

Private Computing
with

Untrustworthy Proxies

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 4 oktober 2011 om 15:00 uur
door Bartlomiej GEDROJC
elektrotechnisch ingenieur
geboren te Poznań, Polen.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. R.L. Lagendijk

Copromotor:
Dr.ir. J.C.A. van der Lubbe

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. R.L. Lagendijk, Technische Universiteit Delft, promotor
Dr.ir. J.C.A. van der Lubbe, Technische Universiteit Delft, copromotor
Prof.dr.ir. S.M. Heemstra de Groot, Technische Universiteit Delft
Prof.dr.ir. H.J. Sips, Technische Universiteit Delft
Prof.dr. Y.-H. Tan, Technische Universiteit Delft
Prof.dr. S. Etalle, Technische Universiteit Eindhoven
Prof.dr. P.H. Hartel, Universiteit Twente

Published by VSSD

ISBN 978-90-6562-282-2

Cover: M&M’S R�

Copyright c� 2011 by B. Gedrojc

All rights reserved. No part of this thesis may be reproduced or transmitted in any
form or by any means, electronic, mechanical, photocopying, any information stor-
age or retrieval system, or otherwise, without written permission from the copyright
owner.

to Q

Preface

The research for this thesis was conducted within the PAW project. PAW (Privacy in an
Ambient World) was a Dutch Ministry of Economic Affairs funded project through the
IOP GenCom program, managed by Senter, which started October 2003 for a period
of 4 years. PAW build on the results obtained during the European Union funded PISA
(Privacy Incorporated Software Agent) project. The objective of the PAW project was
to develop a privacy protecting architecture that could provide full privacy of the user
in an ambient world.

The following parties participated in the PAW project: TNO ITSEF, TNO Telecom,
Radboud University Nijmegen, University of Twente and Delft University of Technol-
ogy.

The task of Delft University of Technology within the PAW project was to answer
two questions in the area of Private Computing. The first question was whether it is
theoretically possible to protect mobile software against privacy and security attacks
while these programs are executed at untrustworthy proxies. The second question
was whether the conventional cryptographic algorithms are applicable in this mobile
environment. A likely answer to this question was no and then new algorithms had to
be developed in order to be able to provide full privacy at these untrustworthy proxies.
The result of this work is presented in this thesis.

B. Gedrojc, Rijswijk, September 2011.

Table of Contents

Preface v

1 Introduction 1
1.1 Privacy . 2
1.2 Problem Addressed . 4

1.2.1 Collecting Private Data . 6
1.2.2 Comparing Private Data . 7

1.3 Organization and Contribution . 8
1.3.1 Organization . 8
1.3.2 Contribution . 9

2 Private Computing Problems 11
2.1 Introduction . 11
2.2 The Selection and Collection Problem 13

2.2.1 Scenario . 13
2.2.2 Assumptions . 14
2.2.3 Threats . 14
2.2.4 Requirements . 15
2.2.5 Problem addressed and Approach 15
2.2.6 Related work . 17

2.3 The Comparison Problem . 19
2.3.1 Scenario . 20
2.3.2 Assumptions . 20
2.3.3 Threats . 21
2.3.4 Requirements . 21
2.3.5 Problem addressed and Approach 21
2.3.6 Related work . 22

2.4 Discussion . 24

viii Table of Contents

3 Parallel Selection and Collection 27
3.1 Introduction . 27
3.2 Requirements and High-level Overview 31

3.2.1 Phases . 31
3.2.2 High-level Overview . 32
3.2.3 Database Secrecy revision 34

3.3 Parallel Selection and Collection Protocol 35
3.4 Security and Efficiency . 37

3.4.1 Efficiency analysis . 37
3.4.2 Security Analysis . 37

3.5 Discussion . 39

4 Sequential Selection and Collection 41
4.1 Introduction . 41
4.2 Definitions . 43

4.2.1 Model . 43
4.2.2 Requirements and Assumptions 44

4.3 Approach . 45
4.4 Sequential Selection and Collection Protocol 46

4.4.1 Initialization and Selection 46
4.4.2 Collection . 49
4.4.3 Finalization . 50

4.5 Example . 51
4.6 Security . 53

4.6.1 Protection Against Replay Attacks and Copying 53
4.6.2 Redundant Itinerary . 54
4.6.3 Protection of Itinerary . 54
4.6.4 Weak protection of Signing Key 54
4.6.5 Threat Model and Complexity 55

4.7 Discussion . 56

5 Single Comparison 57
5.1 Introduction . 57
5.2 Scenario . 60
5.3 Homomorphic E-E-D . 61
5.4 Protocol . 63
5.5 Security Analysis . 66
5.6 Discussion . 67

ix

6 Multiple Comparison 69
6.1 Introduction . 69
6.2 Problem Statement . 70
6.3 Cryptographic Techniques . 71

6.3.1 Extended ΦHA . 72
6.4 Protocol . 73
6.5 Security . 75
6.6 Discussion . 78

7 Discussion 79
7.1 Summary of the Results . 79

7.1.1 Collecting Private Data . 79
7.1.2 Comparing Private Data . 80

7.2 Discussion . 82

A Cryptographic Building Blocks 85
A.1 Homomorphic Encryption . 85

A.1.1 RSA . 86
A.1.2 ElGamal . 86
A.1.3 Paillier . 87
A.1.4 Damgård-Jurik cryptosystem 87

A.2 Threshold Cryptography . 87
A.2.1 Secret Sharing . 87

A.3 Oblivious Transfer (OT) . 88
A.3.1 Adaptive OT from Blind Signatures 88
A.3.2 OT using Homomorphic Encryption 89

A.4 Hash Chaining . 89
A.5 Φ-Hiding Assumption . 90

Bibliography 92

Samenvatting 107

Summary 109

Acknowledgements 111

Curriculum Vitae 113

Chapter 1

Introduction

At the end of the 20th century, with the birth of internet, the digital globalization was
a fact. The growth of the Internet to a worldwide scale made it possible to acquire a
vast amount of information within seconds and gave the possibility to communicate
virtually with everybody around the globe like they where standing next to us.

Technically this was made possible by connecting various devices and computer net-
works with each other, creating a web of connected devices which pass-on information
from one device to another. Connecting to the web requires a proxy capable of reg-
istering connections to the web in order to facilitate proper communications. Internet
Service Providers are proxies capable of providing Internet connection to companies
and consumers via wired connections; and within the mobile domain (Mobile Phones,
Smartphone, Personal Digital Assistants) the mobile operators are proxies able to pro-
vide Internet access to their mobile users via wireless connections.

Once connected to the Internet, the web provides various services e.g. email, access
to dictionaries, encyclopedia, search engines. These, usually ’free’, services are all
provided through proxies e.g. Microsoft, Yahoo, Google. To remain free these proxies
use advertisements. In order to provide the most interesting advertisement for the
correct person, private information is needed. For example, search engines base their
advertisement on the search query. Free webmail shows the advertisement based on
the emails in your inbox. Mobile devices using global positioning systems or based
on network triangulation provide advertisement based on the location of the user.

Having Internet connection and using services on the internet, we are neither directly
connected to the source of information we are querying for directly connected to nor
the person we are speaking to. The reason for this is that various proxies are always
in between our communication and therefore always have access to our private data.
For example, when accessing the mobile phone network, the mobile phone operator
always knows our geographic location. When searching the Internet, our Internet
Service Provider learns what we are searching for and the search engine learns what
we are querying. Furthermore, when private information is stored at a proxy, this

2 Introduction

proxy has complete control over our private data.

Proxies are trusted not to reveal the Internet behavior and private data of their users
to other parties (unless the user makes everything explicitly publicly available e.g.
when using Twitter or publishing pictures on Facebook). Unfortunately, private data
leaks out unwanted [149] or proxies keep records of all private communications for
business purposes [47] or due to governmental legislation [16, 48]. Proxies should be
considered untrustworthy by their users when handling private data i.e. untrustworthy
proxies are not trusted of keeping private information private. Users should especially
consider the consequence of free Internet services when advertisement is the main
source of income.

When browsing the internet, proxies are inevitable. Although they pose a potential
threat to our privacy, they can be used to perform automated and powerful compu-
tations e.g. query hundreds of websites simultaneously. The question is, can proxies
perform these computations while their users still remain in control of their privacy?

1.1 Privacy

There exist various definitions for privacy. The definition by Alan Westin [156] defines
privacy from a ‘control of information’ point of view: “The ability to determine for
ourselves when, how, and to what extent information about us is communicated to
others”. Privacy is an abstract and controversial notion which can be divided into four
categories [119, 132]:

Personal privacy – Concerned with limitations on interference into home, private
life, personal property, public space or workplace e.g. video surveillance or
identity checking.

Physical privacy – Concerned with the protection of the integrity of person’s body
e.g. in case of genetic testing, drug testing and medical testing. It is also con-
cerned with the protection against individuals having access to information
about the physical health of a person e.g. doctors, employers and insurance
companies.

Communications privacy – Concerned with individuals being able to communicate
amongst themselves using mail, telephones, e-mail or any other forms of com-
munication without being routinely monitored by other persons or organiza-
tions.

Information privacy – Concerns that private data will only be used for the purpose
for which it was collected and not disclosed to others without consent e.g. credit
information, and medical and government records. Also referred to as data
privacy.

Due to the technological advances like the Internet, we should all be concerned with
the privacy of our private data i.e. information privacy. In our perspective the challenge

3

on the Internet is to share data while protecting Personal Identifiable Information (PII)
i.e. any information related to an entity or individual who is the subject of the infor-
mation. PII is considered non-public data as defined by law or personal policy and
can be used to identify, contact, or locate a person e.g. his/her social security number,
birthday, health information, ethnicity or home address.

Private data or PII has become a commodity [127] and is used to gain discount at the
local supermarket or to access to free services on the Internet, like search or webmail.
Protecting our privacy on the Internet can be regulated, but not be guaranteed, by
legislation. To accomplish information privacy on the Internet it needs to be enforced
by technology such as Privacy Enhancing Technologies (PET), defined by [18]:

“A system of ICT measures protecting informational privacy by elimi-
nating or minimising personal data thereby preventing unnecessary or
unwanted processing of private data, without the loss of the functionality
of the information system.”

By using privacy enhancing technologies, users can employ a range of programs and
systems that provide a degree of privacy and security. We have divide privacy enhanc-
ing technologies into four separate but related categories:

1. The first category is self-determination, by letting the user remain in control
over the information that is communicated to a service provider. For example,
by minimising the communication of private data. Only the relevant information
can be collected by the service providers. Another solution is to use a unidirec-
tional network where information flows from the service provider to the user
but not the other way around [89].

2. The second category is that there is an agreement between the user and the
service provider about how to handle private data. This can vary from data
tracking, where the service provider is enforced to use techniques that log and
archive the handling of the users private data e.g. cryptographic traces [151,
152]. Or based on policies, which can be derived from legal rights, about data
handling like inspection, manipulation or deletion.

3. The third category is to separate the private data from the information related to
a user i.e. removing the link between the data and the identity of the user. For
example by choosing a degree of anonymity and replacing the identity with mul-
tiple fake identities (pseudonyms). Other solutions are electronic cash [34, 37],
anonymous digital credentials [35], mix networks [33, 90] and onion routing
[79].

4. The fourth and final category is to protect private data while preserving the re-
lation between the data and the information related to the user. This can be
achieved by using for example encryption tools which prevent unauthorised ac-
cess to the private data. Other solutions are Oblivious Transfer [3, 128, 148],
Homomorphic encryption [62, 125, 131], Multi-Party Computation [36, 77,
158] or Threshold Cryptography [51, 53, 142].

4 Introduction

The first category, self-determination, is a fundamental process in preserving privacy
and relates to all other categories from privacy enhancing technologies. Solutions
from the second category are used to indicate afterwards who was responsible for
the privacy invasion, while the solutions from the third and fourth category preserve
privacy before it is send to the service providers.

There are numerous solutions in achieving privacy enhancing technologies of the third
category e.g. connecting anonymously to the Internet using free and open wireless in-
ternet connections, or by creating multiple pseudonym email addresses. There are
various cryptographic solutions which address the fourth category of privacy enhanc-
ing technologies. Nevertheless, there is a limited subset of cryptographic techniques
for the fourth category which address privacy enhancing technologies in case of un-
trustworthy proxies. These privacy enhancing technologies are denoted in this thesis
as ‘Private Computing with Untrustworthy Proxies’.

We define ‘Private Computing with Untrustworthy Proxies’ as:

Private Computing – A subset of privacy enhancing technologies that maintains the
relation between the private data and the information related to the user, while
preserving privacy when the private data is processed by an untrustworthy proxy.

1.2 Problem Addressed

Access control systems are proxies which grant access (or not) to devices or services
based on passwords. After the user has provided his password to the proxy, the proxy
is able to compare the password with a previously provided password by the user,
which is used for reference. But the proxy is unable to learn the password since it is
hashed by the user. If the hidden passwords are equal, access is granted, otherwise
not. With this mechanism, the proxy is able to learn that the passwords are equal (or
not) without learning the actual passwords.

Similar techniques can also be used to verify two users hold the same information
without revealing this information to each other beforehand. Both users cryptograph-
ically hash their information and submit independently their hash to the proxy. The
values are compared by the proxy without having to interact with the users. The result
of the comparison is communicated to both users. After comparing the hashes the user
and the proxy learn the data between the users is equal or not. If the data is equal both
users know they share the same information but this is not learned by the proxy. If the
hashes are unequal all parties learn only that the submitted information was not the
same and nothing more.

The restriction of these access control systems is that they are limited in functionality,
since the proxies are only able to learn that the passwords/hashes are equal or not.
The proxies in the access control systems only compute the equality function e.g. if
a = a� where a,a� are hashed passwords. The challenge is to extend the functionality
of the proxies by letting proxies compute more complex comparison functions such as

5

inequality functions e.g. less than < or greater than > [11]. These functions could ex-
tend access control systems by comparing if two values are equal to each other within
a pre-defined margin of error e.g. if a+ε> a� > a−ε where a,a� are hashed/encrypted
passwords and ε is the error-margin.

The computation of complex functions by untrustworthy proxies is addressed in the
research about mobile software agents, mobile code (privacy) [30] and computing with
encrypted functions [136, 137, 138]. Agents are software being able to execute tasks
for their users autonomous and independent. Agents are able to move over networks
where they can communicate with other agents. Furthermore agents can be intelligent
and cooperate in order to achieve a common purpose [82].

The main challenge with mobile agents is the environment where they are executed
on. Can the agent trust the environment not to look into the information the agents is
carrying? How can the agent communicate privately with other agents while the envi-
ronment is constantly involved within their communication? This problem is compa-
rable to the Man-in-the-Browser (MitB) attack [124], where users do online banking
while their browser is compromised by malware or trojans to manipulate the banking
transactions. In both cases the executing environment is an unavoidable untrustworthy
proxy where information has to be processed.

Privacy-preserving protocols allow multiple parties with private inputs to perform
joint computation while preserving the privacy of their respective inputs. An impor-
tant cryptographic primitive for designing such privacy-preserving protocols is secure
function evaluation (SFE). The classic solution for SFE by Yao [158] uses a gate
representation of the function that the two parties want to jointly compute. Other
cryptographic techniques such as garbled circuits, homomorphic encryptions or com-
binations of algebraically homomorphic encryptions and garble circuits are also used
[75]. Applications of SFE can be found in Privacy-Preserving Genomic Computa-
tions [70, 92, 146], Remote Diagnostics [21], Graph Algorithms [22], Data Mining
[112], Credit Checking [8], Medical Diagnostics [10], Face Recognition [64, 134],
or Policy Checking [69]. Although SFE, but also Multi-Party Computation (MPC)
and Two-Party Computation (2PC) give the ability for two or more parties to execute
any function securely, their solutions [91, 120, 158] do not consider the use of an
untrustworthy proxy to execute the function privately.

Another restriction of SFE is the ability to collect information privately from mul-
tiple sources while an untrustworthy proxy has to facilitate the communication and
execution of the collection function. Although secure 2PC can be extended to MPC
protocols, the use of untrustworthy proxy is not considered. A common technique
within MPC is Oblivious Transfer (OT) where a sender sends some information to a
receiver, but remains oblivious as to what is received [45, 128]. Applications of OT are
e.g. database access [26] or mutually authenticated key exchange based on possibly
weak passwords [116].

Research on cryptographic where proxies are a central part is scarces and mainly lim-
ited to research on mobile software agents in untrustworthy environments. The objec-
tive of this thesis is to address two basic cryptographic functionalities which provide

6 Introduction

privacy for the user while proxies are involved in the communication and computation
between parties: Collecting Private Data (discussed in Section 1.2.1) and Comparing
Private Data (discussed in Section 1.2.2).

1.2.1 Collecting Private Data

The first challenge is to let a proxy collect private information from various sources.
Therefore the first problem addressed is:

“Develop protocols for letting an untrustworthy proxy retrieve informa-
tion from various sources while keeping all the collected information pri-
vate in respect of the various sources.”

By selecting and collecting of private data, a user selects various sources where in-
formation must be collected while letting a proxy collecting this information without
being able to learn what information was selected or collected.

The following example, about Location Based Service (LBS), demonstrates the pro-
cess of collecting private data. Mobile devices connected to the mobile network are
traceable by the mobile network operator. Information, based on the location of the
mobile device of a user, can be requested from a LBS. This service can vary from
requesting the nearest restaurant, ATM machine, locating people on a map, traffic in-
formation or warning the nearest doctor in case of an emergency. Considering that
the communication between the mobile device and the LBS has to go through the
mobile network operator, it has a great impact on the privacy of the user. First of
all, the location of the user can be tracked by the LBS. Secondly, the mobile network
learns which service was requested, and finally learns the outcome of the LBS. An
additional consideration is that the collection of the selected information preferably
is done without the aid of the mobile device because mobile devices are limited in
processing power and communication with the mobile network is costly. Within this
specific example communication with the mobile device should be minimized and all
computations should be done by the proxy.

We can derive the following set of assumptions and requirements for the new private
computing collection schemes:

• There is an unavoidable proxy which performs the collection and most of the
computations.

• The inputs and outputs must remain private to the users i.e. confidentiality
should be guaranteed.

Although various approaches seem suitable for solving our problem such as oblivious
transfers [128], they do not take into account that the information must be transmit-
ted through an unavoidable and untrustworthy proxy. Two approaches are considered.
The first approach will combine basic SFE techniques such as homomorphic encryp-
tion, blind signatures and oblivious transfers into a solution which can cope with the
untrustworthy proxy. The second approach will be based on cryptographic techniques

7

used within mobile software agents [143]. This latter approach will show that solu-
tions for collecting private information is not bound by standard techniques used in
SFE solutions i.e. not using oblivious transfers, homomorphic encryptions or garble
circuits.

1.2.2 Comparing Private Data

The second challenge is in letting the untrustworthy proxy compare the collected pri-
vate information. As addressed in Section 1.2 the equality function is a basic function
for comparing private inputs. Furthermore, from SFE we know that basically every
function can be computed securely but due to the ideal/real model [28, 29] solutions
omit the use of proxies. Cachin [24] addresses a SFE private bidding problem by using
an oblivious third party to ensure fairness. Homomorphic cryptosystems such as RSA
[131], ElGamal [62], Goldwasser-Micali [81], Benaloh [14] or Paillier [125, 126] pro-
vide algebraic operations on the plaintext while the inputs are encrypted.

Yao’s Millionaires’ Problem [158] is an important problem in cryptography and used
within e-commerce, data mining, linear programming and operational research. Due
to the importance of the comparing operation within many (cryptographic) application
this fundamental building block should also be available within private computing.
The second problem addressed is therefore:

“Develop protocols for letting an untrustworthy proxy compare private
information by computing an inequality function in such a way that the
private information remains private in respect of the users, but the results
of the comparison can be made public if required.”

Can a proxy compare various values to one another while they are hidden, and say
something useful about their relation? As already described, access control systems
are able to compare whether two independently obtained values e.g. passwords, are
equal to each other or not. With this result, the system learns one bit of information
about the relation between the two values, but does not learn what the actual passwords
are. These password systems are only able to compute the equality function while the
challenge is to compute more complex functions resulting in more sophisticated access
control systems.

Let us give an example of comparing private data in an Internet environment based on
mobile software agents. As described in the introduction of Section 1.2, agents are
autonomous pieces of software that run on (remote) hosts in order to carry out tasks
on behalf of its user. The code of the agent itself is transported over the Internet and
executed on the remote hosts. This is in contrast to ‘normal’ code, which is executed
on the local host while data is transported between the remote host and the local host.

Buyer agents are mobile software agents that help users to buy items on the Internet.
They move around the Internet in search for seller agents willing to sell the requested
item for the right price. Before an item can be purchased the buyer agent and the seller
agent have to come to an agreement about the price. The buyer agent has a maximum

8 Introduction

price he is willing to pay, while the seller agent has a minimum selling price. The
agents don’t trust each other but they also do not trust the environment where they are
executed i.e. untrustworthy proxies.

The same requirements, as for the collection scheme, also hold for the new private
computing comparison schemes with additional requirements regarding the compari-
son process:

• The proxy performs the comparison computations.

• The inputs must remain private to the users.

• The comparison function computed by the proxy should be an inequality func-
tion.

• The proxy learns (some) information of the output (e.g. greater than or not)
without being able to learn the actual inputs.

• The output should be made public by the proxy (All users should be able to
learn the same information as the proxy).

Our approach is to adapt a well known SFE solution by Cachin [24]. Cachin uses an
untrustworthy proxy to ensure fairness, but does not provide the capability to compute
the result of the comparison without leaking information (in a controlled matter). We
start our approach with the requirement of computing one inequality function and
continue with an approach capable of computing multiple inequality functions.

1.3 Organization and Contribution

1.3.1 Organization

An overview of the content of this thesis is given in figure 1.1. The content is divided
into various parts. The first part is the skeleton containing Chapters 1 and 2. It starts
with the introduction where a relation between privacy, privacy enhancing technolo-
gies and private computing is given. Chapter 2 starts with the problem of collecting
and comparing private data by an untrustworthy proxy and continues with the private
computing problems based on a general private computing scenario. Furthermore two
private computing problems are dissected resulting in four unique approaches to the
problems addressed.

The second part of this thesis composes the body and is divided into two sections. The
first section consists of Chapters 3 and 4 which address the selection and collection
problem. Both chapters tackle the selection and collection problem from a different
point of view. Chapter 3 is mainly based on oblivious transfers and letting the proxy
communicate with all parties simultaneously i.e. in parallel. While Chapter 4 is based
on hash chaining and the collection of information is based on minimum communica-
tion with the proxy.

9

The second part, consisting of Chapters 5 and 6, address the collection problem. Both
chapters get down to the problem based on multi-party computation techniques and
homomorphic encryptions. The challenge in Chapter 5 is to compute a single compar-
ison function, while Chapter 6 focusses on the comparison of multiple values.

In Chapter 7 we conclude with a discussion where we reflect on the results and the
choices made. Furthermore we evaluate and compare the different presented solutions.
Finally we give recommendations and an outlook to the near future with respect to
private computing.

Appendix A describes various building blocks used within private computing and
which are used in chapters 3, 4, 5 and 6.

1.3.2 Contribution

We summarise the contributions of this thesis:

• Chapter 3 builds on the idea on developing a framework where the user’s lo-
cation and subscription are processed in the encrypted domain, as a result we
achieve privacy in a new way for certain classes of Location Based Services.
To ensure privacy, our approach uses cryptographic protocols such as oblivious
transfer and homomorphic encryption. The research on privacy friendly Lo-
cation Based Services has been carried out together with Markulf Kohlweiss,
which resulted in a publication at [99]. The research was extended together
with Sebastian Faust, Lothar Fritsch and Bart Preneel and published at the PET
2007 workshop [98].

• In Chapter 4 the solution is a novel approach for comparing private data while
dealing with untrustworthy parties. This contribution enables the proxy to re-
trieve information from various untrustworthy users, followed by a computation
on the retrieved information. This paper builds on the work by [143], by mini-
mizing the amount of communication between the parties. This paper has been
carried out in close collaboration with Martin van Hensbergen and resulted in
the conference papers [73, 87].

• In Chapter 5 by combining the Private Agent Communication Algorithm by
[30, 31] and the fair multi-party computation protocol by [24] we have made
it possible to compare the maximum of two independent inputs without the
intervention of the users. This resulted in paper [72].

• Chapter 6 extends the Φ-hiding assumption by using the concept of [24]. As
a result an efficient inexact matching protocol has been developed, capable of
comparing two or more inputs by a public party without the interaction of the
user. A paper was published with this result in [74].

10 Introduction

Privacy
↓

Privacy Enhancing
Technologies

↓
Private Computing

Private Computing
Problems

Sequential
Selection

and
Collection

Comparison
Problem

Cryptographic
Building Blocks

Multiple
Comparison

Selection
and

Collection
Problem

Parallel
Selection

and
Collection

Single
Comparison

Discussion

Chapter 1

Chapter 2

Appendix

Chapter 3 Chapter 4 Chapter 5

Chapter 6
Chapter 7

1

3 4 5

67

2

A

Figure 1.1: Thesis Overview

Chapter 2

Private Computing Problems

Private computing preserves privacy when private data is processed by a proxy. There
are various applications for letting a proxy process our private data. For example, for
authentication purposes, where the proxy needs to learn some information from the
private data to decide if access will be granted or not. Or it provides more functionality
for the user in letting a proxy do the computations instead of doing it on its own. This
chapter describes the general private computing scenario used within this thesis and
two specific private computing problems: the collection problem and the comparison
problem.

2.1 Introduction

Within a private computing scenario, various parties should communicate with each
other even though they do not trust each other. Figure 2.1 gives an overview of a
private computing scenario where each parties has its own role. The following parties
are present in the scenario:

User – The user is the initiator of the scenario and is considered to be trusted by all
parties.

Hosts – The hosts are untrustworthy parties from the user point of view, willing to
participate in the process but curious about the private data of the user. Untrust-
worthy is also known as semi-trusted or passive attacker [115] which threatens
the confidentiality of the private data.

Proxy – The proxy executes the private computing processes and is considered to be
untrustworthy from the user and the hosts point of view.

The general private computing scenario considers a user using an untrustworthy proxy
to process private data while keeping it private, as defined in Section 1.1. Depending
on the application, the private data can be acquired from the user but also from various

12 Private Computing Problems

Private
Computing

Hosts

User

Result

Proxy

Figure 2.1: Private computing scenario

hosts. Furthermore, depending on the application the result of the computation can be
given to the user or can be made public (while maintaining privacy). In Section 1.2 a
motivation has been given regarding the two private computing problems addressed in
this thesis. The first is the collection of private data and the second is the comparison
of private data. Although both problems can be addressed independently they can
also be merged together into one scenario. For example, in figure 2.1 the user selects
the various hosts he wants to communicate with. Based on this selection the data is
collected by the proxy and compared with the collected data received from the user.

Since proxies are unavoidable, the assumption for private computing is that the col-
lection and computation has to be done by the proxy while keeping all inputs private
to all parties, excluding the user. This also indirectly presumes that all communica-
tion between the hosts and the user has to go through the proxy i.e. there is no direct
communication between them.

The primary threat is that the user looses control of his private data to the proxy i.e.
looses confidentiality. Data appears in various forms e.g. the location or names of
the hosts which are queried, the private data which was collected from the hosts or the
information which is send to the proxy. This also holds for the data which is processed
by the proxy, to data which is made public.

There are various private computing applications which use a proxy to carry out the
communications or computations:

• An access control system acts as a proxy and is able to authenticate users while

13

keeping their private data confidential.

