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5. The disparity space image path
Because disparity can be modelled as one dimensional it is possible for a single
scan-line to visualise the match errors for the various possible disparities in the so
called disparity space image which is described in Section 5.1. A description of
what can be seen in the disparity space image is given in Section 5.2. One of the
things which can be found in the disparity space image is the path of true
disparity. Some characteristics of this path are discussed in Section 5.3.

The relationship of the disparity space image with disparity estimation is dealt
with in Section 5.4. The technique by which a disparity path can be found in a
disparity space image using dynamic programming is described in Section 5.5.

A disparity path finding technique based upon the genetic algorithm is presented
in  Section 5.6. Experimental results are presented in Section 5.7.

5.1 The disparity space image
The disparity space image is defined for a corresponding pair of lines from a
stereoscopic picture pair. The picture has dimensions of Hpix rows by Wpix columns.
The intensities for the Wpix  pixels of the ith line of the left image are given by:

s x i x W i HL pix pix( , ) .      where    and   0 0≤ ≤ ≤ ≤ (5.1)

Analogously the intensities for the Wpix pixels of the ith line of the right image are
given by:

s x i x W i HR pix pix( , )      where    and   .0 0≤ ≤ ≤ ≤ (5.2)

The basic form of the DSI, the left DSI, is defined by:

DSI x d
s x i s x d i x d W

i

L L R pix( , )
( , ) ( , ) ( )

.=
− + ≤ + <




      

not defined                         elsewhere    

0
(5.3)

The x values of this DSI can take on the same values as the x values in the original
pictures while the d values are usually bounded by the minimum and maximum
disparities under consideration.

The right DSI is defined by:

DSI x d
s x i s x d i x d W

i

R R L pix( , )
( , ) ( , ) ( )

.=
− − ≤ − <




      

not defined                         elsewhere    

0
(5.4)

Comparison of the formulae for DSIi
L and DSIi

R reveals that DSIi
L is contains the

same information as DSIi
R except that it is skewed along the x=-d axis:
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DSI x d s x i s x d i s x d i s x i

DSI x d d

i

L

L R R L

i

R

( , ) ( , ) ( , ) ( , ) ( , )

( , )

= − + = + −

= +                 
(5.5)

The geometrical mapping of DSIi
L onto DSIi

R is illustrated in Figure 5.1. The
shaded areas are illegal in DSIi

L and DSIi
R respectively, areas where x+d or x-d

respectively is out of range. The actual DSI information in the two DSIs is
contained in the clear, non-shaded, areas. Note that those areas which are illegal in
DSIi

L fall outside of the 0 ≤ x ≤ N-1 range in DSIi
R and vice versa.

As DSIi
R contains no additional information to that contained in DSIi

L  only DSIi
L

will be used henceforth unless the use of DSIi
R  is specifically required.

Because practical digital imagery is affected by noise it is often necessary to apply
prefiltering: calculating differences averaged over a window instead of for single
pixels. For a filter window to be symmetrically centred around a pixel position its
height, Ny, and width, Nx, must have odd integer values greater than one. The
integer values of nx and ny are chosen such that:

N nx x= + ≥2 1 1,    nx (5.6)

and

N n ny y y= + ≥2 1 1,    . (5.7)

Now the expressions for the filtered disparity space image become:

( )
DSI x d n n

s x i s x d i

N Ni

L

x y

L c c R c c
i i n

i n

x x n

x n

x y

c y

y

c x

x

( , , , )
( , ) ( , )

=
− +

⋅
= −

+

= −

+

∑∑  
(5.8)

and

Figure 5.1: Geometric mapping of DSIi
L to DSIi

R.
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(5.9)

Choosing nx = ny = 0 (so that Nx  = Ny = 1) results in the original DSI formulae.

5.2 Interpretation of the disparity space image
Ideally where d corresponds to the true disparity for pixel x of line i the following
equality should hold:

DSI x di

L ( , ) .= 0 (5.10)

Finding the true disparity d for each x co-ordinate is not as easy as finding the d for
which DSIi

L(x,d) = 0 because of several reasons:

(a) There are matches DSIi
L (x,d) = 0 for values of d which do not correspond to the

true disparity.
(b) Because of occlusion (discussed later) there is sometimes no true match for the

pixel at a particular x co-ordinate.
(c) In practice stereoscopic images are not noiseless which means that it is not

possible to rely upon DSIi
L  equalling zero for a true match or even on a DSIi

L

value of zero implying any match at all.

