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Chapter 1

Introduction

1.1 Information retrieval systems:
From needs to possible solutions

There is hardly a better way to describe the development stage of our
civilization at the end of the second millennium than as the information era,
and this has a quite obvious reason: never before was the impact of
information on the human lifestyle and way of thinking as enormous as it
is in the second half of this century. People are not only exposed to
information all the time, this experience also becomes more intensive,
which greatly contributes to broadening their views; they acquire
knowledge and awareness about the environment and the world in
general. This process globalizes society, and as such, creates new living and
educational standards.

We can explain such an impact mainly as a consequence of an
overwhelming digital revolution, which started some decades ago and has
continuously gained in strength. On the one hand, the digital way of
representing information opened completely new perspectives for further
developments in information technology. It became possible to compress
information, which resulted in a strong reduction of the time and channel
capacity required for its transmission and of the space required for its
storage. Information can be transmitted or manipulated without quality
loss and it is possible to combine and transmit or process different types of
information together, like audio, visual or textual: multimedia was born. On
the other hand, digital hardware technology has rapidly developed and



grown in the last decades, so that the performance-versus-price ratio of
various digital systems, storage and transmission media steadily increased.
All this has led to continuous advances in the quality of transmitted and
received audiovisual information [Hua99a], in digital telecommunication
networks providing high-speed information transfer (“information
superhighway”), in fast digital signal processors and in compact high-
capacity storage media like Digital Versatile Disc (DVD), which is seen by
many as “the epitome of the digital age” [TNO97]. In view of such
technological growth, it is not difficult to understand that an average
information consumer easily raises his expectations regarding the amount,
variety and technical quality of the received information, as well as of the
systems for information receiving, processing, storage and re- or display. It
will soon become quite usual that each household is equipped with
receivers for Digital Video and Audio Broadcasting (DVB [ETS94] and DAB
[ETS97]) providing together hundreds of high-quality audiovisual
channels, accompanied by a broadband Internet connection, which gives
access to countless on-line information archives all over the world.

However, it is beyond human capabilities to digest all the received
information in an on-line manner. Large volumes of digital information
obtained from digital TV/radio channels, Internet etc. will need to be
stored temporarily, or if they are of long-term value, permanently. In this
sense, we witness a strong development of home digital multimedia archives
[SMA]. And, naturally, with an increasing information production even
larger digital multimedia archives appear at service providers (e.g. TV and
radio broadcasters, Internet providers, etc.). Thus, the issue of digital
information storage steadily becomes more and more interesting and we
can talk about emerging digital libraries. This term stands for a (large-scale)
collection of stored digital information of any type (e.g. audio, visual,
textual), made for either professional or consumer environments; examples
of this are digital museum archives, Internet archives, video libraries
available to commercial service providers and private information
collections in the home, all of them being characterized by a quickly
increasing capacity and content variety.

The development of digital libraries is not only related to technological
advances in high-capacity storage media. The issue of efficiently retrieving
the information stored in these libraries becomes of utmost importance as
larger data volumes are stored. Actually, it can be said that the missing
possibility to quickly access stored information degrades the high
technological value of new high-capacity storage media and seriously
jeopardizes the usability of the stored information. As nicely formulated in
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the preface of [Sme97], “anyone who has surfed the Web has exclaimed at
one point or another that there is so much information available, so much
to search and so much to keep up with”. This citation describing a
particular problem of finding a desired information on the World-Wide
Web (WWW) can analogously be applied to a digital library of any type:

If information of interest is not easily accessible within a large digital
library, that information can be of no use, in spite of its value and the fact
that it is present in that library.

Manually searching through GBytes of unorganized stored data is a
tedious and time-consuming task. Consequently, with increasing
information volumes the need grows for shifting the information retrieval
to automated systems. There, algorithms are applied capable of performing
any information retrieval task with the same reliability and with the same
or even higher efficiency as when the retrieval is done manually.

Realizing this shifting in practice is not a trivial problem, especially in the
case of images or video. To explain this, we here analyze some
characteristic retrieval tasks, such as “find me an image with a bird”, “find
me the movie scene where Titanic hits the iceberg”, “find me the CNN
business news report from 15 November 1999”7, “find me a ‘western’ movie
in the database”, “classify all the images according to the place where they
were taken” or “find me all images showing Paris”. These retrieval tasks
are formulated on a cognitive level, according to the human capability of
understanding the information content and analyzing it in terms of objects,
persons, sceneries, meaning of speech fragments or the context of a story in
general. Opposed to this, the only feasible analysis of a video or an image
at the algorithmic or system level can be in terms of their features, such as
color, texture, shape, frequency components, audio and speech signal
characteristics, and using the algorithms operating on these features. Such
algorithms are, for instance, image segmentation, detection of moving
objects, extraction of textures and shapes, recognition of color
compositions, determination of relations among different objects or
analysis of the frequency spectrum of the audio or speech signal. These
algorithms can be developed using the state-of-the-art in image and audio
analysis and processing, computer vision, statistical signal processing,
machine intelligence, pattern recognition and other related areas.

" Within the context of this thesis we refer to video as to a program in its entirety, consisting
of an image sequence and the eventual accompanying audio/speech stream.
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Figure 1.1: Cognitive vs. feature-based retrieval

As illustrated in Figure 1.1, we can understand an automated feature-based
content analysis as a system-level parallel to the cognition-based analysis.
There the features are chosen and algorithms are developed in the way that
the retrieval results are similar at the end of each branch of the scheme.
Experience shows, however, that the parallelism in Figure 1.1 is not viable
in all cases. We can explain this with the example of searching for an image
containing a bird. While such a search performed by a human will always
succeed, this cannot be said for the feature-based image analysis, simply
because a complicated and large feature set describing the characteristics of
a bird in general is required as well as complex algorithms operating on
that feature set, which would enable the system to recognize the
appearance of any arbitrary bird, in any possible pose and also in cases
where parts of a bird are occluded. Finding a suitable feature set and
developing related algorithms for such a retrieval task is very difficult, if
not impossible. Consequently, the development of feature-based content
analysis algorithms for the scheme in Figure 1.1 has not been directed to
enable queries on the highest semantic level, such as the above example
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with a bird, but mainly towards extracting certain semantic aspects of the
information which would allow for a reduction of the overall large search
space. This tendency can be recognized in numerous algorithms proposed
in recent literature, many of which will be explained in detail in further
chapters of this thesis.

For instance, an algorithm in [Vai98] is able to classify with high accuracy
images showing a city versus those showing a landscape. Further in
[Vai99], a Bayesian framework is presented for semantic classification of
outdoor vacation images. There, landscape images can be classified into
those showing a sunset, a forest or mountains. Similar examples can also be
found in the area of digital video libraries. The algorithms proposed in
[Han99b] and [Yeu97] provide the possibility to detect episode or scene
boundaries of a TV broadcast (movie, situation comedy, etc). A
methodology for detecting commercial breaks in a TV news program is
presented in [Liu98]. There, the audio track of the broadcast is analyzed
and commercial breaks are efficiently separated from the rest of the
program because of their specific audio characteristics. An approach to
detect commercial breaks in an arbitrary TV broadcast is presented in
[McG99], based on parallel investigation of several feature types. Also a
sophisticated feature-based analysis is applied in [Fis95] in order to classify
video programs in different genres. Another class of approaches [DeM98],
[Han97c], [Han00], [Pfe96] concentrates on video abstraction, i.e. compact
representation of long video sequences by extracting and organizing a
number of its most representative frames and segments.