• Location-Based Services, where a user with a mobile device is using various
services over a mobile network (proxy).

• Online banking, where a browser acts as a proxy between the user and the bank.

• Internet Service Providers are the proxies (gateways) to the Internet.

• Search engines are the proxies handling our search queries.

This thesis addresses two private computing problems. The first problem considers the
challenge of letting a proxy collect private data without learning what was selected or
collected. This is described in section 2.2. The second private computing problem
addresses the comparison problem where a proxy compares private data in such a way
that the data remains private while the results are made public. The second problem is
described in section 2.3.

2.2 The Selection and Collection Problem

The selection and collection problem wants an user to select various information
sources from which an untrustworthy proxy must collect this information without
being able to learn what information was selected and collected. This problem is
similar to the privacy preserving database querying problem [61, 157] where a user
has a query Q and a host has a database M = {m1, . . . ,m j}. The user wants to know
whether there exists a value mi in the host’s database that matches Q. The require-
ment is that the host cannot learn the query and the result of the matching, and the
user should not learn the complete content of the database of the host other than the
result of the query. This matching problem can theoretically be solved using general
techniques of Multi-Party Computation [44, 77] and has been considered widely in
literature [41, 42, 44] using Private Information Retrieval (PIR) techniques.

Although Multi-Party Computation based on PIR techniques are suitable for various
applications like privacy preserving database querying or privacy preserving data min-
ing [60, 105], they do not consider the use of untrustworthy proxies being involved in
the problem. The selection and collection problem addresses the problem of letting
an untrustworthy proxy collect information from various hosts while keeping all the
collected information private.

2.2.1 Scenario

A user selects privately which hosts have to be queried. He hides his selection and
sends this to the proxy. The proxy ensures that the correct information is retrieved at
the selected hosts. The hosts provide the requested information by the user while hid-
ing it for the proxy. At the end of the collection process the information is processed
by the proxy and the result is made public or presented to the user.

14 Private Computing Problems

2.2.2 Assumptions

Various assumptions apply to the selection and collection problem:

Communication – The user is unable to communicate directly with the hosts. There-
fore all communication between the hosts and the user passes the proxy. But,
the hosts are able to communicate with each other without the aid of the proxy,
since the proxy only acts as an intermediary between the host and the user. This
assumption, regarding communication, is a direct consequence of the general
assumption of this thesis, that a proxy is unavoidable, i.e. cannot be circum-
vented.

PKI – A public key infrastructure (PKI) is assumed to be available, which is used to
facilitate key distribution for secure communication.

Trust – The user is trustworthy while the hosts and the proxy are untrustworthy par-
ties. The proxy is seen as an untrustworthy ‘man-in-the-middle’ which pro-
cesses all the information correctly but is curious regarding the content of the
information i.e. the proxy provides integrity but not confidentiality.

2.2.3 Threats

The threat model of the selection and collection problem is based on the trust we have
in the parties involved [105, 107, 111]. When comparing Multi-Party Computation
with private computing, the approach within Multi-Party Computation is not to assume
the ideal situation, with a trusted proxy doing all the computation; but to assume the
real situation where no external proxy exists that can be trusted by all parties. This
is called the ideal/real model [28, 29]. Private computing assumes the proxy to be
unavoidable and untrustworthy i.e. it follows the protocol but attempts to learn private
information from the received data; by deviating from the protocol specifications.
Therefore, the real situation within private computing is the existence of an proxy
which has to perform all computation but cannot be trusted by all parties.

Since the proxy is unavoidable and the proxy together with the hosts are untrustworthy,
it makes them all a threat to the users’ privacy. The following list of threats applies to
the selection and collection problem:

Threats towards the selection by the user – The user selects the hosts he wants to
collect information from. If the proxy remains oblivious to the hosts selected,
the proxy is unable to manipulate the collection process in his advantage; other
than not performing the collection process or randomly discarding hosts during
the collection. If the hosts are known by the proxy, the proxy will be able to
manipulate the hosts which are being queried and therefore influence the col-
lection process in advantage of the user.

Knowing which hosts are being queried also threatens the privacy of the user
i.e. linking the user to specific hosts.

15

Threat towards the collected information – The result of the collection is only in-
tended for the user and should not be known by other hosts or the proxy. Col-
lected information can consist of sensitive and private information e.g. the age
of the user or the location of the user.

The user could be mislead or misinformed if the collected information would
be modified before it is received by the user.

2.2.4 Requirements

Requirements are based on the threats within the selection and collection problem.

Selection of information requirements – The user should control how much infor-
mation is learned by the hosts or proxy regarding which hosts are being queried.
Therefore, a mechanism should be applied which ensures privacy of the selected
hosts without letting other hosts and the proxy learn which hosts were queried.

Collection of information requirements – The collected information must remain
confidential to the proxy and the hosts i.e. hosts and the proxy should be unable
to view the content of the collected information, other than the content which
they have submitted.

An integrity mechanism is required that prevents alteration of collected infor-
mation. The proxy or the user should be able to verify the collected information.

2.2.5 Problem addressed and Approach

Based on the threats and requirements the collection scenario addresses the problem of
letting an untrustworthy proxy retrieve information from various hosts, while keeping
all the collected information private.

We introduce two approaches to the selection and collection problem, the sequential
approach and the parallel approach. The sequential approach is shown in figure 2.2
and the parallel approach is shown in figure figure 2.3. Both approaches are based on
the general private computing model shown in figure 2.1.

The two approaches are comparable with approaches within MANETs (Mobile Ad
hoc Networks) [5]. MANETs are self-configuring networks of mobile devices. Within
these network the Base Station (BS) plays a critical role, since it is involved in the
communication with every mobile device available. Compared with private comput-
ing, the BS is the proxy and the mobile devices are the hosts. Two models are used
within MANETs, Single-Hop (Single-path) routing and Multi-Hop (Multi-path) rout-
ing. The difference between the two models is that in case of Single-Hop all com-
munication between mobile devices (the hosts) is routed strictly through the proxy
(BS), while with Multi-Hop the communication is routed between the mobile devices
directly.

16 Private Computing Problems

Sequential

User

Proxy

Host 1

Host 2 Host 3

Figure 2.2: The sequential selection and collection approach

Wireless Sensor Networks (WSNs) are related to MANETs [71]. WSNs consist of
distributed autonomous devices which are made up of tiny sensor that have the goal to
collect information and to make a decision based on this information. WSNs are used
to monitor cooperatively physical or environmental conditions, such as temperature,
sound, vibration, pressure, motion or pollutants, at different locations; or in healthcare,
home automation, and traffic control applications.

MANETs and WSNs are in some ways similar, since they are both distributed wireless
networks which may involve the use of intermediate (proxy) sensors between routing.
The difference is that WSNs are mostly battery powered and therefore have different
resource and computing constraints, opposite to MANETs [71]. Due to limited power
and data storage, one of the main security concerns with WSNs is that a sensor is
interacting within an untrustworthy environments, with the threat of loosing private
information [153].

Sequential Approach – The sequential approach is comparable with the multi-hop
distributed wireless networks. The approach is sequential since all communication is
passed on from host to host (hops). The user starts the scenario by submitting a query
to the proxy. Within this query the user pre-defines the itinerary i.e. the path or hops
which have to be visited in a particular order. The proxy learns from the query to
which host he needs to forward the information received from the user. After a host
has processed his part of the query, the host submits the query and the result of the
process, to the next host. This process continues until the query has reached the proxy
again. Finally, the proxy computes the remainder of the query and submits his result
to the user.

17

To overcome the problem that hosts are unwilling to participate or are unaccessible
during the collection process, a helper procedure needs to skip any unwilling or un-
reachable host. This sub-protocol should ensure that the itinerary is not stopped during
the process and all the preceding information can still be collected.

Parallel

User

Proxy

Host 1

Host 2 Host 3

Figure 2.3: The parallel selection and collection approach

Parallel Approach – The parallel approach can be seen as a single-hop distributed
wireless network where all communication with the hosts and user is strictly executed
by the proxy. There is no direct communication between the various host, as it is with
the sequential approach. Furthermore, opposite to the sequential approach, the proxy
communicates with all hosts in parallel.

The user pre-defines from which hosts he wants to collect information and provides
this query to the proxy. The proxy communicates in parallel with all available hosts,
without being able to learn from which host information is actually being collected.
After the collection process has finished the proxy processes the result of the collection
and submit this to the user.

2.2.6 Related work

With the sequential and parallel approach known cryptographic protocols will be used.
Various cryptographic building blocks will be combined to create new private com-
puting protocols.

Sequential Approach – Mobile agents and mobile code [30] are the basis for the
sequential approach. As described in Section 1.2, mobile agents are pieces of software
moving from one host to another, while collecting information and performing tasks.

18 Private Computing Problems

After a mobile agent is transferred from one host (sender) to another (receiver) over
a network the mobile code within the agent is executed on the recipient’s side. The
execution of software on the recipient’s computer presents a number of security issues.
From the recipients’ point of view, the execution of ‘untrustworthy’ software can harm
the recipients computer e.g. the software can contain a virus, a worm or a Trojan. A
number of techniques have been suggested, and used, to alleviate some of these issues,
like sand boxing [102] and the use of certificates [145]. From the senders’ point of
view, the execution of the software on the recipients computer can be manipulated or
spied on because the recipient has full control over the software.

In [138] the threat of executing mobile code in untrustworthy environments is ac-
knowledged. They introduce the general problem of non-interactive evaluation of
encrypted functions (EEF), where a host has a private function f and a user has an
input x. The user wants to compute f (x) but the host wants the user to learn nothing
about that function. Two approaches are explained, the first based on homomorphic
functions and the second is functional decomposition problem based [159]. Although
both solutions are leaking information and are therefore not the general solution for
mobile agents protection, they provide evidence that software can at least be partially
protected against malicious hosts.

White box cryptography [93] prevents disclosure of secret keys in untrustworthy host
environments. It is a special class of software obfuscation [9]. Although this research
field deals with untrustworthy hosts, it focusses on the implementation of the software
and the protection of keys, rather than on the execution of specific functions. White
box cryptography research focusses on the implementation of specific cryptographic
algorithms like DES [108] and AES [43].

In [143] an e-commerce problem with untrustworthy hosts has been addressed using
the concept of mobile agents. The proposed scenario is similar to the sequential prob-
lem and the solution uses hash chaining techniques from [95]. The limitations of this
solutions is that it is based on multiple mobile agents e.g. for the protection of the
private keys. It does not provide a complete solution in the case that a single agent
would be used.

Location-based privacy in Wireless Sensor Networks (WSNs) was addressed by [113,
114]. The focus of this research was on the contextual information which remains
unprotected during operation e.g. location of an object which is tracked by the sensor
network. The main threat within this model was that the adversary is able to inter-
cept any traffic information within the network. The result of this research show that
location-based privacy can be achieved with a minimal communications overhead. Al-
though this paper solves a location-based privacy threat, it does not provide a solution
of collecting information privately based on the location of the user.

Parallel Approach – With the parallel approach each host has information and the
user wants to learn a single piece of this information. Cryptographically this relates
to an Oblivious Transfer (OT). With OT we usually have a host (sender) and a user
(receiver). The host holds a list of n values x1, . . . ,xn, and the user wants to learn xi.
The problem is that the user does not want to send i to the host; while the host does

19

not want to send the complete list x j (for j �= i) to the user. With OT the hosts transfers
xi to the user without knowing i. OT was first introduced by Rabin [128] and further
developed by e.g [3, 57, 109].

In principle OT protocols do not take into account the use of proxies between a sender
and receiver. The approach, for using OT within the parallel problem would be to
combine various OT protocols; by exploiting the fact that the user is not querying a
single host but is querying multiple host.

Private Information Retrieval (PIR) [12, 25, 42] is a cryptographic primitive related
to Oblivious Transfer. Also called symmetric Private Information Retrieval, because
both the user and the host have a privacy requirement. PIR allows a user to retrieve
information from a host without revealing which item they are retrieving. In a single
host scenario the only way to achieve privacy is for the host to send the entire list
of n values to the user. One way to solve this problem is to assume multiple non-
cooperative hosts each having a copy of the entire list of n values.

2.3 The Comparison Problem

The comparison problem copes with an untrustworthy proxy who wants to calculate
an inequality function with the private inputs from various hosts. The challenge is to
keep the private inputs private but the result of the comparison can be made public.
Two basic comparison functions in mathematics are equality and inequality. Equality
functions compare information and give as output whether the information is identical
or not. This is a valuable function when comparing static passwords. With inequality
[11] we mean the less than <, greater than >, less than or equal to �, greater than or
equal to �, not greater than ≯ and not less than ≮. Inequality functions are used to
compare the relative size (or order) of the information.

The millionaires’ problem is a Multi-Party Computation problem introduced by Yao
[158]. The problem describes two millionaires who want to compare their wealth
with each other and compute who is the richest, while keeping their actual wealth
private. In an ideal situation this can be achieved using a mutually trusted party. In
a real situation there are no trusted parties and the millionaires have to solve this
problem together. With private computing the proxy does all the computations for the
millionaires without being able to learn how much millions they own.

Furthermore, the challenge in case of MPC is not to leak any information. The million-
aires are privately able to learn the outcome of the comparision (inequality function)
but should know nothing more e.g. the wealth of the other millionaire. With private
computing the proxy learns the outcome of the comparison but nothing more.

The millionaires problem was the first problem [158] within MPC and gave way to the
generalization of MPC by [78]. The millionaires problem is an example of calculation
of the inequality function where both parties calculate the greater than function. To set
the first steps for generalization of private computing we focus on an important build-

20 Private Computing Problems

ing block, the inequality functions, such as Yao [158] focussed on the millionaires’
problem with his initial paper on MPC

2.3.1 Scenario

The comparison scenario in figure 2.4 shows the comparison of information without
loosing privacy:

Hosts

User

0/1
Proxy

Private
Computing

Figure 2.4: The comparison scenario

The user hides his private information and sends this to the proxy. The hosts also
hide their private information and submit this to the proxy. The proxy compares the
received values with each other and is able to make the result of the comparison public
without being able to learn what the initial values where. The result of the comparison
is binary, since the proxy is calculating inequality functions. For example, when the
proxy compares which of two encrypted values (a,b) is the greatest, the public result
will be 0, if e.g. a is the greatest, and 1 otherwise.

2.3.2 Assumptions

The same assumptions apply to the comparison model as to the collection model,
given in Section 2.2.2. One additional assumption is added:

Binary output – The comparison model will focus on the inequality function and the
output of the function is binary i.e. 0 or 1, Yes or No.

21

2.3.3 Threats

The following threats apply to the comparison model.

Threats towards the inputs – The inputs should remain confidential and are not in-
tended to be known by other users, since knowledge of the inputs by any other
party can be used to influence the outcome of the computation.

Threats towards the comparison process – With every comparison process infor-
mation is learned by the proxy or made public. This process leaks, with every
comparison, one bit of information about the relation between the two private
inputs. The threat is that the proxy performs a chosen plaintext attack repeat-
edly, where the proxy feeds the comparison process with chosen inputs based
on a binary search algorithm, it would be able to learn the hidden inputs.

2.3.4 Requirements

The following is a list of requirements for the comparison model.

Input requirements – The inputs must remain confidential and should not be known
by the proxy when they are received or learnt when they are processed.

Output requirements – The proxy learns the outcome of the comparison process.
Furthermore, the proxy learns 1-bit of information about the relation between
the two inputs without learning what these inputs actually where.

Comparison process requirements – An inequality function will leak 1-bit of infor-
mation with every comparison. The proxy which compares the private inputs
will only learn the relationship between the inputs and should not learn anything
about the plaintext relation. Therefore the proxy should not be able to perform
a chosen plaintext attack by replaying the comparison with chosen plaintext.

2.3.5 Problem addressed and Approach

The comparison model addresses the problem of letting an untrustworthy proxy com-
pare private data in such a way that the data remains confidential but the results of the
comparison is made public.

Single Comparison Approach – The first approach, see figure 2.5, in solving the
comparison problem is based on techniques from Multi-Party Computation (MPC),
where we especially look at approaches where untrustworthy proxies where used to
compare two inputs. Although these proxies compute a public function they are unable
to learn the outcome of the computation. Our first approach is to adept these MPC
protocols by enhancing the capabilities of the proxies. We start with the comparison
of two input (a,a�).

22 Private Computing Problems

User

a'
Host

0/1
Proxy

Single
Comparison

a

Figure 2.5: Single Comparison

Multiple Comparison Approach – The second approach, multiple comparison, see
figure 2.6, compares multiple values. By using for example two inequality functions
we are able to create a distance function or approximation function. Let us assume
an error ε we want to decide if a is approximately equal to a�. We assume they are
approximately equal if the Distance(a,a�)< ε. We can therefore also compute a−ε <
a� and a� < a+ ε. If we would use two single inequality functions and the result of
the comparison would be that a �= a� then the proxy will learn which of the boundaries
failed, a− ε or a+ ε. However when using multiple inequality functions in one pass,
the user will not learn which boundary failed.

The host in this scenario only acts as public storage for the user since the user is the
only party submitting values. The values are encrypted by the user E(·) to provide
confidentiality. The proxy uses the encrypted values as reference when comparing the
values from the user, with the already stored values at the host.

2.3.6 Related work

When comparing values we want to hide our private data but still be able to perform
some computations on it. Homomorphic encryption [62, 81, 122, 125, 126, 131] can
be used to combine two ciphertexts and create a third ciphertext where the plaintext
is related to the first two. The drawback of these homomorphic encryptions is that
they are limited to an addition, the plaintext values of the two cipertexts are added to
each other in the third ciphertext, or to a multiplication, where the original plaintext

23

User

E(a'1,a'2,...,a'n)
Host

(a1,a2,...,an)

0/1
Proxy

Multiple
Comparison

Figure 2.6: Multiple Comparison

values are multiplied within the third ciphertext. They are suitable as building blocks
for various cryptosystems [24, 50, 88, 104] but on their own unable to compute an
inequality function.

As introduced in Section 2.3, MPC is a problem introduced by Yao [158] and further
described by [1, 13, 36, 77, 78, 129]. Yao’s solution for the millionaires’ problem is
solved without the help of a Trusted Third Party (TTP), while remaining secure with
untrustworthy adversaries. Lindell et al. [106] propose a secure two-party protocol
which provides security against malicious adversaries. In general, the MPC problem
is equivalent to having a TTP receiving the private inputs xi from players i. It computes
the function f and returns outcome yi to every player i.

The comparison problem has some similarities with MPC. Within both problems a
function must be computed privately amongst various parties. The fundamental dif-
ference is that the MPC problem is based on getting rid of a proxy to execute the
function with multiple parties, while private computing wants to use explicitly an un-
trustworthy proxy which performs all the computations.

Another difference is who learns the outcome of the computation. With MPC the
parties involved learn the outcome of the computation while with private computing
the proxy learns the outcome of the computation. The difference between a proxy
and a user is that the proxy does not submit any private inputs and only uses the
private inputs of the hosts and the user. With MPC the users learn the outcome of
the computation while they are in their own private environment, this in contrary to

24 Private Computing Problems

private computing where the proxy is considered semi-trusted by the users but still
needs to compute the outcome of the comparison function.

The consequence of these differences is that most MPC protocols are unsuitable for
private computing since they do not use an untrustworthy proxy for the computation
of the public function and do not provide a solution for letting an untrustworthy proxy
learn the outcome of the computation.

Claessens et al [46] gives a survey on mobile agents doing secure electronic transac-
tions in untrustworthy environments. Six areas are defined for solutions against un-
trustworthy environments: avoid the problem, server-aided computation, protect the
data, minimizing the risk, execution integrity and execution privacy. Private comput-
ing relates to execution privacy since it describes the problem of executing functions
in untrustworthy environments. Examples of execution privacy solutions are function
hiding [136] and computing with encrypted functions.

Sander and Tschudin [137, 138] were one of the first to write about computations
on untrustworthy hosts. They claim that there is no reason why programs must be
executed in plaintext form. In Algesheimer et al [4] it is stated that a software only
solution for secure mobile computation schemes do not exist and that if the host learns
information that depends on the agent’s code, it cannot be secure. They suggest to use
at least one trusted user or proxy. Nevertheless, Cachin [24] shows that a semi-trusted
proxy can be used to compute a function privately.

2.4 Discussion

The presented private computing scenario shows the basic principle of private comput-
ing where an untrustworthy proxy has to process private data without loosing privacy.
Furthermore we choose to solve two private computing problems independently. The
first, collecting private information, is a fundamental step in remaining in control of
your private information when information is not directly accessible by the user and
has to be collected from e.g. the Internet. The second, comparing private information,
aims to extend the functionality of proxies while preserving privacy.

The advantage of addressing the Private Computing Scenario as two seperate problems
is that the solutions to the problems can be used independently of each other in various
other scenarios. Seperation also makes the solutions more flexible for combining them
with other private computing building blocks.

Private computing should not be confused with Multi-Party Computation (MPC). Al-
though various solutions from MPC can be classified (and used) as private computing
solutions and vice versa. But, this does not imply that private computing is equal to
MPC. Due to the ideal/real paradigm [28, 29] MPC does not assume that in the ideal
situation a trusted party is doing all the computation, but it assumes the real situation
where no external party exists that can be trusted by all parties. The fundamental con-
cept behind MPC is to compute collectively a function without revealing the private

25

inputs and each user should be able to learn his own private output based on the public
function and the private inputs. While private computing uses explicitly a proxy to
perform the computation for all users without being able to learn the private inputs
other then the result of the output of the computation.

Basically we can say that with MPC all parties try to compute one problem together,
while with private computing the problem is given to the proxy and the user waits for
an answer. MPC and private computing problems use similar techniques to solve their
problems, but this does imply that private computing is a subset of MPC. Most MPC
protocols will in principle be unsuitable for private computing since they require the
users to compute the result of the public function privately after it has been handled by
all other users involved in the computation. MPC also does not consider that a proxy
should be able to learn information (binary) from the computation.

26 Private Computing Problems

Chapter 3

Parallel Selection and
Collection

How can a user obtain information from various sources while this information needs
to be collected by an untrustworthy proxy? This chapter answers this question by de-
scribing a selection and collection protocol using a parallel approach whereby a proxy
collects information simultaneously from various sources without loosing the users
privacy. The solution is worked out within a location-based service (LBS) scenario,
with the goal of secure processing of the location data. Its properties are the avoidance
of personal information on the services side. Although a LBS scenario is presented,
our solution can also be used in other, more generic, scenarios where a proxy acts
as a man in the middle e.g. querying multiple databases or websites without loosing
privacy.

3.1 Introduction

Privacy is an enormous topic [56]. It has many legal and commercial implications. The
different ways in which location is used by a LBS influences our privacy experience
highly. Are we interacting only with the service or with other users of the service?
Is our location only used at the time of our request, or are we tracked constantly
and notified upon certain events? Rather than covering all of these topics, we focus
on a very specic sub-problem where information is collected privately based on the
location of the user. Some of the techniques employed can however also be used for
improving the privacy properties of other types of LBS protocols as surveyed in [100].

The research for this chapter has been carried out during a three months academic visit at the Katholieke
Universiteit Leuven, Belgium at the COSIC group of Prof. Bart Preneel in 2006. The results where pub-
lished in cooperation with Markulf Kohlweiss in [99] and with further cooperation with Sebastian Faust,
Lothar Fritsch and Bart Preneel in [98].

28 Parallel Selection and Collection

We do not consider solutions involving anonymity or specific privacy policies since we
focus on Privacy Enhancing Technologies which protect private data while preserving
the relation between the data and the information related to the user, as described
in Section 1.1. Moreover, we consider only solutions where no information at all
about the user’s location is revealed to the LBS. After the execution of the protocol a
malicious LBS (even if collaborating with the proxy) cannot reveal anything, he (they)
could not have revealed before.

With the growing availability of mobile internet the possibilities of LBS applications
becomes a fact. An evident application of LBS is the ability to locate individuals or
devices in emergency situations e.g. when a mobile phone is lost, the user can lock his
mobile phone remotely or track the location of his mobile device. Navigation services
has emerged in the last decade and has been augmented with real-time traffic informa-
tion based on the location and itinerary of the user. Information service guides users
through cities or provides users with location specific weather reports. For instance
tracking services make it possible to track users while they are driving a car and bill
them based on the time driven, distance covered and locations visited. Augmented
reality is emerging on mobile phones where location specific information is projected
on a physical real-world image e.g. a video camera pointing in a certain direction on a
specific location. This chapter proposes a sophisticated Privacy Enhancing Technique
based on oblivious transfers where we see that in recent years the tendency to incor-
porating privacy in LBS is limited to switching the service on/off or letting the user
choose which level of detail, regarding his physical location, is used with LBS.

Our solution is not explicit for LBS and can be used in various scenarios where in-
formation has to be queried from untrustworthy proxies. For example, when infor-
mation is stored in remote databases under control of others. Typically before storing
this information it is protected by encryption. To retrieve the encrypted information
efficiently and securely a collection mechanism is needed capable of searching in en-
crypted data while keeping it private. Solutions can be based on indices, where instead
of searching in the encrypted data, the actual search is performed in an added index
e.g. based on hashes of the encrypted records [84, 85, 150]. Another solution is to use
trapdoor encryptions where users are able to perform operations on encrypted data
without using the decryption key [2, 19, 76, 144, 155]. Distributing information over
multiple servers is a solution where the information is retrieved using a secret sharing
protocol between the user and hosts [41, 42, 101]. Solutions based on homomorphic
encryptions give the possibility to perform some simple operations on encrypted data
without decrypting it first [41, 42, 59]. The downside to these solutions is that they do
not consider the usage of an untrustworthy proxy.

Another approach of letting a user collect information from various hosts is Oblivious
Transfer (OT), introduced by Rabin [128]. With OT a host (sender) holds a list of n
messages M = (m1, . . . ,mn) while the user (receiver) wants to learn mi, 1 ≤ i ≤ n i.e.
the i-th message. The problem is that the user does not want to send i to the host,
since this will reveal to the host which message the user is querying. The host does
not want to send the complete list M to the user. With OT the hosts transfers mi to the
user without knowing i.

29

Fundamental results with OT by [65], lets the host hold two messages m0,m1 while
the user has a bit b. The user wants to receive mb from the host without letting the
host learn which message was retreived i.e. the user does not want to reveal the bit
b. Another constraint is that only one message can be send from the host to the user.
This is called 1-out-of-2 Oblivious Transfer,

�1
2
�
-OT. Further generalization of OT was

established by [57] resulting in a 1-out-of-n Oblivious Transfer,
�1

n
�
-OT.

OT is related to Private Information Retrieval (PIR) such as [3, 96, 109]. For example,
a single host holds a list of n messages M = (m1, . . . ,mn). Identical copies of this list
are stored by all other hosts (� 2) while the hosts do not communicate with each other.
The user has index i and wants to learn mi. To achieve this he queries each host such
that each host will have no information about the index i. The query to each host is
distributed independently of i and therefore each host does not gain any information
about i. As established by [57] any non-trivial PIR protocol implies an 1-out-of-n OT.
The advantage of PIR schemes is that they have a lower communication complexity
than OT. The disadvantage of using PIR is that multiple hosts have to store identical
copies of the list.

Parallel

User

Proxy

Host 1

Host 2 Host 3

Figure 3.1: Parallel selection and collection Scenario

Approach. In Figure 3.1 a conceptual overview of the parallel selection and collection
scenario is given. In the concept of location-based services (LBS) a user accesses
various hosts via a mobile device. The goal is to obtain location specific information
on topics of which is of interest to the user. This information is collected and served
by hosts called service providers. A third party who knows the user’s location and
acts as a proxy between users and hosts, this can be the mobile operator of the user
or an organization associated with it, is responsible for the security of the location
information.