A sample disparity space image is given in Figure 5.2 which represents DSI228
L for

the “aqua” test scene with disparity cropped to +/- 128 pixels. Inspection of this

figure reveals a number of properties typical for disparity space image. These
properties will be reviewed in the following sections.

Figure 5.2: DSI228
L for the first frame of the aqua sequence.
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For the purposes of visual inspection it helps to logarithmically scale the grey scale
values of the pixels in the disparity space image. In the disparity space images
shown on these pages the differences were first mapped to the [0,255] interval,
logarithmically scaled and re-normalised to the [0,255] interval using the
logarithmic display scaling function:

lds x
x

x( )
log( )
log( )

[ , ]= ⋅ + ∈255
1

256
0 255 ,    . (5.11)

Interpreting the effects which can occur in the disparity space image is important
because the disparity space image is in fact the “space” in which disparity
estimators work.

5.2.1 The disparity path
True matches of pixels to their disparity shifted counterparts result in (near) zero
disparity space image values. These true matches are visible as horizontal dark lines
at appropriate disparity levels in the DSI. There are discontinuities in this horizontal
pattern. Close inspection of Figure 5.2 (or another DSIi

L) reveals that the nature of
this discontinuity is different when going from a low disparity to a high one when
compared to the discontinuity when going from a high disparity to a low one. This
will be discussed in more detail in  Section 5.3.

5.2.2 Diagonal clipping
In finite digital images pixels near the left edge (low x) of the left image cannot have
DSIi

L values for low (negative) disparities as this would imply calculating
differences with pixels with negative x co-ordinates in the right image. These pixels
are simply not there to calculate a difference with.  Similarly pixels near the right
edge (high x) of the left image cannot have DSIi

L values for high (positive)
disparities because this would mean having to calculate differences with pixels to
the right of Wpix-1 in the right image. Hence the 0 ≤ x+d < Wpix condition in (5.3). A
similar argument holds for low disparities at the left edge of the right image and
high disparities at the right edge of the right image in DSIi

R.

5.2.3 Vertical edges
The vertical edges in the DSIi

L correspond to edges in scan-line i of the left image.
In DSIi

L  an edge in the left scan-line would have constant x, hence the fact that
vertical line effects are introduced into DSIi

L. The values along a vertical line
correspond to the matches which are found at the various disparity values for the
pixel at x.
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5.2.4 Diagonal edges
The diagonal edges in the DSIi

L  can be equated to edges in scan-line i of the right
image. A constant x co-ordinate in the right scan-line translates to a constant x+d on
the left scan-line. This results in the top-left to bottom-right sloping diagonals in the
DSIi

L .

5.2.5 Parallelogram patterns
The parallelograms which are visible in the DSIi

L   are bounded by a pair of vertical
lines and a pair of diagonal lines as described in Sections 5.2.3 and 5.2.4. The
vertical lines which bound the parallelograms on the left and right correspond to
edges on the scan line from the left picture. Assuming that these edges belong to
“objects” each such object in the left image produces a pair of vertical edges in the
DSIi

L. These edges bound one or more parallelograms. Dark parallelograms (low
DSIi

L values) indicate matches of pixels from the right scan-line to the left scan-line.

Uniformly dark parallelograms correspond to homogenous objects, objects for
which the I value is almost constant so that a pixel from the object in the right-scan-
line matches well to a number of pixels in that same object in the left scan-line. For
these parallelograms the height from top vertex to bottom vertex is equal to twice
the width from left vertex to right vertex. This proportionality of vertex lengths does
not hold for matches of pixels from an object to pixels of similar I value in other
objects which also produce parallelogram patterns.

Textured parallelogram patterns correspond to objects of non homogenous intensity
where pixel match values van vary within an object.