Even the feature-based content-analysis techniques belonging to the
current technological state-of-the-art and developed with the objective of
search-space reduction can be used to build efficient tools for multimedia
information retrieval, since they provide the user with reliable directions
for browsing efficiently through a digital library and lead them quickly to
the information of interest. The MPEG-7 standardization platform [ISO97]
addresses ways to define standard sets of descriptors for multimedia
information based on features which should provide further directions for
the development of feature-based content-analysis algorithms. And with
new solutions, the performance of information retrieval systems can only
improve, leading to a further reduction of the search space and user’s
involvement during the search procedure. The material presented in this
thesis, which is briefly outlined in the next two sections of this chapter, is a
further contribution to this positive development.



1.2 Scope of the thesis

This thesis concentrates on a feature-based analysis of the visual content of
images and video, enabling an easier image and video retrieval from large-
scale multimedia digital libraries. The methodologies presented here are
mainly the result of research performed for the European ACTS project
SMASH (Storage for Multimedia Application Systems in the Home
[SMA]).

Video processing/analysis
steps

Shot-boundary detection

Video abstraction
using key frames

y v

\[ High-level video analysis

4

Video

Transparent video-content organization

Program overview [

Efficient video retrieval

Figure 1.2: Video-content analysis scheme enabling its efficient retrieval

The scheme in Figure 1.2 presents a series of video processing/analysis
steps which provide an organizational structure allowing efficient
reviewing of the global video content (e.g. story flow of a movie, topic
series of a news program, etc.) and a fast access to and retrieval of any
arbitrary part of a video (e.g. an arbitrary movie episode, a news report on
a certain topic, a highlight of a sport program, etc.). The scheme depicts a
generally known video-analysis procedure which first breaks up a video



into temporally homogeneous segments called video shots, then condenses
these segments into a set of characteristic frames called key frames and
finally performs a high-level analysis of a video content. This high-level
analysis basically includes determining “semantic” relationships among
shots (e.g. their grouping into news reports, movie episodes, etc.) using
temporal characteristics of shots and suitable features of their key frames.
As indicated in the scheme, beside of being used for high-level video
analysis key frames also directly participate in forming the organizatorial
video-content structure described above. There, they provide visual keys to
different aspects of a video content. A large number of algorithms was
presented in recent literature for all three mentioned processing/analysis
steps, aiming at a robust and high-quality performance with as much
automation as possible. We contribute to these efforts in the first part of
this thesis and dedicate each of the Chapters 2 to 4 to one of the
processing/analysis steps in Figure 1.2.

In the second part of this thesis we consider the fact that the prevailing
amount of information reaching the digital libraries and being stored there
will be in compressed form. This is because large and fast advances in the
compression area are gladly employed to maximally utilize the available
storage space in digital libraries, but also to increase the information-
transmission rate and density. Consequently, compressed images and
video need to be expected as inputs into feature-based content-analysis
algorithms, which, however, must not influence the efficiency of these
algorithms compared to the case where they operate on uncompressed
data. The most important issue related to this efficiency is the possibility to
easily reach all the necessary features in a compressed image/video. We
address this issue in Chapter 5 for the case of image compression.

1.3 Thesis overview

Dividing a video sequence into shots is the first step towards video-content
analysis and content-based video browsing and retrieval. A video shot is
defined as a series of interrelated consecutive frames, taken contiguously
by a single camera and representing a continuous action in time or space
[Bor93]. As such, shots are considered to be the primitives for higher-level
content analysis, indexing and classification, discussed in later chapters of
this thesis. Chapter 2 presents a statistical framework for shot-boundary
detection based on minimization of the average detection-error probability.
We model the required statistical functions using a robust metric for visual
content discontinuities (based on motion compensation) and take into



account knowledge about the shot-length distribution and visual
discontinuity patterns at shot boundaries. Major advantages of the
proposed framework are its robust and sequence independent detection
performance, as well as its capacity to detect different types of shot
boundaries simultaneously. Chapter 2 is based on our work published in
the Proceedings of the IEEE International Conference on Multimedia
Computing and Systems 1999 [Han99d].

Abstracting a video by extracting a number of characteristic or key frames is
useful for different applications in video libraries. The form and the size of
the key-frame abstract needs, however, to be adapted to the structure of the
video material, as well as to the targeted application. Chapter 3 presents
two methods for extracting key frames, aiming at different applications in
video-retrieval systems. The first method is characterized by the possibility
to control the total number of key frames extracted for the entire sequence.
While this number does not exceed the prespecified maximum, key frames
are spread along a video such that the quality of capturing all relevant
variations of its visual content is maximized and that a storyboard of a
video is provided. The objective of the second approach to key-frame
extraction presented in Chapter 3 is to minimize the size of the key-frame
abstract while providing all the necessary aspects of the visual content of a
video. This algorithm is designed to produce a set of key frames which
capture the content of a video in a similar way as when key frames are
extracted manually based on human cognition. Chapter 3 is based on our
publications in Image Databases and Multi-Media Search (World Scientific
Singapore, 1997) [Han97c] and IEEE Transactions on Circuits and Systems
for Video Technology [Han00].

As already mentioned in Section 1.1, information retrieval from digital
libraries by formulating queries on the highest semantic level is not realistic
in view of the current technological state-of-the art. However, examples
were also shown where certain semantic components can be recognized in
the stored information and be used to organize the information in such a
way that the overall large search space is reduced as far as possible. Using,
for instance, the algorithm from [Vai98] for city-versus-landscape image
classification, the time for finding an image showing the New York skyline
can be considerably reduced since only relevant images, i.e. those showing
cities, are submitted to the user. Although he still needs to browse through
the city image collection and must search for the particular image of
interest (New York), the number of images he needs to check is much
smaller than the entire image library.




In Chapter 4 we first present an idea how to translate the above image-
search example to the case of video retrieval, and especially retrieval of
movies, which is a very important program category in video storage
systems. We assume that a typical movie can be represented as a series of
high-level semantic contexts called episodes, which correspond to different
classes in an image database. If a movie is segmented into episodes, a
search for different movie segments showing specific faces or sceneries can
be performed only within the relevant episode, which reduces the overall
search space and, therefore, also the retrieval time. We develop a feature-
based algorithm for automatically segmenting movies into logical story
units, which are the approximates for the actual movie episodes. Movie
segmentation into logical story units is followed by the description of an
algorithm for analyzing TV news programs at a high level. The algorithm
detects the appearance of anchorperson shots, which can be considered as
the first step in recovering the report structure of a news program at a later
stage. The material presented in Chapter 4 is based on our work published
in the Proceedings of SPIE/IS&T Electronic Imaging: Storage and Retrieval
for Image and Video Databases VII, 1999 [Han%9a] and in IEEE
Transactions on Circuits and Systems for Video Technology [Han99b].