Navigation system or other electronic maps can be augmented with online and real-

30 Parallel Selection and Collection

time information provided by location-based services. This way users can find what
they need faster or more accurately. With LBS, location privacy is at stake. To achieve
privacy, it is advisable to limit access to identity and location information. Even the
regular observation of service usage patterns, might reveal private information.

Today LBS are provided in two ways. Either all the service specific data is made
available to the user who computes the result locally, this is the case e.g. with (car)
navigation systems; or the service is provided remotely. The latter is the dominant ap-
proach for providing LBS in mobile communication networks. Such LBS can be seen
as a side product of the GSM system (Global System for Mobile Communications),
as the location of subscribers is already used for mobility management [141]. Given
these constraints, we aim at achieving privacy for the users who want to use LBS. We
presume that the location will be gathered from a mobile network, while the service
will be provided by external service providers.

We use cryptographic protocols to ensure privacy: Oblivious transfer and homomor-
phic encryption. By developing a framework where the users’ location and subscrip-
tion are processed in the encrypted domain, we achieve privacy for location-based
services. Unlike classic approaches using Mixes or anonymous credentials [100], our
approach achieves the following strong privacy properties: First, the mobile operator
learns nothing in addition to what he already knows, with the exception of the set of
users that are all interested in using LBS. Thus, no usage profiles can be collected.
Second, the service providers only learn the number of subscribers to their service.
Thus, service providers do not learn the users’ location. In particular, our protocol
offers the additional privacy property of service unobservability. Even the service
providers do not know whether a user is accessing their service or not.

Threat Model. The parallel selection and collection protocol is build around the
user, which is considered to be trustworthy operating from a trusted environment.
The host and the proxy are curious adversaries. The protocol is designed to protect
the assets of the user i.e. the users’ location and the subscription to various hosts.
The proxy handles all communication between the user and the host. Being curious,
the proxy monitors all traffic during communication and observes all computations
being performed for leakage of valuable information. The proxy as attacker would
like to learn the information collected by the user and to learn from which host this
information was collected. The host as attacker is interested to learn which user is
collecting information and what the location is of this user. The proxy is aware of the
users’ location and could basically leak this information to any other party. Even if
the proxy colludes with all hosts none of the parties will learn which information was
collected by the user.

Structure. Section 3.2 elaborates on the requirements and gives a high level approach
of our privacy protecting parallel selection and collection scheme based on the LBS
scenario. The protocol is given in section 3.3. We analyze the efficiency and security
of our solution in section 3.4 and finally give conclusions in section 3.5.

31

3.2 Requirements and High-level Overview

The parallel selection and collection protocol should protect the assets and interests of
all involved parties. The assets that need to be protected are: the user’s location, the
user’s query and the databases of the hosts. More precisely, we consider the following
requirements:

Location privacy – The protocol should not reveal the user’s location to the service.

Query privacy – Even when the proxy and the hosts collude, the secrecy of the user’s
query should remain protected. This includes message privacy; i.e., only the
users can decrypt the messages of the hosts.

Database secrecy – The user should from the databases only learn the requested, lo-
cation specific, information and nothing more.

In a LBS scenario the users are typically connected via a mobile network to the proxy
who obtains the users’ location as a result of the GSM handover protocol [140]. Higher
location resolutions may be achieved by using triangulation techniques or GPS. The
hosts are connected to the proxy over high bandwidth wired line connections. We
assume that parties communicate via secure channels, that the proxy and the hosts are
able to authenticate to each others, and that they are able to sign messages using their
identity. This can for instance be realized using a public key infrastructure (PKI).

3.2.1 Phases

The selection and collection protocol is divided into three phases: Setup, Select and
Collect:

1. Setup. In the setup phase the involved parties generate their keys. The user U
needs keys for the encryption of the query and the hosts for the encryption of their
database. We assume that the user only queries a single host. Furthermore, each host
L j encrypts its specific database and transmits it to the proxy.

2. Select. In the select phase a user U creates an encrypted query and sends it to the
proxy. The query consists of � elements, one for each host L j. Each element indicates
in an encrypted form whether U is querying a host or not. For example, there are
three hosts (�= 3) and we are querying host L2. Then the selection of the user U will
be: Q1,Q2,Q3 = EpkU (0),EpkU (1),EpkU (0). Eventually the proxy forwards the jth

subscription element to the respective host L j. EpkU is an homomorphic encryption
using the public key pkU of user U. The database of a host L j is represented as
a one-dimensional vector with one element for each location. Let n be the number
of locations, then this vector is m(1, j), . . . ,m(n, j). For simplicity of presentation we
assume the same n for all hosts.

3. Collect. In the collect phase the proxy runs a protocol with every host L j and

32 Parallel Selection and Collection

obtains an encrypted result (under the key used by the user). For efficiency the proxy
combines all results into a single encrypted result for the user, such that the user only
receives the data of the host he was querying.

Notation. We write cryptographic primitives as Algk(x), where x denotes the pro-
cessed inputs of the algorithm Alg(.) and k denotes keys.

3.2.2 High-level Overview

We follow a constructive approach in the description of our protocol. We take building
blocks from Appendix A, put them into place, and describe their function. Some of
the security requirements can be fulfilled by the functionality provided by individual
building blocks; others require a complex interplay between building blocks. As a
consequence the transformation from building blocks to the sub-protocols of our so-
lution is not one-to-one. In Table 3.1 we sketch our approach of the complete protocol
with all the sub-protocols, like Oblivious Transfer, as they get assembled from their
building blocks.

Table 3.1: Parallel Selection and Collection Approach

Host Proxy User
– Key-generation
– Create Query from Selection
– Query communication

✛ ✛
– Key-Generation
– Database Encryption
– Database transportation to the Proxy

✲
– Oblivious Transfer based

on the Users’ Location
✛

– Oblivious Transfer based
on the Query of the User

✲
– Compute result

✲
– Decrypt Result

Our main building blocks are homomorphic encryption (Appendix A.1) and two vari-
ants of oblivious transfer (OT) protocols (Appendix A.3). Two OT protocols are used,
one based on blind signatures and the other based on homomorphic encryptions. The
blind signature OT scheme is suitable when the input database remains fixed, while
the index varies. The homomorphic encryption OT is efficient in the opposite case; it
is easy to use for fixed indices.

33

During the protocol execution, a single proxy interacts with a multitude of users and
multiple hosts. The first building block we put into place is a blind signature based OT
protocol. It is executed with the proxy acting as the requester and one of the hosts as
the sender. It allows the proxy to retrieve location specific information mσ1, j for a user
at location σ1 without host L j learning the user’s location. This guarantees location
privacy. The proxy executes this sub-protocol with all hosts in parallel. This assures
query privacy at the hosts side. In this way the proxy obtains an information vector
mσ1,1, . . . ,mσ1,�; where � is the number of hosts.

Our second building block is a homomorphic encryption based OT protocol. It runs
with the proxy acting as the sender (using the aforementioned vector as input) and the
user acting as the requester (using the index of the host Lσ2 as input i.e. the selected
host by the user is indicated as σ2). Finally, the protocol allows the user to learn mσ1,σ2
without the proxy learning the user’s query; we achieve full query privacy.

In the first OT, the same database is queried by the proxy multiple times as the user
moves around. Nevertheless, the database needs to be encrypted and transferred to the
proxy only once. For the second OT between user and proxy, it is sufficient to send
the first (and expensive) query of the homomorphic OT only once.

This gives us a first instantiation of the protocol phases. The outline of the protocol
is depicted in Table 3.1. For ease of presentation we use a simplified notation. The
detailed protocol description is given in Section 3.3.

1. Setup. User U generates a public key-pair (pkU,skU) for a homomorphic en-
cryption scheme. These keys are used for the oblivious transfer based on homo-
morphic encryption (Appendix A.3.2). Every host L j generates a public key-pair
(pkB j,skB j) that is used for OT based on blind signatures (Appendix A.3.1). The
database of the host L j consists of n elements m(1, j), . . . ,m(n, j). Each of the elements
is encrypted with its own symmetric key H(k(i, j)) that is computed by hashing the
signature k(i, j) = SignskB j(i) of the index using the secret key skB j of each host L j.
The encrypted database DB j = (C(1, j), . . . ,C(n, j)), with C(i, j) = EH(ki)(mi, j) is sent to
the proxy.

2. Select. A user’s selection consists of � ciphertexts, one for each host, Q1, . . . ,
Qσ2 , . . . ,Q�. The ciphertext Q j of the homomorphic encryption scheme is obtained by
using the public key of the user, EpkU . Q j is the result of an encryption of 1 for the
host Lσ2 = Qσ2 which the user has selected and of 0 otherwise i.e. hosts which are not
selected to be queried. In addition, to ensure the security of the oblivious transfer the
user could prove, using zero-knowledge, that the Q j are constructed correctly.

3. Collect. In the data retrieval phase a user obtains location-specific data from the
hosts. The proxy is involved since he is aware of the user’s location and stores the en-
crypted databases of the hosts. Recall that these databases are encrypted using hashed
signatures as keys. The proxy acts on behalf of the user and can request decryption of
individual items without revealing the location of the user. To guarantee query privacy
the proxy has to repeat the following steps for every host L j:

34 Parallel Selection and Collection

• The proxy blinds the actual user’ location σ1 using a blinding factor b and sends
the blinded value BlindpkB j(σ1,b) to each host. The hosts reply with the blinded
signature SignskB j(BlindpkB j(σ1,b)). The proxy then unblinds the users location
UnblindpkB j(SignskB j(BlindpkB j(σ1,b)),b). This will result in SignskB j(σ1) =
k(σ1, j) which is identical to the symmetric key H(k(σ1, j)). Eventually the proxy
computes mσ1, j = DH(k(σ1 , j)

)(C(σ1, j)), which completes the first OT. The proxy
collects m(σ1,1), . . . ,m(σ1,�) and continues with the second OT (the user’s first
message is taken from the subscription). The proxy takes each Q j and computes
for all 1 ≤ j ≤ �, M j = Q

m(σ1 , j)
j . This corresponds to an encryption of m(σ1,σ2)

for Lσ2 and an encryption of 0 otherwise.

• As a last step the proxy combines the M j by homomorphically adding all the
encryptions, not knowing which of them contain the message. This way all
encryptions of 0 cancel out. The result is transferred to the user, who decrypts
M j to obtains m(σ1σ2).

The main flaws of this simple construction is the fact that the proxy learns the mi, j
vector for the locations of the user. This is a compromise of database secrecy.

3.2.3 Database Secrecy revision

We address the lack of database secrecy by intertwining the first OT with the second.
To this end we let the proxy pass on Q j to L j. Now (after agreeing on who sends
which bit range) both L j and the proxy can act as senders in the second OT without
learning each others inputs. This is made possible by the properties of homomorphic
encryption, which lets everyone manipulate encrypted data. Informally, the last mes-
sage of the first OT will be transferred as part of the encrypted payload of the second
OT. This guarantees that only the user with her secret decryption key can obtain the
results of both protocols.

More concretely the following changes have to be made in the select and collect
phases. During the collection the proxy blinds the location σ1 and sends the blinded
value BlindpkB j(σ1,b) = σ1, j to the hosts. To ensure that only the user (and not the
proxy) can decrypt C(σ1, j), the hosts encrypt the blinded signature SignskB(σ1, j). This
is done with an additive homomorphic encryption scheme. Remember that during
setup the user (through the proxy) provided the host Lσ2 , to which he wants to collect
information from, with an encryption Qσ2 = EpkU (1). The host (j = σ2) computes
Mσ2 = SignskBσ2

(σ1,σ2)⊗ Qσ2 = EpkU (SignskB j(σ1,σ2) · 1) = EpkU (SignskB j(σ1,σ2)).
These requests are done for all hosts, including those the user did not select. The
latter receives Q j = EpkU (0) and all the operations result in M j = EpkU (0), for j �= σ2.
All results are sent to the proxy who adds the blinding factor b and corresponding
database entries C(σ1, j) to each message M j.

As a last step the proxy computes the homomorphic sum of all encryptions; not
knowing which of them contain the unblinding information, the encrypted message,
and the blinded signature. This way all encryptions of 0 cancel out. The result is

35

transferred to the user, who decrypts M, obtains b�C(σ1,σ2)�SignskBσ2
(σ1, j), computes

H(UnblindpkBσ2
(SignskBσ2

(BlindpkBσ2
(σ1,b)),b))=H(k(σ1,σ2)), and finally computes

m(σ1σ2) = DH(k(σ1 ,σ2)
)(C(σ1,σ2)) = DH(k(σ1 ,σ2)

)(EH(k(σ1 ,σ2)
)(mσ1,σ2)).

3.3 Parallel Selection and Collection Protocol

We will describe the complete parallel selection and collection protocol in details
based on the high-level approach from section 3.2 together with the database secrecy
revision from the same section. The complete protocol is also shown in Table 3.2,
which shows the execution and communication flows between the user, proxy and
hosts.

Table 3.2: Parallel Selection and Collection Protocol

Host Proxy User
(pkU,skU)
For j = 1, . . . , l
Q j = EpkU (0) if j �= σ2
Q j = EpkU (1) if j = σ2

Q1, . . . ,Ql✛ ✛
For j = 1, . . . , l
(pkBj ,skB j)
For i = 1, . . . ,n; j = 1, . . . , l
k(i, j) = SignskB j (i)
C(i, j) = EH(k(i, j))

(m(i, j))

DBj = (C(1, j), . . . ,C(n, j))
DB1, . . . ,DBl✲

σ1, j = BlindpkB j (σ1,b)
σ1, j✛

For j = 1, . . . , l
Mj = SignskB j (σ1, j)⊗Q j

(M1, . . . ,Ml)✲
Mj := M j ⊕ (C(σ1 , j)�b⊗Qj)
M = ∏�

j=1 Mj

✲
C(σ1 ,σ2)�b�SignskBσ2

(BlindpkBσ2
(σ1,b)) = DskU (M)

k(σ1 ,σ2) =UnblindpkBσ2
(BlindpkBσ2

(σ1,b),b)
m(σ1 ,σ2) = DH(k(σ1 ,σ2)

)(C(σ1 ,σ2))

1. Setup. The protocol starts with the generation of various key pairs with public
key pk and private key sk. Every host L j generates the key pair (pkB j,skB j) for
the unique blind signature protocol. The proxy does not need to generate keys. The
user U generates a key pair (pkU,skU) for the additive homomorphic Damgård-Jurik
cryptosystem [52] used for homomorphic OT [123].

Each host L j encrypts its location specific information m(1, j), . . . ,m(n, j). A host L j

36 Parallel Selection and Collection

uses his secret key skB j to compute DB j = (C(1, j), . . . ,C(n, j)):

k(i, j) = SignskB j(i)

C(i, j) = EH(k(i, j))(m(i, j))

The cryptographic hash function H is used for computing the symmetric key. Each
resulting database DB j is sent to the proxy i.e. DB1, . . . ,DBl .

2. Select. User U must select a host Lσ2 to receive location related information from
and proceeds as follows:

1. U uses his public key pkU to compute the query Q j, 1 ≤ j ≤ �:

Q j =

�
EpkU (1) if j = σ2

EpkU (0) otherwise

The Q j items are used to request the location specific information from the host
Lσ2 .

2. The resulting Q1, . . . ,Q� are sent to the proxy.

The proxy passes each query Q j on to the respective host L j.

3. Collect. The proxy runs a set of algorithms together with the hosts L j to request
location specific information for user U. The input of these algorithms is the database
DB j and the current location σ1 of the user U. The proxy’s output is an encryption of
m(σ1, j) based on the location of the user. The following is computed:

1. The proxy chooses a random b and computes

σ1, j = BlindpkB j(σ1,b)

The random blinding factor b hides the location σ1 of the user in σ1, j for each
host.

2. The proxy sends σ1, j to L j, 1 ≤ j ≤ �, which computes

M j = SignskB j(σ1, j)⊗Q j

3. Every host L j sends M j back to the proxy.

4. The proxy enriches M j with C(σ1, j) and b. This is done by computing M j :=
M j ⊕ (C(σ1, j)�b⊗Q j). This only changes the content of M j if Q j is an encryp-
tion of 1.

After the computations by every L j and receiving the corresponding M j, the proxy
computes M = ∏�

j=1 M j. This will combine all the encryptions into one message
using the homomorphic property of the cyphertext.

37

Finally the user decrypts M by computing the following algorithms:

C(σ1,σ2)�b�SignskBσ2
(BlindpkBσ2

(σ1,b)) = DskU (M)

k(σ1,σ2) =UnblindpkBσ2
(BlindpkBσ2

(σ1,b),b)

m(σ1,σ2) = DH(k(σ1 ,σ2)
)(C(σ1,σ2))

3.4 Security and Efficiency

3.4.1 Efficiency analysis

For our efficiency analysis we focus on two main factors. The first is the limited com-
putation and communication resources when users are using mobile devices. Although
mobile devices are becoming more powerful we see (through cloud based computing)
that most computation is done on the server side i.e. the hosts and the proxy. The other
factor is scalability for the hosts with respect to location resolution, i.e. number n of
map cells and the number of � hosts.

User. The costs incurred by the user are key generation and decryption. Key gener-
ation involves the generation of a single key. Decryption requires a single Damgård-
Jurik decryption. For low power devices with limited bandwidth, we suggest to do the
key generation at the user’s desktop PC. After the key generation, the private key skU
can be synchronized to the mobile device of the user. For additional security, when
the public and private key-pair where generated on the mobile device, the public key
pkU can be moved to the user’s desktop PC.

Hosts. The system scales optimally with multiple users since the key setup and
database encryption are independent of the number of users. Furthermore, database
encryption is only linear in the number of locations. Queries are linear in the number
of hosts; optimal as all hosts need to be involved to guarantee query privacy. Practi-
cally data transfer is independent of the number of locations and again only depends
on the number of hosts.

The most prominent cost brought upon by the host is database encryption requiring
one signature operation per location. The most dominant cost for L j and proxy is the
transmission of the encrypted database DB j. Moreover, these costs are brought upon
whenever any of the m(i, j) should be updated; since then the whole database has to
be updated and retransmitted. By relaxing the database security requirement the host
could only update a subset of updated locations and communicate this with the proxy.

3.4.2 Security Analysis

Our main goal is to implement location-based services without revealing additional
information about the user’s location and his/her service usage i.e. query. More pre-

38 Parallel Selection and Collection

cisely, an adversary involved in our protocol should learn nothing except what he
already could have learned by being involved in a scenario without location-based
services. For the proxy this implies that he is allowed to know the user’s location but
should not learn anything about the query of the user. For hosts this implies that both
the user’s location and the user’s query have to be concealed.

The proxy helps to solve fairness conflicts between users and hosts. This is supported
by considering the rationality of the proxy: his core competence is setting up the
communication in such a way that hosts and users can communicate in a fair way.
Cheating or not co-operating in resolving fairness disputes decreases his reputation.

In cases where accusing the cheater would endanger the users service privacy, we
could make use of a privacy trustee as an additional off-line trusted party. The usage
of a trusted third party to resolve fairness problems is common in the literature of fair
exchange protocols. In fact, [6, 7] have shown that the problem of fairly exchanging
data requires at least an off-line trusted party.

Location privacy. In our protocol hosts only get in contact with location related in-
formation in the collection phase. However, there the OT based on blind signatures
protects location related information from being revealed unintentionally. The secu-
rity of the OT scheme is based on the signature’s blindness property. This property
guarantees that for any host viewing message M and message M� is computationally
indistinguishable i.e. the two messages are effectively the same. As the user’s location
σ1 is hidden, the location privacy of our protocol can be straightforward reduced to
the blindness property of the used blind signature scheme.

Query privacy. Achieving query privacy is more challenging. This has two reasons:
First, the relationship user/host plays a role during the collection of data. Second, we
consider a stronger, but realistic, adversary model and allow for a malicious proxy,
who possibly collaborates with any host. This implies that the query privacy cannot
rely on the help of the proxy. Therefore, in the selection phase, the user’s query is
protected by the semantic security of the underlying homomorphic encryption scheme
i.e. it is infeasible for a computationally-bounded adversary to derive significant in-
formation about the plaintext given the ciphertext and corresponding public key. The
semantic security guarantees that two different queries are indistinguishable.

Database secrecy. In contrast to location and query privacy the database secrecy
protects the interest of the hosts. It guarantees that a user gets no more than the
requested information even if he collaborates with the proxy. The database secrecy of
our scheme, fundamentally, relies on two aspects: First, the host encrypts his database
before he sent it to the proxy. Second, as a result of the collection phase the user only
gets to know the requested data. This is due to the so called ‘Database security’ [121]
of the underlying secure oblivious transfer protocol.

Threat Model. Based on the threat model in Section 3.1 the adversaries (proxy and
hosts) are unable to learn more information, other than the information they already
knew. The proxy already knows the location of the user, but does not learn which

39

host the user is querying and does not learn which information is retrieved from the
hosts. The probability of the proxy guessing from which host the user is retrieving
information from decreases if the amount of hosts increase due to the combination of
the oblivious transfer using blind signatures and the homomorphic encryption during
collection. Even if the proxy would reveal the location of the user to all the hosts
(i.e. all adversaries collude), the proxy and the hosts will be unable to learn which
information has been queried by the user due to the homomorphic encryption. An
individual host remains oblivious to the information being queried from his database
unless he colludes with the proxy. Even if the host knows the location of the user, the
host remains oblivious in knowing if he has been queried by the user or not.

Complexity. We measure the strength of the protocol by analyzing the computational
complexity of the cryptographic techniques and algorithms used. Assuming the worst-
case scenario, where the proxy colludes with the hosts which implies that the location
of the user is compromised; then the security of the protocol is solely based on the
homomorphic encryption. Since Paillier is used for his additive homomorphic proper-
ties (Appendix A.1.3), the complexity of breaking the parallel selection and collection
protocol is as hard as factoring the modulus n.

3.5 Discussion

We presented the first privacy-preserving parallel selection and collection protocol
based on cryptographic techniques, namely, on oblivious transfer and homomorphic
encryption. The privacy of the user is protected by hiding the user’s location from the
services and by not revealing information on the user/host relationship.

Various privacy enhancing technologies (PET) have been proposed for LBS. Most of
these techniques focus on providing pseudonymity and anonymity for LBS. Federath
et al. [66] proposed the use of a trusted fixed station and Mixes [33] for hiding the
linkage of real world identities to location data in GSM networks. While our protocol
can be adapted to such a privacy enhanced GSM network by letting the fixed station
localize the user, we explicitly focus on the less privacy friendly but more practical
setting where a third party knows the users location.

Researchers started to develop LBS specific PETs called mix-zones (see [15] and
[83]). Mix-zones allow users to switch pseudonyms associated to their location in
an unobservable way. Kölsch et al. [100] use pseudonymization techniques in the
following realistic setting. A network operator (or a party connected to multiple op-
erators) knows the users location, while the LBS are provided by independent service
providers that know the user only under short lived pseudonyms. Unlike them we
do not rely on the anonymization of location data disclosed to services. Basically, as
location information is inherently attached to a persons life, reidentification is often
easy. Location needs to be hidden, not anonymized.

40 Parallel Selection and Collection

Chapter 4

Sequential Selection and
Collection

This chapter addresses the selection and collection problem using a sequential method
where information sources (hosts) are selected by choosing a fixed itinerary and ensur-
ing that collected information is passed on from host to host. Since only the first and
last host of the itinerary should communicate with the proxy, communication is min-
imal. To overcome the problem of ending the itinerary when hosts are unreachable,
a helper protocol is introduced which is capable of evading hosts from the itinerary,
when needed.

4.1 Introduction

Searching, comparing and buying e.g. airline tickets on the Internet is still a major
problem, especially if this task should be done on a mobile device. It takes time to
query multiple websites and to compare the variety of offers e.g. from airline compa-
nies. Although mobile devices are getting more powerful, most computation is still
performed on the server side.

In chapter 3 information was collected from various hosts using a proxy which queried
each host individually i.e. parallel selection and collection. That approach made it pos-
sible to keep the proxy oblivious to the information that was collected and oblivious
from which host it was collected. A different approach for collecting information from
various hosts is to query each host independently based on a fixed path i.e. itinerary.
Only when all hosts have been visited the collection process returns to the proxy for

The research for this chapter has been carried out in close collaboration with M. van Hensbergen MSc.
student of the Delft University of Technology, now with Fox-IT. The results of this chapter have been
published in [73] and [87].

42 Sequential Selection and Collection

the final result. Comparable to a lorry collecting packages at various locations before
driving back to the distribution center.

This so-called sequential selection and collection approach is based on hash chain-
ing together with symmetric and asymmetric encryption. Hash chaining is a method
of producing one-time passwords [103], but also suitable for the collection of infor-
mation from a fixed number of hosts [143]. The combination results in a sequential
selection and collection approach where the risk of loosing private data is minimized,
the collected information is kept private and the user remains in control over the pre-
defined hosts that should be visited.

Motivation. One of the classic approaches to the sequential problem are based on
mobile agents and mobile code operating in untrustworthy environments [30]. Mobile
agents are autonomous pieces of software that run on remote hosts in order to carry
out a task on behalf of its user. The code of the agent itself, together with some other
data, is transported via the Internet as opposed to data in traditional communication.
Usually these agents are considered in an e-commerce scenario (e.g. buying airline
tickets) where the goal is to purchase a desired item for a user. The agents visit a
number of hosts that may or may not sell the tickets in question, ask them for an offer
and eventually decide which offer is the best. The best offer is signed digitally by the
agent to commit itself to the offer made by the host.

Mobile agent technology is a blending of a number of technologies, in particular arti-
ficial intelligence and mobile code. Mobile code is the transfer of code, from one host
(sender) to another (receiver), which is executed on the recipient’s side. Examples
are Java Applets, which are transferred from a website to the user’s computer through
a web browser. It is often used in cases where bandwidth limitations make it more
efficient to send the code together with the data rather than executing the code on the
server hosting the website. In combination with artificial intelligence, mobile code
may be more autonomous and may travel a more complex path to execute more com-
plex functions. For example, mobile agents can be used in Multi-Hop MANETs [40].
Multi-Hop MANETs are comparable to the sequential problem since all communica-
tion is passed on from host to host (hops) without having to return to the proxy.

As discussed in chapter 2, the execution of software on the recipient’s computer pos-
sesses a number of security issues. Execution of ‘untrustworthy’ code on the recip-
ients computer can contain a virus, worm or a trojan, and can potentially harm the
users ‘trusted’ environment. Techniques for mitigating these threats are for example
sandboxing [102] or using certificates [145]. Sandboxes are mechanisms for running
programs in a isolated environment within the host. It is a valid security measure for
the host which do not trust the code to be executed on their system, but it does not
provide a solution for executing trusted code in an untrustworthy environment. The
disadvantage of using certificates is that an additional trusted party is needed to act as
Certificate Authority (CA) for all parties. This trusted party is able to verify the code
which needs to be executed on the remote host.

Karjoth et al. [95] defined a number of security properties on how mobile agents need
to protect collected information against adversaries. Information is usually collected

43

as a chain of encapsulated pieces of information with security properties such as:
confidentiality, forward privacy, forward integrity, or non-repudiation. A number of
solutions have been proposed based on public key cryptography, digital signatures and
hash chaining [95, 110, 160, 161], while some of these protocols possess weaknesses
[133].