5.2.6 Diagonally crossing stripe patterns
Where pixels from an object can find a match only at true disparity a light (high
DSIi

L values) diagonal cross pattern will be formed. At the intersection of the
vertical and diagonal there will be a dark spot which is part of horizontal dark
disparity path line except when the object in question is occluded in the alternate
picture and there is absolutely no match for it. An example of such a diagonal cross
is the instance caused by the light reflection on the middle fish in Figure 5.2 where
the high I values are unique for scan-line 228 so that no matches other than the true
disparity match may be found.

5.2.7 Disparity space image degeneration
When the left and right view images come from a camera which has a larger base
line and/or convergence angle degeneration of the disparity space images occurs as
illustrated in Figure 5.3.
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The left and right view images in the figure were shot with a camera with a
relatively large base line. It will be readily apparent that the differences between left
and right view images now exceed pure horizontal shift. The two images contain
different aspect views of the same face.

The corresponding disparity space images lack the clearly discernible dark disparity
path described in Section 5.2.1. Also the parallelogram patterns, which are bounded
by straight lines in good disparity space images, start to show degenerate curved
edges.

5.3 Rules for the disparity path
In Figure 5.4 a scene is depicted which is invariant in the Y component sense which
means that we can think of either as flat or as mirror symmetric with regard to any
plane which is parallel to the X-Z axis. Either way all scan-lines of this scene will be
identical and it the disparity path along one of these scan-lines which is discussed
here.

Figure 5.3: Example of degenerate disparity space images.
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The scene contains three objects A, B, and C. A forms the background of the scene
while C is nearest to the observer and B lies at a depth somewhere in between the
two. In analogy to the thought behind DSIi

L the left eye will be considered as
scanning the scene from left (low x) to right (high x) while it a disparity match is
sought in the material observed by the right eye. The corresponding plot of x versus
d is referred to as the left disparity path for this scan line.

Initially, at the extreme left of the scene, the points on A observed by the left eye
can be matched by the same points as observed by the right eye. As A is the furthest
object in the scene this disparity match is made at the highest disparity present in
the scene, dA. At a point x1 it is no longer possible to find a match for A because the
right eye’s view of it is occluded by B. As the scanning goes on the left eye
encounters the left edge of B at point x2. As the right eye can also see this point the
disparity continues after x2 at a level of dB. Between x1 and x2 (the piece which
corresponded to the part of A which is occluded to the right eye) the disparity is
indeterminate as indicated by the dotted line in Figure 5.4.

The same effect of disparity transition occurs where the left edge of C occludes part
of B to the right eye this time with the occlusion between x3 and x4.

Just after having passed x4 the left eye sees C which is also visible along its
complete length to the right eye so that it may be matched at a disparity of dC upto
x5. After x5 B again becomes visible to the left eye. The first point on B that

Figure 5.4: Example scene with corresponding left disparity path.
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becomes visible to the left eye is also visible to the right eye so that a match at a
disparity of dB can immediately be made from x5 onwards. Similarly A becomes
visible to both eyes at x6 so that a disparity match at dA  can be made from x6

onwards.

It will be clear that there are two types of disparity discontinuity in this left disparity
path. The transition from high to low disparity means that the left eye encounters
the left edge of (relative) foreground object while scanning along the line. A part of
the relative background has been occluded to the right eye. The size of this piece of
background which is occluded is directly proportional to the disparity difference.

Because this occlusion had been caused by the left edge of an occluding object this
kind of occlusion is referred to as a left occlusion.

The transition from low to eye disparity means that the left eye encounters a
background object after a foreground object. Nothing will have been occluded from
the right eye and thus the disparity transition takes the form of a clean jump.

The situation with the right disparity path where the right eye scans from left to
right and a match is made with what is perceived by the left eye in analogy of DSIi

R

is sketched in Figure 5.5.

The main difference is that the high to low disparity transition is now a clean jump
while the low to high disparity transition corresponds to an occlusion region. As this

Figure 5.5: Example scene with corresponding right disparity path.
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effect is now caused by the right edge of an occluding object it is referred to as a
right occlusion.

In this work the sign of disparity is chosen the same in the left and right disparity
space image and in the left and right disparity path. In high disparity implies “far”
and low disparity means “near”. Sometimes disparity is also taken to have opposite
signs in left and right disparity space image and disparity path. This has the
advantage of the rules by which disparity jumps are made are identical in both left
and right disparity paths. It does however have the disadvantage that disparity now
gets assigned different physical meaning in left and right data.