Chapter 5 addresses the issue of accessing the spatial (pixel-level) content
in compressed images, such that the efficiency of image-database
operations (e.g. image analysis, comparison, query) is not reduced due to
compression. We present a novel image-compression methodology which
was primarily developed to suit emerging applications in large-scale image
databases. In this methodology, the access to spatial image content in the
compressed domain is simplified first by having a highly simple
decompression procedure, but also by the fact that some aspects of the
spatial image content are directly accessible in the compressed image
format. While we concentrated on reducing the content access work, we also
took into account the requirements of keeping a good compression factor,
providing a high perceptual quality of reconstructed images and keeping
the overall computational costs in limits. Chapter 5 is based on our
publication in the Proceedings of the IEEE International Conference on
Image Processing, 1999 [Han99c¢]

In spite of all advances made in the area of image and video retrieval in the
last years, we must remain aware of the fact that the development of robust
retrieval systems is still in its infancy. In Chapter 6, we discuss the current
development stage of these systems and give some important directions for
pursuing further research in this area.







Chapter 2

Statistical Framework for
Shot-Boundary Detection

2.1 Introduction

The basis of detecting shot boundaries in video sequences is the fact that
frames surrounding a boundary generally display a significant change in
their visual contents. The detection process is then the recognition of
considerable discontinuities in the visual-content flow of a video sequence.
The process of shot-boundary detection, having as input two frames k and
k+l of a video sequence, is illustrated in Figure 2.1. Here [ is the interframe
distance with a value / >1.

Shot-boundary detection \

Feature Discontinuity | Detector
Extracti z(kk+l) w bouesday
xtraction computation Akk+l) S T

Figure 2.1: Illustration of the process for detecting a shot boundary between
frames k and k+1
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In the first step of the process, feature extraction is performed. Within the
context of this thesis, extracted features depict various aspects of the visual
content of a video. Then, a metric is used to quantify the feature variation
from frame k to frame k+/. The discontinuity value z(k k+I) is the magnitude
of this variation and serves as an input into the detector. There, it is
compared against a threshold T. If the threshold is exceeded, a shot
boundary between frames k and k+! is detected.

To be able to draw reliable conclusions about the presence or absence of a
shot boundary between frames k and k+I, we need to use the features and
metrics for computing the discontinuity values z(kk+l), that are as
discriminating as possible. This means that a clear separation should exist
between discontinuity-value ranges for measurements performed within
shots and at shot boundaries. In the following, we will refer to these ranges as
R and R, respectively. The problem of having unseparated ranges R and
R is illustrated in Figure 2.2, where some discontinuity values within shot
1 belong to the overlap area. Such values z(k,k+I) make it difficult to decide
about the presence or absence of a shot boundary between frames k and k+/
without avoiding detection mistakes, ie. missed or falsely detected
boundaries.

Range
overlap
R / p i Shot 1 Shot 2 Shot 3
4 a
A
R

>

)

Shot Shot Shot
boundary boundary = boundary

Figure 2.2: The problem of unseparated ranges R and R
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We realistically assume that the visual-content differences between
consecutive frames within the same shot are mainly caused by two factors:
object/camera motion and lighting changes. Depending on the magnitude of
these factors, the computed discontinuity values within shots vary and
sometimes lie in the overlap area, as shown in Figure 2.2. Thus, an effective
way to better discriminate between discontinuity values belonging to

ranges R and R is to use features and metrics that are insensitive to motion
and lighting changes. However, this is not the only advantage of using
such features and metrics. Since different types of sequences can globally
be characterized by their average rates and magnitudes of object/camera
motion and lighting changes (e.g. high-action movies vs. stationary
dramas), eliminating these distinguishing factors also provides a high level
of consistency of ranges R and R across different sequences. If the ranges R
and R are consistent, the parameters of the detection system (e.g. the
threshold T) can first be optimized on a set of training sequences to
maximize the detection reliability, and then the system can be used to
detect shot boundaries in an arbitrary sequence without any human
supervision, while retaining a high detection reliability.

As will be shown in the following section, motion compensating features and
metrics can be found, capable of considerably reducing the influence of
motion on discontinuity values. However, the influence of strong and
abrupt lighting changes, induced by flashes or a camera directed to a light
source, cannot be reduced in this way. For instance, one could try working
only with chromatic color components, since the common lighting changes
can mostly be captured by luminance variations. But this is not an effective
solution in extreme cases, where all color components are changed. Strong
and abrupt lighting changes can result in a series of high discontinuity
values, which can be mistaken for the actual shot boundaries. In the
remainder of this chapter we define possible causes for high discontinuity
values within shots as extreme factors. These factors basically include strong
and abrupt lighting changes, as well as some extreme motion cases, which
cannot be captured effectively by motion compensating features and
metrics.

While the influence of extreme factors on discontinuity values cannot be
neutralized by choosing suitable features and metrics, it is possible to
neutralize such influences by embedding additional information in the shot-
boundary detector. For instance, the temporal patterns formed by
consecutive discontinuity values can be investigated for this purpose. Then,
the decision about the presence or absence of a shot boundary between
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frames k and k+I made by the detector is not only based on the comparison
of the computed discontinuity value z(k,k+!) and the threshold T, but also
based on the match between the pattern formed by consecutive
discontinuity values surrounding z(kk+l) and a known pattern that is
specific for a shot boundary. This is illustrated in Figure 2.3.

Pattern formed by
N consecutive values
z(k+i k+l+i), i=-N/2.N/2

Indication for

—> boundary
presence

Pattern
matching

Quality of
match

Defined temporal pattern '\
for a certain boundary type / .

Figure 2.3: Matching of the temporal pattern formed by N consecutive
discontinuity values and a temporal pattern characteristic for a shot boundary. The
quality of match between two patterns provides an indication for boundary
presence between frames k and k+1

Different types of shot boundaries need to be taken into account during the
detection process, where each of these types is characterized by its own
characteristic temporal pattern. We can distinguish abrupt boundaries, which
are the most common boundaries and occur between two consecutive
frames k and k+1, from gradual transitions, such as fades, wipes and
dissolves, which are spread over several frames.

Beside the information on temporal boundary patterns, the a priori
information describing global knowledge about the visual-content flow can
also be taken into account when detecting shot boundaries. An example of
such information is the dependence of the probability for a shot boundary
on the shot length. While being almost zero at the beginning of a shot, this
probability rises with increasing shot length and converges to “1”. In this
way, the information on shot lengths is also highly efficient in preventing
false detections due to extreme factors.

If we combine the usage of motion compensating features and metrics for

computing the discontinuity values with embedding the additional
information in the detector to reduce the influence of extreme factors on
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these values, we are thus likely to obtain highly reliable detection results.
The scheme of such a detection procedure is illustrated in Figure 2.4.

/

Shot-boundary detection \

. N Detector
Discontinuity
z (k " k+l ) no boundary
computation z(kk+1y T T(k)
boundary

1

Motion compensating A priori  Boundary
features and metrics  information patterns

Figure 2.4: A shot-boundary detector with improved detection performance
regarding a reduction of the false-detection rate

Compared to the detector in Figure 2.1, the threshold T does not remain
constant but has a new value at each frame k. This is the consequence of the
embedded additional information which regulates the detection process by
continuously adapting the threshold to the quality of the pattern match for
each new series of consecutive discontinuity values and the time elapsed
since the last detected shot boundary. The remaining issue is to find the
function T(k) providing the optimal detection performance. Statistical
detection theory provides means for solving this problem efficiently. Using
the statistical properties of discontinuity values and the additional
information embedded in the detector, we can compute the threshold
function T(k) such, that the average probability for detection mistakes is
minimized.