Sander and Tschudin wrote various papers on the execution of mobile code in un-
trustworthy environments [138, 137, 136]. They introduced functions which can be
executed in encrypted form based on homomorphic cryptosystems.

In the work by Singelée and Preneel [143] an e-commerce problem with untrustworthy
hosts has been addressed using the concept of mobile agents. The proposed scenario
is similar to the sequential problem and the solution uses hash chaining techniques
from [95]. The limitations of these solutions is that they are based on multiple mobile
agents e.g. for the distributed protection of the private keys. It does not provide a
complete solution when a single agent would be used. This limitation, it provides a
firm basis for the development of a new sequential selection and collection approach
as will be described in this chapter.

The above mentioned literature is mostly presented within a mobile agents scenario.
Since this thesis does not focus on the concept of intelligent and autonomous mobile
agents, we therefore omit mobile agents in our solution as presented in this chapter.

Structure of the chapter. Section 4.2 gives the definitions of the parties, the model
and the requirements. The general approach to the problem is described in section 4.3.
The sequential selection and collection protocol is given in section 4.4. For more un-
derstanding an example is given in section 4.5. We analyze the protocol in section 4.6
and finally conclude in section 4.7.

4.2 Definitions

In this section we present the parties, the general model and the requirements of our
sequential selecting and collecting protocol.

4.2.1 Model

The issue with visiting hosts is that they are in principle untrustworthy and therefore
could tamper with the correct execution of the protocols. Figure 4.1 shows a schematic
overview of the sequential selection and collection model. The model is build around
three entities: the user U, a proxy P and hosts L1, . . . ,L�. The user U is situated in a
trusted environment where he is able to execute the protocols securely and privately.

The proxy P is a curious party which will execute the protocols correctly and there-
fore will not tamper with the protocol, but it is interested in the private information.
The hosts L1, . . . ,L� are considered malicious. They are able to alter the protocol,

44 Sequential Selection and Collection

choose to partially execute the protocol or not participate at all. Protocols executed by
hosts should not be able to leak any private information. It is impossible to prevent
tampering of the hosts, but it should be possible to detect misuse.

The itinerary is a list of hosts that the user U wants to visit in a particular arrangement
in order to obtain information. The itinerary is executed by the proxy P and further-
more carried out by the hosts L1, . . . ,L�. The itinerary ends at the proxy P and the
result of the query is sent to the user U by proxy P .

Threat model. The threat model of the sequential selection and collection protocol
is based on the trust we have in the involved parties. The user is trusted and oper-
ating from a trusted environment. The proxy is untrustworthy and curious regarding
the communication and computation being performed. The hosts are active attackers
capable of manipulating the computation and communication. They are capable of
performing replay attacks on the protocol or clone the data in order to gain informa-
tion. Hosts can attack the itinerary to retrieve information of the hosts to visit, which
could be used against the itinerary of the user e.g. to prevent the protocol in reaching
a specific host. Colluding hosts would not gain much information, other than they
already know, unless they also involve the proxy. If the itinerary has returned to the
proxy, a host colluding with a proxy could gain more information then wanted. In that
case, security would fail.

4.2.2 Requirements and Assumptions

The goal of our approach is to protect the resources and private information of all
involved parties. Therefore, the solution to our model should fulfill the following

Sequential

User

Proxy

Host 1

Host 2 Host 3

Figure 4.1: Sequential approach

45

requirements:

1. The collected information from the hosts should be hidden for other hosts. For
example, in the case of collecting offers from airline companies, these compa-
nies should not be able to offer a price for a ticket based on already collected
offers from other companies. The goal is therefore to have confidentiality of the
retrieved offers.

2. The itinerary should not reveal the full list of hosts which are planned to be
visited.

3. The amount of network traffic the protocol generates should be minimized. This
holds especially w.r.t. the interaction with the users due to the use of a mobile
device which has minimum computational power.

4. The final requirement is related to the tampering of the malicious hosts. One
cannot prevent tampering of the protocols by the hosts since the host has full
control of the protocol executed in his private environment. But, any host should
be able to detect malicious activity.

The assumptions to our model are:

1. A Public Key Infrastructure (PKI) is available to all parties to authenticate the
communication by identifying the public keys of various parties i.e. to ensure
secure communication channels.

2. This model does not consider a denial of service attack.

3. Hosts do not collude with each another.

4.3 Approach

The approach of this chapter is based on splitting up tasks (collect and decide). By
letting the hosts L1, . . . ,L� collect information from each other, the private informa-
tion of the owners (hosts) cannot be revealed, because the hosts are not able to process
collected information. For example, hosts are unable to match their provided informa-
tion with previously collected information. This decision process in only available to
the proxy P . The gathering of information is a rather neutral activity since hosts are
only used for the collection of information, while the decision logic is kept away from
these untrustworthy environments i.e. hosts.

There is also a helper protocol involved, which will be invoked when the protocol
cannot be sent to the next host. This helper protocol will reside within the proxy
P . The helper protocol is only needed when a host L j(1 ≤ j ≤ �) does not function,
otherwise the helper protocol will just shut down after a pre-determined time.

The groundwork of our approach is based on [143] which present a scenario in which
data can be collected securely, where collected data can be protected against untrust-
worthy hosts and where transaction can be digitally signed in untrustworthy environ-

46 Sequential Selection and Collection

ments. In order to protect different aspects of our selection and collection protocol a
variety of cryptographic techniques and concepts is needed. The encryption of mes-
sages m1 and m2 with a symmetric encryption algorithm using key Kj of host L j is de-
noted as EKj(m1,m2), whereas the messages are concatenated denoted by the comma.
The encryption of m1,m2 using the public key of a particular host L j is denoted as
EpkL j

(m1,m2). The digital signature of m1,m2 by a host L j will be represented by
SignskL j

(m1,m2).

Itinerary Security. The itinerary is based on an end-to-end encryption where in each
step a layer is revealed, with the result that the size of the itinerary gets smaller. The
itinerary should be controlled to ensure that every host is visited and that the order of
visit is controlled. The itinerary should be protected in that sense that the location of
the hosts is not revealed prior of visiting the host and that no additional hops can be
added to the itinerary. The approach in this chapter for itinerary security is based on
the hash chaining method described in Appendix A.4.

Threshold Signature Scheme. The proxy needs to sign a message at the end of the
itinerary. Therefore a threshold signature scheme is chosen, where the signing key is
split into two parts. Each party in the signature process can use its share to create a
partial signature on a message. These partial signatures can then later be combined to
create one complete signature. In our model we let the hosts partially sign their mes-
sages all with their secret signing key given by the itinerary. Once the proxy receives
all messages, it creates a partial signature and combines the two partial signature to
one complete signature. This way, the complete signing key is never reconstructed in
one place and can therefore not be misused by the hosts or the proxy.

4.4 Sequential Selection and Collection Protocol

The sequential selection and collection protocol is divided into three phases. The
initial phase is the initialization and selection treated in section 4.4.1 where all the
necessary information is selected, prepared and send to the appropriate parties. Sec-
tion 4.4.2 deals with the collection of information and how the protocol acts when the
itinerary is unable to reach a host. Finally, section 4.4.3 explains how the proxy and
the user process the collected information.

4.4.1 Initialization and Selection

For each initiation of the sequential selection and collection protocol the following
three sub-protocols need to be executed: the itinerary protocol, the proxy protocol and
the helper protocol.

47

Itinerary protocol. User U chooses a fixed itinerary L1, . . . ,L�,P where L j(1 ≤
j ≤ �) are hosts, � is the total amount of hosts to visit and P the proxy i.e. the final
destination of the itinerary.

For each host L j to be visited a symmetric encryption key Kj is generated by the user.
When host L j receives the itinerary, it is able to extract his designated symmetric en-
cryption key Kj using his secret asymmetric key skL j . Next, the symmetric encryption
key is used to expose the location of the following host to be visited from the itinerary.
In addition, the itinerary is reduced and only contains information accessible by the
next host.

A random nonce n j is generated for every host L j, where n j is used within the helper
protocol. The nonce is used at the end of the selection and collection protocol in order
to verify which host was skipped during the itinerary.

Using a (2,2)-threshold signature scheme between every host and the proxy the sign-
ing key is split into two parts, one for each host s j and one for the proxy sP . Splitting
of the signing keys can vary on the scheme used. We ensure that the proxy signing
key sP remains the same with all signing key-pairs. We compute for every host L j:

(s j,sP) (4.1)

The user generates the itinerary by starting with the itinerary entry of the last party to
be visited: the proxy P :

IP = [EpkP (KP ,sP)] (4.2)

At the end of the itinerary the proxy P will be able to decrypt the symmetric key KP by
using his private asymmetric key skP . The rest of the itinerary is computed iteratively
for the remaining hosts to visit, L j where j = {�, . . . ,1}:

I j = [Epk j(Kj,s j),EKj(Q j,L j+1, I j+1)] (4.3)

Where L�+1 = P , I�+1 = IP and s j,sP are the secret signing keys of the hosts and the
proxy. The itinerary is constructed like an onion. Each host removes a layer of the
itinerary to uncover: the query Q, the next host L� or P to sent the itinerary to, and the
remainder of the itinerary I.

By using an onion like approach the privacy of the itinerary can be achieved. Since
hosts only learn which hosts have sent the itinerary to them and which host they should
sent the itinerary to, they do not learn the complete itinerary and also not the order of
the itinerary. All parties know the location of the proxy P since every host should be
able to skip the next host in the itinerary by contacting the proxy. The advantage of
this approach is that the itinerary should be executed in a fixed order to be completed
successfully.

48 Sequential Selection and Collection

The protocol can only finish correctly if the itinerary is completed in the correct order,
because only then the proxy P will receive the correct symmetric key to decrypt the
encrypted storage, which is used to verify the complete process.

Every host should receive his part of the itinerary separately, if the itinerary would not
use the onion construction. The disadvantage of not using the onion construction is
that the user looses control of the hosts to be visited. The user looses control of the
order in which the hosts are visited. He looses privacy of the complete itinerary and
the amount of communication with the proxy grows. Finally, the complete itinerary I1
is sent to the proxy P .

Proxy protocol. The user creates an encrypted storage using the symmetric encryp-
tion key KP of the P . The encrypted storage is:

EKP (L1,n1,L2,n2, . . . ,L�,n�,F) (4.4)

F is the function that is performed by the proxy over the offers made by the hosts.
L j holds the name, location or credentials of the host.The encrypted storage can only
be accessed by the symmetric key which becomes available to the proxy when the
itinerary has visited all hosts. Using his private asymmetric key skP , the proxy is able
to decrypt equation 4.2 and gain access to this symmetric key.

The advantage of this approach is that the proxy does not learn anything about the
itinerary before the initiation. Prior knowledge of the itinerary by the proxy could be
used to alter the host to visit and creating a privacy concern regarding the requirements
of the user.

Helper protocol. When a host is unable to reach the next host in the itinerary, we
initiate a helper protocol using a look-up table. We want to make sure that the look-up
table 4.1 is not used by any adversary or by the proxy as an oracle that provides any
information for manipulating the collection process.

Table 4.1: Helper protocol lookup-table
Verification Value

h(EKj(L j+1)) Epk j(Kj+1,n j+1)

The host has decrypted his symmetric key Kj from the itinerary and has learned the
location of the next host L j+1 to sent the itinerary to. In case the host is not responding
he decides to contact the helper protocol. To verify that the host is the preceding host
in the itinerary, the host sends EKj(L j+1) and L j+1 to the proxy. The proxy verifies
whether L j+1 is inactive and verifies the encrypted value that was sent by comparing
it with the verification column in the table.

Since only the host knows which host he can visit next, he is the only one able to
generate EKj(L j+1). After verification, the user sends the value to the host which can
use it to decrypt it and use the new symmetric key to recover the query Q j+2, the next
host to visit L j+2 and the remainder of the itinerary. This construction ensures that the
proxy or any other who gets access to the lookup table is unable to use it as an oracle.

49

4.4.2 Collection

After the user has selected his itinerary and has executed the three protocols discussed
in section 4.4.1, all generated information is sent to the proxy. The proxy selects which
information is relevant for him and the rest is sent to the first host to visit. This will be
known by the proxy since he needs to know where to sent the information to.

During the information collection process the hosts will use the collection protocol
and sent the appropriate information to the next host. If a host is not reachable by
another host, that host is able to initiate the helper protocol. The explanation on how
to use the helper protocol is given in ’Using the Helper protocol’.

Collection protocol. Every host executes the following protocol (after having re-
ceived the itinerary):

1. Host L j uses his private key sk j to decrypt the first element of I j as given in
equation 4.3, to obtain his symmetric key Kj. This, so-called session key, can
be used to decrypt the second element of I j to obtain the personal query Q j of
the user, the location L j+1 of the next host and the remaining part of the itinerary
I j+1.

2. The host L j reads the query Q j and decides to respond with the message m j.
Since the message is only intended for the user it is encrypted with the users
public key EpkU resulting in EpkU (m j).

3. The encrypted message is then signed by the user using the partial signing key
s j. The signed message EpkU (m j) is denoted as c j,1 = Signs j(EpkU (m j)).

4. The encapsulated message M j is then computed by the host:

M j = SignskL j
[EpkP (EpkU (m j),c j,1),Hj] (4.5)

Hj = h(M j−1,L j+1) (4.6)

whereby, h(·) is the chain relation (see Appendix A.4) of the previously encap-
sulated message M j−1 together with the next host to be visited L j+1.

5. If necessary the helper protocol is used by the host as described in the next
paragraph.

6. If no helper protocol was used M0 to M j and H1 to Hj are sent to the next
destination on the itinerary. When the helper protocol was executed M0 to M j+1
and H1 to Hj+1 are sent.

Using the Helper protocol. When the next host in the itinerary is unreachable the
helper protocol can be used by the host to skip one host.

1. Host L j learns that host L j+1 is unreachable.

50 Sequential Selection and Collection

2. Since host L j has the knowledge of Kj and the location of the next host L j+1 to
be visited he computes h(EKj(L j+1)) and sends this to the proxy P .

3. The proxy verifies that host L j+1 is down, offline, unreachable or unwilling to
participate.

4. The proxy verifies whether h(EKj(L j+1)) is part of the helper protocol lookup-
table.

5. If the verification is correct he sends the corresponding value Epk j(Kj+1,n j+1)
to the host. If not, the protocol is aborted.

6. With this knowledge host L j is able to compute the following encapsulated
message

M j+1 = SignskL j
[EpkP (n j),Hj+1] (4.7)

Hj+1 = h(M j,L j+2) (4.8)

7. Finally, M0 to M j+1 and H1 to Hj+1 are sent to the next host L j+2.

4.4.3 Finalization

Decision protocol. Once the itinerary has reached the proxy P , the proxy will be able
to finalize the selection and collection protocol.

1. Proxy P uses his private key skP to decrypt the final element of the itinerary IP .
This reveals the session key KP and the proxy signing key sP .

2. The encrypted storage EKP (L1,n1,L2,n2, . . . ,L�,n�,F) can now be decrypted
using the session key KP . This gives the proxy knowledge of the itinerary that
was followed.

3. The proxy decrypts all encapsulated messages M j and verifies that they where
signed by the correct party. If verification fails, the user U is informed and the
protocol is aborted.

4. Since the proxy knows which party was skipped during the itinerary, the proxy
can verify whether the encrypted message belonging to that proxy contains the
nonce n j. If this fails, the protocol is aborted and the user is notified.

5. The function F is executed by the proxy on the encrypted messages EpkU (m j)
to e.g. decide which of the messages should be send to the user.

6. The proxy signs the message c j,2 = SignsP (EpkU (m j)) which resulted from the
computation of function F , and combines it with c j,1 to obtain a valid signature
c j.

7. Finally, the result of the computation is sent to the user who is able to verify and
decrypt the signed message c j.

51

4.5 Example

Initialization and Selection. Let us assume the presence of a proxy P and three (�=
3) hosts L1,L2,L3, see figure 4.2. First the user generates the symmetric encryption
keys K1,K2,K3,KP and the random nonces n1,n2,n3. Secondly, the user U generates
the itinerary using equations 4.2 and 4.3, which results in:

I1 = [Epk1(K1,s1),EK1(Q1,L2, [Epk2(K2,s2),EK2(Q2,L3, . . .

. . ., [Epk3(K3,s3),EK3(Q3,P , [EpkP (KP ,sP)])])])]

The secret signing keys are based on a threshold signature scheme (e.g. [55]) where
for every host the signing key is split between the host and the proxy. This will result
in three valid signature pairs with proxy signing key sP :

(s1,sP) = sa

(s2,sP) = sb

(s3,sP) = sc

The encrypted storage for the proxy P is calculated and sent to the proxy:

EKP (L1,n1,L2,n2,L3,n3,F)

Sequential

User

Proxy

Host 1

Host 2 Host 3

Verification
Helper

Protocol

Figure 4.2: Example of the sequential approach

52 Sequential Selection and Collection

Table 4.2: Example helper protocol lookup-table
Verification Value
h(EK1(L2)) Epk1(K2,n2)
h(EK2(L3)) Epk2(K3,n3)

The helper protocol generates table 4.2 which is only calculated for host L1 and L2.
Host L3 does not need to skip a host because he can directly reach the proxy P who is
assumed to be always to be available.

Collection. Host L1 uses his private key sk1 to decrypt I1 which reveals the session
key K1 and the partial signing key s1. Using K1 the user is also able to reveal the
personal query Q1 and the next host to be visited L2.

L1 reads the query Q1 and decides to respond with the message m1. Using the public
key of the user U the message is encrypted, EpkU (m1) and with the partial signing key
s1 the message is signed: c1,1 = Signs1(EpkU (m1)).

The encapsulated message is computed by the host:

M1 = SignskL1
[EpkP (EpkU (m1),c1,1),H1]

H1 = h(M0,L2)

Finally all the information is sent to the next host to visit, L2.

Host L2 receives I2 and retrieves K2,s2,Q2,L3, I3. He then signs his message c2,1 =
Signs2(EpkU (m2)) and he computes the encapsulated message:

M2 = SignskL2
[EpkP (EpkU (m2),c2,1),H2]

H2 = h(M1,L3)

Trying to sent his information to L3 he learns that it is not available. Therefore he
decides to contact the P and initiate the helper protocol by sending h(EK2(L3)) to him.
The proxy verifies that host L3 is down. Since this is a value within the helper protocol
lookup-table, the proxy responds to the host by sending back the corresponding value
Epk2(K3,n3).

After decrypting the received message the host is able to retrieve the missing informa-
tion because he has learned the symmetric key K3 of host L3. He learns that the next
host to visit is the proxy P . Finally, he computes the missing encapsulated message
and sends this information together with the rest of the encapsulated messages to the
proxy P , which is the next host to visit:

M3 = SignskL2
[EpkP (n3),H3]

H3 = h(M2,P)

53

Finalization. The proxy receives the last part of the itinerary (IP = [EpkP (KP ,sP)])
and decrypts it using his private key skP resulting in the exposure of the session key
KP and the partial signing key sP .

By using KP the encrypted storage will also reveal, the location of all hosts L1,L2,L3,
the nonces n1,n2,n3 and the function F .

The proxy verifies the signatures of M1,M2,M3 and verifies the integrity of the itinerary
using H1,H2,H3. Next, the proxy decrypts:

DskP [EpkP (EpkU(m1),c1,1)] =EpkU(m1),c1,1

DskP [EpkP (EpkU(m2),c2,1)] =EpkU(m2),c2,1

DskP [EpkP (n3)] =n3

With n3 the proxy can also verify that host L3 was skipped during the itinerary.

Function F is executed by the proxy on the encrypted messages received. For exam-
ple, the function computes which of two messages m1,m2 should be send to the user,
without decrypting the encrypted messages EpkU(m1),EpkU(m2). We define that the
messages represent numbers and that m1 = 10 and m2 = 5. Furthermore, function F
computes a Greater Than function with two inputs. Since m1 > m2 then the result of
the function F will be EpkU(m1).

The proxy finally computes c1,2 = SignsP (EpkU (m1)) and combines this with c1,1,
which will result in c1 = Signsa(EpkU (m1)).

c1 is send to the user U, who is capable of verifying the combined signature since the
user has generated the threshold signatures.

4.6 Security

In this section a security analysis is given of the selection and collection protocol
described above. The security analysis is based on the complete system and therefore
the protocols from section 4.4 are not discussed individually.

4.6.1 Protection Against Replay Attacks and Copying

With a replay attack, it is the hosts L j’s attention to gain information about the decision
logic in order to derive the best strategy to get its message accepted by executing
the collection protocol multiple times with varying inputs and observing the outputs.
Since this logic is not included in the itinerary, this decision logic can not be derived
from interaction with the itinerary.

The host can execute the collection protocol multiple times and add a different mes-
sage to the storage with each execution. The proxy can verify a-posteriori if hosts
have not stored more messages than they were allowed to, so this strategy will be

54 Sequential Selection and Collection

detected. The host can also copy the itinerary and store a different message in each
one in the hope that the message which is most beneficial to him will reach the proxy
first. But the first itinerary to reach the proxy will initiate the decision protocol and
all the itineraries that arrive after this itinerary will be ignored. Therefore, still only
one message of this host is considered and the decision cannot be undone by another
itinerary.

4.6.2 Redundant Itinerary

A fixed itinerary by the user, opposed to letting each host decide the next hop of the
itinerary, has the advantage of being able to audit better if an itinerary has fulfilled its
task properly, but it has the downside of having a rigid path across the hosts. Especially
if the requirement is also to protect the identities of the other hosts, it poses a problem
if one or more of the hosts in its path is not working properly.

The use of the helper protocol, introduces a form of safety net in the mission by
helping the itinerary to get past non functioning hosts.

4.6.3 Protection of Itinerary

Not only alteration of the itinerary be will detected, a host L j cannot generally see who
the other hosts are in the system. Each host L j can only see where the itinerary came
from (previous destination) and where the itinerary is going next L j+1. Therefore each
host L j can only see 2 out of j other hosts.

4.6.4 Weak protection of Signing Key

It is the digital signing of the best message by the hosts which seals the process. Once
the hosts have used the signing key to sign their message, this signature can be taken
as of by the host and the user that they have agreed to a certain message.

Since the signing key can be used to sign messages on behalf of the user, it is important
that the signing key does not get compromised. Any party who has the signing key
could use it to sign other messages which the user may not necessarily agree to.

In this model, the malicious hosts only get one part of the signing key, namely s j.
The other part, sP is stored in encrypted form on the proxy. Therefore, the malicious
hosts will not be able to get the complete signing key. Malicious hosts do not see the
partial signatures c j,1 from the other hosts, but even if they did, this would not help
the malicious hosts in reconstructing the complete signing key.

Assuming the malicious hosts and the proxy do not collude, the latter cannot derive
the secret key either. If the itinerary, for whatever reason, does not return to the proxy
it will never be able to see s j as it cannot decrypt the proxy’s stored information. Nor
will it see the other half as this is stored in the itinerary.

55

If the itinerary does return to the proxy, then that host can see sP and the partial sig-
natures c1,1, . . . ,c j,2. Due to the properties of the threshold scheme, it is infeasible to
derive s j from the collection of partial signatures. Therefore it cannot reconstruct the
complete signing key. It can, in principle, make all of these partial signatures valid.
But the fact that the proxy can at most sign the pre-defined messages, as opposed to
signing an arbitrary message if it were to find the complete signing key, is an advan-
tage.

4.6.5 Threat Model and Complexity

From a communication perspective the proxy is the most visited party in the protocol.
The user sends encrypted selection information to the proxy, after the computation of
the complete itinerary the protocol is executed at the proxy, and the helper protocol
resides at the proxy. Therefore, security wise, the proxy plays an important part within
the protocol since the user trusts the proxy not to be malicious. This in comparison
with the hosts which may be malicious.

Based on the threat model in Section 4.2 we look at the worst case scenario where
the proxy is malicious. We consider two cases, before the itinerary is complete (i.e.
during processing by the hosts) and after the itinerary has returned to the proxy. The
itinerary is computed at the trusted environment of the user and is protected by the
hash chaining. Since the proxy does not know the private keys of the hosts and the
symmetric keys of the hosts chosen by the user, the proxy is unable to decrypt the
itinerary and manipulate it other than replacing the itinerary completely.

Considering the case where the proxy is malicious and the itinerary has not completed.
This means the collection protocol has not ended and no collected information has
returned to the proxy. In this case the security of the protocol is not compromised and
no additional information will leak from the protocol. The proxy is unable to retrieve
the session key KP which is used to decrypt the encrypted storage. Without having
access to the encrypted storage, the proxy is unable to retrieve the full itinerary of
the user. Since the signing key sP is also not compromised, the proxy is unable to
construct a valid signature based on the threshold signature scheme. The strength of
this case relies on the encryption used for the encrypted storage e.g. using AES-128
the time complexity is 2128 [17].

In the case the itinerary has completed and the proxy is malicious or when all host
collude with the proxy, then the security of the protocol cannot be maintained. With
every completion of the itinerary the proxy will learn the content of the encrypted
storage. This itself only reveals the hosts which were visited in the past i.e. after the
completion of the itinerary. If all hosts would collude together with the proxy, the
proxy and a particular host could influence the itinerary during its execution at the
host. For example, they could use the helper protocol to skip various hosts during the
execution of the itinerary. Hosts which did not collude with the proxy and encrypted
a message EpkU(m j) intended for the user can still rely on the strength of the asym-
metric encryption system. A final undesirable effect of a malicious proxy is that it can

56 Sequential Selection and Collection

manipulate the signing of the result by replacing this with a valid signed message m j
from a malicious and colluding host L1.

4.7 Discussion

This chapter introduced a selection and collection protocol which could be used as a
basis for an e-commerce setting. By defining strict tasks for each protocol, sensitive
information is prevented from being exposed to the possibly malicious hosts during the
various processes. Even though we use a fixed itinerary to travel to the different hosts,
hosts see only a very small part of the itinerary. In case of failures in the itinerary, a
help protocol can be executed to overcome this difficulty. If all of the hosts function
properly this help protocol is not needed at all.

The sequential selection and collection protocol is based on previous work by [143].
The protocol is adopted to be used within a private computing problem where a proxy
is involved. The proxy is used as a semi-trusted hub from which the itinerary starts
and ends. The hosts can be active attackers, since the introduced helper protocol is
capable of circumventing malicious hosts.

The basis for the sequential selection and collection protocol are mobile software
agents. The main issue is that only a limited amount of papers is related to the threat
of untrustworthy proxies. Solutions based on encrypted functions [138] and homo-
morphic functions [159] are capable of performing limited operations within untrust-
worthy environments. But they do not provide solutions for protecting the itinerary
(path) of the protocol and they do not provide a mechanism to skip hosts if needed.

Various papers have been published on mobile agents in distributed sensor networks
[38, 39, 135, 147]. Mobile agents, due to their nature of being autonomous and in-
telligent, seem suitable for distributed sensor networks. Mobile agents can be used to
greatly reduce the communication cost on low-bandwidth connections by moving the
processing to the remote sensors rather than bringing the data to a central sensor. The
main challenge remains to incorporate them efficiently within sensor networks rather
than using them for security or privacy.

Chapter 5

Single Comparison

In this chapter it is studied how an untrustworthy proxy compare private information
by computing an inequality function in such a way that the private information re-
mains private in respect of the proxy, but the results of the comparison can be made
public if required. This chapter addresses the aforementioned problem by using Multi-
Party Computation (MPC) techniques together with the Private Agent Communication
Algorithm by [30, 31].