It should be noted that there is one pathological situation in which the disparity path
rules given here won’t hold. That is when the width of the occluding object (in
pixels) is smaller that amount by which its disparity is lower than that of the object
it occludes. This is illustrated for a left disparity path in Figure 5.6.

As the left eye scans from left to right can no longer match parts of A from x1

onwards and a region of left occlusion sets in. However C is very small so that the
right eye can actually see round it and it is possible to find a disparity match at dA

for the parts of A between x2 and x3. From x3 onwards things again proceed as for a
normal left disparity path.

This problem is called ordering constraint violation because it effectively means that
there is a part of A which the left eye perceives as being to the left of C while the

Figure 5.6: Example of ordering constraint violation.
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right eye perceives that part of A as lying to the right of C. The relative order of
objects changes from the perception of the left eye to the perception of the right
eye.

If ordering constraint occlusions can occur then the rules derived previously for the
disparity path are (partially void). Whether ordering constraint violations occur and
form a practical problem depends on the material being used, the scene in question.
Particularly scenes shot at close range with a large base line will tend to present
problems. Most “TV” type material shot at a longer distance with a larger base line
will not present any problems.

5.4 Disparity space images and disparity estimation
Disparity estimators which estimate horizontal disparity examine an x-d match error
space which, in essence, is the disparity space image. Therefore the disparity space
image can bring insights into the working of existing disparity estimators and it can
be of help in the designing of new disparity estimation techniques.

Blockmatchers do not estimate d for all possible x but only for a subset of all
possible x which corresponds to (the centres) of the blocks used. Also the blocks
are not pixel sized as can be reflected in the nx and ny parameters of the disparity
space image formulae.

A full search blockmatcher used as disparity estimator searches the same range of d
for every x for which it has to estimate a vector. The d which corresponds to the
lowest error is selected and output as the estimated d. This corresponds to looking
at a column in the disparity space image and selecting the “blackest” d. Often this d
will be quite correct but in the presence of non-negligible noise it can also be wrong
as can be seen on inspection of full search blockmatcher results.

The recursive blockmatcher takes the d estimated for the previous x examined and
searches a limited disparity range around this value. If the previous d was on the
correct disparity path then this will reduce the chances of a d being chosen which
corresponds to a match error minimum which is not on the disparity path. There will
be problems with occlusion jumps, especially when these are too large in
magnitude. Large parts of the disparity space image will never even be examined by
the recursive blockmatcher. It may well be that parts of the true disparity path are to
be found in these areas.

The effect of hierarchical blockmatchers can be likened to a full searcher operating
on a disparity space image calculated with large nx and ny. As inspection of {???}
shows disparity space images calculated with large nx and ny have a disparity path
which can be safely found with a full search blockmatcher. In later hierarchical
levels refinements are made to this initial path using disparity space images
calculated with smaller nx and ny. As with the recursive blockmatcher the disparity
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space image on the final hierarchical level will have been examined in a limited
area.

The genetic vector field estimator of the previous chapter is less simple to describe.
It operates on vector fields and not distinct vectors. This means that a disparity path
(a row of vectors) can be influenced by disparity paths above and below. Just
looking in the horizontal sense the hybrid vector field mutation operator takes a
single point on the disparity path, tries to update the disparity and then propagate it
to the left and right. The vector field crossover operator chooses a spot along the
path. It then determines the (constant disparity) part of the path to which this spot
belongs in the two parent paths and exchanges the two path sub parts.

The two things which the genetic vector field estimator does not know about are
occlusion and the rules which the ordering constraint imposes on the disparity path.

5.5 Disparity path finding with dynamic programming
Finding a good disparity path which corresponds to good matches and which obeys
the strictures which the ordering constraint imposes on a disparity path is a problem
which is closely related to classic combinatorial problems from the field of
operations research like the travelling salesman problem and the stagecoach
problem where a minimum cost “path” of some kind is the objective.

