations of components in the (log-)magnitude spectrum. In Appendix B.1
we sketch a relation between the MSE and SNR for the log-magnitude spectrum for
uncorrelated signals. This relation is easily extendible to the RMS distance measure.

We thus consider the following situation. Denoting the undistorted signal to be fin-
gerprinted by x(i) and the additive, normally distributed noise by w(i), the distorted
signal y(i) is given by:

y(i) = x(i) + w(i) (4.11)

We are interested in the relating the difference between the corresponding fingerprints
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of x(i) and y(i), FX(n, m) and FY (n, m), respectively, to the statistical characteris-
tics of x(i) and y(i). The probability of an erroneous bit in frame n at frequency band
m, Pe(n, m), can be expressed in terms of the energy differences, EDX(n, m) and
EDY (n, m) (see Eq. (3.6)):

Pe(n, m) = Pr [FX(n, m) �= FY (n, m)]
= Pr[EDX(n, m) ≤ 0, EDY (n, m) > 0

∨ EDX(n, m) > 0, EDY (n, m) ≤ 0] (4.12)

Section 4.3.1 extends the model from Section 3.4.1 to correlated signals x(i). Sec-
tion 4.3.2 uses the model from Section 4.3.1 to predict the behavior for music. Finally,
section 4.3.3 addresses the problem of the large variance in d(FX , FY ) for a given bi-
trate or SNR level, and proposes a modified distance measure to reduce this variance.

4.3.1 Synthetic signals
We start our analysis from the model outlined in Section 3.4.1 of the previous chapter.
The model expresses the probability of an erroneous bit due to additive noise, Pe, in
terms of the signal and noise variances, σ2

X and σ2
W , respectively, and is given by Eq.

(3.52):

Pe =
1
π

arctan

(√
σ4

W

σ4
X

+ 2
σ2

W

σ2
X

)

Since the fingerprint bits are stationary in n, and the white noise spectrum is flat,
the probability Pe(n, m) = Pe is independent of the indices n and m. Figure 3.11
shows Pe as a function of SNR; for high SNR, Pe drops by a factor 10 when the SNR
improves with 20 dB.

This model assumes that the signal is uncorrelated, and hence the PSD is constant.
Therefore, all frequency bands have an identical robustness to additive noise and have
equal probability of bit errors. When the signal x(i) is correlated in time, the spectrum
is not flat. Then, the bands in the periodogram having a relatively high average energy
density (power/Hz) are more robust to additive white noise than those which have
relatively low average energy density.

An extension to the model of Eq. (3.53), is to take the average energy and noise
densities in the individual frequency bands into account. Let σ2

Xm
denote the average

energy density in frequency band m, and let σ2
Xm:m+1

denote the average energy den-
sity in bands m and m + 1; similar for σ2

Wm:m+1
. Then the Probability of Error of a

bit in position m, which corresponds to the signal and noise in bands m and m + 1,
can be approximated by:

Pe(m)≈ 1
π

arctan

⎛
⎝
√√√√σ4

Wm:m+1

σ4
Xm:m+1

+ 2
σ2

Wm:m+1

σ2
Xm:m+1

⎞
⎠ (4.13)



74
4. Distortion Estimation in Compressed Music

Using Only Audio Fingerprints

0 10 20 30 40 50 6010−4

10−3

10−2

10−1

100

SNR  [dB]

P e

 

 

Uncorrelated signal model; Eq.(3.51)
Correlated signal model; Eq.(4.14)
Realization AR−60 process

(a)

0 10 20 30 40 50 6010−4

10−3

10−2

10−1

100

SNR  [dB]

P e

 

 

Uncorrelated signal model; Eq.(3.51)
Music Signal Model; Eq.(4.19)
Song

(b)

Figure 4.5: SNR-BER relation for (a) an AR model of order 60 (model: ’-’, realiza-
tion: ’+’) in the presence of additive noise. (b) model of a song (model: ’-’, realization:
’o’). As reference, the uncorrelated signal model (’- -’) is also shown in (a-b).
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Now assume that the noise is white, and as a consequence σ2
Wm:m+1

= σ2
W . The

model can then further be simplified to:

Pe(m)≈ 1
π

arctan

(√
σ4

W

σ4
Xm:m+1

+ 2
σ2

W

σ2
Xm:m+1

)

=
1
π

arctan

(√
σ4

W

σ4
X

σ4
X

σ4
Xm:m+1

+ 2
σ2

W

σ2
X

σ2
X

σ2
Xm:m+1

)
(4.14)

It is easy to see that the ratio σ2
X/σ2

Xm:m+1
effectively scales the σ2

W /σ2
X argument ac-

cording to the local average signal power. Of course, if band m contains Nm = |Km|
samples, the average power over all frequency bands, σ2

X , is related to the average
power in subband m, σ2

Xm
, through

σ2
X =

M∑
m=0

Nmσ2
Xm

/ M∑
m=0

Nm. (4.15)

In practical systems like the PRH, the subbands don’t cover the entire spectral range;
Eq. (4.15) assumes that the behavior in the M + 1 subbands is representative for the
behavior in the entire spectrum. This assumption is also implicitly made when using
fingerprinting for identification: the fingerprint is based on part of the signal, but is
assumed to be representative for the entire signal.

The overall BER can be expressed as the average of the M frequency band BERs:

Pe =
1
M

M−1∑
m=0

Pe(m) (4.16)

The model in Eq. (4.14) assumes that the PSD of the signal is flat within two subse-
quent bands and the model in Eq. (4.16) that the probabilities are independent over
m. Eq. (4.16) again results in a - more complicated - arctan(·) relation, since

arctan(a) + arctan(b)

= arctan
(

a + b

1 − ab

)
+

⎧⎪⎨
⎪⎩

0 ab < 1
π ab > 1, a > 0

−π ab > 1, a < 0
(4.17)

As an illustration, Figure 4.5(a) shows the modeled and experimental SNR-BER curves
for a 60th order AR process. The coefficients were obtained by fitting the AR model
onto a frame of real music. This example shows a perfect fit.

4.3.2 Music
Previous sections considered synthetic signal models. Here, we will extend the anal-
ysis to real audio signals. Although the model in Eqs. (4.14) and (4.16) assumes a
stationary signal, it does reflect the influence of a non-flat spectrum. In music, the
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spectral peaks correspond to reliable bits and the low-energy, noise-like regions cor-
respond to unreliable bits. For music and additive noise we can extend the analysis
by taking the non-stationarity into account. The errors between individual fingerprint
bits reflect the SNR, localized both in time and frequency.

The expected probability of error, Pe of a fingerprint of size N × M is related to
the ratio σ2

X/σ2
W by:

Pe =
1

MN

M−1∑
m=0

N−1∑
n=0

Pe(n, m) (4.18)

where

Pe(n, m) =
1
π

arctan

(√
2 · σ2

W

σ2
X

· σ2
X

σ2
Xn,m

)
(4.19)

Here, σ2
Xn,m

denotes the signal variance at position (n, m) and thus σ2
Xn,m

/σ2
W rep-

resents the SNR level corresponding to fingerprint bit F (n, m). Equations (3.5) and
(3.6) relate the value of this fingerprint bit to the energy in two frequency bands in
two frames. The energy density of the signal reflected in the BER is assumed to be
the maximum of the four energies in (3.5). This assumption is based on the obser-
vation that spectral peaks correspond to reliable fingerprint bits, but may lead to near
zero subband energy differences ED(n, m). Experiments show that for most music
fragments the model in Eq. (4.19) fits better if the SNR is not solely based on frames
n − 1 and n, but estimated over a larger window size of 2r + 1 frames:

σ2
Xn,m

= max
i,j

Eb(i, j)
i = n − r, . . . , n, . . . , n + r

j = m, m + 1
(4.20)

In our experiments we used r = 13. The predicted and experimental curves for a 3
second music segment is shown in Figure 4.5(b).

4.3.3 Reducing the variance in the SNR-Pe relation for PRH
When in a song the spectral energy is concentrated in a few spectral components, the
fingerprint bits corresponding to these peaks are very reliable since most processing
preserves the spectral peaks. On the other hand, the spectral regions in between these
spectral peaks become very unreliable. This is easily illustrated by the fact that the
bandwidth of a subband in the Philips algorithm approximately a semitone. Is some
classical music pieces with only one or a few instruments playing one or a few notes
at a time the spectral energy within a frame is concentrated in few spectral peaks.
This results in other subbands having near-zero energy and corresponding energy dif-
ferences which are also around zero, and therefore generates fingerprint bits which
are unreliable. This is easily illustrated by setting σ2

Xn,m
� σ2

X in the model in Eq.
(4.19), to represent the regions with near-zero energy differences. In this case, the
relative noise level σW /σX is amplified by the small value of σ2

Xn,m
, pushing the
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arctan( . )-function towards its saturation level. The differences in spectral shape be-
tween different songs and the non-stationarity of music in general, result in a large
variance of the Pe for a given SNR. If we like to estimate the SNR of a song using the
fingerprint distance, this variance is a problem.

There are two ways to improve the estimation result. First, we can use longer song
fragments, if available. However, the effect within a song is limited, due to the non-
stationary character of music. Furthermore, the effect averaged over multiple songs is
limited, due to the different spectral characteristics of different songs.

Second, we can use the model in the Section 4.3.2 to estimate the behavior of a
specific song to additive distortions. By analyzing the spectrogram, we can estimate
the probability of error for individual bits by using Eq. (4.14). This estimation can be
used in two different ways: either the estimation is used to correct the SNR-estimation
for a specific song. This information can either be stored in the database, or be esti-
mated from the spectrogram of the song to be identified. The alternative is to use only
those bits from the fingerprint to estimate the SNR that reflect the additive distortion
level in the same way as in the case of white noise.

That is, we define a subset L of the fingerprint bit positions {n, m} to compute
the distance between the fingerprints, such that by considering only these fingerprint
bits F (n, m), {n, m} ∈ L, the (SNR, Pe,est) behaves approximately the same as the
theoretical (SNR, Pe)-curve for white noise, i.e.:

L s.t. Pe,est(SNR | L) ≈ Pe(SNR) (4.21)

where Pe,est denotes the average probability of bit error estimated for a specific song,
obtained using the model in Eqs. (4.19) and (4.20). Also in this case, the set of usable
fingerprint bits L can be stored additionally in the database, or be estimated from the
spectrum of the (distorted) song that is (to be) identified. After identification of a song
using its fingerprint, the SNR can be estimated from the BER of the bits indicated in
L:

BERW =
1
|L|

∑
{n,m}∈L

Fdiff (n, m), (4.22)

where | · | denote the cardinality of the set.
We now focus on how to obtain the set of usable fingerprint bits L. Using Eq.

(4.14) the behavior of a small fragment of 2r + 1 frames can be predicted from the
spectrum. Let’s denote the averaged behavior within a number of frames explicitly by
the function

Pe,est(SNR,L) =
1
L

∑
{n,m}∈L

Pe(n, m, SNR) (4.23)

Now, those fingerprint bits are selected that statistically approximate the white noise
fingerprint bit flip probability:

L s.t. Pe,est(SNR | L) ≈ Pe(SNR) (4.24)
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The set L is obtained in the following, iterative way. Since the strongest spectral
peaks generate the most reliable bits, in iteration i we select the bits corresponding
to the |Li| strongest spectral components. One can see that for a given SNR level,
adding a spectral component which is weaker that those already selected increases
Pe,est(SNR | L), i.e.

Pe,est(SNR | Li) < Pe,est(SNR | Li+1) Li ⊂ Li+1 (4.25)

In order to determine when we have to stop selecting additional spectral compo-
nents, we evaluate the cost function Li:

Li =
∫ SNRmax

−∞

{
log(Pe(SNR))

−log(Pe,est(SNR,Li))
}2

dSNR (4.26)

The cost function expressed the distance between the two curves Pe,est(SNR | L)
and Pe(SNR). Due to the increasing nature of Eq. (4.25) the cost function is con-
vex and has a minimum for a certain iteration i. The SNR-region of interest is lim-
ited by SNRmax for three reasons. First, the integral does not converge for the limit
SNR → ∞. Second, in most practical compression systems, the SNR resulting from
audio coding is not infinite. Third, due to the limited fingerprint block range, ex-
tremely small error probabilities cannot be reliably estimated from the fingerprint dif-
ference. For convergence there not necessarily needs to be a lower SNR-bound, since
limSNR→−∞ Pe,est = 0.5.

Figure 4.6(a) shows the result of applying this strategy to music and additive noise.
The variance in the BER for a given SNR level is greatly reduced.

4.4 Experiments using music
In Section 4.2 we split up the field of audio fingerprinting algorithms into three cat-
egories and presented one algorithm for each category. In Section 4.3 we presented
stochastic models for the PRH algorithm. In this section, we experimentally compare
the three algorithms presented in Section 4.2 with each other.

Section 4.4.1 discusses the details of the comparison process. Sections 4.4.3 and
4.4.2 compare the algorithms in a compression bitrate-vs.-d(FX , FY ) and a SCNR-
vs.-d(FX , FY ) setting.

4.4.1 Enabling algorithmic comparison
The fingerprinting systems described in Section 4.2 not only use different features, but
also have different operating conditions like sampling rates, frame length, granularity,
etc. A fair comparison requires similar operating conditions. Therefore, we set the
following parameters for all systems:
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• Sampling rate of 5512.5 Hz

• Frequency bands between 300 and 2000 Hz for the PRH and SSD system

• Fingerprint block length of about 3.1 seconds

• Framelength of 2048 samples (371.5 ms)

• Fingerprint block size of 4096 bits

In order to achieve these settings, we can modify the frame overlap ratio, the
number of frequency bands, the number of features, the number of bits to represent
each feature. In addition we have changed the overlap ratio in the second OPCA
layer of Microsoft’s RARE system. Table 4.1 compares the settings for the different
systems.

We have used 275 song fragments of 40 seconds each; 100 of these fragments
have been used for training Microsoft’s RARE system. This is in the same order of
magnitude as the number of songs mentioned in [27]. For each of these 100 song frag-
ments we have generated 9 distorted versions. These distortions are mainly non-linear
amplitude distortions and two pitch shifts. Compression is not one of the distortions.

For the large scale experiments discussed later in this section, we have used MP3
compression using the LAME codec [1]. The selected bitrates for MP3 compres-
sion range from 32-256 kilobit-per-second (kbps) using constant bitrate. To test the
variability over different compression algorithms, we have conducted a small-scale
experiment shown in Figure 4.6(b) (for the PRH algorithm only) with a number of
different, widely-used audio codecs, including Advanced Audio Coding (AAC) [26],
Sony ATRAC(plus) [97, 92], Ogg Vorbis [5], and Window Media Audio (WMA) [74].
They all show a comparable behavior on the SNR-Fingerprint difference plots. This
was to be expected, since our model does not model one specific coding scheme, but
uses a white noise model. Furthermore, all of these audio coders are waveform coders
- as opposed to parametric coders, such as sinusoidal coders - using a subband de-
composition and/or a MDCT time-frequency transform. It other words, although they
differ a lot in performance and implementation, they all use the same basic tools to
achieve the compression.

For each system we have set a threshold for identification, such that all system
operate under the same false positive rate per fingerprint block, Pfa. The Pfa is
based on a Gaussian approximation of the distances between fingerprint blocks of
original, undistorted fragments. We have chosen Pfa = 10−5, which is quite high
for a practical fingerprinting system, when compared to some of the numbers reported
in literature1. However, Pfa = 10−5 is achievable for all three systems and we are
interested in the relation between compression and fingerprint distance, given a fixed
false alarm rate Pfa.