After reviewing existing approaches to shot-boundary detection in Section
2.2, we develop in Section 2.3 a statistical framework for shot-boundary
detection as shown in Figure 2.4, which addresses all the issues discussed
above. Due to the consistent ranges R and R, a high generality of functions
and parameters used is provided, so that our framework can operate
without human supervision and is suitable for implementation into fully
automated video-analysis systems. In Section 2.4 we apply the proposed
detection framework to abrupt shot boundaries and evaluate the detection
performance. Finally, a general discussion on the material presented in this
chapter can be found in Section 2.5.
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2.2 Previous work on shot-boundary detection

The problem of reliably detecting shot boundaries in a video has been the
subject of substantial research over the last decade. In this section we give a
concise overview of the relevant literature. The overview concentrates, on
the one hand, on the capability of features and metrics to reduce the motion
influence on discontinuity values. On the other hand, it investigates
existing approaches to shot-boundary detection, involving the threshold
specification, treatment of different boundary types and usage of additional
information to improve the detection performance.

2.2.1 Discontinuity values from features and metrics

Different methods exist for computing discontinuity values, employing
various features related to the visual content of a video. Characteristic
examples of features used are pixel values, histograms, edges and motion
smoothness. For each selected feature, a number of suitable metrics can be
applied. Good comparisons of features and metrics used for shot-boundary
detection with respect to the quality of the obtained discontinuity values
can be found in overview papers [Fur95], [Aha96], [Bor96] and [Lie99].

The simplest way of measuring the discontinuity between two frames is to
compute the mean absolute intensity change for all pixels of a frame
[Kik92]. We first define I(x,y) as the intensity of the pixel at coordinates
(x,y) and compute the absolute intensity change of that pixel between
frames k and k+[ as

Dk,k+l(x/y) =1, (x,y)-I,,,(x,y)| (2.2.1)

The values (2.2.1) are then summarized over all pixels of the frame with
dimensions X and Y, and averaged to give the discontinuity value, that is

z(k, k+1)= ﬁz Z D%, y) (222)

x=1y=1

A modification of this technique is only counting the pixels that change
considerably from one frame to another [Ots91]. Here, the absolute change
of the intensity I(x,y) is compared with the prespecified threshold T;, and is
only considerable if the measured absolute difference exceeds the
threshold, that is
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T ifi(xy) - L, (on)i>T

2.2.3)
0 else (

Dk,k+1(x'y) =<

An important problem of the two approaches presented above is the
sensitivity of discontinuity values (2.2.2) to camera and object motion. To
reduce the motion influence, a modification of the described techniques
was presented in [Zha93], where a 3x3 averaging filter was applied to
frames before performing the pixel comparison. Much higher motion
independence show the approaches based on motion compensation. There,
a block matching procedure is applied to find for each block b, (k) in frame k
a corresponding block b, , (k+1) in frame k+, such that it is most similar to
the block b; (k) according to a chosen criterion (difference formula) D, that
1S:

Dot ()= D(b;(k), by (k+D) =~ min  D(b,(k),b,,(k+D) @24

J= LN candidates

Here, Ny 1S the number of candidate blocks b; ;(k+1), considered in
the procedure to find the best match for a block b;(k). If k and k+! are
neighboring frames of the same shot, the values D, ,,, (i) can generally be
assumed low. This is because for a block b, (k) almost the identical block
b, ,(k+I)can be found due to a global constancy of the visual content

within a shot. This is not the case if frames k and k+! surround a shot
boundary, since, in general, the difference between corresponding blocks in
the two frames will be large due to a radical change in visual content across
a boundary. Thus, computing the discontinuity value z(kk+) as a function
of differences D, ,,,(i) is likely to provide a reliable base for detecting shot
boundaries.

An example of computing the discontinuity values based on the results of
block-matching procedure is given in [Sha95a). There, a frame k is divided

into Np. . =12 nonoverlapping blocks and differences D(bi (k), bi,j(k+l))

are computed by comparing pixel-intensity values within blocks. Then, the
obtained differences D, ,,, (i) are sorted and normalized between 0 and 1

(where 0 indicates a perfect match), giving the values d; ,,, (i) . These values
are multiplied with weighting factors ¢; and summarized over the entire
frame to give the discontinuity values, that is
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N Blocks

2k, k+1)= Y cidf (D) @25)
i=1

A popular alternative to pixel-based approaches is using histograms as
features. Consecutive frames within a shot containing similar global visual
material will show little difference in their histograms, compared to frames
on both sides of a shot boundary. Although it can be argued that frames
having completely different visual contents can still have similar
histograms, the probability of such a case is small. Since histograms ignore
spatial changes within a frame, histogram differences are considerably
more insensitive to object motion with a constant background than pixel-
wise comparisons are. However, a histogram difference remains sensitive
to camera motion, such as panning, tilting or zooming. If histograms are
used as features, the discontinuity value is obtained by bin-wise computing
the difference between frame histograms. Both grey-level and color
histograms are used in literature, and their differences are computed by a
number of metrics. A simple metric is the sum of absolute differences of
corresponding bins, with N, . being the total number of bins, that is

ins

N Bins

z(k,k+l)=ZIH,((]')—H,(#(]')I (2.2.6)

j=1
when comparing grey-level histograms and

N Bins

2k, k+1)= D 1HE ()= HE GYWHE ()= He () WHHE () = Hea ()]

j=1
227)
if color histograms are compared [Yeo95a]. In (2.2.6), H,(j) is the j-th bin
of the grey-value histogram belonging to frame k. In (2.2.7), H{(j), HE(j)
and H}(j) are the j-th bins of histograms of the R-, G- and B-color

component of the image k. Another popular metric is the so-called y*-test,
proposed in [Nag92] for grey-level histograms:

Nl H, (j)- Hy, ()P
z(k, k+1) = Z k) kf'(] ) (2.2.8)
j=1 H,.,(j)
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However, according to experimental results reported in [Zha93], the metric
(2.2.8) does not only enhance the discontinuities across a shot boundary,
but also the effects caused by camera/object motion. Therefore, the overall
detection performance of (2.2.8) is not necessarily better than that from
(2.2.6), whereas it does require more computational power.

A metric involving histograms in the HVC color space [Fur95] (Hue - color
type, Value — intensity, luminance, Chroma — saturation, the degree to
which color is present) exploits the advantage of the invariance of Hue
under different lighting conditions. This is useful in reducing the influence
of common (weak) lighting changes on discontinuity values. Such an
approach is proposed in [Arm93a], where only histograms of H and C
components are used. These one-dimensional histograms are combined
into a two-dimensional surface, serving as a feature. Based on this, the
discontinuity is computed as

X Y
Z(k/k + l) = ZZ { |5k,k+l(x’ y) |XAHII(’ x AChramzl } (2.29)

x=1y=1

where 6, ,,,(x,y) is the difference between the bins at coordinates (x,y) in
HC-surfaces of frames k and k+/, and A}, and A, are the resolutions

of Hue and Chroma components used to form the two-dimensional
histogram surface.