A standing technique for finding disparity paths in disparity space images uses
dynamic programming [Intill93]. The term dynamic programming covers a wide
range of techniques [Hill89]. The basic idea is that dynamic programming starts by
examining a small part of the problem and finding an optimal solution for this part
of the problem. It then extends the problem a little bit and extends the previously
found optimal sub-problem solution to a solution which covers the current, slightly
extended, view of the problem. This extension/solution cycle is repeated until the
problem is solved in its entirety. Particularly for larger problems the computational
savings when compared to full enumeration can be enormous.

The dynamic programming technique for disparity path finding will be explained
here by illustrating it in an example. Left and right scan-line data for this example
are given in Table 5.1:

The actual disparity in the example scene corresponds to a background at a
disparity level of +1 and a foreground object three pixels wide at a disparity level
of -2. This foreground object has an intensity value of 100 and extends from x = 5
to x = 7 on the left scan-line and because it has a disparity of -2 it extends from

Table 5.1: Example scan-line data.

x 0 1 2 3 4 5 6 7 8 9 10 11
IL 5 10 15 20 25 100 100 100 75 80 85 90

IR 0 5 10 100 100 100 44 69 70 75 80 85
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x = 3 to x = 5 on the right scan-line. The cells corresponding to the object location
on the left and right scan-lines have been shaded in Table 5.1. Data for a left
disparity space image is calculated for these two scan-lines across a disparity range
of -3…3 and is listed in Table 5.2. In this table those locations in the bottom left
and top right which correspond to x+d going out of bounds have artificially large
values inserted (in this case 999).  Also those locations in the disparity space image
data which correspond to the true disparity path (which is known because this is an
artificially constructed example) have been shaded.

On the disparity path it was not possible to choose a disparity of +1 for x = 11
because this would imply matching the intensity value at x = 11 on the left scan-line
to the intensity value at x = 12 on the right-scan line. As this data is simply not
available the next best thing which can be done in this case is to match at a disparity
of 0.

Now to start finding the disparity path using dynamic programming the problem is
first limited to finding a disparity path from x = 11 onwards, out of the disparity
space image. What costs are involved in this? Simply the relevant matching error
values from the last column disparity space image. These errors are entered into the
cost table which is given in Table 5.3. The entries of this table are referred to as
Ci

L(x,d). The L superscript denotes that this table is belongs with a left disparity

Table 5.2: Disparity space image values for example data.

d x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9 x=10 x=11
3 95 90 85 24 44 30 25 20 10 999 999 999
2 5 90 85 80 19 31 30 25 5 5 999 999
1 0 0 85 80 75 56 31 30 0 0 0 999
0 5 5 5 80 75 0 56 31 5 5 5 5

-1 999 10 10 10 75 0 0 56 6 10 10 10
-2 999 999 15 15 15 0 0 0 31 11 15 15
-3 999 999 999 20 20 90 0 0 25 36 16 20

Table 5.3: Cost matrix for example data.

d x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9 x=10 x=11
999 999 999 999 999 999 999 999 999 999 999 999

3 20 20 20 20 17 14 11 11 11 1000 1000 999
2 18 18 18 18 18 15 12 9 9 91001 999
1 16 16 16 16 16 16 13 10 7 7 7 999
0 17 17 17 14 14 14 14 11 8 8 8 5

-1 18 18 18 15 12 12 12 12 9 9 9 10
-2 19 19 19 16 13 10 10 10 10 10 10 15
-3 20 20 20 17 14 11 11 11 11 11 11 20

999 999 999 999 999 999 999 999 999 999 999 999
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space image and disparity path while the i subscript indexes the scan-line, x denotes
the horizontal co-ordinate and d stands for disparity.

For x = 11 the optimal d is found to be 0 because no match can be made at d = 1.

Next the problem is extended to finding a disparity path (out of the disparity space
image) from x = 10 onwards, i.e. the costs for the x = 10 column of the cost matrix
have to be determined. There are three possibilities for each cell entry. The idea is
to choose the minimum of these three.