5.1 Introduction

In this fast growing digital era we are more often surrounded by intelligent devices,
such as mobile phones or tablets PC’s, which can support us in our daily life. While
information flows through these ambient devices, which are not only connected to
local networks but also to the outside world, we encounter security and privacy threats.
The most difficult threat [46] is the malicious adversary who has the ability to create
malicious software, to spy on insecure communication channels but also to create
untrustworthy proxies.

Every proxy has complete control over the information which is executed in his dig-
ital ‘world’ and it can therefore manipulate the software running on it. One topic
that so far has received relatively little attention in literature is the processing of pri-
vate information within untrustworthy proxies. Most research focusses on malicious
information and communications, and assumes that the information is processed on
trusted proxies. With private computing it should be possible to possess personal in-
formation of a user e.g. credit card numbers, personal preferences, while being able to
process this information within untrustworthy proxies without compromising security
and privacy.

The research of this chapter has been carried out together with ir. K. Cartrysse and dr.ir. J.C.A. van der
Lubbe at the Delft University of Technology. The result has been published in a research paper [72].

58 Single Comparison

In Chapters 3 and 4 we have covered the private computing - selection and collection
problem, where a proxy retrieves information from selected hosts without learning
what was selected and collected. In Chapter 5 and 6 we want this proxy to compute an
inequality function with private information where the challenge is to keep the private
information private but the result of the comparison can be learned by the proxy. This
challenge has similarities with Multi-Party Computation (MPC).

Multi-Party Computation

Multi-Party Computation deals with protocols which allow e.g. n hosts L1,L2, . . . ,Ln
in a network to compute jointly a multi-variable function f (x1,x2, . . . ,xn) = y on their
individual private inputs xi, in such a way that each host only learns the output y [158]
and not the inputs xi of the other hosts. In other words the goal is to preserve during the
protocol’s process, the maximal privacy of the xi’s and to guarantee the correctness of
the common result y. Privacy is achieved if the adversary cannot learn more about the
honest hosts’s input than what is revealed by the output of the function. Correctness
is achieved when the function f is always computed correctly, even in presence of
untrustworthy hosts.

MPC protocols where introduced in 1982 by Andrew Yao [158] with the famous ‘Mil-
lionaires’ Problem’. A short description of the problem: two millionaires (Alice and
Bob) want to know who is richer without showing their private wealth. So they want
to compute a function with their private wealths, respectively x1 and x2. This function
can be of the form:

if x1 < x2 then f (x1,x2) = 1
else f (x1,x2) = 0.

So, Alice and Bob discover only who is the richest without knowing each other’s
wealth. The strength of this protocol is based on the power of one-way functions, that
means, functions which are easy to compute but almost impossible to be inverted (in
the mod p sense). We describe the protocol using the RSA encryption scheme [131].
The protocol initiates with the following initial conditions:

1. Alice has i millions and Bob has j millions, where 1 � i, j � 10;

2. M is the set of all N-bit nonnegative integers;

3. QN is the set of all 1−1 onto functions from M to M;

4. The public key of Alice pka is generated randomly from QN ;

5. The two users don’t cheat.

The protocol proceeds as follows:

1. Bob takes randomly an N-bit number x from the set M;

2. And computes privately k = Epka(x);

3. Bob then computes k− j+1 and sends it to Alice;

59

4. Alice computes yu = Dska(k− j+u), for u = 1, . . . ,10, and where ska is Alice’s
secret key;

5. Alice generates randomly a prime number p of N/2-bit and computes zu =
yu mod p for all u;

6. She verifies that all zu differ by at least 2 in the mod p sense, if not, then she
picks up another prime p and computes the new zu. This verification guarantees
that no number appears twice in the sequence generated by Alice.

7. Alice sends then to Bob the prime number p and the following list:

z1, . . . ,zi,zi+1 +1, . . . ,z10 +1

8. Bobo picks up the jth number from the list and checks whether z j = x mod p;

9. If it is true, then i � j, otherwise i < j;

10. Bob gives to Alice the response.

The protocol fulfills the requirements of security and privacy. Alice cannot know
Bob’s wealth i because Bob computes Epka(x), while Alice computes Dska(k− j+u),
she cannot find j.

After Yao several other MPC protocols have been designed, and nowadays the field of
MPC is expanding in several areas, for example [80]: Electronic Elections, Electronic
Bidding for Contracts, Private and Secure database access, Joint Signatures, Joint
Decryptions.

Secure Multi-Party computation is important for cryptography since basically MPC
protocols simulate a Trusted Third Party (TTP) where none exists, under the assump-
tion that at most a certain fraction of the hosts involved are corrupted. In other words,
MPC protocols ‘cancel’ the problem of not having the TTP without decreasing the
level of security and privacy, because the trust is distributed all over the hosts.

Since we assume the involvement of an untrustworthy proxy within private comput-
ing, the aforementioned description of MPC contradicts with our untrustworthy proxy
assumption. This also reflects in the description of Yao’s protocol which does not
use any proxy to perform the computation, since both parties compute the function
together. Although not even this most basic MPC protocol fulfills the private comput-
ing requirement of using a mandatory proxy, there are MPC protocols which can be
adapted for private computing such as [24].

This chapter addresses the single comparison problem based on the private bidding
protocol by [24]: Alice wants to buy some goods from Bob if the price is less than a
and Bob would like to sell, but only for more than b and neither of them wants to reveal
the secret bounds. The private bidding scenario actually compares two values with
each other. The objective of this chapter is to demonstrate that comparison (Private
Bidding) is also feasible within an untrustworthy environment i.e. proxy. To achieve
this goal we are using a proxy to compare the inputs of two users, without learning
their private inputs.

60 Single Comparison

User

a'
Host

0/1
Proxy

Single
Comparison

a

Figure 5.1: Single comparison Scenario

In section 5.2 we present our scenario. The homomorphic E-E-D protocol used within
this chapter is described in section 5.3. The single comparison protocol is given in
section 5.4, while section 5.5 discusses the security of the system. Section 5.6 ends
with the conclusion.

5.2 Scenario

There are similarities between the original private bidding protocol from [24] and the
single comparison protocol we present in this chapter. The main difference is that
within our protocol the communication between the users always passes through the
proxy, because the users are unable to communicate directly with each other. Fur-
thermore, within the original private bidding protocol the untrustworthy party, named
Oblivious Third Party (OTP), was unable to compute a result of the computation.
While in our protocol the proxy is able to learn the outcome of the comparison.

Figure 5.1 gives an overview of the parties involved within the scenario. The user,
host and the proxy are the three parties involved in this scenario. The user initiates the
protocol. The proxy is an untrustworthy party that will correctly execute the private
inputs a,a� given by the user and host, without being able to learn any information
about the inputs. The goal of the parties is to determine whether a > a� privately.
In an e-commerce setting the single comparison could be applied as the maximum
price a buyer (e.g. user) is willing to pay is greater than the minimum price the seller

61

(e.g. host) is willing to receive. Nevertheless, the parties will only reveal their bids
a,a� if a > a�, otherwise they will keep their bids private.

Threat model. The proxy is an untrustworthy adversary as was introduced by [128].
Consequently, the proxy is a server executing the protocol of the user and the host,
while storing all information from the protocol and all communication between the
user and host. The proxy is not a malicious party trying to modify the protocol. The
main threat within the single comparison problem is breaching confidentiality of the
inputs. The proxy could learn viable information during the processing of the protocol
and the communication with the user and the host. Furthermore, the proxy could
replay the comparison process with different inputs to retrieve private information. A
colluding host and proxy are able to retrieve private information from the user.

Requirements. Our goal is to ensure that the proxy does not learn the private inputs
a,a� before the users decide privately to reveal their secret inputs e.g. when a > a�.

The requirements for our single comparison scenario are:

• The proxy performs the comparison computations.

• The inputs must remain private to the users.

• The comparison function computed by the proxy should be an inequality func-
tion.

• The proxy learns (some) information of the output

• The output should be made public by the proxy (All users should be able to
learn the same information as the proxy).

5.3 Homomorphic E-E-D

In [31] a protocol is described which is able to encrypt a message m with the public
key of the user and send it to the host which encrypts the message again with his own
public key. The encrypted message is send back to the user, who is able to decrypt
the message in such a way that the result is a message encrypted by the host. This
protocol, as shown in figure 5.2 is know as Encryption-Encryption-Decryption (E-E-
D).

Epk1 Epk2 Dsk1

x Epk1(x) Epk2(Epk1(x)) Epk2(x)

Epk1 Epk2

Epk1 Epk2

Dsk1

Epk2(x1 + x2)Epk2(Epk1(x1 + x2))

Epk2(Epk1(x1))

Epk2(Epk1(x2))Epk1(x2)

Epk1(x1)x1

x2

+

Figure 5.2: E-E-D

Homomorphic E-E-D is based on the homomorphic (addition) property of ElGamal
[62]. The concept behind the algorithm is to encrypt two messages with different keys

62 Single Comparison

and adding them together. Next, the messages are decrypted with the first key and
the result will be the addition of the two messages which are only encrypted with the
second key, see figure 5.3.

Epk1 Epk2 Dsk1

x Epk1(x) Epk2(Epk1(x)) Epk2(x)

Epk1 Epk2

Epk1 Epk2

Dsk1

Epk2(x1 + x2)Epk2(Epk1(x1 + x2))

Epk2(Epk1(x1))

Epk2(Epk1(x2))Epk1(x2)

Epk1(x1)x1

x2

+

Figure 5.3: Homomorphic E-E-D

We generate a large prime p and choose a generator g ∈ Z∗
p. We choose a random

integer a1,1 ≤ a1 ≤ p− 2 and compute ω1 = ga1 mod p. We also select a random
integer k1,1 ≤ k1 ≤ p−2 and compute the following:

γ1 = gk1 mod p,

δ1,x1 = x1ωk1
1 mod p = Epk1(x1).

The message is x1, the cipher text is c1,x1 =(γ1,δ1,x1) and the secret key sk1 is a1. Next,
we encrypt δ1,x1 , using a new public key (p,g,ω2). We also compute ω2 = ga2 mod p
and use this to encrypt the message:

γ2 = gk2 mod p,

δ2,x1 = δ1,x1ωk2
2 mod p = x1ωk1

1 ωk2
2 mod p = Epk2(Epk1(x1)).

The public key pk2 is (p,g,ω2), the cipher text is c2,x1 = (γ1,δ2,x1) and the secret key
sk2 is a2. For convenience we write δ2,x1 as Epk2(Epk1(x1)) which represents the two
top left function blocks shown in figure 5.3.

We encrypt a message x2 with the same keys and the same random integers k1, k2 as
for message x1, which can be calculated as indicated above. The result is written as
Epk2(Epk1(x2)) which represents the two bottom left function blocks from figure 5.3.
Furthermore, we add the two ciphertexts δ2,x1 , δ2,x2 together:

x = δ2,x1 +δ2,x2 = Epk2(Epk1(x1))+Epk2(Epk1(x2))

= δ1,x1ωk2
2 mod p+δ1,x2ωk2

2 mod p

= x1ωk1
1 ωk2

2 mod p+ x2ωk1
1 ωk2

2 mod p

= (x1 + x2)ωk1
1 ωk2

2 mod p
= δ2,x1+x2 = Epk2(Epk1(x1 + x2)).

The two encrypted messages δ2,x1 , δ2,x2 can only be added to one another when they
are both encrypted with the same public keys and with the same random integers k1,

63

k2. The result, Epk2(Epk1(x1 + x2)), is decrypted by the first private key a1 and the
following equation:

x� = Dsk1(x) =
δ2,x1+x2

γa1
1

mod p

=
(x1 + x2)ωk1

1 ωk2
2

gk1a1
mod p

= (x1 + x2)ωk2
2 mod p.

We now have the first and the second message added to one another and encrypted
with the second public key pk2, which can be written as follows:

Dsk1(Epk2(Epk1(x1 + x2))) = Epk2(x1 + x2) = x�

Consequently, decrypting x� produces the following:

Dsk1(x�) =
x�

γa2
2

mod p

=
(x1 + x2)ωk2

2
gk2a2

mod p

= x1 + x2.

which is the addition of the two messages without encryption.

It has to be noticed that according to the Diffie-Hellman problem it is impossible to
compute gak mod p from ga mod p and gk mod p [58]. Furthermore, the key a and the
random integer k must remain secure, and preferably should be changed frequently.

5.4 Protocol

The following protocol is carried out by three parties: the user, the proxy and the host.
The protocol is initialized by the user and the proxy who will choose, generate and
compute various variables, keys and encryptions. The host then receives information
from the user through the proxy, processes it and sends it back the proxy. In the end,
the proxy is able to compute a greater than function over two secret values without
leaking any information.

The protocol begins by letting the proxy generate an (ElGamal) key-pair with the
public encryption key Epkt and the secret decryption key Dskt . The user is unwilling
to reveal his private value a. This value can be represented as a binary string. Next,
random and independent values are chosen:

xl ,xl−1, . . . ,x0 ∈ Z
rl−1, . . . ,r0 ∈ Z
sl−1, . . . ,s0 ∈ Z

64 Single Comparison

where l is chosen as the maximum number of bits used for the representation of the
private value of the user a and the private value of the host b.

The user needs to define an n-bit prime pa = λ(ta) where ta ∈ {0,1}n is randomly
chosen. Using λ(x) the user can map a string x to an n-bit prime p e.g. by finding
the smallest prime greater than x. Then the user generates a random ma using the
Φ-Hiding Assumption, as described in Appendix A.5, which hides her prime pa. The
user also computes Ga =

φ(ma)
pa

which will be used at the end of the protocol to deter-
mine which of the private values is the largest.

Next, a key κ for the hash function Hκ is generated and published. The user calculates
ϕa, j using the hash function Hκ(x j + s j) (for j = l −1, . . . ,0):

ϕa, j = Hκ(x j + s j)⊕ ta.

Where all values except ta ∈ {0,1}n are ∈ Z.

The user chooses a secret value a which needs to remain confidential. The user rep-
resents the value a as a string of bits a j for j = l − 1, . . . ,0 and encrypts it using his
public-key Epka, j and random integers ka, j. This has to be “sealed” using the public-
key of the proxy and the random integers kt, j

ya, j =

�
Epkt, j(Epka, j(x j − x j+1 + r j))

Epkt, j(Epka, j(x j − x j+1 + s j + r j))

if a j = 0
if a j = 1

The bidding is prepared for the host by the user using the same cryptosystem with
random integers kt, j, ka, j and public-keys Epkt, j:

yb, j =

�
yb0, j = Epkt, j(Epka, j(−r j))

yb1, j = Epkt, j(Epka, j(−s j − r j))

if b j = 0
if b j = 1

.

He computes,

Ψb, j = Hκ(x j − s j),

which is send to the host through the proxy.

The host is able to acquire the public yb, j. He also uses his secret value b, which is
represented as a string of bits b j for j = l − 1, . . . ,0. Because ya, j is also publicly
available he can compute yab, j:

yab, j = ya, j + yb, j. (5.1)

To be sure that the proxy will be unable to construct b from yab, the host encrypts (5.1)
again, by computing:

wab, j = Epkt, j(yab, j).

The only requirement with this protocol is that the host and the user are using the
samen cryptosystem i.e. they have the same generator g and prime p but they can have
a different k.

65

The user has already chosen a tb ∈ {0,1}n, defined an n-bit prime pb = λ(tb) and
generated a random mb. He also computes Gb =

φ(mb)
pb

used for determining the end
result. The host received from the user Ψb, j and computes before sending information
back to the proxy, for j = l −1, . . . ,0:

ϕb, j = Ψb, j ⊕ tb.

The user and the host have prepared their values using the public information and are
now able to send their information to the proxy. The host sends ϕb, j, mb, wab, j and Gb
to the user with help of the proxy.

The user is able to decrypt wab, j because he is in possession of the secret-key Dska, j:

z j = Dska, j(wab, j)

= Dska, j(Epkt, j(yab, j)).

The User sends the following values to the Proxy

κ,xl ,zl−1, . . . ,z0,ϕa,l−1, . . . ,ϕa,0,

ϕb,l−1, . . . ,ϕb,0,ma,mb,

Ga.

The proxy lets cl = xl and chooses ga,l ∈ QRma , gb,l ∈ QRmb by selecting a random
element of Zma , respectively Zmb , and squaring it. For j = l − 1, . . . ,0 the following
five steps are repeated

1. c j = c j+1 +Dskt, j(Dskt, j(z j))
2. qa, j = λ(Hκ(c j)⊕ϕa, j)
3. ga, j = (ga, j+1)qa, j mod ma
4. qb, j = λ(Hκ(c j)⊕ϕb, j)
5. gb, j = (gb, j+1)

qb, j mod mb

After this iteration the proxy chooses ra ∈ Zma , rb ∈ Zmb randomly, computing:

ha = (ga,0)
ra

hb = (gb,0)
rb ,

where ha is sent to the user and hb is sent to the host.

All parties can test the result of the computation by using the factorization of ma and
mb. The user can check whether a > b

hGa
a = h

φ(ma)
pa

a ≡ 1 mod ma.

Similarly, the host can check whether a < b by computing

hGb
b = h

φ(mb)
pb

b ≡ 1 mod mb.

The proxy can either choose Ga or Gb to compute the result of the protocol and learn
if a > b, or not, without being able to learn a or b.

66 Single Comparison

5.5 Security Analysis

The original private bidding protocol by [24] did not use ElGamal for the communi-
cation between the user and the host. We choose ElGamal due to the E-E-D property.
The protocol is secure if the comparison takes place at the untrustworthy proxy and as
long the proxy does not learn the private-key of the user to decrypt wab, j.

The proxy has Ga or Gb to compute the result of the comparison. Ga,Gb can be used to
gain more information during the five steps iteration process performed by the proxy,
which is able to discover when it contains a p-th root modulo ma or mb. The result
is that the proxy is able to learn how many bits the strings a j and b j differ from each
other i.e. the proxy is able to learn the distance d = a− b without learning a or b.
The proxy will therefore only learn information regarding the relationship between de
values, but nothing else.

The protocol is fair because both the user and the host are able to check individually
what the result is of the comparison computed by the proxy.

ElGamal is insecure if we keep the random k identical for every encryption. In our
case we also keep the k the same but we claim this is secure. The user is the only
one who encrypts the messages ya, j, yb0, j and yb1, j, therefore he is the only one who
knows the content of the messages; which is also not known to the host. Suppose the
same k is used to encrypt two messages x1 and x2 and the result is the ciphertext pairs
(γ1,δ1,x1) and (γ2,δ2,x2). Then

δ1,x1

δ2,x2

=
x1

x2
(5.2)

is easily computed if x1 or x2 is known [115]. In our case, the messages are only
known to the user and therefore no other entity is capable of computing (5.2). We
therefore claim that the use of the identical k does not make our protocol insecure.

The user initiates the comparison process, therefore he can cheat the protocol. This
could be prevented by adding commitments and letting the proxy be more actively
involved in the comparison process.

Threat model and Complexity. In Section 5.2 we formalized the threat model for
the single comparison protocol. The proxy is curious to the inputs which are being
compared but the protocol will prevent the proxy to learn any additional information.
The functionality is based on the homomorphic E-E-D (Section 5.3) and the security is
based on the Φ-Hiding Assumption (Appendix A.5). Furthermore, the protocol only
requires one round of communication with the user and the proxy. The complexity of
breaking the single comparison protocol is as hard as breaking the factorization of the
Euler totient function φ(m).

If a curious proxy would turn malicious the protocol would rely on the cryptographic
primitives but fail to produce a reliable outcome of the computation since the proxy
is able to alter the protocol completely. For example, the proxy would be able to

67

randomly choose values from ya, j and compare them with random values from yb, j,
which randomizes the result.

If the complete set of values yb, j is compromised together with the comparison value
Ga already know by the proxy, the malicious proxy is be able to perform a replay attack
on the input values. By repeatedly changing the input values of the host, the proxy is
able to retrieve the private value of the user. This can be prevented by encrypting the
set of values with the public key of the host. The downside of this encryption is that
the user must already know the host he is going to compare the values with.

If the host would collude with the proxy and get access to the comparison value Ga of
the user, he could use the proxy as an oracle by querying it and gaining access to the
users’ private information.

5.6 Discussion

We have presented a single comparison protocol that keeps the private values of the
user and the host private while the communication and the comparison is performed
by an untrustworthy proxy.

This chapter is based on previous work by [24], which was based on Multi-Party Com-
putation (MPC) techniques. The issue with MPC is that most solutions are unsuitable
for private computing with untrustworthy proxies since most solutions avoid the us-
age of these curious proxies. The paper by [24] focusses on fairness and therefore was
bound to use a third party. By adopting the original protocol with various techniques
such as E-E-D and the usage of ElGamal in a special way we where able to improve
the protocol for usage with untrustworthy proxy. In the original paper the proxy was
unable to learn any information other than having to contact the user or host. In this
chapter the proxy is able to learn one-bit of information related to the inputs.

In other approaches such as ”Non-interactive CryptoComputing for NC1” by Sander,
Young and Yung [139] a user sends a private message x to the proxy, who processes
it using his private function f and sends his output f (x) back to the user. In their
solution the user learns only the output f (x) and not about the function f while the
proxy learns nothing about the message x but also nothing about the output. In our
approach the proxy only learns the outcome and nothing else.

Freedman et al [68] and Li et al [86] discuss single comparison in the context of find-
ing common data elements (intersection) in two databases without revealing private
information. This is different from our approach, where the goal is to compare two
approximately equal inputs together instead of finding the intersection.

The single comparison protocol only computes one greater than function while in
various scenario it is more interesting to compare multiple greater than functions. In
the next chapter we will provide a solution for multiple comparisons based on the
same paper as single comparison.

68 Single Comparison

Chapter 6

Multiple Comparison

Consider a scenario for comparing multiple values, where a user wants a set of secret
values to be compared with another set of secret values by an untrustworthy proxy.
This comparison is done in such a way that the proxy only learns whether the inputs
are approximately equal to each other or not. Theproxy does not learn any other infor-
mation about the secret values. This protocol is based on multi-party computational
techniques together with the Φ-hiding assumption, which is extended to hide multiple
primes.

6.1 Introduction

One of the challenges of private computing is the problem of comparing ‘noisy’ val-
ues. Suppose, a user provides his secret values F = {a1, . . . ,an} to a trusted device,
which encrypts the information and the result E(F) is stored on a public database.
Next, the user gives another set of secret values F � = {a�1, . . . ,a

�
n} to a trusted device.

These values are also encrypted and the result E(F �) is sent to the proxy. The proxy
compares the two samples, while only obtaining one-bit of information about the two
values. During this comparison the proxy should only learn whether F ≈ F � without
knowing F or F �. We use the term ‘noisy’ to indicate that the compared values are
approximately equal (or not) based on a pre-defined error-margin. We assume that
proxy follows the protocol correctly, but is interested in the content that he is process-
ing i.e. untrustworthy behavior. Because the proxy is a threat, he should be prevented
to repeatedly compare various values with the already submitted values; with the goal
of gaining knowledge about the values without decrypting it (replay-attack).

This problem is similar to password protection, where the hash-value of a password P
is computed based on a one-way function H and the result H(P) is stored in a database.

The research of this chapter has been carried out together with dr.ir. J.C.A. van der Lubbe at the Delft
University of Technology. The result has been published in a paper [74].

70 Multiple Comparison

During comparison the user enters his password P� and the hash-value H(P�) (based
on the same function H) is compared with the previously obtained hashed password
H(P). The two values compare (are equal) if H(P) = H(P�) i.e. P = P�. The hash
function produces a fixed-length output string for an arbitrary length password P and
because it is computationally infeasible to find two passwords P and P� such that
P �= P� but H(P) = H(P�) (i.e. collision-free), this simple scenario succeeds.

The problem is that comparing ‘noisy’ values based on one-way functions is infea-
sible, because a small difference in the inputs will result in a large difference in the
output. Therefore if F ≈ F � it will not mean that H(F)≈ H(F �).

Threat model. The multiple comparison problem is based on the same threat model
as the single comparison problem, described in Section 5.2.

We present a multiple comparison protocol which only needs one round of commu-
nication and which is based on the private bidding protocol [24], instead of using
one-way functions. In section 6.2 we present our scenario and discuss the relation
with previous work. Section 6.3 describes the building blocks that are necessary to
construct the protocol. In section 6.4 the protocol is presented and the security of the
protocol is discussed in section 6.5. Finally, section 6.6 ends with concluding remarks.

6.2 Problem Statement

Our objective is to demonstrate that an untrustworthy proxy can determine whether
two messages from user are equal within some pre-defined error margin, without re-
vealing those messages i.e. we want proxy to compare two values while maintaining
privacy.

The main problem is how to compare two noisy values with each other. The values
are retrieved from the same user at two different times. The first value is used as
reference for the comparison and stored in a public database DB. Values retrieved
later are compared during the comparison with the reference values from the database,
afterwards these new values are not stored but discarded. The user of the system
is trusted not to tamper with the protocol i.e. trustworthy. Because the values must
remain private, the user will also provide a key k which remains secret using e.g. PIN
code or personal card.

The proxy controls the comparison process and is considered to be untrustworthy,
which implies that he will execute the protocol correctly but he is interested in the
secret values F . This passive untrustworthy proxy, should only learn from the com-
parison process that F ≈ F � but not F or F �. Furthermore, the proxy should not be
able to compare values from possible other users or values generated by the proxy
itself. Finally, eavesdroppers should not learn any information from the values sent
over public channels.

71

User

E(a'1,a'2,...,a'n)
Host

(a1,a2,...,an)

0/1
Proxy

Multiple
Comparison

Figure 6.1: Multiple comparison

6.3 Cryptographic Techniques

The comparison of ‘noisy’ values is based on the two-party private bidding protocol of
Cachin [24] which is modified to suit our requirements. The algorithms that are used
for the multiple comparison protocol are discussed in Appendix A and modifications
are presented in the next paragraphs.

Private Bidding versus Multiple Comparison

The private bidding protocol of [24] consists of three different parties: buyer, seller
and Oblivious Third Party (OTP). Within our multiple comparison scenario (Section
6.2) we also have three parties: a user how starts the protocol, a host who stores the
secret values and a proxy which does the comparison. The main difference between
the two protocols is that the Oblivious Third Party does not learn anything about the
comparison while the proxy does. Another difference is that the buyer and the seller
are two independent parties submitting their own secret values. With multiple com-
parison, the user and the host are two different parties but the values provided by the
host are created by the user (a�1, . . . ,a

�
n) and only kept confidential at the host using en-

cryption E(a�1, . . . ,a
�
n). The user provides new secret values (a1, . . . ,an) which can be

compared with the encrypted reference values E(a�1, . . . ,a
�
n) stored by the host. This

multiple comparison scenario is shown in figure 6.1.

72 Multiple Comparison

Due to the ‘noise’ in the values we need to compare the values using a distance func-
tion D(F,F �)< ε where ε is the threshold or error-margin. After defining the threshold,
the distance function can be divided into two Greater Than (GT) functions

F + ε > F � > F − ε (6.1)

The private bidding protocol does not fulfill the requirements of letting the proxy
learn information about the comparison, therefore we need to make alterations to the
original protocol and apply this to our multiple comparison scenario. Taking the re-
quirements of comparison into account the following must be changed. Using private
bidding, the OTP (proxy) is not able to learn anything from the comparison; it is only
capable of computing the GT function and sent the result back to the buyer and seller.
With multiple comparison the proxy should learn the result of the distance function
but nothing more. Also, with private bidding the buyer sends his encrypted secret val-
ues to the seller without sending it directly to the proxy. In multiple comparison we
require the user to give his (encrypted) secret directly to the proxy.