Also the histograms computed block-wise can be used for shot-boundary
detection, as shown in [Nag92]. There, both the images k and k+I are
divided into 16 blocks, histograms H, ; and H,,,; are computed for blocks

b.(k)and b,(k+I) and the x’-test is used to compare corresponding block
histograms. When computing the discontinuity as a sum of region-
histogram differences, 8 largest differences were discarded to efficiently
reduce the influence of motion and noise. An alternative to this approach
can be found in [Ued91], where first the number of blocks is increased to
48, and then the discontinuity value is computed as the total number of
blocks within a frame, for which the block-wise histogram difference
exceeds a prespecified threshold T, that is

z(k, k+1)= i D(b, (k), b, (k+1)) (2.2.10)
i=1

with
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. . 2
1 NB,.B(Hk,I.(])—HM,»(])) S
Hk,i ) 1 (2.2.11)

D(b;(k), b, (k +1))= ! ifN

Bins j=1
0 else

According to [Ots93], the approach from [Ued91] is much more sensitive to
abrupt boundaries than the one proposed in [Nag92]. However, since
emphasis is put on blocks, which change most from one frame to another,
the approach from [Ued91] also becomes highly sensitive to motion.

Another characteristic feature that proved to be useful in detecting shot
boundaries is edges. As described in [Mai95], first the overall motion
between frames is computed. Based on the motion information, two frames
are registered and the number and position of edges detected in both
frames are compared. The total difference is then expressed as the total
edge change percentage, i.e. the percentage of edges that enter and exit
from one frame to another. Due to registration of frames prior to edge
comparison, this feature is robust against motion. However, the
computational complexity of computing the discontinuity values is also
high. Let p, be the percentage of edge pixels in frame k, for which the
distance to the closest edge pixel in frame k+! is larger than the prespecified
threshold 7. In the same way, let p,,, be the percentage of edge pixels in
frame k+l, for which the distance to the closest edge pixel in frame k is
larger than the prespecified threshold T,. Then, the discontinuity value
between these frames is computed as

z(k, k+1) = max(p,, Pr.1) (2.2.12)

Finally, we discuss the computation of the discontinuity value z(kk+I)
using the analysis of the motion field measured between two frames. An
example for this is the approach proposed in [Aku92], where the
discontinuity value z(kk+1) between two consecutive frames is computed
as the inverse of motion smoothness. For this purpose, we first compute all
motion vectors 0(b; (k), b, , (k + 1)) between frames k and k+1 and then check

if they are significant by comparing their magnitude with a prespecified
threshold T;:

1 if lo(b,(k),b; ,,(k+1))| >T,
w; (k)= ’ (2.2.13a)

0 otherwise
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Then, we also take into consideration the frame k+2 and check if a motion
vector between frames k and k+1 significantly differs from the related
motion vector measured between frames k+1 and k+2. This is done by
comparing their absolute difference with a prespecified threshold T,:

1 if 15(8;(K),b, ,(k+ 1)) = 5(b;(k + 1),b,

im

(k+2))I>T,
(2.2.13b)

w; ,(k) = <

0 otherwise

The sum of values (2.2.13a) for all blocks b; (k) is the number of significant
motion vectors between frames k and k+1, and can be understood as a
measure for object/camera velocity. Similarly, the sum of values (2.2.13b) is
the number of motion vectors between frames k and k+1 that are
“significantly” different from their corresponding vectors between frames
k+1 and k+2, and can be understood as the measure for motion continuity
along three consecutive frames of a sequence. Using these two sums, we
can now compute the motion smoothness at frame k as

N locks

Z w; (k)

Mk)=-+L—— 2.2.14)

N Bioks

2 w2 (k)

The more motion vectors change accross consecutive frames, the lower is
the motion smoothness (2.2.14). Finally, the discontinuity value can be
obtained as an inverse of (2.2.14), that is

N piocks

DI
_ =l
z(k,k+1)= ME) = N (2.2.15)
wi,l(k)

i=1
2.2.2  Detection approaches
Threshold specification

The problem of choosing the right threshold for evaluating the computed
discontinuity values has not been addressed extensively in literature. Most
authors work with heuristically chosen global thresholds [Nag91], [Ots91],
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[Arm93a]. An alternative is given in [Zha93], where the authors first
measure the statistical distribution of discontinuity values within a shot.
Then they model the obtained distribution by a Gaussian function with
parameters u and o, and compute the threshold value as

T=u+ro (2.2.16)

where r is the parameter related to the prespecified tolerated probability for
false detections. For instance, when r=3, the probability of having falsely
detected shot boundaries is 0.1%. The specification of the parameter r can
only explicitly control the rate of false detections. The rate of missed
detections is implicit and cannot be regulated, since the distribution of
discontinuity values measured on boundaries is not taken into account.

2500 T T T T T T
Abrupt shot
boundary
= 2000 .
t Abrupt shot
X boundary
N
D
= iscol adaptive threshold i
> T(k
< (k)
s Abrupt shot
-f": h boundary
§ 1000 /,\ global threshold T
A \/ \
N \
500 | I
400 420 440 460 4080 50 52¢

Frame index &

Figure 2.5: Improved detection performance when using an adaptive threshold
function T(k) instead of a global threshold T.
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However, even if they can be specified in a non-heuristic way, as shown by
(2.2.16), the crucial problem related to the global threshold still remains, as
illustrated in Figure 2.5. If the prespecified global threshold is too low,
many false detections will appear in the shot, where high discontinuity
values are caused by extreme factors, as defined in Section 2.1. If the
threshold is made higher to avoid falsely detected boundaries, then the
high discontinuity value corresponding to the shot boundary close to frame
500 will not be detected.

A much better alternative is to work with adaptive thresholds, i.e. with
thresholds computed locally. The improved detection performance that
results from using adaptive threshold function T(k) instead of the global
threshold T is also illustrated in Figure 2.5. If the value of the function T(k)
is computed at each frame k based on the extra information embedded in
the detector (Figure 2.4), high discontinuity values computed within shots
can be distinguished from those computed at shot boundaries. Three
detection approaches applying adaptive thresholds can be found in recent
literature.

A method for detecting abrupt shot boundaries using an adaptive
threshold is presented in [Ye095a]. There, the values T(k) are computed
using the information about the temporal pattern that is characteristic for
abrupt boundaries. The authors compute the discontinuity values with the
interframe distance /[=1. As shown in Figure 2.6, the N last computed
consecutive discontinuity values are considered, forming a sliding window.
The presence of a shot boundary is checked at each window position, in the
middle of the window, according to the following criterion:

if Zkk+1)= rr%]axN(vZ(k+ i,k+1+0)) A 2k k+1)2a 2,

272 (2.217)
= abrupt shot boundary

In other words, an abrupt shot boundary is detected between frames k and
k+1 if the discontinuity value z(kk+1) is the window maximum and «
times larger than the second largest discontinuity value z, within the
window. The parameter o can be understood as the shape parameter of the
boundary pattern. This pattern is characterized by an isolated sharp peak in
a series of discontinuity values. Applying (2.2.17) to such a series at each
position of a sliding window is nothing else than matching the ideal pattern
shape and the actual behavior of discontinuity values found within the
window. The major weakness of this approach is the heuristically chosen
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and fixed parameter a . Because a is fixed, the detection procedure is too
coarse and too inflexible, and because it is chosen heuristically, one cannot
make statements about the scope of its validity.