This first possibility is that the current cell at (x,d) is part of a horizontal piece of
the disparity path. The costs for getting out of the disparity space image from this
cell are equal to the appropriate disparity space image value for this cell plus the
minimal path completion costs for the cell directly to the right. Thus the value of the
first candidate cost cci

L,1(x,d) is given by:

cc x d DSI x d C x di

L

i

L

i

L,1( , ) ( , ) ( , )= + + 1 . (5.12)

A second possibility is one where the current cell is part of a diagonal occlusion
transition in the disparity path. In this case the minimal cost for getting out would be
equal to the cost of getting out from the cell directly below and to the right plus a
penalty value pd  for making the diagonal jump. Using a disparity space image value
would not be appropriate here because disparity space image values are match
errors and if an occlusion is assumed then that logically excludes a match. The
penalty value is required to stop the dynamic programming algorithm from
gratuitously deciding on diagonal transitions. So the second candidate cost now
becomes:

cc x d p C x di

L

d i

L, ( , ) ( , )2 1 1= + + − . (5.13)

The third and last possibility is the one where the current cell is part of a sheer
vertical disparity rise in the disparity path. In this case the cost of getting out from
the current cell onwards is equal to a penalty value pv plus the cost of finishing the
path from the cell above onwards:

cc x d p C x di

L

v i

L, ( , ) ( , )3 1= + + . (5.14)

As long as pd > 0 it is in principle possible to choose pv = 0 because gratuitous
vertical jumps in the path would be penalised by subsequent diagonal descents.

When the three candidate costs have been determined the cost for the current cell is
simply set to the minimum of the three:

C x d cc cc cci

L

i

L

i

L

i

L( , ) min{ , , },1 , ,= 2 3 . (5.15)

Because the costs for a cell depend on those for the cell above the costs should be
calculated from top to bottom in a column. The order in which the columns are
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evaluated is from right to left in keeping with the idea of extending the problem in a
step by step fashion.

The values in Table 5.3 were calculated as described above using the values in
Table 5.2 and  pd = 2 and pv  =  1. When the whole of Ci

L has been filled the
disparity path can be found by tracing the path of minimum cost back through Ci

L,
from left to right, jump for jump. determining the d which corresponds to the
minimum cost value in each column.

The three possible candidate costs for a cell in Ci
L(x,d) are illustrated graphically in

Figure 5.7. The figure also illustrates the three basic directions involved in the right
to left disparity path tracing along a small example disparity path.

The situation for the right disparity space image and disparity path is entirely
analogous except that the vertical direction of the diagonal and discontinuous jumps
is reversed:

cc x d DSI x d C x di

R

i

R

i

R,1( , ) ( , ) ( , )= + +1 , (5.16)

cc x d p C x di

R

d i

R, ( , ) ( , )2 1 1= + + + , (5.17)

cc x d p C x di

L

v i

R, ( , ) ( , )3 1= + − , (5.18)

and

C x d cc cc cci

R

i

R

i

R

i

R( , ) min{ , , },1 , ,= 2 3 (5.19)

as illustrated in Figure 5.8.

The order in which Ci
R is constructed is again right to left but now each column in

constructed bottom (low d) to top (high d).

Figure 5.7: Candidate costs for Ci
L(x,d).
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In fact the right disparity path can be found using exactly the same algorithm and
formulae as the left disparity path if the left and right input scan-lines are exchanged
and the sign of the d on the calculated path is reversed.

Some disparity paths which have been calculated by applying the dynamic
programming technique are shown in Figure 5.9 along with the disparity space
image in which they were calculated.

Figure 5.8: Candidate costs for Ci
R(x,d).

Figure 5.9: Influence of  occlusion penalty on disparity path.
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As can be seen from the figure the choice of pd  is a question of
compromise. Choosing pd too large brings with it the danger of larger occlusion
jumps not being correctly identified because pd multiplied by the size of the
occlusion jump is a value larger than the disparity space image value penalty which
will be incurred along the alternative non-occluded path.

Also an occlusion jump of one pixel only from one non-occluded part of the path to
another should not really be penalised at all because it merely reflects the fact that a
single object can have a disparity gradient along a scan line. The central rock in the
“aqua” test-scene is an example.

On the other hand when pd  is chosen too small “wiggles” (Figure 5.10) will start to
appear in the horizontal, non-occluded parts of the disparity path as a result of small
occlusion jumps being made which are advantageous in terms of path cost but
which are based on noise.