1False positives reported in literature can be as low as 10−20 for PRH [44], but 10−5 to 10−8 for
RARE (depending on the experiment) [27].
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Figure 4.6: (a) SNR-BER relation for additive noise on music averaged over 11 songs:
SNR-BER (’�’) and SNR-BERW (’o’). The markers indicate the median. Errorbars
indicate lower and upper 10% BER values for a given SNR. The curves have been
shifted slightly horizontally in order not to overlap. The iid model is shown as a
reference (’- -’). (b) SNR-BER relation for 9 songs, comparing the behavior of the
PRH algorithm in its original form [44] for 5 different compression algorithms: AAC
(’∇’), Sony ATRAC (’�’), Sony ATRAC3plus (’+’), Ogg Vorbis (’�’) and WMA
(’o’), and the curve for the uncorrelated signal model (Eq. (3.52)).
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4.4.2 Experimental relation between bitrate and d(FX , FY )

Figures 4.7 and 4.8 compare the relation between compression bitrate and fingerprint
differences for the original algorithms with their modified counterparts. In general, the
behavior of the modified algorithms is comparable to the algorithms using the original
settings. Since the differences have been normalized such that the algorithms achieve
a similar Pfa, the scale of the curves is related to the variance of the distribution of
the fingerprints of the uncompressed songs.

If one would try to estimate the bitrate from the fingerprint differences, the spread
in the curves for a given bitrate should be as small as possible. Visual inspection
learns that for each curve, the standard deviation at a certain bit rate compared to
the corresponding mean value is in the same order of magnitude. Therefore, we can
conclude that there is not one algorithm that stands out in its potential for bitrate
estimation.

4.4.3 Experimental relation between SNR and d(FX , FY )

Audio compression introduces compression noise. In the stochastic models in the
previous section, the compression noise was modeled as independent, stationary, un-
correlated noise. In practice, however, this is not the case. Audio compression algo-
rithms apply psycho-acoustic models to shape the compression noise in the temporal
and spectral domain, such that the artifacts are rendered inaudible. Figures 4.9 and
4.10 show the Signal-to-Compression-Noise for the three algorithms. Figure 4.9(b)
- 4.10(a) compares the modified version with an implementation using settings de-
scribed in literature.

The shading indicates the spread in fingerprint differences of the curves. After
being normalized to achieve the common Pfa, some of the curves have been shifted for
display purposes, resulting in a vertical shift in the plot, to avoid overlap. The scaling
factors are indicated in the caption of Figures 4.9 and 4.10. It is quite clear that all
curves have approximately the same gradient in the SNR plots. Although the SNR −
Pe in Eq. (3.52) was derived for an uncorrelated signal in the presence of additive,
uncorrelated noise, the experimental SCNR-d(FX , FY ) for all three algorithms follow
the arctan(·)-regime. RARE and SSD make use of the log-magnitude spectrum. In
Appendix B.1 we roughly outline the relation between MSE and the SNR for i.i.d.
Gaussian data.

Due to the fact that in compression the bitrates are chosen, and the SNR levels are
a result of the selected bitrate, it is not straightforward to indicate the spread in the
curves. Since the points are not aligned on certain SNR levels, the shading indicates
the 1/6-percentile and 5/6-percentile within an overlapping bin of SNR levels. The
binning introduces the effect that the angle of the averaged curves changes slightly
(becomes less steep at the end points). Curves for one single fragment show a clear
relation between SNR and fingerprint difference: if the SNR is increased by 20 dB,
the fingerprint difference becomes 10 times smaller.
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4.5 Conclusion and discussion

4.5.1 Conclusions
A wide variety of audio fingerprinting systems has been presented in literature over
the last couple of years. The main difference between the systems is the features that
are used. We have shown that although the features and projections that are used in
the three systems that have been compared are very different, the fingerprint differ-
ences behave in a comparable fashion as a function of SNR or compression bitrate.
This behavior matches the behavior predicted by the models presented in Section 4.3.
For these distortions, the actual detection performance for identification is mainly
dependent on the distribution of the differences between arbitrary fingerprints. This
determines the threshold for identification.

The differences between fingerprints reflect the difference between an original
recording and a compressed version and can be used to roughly estimate the quality
of compressed content. The main obstacle for doing this is the large variance of the
fingerprint difference for a given compression bit rate. All algorithms in our study
suffer from a variance which is relatively large. This limits the classification possi-
bilities to 3 or maybe 5 classes of different SNR level, which should be enough for
our intended use. We have shown that for the PRH this variance can be reduced by
discarding certain unreliable bits in computing the distance between two fingerprints.
For the other two algorithms, the variance reduction still is an open issue.

4.5.2 Extension to perceptually motivated distortion measures
Our current approach relates the fingerprint differences to SNR. Although SNR is
suitable for our envisioned application scenarios, we foresee two options to alter the
current setup to relate the fingerprint differences to more perceptually motivated dis-
tortion measures.

In coding applications and in systems that predict the subjective quality in given
audio signal with respect to the reference, psycho-acoustical models are used to es-
timate the so-called masking threshold. The masking threshold models the fact that
some components in the audio signal, can mask - make less audible - other compo-
nents which are close-by in time and frequency. The estimation procedure of the mask-
ing threshold models the way the Human Auditory System (HAS) reacts to sounds.
Spectral components that fall below this masking threshold are not audible and are
therefore considered irrelevant.

To match fingerprint differences to a distance measure involving psycho-acoustics,
we can distinguish between two different approaches: altering the fingerprinting
scheme and altering the fingerprint distance measure. In both cases the masking
threshold can be estimated from the spectrum, even on a subband basis.
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Figure 4.7: Compression bitrate vs. fingerprint differences. The curves have been
shifted such that there is no overlap. (a) The features in the SSD algorithm: From top
to bottom: Energy (−−), SCF (· · · ), SFM (−.), (b) PRH: Modified (−−), Original
(· · · ).
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Figure 4.8: Compression bitrate vs. fingerprint differences. The curves have been
shifted such that there is no overlap. (a) RARE: Original (−−), Modified, no Psycho-
Acoustic Model (· · · ), Modified, using a Psycho-Acoustic Model (−.) (b) Comparison
between the modified versions of SFM (−−), PRH (· · · ), RARE (−.).
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Figure 4.9: Compression SCNR vs. fingerprint distances. The lines mark the average
behavior, the shaded areas indicate the spread. The curves have been scaled such
that there is no overlap. (a) The features in the SSD algorithm: From top to bottom:
Energy (−−, not scaled), SCF (· · · , scaled by factor 10−2), SFM (−., scaled by factor
10−4), (b) PRH: Modified (−−, not scaled), Original (· · · , scaled by factor 10−2).
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Figure 4.10: Compression SCNR vs. fingerprint distances. The lines mark the aver-
age behavior, the shaded areas indicate the spread. The curves have been scaled such
that there is no overlap. (a) RARE: Original (−−, not scaled), Modified, no Psycho-
Acoustic Model (· · · , scaled by factor 10−2), Modified, using a Psycho-Acoustic
Model (−., scaled by factor 10−4) (b) Comparison between the modified versions
of SFM (−−, not scaled), PRH (· · · , scaled by factor 10−), RARE (−., scaled by
factor 10−4).
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Figure 4.11: Towards perceptually motivated fingerprint distances: including Psycho-
acoustical models (a) in the audio fingerprint extraction stage, (b) parallel to the fin-
gerprint extraction stage.

In the first approach, the fingerprint extraction procedure outline in Figure 4.2 is
changed to estimate the sound representation inside the human ear using the masking
threshold, shown in Figure 4.11(a). Spectral components that exceed the masking
threshold are scaled by it; components that fall below the masking threshold can be
considered inaudible and can therefore be removed from the spectrum. The fingerprint
features can then be extracted from the estimated internal representation instead of
from the raw spectrum.

In the other approach, shown in Figure 4.11(b), the masking threshold is computed
in parallel with the fingerprint, but not included in the derivation of the fingerprint
itself. Together with the reference fingerprint, a rough approximation of the - e.g.
average masking per critical band which has a bandwidth equal to that of multiple
fingerprint subbands - can be efficiently stored in the database. This masking threshold
can be used to estimate the Noise-to-Mask Ratio (NMR), a feature used for psycho-
acoustic analysis [21]. The main idea is to combine a local estimation of SNR and a
local estimation of Signal-to-Mask Ratio (SMR) in the following way:

NMR = SMR − SNR [dB]

The SNR is estimated using the techniques described in this chapter. To estimate
the SMR we need an estimation of the signal variance and the masking threshold.
Each can be estimated from the query signal, or de derived from components in the
database. The first approach is less reliable since the masking threshold should be
estimated from the reference signal. The second approach needs either the masking
threshold or the SMR to be stored in the database in parallel with the fingerprint used
for identification. Due to the strong frame-overlap both masking threshold and SMR
are expected to slowly develop in time enabling efficient storage.

Whatever psycho-acoustical measure is introduced, the results will never compete
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with the subjective quality predicting algorithms like PEAQ, nor should they. To il-
lustrate the limitations of such models in fingerprinting scenario’s we refer to the fact
that the frame lengths used in algorithms like PEAQ are very small compared to those
used in fingerprinting.

4.5.3 Further development of fingerprint models
The model we developed for the behavior of the PRH is confirmed by experiments,
both on simple stochastic signals, and on real music. Here, the model was used to pre-
dict how the SNR relates to the Pe. In a previous modeling approach, we developed
a model describing the structure of the PRH fingerprint itself (so FX(n, m) instead
of d(FX(n, m), FY (n, m)) ) [35]. This triggered another modeling approach by Mc-
Carthy et al. [15]. These models describing the behavior of fingerprinting systems
can also be used to predict and improve the performance of these systems.

The fact that the systems behave more or less the same - the relation between com-
pression bitrate and fingerprint differences and between noise and fingerprint differ-
ences have comparable shapes - leads us to believe that there is more to fingerprinting
than just extraction of robust features. There seems to be more common ground to
behavior of the algorithms than the steps preceding the feature extraction. Therefore,
it makes sense to analyze fingerprinting on a more abstract level, and to analyze the
relation between compression and audio fingerprinting in general without considering
specific implementations or systems.
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Chapter 5

Information Theoretical Models
for Fingerprinting

5.1 Introduction
An audio fingerprint is a compact representation which can be used for identification,
in a way which is robust to audio degradations. From this short description it is in-
tuitive that these two aspects – audio degradations and compactness of the fingerprint
– influence the identification performance of the fingerprinting system. If the audio
signals to be identified – and therefore the fingerprints – are not distorted, the size
and representation of the fingerprint determine the number of signals that can be rep-
resented. For instance, if each song is mapped onto a 3-dimensional binary vector,
23 = 8 songs can be represented. This analysis is complicated by the fact that the
signal to be identified usually is a distorted version of the reference signal. Hence, the
fingerprint of the distorted signal is a distorted version of the reference fingerprint. If
only 1 bit in the 3-bit fingerprint is allowed to be different, then a maximum of only
2 fingerprints can be discriminated. From this example, it is intuitive that the maxi-
mum allowed distortion (‘when are two signals the same’), the size of the fingerprint
(‘how many bits are extracted per second or per sample’) and representation of the
fingerprint (‘what does the fingerprint look like’) determine the maximum number of
identifiable signals.

In this chapter, the two research questions are: how many songs can be reliably
identified for a given degradation level and a certain fingerprint size? and is the fin-
gerprint degradation behavior we observed in the experiments in the previous chapters
characteristic for audio fingerprinting? The starting point for the analysis is a recent
paper by Westover and O’Sullivan [104]. In their paper, Westover and O’Sullivan
(WOS) generalize the concept of a pattern recognition system [104]. The goal of such
a system is to reliably recognize distorted versions of signals that have been learnt by
the system. Figure 5.1 shows the setup of the WOS model. Like in fingerprinting, two
phases are distinguished: a training phase and an identification phase. In the training
phase, a number of signals Mc are presented to the system. Each signal in the training
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Figure 5.1: Functional diagram of the WOS framework. Each training signal is en-
coded in the training stage. In the identification stage a randomly selected training
signal is distorted, encoded, and compared to the encoded training signals.

phase x1, . . . , xMc is represented in a compact form I1, . . . , IMc and stored in mem-
ory. In the identification phase, one of the signals from the training phase is selected
xW , distorted (resulting in signal y) and presented to the system. The task of the
system now is to determine which of the signals from the training phase is presented
to the system. This is done by comparing a compact representation of the distorted
signal, J , to the representations I1, . . . , IMc stored in memory.

The paper by Westover and O’Sullivan presents and discusses a model to theo-
retically determine how many signals can maximally be reliably identified by pattern
recognition systems. In the WOS model, the design choices are the compressed rep-
resentations of the signals in the training phase and in the identification phase, and the
method how to identify the signal; the model for the distortion and the representation
(alphabet) of the signals are the constraints. The WOS model does not tell how to
make these design choices. The model considers the number of signals that can be
distinguished in both compressed representations and the number of signals that can
be identified, given the two constraints. Given the alphabet of the training signals, and
a probabilistic model for the distortion, it derives a bound for the maximum number
of signals that can be reliably identified as a function of the bitrate employed in repre-
senting the fingerprints. In many aspects the constraints and design choices identified
in the WOS model closely match the practice of audio fingerprinting.

This chapter is organized as follows. Section 5.2 presents the details of the WOS
model. The WOS model is not the only model found in literature with similarities
to fingerprinting (e.g. cf. [105, 98]), but it is the one which most closely matches
the practice of fingerprinting and the experiments carried out in previous chapters.
Sections 5.3 and 5.4 use the WOS model in two different ways. Section 5.3 considers
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the PRH fingerprint and the distortion model derived in Section 3.4.1 – Eq. (3.52)
–, and analyzes the PRH from a capacity perspective. In other words, how many
i.i.d. signals can be distinguished by the PRH system, when we allow a signal to be
distorted by additive noise up to a certain SNR level. This relates to the first research
question posed in the beginning of this chapter. Section 5.4 takes the WOS model, and
analyzes it from a distortion perspective; this relates to the second research question.
Finally, Section 5.5 draws conclusions and discusses the relation between the models
and experiments in this chapter, and real-life audio fingerprinting.

5.2 The WOS model

This chapter presents the WOS model in more detail, and is organized as follows. In
Section 5.2.1 we present the setup and notation of the WOS model. In their paper,
Westover and O’Sullivan derive general expressions for the bounds on the number of
signals, Mc, that can be reliably identified. General here means that they are formu-
lated such that they are not restricted to a particular representation (alphabet) of the
signals or a particular distortion model. The main question is: ‘how large can Mc be,
under certain conditions?’. The conditions refer to the distortion model, the size and
representation of the fingerprint. We present these results in Section 5.2.2. Westover
and O’Sullivan derive closed form solutions of the bounds for two specific source sig-
nals: binary signals and Gaussian signals. In this chapter we omit the results for the
binary case; we present the results for the Gaussian signals in Section 5.2.3.

5.2.1 Model setup and definitions

Figure 5.2 shows the set-up of the WOS model. In the training phase, a total number
of Mc signals x are fingerprinted and stored in memory. Each signal consists of n
samples. In the identification phase, one of these known signals is selected, distorted,
and presented to the system to be identified. The index w denotes which of the Mc

training signals has been selected. The recognition is based on a fingerprint derived
from the distorted signal y. The fingerprinting in the training and identification phases
are performed by two different mappings φx and φy , respectively. The result of repre-
senting the signal x by the mapping φx is an index I . The number of different indices
that are possible outcomes of the mapping φx is denoted by Mx. Hence, the possible
values for I can be enumerated, e.g. I ∈ {1, . . . , Mx}. Similar arguments apply for
the mapping φy which is applied to the distorted signal y in the identification phase,
resulting in a number My of possible indices J . Hence, the possible values for J can
be enumerated, e.g. J ∈ {1, . . . , My}. The distortion follows a conditional probabil-
ity function Pr(y|x), but the exact distortion is unknown. An identification is made
by a classifier g which compares the training indices I1, . . . , IMc to the received in-
dex J . The result of the identification is an estimate ŵ of which training signal was
selected and distorted. An error is made if the identification is incorrect, i.e. ŵ �= w.