Sliding window Sliding
direction
—>
@ hd @- >
z(k—ﬁ,kwtl—iv—) z(k,k+1) z(k+£,k+1+£)
2 2 2 2

T

Last computed
discontinuity value

Figure 2.6: Illustration of a sliding window approach from [Yeo95a]

In order to make the threshold specification in [Yeo95a] less heuristic, a
detection approach was proposed in [Han97a] and [Han97b], which
combines the sliding window methodology with the Gaussian distribution
of discontinuity values proposed in [Zha93]. Instead of choosing the form
parameter a heuristically, this parameter is determined indirectly, based
on the prespecified tolerable probability for falsely detected boundaries.
Zhang et al. observe in [Zha93] that the discontinuity values (there
obtained by comparing color code histograms) can be regarded as a
realization of an uncorrelated Gaussian process if no shot change or motion
is present. This observation is extended in [Han97b] to any other temporal
segment with a uniform content development, independent of the present
amount of action. Within a single shot, the series of discontinuity values
can then be modeled either as a single uncorrelated Gaussian process or as
a temporal concatenation of multiple uncorrelated Gaussian processes.
Shots themselves are separated by individual large-valued outliers, or
peaks. Based on this a statistical model for the discontinuity values is
defined that has the following properties:

» Each discontinuity value measured along a sequence can be assigned
one state of a two-state model: the state “S” when it is within a
Gaussian shot segment, and the state “D” when it is computed at shot
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boundaries. A state “S” can be followed by another state “S” or by a
state “D”. State “D” is always followed by state “S”;

e FEach state “S” has three parameters, determining the process that
generates the discontinuity value z(kk+1) in that state, namely: the
duration of the state L, the mean and the variance of the corresponding
Gaussian process;

e State “D” has duration 1.

Figure 2.7 shows the defined statistical model of a fictive series of
discontinuity values, with each Gaussian segment “S” represented by its
mean value. The detection procedure is activated only if the discontinuity
value in the middle of the sliding window is the window maximum. As
shown in Figure 2.8a, it is assumed that the series of discontinuity values
captured by the window and lying at each side of the window maximum
can be described by one and the same Gaussian probability density
function. We define these functions as p,,(z, k) and p,,,(z, k). The new

threshold value T(k), illustrated in Figure 2.8b together with the defined
Gaussian distributions, is computed as the solution of the following
integral equation:

P=

N | =

J‘(Pzeﬂ (2, k) + Prign (2, k))dZ (2218)
T(k)

Here, P is the given tolerable probability for falsely detected boundaries. As
in [Zha93], the rate of missed detections cannot be regulated, since the
distribution of discontinuity values measured on boundaries is not taken
into account. Note that the form parameter & is “hidden” in the computed
threshold value T(k).

One way in which the additional information embedded in the detector can
influence the process of shot-boundary detection much more effectively is
using the statistical detection theory. One of the first applications of the
statistical detection theory to signal analysis can be traced back to the work
of Curran [Cur65]. A characteristic example of recent works in this area can
be found in [Vas98]. There, the proposed statistical method for detecting
abrupt shot boundaries includes the a priori information based on shot-
length distributions, which can be assumed consistent for a wide range of
sequences. However, this a priori information is the only type of
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information embedded in the detector, and is, by itself not sufficient to
prevent false detections caused by extreme factors. A more robust statistical
framework for shot-boundary detection is presented in Section 2.3 of this
chapter.

Sliding direction
z D | sliding] ns
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Figure 2.7: Temporal segment structure of the series of consecutive discontinuity
values computed along a sequence
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Figure 2.8: Moment situation within a sliding window. (a) A “D” state in the
middle of the window surrounded by unbroken segments of “S” states, each of
them described by one and the same Gaussian distribution. (b) The threshold T(k)
together with Gaussian probability density functions of discontinuity values on
both sides of the window maximum
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Different types of shot boundaries

Different boundary types were considered in most of the approaches
presented in recent literature, although the emphasis was mostly put on the
detection of abrupt boundaries. This preference can be explained by the
fact that there is no strictly defined behavior for discontinuity values
around and within gradual transitions. While the abrupt boundaries are
always represented by an isolated high discontinuity value, the behavior of
these values around and within a gradual transition is not unique, not even
for one and the same type of transition. In the following we will present
some recent approaches to detecting non-abrupt boundaries.

One of the first attempts for detecting non-abrupt boundaries can be found
in [Zha93], where a so-called twin-comparison approach is described. The
method requires two thresholds, a higher one, 7, for detecting abrupt
boundaries, and a lower one, 7}, for detecting gradual transitions. First the
threshold 7, is used to detect high discontinuity values corresponding to
abrupt boundaries, and then the threshold 7; is applied to the rest of the
discontinuity values. If a discontinuity value is higher than 7, it is
considered to be the start of a gradual transition. At that point, the
summation of consecutive discontinuity values starts and goes on until the
cumulative sum exceeds the threshold 7,. Then, the end of the gradual
transition is set at the last discontinuity value included in the sum.

In [Ham94], a model-driven approach to shot-boundary detection can be
found. There, different types of shot boundaries are considered to be
editing effects, and are modeled based on the video production process.
Especially for dissolves and fades, different chromatic scaling models are
defined. Based on these models feature detectors are designed and used in
a feature-based classification approach to segment the video. The described
approach takes into account all types of shot boundaries defined by the
models.

One further method for detecting gradual transitions can be found in
[Men95], which investigates the temporal behavior of the variance of the
frame pixels. Since within a dissolve different visual material is mixed, it
can be assumed that frames within a dissolve loose their sharpness. This
can be observed in the temporal behavior of the frame variance, which
starts to decrease at the beginning of the transition, reaches its minimum in
the middle of the transition and then starts to increase again. A
characteristic parabolic pattern of variance behavior is reported. The
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detection of the transition is then reduced to detecting the parabolic curve
pattern in a series of measured variances. In order to be recognized as a
dissolve, the potential pattern has to have a width and the depth that
exceeds the prespecified thresholds.

In [Son98], a chromatic video edit model for gradual transitions is built
based on the assumption that discontinuity values belonging to such a
transition form a pattern consisting of two piece-wise linear functions of
time; one decreasing and one increasing. Such linearity does not apply
outside the transition area. Therefore, the authors search for close-to-linear
segments in the series of discontinuity values by investigating the first and
the second derivative of the slope in time. A close-to-linear segment is
found if the second derivative is less than a prespecified percentage of the
first derivative.

Although each of the described models is reported to perform well in most
cases, strong assumptions are made about the behavior of discontinuity
values within a transition. Furthermore, several (threshold) parameters
need to be set heuristically. The fact that patterns which are formed by
consecutive discontinuity values and correspond to a gradual transition can
strongly vary over different sequences still makes the detection of gradual
transitions an open research issue [Lie99].