The proxy learns nothing about the relationship between F and F � during the private
bidding protocol, because the proxy sends the encrypted result back to the seller and
buyer. In the multiple comparison scenario the proxy should learn only the relation-
ship between F and F � but noting more. Since F and F � consist of multiple values they
have to be compared separately. Two approaches are possible. Compare each value
of F = (a1, . . . ,an) and F � = (a�1, . . . ,a

�
n) separately where each comparison result is

learned by the proxy. Or, compare each value separately but let the proxy only learn
the overall result of the comparison. The downside of the first approach is that the
proxy learns the result of each comparison and therefore learns more than just if F is
or is not greater dan F �. The second approach has the advantage that when at least one
of the distance functions does not fulfills the requirement then all distance functions
will fail.

6.3.1 Extended ΦHA

Private bidding [24] is based on the Φ-hiding assumption (ΦHA) [25], which states
the difficulty of deciding whether a small prime divides φ(m), where m is a compos-
ite integer whose factorization is unknown. The original protocol can only hide one
prime. Next we will discuss how it can be extended to hide multiple primes so it can
be used within the computation of multiple GT functions.

In the extended ΦHA, let:

mn = q�0
n

∏
i=1

q�i = q�0q�1q�2 . . .q
�
n (6.2)

where n is the amount of primes we want to hide, q�0 is a safe prime of the form 2q0+1,
q0 is a prime and q�i are quasi-safe primes of the form 2piqi +1. The primes pi,qi are
odd primes and should satisfy pi �= qi for all i. The modulus mn will only hide the

73

primes p1, . . . , pn if ∏n
i=1 pi divides φ(mn). Using equation (6.2) the totient function

will always have the form φ(mn) = 2n+1qo ∏n
i=1 piqi when we are hiding multiple

primes.

Consider a set of primes P = {p1, . . . , pη} where η ≥ n, a modulus mn that hides the
primes ∏n

i=1 pi, and a random value g ∈ Zmn . Then the ΦHA can be used to determine
whether P contains a ∏n

i=1 pi-th root modulo mn using the factorization of mn. To
check this one computes:

α =
φ(mn)

∏n
i=1 pi

η

∏
j=1

p j,

β = gα.

If β ≡ 1 mod mn, then the set P hides ∏n
i=1 pi else it does not. The set P will only hide

∏n
i=1 pi if it divides ∏η

i= j p j for η ≥ n. It is important that the starting value g ∈ Zmn
should not be a ∏n

i=1 pi-th residue modulo mn i.e. there should not exist a µ such that
µ∏n

i=1 pi ≡ g mod mn.

For a randomly chosen mn and the product of primes Ψ1 =∏n
i=1 pi,Ψ2 =∏n

j=1 p j such
that mn hides Ψ1 but not Ψ2, the tuples (mn,Ψ1) and (mn,Ψ2) are computationally
indistinguishable. This means it is hard to distinguish whether Ψ1 or Ψ2 is a factor of
φ(mn).

6.4 Protocol

We will describe the protocol for one distance function as shown in equation 6.1. We
require to compute two Greater than function F +ε > F � and F � > F −ε. With private
bidding the ΦHA assumption was used to hide one prime for one greater than function.
With multiple comparison we require to compute multiple greater than function and
therefore we also need to hide multiple prime numbers. For this we will use the
extended ΦHA. In section 6.5 we will discuss the security and explain the advantages
of using the extended ΦHA when multiple GT functions have to be computed.

The user provides this secret value and defines the error-margin ε. This will result in a
l�-bit input value F which should be dividid into two greater than functions (equation
6.1) to compute the distance function:

a = F − ε,
b = F + ε,

where a is the l��-bit lower bound and b is the l-bit upper bound of F . The lower and
upper bound are used for comparison of F with a new secret value. The values F,a
are zero padded at the most significant bits. We denote a j as the jth-bit of a and b j as
the jth-bit of b, where j = l −1, . . . ,0. During comparison the protocol will compare
each jth-bit of a j with b j.

74 Multiple Comparison

Initialization The user chooses randomly a k�-bit prime p1 = λ(Ta) where Ta ∈ {0,1}k� .
Let λ(x) be a mapping of value x to a k�-bit prime. The same is done for
p2 = λ(Tb) where Tb ∈ {0,1}k� . A simple way to map the λ(x) function is
to find the smallest prime greater than x.

The user uses the extended ΦHA to hide the randomly chosen primes p1 and p2.
He selects three primes at random, q0,q1,q2 and computes m = q�0q�1q�2 where
q�0 = 2q0 + 1,q�1 = 2p1q1 + 1 and q�2 = 2p2q2 + 1. Denote that m should be
larger than l-bits. Let φ(m) be the totient function of m. The user computes:

h =
φ(m)

p1 p2
, (6.3)

which h is sent to the proxy.

Next, the user selects random values xi,yi ∈Zm for 0 ≤ i ≤ l and si ∈Zm for 0 ≤
i ≤ l−1. He also chooses another set of random values ti ∈Zm for 0 ≤ i ≤ l−1,
which will be used to combine the secret values. The values xi,yi are used for
comparison of the bits. Since xi,yi,si, ti are also needed during the comparison,
they should remain private.

The user should make sure the he has access to the public encryption key Epk
of proxy P which is used to transmit the data securely over the untrustworthy
channel.

Storage at the Host The user uses a trusted device to encrypt the lower bound a. For
each bit of a denoted by a j, for j = l −1, . . . ,0 the user computes:

za, j =

�
Epk(x j − x j+1 + t j) if a j = 0
Epk(x j − x j+1 + t j + s j) if a j = 1.

Then, the upper bound b is encrypted as follows:

zb, j =

�
Epk(y j − y j+1 + t j) if b j = 0
Epk(y j − y j+1 + t j + s j) if b j = 1.

Finally, the encrypted upper- and lower bound:

za,l−1, . . . ,za,0,zb,l−1, . . . ,zb,0.

are sent to the host and stored as a reference values to be used during the com-
parison.

The second secret value The user provides another l-bit secret value F � = c which
is approximately equal to F if it satisfies a < c < b. Let c j be the jth-bit of c
where j = l − 1, . . . ,0. He chooses random values ri ∈ Z for 0 ≤ i ≤ l − 1 and
defines rl = 0. By using his private values s j, t j the sample c j can be encrypted
for j = l −1, . . . ,0 as follows:

zc, j =

�
Epk(−t j + r j − r j+1) if c j = 0
Epk(−t j + r j − r j+1 − s j) if c j = 1.

75

He also needs to compute:

δa, j = H(x j + r j − s j)⊕Ta

δb, j = H(y j + r j + s j)⊕Tb.

where H is a one-way function and which together with zc,l−1, . . . ,zc,0 is send
to the proxy.

Comparison The proxy must merge the reference samples za, j,zb, j with the ‘fresh’
sample zc, j for j = l −1, . . . ,0. It computes:

zac, j = za, j · zc, j (6.4)
zbc, j = zb, j · zc, j (6.5)

before starting the comparison process. Computing (6.4) and (6.5) will result in
the addition of the encrypted values of a j,b j,c j because we are using an additive
homomorphic cryptosystem e.g. Paillier [125, 126].

Let dl = xl , el = yl and choose gl ∈ QRm. The following steps must be repeated
to compute the comparison of the lower and upper bound for j = l −1, . . . ,0

1. d j = d j+1 +Dsk(zac, j),
2. e j = e j+1 +Dsk(zbc, j),
3. qac, j = λ(H(d j)⊕δa, j),
4. qbc, j = λ(H(e j)⊕δb, j),
5. g j = (g j+1)

qac, jqbc, j .

To acquire the result of the comparison the proxy needs equation (6.3) to check
whether

(g0)
h ≡ 1 mod m (6.6)

succeeds. If equation (6.6) is equal to 1 the proxy can conclude that the secret
value F � provided by the user is approximately equal to the reference secret
value F (provided by the user through the host) i.e. F � ≈ F . If the output is 0
then D(F �,F)> ε.

With only one round of communication the proxy was able to compare the data sam-
ples of the user only learning the relationship between the secret values but nothing
more.

6.5 Security

This section will give a security analysis of the multiple comparison protocol during
various situations.

Communication Channel. The information sent between the user , the host and the
proxy goes through an untrustworthy channel, where eavesdroppers can monitor all

76 Multiple Comparison

communications. Also, considering our comparison protocol we are looking for a
cryptosystem with additive homomorphic properties. Consequently, Paillier public-
key cryptosystem is considered as a good candidate. According to [32] Paillier is
currently considered as the best candidate because of its efficiency, the semantic se-
curity is proven under the decisional composite residuosity assumption and so far no
adaptive chosen-ciphertext attack to recover the secret key is known.

Hidden primes. Assuming that the cheating proxy is able to retrieve the hidden
primes P, then the protocol will only give away a minimum amount of information
about the relationship between the two input messages F,F �. The GT function com-
pares two bit-strings starting with the most significant bits. If the GT criteria (e.g.
c > a or b > c) is met, the protocol will generate the hidden prime; in all other cases
the protocol generates a random prime. The consequence is: First the proxy will learn
the bit location where the two bit strings differ and secondly he will also know those
actual bits. Finally, he can conclude that the bits prior to the first difference must be
equal, but he does not know their value. For example, with bit-string a = 1111 and
bit-string b = 1100 it is evident that a > b. We also see that the two most significant
bits are the same. The first difference occurs at the third bit from the left, which will
be known to the proxy. When enough secret values are compared the proxy would be
able to derive the reference secret value F . Therefore, in a practical situation F must
be renewed regularly.

Reconstruction. Even if the proxy is able to recover some bits of the original secret
value, he is unable to reuse this information to compare it with other secret values.
Because s j can be seen as the private key of the user, nobody else is able to construct
messages that belong to the user. This also protects the secret values against replay at-
tacks. By adding the random string r j to the message and using the one-way function,
during the comparison, no user is able to compare various secret values of the same
user. Finally t j is added to bind the stored (at the host) secret value with new secret
values, which prevents comparison with other users secret values.

Threat model. Chapters 5 and 6 are based on the same threat model as described
in Section 5.2. Although they are based on the same paper [24], their security out-
come is different due to the improvement in the ΦHA and the usage of a different
homomorphic encryption scheme.

If the proxy follows the protocol correctly then he will only learn that the secret values
of the user are equal, within a predefined threshold ε.

The main threat is that the proxies becomes malicious and starts executing the protocol
differently then expected. For example, if the proxy is able to recover some bits of the
original secret value, he is unable to reuse this information to compare it with other
secret values. Because s j can be seen as the private key of the user, nobody else is
able to construct messages that belong to the user. This also protects the secret values
against replay attacks. By adding the random string r j to the message and using the
one-way function, during the comparison, no user is able to compare various secret
values of the same user. Finally t j is added to bind the stored (at the host) secret value

77

with new secret values, which prevents comparison with other users secret values.

If user X tries to match random values using the proxy he would not be able to produce
verifiable encrypted values because he does not have s j,x j which function as a private
key or string.

A malicious host will not learn more that a cheating proxy. The host holding secret
values could be accessible by many users and it should be seen as an untrustworthy
party. The data stored at the host is encrypted using the Paillier scheme, hence the con-
fidentiality of the data depends on the strength of the cryptosystem and on the policies
of the proxy about the distribution and usage of the private key. The initialization of
the protocol and the translation of the data into an encrypted digital form depends on
the user, located at a trusted environment.

Colluding proxy and host will not gain any additional information from each other
since the host only stores the encrypted information.

Complexity. After the secret values of the user are transferred to the untrustworthy
proxy, the proxy will attempt to manipulate the comparison protocol with the intention
of retrieving the user’s secret information. The proxy is able to decrypt the transmitted
messages because he is in possession of the private key; the encryption was only
intended to have a secure communication. A cheating proxy has the possibility to
modify the iterative steps during the comparison. Considering two GT functions (n =
2), the extended ΦHA will hide two primes p1, p2. Knowing h,m and choosing a
random g ∈ QRm the proxy can individually compare all primes qac, j,qbc, j by raising
them to the power of gh mod m. Because two primes are hidden, the proxy needs
to compare a minimum of two primes per run. By creating the following set for
j = l −1, . . . ,0:

S = {(qac,l−1 ·qbc,l−1),(qac,l−1 ·qbc,l−2), . . . ,(qac,0 ·qbc,0)}.

he is able to find the hidden primes with Prob[1
|S |] where |S |= l2. This will only hold

if:
gh·qac,l−1...qac,0·qbc,l−1...qbc,0 ≡ 1 mod m.

i.e. if it satisfies equation (6.6); otherwise the proxy does not learn anything. Gener-
ally, let n be the number of GT functions, then the total amount of primes the proxy
will compute is n · l when using the λ function. Also the set S will grow to |S | = ln

because all computed primes have to be compared with each other. For that reason the
probability of finding the hidden primes is

Prob[P = {p1, p2, . . . , pn}|g
φ(mn)

∏n
i=1 pi

∏η
j=1 p j ≡ 1 mod mn] =

1
ln (6.7)

where P = {p| hidden primes p from the ΦHA} and η ≥ n. From equation (6.7) we
can conclude that the complexity of finding the hidden primes without any additional
knowledge grows exponentially with the number of GT functions. On the other hand,
the complexity of computing all primes and therefore comparing two data samples
only grows linearly.

78 Multiple Comparison

The protocol, when using n GT functions, is as efficient as using n times the private
bidding protocol, because no additional communications are added. Also, the compu-
tational costs do not grow exponentially with the number of GT functions because the
modulus m is dependent on l and not on n.

6.6 Discussion

Our protocol is secure for untrustworthy proxies willing to participate in the protocol
i.e semi-trusted. But, when the proxy is malicious the protocol will leak some infor-
mation about the relationship of the secret values. Depending on the amount of values
provided by the user, the malicious proxy is able to recover the secret values. Multiple
comparison of noisy samples using a malicious proxy still remains an open problem.
The security of the protocol lies in the use of multiple greater than (GT) functions
instead of using one GT function as was proposed in the private bidding protocol.

This chapter is based on previous work by [24] and on the research results of Chapter
5. As described, [24] is a Multi-Party Computation protocol which provides fairness
within a bidding protocol for two users. The private bidding protocol seemed suitable
since it assumes the usage of an Oblivious Third Party which is involved in the com-
putation but does not provide any inputs. The disadvantage of this third-party was,
that it is unable to learn any information without the aid of the user. Furthermore,
the protocol was initially unsuitable for multiple comparisons since every compari-
son would be independent while our requirement was to have one result for the total
computation.

Chapter 7

Discussion

The objective in this thesis was to provide solutions for untrustworthy proxies that
have to collect and compare private information. This chapter gives a summary and
discussion of the selection and collection problems and continues with the comparison
problem. Finally, recommendations are given for future research.

7.1 Summary of the Results

7.1.1 Collecting Private Data

The first problem in this thesis was to research how an untrustworthy proxy can re-
trieve information from various sources while keeping collected information private.
A user wants to retrieve information from various sources and asks a proxy to perform
this task for him. The user trusts the proxy that it will execute the task correctly but
does not trust him to handle his private information. The user therefore hides the name
(location) of the entities he want’s to query, in such a way that the proxy should still
be able to collect the information from the entities. Furthermore, the collected infor-
mation from the entities must remain private to the user and must not be accessible by
the proxy. This problem was addressed by two approaches, parallel and sequential.

Parallel Approach. The basic concept behind the parallel selection and collection
approach is that all entities are queried independently of each other by the proxy.
The entities all communicate through the proxy and do not eschange information di-
rectly with each other. The privacy of the selected entities is based on cryptographic
primitives. Therefore, compared to the sequential approach all entities can be queried
simultaneous i.e. parallel.

The entities selected by the user to be queried, remain oblivious using an oblivious
transfer protocol based on homomorphic encryption. The collected information re-

80 Discussion

mains private to the proxy by using a different oblivious transfer based on blind sig-
natures. In addition, the blind signatures provide the integrity of the collected infor-
mation.

Sequential Approach. The second approach to the collection and sellection of private
data is the sequential approach. The user selects a set of hosts he wants to collect
information from and arranges them in a fixed order. This pre-defined set of hosts by
the user is called an itinerary and defines the sequential order on how the hosts will
communicate with each other without the intervention of the proxy.

The itinerary is sent to the proxy and kept private by means of hash chaining. Even
though the proxy receives the complete itinerary he is only able to learn the location
of the first entity to query since he has to provide the complete itinerary to this entity.
This itinerary constructions provides the confidentiality of the users selection.

The integrity of the collected information is provided by a threshold signature scheme
where the signature key is split between the hosts and the proxy. Based on this scheme
the hosts cannot deny they have provided their information i.e. non-repudiation. The
confidentiality of the collected information is based on public key encryption where
each entity encrypts the requested information with the public key of the user.

In addition a protocol is used to aid the selection and collection protocol when one host
is unable to participate within the collection process. This helper protocol ensures that
the collected information remains private but needs to provide the location (name) of
the host that is not responding and the location of the host that initiated the helper
protocol. The helper protocol can be used when a trade-off has to be made between
strict itinerary privacy and completion of the collection protocol.

Parallel and Sequential. Both approaches fulfill the requirements of the selection and
collection model. But from a private computing perspective the task that is performed
by the proxy is different. In the parallel approach the proxy is more involved in the
complete process and truly acts as a ‘man-in-the-middle’. While the proxy in the
sequential approach is only involved in the process when the itinerary is stopped and
at the end of the itinerary. Technically the approaches differ a lot. With the parallel
approach most techniques came from multi-party computation while the sequential
approach uses the ideas of mobile code and mobile software agents. But eventually,
both solutions can be used complimentary to each other.

7.1.2 Comparing Private Data

The second problem in this thesis was to discover how to let an untrustworthy proxy
compare private information by computing an inequality function such that the private
information remains private even when the result of the computation are made public.

The user wants to compare his private information and asks the proxy to perform this
task for him. The user trusts the proxy that it will execute the comparison correctly

81

but does not trust the proxy to handle his private information. The user therefore en-
crypts the private information he wants to be compared and sends this to the proxy.
Another user or perhaps the same user (depending on the scenario) also submit pri-
vate information to the proxy. The proxy is able to compare the received inputs by
computing an inequality function. The result of the computation reveals minimum
information about the provided private inputs. The proxy learns which of the inputs
is the greatest without being able to learn what the actual inputs where. The problem
was addressed based on two approaches, single comparison approach and multiple
comparison approach.

Single Comparison Approach. The single value comparison approach is able to
compute the greater than function of two encrypted natural numbers (1,2, . . .) (secret
values). The approach is based on three steps. In the first step the secret values
are represented as a bit string and encrypted using ElGamal. In the second step the
information is combined based on the homomorphic property of ElGamal and the use
of multiple encryptions with different keys. In the final step the Φ-hiding assumption
is applied to compare the encrypted values and to provide the proxy with information
which of the two values is the largest. Due to the confidentiality of the private keys
of the users, the proxy is unable to perform a chosen plaintext attack by generating
various new encrypted inputs and using the public comparison protocol to compare
them with the already known secret values. Due to the openness of the comparison
protocol and the provided information by the users, the proxy is also able to learn how
many bits difference the two inputs differ in plaintext values. Nevertheless, the secret
values remain confidential.

Multiple Comparison Approach. The fundamental idea of encrypting bits and com-
paring them using the Φ-hiding assumption was also used with the multiple compari-
son approach. The difference between the single comparison and multiple comparison
approach is that multiple values are compared with another set of values of the same
length instead of one value. The approach makes it possible to compare multiple
greater than function where for every comparison individually can be decided by the
user whether the result should be positive for the larger value or for the smaller value.
Based on this notion, the result of the computation by the proxy will only output a
positive result when all comparisons are computed positive. Also, when the result is
negative (because one or more greater than functions where negative), the proxy is
unable to learn which greater than function was negative. Consequently, the proxy
remains oblivious to the complete computation.

The result of the computation is, as with the comparison, based on the Φ-hiding as-
sumption, which is extended to cope with the multiple values. Also, instead of using
ElGamal, this approach is based on a simple threshold scheme for splitting secrets
amongst multiple users together with the homomorphic public key encryption scheme
of Paillier.

Single and multiple comparison. Multiple comparison is an extension to the single
comparison. Using the single comparison with multiple values is not as secure as

82 Discussion

multiple comparison, while multiple comparison will provide a similar approach when
applied on a single value. Although both solutions fulfill the requirements of the
comparison model, we recommend to use the multiple comparison approach when
computing greater than functions with untrustworthy proxies.

7.2 Discussion

Although this thesis tried to present a complete research in private computing, still
many recommendations for future research can be given.

Multi-Party Computation. A well defined problem in cryptography is Multi-Party
Computation (MPC) which is comparable to private computing. But there is a fun-
damental difference between the two, although all solutions in this thesis share the
cryptographic techniques used in MPC.

The fundamental concept of MPC is to have a set of users who all have a secret value
which they do not want to reveal. There is a public function which can be computed
by any users based on these secret value. The output of the function gives information
about the relationship between the secret values, but does not reveal the actual inputs.
The main concept of MPC is to mutually compute a public function instead of using
a proxy trusted by all users. WIth private computing we want to compute the same
public functions as MPC, but require it to be done by an untrustworthy proxy.

Example of applications where private computing could be applied:

• Browsing and searching within databases without revealing to the proxy and
database service the information you are looking for [23].

• An encrypted High Definition television broadcast is received and transcoded
by the proxy with the purpose of being re-transmitted through a low bandwidth
medium, like a GSM network, to a limited processing device, like a mobile
phone. The proxy has great computer power to perform the transcoding but
should be unable to learn what was transcoded [130].

• Dynamic passwords instead of static passwords. With dynamic passwords you
create the flexibility for the user to enter his password with a small margin of
error while still granting access. For example, granting access when a user sub-
mitted almost the correct password 1234 but made a small typo and submitted
1224. This concept can be used to create visual passwords where a user points
or clicks on a digital image. Since the pixels on the image are to small to be
picked exactly, a small error of margin can be used to define if a user has chosen
the correct points on the image or not [63].

• Firewalls (proxies) that can process and filter encrypted data without having to
decrypt the content [49, 97].

83

Can MPC protocols be used within these applications or do we require to look for a
new concept such as private computing where untrustworthy proxies are part of the
scenario? For example, Yao [158] solution to the millionaires’ problem lets a mil-
lionaire compute the comparison function. This user learns the result of the computed
function but needs to use his secret value in plaintext to do so. This could, as it is, not
be used within a private computing scenario since the proxy would learn the secret
value of, at least, one millionaire.

Combining Collection and Comparison. Although both problems are described
seperately in this thesis, they can be combined into one single solution where the
user lets the proxy collect information from various sources and only gives the result
of the comparison to the user. Combining the solutions is not an out-of-the-box task,
since both approaches require specific inputs. Further research could find the right
combination of solutions and even optimize the final solution with respect to efficiency
and security.

84 Discussion

Appendix A

Cryptographic Building Blocks

The following appendix provides more explanation of the cryptographic building blocks
used in solving the private computing problems in this thesis. We start with homomor-
phic encryption which it is an important building block for computing with encrypted
values. Since we are dealing with multiple parties the use of threshold cryptography
and secret sharing techniques provides a valuable approach for collecting distributed
information. We continue with an important primitive within Secure Function Eval-
uation and Multi-Party Computation, namely Oblivious Transfer. When the integrity
of the collected information from various parties has to be provided, a hash chaining
algorithm could be used. Finally, the Φ−Hiding Assumption is described which could
be used as a building block for comparing private data.

A.1 Homomorphic Encryption

An encryption algorithm E() is homomorphic if given two ciphertexts E(m1) and
E(m2), it is possible to obtain a third ciphertext E(m1

�
m2) without decrypting

E(m1) and E(m2) (in order to compute E(m1
�

m2)) for some operation
�

. More
specifically, let

�
M denote a binary operator in the plaintext space M and

�
C a bi-

nary operation in the ciphertext space C. Then the encryption algorithm is said to be
homomorphic if it satisfies:

∀ m1,m2 ∈ M, E(m1
�

M
m2) = E(m1)

�
C

E(m2) (A.1)

Where the ‘=’ means “can be directly computed from” without any intermediate de-
cryption [67]. Note that sometimes

�
M =

�
C.

There are two groups of homomorphic cryptosystems, ones based on the decisional
composite residuosity assumption (DCRA) and ones based on the decisional Diffie-
Hellman assumption (DDH). DCRA states that given an integer z and a composite
n (positive integer which has positive divisors other than one or itself), it is hard to

86 Cryptographic Building Blocks

decide whether there exists y such that z ≡ yn (modn2). Considers a cyclic group
G of order q with generator g. The DDH assumption state that given ga and gb for
randomly chosen a,b ∈ Zq, the value gab is a random element of the cyclic group G.
Furthermore, homomorphic cryptosystems can be probabilistic or deterministic.

A homomorphic encryption is additive if there is a suitable binary operation ⊕ such
that:

E(m1 +m2) = E(m1)⊕ E(m2) (A.2)

Or muliplicative if there is a suitable binary operation ⊗ such that:

E(m1 ×m2) = E(m1)⊗ E(m2) (A.3)

The RSA cryptosystem [131] and the ElGamal cryptosystem [62] are multiplicative
homomorphic. The Goldwasser-Micali cryptosystem [81], the Paillier cryptosystem
[125] and the Damgård-Jurik cryptosystem [52] which is a generalization of the Pail-
lier cryptosystem, are all additive homomorphic.

A.1.1 RSA

The RSA cryptosystem [131] was one of the first multiplicative homomorphic encryp-
tion schemes. The system lets a user compute an integer n= pq where p and q are cho-
sen large prime numbers. The user also computes an integer e such that gcd(e,φ(n)) =
1 and an integer d which is the inverse of e mod φ(n) i.e. ed = 1 mod φ(n) where φ(n)
denotes the Euler function φ(n) = φ(pq) = (p−1)(q−1). The Euler totient function
φ(n) is defined as the number of positive integers ≤ n which are relative prime to n.
The public key of the user becomes (n,e) and the private key is d, furthermore the
users keeps both p and q secret.

To demonstrate the homomorphic property of RSA one has to encrypt the messages
m1,m2 according to E1 = E(m1) = m1

e mod N and E2 = E(m2) = m2
e mod N. Then

the multiplication of E1 ×E2 becomes m1
e ×m2

e mod N = (m1 ×m2)e mod N. This
shows the multiplicative homomorphic property: E(m1 ×m2) = E(m1)⊗ E(m2).

A.1.2 ElGamal

ElGamal [62] is a multiplicative homomorphic cryptosystem. In order to generate
a key-pair the user choses a large prime integer p and a generating element g of the
cyclic group Zp

∗. The user picks a random x ∈ Zq with the order of the group q= p−1
and computes h = gx in Zp

∗. The public key becomes (g,q,h) and the private key is x.

Encrypting the messages m1,m2 we pick the randoms values k1,k2 ∈ Zq and compute
E1 = (a,b) = (gk1 ,m1hk1), E2 = (c,d) = (gk2 ,m2hk2). The multiplication of E1×E2 =
(a,b)×(c,d)= (gk1 ,m1hk1)×(gk2 ,m2hk2) becomes (ac,bd)= (gk1+k2 ,(m1m2)hk1+k2).
This shows the multiplicative property of ElGamal: E(m1 ×m2) = E(m1)⊗ E(m2).