Since both the signals x and y consist of n samples, rates can be associated with
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Ŵ

J�

Figure 5.2: Functional diagram of the WOS framework. Each training signal is en-
coded using mapping φx in the training stage. In the identification stage a randomly
selected training signal is distorted according to a model Pr(y|x), encoded using
mapping φy , and compared to the encoded training signals using classifier g.

the number the messages Mx and My, respectively:

Rx =
1
n

log(Mx) (5.1)

Ry =
1
n

log(My) (5.2)

Similarly, the number of signals in the training phase, Mc, can be normalized by the
number of samples in the form of a rate:

Rc =
1
n

log(Mc) (5.3)

Note that the rates Rx and Ry indicate how many signals can be represented by the
mappings φx and φy , while Rc indicates how many signals can be distinguished by
the classifier g.

The model makes two assumptions on the type of signals and distortions. First,
the signals x are iid: p(x) =

∏n
i=1 p(x(i)). Second, the distortion is memoryless:

p(y|x) =
∏n

i=1 p(y(i)|x(i)). Furthermore, the assumption is made that each train-
ing signal has equal probability of being selected for identification. This leads to an
expression for the average probability of error: Pe = 1

Mc

∑Mc

w=1 Pr[ŵ �= w].
The WOS model attempts to indicate which rate combinations (Rx, Ry, Rc) are

‘achievable’. When a rate combination is achievable, this means as much as that we
can control the error rate: the probability of error Pe can be made lower than an arbi-
trary level ε > 0 by increasing the signal length n (i.e. Pe tends to zero for increas-
ingly large n). In practice, this is seen in the distributions of the detection statistic. As
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shown in Figure 2.4, two conditional distributions of the distance between two finger-
prints play a role: 1) the distribution given that the audio signals are similar, and 2) the
distribution given that the audio signals are dissimilar. By increasing the number of
seconds of music used to identify the song fragments, these distribution become less
wide: the variance gets smaller relative to the mean values of these distributions. This
makes the distributions better separable, and the probability error decreases.

The mappings φx and φy , and the classifier g are considered channels. The output
of the mapping φx is an index, I , which can simply be enumerated; alternatively,
the output of the mapping may be represented as a signal, U . As an example, lets
assume the mapping φx is realized as a vector quantizer. In this comparison the index
I corresponds to the index of the Voronoi region, and U corresponds to the centroid
of the Voronoi region. A similar approach may be taken for the output of φy . Hence,
to derive the achievability bounds two auxiliary random variables are introduced: U
to represent the result of the mapping φx, and V to represent the result of the mapping
φy . A joint probability distribution PU,X,Y,V (u, x, y, v) characterizes the relations
between the variables1.

The mappings φx and φy need to be able to ‘cover’ all the messages that can be
‘transmitted’ over this ‘channel’ between X and U , and Y and V , respectively. The
associated minimum rates Rx and Ry and the maximum rate Rc are dependent on the
probability distribution PU,X,Y,V (u, x, y, v).

The aim is to divide the space of all rate combinations (Rx, Ry, Rc) into two
regions: those rates that are achievable, and those that are not achievable. This is done
by maximizing Rc over all probability distributions that give rise to a certain minimum
rate (Rx, Ry) = (rx, ry).

However, such a clear division into achievable and non-achievable rates cannot de-
rived by Westover and O’Sullivan. They consider two approximations of the achiev-
able rate region: the inner bound region, and the outer bound region. All rate com-
binations within the inner bound region are achievable. Non of the rate combinations
outside the outer bound region is achievable. Some rate combinations are inside the
outer bound region, but not inside the inner bound region. For these rates it is unclear
if they are achievable or not. Figure 5.3 shows an example of the rate region and
the bounds as a function of the bitrate used to represent the fingerprints, for a given
distortion model. For simplification, we consider a setup in which Rx = Ry .

The figure shows the rate Rc associated with the number of signals that can be
discriminated by a fingerprinting system (Mc) as a function of the rate Rx associated
with the mapping φx. Suppose Mx = 256 for signals of length n = 4, then the
associated rate Rx = − 1

n log2(Mx) = 2 bits per sample. Increasing Rx means that
the mapping φx is capable of representing more different signals X . Larger values for
Rc imply that the system can discriminate more different signals (U, V ). Let rin(rx)
and rout(rx) denote the inner and outer bound as a function of the rate Rx = rx,
respectively. In Figure 5.3, the inner bound region is marked ‘Achievable rates’; for
a given fingerprint rate Rx = rx, all rates Rc ≤ rin are achievable. The area outside
the outer bound region is marked ‘Non-achievable rates’; for a given fingerprint rate
Rx = rx, all rates Rc > rout are not achievable. The figure clearly shows the gap

1in case of continuous signals: the joint probability density function fU,X,Y,V (u, x, y, v)
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between the two bounds; for these rate combinations it is unclear if they are achievable
or not. The gap is most prominent for low values of Rx. For large rates Rx, the Rc

curve saturates and tends towards the value Rmax. This value is dependent on the
maximum allowed distortion in the X − Y channel.

5.2.2 Bounds on the achievable rates

Some probability distributions give rise to rate combinations that are achievable, some
to rate combinations that are not achievable. By optimizing over all probability dis-
tributions that give rise to achievable rates, the bound can be found. However, it is
difficult to say beforehand which probability distributions give rise to achievable rate.
Furthermore, it is impossible to optimize over all probability distributions. Westover
and O’Sullivan show that all probability distributions satisfying a certain structure are
achievable. In this way, they limit the number of probability distributions over which
one needs to maximize.

Two sets of joint probability distributions are formed. The first set Pout contains
all joint distributions PU,X,Y,V (u, x, y, v) which satisfy the following two Markov
chain relations between the variables: U − X − Y and X − Y − V . The second set
Pin contains all joint distributions PU,X,Y,V which satisfy the following three Markov
chain relations between the variables: U −X −Y , X −Y −V , and U − (X, Y )−V .
The Markov chain relation U − X − Y represents the statement ‘U and Y are condi-
tionally independent given X ,’ i.e., p(u, y|x) = p(u|x)p(y|x). This set of probability
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distributions Pin is thus a subset of Pout.
The achievable rate region is characterized by its surfaces rin(rx, ry) and

rout(rx, ry) as a function of (Rx, Ry) = (rx, ry). Here rx = I(U ; X), where
I(U ; X) denotes the mutual information for discrete variables X and U defined as:

I(U ; X) =
∑
u∈U

∑
x∈X

pU,X(u, x) log
(

pU,X(u, x)
pU (u)pX(x)

)
(5.4)

in case of continuous variables X and U , the mutual information is defined as:

I(U ; X) =
∫

u∈U

∫
x∈X

fU,X(u, x) log
(

fU,X(u, x)
fU (u)fX(x)

)
d(u, x) (5.5)

The surfaces for the achievable rate region can be expressed by:

r∗ = max
(U,V )∈C∗(rx,ry)

I(U ; V ) − I(U ; V |XY ) (5.6)

= rx + ry − min
(U,V )∈C∗(rx,ry)

I(XY ; UV ) (5.7)

where ∗ can be replaced by either in or out for the inner and outer bound, respectively,
and

Cin(rx, ry) = {(U, V ) ∈ Pin : rx = I(U ; X), ry = I(V ; Y )} (5.8)
Cout(rx, ry) = {(U, V ) ∈ Pout : rx = I(U ; X), ry = I(V ; Y )}, (5.9)

where Cin and Cout represent the variables (U, V ) from a distribution in Pin or Pout,
respectively, and result in a rates rx and ry .

Optimizing the expressions over Cout yields the outer achievability bound; opti-
mizing over Cin yields the inner bound. Due to the construction of Pin, for the inner
bound the term I(U ; V |XY ) = 0, yielding rin = I(U ; V ). In other words, the inner
bound is given by the mutual information in the U − V channel only.

5.2.3 Gaussian signals
The Gaussian version2 of the problem considers originals signals X and distorted sig-
nals Y that are jointly Gaussian with correlation coefficient ρxy . Since this perfectly
matches the setup used in Chapter 3 with the fingerprints of iid signals in the presence
of additive Gaussian noise, we consider this specific case in more detail. For Gaussian
signals, the WOS paper derives closed form expressions for the surfaces of the inner
and outer bounds expressed as optimizations in Eqs. (5.6) and (5.7).

2In deriving the expressions in the WOS model, assumptions are made that are only valid for discrete
alphabets. However, the model is also applied to signals with continuous magnitudes like Gaussian signals.
Although the framework and the expressions seem to be correct, no arguments are presented why the model
derived for discrete alphabets should also be valid for continuous sources. The Gaussian framework seems
in line with related model in [105].



98 5. Information Theoretical Models for Fingerprinting

Since the mappings φx and φy are modeled as Gaussian channels, the rates rx and
ry can be expressed in terms of the correlation coefficients ρux and ρyv, respectively:

rx = −1
2

log(1 − ρ2
ux) (5.10)

ry = −1
2

log(1 − ρ2
yv) (5.11)

The correlation coefficients ρux models the coding (‘compression’) of X into U through
the mapping φx. Similar arguments apply to ρyv.

The authors assume that the joint distributions fU,X,Y,V (u, x, y, v) that maximize
the two bounds are both jointly Gaussian. Let us define the vectors A = [X, Y ]
and B = [U, V ]. Since the distribution is jointly Gaussian, the mutual information
I(XY ; UV ) is fully determined by the correlation matrix CXY UV

3:

CXY UV =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
X ρxyσXσY ρuxσUσX ρxvσXσV

ρxyσXσY σ2
Y ρuyσUσY ρyvσY σV

ρuxσUσX ρuyσUσY σ2
U ρuvσUσV

ρxvσXσV ρyvσY σV ρuvσUσV σ2
V

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ CA CAB

C′
AB CB

⎤
⎦ , (5.12)

where ρxy denotes the correlation coefficient for the variables X and Y , etc.
The differential entropy for variable A is equal to:

h(A) =
1
2

log((2πe)2 det(CA)). (5.13)

Similarly, the differential entropy for A|B is equal to:

h(A|B) =
1
2

log((2πe)2 det(CA|B)), (5.14)

where

CA|B = CA − CABCBC′
AB. (5.15)

Now, we obtain the mutual information I(XY ; UV ):

I(XY ; UV ) = I(A;B)
= h(A) − h(A|B)

= −1
2

log(det(I − CA
−1CABCB

−1C′
AB))

=
1
2

log
(

1 +
2ρuvγ − β

1 − ρ2
uv

)
, (5.16)

3The relations ρuy = ρux ρxy and ρxv = ρxy ρyv apply because of the Markov chain conditions
U − X − Y and X − Y − V .
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where β and γ are defined as:

β = ρ2
ux + ρ2

yv − (1 − ρ2
xy

)
ρ2

yvρ
2
ux

= 1 − (1 − ρ2
ux)(1 − ρ2

yv) + γ2 (5.17)
γ = ρuxρxyρyv. (5.18)

The achievable rate region is expressed in Eqs. (5.6) and (5.7) in terms of its sur-
faces rin(rx, ry) and rout(rx, ry). Using this expression for I(XY ; UV ), the surface
r∗(rx, ry) can be expressed in terms of rx and ry through ρux and ρyv, respectively.

r∗ = rx + ry +
1
2

log
(

1 +
2ρuv,∗γ − β

1 − ρ2
uv,∗

)

= −1
2

log

(
(1 − ρ2

uv,∗)(1 − ρ2
ux)(1 − ρ2

yv)
(1 − ρ2

ux)(1 − ρ2
yv) − (γ − ρuv,∗)2

)
, (5.19)

where ‘*’ can be replaced by in or out. The surfaces rin(rx, ry) and rout(rx, ry)
are obtained by substitution of ρuv,in and ρuv,out, respectively, in Eq. (5.19). ρuv,∗
is the result of maximizing r∗ through setting ∂

∂ρuv
r∗ = 0. ρuv,in is the result of

maximizing of variables for which the Markov constraints in Pin apply. Similarly,
ρuv,out is the result of maximizing of variables for which the Markov constraints in
Pout apply.

The constraints on the dependencies between the random variables in the two sets
Pin and Pout for the Gaussian case take the form of relations between the elements
in correlation matrix. Applying the Markov conditions for the inner bound, the cor-
relation coefficient ρuv,in can be written as ρuv,in = γ. Therefore, the inner bound
becomes:

rin(rx, ry) = I(U ; V )

= −1
2

log
(
1 − γ2

)
(5.20)

The outer bound is obtained by minimizing the mutual information I(XY ; UV ) over
ρuv through setting ∂

∂ρuv
I(XY ; UV ) = 0. The solution yields the optimal value:

ρuv,out =
β

2γ
−
√(

β

2γ

)2

− 1 (5.21)

The outer bound is now given by:

rout(rx, ry) = rx + ry +
1
2

log
(

1 +
2ρuv,outγ − β

1 − ρ2
uv,out

)

= −1
2

log

(
(1 − ρ2

uv,out)(1 − ρ2
ux)(1 − ρ2

yv)
(1 − ρ2

ux)(1 − ρ2
yv) − (γ − ρuv,out)2

)
, (5.22)

which now contains ρuv,out.
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Figure 5.4: WOS model inner bound for Gaussian signals, and a Gaussian distortion
corresponding to a correlation coefficient ρxy = 0.8.

Figure 5.4 shows the computed inner bound surface rin(rx, ry) for the case when
the distortion fY |X(x, y) is characterized by the correlation coefficient ρxy = 0.8.
The example in Figure 5.3 used the same value for ρxy , and shows the inner and outer
bounds rin(rx) and rout(rx), respectively, with rx = ry . Figure 5.5 shows the inner
and outer bounds with rx = ry for two other distortion levels ρxy.

From these equations and examples the following observations can be made on the
bounds in some limiting cases. First, when either one of the correlation coefficients
ρux or ρyv tends to zero, so do rin and rout. This situation corresponds to Rx = 0 or
Ry = 0, respectively. This matches the intuitive notion that when the different signals
x (or y) cannot be distinguished based on their compressed representations (zero bits
per sample), no signals can be identified.

Second, when the rate rx used in the mapping φx is increased, more signals can be
represented in memory. In this case the correlation coefficient ρux tends towards one.
As a result, the outer bound collapses onto the inner bound. Lets assume ρux = 1
(no limitation on the number of signals that can be represented by φx). In this case
β = 1 + ρ2

yvρ
2
xy = 1 + γ2, and therefore ρuv,out = γ, making the outer bound equal

to the inner bound. Similar results apply when ρyv = 1.
Third, when both ρux and ρyv tend towards one, the maximum rate Rc in the outer

bound is limited solely by the capacity of the distortion channel, rc ≤ − 1
2 log(1−ρ2

xy),
as indicated by the dotted horizontal lines in Figures 5.3 and 5.5. In other words, at
high bitrates rx = ry the maximum value of rout(rx, ry) ≈ rin(rx, ry) is determined
by ρxy.

In their paper, Westover and O’Sullivan exclusively use the WOS model to compute
the recognition capacity as a function of the bitrates rx and ry , for a given statisti-
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Figure 5.5: WOS model bounds for Gaussian signals, corresponding to distortion
correlation coefficients (a) ρxy = 0.6; Rmax = 0.32; (b) ρxy = 0.99; Rmax = 2.83.
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cal distortion model Pr[y|x] (or in the continuous case: fY |X(x, y)). In our further
analysis we will assume Additive White Gaussian Noise, i.e. Y = X + W , where
W ∼ N (0, σ2

W ). For our analysis it is interesting to fix the rates rx = ry , and to
vary the level of the additive distortion σ2

W . We thus consider the capacity bounds as
a function of the SNR, for a given bitrate rx = ry . This corresponds to symmetric
fingerprinting systems.

The WOS bounds as a function of SNR are obtained by converting the SNR for
additive noise into ρxy through

SNR = 10 log10

(
σ2

X

σ2
W

)
= 10 log10

(
ρ2

xy

1 − ρ2
xy

)
, (5.23)

where we use the relation of the correlation coefficient ρxy to σX and σW :

ρxy =

√
σ2

X

σ2
X + σ2

W

. (5.24)

Further, in Eqs. (5.20) and (5.22), Rx = Ry is converted into ρux = ρyv using Eqs.
(5.10) and (5.11).