2.3 A robust statistical framework
for shot-boundary detection

In this section we develop the statistical framework for shot-boundary
detection, which is in accordance to the scheme in Figure 2.4. In contrast to
detection methodologies we discussed earlier, our statistical framework
includes all aspects discussed until now relevant for maximum detection
performance:

o In order to provide a high level of discrimination between ranges R
and R, we compute the discontinuity values using motion
compensating features and metrics.

e We use both the information on temporal boundary patterns and on
shot-length distributions in the detector to compute the adaptive
threshold T(k). Here we apply the sliding window methodology and
compute the threshold value at each window position.
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* We apply statistical detection theory to build a robust boundary-
detection framework. This theory provides means to effectively embed
the extra information from the previous item and compute the
threshold value T(k) using the criterion that the average probability for
detection mistakes must be minimized.

In terms of the statistical detection theory, shot-boundary detection can be
formulated as the problem of deciding between the two hypotheses:

® S-boundary present between frames k and k+!
e S§-noboundary present between frames k and k+1

In order to take into account the information about temporal boundary
patterns, we consider the N last computed consecutive discontinuity values
together, in this way forming a sliding window. We define the vector z(k)
as

N N
B={ztk-ik+1-1), i=——r,..,— 3.
z(k) <z( tL,k+1-1), 1 5 2> (2.3.1)

We also define the likelihood functions p(zlS) and p(zl S), which indicate at

which degree an arbitrary series of discontinuity values z(k), defined by
(2.3.1), belongs to series not containing any shot boundary and those
containing a shot boundary, respectively, that is

p(z(k)1S) = p(z(k—%,k+l—%),..,z(k+-g]—,k+l+%)‘Sj

and (2.3.2)

= N N ( N N) ~)
- k-2 A = =
p(z(k)1S) p(z( 5 S+l 2), ,zl k+ 5 Jk+ 1+ 5 \S

In terms of statistical detection theory, the defined likelihood functions can
be considered analogous to previously used ranges of discontinuity values

R and R. Consequently, the requirements for a good discrimination
between ranges can now be transferred to the likelihood functions p(zlS)

and p(zlS). Further, we define the a priori probability function P(S,k), which
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defines the probability that there is a boundary between frames k and k+1
based on the number of frames elapsed since the last detected shot
boundary. As the criterion for deriving the rule for deciding between the
two hypotheses, we choose minimizing the average probability for
detection mistakes, given as

P,(k)=(1- P(5,k)) j p(g(k) IS)dz(k)+ P(S, k) j p(z(k) 1S)dz(k) @33
Zs Z3

Minimization of (2.3.3) provides the following decision rule at the frame k:

ky1s) § 1-
P (g( ) _) N 1- P(S, k) (2.3.4)
ozk)1S) s PGSk
which can be transformed into
s
f(z(k—ﬁ,k+Z—E),..,z(k+ﬁ,k+l+y—)) > T(k) (2.35)
2 2 2 2 5

We call Z; and Z; the discontinuity-value domains belonging to the two
hypotheses. The domain Z; contains all vectors z(k), for which the
hypothesis S is chosen in (2.3.5), and vice versa. However, the N-
dimensional likelihood functions (2.3.2) are difficult to compute. Therefore,

we simplify the shot-boundary detector (2.3.4) in several respects, under
the condition that the detection performance is not degraded:

e We keep the sliding-window concept, but use only the scalar likelihood
functions p(zIS) and p(z1S) evaluated for the discontinuity value
z(k,k+1) lying in the middle of the window.

o Instead of capturing the dependencies between elements of the vector
z(k) via their mutual likelihood functions p(zlS) and p(zl S), we pursue

the following procedure. We first investigate the temporal pattern
belonging to a certain boundary type. Each of these patterns is
characterized by specific relationships among discontinuity values. A
typical example is an isolated peak of an abrupt shot boundary, which
can be fully captured by finding the ratio between the maximal and the
second largest value in a discontinuity value series. The higher this

30




ratio, the more probable is the presence of an abrupt shot boundary at
the place of the maximal discontinuity value. The ratio between the
maximal and the second largest discontinuity value can now be defined
as pattern-matching indication (PMI), i.e. an indication that the pattern
formed by consecutive discontinuity values is similar to the one that is
characteristic for a certain boundary type, and therefore also as an
indication of having a boundary of a certain type between frames k and
k+l. Thus the PMI can be defined for any arbitrary type of shot
boundary by the following generalized function:

vk k+1)= F(Z(k—ﬁ,k-f-l—ﬁ),..,Z(k+§,k +I+N—D (2.3.6)
2 2 2 2
At last, we define the conditional probability function
Pp(w(k,k+1)1S), which is the probability of having a shot boundary
between frames k and k+/, based on matching of temporal patterns. It is
computed at each window position, and serves as the modifier for the a
priori probability P(S k). The lower the indication w(k,k+1), the less
likely is the presence of a shot boundary between frames and the lower
are the values of Py, (k,k+1)1S). In such cases the a priori probability
is modified downwards. This modification becomes crucial if the a
priori probability and the likelihood functions are in favor of the
hypothesis S, whereby S is the proper hypothesis. In this way,
boundaries detected falsely due to extreme factors can be eliminated.
On the other hand, large values v (k, k+[) indicate a similarity between
the pattern formed by the elements of the vector z(k) and the pattern of
a shot boundary. In such cases the probability that high discontinuity
values are caused by extreme factors is small and the correction of the a

priori probability by P, (v (k,k+1)1S) is not necessary.

On the basis of the simplifications described above, the general vector
detection rule (2.3.4) has been now reduced to the scalar rule (2.3.7):

p(z(k, k+1)1S)
p(z(k, k+1) |§)

1= P(S, k)P, (w(k, k+1)1S)
P(S, k)P, (w (k, k+1)1S)

S
<
N (2.3.7)
S

Since a different function (2.3.6) is required for each boundary type, we
cannot use one generalized detector (2.3.4) for detecting all shot
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boundaries, but need separate scalar detectors (2.3.7) operating in parallel,
each being used for one specific type of shot boundary.

In Section 2.4 we develop the detector (2.3.7) for abrupt shot boundaries. We
start with the computation of discontinuity values based on suitable
features and metrics. This is followed by the definition of the a priori
probability function P(S,k) and by finding the scalar likelihood functions

p(z1S) and p(zIS). At last, PMI function w(k,k+I) and the conditional
probability function Pp,,(v (k,k+1)1S) are defined.

2.4 Detector for abrupt shot boundaries

Abrupt shot boundaries take place between two consecutive frames of a
sequence. For this reason it is handy to work with discontinuity values,
computed with interframe distance /=1.

2.4.1 Features and metrics

In order to maximize the discrimination of likelihood functions p(zIS) and

p(z1S) we compute the discontinuity values by compensating the motion

between video frames using a block matching procedure, described in
Section 2.2.