Also there is the danger of the completely degenerate solution appearing where a
whole path is made up of occlusion jumps. In fact with a pd = 0 and pv = 0 this
degenerate solution is guaranteed to be found because it corresponds to a path cost
of zero!

In order to avoid these problems a path cost function is required which is capable of
distinguishing between occlusion jumps and changes in disparity because of the
disparity gradient in a object. Occlusion jumps must have some kind of penalty
associated with them because if they do not then the degenerate solution will be
optimal. This penalty must not penalise larger occlusion jumps more than small
occlusion jumps because in principle both are equally valid.

Such a cost function will need to have more global information about the path
available to it then has the dynamic programming algorithm for disparity path
finding which, in keeping with the Markovian nature of dynamic programming in
general, calculates cost incrementally on a very local basis, independently of the
part of the path which has yet to be determined.

Along with an improved cost function an optimisation algorithm will be required
which is capable of finding an optimal path in terms of this cost function.

Figure 5.10: Problems with small occlusion penalty.
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5.6 A genetic disparity path finding algorithm
The genetic algorithms described in the previous Chapter are a suitable choice of
optimisation algorithm for finding a good disparity path according to a cost
function. As with the genetic vector field estimation the design of a genetic
algorithm for finding a path in the disparity space image again comes down to
reflecting knowledge of the problem at hand onto the chromosome encoding
technique, the fitness function and the reproduction operators.

The discussion of the genetic disparity path finding algorithm will be given for left
disparity paths and disparity space images but subject to the appropriate
modifications it is off course also applicable to right disparity paths/disparity space
images like just as with the dynamic programming algorithm.

5.6.1 Path encoding
As the solution which is required is a disparity path stretching from the left of the
disparity space image to the right of the disparity space image a chromosome
should describe such a path.

One way of encoding a disparity path would be to store the locations of all key
points (where a piece of path starts and how far it extends) in a list of nodes. As a
typical disparity path has no more than 25 or so of such nodes such an encoding
strategy would result in very compactly encoded chromosomes.

However, these chromosomes would also be of variable length. Variable length
chromosomes introduce the problem of how to perform crossover. With variable
length chromosomes it is no longer possible to choose a cross site in one parent
chromosome and to use that same cross site in the second parent chromosome. In
variable length chromosomes there is no genotypic correspondence between
identical positions in two different lists.

Crossover with variable length chromosomes is possible but the way to do it is to
perform it on a phenotypic as opposed to a genotypic basis [David89]. Supposing a
node is selected for crossover in the first parent chromosome. This node
corresponds to a location at (x1,d1). In order to find a suitable node for crossover in
the second parent chromosome its list of nodes is searched for a node with (x2,d2) as
near as possible to (x1,d1) according to some distance measure.

A second possibility of encoding a disparity path is to use a fixed length encoding
and store a single d for each x thus resulting in a chromosome containing Wpix

disparity values. This is conceptually less elegant and also less compact than the
variable length encoding based on nodes. On the other hand genotypic crossover is
now possible.

The choice between the two encoding strategies cannot really be made on
functional merit because when it comes to choosing between the two there is the
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fact that there is nothing which can be done using the variable length encoding
which can’t be done using the fixed length encoding and vice versa. Even genotypic
crossover can be performed after a fashion using the variable length encoding if
extra (redundant) nodes are inserted when required.

In this work the fixed length encoding was chosen because of its similarity to
genetic vector field estimation.

The notation used for the disparity path element corresponding to the co-ordinate x
is:

DP x x Wpix( ),    where 0≤ <

5.6.2 Path fitness
For the fitness function the mechanism of linear normalisation will be used, i.e. the
paths in the population will be sorted according to increasing cost and decreasing
fitness.

The main component of the cost function will again be sum of the disparity space
image values along the non-occluded (horizontal) path.

Parts disparity transitions of +/- 1 are not considered as occlusions and thus are not
penalised by added cost: this does however mean that crossover and mutation
operators must not create such jumps gratuitously.

Each (diagonal) occlusion transition (with a disparity jump greater than 1) is
assigned a cost penalty pg.

So the total cost for a path becomes equal to the sum of disparity space image
values along the non occluded path parts plus pg  times the number of occlusion
jumps of magnitude greater than one.