Figure 5.6 shows an example of the bounds as function of SNR, for a given bitrate
of Rfp = Rx = Ry = 1 bit per sample. For increasing SNR, the inner and outer
bounds increase as well, and saturate at levels dependent on the used bitrate Rfp. As
in the (Rfp, Rc)-plots, there is a clear gap between the inner and outer bound. For
large SNR the outer bound converges to the bitrate rx = ry . This is line with the
intuitive notion that the system cannot recognize more signals than it can uniquely
represent. To proof this, we need to show that:

lim
ρxy↑1

rout(ρxy) = rx (5.25)

Starting point is the substitution of the expression for ρuv,out in Eq. (5.21) into
Eq. (5.22):

rout(rx) = 2rx +
1
2

log
(

1 +
2ρuv,outγ − β

1 − ρ2
uv,out

)

= 2rx +
1
2

log

(
1 − 4γ2

√
β2 − 4γ2

2(4γ2 − β2) + 2β
√

β2 − 4γ2

)

= 2rx +
1
2

log

(
1 − 2γ2

−
√

β2 − 4γ2 + β

)
(5.26)

Using ρux = ρyv, computation of the limit for β and γ yields:

lim
ρxy↑1

β = 2ρ2
ux − (1 − ρ2

xy)ρ4
ux = 2ρ2

ux (5.27)

lim
ρxy↑1

γ = ρ2
uxρxy = ρ2

ux (5.28)
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Figure 5.6: WOS model SNR vs. Rc for a given bitrate Rfp = Rx = Ry =
1 bits per sample.

Combining these results yields:

lim
ρxy↑1

rout(ρxy) = 2rx +
1
2

log
(

1 − 2γ2

β

)
= 2rx +

1
2

log
(
1 − ρ2

ux

)
= −1

2
log
(
1 − ρ2

ux

)
= rx (5.29)

Similarly, for large SNR the inner bound converges to:

lim
ρxy↑1

rin(ρxy) = −1
2

log
(
1 − ρ4

ux

)
(5.30)

We will further use this SNR vs. capacity perspective in the following section.

5.3 The PRH model from a capacity perspective
In this section we analyze the PRH algorithm from a capacity perspective. In analogy
to the WOS model we try to answer the question: how many signals (messages) can
maximally be identified by binary fingerprints like the PRH fingerprint. We compare
the bounds derived for the PRH with the bounds from the WOS model.

Figure 5.7 shows the fingerprinting setup in analogy to the WOS model. A num-
ber of signals, x1, . . . , xMc , is fingerprinted using the PRH fingerprinting algorithm;
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Figure 5.7: PRH fingerprint set-up for capacity analysis based on the WOS- model.

these fingerprints u1, . . . , uMc are stored in a database. The input signals x are Gaus-
sian i.i.d. signals. An arbitrary reference signal xw, w = 1, . . . , Mc is chosen, and
distorted by additive white Gaussian noise. The system tries to identify the resulting
noisy signal y. This signal is also fingerprinted using the PRH algorithm. The query
fingerprint v is compared to the reference fingerprints in the database u1, . . . , uMc ,
and an identification is made. Both branches of the PRH fingerprints use the same
mapping (including same rate, i.e. Rx = Ry). Now we ask ourselves: given a binary
fingerprinting algorithm operating at rate Rx = Ry , behaving according to the differ-
ential PRH-model in Section 3.4.1, and given an SNR-level, how many signals (Mc)
can be identified with arbitrarily small error?

In practice signals of finite duration are fingerprinted and identified. The WOS
model, however, considers signals of infinite length. To be able to compare to the
WOS model, we also assume that the signal length n – and therefore the fingerprint
length – tends to infinity.

For the capacity analysis of PRH we use the results from Section 3.4.1. For a
given Signal-to-Noise level SNR [dB] = 20 log10(σX/σW ), the average fraction of
erroneous bits in a fingerprint is given by the differential PRH-model in Eq. (3.52):

α =
1
π

arctan

(√
σ4

W

σ4
X

+ 2
σ2

W

σ2
X

)
, (5.31)
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where
σW

σX
= 10−SNR/20. (5.32)

We use this relation to derive bounds on the capacity for binary fingerprint systems
like the PRH system in two different ways. In Section 5.3.1 we model the erroneous
fingerprint bits due to signal distortions as a binary symmetric channel. In Section
5.3.2 we draw parallels between fingerprinting and error correcting coding (ECC),
and adapt well-known ECC bounds to the fingerprinting framework.

5.3.1 PRH bound based on binary symmetric channel capacity
Consider the following practical implementation of a fingerprinting system. Again
the signals x are Gaussian, and the distortion model fY |X(x, y) is additive Gaussian.
Consider a quantizer for both mappings, e.g. a one bit quantizer based on the sign
of the input value. Thus U = Q(X) and V = Q(Y ) are discrete variables based on
continuous inputs.

Since U is a deterministic mapping of X , there is no uncertainty about U given the
value X . The same argument holds for Y and V . The implication is that I(U, V |X, Y ) =
0. Therefore, the achievable rate is bounded by Rc ≤ I(U ; V ). Actually, this turns the
(U, V )-channel into a binary symmetrical channel (BSC). Its capacity is determined
by the cross-over probability α, which is a function of the SNR in the (X, Y )-channel.
Hence,

Rbsc ≤ I(U ; V )
= 1 − H(α). (5.33)

where H(α) denotes the binary entropy function:

H(α) = −α log2(α) − (1 − α) log2(1 − α) (5.34)

For an m-bit codeword transmitted over a BSC-channel, the bound on the number
of messages that can be distinguished is Mbsc = 2mRbsc . A PRH fingerprint generated
at bitrate Rx extracts Rx bits for every sample of the input signal x. The resulting
fingerprint has size m = nRx bits. Therefore, the overall bound on the rate is

Rprh = Rx Rbsc

≤ Rx (1 + α log2(α) + (1 − α) log2(1 − α)) (5.35)

Since the mappings φx and φy are now deterministic, there is no distinction be-
tween the inner and outer bound; they are the same. This is due to the fact that
I(U ; V |X, Y ) = 0 in Eq. 5.6

Figure 5.8 compares the inner- and outer bound for the WOS model with the binary
symmetrical channel model of the PRH for bitrate Rx = Ry = 1. Due to its structure
involving the quantization, the PRH BSC model corresponds to the WOS inner bound.
For high SNR, however, the BSC bound converges to the WOS outer bound. This
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Figure 5.8: WOS inner and outer bound for Gaussian variables as a function of the
SNR, at a bitrate Rx = Ry = 1, in case of additive white Gaussian noise. Also shown
here is the PRH BSC bound for the same (quantizer) bitrate.

indeed shows that certain rates higher than the WOS inner bound, but lower than the
WOS outer bound, are achievable.

The rates inside the gap between the WOS outer and inner bound might be achiev-
able, but from the WOS-model this is not certain. The PRH bound is an indication
that tighter bounds are possible. For SNR values higher than approximately 15 dB,
the PRH bound lies in between the WOS inner and outer bound. Hence, the PRH (in-
ner) bound indicates that certain rates are achievable; rates for which the WOS-model
does not make a clear statement. This is a useful observation, since it provides a hint
on how to close the gap between the WOS-bounds. However, there might be a mis-
match between the two models which causes the difference between the bounds. For
SNR values lower than approximately 15 dB, rates that are achievable according to
the WOS inner bound, are not achievable according to the PRH (upper) bound. This
is not a conflict between the models. The WOS model indicates that certain rates are
achievable; the inner bound itself is achieved when U and V are Gaussian. In the PRH
bound, however, the signals U and V are binary. Thus, the comparison between the
models yield that the rates that may be achieved using a binary representation are lower
than the rates when using a Gaussian representation. Indeed, in their paper Westover
and O’Sullivan assume that the rate Rc is maximized when the representations U and
V are Gaussian.

For a given value of Rbsc, the rate Rprh scales linearly with the bitrate employed
in the mapping Rx. A drawback of this analysis is that there is no ‘natural’ bound
when the bitrate Rx increases. This is an important difference with the WOS-model.
In the WOS-model, there is a natural upper limit for Rc, Rmax, dependent on the
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Figure 5.9: Sphere packing example.

distortion in the X − Y channel, and the employed bit rates in the coding branches,
i.e. Rx = Ry . For increasing Rx the recognition rate Rc in the WOS model converges
to the channel capacity in the (X, Y )-channel; Rc is bounded by − 1

2 log(1− ρ2
xy) for

the Gaussian channel.

5.3.2 PRH bound based of error correcting codes

When the signal to be identified is distorted by additive Gaussian noise, a fraction of
α bits is flipped in the binary PRH fingerprint. Here, α depends on the SNR. For an
m-bit fingerprint on average αm bits are flipped. The m = nRx-bit fingerprint is the
result of fingerprinting the length-n signal x at bitrate Rx. Of course, the fraction of
bits that is actually flipped varies around this average value α, but since the fingerprint
length m tends to infinity along with the signal length n, the amount of variation
relative to αm can be made arbitrarily small.

The total number of possible m-bit fingerprints that differ up to αm bits from a
reference fingerprint is given by the following binomial summation:

S(m, α) =
(

m

0

)
+
(

m

1

)
+ . . . +

(
m

αm

)
(5.36)

Figure 5.9 illustrates a thought model which leads to an upper bound on the num-
ber of signals that can be identified using an m-bit binary fingerprint. Such a finger-
print can represent 2m different signals in total. This is called the fingerprint space
illustrated by the big circle. One of the reference fingerprints is marked ‘+’. The small
circle around it marks all S(m, α) fingerprints with a hamming distance smaller than,
or equal to, αm.

To identify each reference signal without errors, the small circles may not overlap
for this distortion level α. Therefore, an upper bound is obtained by dividing the
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Figure 5.10: Channel coding is used to increase the robustness of messages sent over
an error-prone channel, such that the received message ŵ is equal to the sent message
w.

volume of the big circle by the volume of a small circle:

Mc ≤ 2m

S(m, α)
(5.37)

This bound is called the sphere packing bound. Due to the dependence of the summa-
tion S(m, α) on m it is difficult to express the bound in the form of a rate independent
of m, which is needed for the comparison to the WOS bounds. Therefore, we turn to
asymptotic bounds found in literature on error correcting codes (ECCs) [40].

ECCs are channel codes. Their aim is to protect messages transmitted over an error-
prone channel, as shown in Figure 5.10. This is done by choosing the codewords such
that they have a minimum distance with respect to each other. As a result the received
codewords are not misinterpreted when a limited number of errors are introduced in
the signal transmitted. Figure 5.9 can also be interpreted in an ECC context. Then the
‘+’ marks a channel codeword. Each such codeword represents a message. The small
circle contains all received words that contain a limited number of errors, while the
large circle contains the set of all possible received signals. Again, the small circles
may not overlap. The ratio of the volumes - the sphere packing bound - provides an
upper bound on the number of messages that an be distinguished by the receiver.

To be robust against up to d
2 bit errors, two arbitrary binary code words of length

m can be distinguished at the receiving end when they differ at least d bits at the
sender. For the sphere packing bound, this implies that d = �2αm�. In the context of
the WOS model we consider asymptotic bounds when the fingerprint length goes to
infinity. For large m, the fraction d

m tends to a constant δ, where 0 ≤ δ ≤ 1.
Several asymptotic bounds are presented in reference [40]. These are bounds on

the rate Rc = 1
m log2(Mc) - and thus on the number of messages Mc - as a function

of δ. The distance δ scales the relative volume of the small circles in Figure 5.9.
Increasing values of δ result in increasing volume of the small circles and thus in a
decreasing number of messages with can be discriminated with arbitrarily small error.

The following four expressions are well-known outer bounds for binary codes
[40]:

• Sphere packing bound

RSP (δ) = 1 − H(δ/2), 0 ≤ δ ≤ 1; (5.38)
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• Singleton bound

RS(δ) = 1 − δ, 0 ≤ δ ≤ 1; (5.39)

• Bassalygo-Elias bound

RBE(δ) =

{
1 − H

(
1
2 − 1

2

√
1 − 2δ

)
, 0 ≤ δ ≤ 1

2 ,

0, 1
2 < δ ≤ 1;

(5.40)

• McEliece-Rodemich-Rumsey-Welch bound

RMRRW (δ)

=

{
min

0≤u≤1−2δ
1 + g(u2) − g(u2 + 2δu + 2δ), 0 ≤ δ ≤ 1

2 ;

0, 1
2 < δ ≤ 1;

(5.41)

where

g(x) = H

(
1 −√

1 − x

2

)
. (5.42)

These outer bounds say that for a given δ the rate of a code cannot exceed the
bound R(δ). It is unknown whether the rates indicated by the bounds are actually
achievable.

Inner bounds exist as well for ECCs [40]. The Gilbert-Varshamov bound expresses
which rates are in theory achievable for a given δ.

RGV (δ) =

{
1 − H(δ) 0 ≤ δ ≤ 1

2

0 1
2 < δ ≤ 1

(5.43)

The Gilbert-Varshamov does not tell that rates exceeding the bound are not achievable,
but that for a given distance δ the rates lower than the bound are achievable.

Figure 5.11 illustrates these rate-bounds as a function of δ. It can be seen that in
this figure indeed the sphere packing bound is a relative loose bound. The McEliece-
Rodemich-Rumsey-Welch bound is the tightest outer bound shown here.

We derive bounds for PRH based on the ECC bounds, and compare these with the
WOS model in the (SNR, Rc) view presented in Figure 5.6. The ECC bounds can
be related to fingerprints and the WOS bounds as follows. The ECC bounds Recc are
expressed as function of δ, where Recc corresponds to a number of messages equal to
Mecc = 2mRecc . A PRH fingerprint generated at bitrate Rx extracts Rx bits for every
sample of the input signal x. The resulting fingerprint has size m = nRx bits. In this
way, a bound for the PRH corresponds to Mprh = 2n(RxRecc) = 2nRprh . We use the
PRH differential model in Eq. (5.31) to relate the SNR level to α, and through the
relation δ = 2α relate the SNR to δ. This relates the SNR of the Gaussian signals y to
the asymptotic ECC bounds. In this way, we obtain (SNR, Rprh)-pairs.
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Figure 5.11: Bounds on the achievable coding rates of ECCs [40].
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Figure 5.12: Gaussian WOS achievability bounds, combined with the binary PRH
achievability bounds, at a bitrate Rx = Ry = 1. The rate regions the are achievable
and non-achievable according to the WOS-model are indicated by the striped regions;
similar regions according to the PRH ECC bounds are indicated by shading. For
readability of the figure, the regions according to the PRH BSC bound are not marked
since there is no gap between the inner and outer bound.
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For the PRH bounds constructed as described above, we only consider the Gilbert-
Varshamov inner bound, and the tightest outer bound (McEliece-Rodemich-Rumsey-
Welch bound). The sphere packing bound coincides with the BSC capacity bound.
Figure 5.12 illustrates both the WOS and PRH achievability bounds, as function of
SNR for a given rate. The rates used are Rfp = Rx = Ry = 1 bits per sample.
This corresponds to generating 32-bit sub-fingerprints every 5.8 msec from a signal
which is sampled at 5,5025 Hz. The PRH algorithm downsamples to this frequency
and extracts fingerprints at half this bitrate.

The ECC bounds are so tight that they reach zero capacity for δ = 1
2 . This corre-

sponds to α = 1
4 . Then the argument in Eq. (5.31) is equal to:√(

σ2
W

σ2
X

+ 1
)2

− 1 = tan
1
4
π (5.44)

Further derivation yields that the SNR value at which the bounds reach zero capacity
is given by:

SNRzero cap = 10 log
(

1√
2 − 1

)
= 3.83 dB (5.45)

The bounds used here are the MRRW-bound and the Gilbert-Varshamov bound. These
are derived by Ericson [40] for constant weight codes and may not fully apply to the
PRH fingerprint. The important curve is the Gilbert-Varshamov bound since rates
lower than this bound are actually achievable.