87

A.1.3 Paillier

The Paillier cryptosystem [125] is a probabilistic additive homomorphic cryptosystem
where probabilistic means that an additional uniform random number is used as input.
If not, then it’s called deterministic. Comparable to RSA the user picks two primes
p,q and let n = pq where n is satisfying gcd(n,φ(n)) = 1. Note that all elements have
order dividing φ(n2) = n ·φ(n) = n ·φ(p) ·φ(q). The public key becomes (n,g) where g
has order multiple of n. The private key becomes λ(n) where λ(n) = lcm(p−1,q−1).
λ(n) is the Carmichael function (defines the exponent of the multiplicative group of
integers modulo n) and ‘lcm’ is the lowest common multiple.

To encrypt the message m1,m2 ∈ ZN we choose x1,x2 ∈ ZN
∗ and compute E(m1) =

gm1x1
n mod n2,E(m2) = gm2x2

n mod n2. The multiplication of E(m1) and E(m2)
leads to E(m1 +m2) = gm1+m2x1x2

n mod n2. This demonstrates the additive homo-
morphic property of Paillier: E(m1 +m2) = E(m1)⊕ E(m2).

A.1.4 Damgård-Jurik cryptosystem

The Damgård-Jurik cryptosystem [52] is a generalization and adaptation of the Pal-
lier cryptosystem [125] based on the decisional composite residuosity assumption
(DCRA) as described in Section A.1. It uses computations module ns+1 where s = 1
leads to the Paillier’s scheme.

A.2 Threshold Cryptography

Using threshold cryptographic systems like [51, 52] a message is encrypted with a
public key while the corresponding private key is shared among a group of parties
where only a qualified subset of parties is allowed to decrypt the encrypted message.
In a comparable way it is possible to create threshold signature schemes [53, 54]
where a message is signed by a subset of parties using a shared private key while the
signature of the message can be verified by anybody using the corresponding public
key.

A.2.1 Secret Sharing

When sharing a secret F among a set of n participants in such a way that t participants
can compute the value F but no subset smaller than t can reconstruct F , it is called a
(t,n)-threshold scheme. The first threshold scheme was proposed in 1979 by Shamir
[142] and many others have followed.

In secret splitting a secret F is split among n participants so that all n participants are
needed to reconstruct the secret i.e. secret splitting is a (n,n)-threshold scheme. A
simple example from [154] is to split the secret number F among n participants. Give

88 Cryptographic Building Blocks

n− 1 participants each one of the random number r1, . . . ,rn−1 mod m. The remain-
ing participant receives F −∑n−1

π=1 rπ(mod m) (m is an integer larger than all possible
messages).

A similar scheme can be used for secret binding, which has the purpose to let a user N
add (bind) secrets together, learning only the complete secret F if all partial secrets are
joint together; without being able to compute the partial secrets. To achieve this, all
n participants have to share a secret k which should not be available to user N. In the
following example user A has a secret FA, user B has a secret FB and they both share a
secret key k. They want to bind these secrets together by addition which results in the
complete secret F = FA +FB. This addition should be performed by user C in such a
way that he does not learn FA,FB. Therefore, user A hides his secret and gives FA+k to
user C. User B provides FB−k to user C which is able to compute FA+k+FB−k = F
without learning anything else but F .

When using a additive homomorphic encryption scheme like [125, 126] it is possible
to bind the secrets together without decrypting them. This is also used in our solution
in chapter 6, where user A provides two noisy samples which should remain unknown
to user B; but he should be able to bind those secret values together and use our
protocol to match them.

A.3 Oblivious Transfer (OT)

Oblivious transfer was first introduced by Rabin [128]. The primitive captures the
notion of a protocol by which a sender sends some information to the receiver, but
remains oblivious as to what is sent. The paradox is resolved by recognizing that it are
the actions of the receiver and the sender that determine the outcome of the protocol.
Even et al. [65] generalized it to 1-out-of-2 oblivious transfer (OT2

1). The receiver
determines which message out of two possible messages she is going to receive. In
turn it was shown how to construct OTn

1 from n [20] and even logn [116] applications
of OT

2
1. [3, 94, 118] provided direct constructions for OT

n
1 based on the decision

Diffie-Hellman and quadratic residuosity assumptions.

A.3.1 Adaptive OT from Blind Signatures

Adaptive oblivious transfer protocols were proposed in [45, 117, 121]. Camenisch et
al. [27] recognized that the schemes in [45, 121] are based on a common principle
to construct adaptive oblivious transfer from unique blind signature schemes, first
described by Chaum in [34].

Suppose, all messages m1, . . . ,mn are symmetrically encrypted by the sender using the
hashed signature of the index i, 1 ≤ i ≤ n, as the key. Thus Ci = EH(Signsk(i))(mi). H is
a symmetric hash function, E is a symmetric cipher, Sign is a unique blind signature
scheme, and sk is the signing key of the sender that will be used for creating the blind

89

signature. The ciphertexts C1, . . . ,Cn are transferred from the sender to the receiver.
In order to obtain message mk, where 1 ≤ k ≤ n, the receiver runs a blind signature
protocol with the sender on index k to obtain the symmetric key H(Signsk(k)). The
receiver blinds the index k and sends the result Blind(k,b) with some random number
b to the sender. The sender signs the received message Signsk(Blind(k,b)) with the
signing key of the sender and sends the result back to the receiver. The receiver un-
blinds the message Unblind(Signsk(Blind(k,b)),b) using the blinding factor b. The
blind signature protocol is designed to reduce the message to Signsk(k), which can be
used to obtain message mk.

A.3.2 OT using Homomorphic Encryption

Additive homomorphic encryption has the homomorphic addition of plaintexts prop-
erty e.g using Paillier as described in Section A.1.3. Given the encryptions E(m1)
and E(m2), the multiplication of the two ciphertexts will lead to E(m1) · E(m2) =
E(m1)⊕E(m2) = E(m1+m2). Furthermore, the additive homomorphic encryption of
Paillier also has the property of homomorphic multiplication of plaintexts. Given an
encryption E(m) and constant k and raising the encryption to a constant k will result
in k⊗E(m) = E(m)k = ∏k

j=1 E(m) j = E(k ·m).

Ostrovsky et al. [123] recognized that given the encryption E(1) it is also possible to
compute an encryption message m as m⊗E(1) = E(1)m = ∏m

j=1 E(1) j = E(m ·1) =
E(m). However, if the encryption is given as E(0) the same operation does not change
anything i.e. m⊗E(0) = E(0)m = ∏m

j=1 E(0) j = E(m ·0) = E(0).

Suppose, a sender has n messages m1, . . . ,mn. The receivers wants to obtain mes-
sage mk with index k where 1 ≤ k ≤ n. He constructs a vector E1, . . . ,En where all
encryptions are E(0) except index k, which is Ek(1) e.g. E1(0), . . . ,Ek(1), . . . ,En(0).
The sender receives the vector from the receiver and computes the oblivious transfer
based on the homomorphic property, E1(0)m1 , . . . ,Ek(1)mk , . . . ,En(0)mn , which results
in E1(0), . . . ,Ek(mk), . . . ,En(0). Finally, the sender computes the product of the result
E1(0) ·E2(0) · . . . ·Ek(mk) · . . . ·En(0) = Ek(mk) to reduce the complexity of the com-
munication. The receiver collects the result of the oblivious transfer and learns mk.
The sender does not learn which message was collected by the receiver.

A.4 Hash Chaining

Hash Chaining is a method of providing integrity of data when this data is being
accessed by multiple parties. Hash Chains are based on hash functions which are
functions that compress an input of arbitrary length to a result with a fixed length. The
following method of hash chaining is taken from [143]. A user is visiting various hosts
L j where he collects information which has to remain private. Using Hash Chaining
the user is able to store the collected information o j in an so called encrypted storage.
Furthermore, the host also makes a commitment that he adds it to the correct storage,

90 Cryptographic Building Blocks

by including a hash of the previous storage state i.e. the storage collected so far. Each
host L j will follow the following protocol for storing its offer o j to the storage.

• Encapsulated offer:

O j = SignKj(EpkQ(o j,r j),Hj),0 ≤ j ≤ n (A.4)

• Chaining relation:

H0 = h(o0,L1) (A.5)
Hj = h(O j−1,L j+1),1 ≤ j ≤ n (A.6)

Sign is the signing algorithm, Kj is the signing key of Host j, o0 is initial information
(e.g. identitiy of the collector), o j the offer of host L j, O j the encapsulated offer from
host L j, r j a random number generated by L j, EpkQ(v) is the encryption of value v
with the public key of the final receiver Q of the information and h(.) a cryptographic
hash function. The encrypted storage will consist of the chain O0,O1, . . . ,On, where
n is the total amount of hosts visited.

The essence of the protocol is that a host L j signs both its offer and a hash value taken
over the last encapsulated offer and the next destination of the itinerary. If a malicious
host L j would like to delete, for example, an offer from the storage, then this will be
detected during verification of the hash chain because the committed value will fail
the verification.

A.5 Φ-Hiding Assumption

The Φ-Hiding Assumption (Φ-HA), by [25], states the difficulty of deciding whether
a small prime divides φ(m), where m is a composite integer of unknown factorization.
The Φ-HA is used as follows: Choose randomly m that hides a prime p0 so it is
hard to distinguish if p0 or p1 is a factor of φ(m), where p1 is chosen randomly and
independently i.e. it is computationally indistinguishable.

Let us choose m = p�q� where p� is a safe prime and q� is a quasi-safe prime. Prime
p� is a safe prime if p�−1

2 is also a prime. An odd prime q� is quasi-safe if q� = 2p̂+1
where p̂ is a prime power, i.e. p̂ = pα for some prime p. We compute p� = 2q1 + 1
and q� = 2pq2 +1, where q1 is a prime and p,q2 are odd primes.

The Φ-HA continues with the Euler totient theorem:

gφ(m) ≡ 1 mod m (A.7)

where g ∈ Z and m is a composite integer. To hide the prime p the Euler totient
function is computed with the chosen safe and quasi-safe primes:

φ(m) = φ(p�q�) = (p� −1)(q� −1)
= (2q1 +1−1)(2pq2 +1−1)
= (2q1)(2pq2) = 4pq1q2 (A.8)

91

Combining (A.7) and (A.8) we can compute:

g4pq1q2 ≡ 1 mod m (A.9)

The Φ-HA assumption can be used to determine if from a set of primes P = {p1, . . . , pn}
where n ≥ 0, one of the primes is the hidden prime p or not. The assumption also
works if the product of the set of primes is given, i.e. ∏n

i=0 pi:

g
4pq1q2

p ∏n
i=0 pi ≡ 1 mod m (A.10)

If A.10 is congruent to 1 modulo m then the set P holds (hides) p else is does not. Note
that m hides p if and only if p divides phi(m). It is important that the g ∈ Z should
not be a p-th root module m i.e. there exists no µ such that µp ≡ g mod m. Therefore,
we should choose g ∈ QRm (Quadratic Residue of m) because p should not be an even
prime.

92 Cryptographic Building Blocks

Bibliography

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptology,
2(1):5–21, 1990.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption
for numeric data. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 563–574, New York,
NY, USA, 2004. ACM.

[3] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell dig-
ital goods. In B. Pfitzmann, editor, Advances on Cryptology — EUROCRYPT
2001, volume 2045 of Lecture Notes in Computer Science, pages 119–135,
Innsbruck, Austria, 6–4 May 2001. Springer-Verlag.

[4] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic se-
curity for mobile code. Proceedings 2001 IEEE Symposium on Security and
Privacy, IEEE, pages 2–11, 2001.

[5] F. Alizadeh-Shabdiz and S. Subramaniam. Analytical models for single-hop
and multi-hop ad hoc networks. Mob. Netw. Appl., 11(1):75–90, 2006.

[6] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols
for fair exchange. In CCS ’97: Proceedings of the 4th ACM conference on
Computer and communications security, pages 7–17, New York, NY, USA,
1997. ACM Press.

[7] N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous protocols for
optimistic fair exchange. sp, 00:0086, 1998.

[8] M. Atallah, K Frikken, and C. Zhang. Privacy-preserving credit checking.
Technical report, Purdue University, 2005.

[9] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. Crypto 2001, Lecture
Notes in Computer Science, pages 1–18, 2001.

[10] B. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A-R. Sadeghi, and T. Schnei-
der. Secure evaluation of private linear branching programs with medical appli-
cations. In Computer Security - ESORICS 2009, 14th European Symposium on

94 Bibliography

Research in Computer Security, Saint-Malo, France, September 21-23, 2009.
Proceedings, pages 424–439, 2009.

[11] E. Beckenbach and R. Bellman. An Introduction to Inequalities. Random
House, New York, 1961.

[12] A. Beimel, Y. Ishai, and E. Kushilevitz. General constructions for information-
theoretic private information retrieval. Journal of Computer Systems Sciences,
71(2):247–281, 2005.

[13] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract).
In STOC, pages 1–10, 1988.

[14] J. Benaloh. Dense probabilistic encryption. In In Proceedings of the Workshop
on Selected Areas of Cryptography, pages 120–128, 1994.

[15] A.R. Beresford and F Stajano. Location privacy in pervasive computing. IEEE
Pervasive Computing, 2(1):46–55, 2003.

[16] F. Bignami. Protecting privacy against the police in the european union: The
data retention directive. Technical Report 13, Duke Law School – Science,
Technology and Innovation, January 2007.

[17] A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich, and A. Shamir. Key
recovery attacks of practical complexity on aes variants with up to 10 rounds.
Cryptology ePrint Archive, Report 2009/374, 2009. http://eprint.iacr.org/.

[18] G.W. van Blarkom, J.J. Borking, and J.G.E. Olk, editors. Handbook of Privacy
and Privacy-Enhancing Technologies, The case of intelligent software agents.
College Bescherming Persoonsgegevens, 2003. Chapter 3, PET, G.W. Blarkom,
J.J. Borking and P. Verhaar, pages 33–54.

[19] D. Boneh, G. Di-Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryp-
tion with keyword search. In Advances in Cryptology - EUROCRYPT 2004, In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 506–522,
2004.

[20] G. Brassard, C. Crépeau, and J-M. Robert. All-or-nothing disclosure of secrets.
In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes in
Computer Science, pages 234–238. Springer, 1986.

[21] J. Brickell, D.E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving re-
mote diagnostics. In CCS ’07: Proceedings of the 14th ACM conference on
Computer and communications security, pages 498–507, New York, NY, USA,
2007. ACM.

[22] J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-
honest model. In Advances in Cryptology - ASIACRYPT 2005, 11th Interna-

95

tional Conference on the Theory and Application of Cryptology and Informa-
tion Security, Chennai, India, December 4-8, 2005, Proceedings, pages 236–
252, 2005.

[23] R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching
in encrypted data. In Secure Data Management, VLDB 2004 Workshop, SDM
2004, Toronto, Canada, August 30, 2004, Proceedings, pages 18–27, 2004.

[24] C. Cachin. Efficient private bidding and auctions with an oblivious third party.
In CCS ’99: Proceedings of the 6th ACM conference on Computer and commu-
nications security, pages 120–127, New York, NY, USA, 1999. ACM Press.

[25] C. Cachin, S. Micali, and M. Stadler. Computationally private information
retrieval with polylogarithmic communication. Lecture Notes in Computer Sci-
ence, 1592:402–414, 1999.

[26] J. Camenisch, M. Dubovitskaya, and G. Neven. Oblivious transfer with access
control. In CCS ’09: Proceedings of the 16th ACM conference on Computer
and communications security, pages 131–140, New York, NY, USA, 2009.
ACM.

[27] J. Camenisch, G. Neven, and A. Shelat. Simulatable adaptive oblivious trans-
fer. In Advances in Cryptology - EUROCRYPT 2007, 26th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, Barcelona, Spain, May 20-24, 2007, Proceedings, pages 573–590,
2007.

[28] R. Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143–202, 2000.

[29] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party
computation. In STOC ’96: Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, pages 639–648, New York, NY, USA,
1996. ACM.

[30] K. Cartrysse. Private Computing and Mobile Code Systems. PhD thesis, Delft
University of Technology, November 2005. ISBN 90-90199-53-5.

[31] K. Cartrysse and J.C.A. van der Lubbe. Privacy in mobile agents. First IEEE
Symposium on Multi-Agent Security and Survivability, August 2004.

[32] D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Q. Nguyen. Paillier’s
cryptosystem revisited. In ACM Conference on Computer and Communications
Security, pages 206–214, 2001.

[33] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[34] D. Chaum. Blind signatures for untraceable payments. In CRYPTO, pages
199–203, 1982.

96 Bibliography

[35] D. Chaum. Security without identification: transaction systems to make big
brother obsolete. Commun. ACM, 28(10):1030–1044, 1985.

[36] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure
protocols (abstract). In CRYPTO ’87: A Conference on the Theory and Ap-
plications of Cryptographic Techniques on Advances in Cryptology, page 462,
London, UK, 1988. Springer-Verlag.

[37] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances in
Cryptology - Crypto’88, pages 319–327, 1990.

[38] M. Chen, S. Gonzalez, and V.C.M. Leung. Applications and design issues of
mobile agents in wireless sensor networks. IEEE Wireless Communications,
14(6):20–26, December 2007.

[39] M. Chen, T. Kwon, Y. Yuan, and V.C.M. Leung. Mawsn: Mobile agent based
wireless sensor networks. Journal of Computers, 1(1):14–21, Apr 2006.

[40] W. Chen and Y. Zhang. A multi-constrained routing algorithm based on mo-
bile agent for manet networks. In JCAI ’09: Proceedings of the 2009 Inter-
national Joint Conference on Artificial Intelligence, pages 16–19, Washington,
DC, USA, 2009. IEEE Computer Society.

[41] B. Chor and N. Gilboa. Computationally private information retrieval (extended
abstract). In STOC, pages 304–313, 1997.

[42] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information re-
trieval. In FOCS ’95: Proceedings of the 36th Annual Symposium on Foun-
dations of Computer Science, page 41, Washington, DC, USA, 1995. IEEE
Computer Society.

[43] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot. White-box cryptog-
raphy and an aes implementation. In Proceedings of the Ninth Workshop on
Selected Areas in Cryptography (SAC 2002), pages 250–270. Springer LNCS
2595 (2003), 2002.

[44] S. S. M. Chow, J-H. Lee, and L. Subramanian. Two-party computation model
for privacy-preserving queries over distributed databases. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2009, San Diego,
California, USA, 8th February - 11th February 2009, 2009.

[45] C.K. Chu and W.G. Tzeng. Efficient -out-of- oblivious transfer schemes with
adaptive and non-adaptive queries. In S. Vaudenay, editor, Public Key Cryp-
tography, volume 3386 of Lecture Notes in Computer Science, pages 172–183.
Springer-Verlag, 2005.

[46] J. Claessens, B. Preneel, and J. Vandewalle. (how) can mobile agents do secure
electronic transactions on untrusted hosts? a survey of the security issues and
the currenct solutions. ACM Transactions on Internet Technology, 3(1):28–48,
February 2003.

97

[47] European Community. Compete ceo: Isps sell clickstreams for $5 a month,
2007.

[48] European Community. The data retention (ec directive) regulations 2009, 2009.

[49] Cymphonix Corporation. How to prevent secure web traffic (https) from crip-
pling your content filter - a cymphonix white paper, 2007.

[50] R. Cramer, I. Damgård, and J.B. Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In EUROCRYPT ’01: Proceedings of the In-
ternational Conference on the Theory and Application of Cryptographic Tech-
niques, pages 280–299, London, UK, 2001. Springer-Verlag.

[51] I. Damgård and M. Jurik. Efficient protocols based on probabilistic encryption
using composite degree residue classes, 2000.

[52] I. Damgård and M. Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In PKC ’01: Proceedings of
the 4th International Workshop on Practice and Theory in Public Key Cryptog-
raphy, pages 119–136. Springer-Verlag, 2001.

[53] Y. Desmedt. Society and group oriented cryptography: A new concept. In
CRYPTO ’87: A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, pages 120–127, London, UK, 1988.
Springer-Verlag.

[54] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures
(extended abstract). In CRYPTO ’91: Proceedings of the 11th Annual Inter-
national Cryptology Conference on Advances in Cryptology, pages 457–469,
London, UK, 1992. Springer-Verlag.

[55] Y.G. Desmedt and Y. Frankel. Perfect homomorphic zero-knowledge threshold
schemes over any finite abelian group. SIAM J. Discret. Math., 7(4):667–679,
1994.

[56] A. Dey, S. Lederer, and J. Mankoff. Towards a deconstruction of the privacy
space. In In Proc. Workshop on Ubicomp Communities: Privacy as Boundary
Negotiation, 2003.

[57] G. Di-Crescenzo, T. Malkin, and R. Ostrovsky. Single database private infor-
mation retrieval implies oblivious transfer. In EUROCRYPT, pages 122–138,
2000.

[58] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, IT-22(6):644–654, 1976.

[59] J. Domingo-Ferrer. A new privacy homomorphism and applications. Inf. Pro-
cess. Lett., 60(5):277–282, 1996.

[60] J. Domingo-Ferrer and Y. Saygin. Recent progress in database privacy. Data
Knowl. Eng., 68(11):1157–1159, 2009.

98 Bibliography

[61] W. Du and M.J. Atallah. Secure multi-party computation problems and their
applications: A review and open problems. In In New Security Paradigms
Workshop, pages 11–20, 2001.

[62] T. ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology,
pages 10–18. Springer-Verlag New York, Inc., 1984.

[63] Mininova Labs Erik. Passclicks - visual passwords, June 2010.

[64] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft.
Privacy-preserving face recognition. In PETS ’09: Proceedings of the 9th In-
ternational Symposium on Privacy Enhancing Technologies, pages 235–253,
Berlin, Heidelberg, 2009. Springer-Verlag.

[65] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. Communications of the ACM, 28(6):637–647, 1985.

[66] H. Federrath, A. Jerichow, D. Kesdogan, and A. Pfitzmann. Security in public
mobile communication networks. In IFIP TC 6 International Workshop on
Personal Wireless Communications, pages 105–116, 1995.

[67] C. Fontaine and F. Galand. A survey of homomorphic encryption for nonspe-
cialists. EURASIP J. Inf. Secur., 2007:1–15, 2007.

[68] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In Advances in Cryptology — EUROCRYPT 2004, 2004.

[69] K. B. Frikken, J. Li, and M.J. Atallah. Trust negotiation with hidden creden-
tials, hidden policies, and policy cycles. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2006, San Diego, California,
USA, 2006.

[70] Keith B. Frikken. Practical private dna string searching and matching through
efficient oblivious automata evaluation. In Proceedings of the 23rd Annual IFIP
WG 11.3 Working Conference on Data and Applications Security XXIII, pages
81–94, Berlin, Heidelberg, 2009. Springer-Verlag.

[71] J.A. Garcia-Macias and J. Gomez-Castellanos. Sensor Networks and Con-
figuration: Fundamentals, Standards, Platforms, and Applications., chapter
MANET versus WSN. Springer-Verlag, Germany, 2006.

[72] B. Gedrojc, K. Cartrysse, and J.C.A. van der Lubbe. Private bidding for mobile
agents. In SECRYPT 2006, Proceedings of the International Conference on
Security and Cryptography, Setúbal, Portugal, August 7-10, 2006, SECRYPT is
part of ICETE - The International Joint Conference on e-Business and Telecom-
munications, pages 277–282. INSTICC Press, 2006.

[73] B. Gedrojc, M. van Hensbergen, and J.C.A. van der Lubbe. Private computing
with beehive organized agents. In SECRYPT 2007, Proceedings of the Interna-
tional Conference on Security and Cryptography, Barcelona, Spain, July 28-31,

99

2007, SECRYPT is part of ICETE - The International Joint Conference on e-
Business and Telecommunications. INSTICC Press, 2007.

[74] B. Gedrojc and J.C.A. van der Lubbe. Private matching of noisy data”. In Pro-
ceedings of the 27th Symposium on Information Theory in the Benelux, pages
275–282, June 2006.

[75] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. Cryptology ePrint Archive,
Report 2009/547, 2009. http://eprint.iacr.org/.

[76] E-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/.

[77] O Goldreich. Secure multi-party computation. Final (incomplete) Draft, Ver-
sion 1.4, October 27 2002.

[78] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
STOC ’87: Proceedings of the nineteenth annual ACM conference on Theory
of computing, pages 218–229, New York, NY, USA, 1987. ACM.

[79] D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Commun. ACM,
42(2):39–41, 1999.

[80] S. Goldwasser. Multi party computations: past and present. In PODC ’97: Pro-
ceedings of the sixteenth annual ACM symposium on Principles of distributed
computing, pages 1–6, New York, NY, USA, 1997. ACM.

[81] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[82] Object Management Group; Agent Platform Special Interest Group. Omg doc-
ument agent/00-09-01, September 2000.

[83] M. Gruteser and D. Grunwald. Anonymous usage of location-based ser-
vices through spatial and temporal cloaking. In Proceedings of First In-
ternational Conference on Mobile Systems, Applications, and Services (Mo-
biSys’03), pages 31–42, 2003.

[84] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted
data in the database-service-provider model. In SIGMOD ’02: Proceedings
of the 2002 ACM SIGMOD international conference on Management of data,
pages 216–227, New York, NY, USA, 2002. ACM.

[85] H. Hacigümüs, B. Iyer, and S. Mehrotra. Efficient execution of aggregation
queries over encrypted relational databases. In Database Systems for Advances
Applications, 9th International Conference, DASFAA 2004, Jeju Island, Korea,
March 17-19, 2004, Proceedings, pages 125–136, 2004.

[86] J. M. Hellerstein, Y. Li, and J. D. Tygar. Private matching. In In Computer
Security in the 21st Century, pages 25–50. Springer, 2004.

100 Bibliography

[87] M. van Hensbergen, B. Gedrojc, and J.C.A. van der Lubbe. A beehive ap-
proach to e-commerce mobile agents. In Proceedings of the 28th Symposium
on Information Theory in the Benelux, May 2007.

[88] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic en-
cryption. In Proceedings of EuroCrypt 2000, LNCS series, pages 539–556.
Springer-Verlag, 2000.

[89] Fox-IT Experts in Security. Small white paper – fort fox data diode.
http://www.datadiode.eu/uploads/whitepaper/foxit ffdd whitepapersmall.pdf,
2008.

[90] M. Jakobsson, A. Juels, and R.L. Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In Proceedings of the 11th USENIX
Security Symposium, pages 339–353, Berkeley, CA, USA, 2002. USENIX As-
sociation.

[91] S. Jarecki and V. Shmatikov. Efficient two-party secure computation on com-
mitted inputs. In Advances in Cryptology - EUROCRYPT 2007, 26th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, Barcelona, Spain, May 20-24, 2007, Proceedings, pages 97–114, 2007.

[92] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic
computation. In SP ’08: Proceedings of the 2008 IEEE Symposium on Security
and Privacy, pages 216–230, Washington, DC, USA, 2008. IEEE Computer
Society.

[93] M. Joye. On white-box cryptography. In Security of Information and Networks,
Eds. A. Elci, S.B. Ors, and B. Preneel, pages 7–12, 2009.

[94] Y. T. Kalai. Smooth projective hashing and two-message oblivious transfer.
In R. Cramer, editor, Advances on Cryptology — EUROCRYPT 2005, Aarhus,
Denmark, Lecture Notes in Computer Science, pages 78–95. Springer-Verlag,
22–26 May 2005.

[95] G. Karjoth, N. Asokan, and G. Gülcü. Protecting the computation results of
free-roaming agents. Mobile agents ’98, Lecture Notes in Computer Science,
pages 195–207, 1998.