5.6.3 Path mutation
One essential feature which can be incorporated into the path mutation operator is
“best match” searching behaviour. This should be coupled to the fact that spurious
noise based best matches for a single pixel are not desirable.

Also the result of the mutation must be a legal disparity path which obeys the
strictures imposed by the ordering constraint (the input disparity path must be legal
too).

This leads to the following description for the path mutation operator:

1. A random location xr is chosen along the path. xr is generated according to a
uniform distribution over [0, Wpix>.
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2. The disparity space image column xr is searched for the dm which corresponds to
the lowest value.

3. The d found in step (2) is recursively propagated to the left and right of xr for as
far it continues to give lower or equal disparity space image values. I.e. DP(xr-1)
is replaced by dm if DSIi

L(xr-1,d)>DSIi
L(xr,dm) and so forth.

4. If recursive propagation was not possible and only DP(xr) was changed then this
change is undone and the operator is finished.

5. To the left and right of the x range that has been modified the path is corrected in
order to make it obey the rules of the ordering constraint.

This path mutation operator is illustrated in Figure 5.11.

The x range across which dm could be propagated is shaded. On the mutated path
the disparity is set to dm along this range. To the right of this range no correction
was necessary because the discontinuous transition to a higher disparity from left to
right is legal as legal transition according to ordering constraint rules. To the left of
the range corrections did have to be made because the right to left transition to a
higher disparity must go along a step by step diagonal. Both initial and mutated
disparity paths are legal.

5.6.4 Path crossover
The vector field crossover operator works by identifying areas of constant disparity
and exchanging these between two parent paths, performing legalisation on the

Figure 5.11: Disparity path mutation operator.



94 DSI R.E.H. Franich

resulting child path if and where necessary. The path crossover operator for two
disparity path DP1 and DP2 can be described as follows:

1. A single random location xr is chosen for both of the parent paths. xr is generated
according to a uniform distribution over [0, Wpix>.

2. In DP1 the contiguous x range containing xr which shares DP1(xr) is determined.
Similarly the contiguous x range containing xr  which shares DP2(xr) is
determined in DP2.

3. The range found in DP1 is copied to DP2 and the range found in DP2 is copied to
DP1. If either range has a width of 1 (it lies on a diagonal disparity transition)
then it is not copied.

4. To the left and right of the copied ranges the path is corrected in order to make it
obey the rules of the ordering constraint.

Disparity path crossover is illustrated in Figure 5.12:

5.7 Experiments
As with the genetic vector field estimator correct settings for some of the
parameters of the genetic disparity path finding algorithm are important. A
combination of population size and number of generations which works well is a
population size of 100 and 100 generations.

Steady state reproduction policy without checking for duplicates was used.
Initialisation was performed with paths of random, constant, disparity level.

Just as the dynamic programming algorithm requires penalty parameters pd and pv

the genetic algorithm for disparity path finding requires the penalty parameter pg.
The difference between the dynamic programming approach and the genetic
algorithms approach shows itself most clearly in the fact that it is possible to set a

Figure 5.12: Disparity path crossover.
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pg , for the genetic disparity path finding algorithm, such that it works well on both
the sequence “mirror” (in terms of the accuracy scores) and on the “aqua” sequence
(subjective evaluation of disparity fields). This is not possible for the dynamic
programming version. A pd which works well on “mirror” does not produce good
results on “aqua” or vice-versa.

The accuracy results on “mirror” are shown in Figure 5.13 and the entropy figures
are plotted in Figure 5.14.
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Figure 5.13: Accuracy of  genetic DSI disparity estimation.
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Figure 5.14: Entropy of genetic DSI vector fields.
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Accuracy without noise present and at 30dB noise level is very similar. Accuracy at
20 dB noise level is even higher than for the genetic block matcher. Entropy figures
are much lower than for any block matcher but it should be noted that these
correspond to a dense disparity field.

The left disparity field for “aqua” is shown in  Figure 5.15 while the right disparity
field is shown in Figure 5.16. The significance of the grey scale values is as with the
disparity fields presented in earlier chapters except that white now corresponds to
detected occlusion areas.

Figure 5.15: Dense left disparity field for "aqua".
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Figure 5.16: Dense right disparity field for aqua.