Figures 5.13 and 5.14 again show the SNR vs. Rate curves, but now for various
fingerprint bit rates: Rfp = 0.5 (Figure 5.13(a)), Rfp = 1 (Figure 5.13(b)), Rfp = 2
(Figure 5.14(a)), and Rfp = 6 (Figure 5.14(b)). From Figure 5.14(b) it can be seen
that for high bitrates the PRH models intersect and exceed the WOS outer bound.
Here, the PRH model contradicts the WOS model: rates that are non-achievable ac-
cording to the WOS-model are achievable in the PRH models. This contradiction oc-
curs for high fingerprint bitrates. However, the rates in the WOS model are assumed to
be maximized by the Gaussian representation of U and V ; other signal representations
(like the binary PRH fingerprints) should yield lower or equal rates when compared
to the Gaussian case. This might be due to the unconstrained scaling of Rc with the
fingerprint bitrate Rfp = Rx.

Figures 5.15 and 5.16 show the WOS-bounds as a function of fingerprint bit rate
for a given SNR level, but now also indicating the PRH bounds. As mentioned at the
end of Section 5.3.1 the PRH bounds are proportional to the bit rate Rfp. While the
WOS-bounds are naturally limited by the capacity of the (X, Y ) channel − log2(1 −
ρ2

xy), the PRH models are unbound. For high SNR (Figure 5.16(b)), both the PRH
bounds and the WOS outer bound are proportional to Rx.
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Figure 5.13: Gaussian WOS achievability bounds, combined with the binary PRH
achievability bounds, at bitrates Rfp = (a) 0.50, (b) 1 bit per sample. The marking of
the achievable rate regions follows the conventions outlined for Figure 5.12.
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Figure 5.14: Gaussian WOS achievability bounds, combined with the binary PRH
achievability bounds, at bitrates Rfp = (a) 2, (b) 6 bit per sample. The marking of the
achievable rate regions follows the conventions outlined for Figure 5.12.
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Figure 5.15: Gaussian WOS achievability bounds, combined with the binary PRH
achievability bounds, at SNR = (a) 0 dB, (b) 20 dB. The marking of the achievable
rate regions follows the conventions outlined for Figure 5.12.
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Figure 5.16: Gaussian WOS achievability bounds, combined with the binary PRH
achievability bounds, at SNR = (a) 40 dB, (b) 60 dB. The marking of the achievable
rate regions follows the conventions outlined for Figure 5.12.
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5.3.3 Conclusions
In this section we have derived two types of bounds for binary fingerprints in the
context of the WOS model. Although there are some potential mismatches between
the PRH bounds and the WOS model, e.g. to the conversion from continuous Gaussian
variables to discrete binary values, the bounds fit in well. For large rates Rx = Ry ,
however, the PRH bounds exceed the WOS-bounds. In the WOS-model, for large
rates Rx and/or Ry the distortion in the signal path X−Y is the dominating limitation
in the calculation of the rate Rc. One cannot distinguish more signals based on the
compressed representations U and V than on the original signal representations X
and Y . This limiting factor is not taken into account in the PRH bounds.

From literature it is not known how to close the gap between the inner and outer
bounds in the WOS model, i.e. whether the inner bound is too tight or the outer bound
is too loose. In the (SNR, Rc) plane the PRH bounds exceed the inner bound in the
WOS model, and clip to the outer bound. Therefore, assuming the model assumptions
between the PRH bounds and the WOS model align, the PRH bounds give rise to
the notion that the WOS inner bound is too tight; especially the bound based on the
Gilbert-Varshamov bound, since it is a lower bound.

5.4 The WOS model from a distortion perspective
In the previous chapters we have observed that the distortion introduced in the signal
is reflected in the distance between the corresponding fingerprints. More specifically,
a closed form equation was derived for the distance between PRH fingerprints when
Gaussian iid signals are distorted by additive white Gaussian noise with a certain SNR.
For high SNR values the log fingerprint distance is linearly related to the SNR on a
decibel scale. The model was derived for Gaussian iid signals in the presence of addi-
tive noise for the PRH algorithm, but the linear relationship is also observed in practice
for this and other algorithms when music is distorted by e.g. compression. In this sec-
tion we explore the differences observed by comparing the practical observations with
the setup of the WOS model for Gaussian signals.

Assuming the distortion on X is additive white Gaussian noise, the (positive) cor-
relation coefficient ρxy between X and Y is related to the variance of the distortion
σ2

W by Eq. (5.24). In the WOS model for Gaussian signals, the distributions that
maximize the rate are also assumed to be Gaussian. Therefore, the variables U and
V are assumed Gaussian. In this case, U can be regarded a version of X distorted by
additive white Gaussian noise. Similarly, we consider V a distorted version of Y . To
distinguish between the different distortions, the distortion in the X − Y channel is
denoted by Wxy , and its variance by σ2

Wxy
. In this slightly adapted notation Eq. (5.24)

now reads:

ρxy =

√
σ2

X

σ2
X + σ2

Wxy

(5.46)

Similarly, the correlation coefficients ρux and ρyv can be related to σ2
Wux

and σ2
Wyv

,
respectively.
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Figure 5.17: Experimental set-up (a) distortions in the WOS model, (b) distortions in
the PRH model

Assume the system operates on a point on the inner bound. Figure 5.17(a) shows
the set-up including the different variables. Now let us consider how the relative

distortion
σ2

Wxy

σ2
X

has its effect on the relative distortion of the (Gaussian) fingerprint,
σ2

Wuv

σ2
U

. For the inner bound correlation between U and V is expressed through

ρ2
uv,in = γ2 = ρ2

xyρ2
uxρ2

yv. (5.47)

Similar to Eq. (5.24) we can relate ρuv,in to the distortion in the fingerprint channel
(u, v):

ρuv,in =

√
σ2

U

σ2
U + σ2

Wuv

(5.48)

Therefore, we can derive:

σ2
Wuv

σ2
U

=
σ2

Wxy

σ2
X

(
1

ρ2
uxρ2

yv

)
︸ ︷︷ ︸

ζ(Rx)

+
(

1
ρ2

uxρ2
yv

− 1
)

︸ ︷︷ ︸
ξ(Rx)

(5.49)

From this equation it is clear that according to the model two effects contribute to the
relative distortion in the fingerprint: the relative distortion of the signal scaled by ζ,
and a constant term ξ. Both terms are dependent on the fingerprint bit rate. Due to the
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constant term, there still is a minimum distance between the fingerprints, also in case
of zero distortion (σ2

Wxy
= 0). This term ξ(Rx) is there because the two mappings

φx and φy are modeled as independent. In practice, however, in most symmetric fin-
gerprinting systems the mappings are identical. Therefore, in practice when the signal
distortion approaches zero, the distance between the fingerprints also approaches zero.

To illustrate the practical behavior of the PRH fingerprint for Gaussian inputs at vari-
ous bitrates, consider the following experiment. The set-up is shown in Figure 5.17(b).
As before the Gaussian signal X is distorted by additive white Gaussian noise result-
ing in a certain SNR-level on signal Y . The fingerprints of both X and Y – U and
V , respectively – are derived by quantizing the continuous signals with the same non-
uniform quantizer, i.e. U = Q[X ] and V = Q[Y ]. The quantizer is designed such that
each quantizer bin is selected with equal probability when quantizing x. Due to the
distortion Wxy a different quantizer bin might be selected. The representation levels
are the quantizer bin centroids. The distortion D is computed using the MSE on the
quantizer outputs, i.e. D = 1

N

∑N
i=1(Q[x(i]) − Q[y(i)])2.

Figure 5.18 illustrates the MSE between fingerprints as a function of the SNR; for
the WOS model in Figure 5.18(a) and for the quantization in Figure 5.18(b). The
curves are based directly on the models, not on numerical simulation. In both figures,
the dashes line illustrates the case where no quantization or coding has been applied
on X and Y , i.e. U = X and V = Y .

For the quantizer experiment in Figure 5.18(b), the MSE between the fingerprint
signals U and V typically shows three regions as function of the SNR:

1. For low SNR the noise component is dominant. The fingerprinting curve is
saturated (constant) as function of SNR, due to the quantization operation. For
each original fingerprint sample in U its distorted counterpart in V is a random
selected quantizer output.

2. For medium SNR the MSE fingerprint distance is proportional to
σ2

Wxy

σ2
X

.

3. For high SNR the MSE fingerprint distance is proportional to σWxy

σX
.

For the WOS model, however, Figure 5.18(b) shows the following distortion pattern:

1. For low SNR the fingerprinting distance is proportional to
σ2

Wxy

σ2
X

, corresponding
to the term ζ(Rx).

2. For high SNR the MSE fingerprint distance is constant, corresponding to the
term ξ(Rx).

The figures show a completely different behavior in the two models. For high
SNR, the quantized fingerprints are nearly identical, while the distance between the
WOS fingerprints to saturates at ξ(Rx). For low SNR, distance between the finger-
prints saturates at a level dependent on the quantizer representation levels; the dis-
tances between WOS fingerprints increases along with the noise level.
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We conclude that the WOS model does not reflect the distortion characteristics
seen in practice on fingerprints, e.g. in Chapter 4. In the recognition stage the WOS
model contains a classifier g and does not make any further assumptions on the charac-
teristics of the classifier. In our experiments, we compare the fingerprints using MSE
and BER distance measures. The WOS model is designed with a different purpose:
to analyze the capacity. In practice, many systems assume that related fingerprints are
close in the fingerprint using a distance measure like MSE or BER (nearest neighbor
classification, with a threshold on the maximum distance between the fingerprints).
Moreover, in practice the actual procedures for fingerprint extraction in the enroll-
ment and identification phase are typically related or even the same. To better match
the WOS model to these practical fingerprinting characteristics and to allow for distor-
tion analysis within the information theoretical framework, we recommend the WOS
model to be reformulated to specifically contain the coupling between the fingerprint
extraction stages and the distance measures in the classification process.

5.5 Discussion
In this chapter we have compared capacity bounds derived for PRH fingerprints to the
bounds in the WOS model. As concluded in Section 5.3.3, there are some conflicts be-
tween the bounds from the different models, but in general the PRH bounds fit in well
with the WOS model bounds. Further, in this chapter we have compared one operat-
ing point in the WOS configuration (system operating on the inner bound for Gaussian
input signals) to a practical implementation using simple quantizers. As concluded in
Section 5.4, the WOS model from a distortion perspective shows different behavior
than observed in practice and in these experiments.

The following observations can be made when comparing the WOS model to prac-
tical implementations of fingerprinting systems:

1. In practice, the mappings φx and φy are dependent
The mappings φx and φy are considered to be independent. In practice, often
the same fingerprinting algorithm is used in both the training and identification
phase. Then, the mappings are dependent. One of the practical consequences
is that if no distortion is applied to the signals the fingerprints in both phases
are equal. In the WOS model, however, even when the same rates are used, i.e.
Rx = Ry , the fingerprints are not identical. Of course, in practice this can also
happen when the signals in the training and identification phase are not exactly
aligned when the signal is framed and the features are extracted. This temporal
misalignment effect was modeled for the PRH in Section 3.4.2 for Gaussian
i.i.d. signals.

2. In practice, the rate Rx is smaller than, or equal to, the rate Ry

In our discussions we have limited ourselves fingerprinting systems that com-
pute the same type of fingerprint in the training and identification phase (coined
‘symmetric systems’ in Section 2.5). This corresponds to Rx = Ry in the WOS
model. However, often the fingerprint in the training phase is based on the same
feature representation as used in the identification phase, but is compressed
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Figure 5.18: Comparison of models from a distortion perspective; SNR vs. MSE be-
tween fingerprints at various fingerprint bit rates for (a) WOS model; (b) quantization.
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even further by generating a parametric model based on the feature represen-
tation (coined ‘asymmetric systems’ in Section 2.5). Examples of such para-
metric models are Gaussian Mixture Models (GMMs), Hidden Markov Models
or PDFs. This corresponds to Rx < Ry , although it is difficult to say something
about the relative size of Rx w.r.t. Ry , that is about the ratio Rx

Ry
.

3. Practical systems use finite length signals
The WOS model derives asymptotic models for i.i.d. signals. It assumes that
n can be made very large to bring down the error probability. However, many
practical applications rely on the fact that an entire song can be identified based
on a small fragment of a few seconds.

4. In practice, the structure of the fingerprints is highly correlated
Practical fingerprinting algorithms like the PRH often are based on features
with strong correlation. This is done to make the fingerprint robust to desyn-
chronisation between the fingerprint stored in the database and the query finger-
print. However, from a capacity point-of-view this is not optimal, and makes
the bound not achievable for this type of fingerprint.

Given these observations and the results in this chapter, we conclude that there is
a gap between the analysis provided by the WOS model, and behavior observed of
practical algorithms. We therefore recommend to reformulate the WOS model to take
into account the dependency between the mappings observed in practice.

Furthermore, it is difficult to compare practical systems to these theoretical bounds.
We can evaluate practical algorithms which compute fingerprints on audio signals of
finite length using Receiver Operating Characteristic (ROC) curves. We might also
experiment with the signal length used in the experiments and see how the perfor-
mance in the ROC curves changes as a function of the signal length. However, from
such experiments is impossible to see what is the upper limit on the number of signals
that can be identified. On the other hand, in the WOS model it is difficult to compare
practical implementations to the theoretical bounds. Therefore, we recommend to de-
velop ‘something in the middle’ which allows to evaluate how large the capacity gap
is between practical systems and the bounds from the WOS or PRH models.
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Chapter 6

Results and Recommendations

6.1 Results

In this thesis we have developed several models for audio fingerprints and fingerprint-
ing systems, with an emphasis on the fingerprint extraction and the properties of the
fingerprint. Our modeling approach was outlined in Section 1.2 ‘Scope and contribu-
tions’ and 2.7 ‘Objectives’. We now outline the main results and draw conclusions for
each of the three models.

First, we have developed a model relating the statistical structure of the PRH fin-
gerprint bits to a number of system parameters. The model applies to input signals
which are Gaussian iid sources. The system parameters (e.g. relative frame overlap,
window type) determine the correlation matrix underlying the fingerprint structure.
A PRH fingerprint can thus be seen as the realization of a stochastic process, which
may be approximated by a Markov chain. Experimental verification shows that the
model captures the fingerprint structure well. The model can be used to optimize the
fingerprint structure, as shown by Balado et al. who base their optimization on a re-
formulation of the model described in this thesis.

Second, we have developed a model that relates the SNR for additive white Gaus-
sian noise to the probability of an erroneous bit. The model is extended to include
temporal desynchronization. The model is verified experimentally, and for Gaussian
iid sources fits well to the simulation results. We expect that both models of the PRH
structure and PRH fingerprint distortion can be extended to other fingerprint algo-
rithms - with slight modifications, of course -, especially those extracting in binary
fingerprints from the spectrogram.

The models have been successfully extended to synthetic and real audio signals.
Given some basic knowledge on the spectrogram, model predicts the BER for a given
SNR. However, the variance in the predicted BER is relatively large. Therefore, for a
measured BER only a coarse indication of SNR can be provided. The variations are
the result of the fact that in real signals like music some feature realizations are more
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stable than others; this is directly related to the spectral characteristics of the audio
signal. It is shown in this thesis that a more accurate relation with SNR can be made if
these spectral characteristics are taken into account to some extend in computing the
fingerprint distance.

The model for PRH predicts that for Gaussian iid input signals a 20dB increase
in SNR results in a drop of the fingerprint distance with a factor 10. The model is
extended to other input signal models. The predicted behavior is not only typical for
PRH, but can also be observed in practice for two other audio fingerprinting. We thus
conclude that this behavior is typical for a wider class of audio fingerprinting algo-
rithms, on a wider class of input signals.

Third, the WOS model provides a framework to answer the following question: ‘how
many signals can be reliably identified by a fingerprinting system, under certain condi-
tions’. The conditions relate to characteristics of the fingerprint (size of the fingerprint,
and representation of the fingerprint), and characteristics of the environment in which
the system operates (what kind of signals need to be identified, how much distortion
is allowed). The WOS model applies to iid signals, and has closed form bounds for
Gaussian signals and distortions.