[96] D. Kesdogan, M. Borning, and M. Schmeink. Unobservable surfing on the
world wide web: is private information retrieval an alternative to the mix based
approach? In PET’02: Proceedings of the 2nd international conference on
Privacy enhancing technologies, pages 224–238, Berlin, Heidelberg, 2003.
Springer-Verlag.

[97] B. Kleineidam. Webcleaner, June 2010.

[98] M. Kohlweiss, S. Faust, L. Fritsch, B. Gedrojc, and B. Preneel. Efficient obliv-
ious augmented maps: Location-based services with a payment broker. In
N. Borisov and P. Golle, editors, Privacy Enhancing Technologies, 7th Inter-
national Symposium, PET 2007 Ottawa, Canada, June 20-22, 2007, Revised

101

Selected Papers, volume 4776 of Lecture Notes in Computer Science, pages
77–94. Springer, 2007.

[99] M. Kohlweiss and B. Gedrojc. Privacy friendly location based service protocols
using efficient oblivious transfer. Kryptowochenende 2006 - Workshop uber
Kryptographie, pp. 29 - 32, July, 2006.

[100] T. Kölsch, L. Fritsch, M. Kohlweiss, and D. Kesdogan. Privacy for profitable
location based services. In D. Hutter and M. Ullmann, editors, Security in
Pervasive Computing, Second International Conference, SPC 2005, Boppard,
Germany, April 6-8, 2005, Proceedings, volume 3450 of Lecture Notes in Com-
puter Science, pages 164–178. Springer, 2005.

[101] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In FOCS ’97: Proceedings of
the 38th Annual Symposium on Foundations of Computer Science, page 364,
Washington, DC, USA, 1997. IEEE Computer Society.

[102] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers. User authentica-
tion and authorization in the Java platform. In 15th Annual Computer Security
Applications Conference, pages 285–290. IEEE Computer Society Press, 1999.

[103] L. Lamport. Password authentication with insecure communication. Commun.
ACM, 24:770–772, November 1981.

[104] H.Y. Lin and W.G. Tzeng. An efficient solution to the millionaires’ problem
based on homomorphic encryption. In In ACNS 2005, volume 3531 of Lecture,
pages 456–466, 2005.

[105] Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology,
15(3):177–206, 2002.

[106] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In EUROCRYPT, pages 52–78,
2007.

[107] Y Lindell and B Pinkas. Secure multiparty computation for privacy-preserving
data mining. Journal of Privacy and Confidentiality, 1(1), 2009.

[108] H.E. Link and W.D. Neumann. Clarifying obfuscation: Improving the security
of white-box des. Information Technology: Coding and Computing, Interna-
tional Conference on, 1:679–684, 2005.

[109] H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality
test. In Chi Sung Laih, editor, Advances on Cryptology — ASIACRYPT 2003,
volume 2894 of Lecture Notes in Computer Science, pages 416–433, Taipei,
Taiwan, November 30–December 4 2003. Springer-Verlag.

[110] S. Loureiro, R. Molva, and A. Pannetrat. Secure data collection with updates.
Electronic Commerce Research, 1(1-2):119–130, 2001.

102 Bibliography

[111] A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior
in multi-party computation. In Advances in Cryptology - CRYPTO 2006, 26th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 2006, Proceedings, pages 180–197, 2006.

[112] Q. Ma and P. Deng. Secure multi-party protocols for privacy preserving data
mining. In WASA ’08: Proceedings of the Third International Conference on
Wireless Algorithms, Systems, and Applications, pages 526–537, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[113] K. Mehta, D. Liu, and M Wright. Location privacy in sensor networks against
a global eavesdropper. Network Protocols, IEEE International Conference on,
0:314–323, 2007.

[114] K. Mehta, D. Liu, and M Wright. Protecting location privacy in sensor net-
works against a global eavesdropper. IEEE Transactions on Mobile Computing,
99(PrePrints), 2011.

[115] A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[116] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In STOC
’85: Proceedings of the seventeenth annual ACM symposium on Theory of com-
puting, pages 245–254, Atlanta, Georgia, USA, 1–4 May 1999. ACM.

[117] M. Naor and B. Pinkas. Oblivious transfer with adaptive queries. In CRYPTO
’99: Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, pages 573–590, London, UK, 1999. Springer-Verlag.

[118] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA ’01:
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 448–457, Philadelphia, PA, USA, 2001. Society for Industrial
and Applied Mathematics.

[119] C. Nicol. Ict policy: A beginner’s handbook. http://rights.apc.org/handbook/,
2003.

[120] J.B. Nielsen and C. Orlandi. Lego for two-party secure computation. In TCC
’09: Proceedings of the 6th Theory of Cryptography Conference on Theory of
Cryptography, pages 368–386, Berlin, Heidelberg, 2009. Springer-Verlag.

[121] W. Ogata and K. Kurosawa. Oblivious keyword search. Journal of Complexity,
20(2-3):356–371, 2004.

[122] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as
factoring. In EUROCRYPT, pages 308–318, 1998.

[123] R. Ostrovsky and W.E. Skeith, III. Private searching on streaming data. In
CRYPTO 2005, pages 223–240, 2005.

[124] Open Wep Application Security Project (OWASP). Man-in-the-browser attack,
April 2009.

103

[125] P. Paillier. Public-key cryptosystem based on composite degree residuosity
classes. In J. Stern, editor, Advances on Cryptology — EUROCRYPT 1999,
volume 1592 of Lecture Notes in Computer Science, pages 223–228, Prague,
Czech Republic, 2–6 May 1999. Springer-Verlag.

[126] P. Paillier and D. Pointcheval. Efficient public-key cryptosystems provably se-
cure against active adversaries. In K.Y. Lam, E. Okamoto, and C. Xing, ed-
itors, Advances on Cryptology — ASIACRYPT 1999, volume 1716 of Lecture
Notes in Computer Science, pages 165–179, Singapore, 14–18 november 1999.
Springer-Verlag.

[127] C. Prins. When personal data, behavior and virtual identities become a com-
modity: Would a property rights approach matter?, volume 3, issue 4, SCRIPT-
ed. http://www.law.ed.ac.uk/ahrc/script-ed/vol3-4/prins.asp/, 2006.

[128] M. O. Rabin. How to exchange secrets with oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

[129] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In STOC ’89: Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 73–85, New York, NY, USA,
1989. ACM.

[130] C.Y.C. Richard, R. Han, C.S. Li, and J. R. Smith. Secure transcoding of inter-
net content. In in Proc. Int. Workshop Intelligent Multimedia Computing and
Networking (IMMCN, pages 940–943, 2005.

[131] R. L. Rivest, A. A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 26(1):96–99, 1983.

[132] C. Roger. Introduction to Dataveilliance and Information Privacy, and Def-
inition of Terms. http://www.anu.edu.au/people/Roger.Clarke/DV/Intro.html/,
1997.

[133] V. Roth. On the robustness of some cryptographic protocols for mobile agent
protection. In MA ’01: Proceedings of the 5th International Conference on
Mobile Agents, pages 1–14, London, UK, 2002. Springer-Verlag.

[134] A-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving
face recognition. Cryptology ePrint Archive, Report 2009/507, 2009.
http://eprint.iacr.org/.

[135] K. Saleh. Understanding total system assurance: the case of mobile agent-based
wireless sensor network systems. IJCA Special Issue on Wireless Information
Networks and Business Information System, pages 26–32, 2011. Published by
Foundation of Computer Science.

[136] T. Sander and Tschudin. C. F. On software protection via function hiding.
Information hiding, Lecture Notes in Computer Science 1525, pages 111–23,
1998.

104 Bibliography

[137] T. Sander and Tschudin. C. F. Protecting mobile agents against malicious hosts.
Mobile agents and security, Lecture Notes in Computer Science, pages 44–60,
1998.

[138] T. Sander and Tschudin. C. F. Towards mobile cryptography. Proceedings 1998
IEEE symposium on security and privacy, pages 215–224, 1998.

[139] T. Sander, Y. Young, and M. Yung. Non-interactive cryptocomputing for nc1.
40th Annual Symposium on Foundations of Computer Science, IEEE, pages
554–66, 1999.

[140] J. Scourias. Gsm history: Handover, 2006.
http://www.privateline.com/mt gsmhistory/2006/01/handover.html.

[141] GSM Association: Location Based Services. Permanent reference document.
Technical report, SE.23, 2003.

[142] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[143] D. Singelée and B. Preneel. Secure e-commerce using mobile agents on un-
trusted hosts. Technical report, COSIC Internal Report, 2004.

[144] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on en-
crypted data. In SP ’00: Proceedings of the 2000 IEEE Symposium on Security
and Privacy, page 44, Washington, DC, USA, 2000. IEEE Computer Society.

[145] H. K. Tan and L. Moreau. Certificates for mobile code security. In SAC ’02:
Proceedings of the 2002 ACM symposium on Applied computing, pages 76–81,
New York, NY, USA, 2002. ACM Press.

[146] J.R. Troncoso-Pastoriza, S Katzenbeisser, and M Celik. Privacy preserving
error resilient dna searching through oblivious automata. In CCS ’07: Proceed-
ings of the 14th ACM conference on Computer and communications security,
pages 519–528, New York, NY, USA, 2007. ACM.

[147] Y. Tseng, S. Kuo, H. Lee, and C. Huang. Location tracking in a wireless sensor
network by mobile agents and its data fusion strategies. The Computer Journal,
47(4):448–460, 2004. Location tracking.

[148] W.G. Tzeng. Efficient 1-out-of-n oblivious transfer schemes with universally
usable parameters. IEEE Trans. Comput., 53(2):232–240, 2004.

[149] Infosecurity Magazine UK. Google docs leaks out private data, 2009.

[150] O. Ünay and T. I. Gündem. A survey on querying encrypted xml documents
for databases as a service. SIGMOD Rec., 37(1):12–20, 2008.

[151] G. Vigna. Protecting mobile agents through tracing. In Proceedings of the Third
International Workshop on Mobile Object Systems, in conjunction with the
11th European Conference on Object-Oriented Programming (ECOOP ’97),
Jyvaskyla, Finland, June 1997. Online Proceedings.

105

[152] G. Vigna. Cryptographic traces for mobile agents. In Mobile Agents and Secu-
rity, volume 1419 of LNCS State-of-the-Art Survey, pages 137–153. Springer-
Verlag, June 1998.

[153] J.P. Walters, Z. Liang, W. Shi, and V. Chaudhary. Wireless sensor network
security: A survey, in book chapter of security. In in Distributed, Grid, and
Pervasive Computing, Yang Xiao (Eds, pages 0–849. CRC Press, 2007.

[154] L.C. Washington and W. Trappe. Introduction to Cryptography: With Coding
Theory. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2002.

[155] B.R. Waters, D. Balfanz, G. Durfee, and D.K. Smetters. Building an encrypted
and searchable audit log. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2004, San Diego, California, USA, 2004.

[156] A.F. Westin. Privacy and freedom. Atheneum Publishers, 1967.

[157] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving queries on encrypted
data. In Computer Security - ESORICS 2006, 11th European Symposium on
Research in Computer Security, Hamburg, Germany, September 18-20, 2006,
Proceedings, pages 479–495, 2006.

[158] A.C. Yao. Protocols for secure computations. In M. S. Carberry, editor, Pro-
ceedings of the 23rd Annual IEEE Symposium on Foundations of Computer
Science, Chicago IL, pages 160–164. IEEE Computer Society Press, 1982.

[159] D-F. Ye, K-Y. Lam, and Z-D. Dai. Cryptanalysis of “2 r” schemes. In Pro-
ceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’99, pages 315–325, London, UK, 1999. Springer-
Verlag.

[160] Bennet S. Yee. A sanctuary for mobile agents. Secure Internet programming:
security issues for mobile and distributed objects, pages 261–273, 1999.

[161] A. Young and M. Yung. Sliding encryption: A cryptographic tool for mobile
agents. In FSE ’97: Proceedings of the 4th International Workshop on Fast
Software Encryption, pages 230–241, London, UK, 1997. Springer-Verlag.

106 Bibliography

Samenvatting

Dit proefschrift heeft als doelstelling het geven van oplossingen om de privacy te waar-
borgen in het geval dat niet vertrouwde proxies gebruikt worden voor communicatie
en uitvoering van gevoelige informatie d.w.z. private computing. Een voorbeeld van
private computing is een toegangscontrolesysteem (proxy) welke toegang geeft (of
niet) aan gebruikers gebaseerd op vingerafdrukken. Uit privacy overwegingen wil de
gebruiker zijn vingerafdrukken niet aan het systeem prijsgeven. The systeem gebruikt
een mechanisme om vingerafdrukken te vergelijken met al eerder verzamelde vinger-
afdrukken om zo de identiteit van de gebruiker te kunnen verifiëren. De uitdaging is
dat vingerafdrukken, zelfs van dezelfde gebruiker, nooit gelijk zijn zoals wachtwoor-
den dat wel zijn. Dit maakt het zo lastig om vingerafdrukken te vergelijken, zeker als
het systeem ook niets over de vingerafdrukken mag leren behalve of ze gelijk zijn of
niet.

Dit proefschrift beschrijft twee problemen binnen private computing. Het eerste prob-
leem is om een niet-vertrouwde proxy informatie te laten verzamelen van verschil-
lende bronnen. De uitdaging is om de geselecteerde informatie door de niet-vertrouwde
proxy te laten verzamelen, waarbij de confidentialiteit van de alle informatie wordt
gegarandeerd. Het tweede probleem is om een niet-vertrouwde proxy de verzamelde
informatie met elkaar te laten vergelijken. De uitdaging is de niet-vertrouwde proxy
een vergelijkingsfunctie uit te laten voeren zonder informatie prijst te geven over de
inputs, maar wel de mogelijkheid te bieden de uitkomst te leren. Het probleem is
vergelijkbaar met het Multi-Party Computation miljonairsprobleem, waarbij in het pri-
vate computing probleem de niet-vertrouwde proxy de uitkomst leert van de bereken-
ing zonder daarbij eerst contact te moeten zoeken met de gebruikers.

Voor het selectie en collectie probleem worden er twee benaderingen uiteengezet. Ten
eerste wordt het parallelle selectie en collectie probleem behandeld, waarbij een niet-
vertrouwde proxy gelijktijdig informatie verzameld van verschillende bronnen zonder
de privacy van de gebruiker aan te tasten. Het probleem wordt gepresenteerd in een
Locatie-Based Service (LBS) scenario met het doel om private locatie informatie te
beschermen. De oplossing gebruikt twee verschillende Oblivious Tranfer (OT) proto-
collen en homomorpfe encryptie. Ten tweede wordt het sequentiele selectie en collec-
tie probleem behandeld, waarbij informatie wordt opgehaald bij verschillende bronnen
op basis van een vast pad voordat het terugkeerd naar de proxy. De oplossing maakt

108 Samenvatting

gebruik van threshold digitale handtekeningen en hash chaining. Vervolgens wordt er
gebruik gemaakt van een hulp mechanisme welke ervoor zorgt dat het te volgen pad
compleet wordt doorlopen ook als een van de bronnen niet beschikbaar is.

Twee benaderingen worden er uiteengezet voor het vergelijkingsprobleem. Ten eerste
wordt er een enkelvoudige vergelijking uitgevoerd waarbij de niet-vertrouwde proxy
de ongelijkheidsfunctie berekend. De oplossing is om een bestaand bitsgewijs vergeli-
jkingsprotocol te reconstrueren op een zodanige manier dat de proxy één bit aan in-
formatie lekt (het resultaat van de vergelijking) maar niets meer. De reconstructie van
het nieuwe protocol is gebaseerd op meerdere homomorfe encrypties en decrypties
gebruikmakend van ElGamal. Ten tweede wordt er een meervoudige vergelijking uit-
gevoerd welke kan worden toegepast op het vergelijken van vingerafdrukken probleem
zoals hierboven beschreven. De uitdaging is om een niet-vertrouwde proxy meer-
voudige ongelijkheidsfuncties uit te laten voeren waarbij de proxy wederom alleen
één bit aan informatie leert m.a.w. dat alle functies voldaan hebben aan de ongeli-
jkheidscondities of dat sommige functies hebben gefaald, maar dat de proxy niet leert
welke dat waren. De oplossing is gebaseerd op hetzelfde bitsgewijze vergelijkingspro-
tocol als bij de enkelvoudige vergelijking, met het verschil dat een ander homomorf
encryptie schema wordt gebruikt en de hiding functie wordt uitgebreid.

Dit proefschrift demonstreert dat private computing protocollen ontwikkeld kunnen
worden om de privacy van de gebruiker te beschermen terwijl de functionaliteit in het
cryptografische domein wordt vergroot. Bovendien kunnen de gepresenteerde pro-
tocollen ook toegepast worden op andere applicaties waar niet-vertrouwde proxies
onvermijdelijk zijn.

Summary

The objective of this thesis is to preserve privacy for the user while untrustworthy
proxies are involved in the communication and computation i.e. private computing. A
basic example of private computing is an access control system (proxy) which grants
access (or not) to users based on fingerprints. For privacy reasons the user does not
want to reveal his fingerprint to the system, since he does not trust the system in storing
his fingerprint securely. The system uses a mechanism to compare a new fingerprint
with previously collected fingerprints, in order to verify the identity of the user. The
challenge is that fingerprints, even if they are from the same user, are never exactly
equal like passwords are. This makes fingerprints hard to compare, especially when
the system should not learn anything from these fingerprints other than if they are
equal or not.

This thesis addresses two problems within private computing. First, the problem of
letting an untrustworthy proxy collect private information from various sources is in-
vestigated. The challenge is to let the untrustworthy proxy perform the collection of
the selected information, while guaranteeing confidentiality of the inputs and outputs.
Second, the problem of letting an untrustworthy proxy compare the collected private
information is addressed. The challenge is to let the untrustworthy proxy compute a
comparison function without being able to learn the actual inputs, but being allowed
to learn the outcome of the function. The problem is similar to the Millionaires’ prob-
lem known from Multi-Party Computation, however in the private computing case the
untrustworthy proxy learns the outcome of the computation without having to inform
the users.

For the selection and collection problem two approaches are addressed. First, the par-
allel selection and collection approach is considered whereby an untrustworthy proxy
collects information simultaneously from various sources without loosing the users
privacy. The problem is presented within a location-based services (LBS) scenario
with the goal to protect private location data. The solution is based on two distinct
oblivious transfers and the usage of homomorphic encryption. Second, the sequential
selection and collection approach is considered where information is collected from
various sources based on a fixed itinerary before returning with the results to the proxy.
The solution is provided using threshold signature schemes and hash chaining. Fur-
thermore, a mechanism is constructed which ensures that the itinerary is completed

110 Summary

even if one of the sources is unavailable.

Two approaches are addressed for the comparison problem. First, a single compari-
son is undertaken, where the untrustworthy proxy computes one inequality function.
The solution is to use a bit-wise comparison protocol and reconstruct it in such a way
that the proxy leaks one bit of information (the result of the comparison) but nothing
else. The reconstruction of the protocol is based on multiple homomorphic encryp-
tions and decryptions using ElGamal. Finally, the multiple comparison problem is ad-
dressed which can be applied to the fingerprint matching problem as described above.
The challenge is to let an untrustworthy proxy compare multiple inequality functions,
learning only if all off the functions satisfied the comparison conditions or that some
failed while letting the proxy remain oblivious to which conditions failed. The output
of the function also only leaks one bit of information. The solution is based on the
same bit-wise comparison protocol as the single comparison but it is reconstructed
using a different homomorphic encryption scheme and extending the hiding function
used for comparison.

This thesis demonstrats that private computing protocols can be designed to protect
the privacy of the users while providing functionality in the cryptographic domain.
Moreover, the presented protocols can also be applied within other applications where
untrustworthy proxies are unavoidable.

Acknowledgements

I would like to thank my supervisor Jan van der Lubbe for his support he has given
me during all these years, in good and bad times. Thank you for the nice discussions
we had in your office or at the IKEA, just between work. I thank Inald Lagendijk
for being my promotor, for helping me to improve my thesis and for providing an
outstanding research environment within the Information and Communication Theory
(ICT) group. I would like to thank all the participants of the PAW project.

I would like to thank everybody who has been part of the ICT group during the five
years I was there. Dick, Emile, Jeroen2, Richard2, Ronald, Wouter, Jan2, Pavel, Gin-
neke, Jenneke, Pien, Jesper, Pim, Eva, David, Jacco, Maarten, Marco, Theo, Umut
thanks for all the fun we had during my research. A special thanks goes to Kathy who
started as my MSc. thesis supervisor and later became a colleague in the group. We
had many discussions on cryptography and privacy, but together with Kosmas we also
discussed various interesting cultural aspects of life. I always enjoyed the conversa-
tions with Ivo during my first years as researcher. During my last years in the group,
my roommates Zekeriya and Alper where of great support. Ben, Hans, Robbert, Anja,
Annette, Saskia were a great help for all administrative and computer problems related
tasks. Arjan, Daniela, Kai-Fan, Maarten, Martin, Maurice, Michiel, Paul, Jeroen and
Vincent I would like to thank for all the discussions we had on your theses.

Ronald, Peter-Jan, Omar, Eugene, Kathy en Mark, we should not forget to have at
least one dinner per year together. I want to thank Lejla and Bart for making it possible
to collaborate with various international researches at the COSIC group, Katholieke
Universiteit Leuven, Belgium. Claudia, George, Mina, Gregory, Dave, Péla, Brecht,
Dries, Elke, thanks for showing me the way around the group. A special thanks goes
to Markulf who helped me a lot with the research.

Bart and Rene we had a amazing trip together during my research period. Thanks for
this unforgettable period in my life. Remember to Arrive Alive.

My roommates at the Balthasar van der Polweg where of great help. Mark and Nan-
ning, thanks for the fun we had. Robert, I hope I didn’t drive you too much crazy.

In time of stress, it is good to relaxt. I want to thank everybody at the AV Koplopers
and especially everybody in group 5. Cor, keep up the good work and I hope you stay
with us as a trainer for a long time.

112 Acknowledgement

Research was amazing but writing took longer than expected. Writing during work is
hard, but I got a lot of support from my colleagues at Fox-IT. I want to thank you all.
Special thanks goes to my roommates Ronald, Jeff and Nadeem. I was lucky to find
another great company which supports me greatly in this adventure, Riscure. Thanks
for all the support and looking forward to the future working together.

None of this would have been possible without the support from my family. I thank
the Koehlers, Kitty, Cees, Raymond, for their interest and for all their compassion.
Family Visser, Mieke, Paul, Isanne and Adriaan thank you for your support.

To my parents, it is you who have made this thesis possible, with all the love, op-
portunities and advices you have given me. To my brother, Philip, thanks for all the
support.

Anouk, Willem-Jan, Daniel, Selma, Kemo, Dennis, Mandy, Michael, Eefke, Femke,
Goos, Tamara, Ellen, Rosanne, Julien, thanks. I know I have forgotten to mention
people who have contributed in some way to this thesis. Please allow me to make it
up to you in the future.

And finally, I owe a lot of gratitude to Quirina. I spend many hours writing my thesis
in the evenings, the weekends and during holiday times. Claiming one hour of work
usually ended in writing the whole evening. I want to apologize for my bad time
management and I know we will have a great future together.

Curriculum Vitae

Bartlomiej (Bartek) Gedrojc was born on 28th of November 1975 in Poznan (Poland).
After moving to the Netherlands in 1981, he received in 1992, his MAVO-diploma,
in 1994, his HAVO-diploma and in 1996, his VWO-diploma, from the R.S.G. Prof.
Zeeman in Zierikzee.

Thereafter, he studied Electrical Engineering at Delft University of Technology. Dur-
ing these studies he was an exchange student at the National University of Singapore
(NUS). In 2004, he graduated at the Information and Communication Theory group
with a MSc degree (In Dutch: Ir. diploma) and a master thesis entitled “Bitwise deci-
sion making within an Malicious host using an Oblivious Third Party”.

In 2004 he started as a PhD researcher at the Information and Communication Theory
group at Delft University of Technology in the research area of cryptography and
privacy. He worked on the Privacy in an Ambient World (PAW) project funded by
the IOP GenCom program. In 2006 he made an academic visit to the Katholieke
Universiteit Leuven, Belgium at the COSIC group for a period of three months.

In 2008 he worked as a security consultant and product manager in the crypto de-
partment at Fox-IT in Delft. Here, among other things, he audited an Internet voting
system (RIES) and conducted a Common Criteria evaluation (EAL7+).

Since 2011, he has been working as a sales executive at Riscure, Delft. Here, his work
focusses on the commercial aspects of Side Channel Analysis.

	Preface
	1 Introduction
	1.1 Privacy
	1.2 Problem Addressed
	1.2.1 Collecting Private Data
	1.2.2 Comparing Private Data

	1.3 Organization and Contribution
	1.3.1 Organization
	1.3.2 Contribution

	2 Private Computing Problems
	2.1 Introduction
	2.2 The Selection and Collection Problem
	2.2.1 Scenario
	2.2.2 Assumptions
	2.2.3 Threats
	2.2.4 Requirements
	2.2.5 Problem addressed and Approach
	2.2.6 Related work

	2.3 The Comparison Problem
	2.3.1 Scenario
	2.3.2 Assumptions
	2.3.3 Threats
	2.3.4 Requirements
	2.3.5 Problem addressed and Approach
	2.3.6 Related work

	2.4 Discussion

	3 Parallel Selection and Collection
	3.1 Introduction
	3.2 Requirements and High-level Overview
	3.2.1 Phases
	3.2.2 High-level Overview
	3.2.3 Database Secrecy revision

	3.3 Parallel Selection and Collection Protocol
	3.4 Security and Efficiency
	3.4.1 Efficiency analysis
	3.4.2 Security Analysis

	3.5 Discussion

	4 Sequential Selection and Collection
	4.1 Introduction
	4.2 Definitions
	4.2.1 Model
	4.2.2 Requirements and Assumptions

	4.3 Approach
	4.4 Sequential Selection and Collection Protocol
	4.4.1 Initialization and Selection
	4.4.2 Collection
	4.4.3 Finalization

	4.5 Example
	4.6 Security
	4.6.1 Protection Against Replay Attacks and Copying
	4.6.2 Redundant Itinerary
	4.6.3 Protection of Itinerary
	4.6.4 Weak protection of Signing Key
	4.6.5 Threat Model and Complexity

	4.7 Discussion

	5 Single Comparison
	5.1 Introduction
	5.2 Scenario
	5.3 Homomorphic E-E-D
	5.4 Protocol
	5.5 Security Analysis
	5.6 Discussion

	6 Multiple Comparison
	6.1 Introduction
	6.2 Problem Statement
	6.3 Cryptographic Techniques
	6.3.1 Extended HA

	6.4 Protocol
	6.5 Security
	6.6 Discussion

	7 Discussion
	7.1 Summary of the Results
	7.1.1 Collecting Private Data
	7.1.2 Comparing Private Data

	7.2 Discussion

	A Cryptographic Building Blocks
	A.1 Homomorphic Encryption
	A.1.1 RSA
	A.1.2 ElGamal
	A.1.3 Paillier
	A.1.4 Damgård-Jurik cryptosystem

	A.2 Threshold Cryptography
	A.2.1 Secret Sharing

	A.3 Oblivious Transfer (OT)
	A.3.1 Adaptive OT from Blind Signatures
	A.3.2 OT using Homomorphic Encryption

	A.4 Hash Chaining
	A.5 -Hiding Assumption

	Bibliography
	Samenvatting
	Summary
	Acknowledgements
	Curriculum Vitae