Within the WOS framework, we have derived bounds for the binary PRH finger-
prints. To do so, we use our second model that relates the SNR to the probability of an
erroneous fingerprint bit. We have applied two parallel strategies: consider the effect
of distortion on fingerprints as a binary symmetric channel, and apply bounds from
error correcting coding.

The model fits well into the framework, but there is some friction between our
model and the results from the WOS-model. The WOS model is more general in the
sense that it assumes that the Gaussian representation of the fingerprints maximizes the
number of (Gaussian) signals that can be identified. Application of the PRH models
is more specific in the sense that it applies to a specific representation of fingerprints
(binary) that behave in a particular way to additive Gaussian distortion in the signal
space. Therefore, we expect that the number of signals that can be distinguished at a
certain operating point (fingerprint bitrate and SNR) for the PRH model is smaller or
equal to the Gaussian WOS model. However, for high bit rates the PRH model indi-
cates that certain identification rates are achievable that according to the WOS model
are not achievable. We believe the friction originates from the fact that in our formu-
lation using the PRH model the number of signals that can be distinguished based on
the fingerprint, is not limited by the number of the signals that can be distinguished
in the signal space itself. Further, the PRH bounds indicate that the gap between the
inner and outer achievability bound might be closed by extending the inner bound.

Using a simple experiment we have shown that the effects of additive distortion in
quantization based fingerprints differs significantly from the effects seen in the WOS-
model for Gaussian iid input signals.

In this thesis we have presented several models for audio fingerprints. The impact
beyond the models themselves is that it shows that it is feasible to derive models for
fingerprint extraction, which can be input to optimization procedures. One of the
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challenges for future work is to translate the modeling results into practical design
rules, i.e. a ‘design recipe’ which provides guides for a step-by-step fingerprint design
process including trade-offs.

Further, this thesis introduces the notion that a signal distortion parameter can be
related to the actual performance, not just in a qualitative fashion, but also quanta-
tively. This allows both to relate observed fingerprint distances to signal distortion
or quality, but also to perform sensitivity analysis: what if the distortion is slightly
increased, or decreased, what is the effect on the fingerprint distance, and thus on the
identification performance.

6.2 Recommendations
Based on our results we recommend the following for future research and develop-
ment.

Develop a model framework for joint optimization of the robustness and colli-
sion probability
Our current PRH models capture the structure of the PRH fingerprint, and the aver-
age robustness to additive noise and temporal desynchronization. We recommend to
model the actual conditional distributions discussion in Section 2.4.5 and illustrated
in Figure 2.4, i.e. the conditional distribution of the distance between the finger-
prints of similar content, and of the distance between the fingerprints of dissimilar
content. In this way the optimal threshold can be determined for a given distortion
model fY |X(x, y), fingerprint size N × M , and fingerprint parameters L and ΔL.

In a series of publications, Balado et al. [71, 72, 73, 15, 16, 51, 52] have modeled
and optimized several individual aspects of the PRH fingerprint, such as the method
for converting the real-valued features into a binary representation [71], the optimal
window for the smallest desynchronization effect [15], and the collision probability
[52]. The first models [72, 73, 15] follow our approach to a great extend, but the com-
pact formulation in quadratic form allows for extensions to Gaussian signals which
are more complex than iid, and for optimizations such as the window size needed for
minimal desynchronization. Their model for the collision probability is not limited to
binary fingerprints.

Both our models and the models and optimizations by Balado et al. consider a
limited number of aspects in isolation, e.g. the fingerprint structure or the probability
of an erroneous bit. We recommend to consider the optimization problem over the
entire detection chain, to derive the optimal operating point for a given application
scenario. Ideally, such models are not just mathematically correct, but also elegantly
formulated such that the provide insight in the trade-offs at hand.

Furthermore, it is interesting to compare such modeling results with the results of
data driven optimization approaches (e.g. AdaBoost), such as used by Ke et al. The
joint insight might lead to improvements in the design of practical algorithms.
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Extend the PRH models to other audio fingerprints, other modalities and other
distortion types.
The PRH models have been developed for a specific audio fingerprinting system, for
two distortion types: additive noise and temporal desynchronization. The PRH models
might be extended to other fingerprint representations and fingerprint distance mea-
sures, as well as other distortion types such as variations in play-out speed.

In addition, many of the underlying modeling steps are not audio specific. It would
therefore be interesting to see to what extend the models also apply to image and video
fingerprinting.

Set-up an evaluation framework for audio fingerprinting
Further, we recommend to set up a framework for the evaluation of audio fingerprint-
ing schemes. Currently there are, to our knowledge, two evaluation practices.

First, there are the ad-hoc comparisons found in papers where the authors compare
their algorithm with an implementation of other algorithms from literature. Because
each author sets up his evaluation in a different way, it is difficult to compare the
performance of different algorithms reported in different papers.

Second, the TRECVID evaluation framework organized by the National Institute
for Science and Technology (NIST) in 2008 and 2009 contained a Content-Based
Copy Detection (CBCD) task, mainly aiming at the evaluation of video fingerprinting
algorithms. In TRECVID, the contestants are given a dataset for training (with ground
truth) and a dataset for evaluation (without ground truth). The submissions are only
evaluated on their actual detection performance, and to a limited extend on the time
localizations of the algorithms. Since the contestants train and optimize their own
algorithms, the performance is usually indicative of the algorithm itself, and is not
degraded by the potentially sub-optimal implementation by a third party.

The TRECVID framework, however, is not capable of comparing sub-aspects
within the algorithms, or the processing speed of the different algorithms. For the
ad-hoc comparisons of algorithms it is not easy to compare results between papers.
For true optimization of algorithms, a more detailed framework overcoming these
shortcomings is necessary.

Integrate psycho-acoustics in fingerprinting schemes to allow a better percep-
tual comparison between audio fragments
Our current approach relates the fingerprint differences to SNR. Although SNR is suit-
able for our envisioned application scenarios, we foresee two options to alter the cur-
rent setup to relate the fingerprint differences to more perceptually motivated distor-
tion measures: altering the fingerprinting scheme and altering the fingerprint distance
measure. In both cases the masking threshold can be estimated from the spectrum,
even on a subband basis.
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A theoretical framework for comparing a specific algorithm, in stead of a class of
algorithms, to the capacity bounds.
In Section 5.3 we compared two types of bounds derived for binary fingerprints to
the WOS-bounds. The bounds apply for the group of binary fingerprints for which
the probability of an erroneous bit due to additive distortion is given by Eq. (3.52).
It would be helpful to develop a framework in which it is possible to see what is the
gap between a specific implementation and a theoretical upper bound like the WOS-
bounds.

Development of a practical fingerprinting framework and algorithm, which can
be easily tuned to the application domain (design recipe).
Each application has its own constraints and operating conditions for the fingerprinting
system. It is desirable for a fingerprint to be optimized for specific use, starting from a
generic structure. Therefore, we recommend to develop a fingerprinting scheme with
associated design rules which can be used to tune the fingerprint to the application
scenario.
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Appendix A

Background for Chapter 3

A.1 Statistical properties of the Fourier transform of
white noise

In this section, we summarize the cross-correlation of a real and imaginary parts of
the Fourier transform of a white noise sequence x(i), i.e. x(i) ∼ N (0, σ2

X). Section
A.1.1 discusses the full length Fourier transform: the length of the transform, L, is
equal to the number of samples used. Section A.1.2 considers the Fourier transform
of a zero-padded signal. Here, the length of the signal is ΔL ≥ 0 samples shorter than
the length of the Fourier transform.

A.1.1 Full length Fourier Transform

The Fourier transform of a realization, both of length L, is defined as:

x̂R(k) =
L−1∑
i=0

x(i)e−j 2πik
L

= RXR(k) − j IXR(k), k = 0, . . . , L − 1

where j is the imaginary unit and:

RXR(k) =
L−1∑
i=0

x(i) cos
(

2πik

L

)

IXR(k) =
L−1∑
i=0

x(i) sin
(

2πik

L

)
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In line with the main text in this thesis, the additional subscript R denotes the use of a
rectangular window. The autocorrelation of the real part is given by:

E[RXR(p)RXR(q)] =
L−1∑
i=0

L−1∑
j=0

E[x(i)x(j)] cos
(

2πp

L
i

)
cos
(

2πq

L
j

)

= σ2
X

L−1∑
i=0

cos
(

2πp

L
i

)
cos
(

2πq

L
i

)

=
σ2

X

2

L−1∑
i=0

cos
(

2π(p − q)
L

i

)
+

σ2
X

2

L−1∑
i=0

cos
(

2π(p + q)
L

i

)

Similarly, the correlation between the real and imaginary parts can be shown to be:

E[RXR(p) IXR(q)] = −σ2
X

2

L−1∑
i=0

sin
(

2π(p − q)
L

i

)
+

σ2
X

2

L−1∑
i=0

sin
(

2π(p + q)
L

i

)

E[IXR(p)RXR(q)] =
σ2

X

2

L−1∑
i=0

sin
(

2π(p − q)
L

i

)
+

σ2
X

2

L−1∑
i=0

sin
(

2π(p + q)
L

i

)

E[IXR (p) IXR(q)] =
σ2

X

2

L−1∑
i=0

cos
(

2π(p − q)
L

i

)
− σ2

X

2

L−1∑
i=0

cos
(

2π(p + q)
L

i

)

In the derivation we used the fact that E[x(i)x(j)] = σ2
Xδ(i − j) since the noise is

white. For p, q = 0, . . . , L
2 − 1:

L−1∑
i=0

cos
(

2π(p − q)
L

i

)
= L δ(p − q) (A.1)

L−1∑
i=0

cos
(

2π(p + q)
L

i

)
= L δ(p)δ(q) (A.2)

L−1∑
i=0

sin
(

2π(p − q)
L

i

)
= 0 (A.3)

L−1∑
i=0

sin
(

2π(p + q)
L

i

)
= 0 (A.4)

The zero-outcomes in equations (A.1) and (A.2) are due to the summation over a
multiple of the period of the (co)sinusoids in the expressions. The overall results for
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p, q = 0, . . . , L
2 − 1 are given by:

E[RXR(p)RXR(q)] =

{
1
2Lσ2

Xδ(p − q), p, q �= 0
Lσ2

Xδ(p − q), p, q = 0

E[RXR(p) IXR(q)] = 0, ∀ p, q

E[IXR (p)RXR(q)] = 0, ∀ p, q

E[IXR(p) IXR(q)] =

{
1
2Lσ2

Xδ(p − q), p, q �= 0
0, p, q = 0

A.1.2 Zero-padded Fourier transform
In this section we review the covariance of real and imaginary parts in a zero-padded
Fourier transform, i.e.

ÂR(k) =
L−ΔL−1∑

i=0

x(i)e−j2π k
L i

= RAR(k) − j IAR(k), k = 0, . . . , L − 1

Define functions SSA(k, α, L − ΔL) and SCA(k, α, L − ΔL):

SCA(k, α) =
L−ΔL−1∑

i=0

cos(2πα
k

L
i)

=
cos
(
απ L−ΔL−1

L

)
sin
(
απ L−ΔL

L

)
sin
(
απ 1

L

)
SSA(k, α) =

L−ΔL−1∑
i=0

sin(2πα
k

L
i)

=
sin
(
απ L−ΔL−1

L

)
sin
(
απ L−ΔL

L

)
sin
(
απ 1

L

)
Now the correlations for the real and imaginary terms, RA(k) and IA(k), respec-

tively, can be written as:

E[RA(p)RA(q)] =
σ2

X

2
SCA (k, p − q, L − ΔL) +

σ2
X

2
SCA (k, p + q, L − ΔL)

E[RA(p) IA(q)] = −σ2
X

2
SSA (k, p − q, L − ΔL) +

σ2
X

2
SSA (k, p + q, L − ΔL)

E[IA(p)RA(q)] =
σ2

X

2
SSA (k, p − q, L − ΔL) +

σ2
X

2
SSA (k, p + q, L − ΔL)

E[IA(p) IA(q)] =
σ2

X

2
SCA (k, p − q, L − ΔL) − σ2

X

2
SCA (k, p + q, L − ΔL)
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A.2 Expressing the covariance of spectral energy dif-
ferences in terms of variances with variable frame
shift

Theorem 1 (Expressing the covariance of spectral energy differences in terms of vari-
ances with variable frame shift).

COV [ED(n, m), ED(n + l, m)]
= −VAR [EDlΔL(n, m)

]
+

1
2
VAR

[
ED(l−1)ΔL(n, m)

]
+

1
2
VAR

[
ED(l+1)ΔL(n, m)

]
(A.5)

Proof. From Eq. (3.22) we know that:

COV [ED(n, m), ED(n + l, m)]
= COV

[
EDb(n, m), EDb(n + l, m)

]
+COV

[
EDb(n, m + 1), EDb(n + l, m + 1)

]
(A.6)

Each of the covariance terms can be expressed in terms of the energies in the individual
frequency bands:

COV
[
EDb,ΔL(n, m), EDb,ΔL(n + l, m)

]
= −2COV

[
Eb,ΔL(n, m), Eb,ΔL(n + l, m)

]
+COV

[
Eb,ΔL(n, m), Eb,ΔL(n + l + 1, m)

]
+COV

[
Eb,ΔL(n, m), Eb,ΔL(n + l − 1, m)

]
. (A.7)

On the other hand, the variance of a spectral energy difference involving a single
frequency band, but with a frame shift of lΔL also involves these covariance terms:

VAR
[
EDb,lΔL(n, m)

]
= 2 VAR

[
Eb,ΔL(n, m)

]− 2 COV
[
Eb,ΔL(n, m), Eb,ΔL(n − l, m)

]
Rearranging the terms:

COV
[
Eb,ΔL(n, m), Eb,ΔL(n − l, m)

]
= VAR

[
Eb,ΔL(n, m)

]− 1
2

VAR
[
EDb,lΔL(n, m)

]
, (A.8)

and plugging this back into Eq. (A.7) yields:

COV
[
EDb(n, m), EDb(n + l, m)

]
= −VAR

[
EDb,lΔL(n, m)

]
+

1
2

VAR
[
EDb,(l+1)ΔL(n, m)

]
+

1
2

VAR
[
EDb,(l−1)ΔL(n, m)

]
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In combination with Eq. (A.6) this results in the desired expression.

A.3 Sample-wise correlation function Cs
ED(l) for a sym-

metric window

In Section 3.3.5 the following theorem was stated without proof.
Theorem 2 (Sample-wise correlation function Cs

ED(l) for a symmetric window). The
sample-wise correlation function Cs

ED(l) for a symmetric window with spectral rep-
resentation ŵ(k), k = 0, . . . , L − 1, is given by:

Cs
ED(l) =

8
L2

(RR2
X(l) − (RR1(l) + RI2(l))2

−(RI1(l) − RR2(l))2) (A.9)

where

RRX = CRX (l) � (ŵ(l) � ŵ(l))
RR1(l) = CRA(l) � (cos(2π ΔL

L l)ŵ(l) � ŵ(l)
)

RR2(l) = CRA(l) � (sin(2π ΔL
L l)ŵ(l) � ŵ(l)

)
RI1(l) = CRA,IA(l) � (cos(2π ΔL

L l)ŵ(l) � ŵ(l)
)

RI2(l) = CRA,IA(l) � (sin(2π ΔL
L l)ŵ(l) � ŵ(l)

)
Proof. The sample-wise correlation function Cs

ED is given in Eq. (3.30):

Cs
ED(l) =

4
L2

(
2E [RX(n, k) RX(n, k + l)]2

−
(
E[RA(k)RD(k + l)]2 + E[IA(k)RD(k + l)]2

+E[RA(k)ID(k + l)]2 + E[IA(k)ID(k + l)]2
))

In the following we use the short-hand notation α = 2π ΔL
L . For the correlation

between RA(k) and RD(k) we can thus write

E[RA(k)RD(k + l)]
= E[(ŵ(k) � RAR(k))(ŵ(k + l) � RDR(k + l)]
= E[(ŵ(k) � RAR(k))

(ŵ(k + l) � (cos(α(k + l))RAR(k + l) + sin(α(k + l))IAR(k + l))]
= E[(ŵ(k) � RAR(k))(ŵ(k + l) � cos(α(k + l))RAR(k + l))]

+E[(ŵ(k) � RAR(k))(ŵ(k + l) � sin(α(k + l))IAR(k + l))] (A.10)



134 A. Background for Chapter 3

For the first part of Eq. (A.10) can be written as:

E[(ŵ(k) � RAR(k))(ŵ(k + l) � RDR(k + l)]

= E

[(∑
κ

ŵ(κ)RA(k − κ mod L)

)
(∑

λ

ŵ(λ) cos(α(k + l − λ mod L))RA(k + l − λ mod L)

)]

=
∑

κ

∑
λ

cos(α(k + l − λ) mod L)

ŵ(κ)ŵ(λ)E [RA(k − κ mod L)RA(k + l − λ mod L)]

=
∑

κ

∑
λ

(cos(α(k + l)) cos(αλ) + sin(α(k + l)) sin(αλ))

ŵ(κ)ŵ(λ)E [RA(k − κ mod L)RA(k + l − λ mod L)]

= cos(α(k + l))
∑

κ

∑
λ

cos(αλ)ŵ(κ)ŵ(λ)CRA (l + κ − λ mod L)

+ sin(α(k + l))
∑

κ

∑
λ

sin(αλ)ŵ(κ)ŵ(λ)CRA (l + κ − λ mod L)

a= cos(α(k + l))
∑

κ

∑
λ

cos(αλ)ŵ(−κ)ŵ(λ)CRA(l + κ − λ mod L)

+ sin(α(k + l))
∑

κ

∑
λ

sin(αλ)ŵ(−κ)ŵ(λ)CRA (l + κ − λ mod L)

b= cos(α(k + l))
∑
m

CRA(l − m mod L)
∑

λ

cos(αλ)ŵ(λ)ŵ(m − λ mod L)

+ sin(α(k + l))
∑
m

CRA(l − m mod L)
∑

λ

sin(αλ)ŵ(λ)ŵ(m − λ mod L)

= cos(α(k + l))
∑
m

CRA(l − m mod L) (cos(αm)ŵ(m) � ŵ(m))

+ sin(α(k + l))
∑
m

CRA(l − m mod L) (sin(αm)ŵ(m) � ŵ(m))

= cos(α(k + l)) (CRA(l) � (cos(αl)ŵ(l) � ŵ(l)))
+ sin(α(k + l)) (CRA(l) � (sin(αl)ŵ(l) � ŵ(l))) (A.11)

Where we used:

(a) Since the window is symmetric, imaginary part is zero. Therefore, ŵ(k) =
ŵ(−k).

(b) Substitution of m = l + κ
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Through similar manipulations we get:

E[(ŵ(k) � RAR(k))(ŵ(k + l) � RDR(k + l)]
= cos(α(k + l))(RR1(l) + RI2(l)) + sin(α(k + l))(RI1(l) − RR2(l))

E[(ŵ(k) � RAR(k))(ŵ(k + l) � IDR(k + l)]
= cos(α(k + l))(IR1(l) + II2(l)) + sin(α(k + l))(II1(l) − IR2(l))

E[(ŵ(k) � IAR(k))(ŵ(k + l) � RDR(k + l)]
= cos(α(k + l))(RI1(l) − RR2(l)) − sin(α(k + l))(RR1(l) + RI2(l))

E[(ŵ(k) � IAR(k))(ŵ(k + l) � IDR(k + l)]
= cos(α(k + l))(II1(l) − IR2(l)) − sin(α(k + l))(IR1(l) + II2(l))

where

RR1(l) = CRA(l) � (cos(αl)ŵ(l) � ŵ(l))
RR2(l) = CRA(l) � (sin(αl)ŵ(l) � ŵ(l))
RI1(l) = CRA,IA(l) � (cos(αl)ŵ(l) � ŵ(l))
RI2(l) = CRA,IA(l) � (sin(αl)ŵ(l) � ŵ(l))
IR1(l) = CIA,RA(l) � (cos(αl)ŵ(l) � ŵ(l))
IR2(l) = CIA,RA(l) � (sin(αl)ŵ(l) � ŵ(l))
II1(l) = CIA(l) � (cos(αl)ŵ(l) � ŵ(l))
II2(l) = CIA(l) � (sin(αl)ŵ(l) � ŵ(l))

Since CIA(l) = CRA(l) and CIA,RA(l) = −CRA,IA(l) we get IIx(l) = RRx(l) and
IRx(l) = −RIx(l) for x = 1, 2

Combining the above finally yields:

Cs
ED(l) =

4
L2

(
2E [RX(n, k) RX(n, k + l)]2

−
(
E[RA(k)RD(k + l)]2 + E[IA(k)RD(k + l)]2

+E[RA(k)ID(k + l)]2 + E[IA(k)ID(k + l)]2
))

=
8
L2

(RR2
X(l) − (RR1(l) + RI2(l))2

−(RI1(l) − RR2(l))2) (A.12)

where

RRX = CRX (l) � (ŵ(l) � ŵ(l)) (A.13)
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A.4 Probability of a sign change of a Gaussian variable
due to correlated Gaussian distortion

In Section 3.4 the following theorem was stated without proof.
Theorem 3 (Probability of sign change of a Gaussian random variable due to corre-
lated Gaussian noise). Let (A, B) denote two zero-mean Gaussian random variables,
drawn from a bivariate normal distribution, i.e. (A, B) ∼ N (0,CAB), with correla-
tion matrixCAB:

CAB =

⎡
⎣ σ2

A ρ σAσB

ρ σAσB σ2
B

⎤
⎦

Now define C = A + B. The probability that the sign of C is different from the sign
of A is given by:

Pe = Pr [A ≤ 0, C > 0 ∨ A > 0, C ≤ 0]

=
1
π

arctan

(
σB

√
1 − ρ2

σA + ρσB

)
(A.14)

Proof. The derivation is made in four steps.

1. The Gaussian approximation of the PDF, fA,B(a, b), is fully defined by the
variances σ2

A and σ2
B and the correlation coefficient ρ.

The Pe is obtained by integrating the PDF:

Pe = Pr [A ≤ 0, C > 0 ∨ A > 0, C ≤ 0]
= 2 Pr [A > 0, C ≤ 0]
= 2 Pr [A > 0, B ≤ −A]

= 2
∫ ∞

0

∫ −a

−∞
fA,B(a, b) db da

The PDF, fA,B(a, b), is shown in Figure A.1(a) and the integration area is indi-
cated by the shaded area.

2. The vertical axis is scaled such that its variance is equal to the signal variance:
B′ = σA

σB
B. The line B = −A, shown in Figure A.1(b), now has an angle α

with the vertical axis:

α = arctan
(

σB

σA

)

Since the variances along both axes now are equal to each other, the main diag-
onal of the PDF has an angle θ = − 1

4π with the horizontal axis.
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Figure A.1: Illustration of the four steps in the derivation of Eq. A.14: (a) Gaussian
approximation of the PDF, fA,B(a, b); the shaded area illustrates the integration area;
(b) normalization of the variances; (c) decorrelation, and (d) normalization of the
variances.

3. After rotation (decorrelation) the new variables, U and V , have variance σ2
U =

(1 − ρ)σ2
A and σ2

V = (1 + ρ)σ2
A, respectively. Since there has been no scaling,

the angle with the main diagonal of the PDF is unaltered. Figure A.1(c) shows
this PDF, including the angles β and γ. For the next step, the tan(β) and tan(γ)
need to be known. We will use the following relations:

tan(α) =
σB

σA

tan
(

1
4π + α

)
=

1 + tan(α)
1 − tan(α)
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This yields the expressions for tan (β) and tan (γ):

tan (γ) = 1

tan (β) =
1

tan
(

1
4π + α

)
=

σA − σB

σA + σB

4. Finally, the vertical axis is scaled such that both axis have equal variance, yield-
ing a rotation symmetric PDF. The vertical scaling factor is equal to

√
1−ρ
1+ρ . So

now the tangens values are changed into:

b = tan(β′) =
√

1 − ρ

1 + ρ
tan(β)

c = tan(γ′) =
√

1 + ρ

1 − ρ
tan(γ)

Using the relationship

arctan (b) + arctan (c) = arctan
(

b + c

1 − bc

)

The value of α′ can be computed:

α′ =
1
2
π − arctan

(
b + c

1 − bc

)

Filling in the appropriate values for b and c, we obtain:

b + c =
(1 − ρ) tan(β) + (1 + ρ) tan(γ)√

1 − ρ2

=
tan(β) + tan(γ) + ρ(tan(γ) − tan(β))√

1 − ρ2

=
2

σA + σB
· σA + ρσB√

1 − ρ2

1 − bc = 1 − tan(β) tan(γ)

= 1 − σA − σB

σA + σB

=
2

σA + σB
· σB
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Using α′ it is straightforward to compute Pe:

Pe = 2
∫ ∞

0

∫ −a

−∞
fA,B(a, b) db da

= 2
∫ ∞

0

∫ −u tan(β′)

−u tan(α′+β′)
fU,V ′(u, v) dv du

=
α′

π

=
1
2
− 1

π
arctan

(
σA + ρσB

σB

√
1 − ρ2

)

=
1
π

arctan

(
σB

√
1 − ρ2

σA + ρσB

)

A.5 Relation between EDX(n, m), EDY (n, m) and Pe

Eq. (3.44) relates the energy differences EDX(n, m) and EDY (n, m) to the prob-
ability of error Pe. This relation is based on the following theorem, stated here in
terms of two Gaussian distributions, A and C. Using this theorem and substituting
A = EDX(n, m) and C = EDY (n, m), we immediately obtain Eq. (3.44).
Theorem 4. Let A ∈ N (0, σ2

A) and B ∈ N (0, σ2
B) denote two zero-mean, mutually

independent, normally distributed random variables. Now define C = A + B. The
probability that the sign of C is different from the sign of A is given by:

Pe = Pr [A ≤ 0, C > 0 ∨ A > 0, C ≤ 0]

=
1
π

arctan
(

σB

σA

)

=
1
π

arctan

(√
VAR [C − A]
VAR [A]

)
(A.15)

Proof. Due to symmetry Pr [C > 0|A ≤ 0] = Pr [C ≤ 0|A > 0] and Pr [A ≤ 0] =
Pr [A > 0] = 1

2 . Therefore,

Pe = Pr [A ≤ 0, C > 0 ∨ A > 0, C ≤ 0]
= Pr [C > 0|A ≤ 0]Pr [A ≤ 0]

+Pr [C ≤ 0|A > 0]Pr [A > 0]
= Pr [C ≤ 0|A > 0]
= Pr [B ≤ −A|A > 0] (A.16)

Define α = σB

σA
and introduce the normalized version of B, viz. B′ = σA

σB
· B =

1
α · B, B′ ∈ N (0, σ2

A). Due to the scaling factor α, the joint-PDF fA,B′(a, b) is



140 A. Background for Chapter 3

−2

0 

2 
  

  
−2

0 

2 
  
0

0.1

0.2

a b

f
A

,B
′(

a
,b

)

(a)

A=aA=a

B′=b′B′=b′

φφ

b=−ab=−a

(b)

Figure A.2: Probability Density Function fA,B′(a, b), (a) 3D visualization (b) Projec-
tion onto the ground plane (contour line)

rotation symmetric with respect to the origin, as illustrated in Figure A.2(a). Pe is
related to fA,B′(a, b) by:

Pe = Pr [B ≤ −A|A > 0]

=
∫ ∞

0

∫ −a

−∞
fA,B(a, b) db da

=
∫ ∞

0

∫ −αa

−∞
fA,B′(a, b) db da (A.17)

The angle between the vertical axis and the integration boundary is denoted by the an-
gle φ, where φ = arctan (α), as illustrated in Figure A.2(b). If α = 1, i.e. σ2

A = σ2
B ,

we have φ = π/2. Due to the rotational symmetry around the origin1, the probability
Pe is proportional to the 0 ≤ φ < π. We can now express Pe in terms of φ as follows:

Pe =
∫ ∞

0

∫ −αa

−∞
fA,B′(a, b) db da =

φ

π
=

1
π

arctan
(

σB

σA

)

A.6 Correlation between EDW (n, m) and Q(n, m)

The fact that the variables EDW (n, m) and Q(n, m) are mutually uncorrelated is
used in Section 3.4.1 to derive Eq. (3.50).

1The result in Eq. (A.18) holds for any rotation-symmetric PDF fA,B′ (a, b). If the PDF is not sym-
metric, the analysis procedure stays the same as long as the analysis can be done using a projection onto the
(A, B′)-plane. The resulting expression might be different.
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Theorem 5. The variablesEDW (n, m) andQ(n, m) are mutually uncorrelated, and
as a result:

VAR [EDY (n, m) − EDX(n, m)]
= VAR [EDW (n, m) + 2Q(n, m)]
= VAR [EDW (n, m)] + 4VAR [Q(n, m)] (A.18)

Proof. Because EDW (n, m) and Q(n, m) are based on summations of
terms EDs

W (n, k) and Qs(n, k), respectively, it is sufficient to show that
COV [EDs

W (n, k), Qs(n, k + l)] = 0. Using the short-hand notation
RX(n, k) = Re (x̂(n, k)) and IX(n, k) = Im (x̂(n, k)) we can express Qs(n, k) in
terms of the two input components x̂(n, k) and ŵ(n, k):

Qs(n, k)

=
1
L

Re
(
x̂(n, k)ŵ(n, k) − x̂(n−1, k)ŵ(n−1, k)

)
=

1
L

(RX(n, k)RW (n, k) − RX(n−1, k)RW (n−1, k))

+
1
L

(IX(n, k)IW (n, k) − IX(n−1, k)IW (n−1, k)) (A.19)

The covariance can now be computed:

COV
[
EDs

W (n, k), Qs(n, k+l)
]

=
1
L

(
COV

[
EDs

W (n, k), RX(n, k+l)RW (n, k+l)
]

+COV
[
EDs

W (n, k), IX(n, k+l)IW (n, k+l)
]

−COV
[
EDs

W (n, k), RX(n−1, k+l)RW (n−1, k+l)
]

−COV
[
EDs

W (n, k), IX(n−1, k+l)IW (n−1, k+l)
])

=
1
L

(
E
[
EDs

W (n, k)RW (n, k+l)
]
E
[
RX(n, k+l)

]
+E
[
EDs

W (n, k)IW (n, k+l)
]
E
[
IX(n, k+l)

]
−E
[
EDs

W (n, k)RW (n−1, k+l)
]
E
[
RX(n−1, k+l)

]
−E
[
EDs

W (n, k)IW (n−1, k+l)
]
E
[
IX(n−1, k+l)

])
= 0 (A.20)
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A.7 Relation between VAR [EDW (n, m)], VAR [Q(n, m)]
and VAR [EDX(n, m)]

Equation (3.51) is Section 3.4.1 relates the variance
VAR [EDY (n, m) − EDX(n, m)] to the variance VAR [EDX(n, m)].

Theorem 6. The variance VAR [EDY (n, m) − EDX(n, m)] is proportional to
VAR [EDX(n, m)] and is equal to:

VAR [EDY (n, m) − EDX(n, m)]

=
(

σ4
W

σ4
X

+ 2
σ2

W

σ2
X

)
VAR [EDX(n, m)] (A.21)

Proof. Theorem 5 expressed the variance on the left-hand side of the equation as:

VAR [EDY (n, m) − EDX(n, m)]
= VAR [EDW (n, m)] + 4VAR [Q(n, m)] (A.22)

Since EDX(n, m), EDW (n, m) and Q(n, m) are based on summations of
EDs

X(n, k), EDs
W (n, k) and Qs(n, k), respectively, over index k, it is sufficient

to relate COV
[
EDs

W (n, k), EDs
W (n, k + l)

]
and COV

[
Qs(n, k), Qs(n, k + l)

]
to

COV
[
EDs

X(n, k), EDs
X(n, k + l)

]
.

In the following we only consider these covariances. We first express the covari-
ance COV [EDs

X(n, k), EDs
X(n, k + l)] in terms of RX(n, k) and IX(n, k):
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COV[EDs
X(n, k), EDs

X(n, k + l)]
= COV[SX(n, k) − SX(n − 1, k),

SX(n, k + l) − SX(n − 1, k + l)]
= 2
(
COV[SX(n, k), SX(n, k + l)]

−COV[SX(n, k), SX(n + 1, k + l)]
)

=
2
L2

COV
[
R2

X(n, k) + I2
X(n, k),

R2
X(n, k + l) + I2

X(n, k + l)
]

− 2
L2

COV
[
R2

X(n, k) + I2
X(n, k),

R2
X(n + 1, k + l) + I2

X(n + 1, k + l)
]

=
4
L2

(
COV

[
R2

X(n, k), R2
X(n, k + l)

]
−COV

[
R2

X(n, k), R2
X(n + 1, k + l)

])
=

8
L2

(
COV

[
RX(n, k), RX(n, k + l)

]2
−COV

[
RX(n, k), RX(n + 1, k + l)

]2) (A.23)

Here we used two properties of the Fourier transform of an uncorrelated signal: first,
the real part RX(n, k) and imaginary part IX(n, k) are mutually uncorrelated; second,
the fact that the autocorrelation function of the imaginary part is equal to the autocor-
relation function of the real part. Furthermore, we used the following relation for two
zero-mean, normally distributed random variables X1 and X2:

COV
[
X2

1 , X2
2

]
= 2 COV [X1, X2]

2 (A.24)

Since the autocorrelation functions of RX(n, k) and RW (n, k) are proportional to the
variances σ2

X and σ2
W , respectively, it is straightforward to relate these to each other:

COV [RW (n, k), RW (n + p, k + l)]

=
σ2

W

σ2
X

· COV [RX(n, k), RX(n + p, k + l)] . (A.25)

Hence, we can express COV [EDs
W (n, k), EDs

W (n, k + l)] as:

COV [EDs
W (n, k), EDs

W (n, k + l)]

=
σ4

W

σ4
X

· COV [EDs
X(n, k), EDs

X(n, k + l)] . (A.26)
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We can now relate COV [Qs(n, k), Qs(n, k + l)] to COV [EDs
X(n, k), EDs

X(n, k + l)]:

COV [Qs(n, k), Qs(n, k + l)]

=
4
L2

(
COV [RX(n, k), RX(n, k + l)] ·

COV [RW (n, k), RW (n, k + l)]
−COV [RX(n, k), RX(n + 1, k + l)] ·

COV [RW (n, k), RW (n + 1, k + l)]
)

=
4
L2

σ2
W

σ2
X

(
COV [RX(n, k), RX(n, k + l)]2

−COV [RX(n, k), RX(n + 1, k + l)]2
)

=
1
2

σ2
W

σ2
X

COV [EDs
X(n, k), EDs

X(n, k + l)] (A.27)

Combining Eqs. (3.48), (A.26) and (A.27) results in:

VAR [EDY (n, m) − EDX(n, m)]

=
(

σ4
W

σ4
X

+ 2
σ2

W

σ2
X

)
VAR [EDX(n, m)] (A.28)



Appendix B

Background for Chapter 4

B.1 Relating SNR to MSE for log-spectra and Gaus-
sian iid data

Both the SSD and RARE algorithms use features that are extracted from the log-
spectrum, in conjunction with a MSE or RMS distortion measure. In our implementa-
tion of RARE we used RMS as the fingerprint-distance measure. For SSD we used the
MSE. Since the RMS value is just the square root of the MSE value, in the following
we relate the MSE between two unquantized fingerprints (cf. RARE) to the distortion
in the fingerprint. The different choices for the distortion measure follow from the
difference in quantization of the features used in the fingerprint. In our RARE imple-
mentation, the features are represented using 32-bit single precision floats. In SSD
the features are quantized into 4-bit characters. There, SNR is directly related to the
MSE on feature-level, but the actually observed SNR-MSE relation originates from
the quantization procedure.

Consider a log-spectral sample from the original and the distorted version; the
distribution of the fingerprint distance would be related to:

E[MSE] ∝ E[(FPY − FPx)2]
∝ E[(log(SY (n, k)) − log(SX(n, k)))2]
= E[Z2],

where Z = log
(

SY (n,k)
SX (n,k)

)
.

In the following we derive the pdf for Z , fZ(z), and it first and second moment,
E[Z] and E[Z2]: Denoting the real and imaginary parts of x(n, k) by random vari-
ables x1 and x2, respectively, the spectrogram SX(n, k) can be written as:

SX = x2
1 + x2

2

The same way we write SY = y2
1 + y2

2 . The joint-PDF for
fX1,X2,Y1,Y2(x1, x2, y1, y2) = fX1,Y1(x1, y1)fX2,Y2(x2, y2) consists of the product
two zero-mean normal distributions fXi,Yi(xi, yi), i = 1, 2 with covariance matrix:
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C =
1
2

⎡
⎣ σ2

X σ2
X

σ2
X σ2

X + σ2
W

⎤
⎦

Converting both (x1, x2) and (y1, y2) to polar coordinates (u =
√

x2
1 + x2

1, v =√
y2
1 + y2

1 , φ = arctan(x2/x1), θ = arctan(y2/y1)) and integrating out the phase
components φ and θ yields a PDF fU,V (u, v):

fU,V (u, v) =
∫ 2π

0

∫ 2π

0

fU,V,Φ,Θ(u, v, φ, θ) dφ dθ

=
4uv

σ2
Xσ2

W

exp
(
− u2

σ2
X

− u2 + v2

σ2
W

) ∞∑
l=0

1
(l!)2

(
uv

σ2
W

)2l

Making a conversion to variable r = v2/u2 = SY (n, k)/SX(n, k), we obtain the
PDF fR(r):

fR(r) =
σ2

W

σ2
X

∞∑
l=0

(2l + 1)!
(l!)2

rl(
r + 1 + σ2

W

σ2
X

)2l+2

Since z = ln(r), the PDF we are looking, fZ(z), is given by:

fZ(z) =
σ2

W

σ2
X

∞∑
l=0

(2l + 1)!
(l!)2

⎛
⎜⎝ exp(z)(

exp(z) + 1 + σ2
W

σ2
X

)2

⎞
⎟⎠

l+1

The pth moment of Z can be obtained through integration:

E[Zp] =
∫ ∞

−∞
zp fZ(z) dz

Its mean is given by:

E[Z] = ln
(

1 +
σ2

W

σ2
X

)
and its second moment is given by:

E[Z2] = ln
(

1 +
σ2

W

σ2
X

)2

− 2Li2

(
1 − σ2

W

σ2
X + σ2

W

)
+

1
3
π2

where Li2(·) is the polylogarithm function with n = 2:

Lin(x) =
∞∑

k=1

xk

kn
|x| ≤ 1



B.1. Relating SNR to MSE for log-spectra and Gaussian iid data 147

The first term in E[Z2] is much smaller than the other terms and can thus be ignored.
For large SNR, σ2

X + σ2
W ≈ σ2

X . Converting to SNR on a decibel scale, we obtain:

E[Z2] ≈ 1
3
π2 − 2Li2

(
1 − 10− SNR/10

)
Using the relation:

π2

6
− Li2(1 − x) = Li2(x) + log2(x) log2(1 − x)

and using Li2(0) = 0 and elementary properties of the ln(·)-function, we obtain:

E[Z2] ≈ ln(10)
5 ln(2)2

· SNR · 10−SNR/10

On a log-scale this works out into:

log10(E[Z2]) ≈ log10(SNR) − SNR
10

+ const

For large SNR, the linear term is dominant, and thus the MSE between the fingerprints
is expected to drop by a factor 10 for and increase in SNR with 10 dB. Using the RMS
measure - like we did in RARE - the fingerprint distance reduces by a factor 10, for
an SNR increase of 20 dB, like we experimentally observed.
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Samenvatting

Een audio fingerprint (letterlijk: vingerafdruk van audio) is een compacte represen-
tatie van een audio signaal. Een audio fingerprint kan worden gebruikt om een audio
bestand of een audio fragment automatisch te herkennen. Het identificeren van een au-
dio fragment gebeurt in twee stappen. In de eerste stap, de enrollment, worden de au-
dio fingerprints van een collectie bekend audio materiaal berekend en in een database
gestopt, voorzien van relevante metadata zoals de naam van het liedje en de artiest.
Het doel van de tweede stap is het herkennen van een audio fragment. Daartoe wordt
van dit fragment de audio fingerprint berekend, en vergeleken met de fingerprints in
de database. Als de database een vergelijkbare fingerprint bevat wordt het fragment
herkend. Het systeem kan dan de juiste metadata uit de database presenteren.

In dit proefschrift ontwikelen we een drietal modellen voor audio fingerprints. De
nadruk ligt hier op de wijze waarop de fingerprint berekend wordt en de eigenschappen
van de fingerprints, en niet zozeer op het daadwerkelijke vergelijken van de onbekende
fingerprint met de fingerprints in de database en de resulterende herkenning. Ook zijn
er geen nieuwe fingerprinting algoritmes ontwikkeld.

Er zijn vele toepassingen van audio fingerprinting bekend of denkbaar, waaronder
het herkennen en vastleggen wat er op radio of TV is uitgezonden, hoeveel mensen
daarnaar luisterden, forensische toepassingen, het herkennen van ongeautoriseerde
uploads van bestanden, het herkennen van muziek op de radio, en het automatisch
doorschakelen naar aanbiedingen op Internet op basis van het geluid van een reclame
op radio of TV.

Wanneer een audio bestand in een ander digitaal formaat wordt opgeslagen of
wanneer een audio fragment wordt verstoord, blijft de fingerprint vergelijkbaar met
de oorspronkelijke fingerprint. Hiermee onderscheidt audio fingerprinting zich van
twee andere technieken: hashing en content based retrieval. De hash van een audio
bestand is eveneens een compacte representatie, maar de hash-waarde verandert on-
herkenbaar als er ook maar een enkele bit in het audio bestand gewijzigd wordt. Twee
audio bestanden die identiek klinken, maar een verschillende digitale representatie
hebben, zullen twee verschillende hash-waardes opleveren, maar hebben een vergeli-
jkbare audio fingerprint. Content-based retrieval wordt gebruikt om die bestanden uit
een collectie te halen die conceptueel op het voorbeeld fragment lijken, bijvoorbeeld
omdat ze tot hetzelfde genre behoren, van dezelfde componist zijn, of door dezelfde
artiest worden uitgevoerd. Audio fingerprinting kan uitsluitend gebruikt worden om
dezelfde opname, mogelijk verstoord of in een andere digitale representatie, te herken-
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nen.
Uiteraard hangen de gewenste eigenschappen van een fingerprinting systeem sterk

af van de toepassing. De eigenschappen die in dit proefschrift centraal staan zijn
de robuustheid van de fingerprint tegen verstoringen van het audio signaal, het on-
derscheidend vermogen van de fingerprint, de nauwkeurigheid waarmee identificatie
plaatsvindt, en de grootte van de fingerprint.

Drie bijdragen staan centraal in dit proefschrift. Ten eerste modelleren we de
statistische structuur van een specifiek audio fingerprinting algoritme, de Philips Ro-
bust Hash (PRH) [44]. De PRH fingerprint is gebaseerd op energie kenmerken van het
onderliggende audiosignaal, en wordt compact in binaire vorm gerepresenteerd. Deze
representatie vormt een ‘samenvatting’ van de temporele en spectrale karakteristieken
van het onderliggende audio signaal, heeft een eigen, karakteristieke structuur. Deze
karakteristieke structuur wordt vrijwel geheel bepaald door enkele parameters in het
fingerprint algoritme.

Het model dat we ontwikkeld hebben beschrijft de structuur van de PRH finger-
print [35] als functie van een aantal parameters. Het model kan worden gebruikt om
de structuur en eigenschappen van de fingerprint beter te begrijpen, en potentieel om
deze te optimaliseeren. We valideren het ontwikkelde model aan de hand van kun-
stmatige ingangssignalen, waarvan de samples onderling onafhankelijk zijn en alle
gegenereerd zijn op basis van dezelfde Gaussische kansverdeling. Deze analyse is
eveneens uitgevoerd, herformuleerd en uitgebreid door Balado, Hurley, McCarthy en
Silvestre [15, 52].

Ten tweede observeren we dat verstoringen in het audio signaal resulteren in ver-
storingen in de audio fingerprint. De verstoringen in het audio signaal tasten door-
gaans de kwaliteit van het audio signaal aan. Het idee is nu om de verstoring in
het audio signaal te schatten door de fingerprint van het verstoorde audio signaal te
vergelijken met de fingerprint van een kopie van hetzelfde audio signaal, maar dan op
hoge kwaliteit [38]. Op deze wijze zou de functionaliteit van een audio fingerprinting
systeem kunnen worden uitgebreid. We hebben een aantal uit de literatuur bekende
audio fingerprinting algoritmes geimplementeerd en vergeleken. De vergelijking laat
zien dat de verschillen tussen de fingerprints die ontstaan ten gevolge van compressie
vergelijkbare karakteristieken hebben.

We modelleren de effecten van verstoringen in de PRH fingerprints ten gevolge
van compressie van, of het toevoegen van witte ruis aan, het onderliggende audio sig-
naal. Het voornaamste resultaat is een wiskundige formule die voor PRH fingerprints
het gemiddelde verschil tussen de fingerprint van het origineel en van de verstoorde
versie relateert aan signaal-ruis verhouding van het ingangssigaal dat eveneens uit
witte ruis bestaat [36, 38]. We valideren de gevonden relatie door middel van simu-
laties. Het model past perfect op de experimentele data voor het type ingangssignalen
waarvoor het is ontwikkeld, en het model is een goede indicatie voor het gedrag dat
we hebben waargenomen voor een groter aantal algoritmes op daadwerkelijke muziek
bestanden.

Ten derde beschouwen we een informatie-theoretisch raamwerk dat door West-
over en O’Sullivan (WOS) is ontwikkeld [104]. De vraag die daarin centraal staat is
‘hoeveel verschillende signalen kun je in een bepaalde setting met een fingerprinting
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systeem van elkaar onderscheiden’. De setting slaat hier op de eigenschappen van
de fingerprint (de grootte van de fingerprint, en de wijze waarop deze gerepresen-
teerd wordt), en de eigenschappen van de omgeving waarin het systeem functioneert
(de eigenschappen van de ingangssignalen en met hoeveel verstoring van de signalen
het systeem overweg moet kunnen). We gebruiken ons voor de PRH fingerprint on-
twikkelde model om te schatten maximaal hoeveel verschillende signalen van elkaar
kunnen worden onderscheiden met een binaire fingerprint zoals de PRH. Tenslotte
bekijken we of de waargenomen verstoringen in de fingerprint ten gevolge van ver-
storingen in het ingangssignaal in het informatie-theoretische raamwerk van Westover
en O’Sullivan passen. We benoemen de verschillen tussen het WOS-model en de
waarnemingen uit experimenten met praktische fingerprint algoritmes.

We sluiten af met aanbevelingen om de ontwikkelde modellen uit te breiden met
modellen die de robuustheid en het onderscheidend vermogen van de fingerprints in
samenhang modelleren; om meerdere soorten verstoringen te beschouwen en de mod-
ellen uit te breiden naar beeld en video fingerprinting; om een evaluatie raamwerk op
te zetten specifiek voor audio fingerprinting; om psycho-acoustische modellen mee te
nemen in het berekenen van de audio fingerprints; en om een theoretisch framewerk te
ontwikkelen waarin specifieke algoritmes afgezet kunnen worden tegen de capaciteits
grenzen.
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