Similarly as in [Sha95a], we divide frame k into Ny, nonoverlapping
blocks b; (k) and search for their corresponding blocks b; , (k+1) in frame

k+1. The block-matching criterion used here is the comparison of average
luminance values of blocks b;(k) and b, , (k+1), thatis

D(b;(k), b, ; (k+1)) =

Yooe (B:6)) = Youe (b Gk + D) 238

After the corresponding blocks b,,(k+1) have been found using the

formula (2.2.4), we obtain the discontinuity value z(kk+1) by summarizing
the differences between blocks b;(k) and b, , (k+1) in view of block-wise

average values of all three color components Y,,,, U,, and V,,, thatis
1 Nopisaes
2k, k+1)= > Db (k). b, (k+1)) 239)
Blocks  i=1
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with

D(b; (k), by ,, (k +1)) =

Ve (B:(0)) = Y, (B (K + 1))\ +
U e (B; (k)= U (b, (K + 1))} + (23.10)
Vi (0:(6) = Ve (b + 1))\

24.2 A priori probability function

Studies by Salt [Sal73] and Coll [Col76], involving statistical measurements
of shot lengths for a large number of motion pictures, have shown that the
distribution of shot lengths for all the films considered matches the Poisson
function well [Pap84]. Therefore, we integrate the Poisson function to
obtain the a priori probability for a shot boundary between frames k and
k+1, that is

k) w

P(S,k)= Z B pn (2.3.11)

|
w=0 w:

The parameter u represents the average shot length of a video sequence, w
is the frame counter, which is reset each time a shot boundary is detected,
and A(k) is the current shot length at the frame k. Although in [Col76] and
[Sal73] the Poisson function was obtained for motion pictures, we assume
that this conclusion can be extended further to all other types of video
programs. However, to compensate for possible variations in program
characteristics, we adapt the parameter u to different program types
(movies, documentaries, music video clips, etc.) and sub-types (e.g. an
action movie vs. drama). The adjustment of the parameter y is easy and can
be performed automatically, if the program type is known at the input into

the video analysis system. In our experiments we kept u constant at the
value 70.
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2.4.3 Scalar likelihood functions

We now perform a parametric estimation of scalar likelihood functions
p(zIS) and p(zlg) , to be used in the detection rule (2.3.6). In order to get an
idea about the most suitable analytical functions used for such estimation,
the normalized distributions of discontinuity values z(kk+1) computed

within shots and at shot boundaries are obtained first, using several
representative test sequences.

A normalized distribution of discontinuity values computed within shots is
shown in Figure 2.9a. The shape of the distribution indicates that a good
analytic estimate for this distribution can be found in the family of
functions given as

p(2IS) = hyzM e (23.12)

The most suitable parameter combination (hy,h,,h;) is then found

experimentally, such that the rate of detection mistakes for the test
sequences is minimized. The optimal parameter triplet is found as (1.3, 4, -
2). The corresponding analytical function, serving as parametric estimate of

the likelihood function p(zlg) , is also shown in Figure 2.9a.
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Figure 2.9: (a) The normalized distribution of values z(k,k+1) computed within
shots (discrete bins) and its analytic estimate (continuous curve), (b) normalized
distribution of values z(k,k+1) computed at shot boundaries (discrete bins) and its
analytic estimate (continuous curve)
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The analog procedure is applied to obtain the parametric estimate of the
likelihood function p(z!S). Figure 2.9b shows the normalized distribution
of discontinuity values z(kk+1), computed at shot boundaries, for which

the same set of test sequences as above is used. Judging by the form of the
distribution, a Gaussian function

Yzuy
p(zlS) = 12 e 2( 4 ) (2.3.13)

can be taken as a good analytic estimate of it. Again we found the optimal
values for the pair of parameters (u,0) by experimentally minimizing the
rate of detection mistakes for the set of test sequences. This pair of values

was obtained as (42, 10), resulting in the Gaussian function presented in
Figure 2.9b.

2(k, k+1)

Figure 2.10: Abrupt boundary pattern with characteristic parameters

2.44 PMI and the conditional probability functions

Based on the discussion in the previous sections, we can state that the
presence of an isolated sharp peak belonging to an abrupt shot boundary in
the middle of the sliding window can efficiently be described by the ratio of
the discontinuity value z(kk+1) in the middle of the window and the
second largest discontinuity value z,, within that window. A typical peak

of an abrupt shot boundary with values z(kk+1) and z,, is illustrated in
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Figure 2.10. The corresponding PMI function to be used in the detector
(2.3.7) is now given as

wk,k+1)= 2k, k+1) 23.14)

sm

The value of the PMI function (2.3.14) serves as the argument of the
conditional probability function Ppa,,(w(k,k +1)15), defined as

7 1 -
Pk, k+1)15) = 1 [1 + €r/{MD (23.15)
2 O of
with
2%
erf(x)=— Ie dt (2.3.16)
T 0

The parameters d and o,, are the “delay” from the origin and the

spreading factor determining the steepness of the middle curve segment,
respectively. The optimal parameter combination (d,o,,)is found

experimentally such that the detection performance for the test sequences is
optimized. The resulting optimal pair of parameters was found as (13, 5).
The conditional probability (2.3.15) is illustrated in Figure 2.11.

4 Poy(w ik, k+1)15)

vik,k+1)

Figure 2.11: The conditional probability function P, (v (k,k+1)1S)
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24.5 Experimental validation

Achieving a high detection performance was an important issue when we
developed the statistical detection framework. To test the performance of
the detector (2.3.7) for abrupt boundaries, we used 5 sequences that belong
to 2 different categories of programs, movies and documentaries, and that
were not previously employed for training the detection procedure. The
results presented in Table 2.1 illustrate a high detection rate and no falsely
detected boundaries. Furthermore, the obtained good results remain
consistent over all sequences.

Test material Length Total Detected Falsely
in frames boundaries detected
boundaries
Documentary 1 700 3 3 0
Documentary 2 800 5 5 0
Documentary 3 900 6 6 0
Movie 1 10590 90 90 0
Movie 2 17400 95 94 0
Total 30390 199 198 0

Table 2.1: Detection results for abrupt shot boundaries

2.5 Discussion

Most existing approaches for shot boundary detection are based on
explicitly given thresholds or relevant threshold parameters, which directly
determine the detection performance. Due to such a direct mutual
dependence, the detection performance is highly sensitive to specified
parameter values. For instance, a threshold set to 2.3 will interpret a
discontinuity value 2.31 as a shot boundary and a value 2.29 as a regular
value within a shot. Beside the sensitivity, the problem of specifying such a
precise threshold remains. And, consequently, the scope of the validity of
such a precise threshold is highly questionable.

Manual parameter specification clearly cannot be avoided in any of the
detection approaches. However, the influence of these parameters on the
detection performance can be diminished and the detection can be made
more robust if the parameters are used at lower levels of the detection
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framework, so only for the purpose of globally defining the framework
components. Each component then provides the detector with nothing
more than an indication of the presence of a boundary based on a specific
criterion. The decision making about the presence of a shot boundary is
then left solely to the detector, where all the indications coming from
different sources are evaluated and combined. In this way, the importance
of a single manually specified parameter is not as great as when that
parameter is directly a threshold, and can therefore be assumed valid in a
considerably broader scope of sequences. In the statistical detection
framework presented in this chapter, this is the case with parameter sets
(hy,hy,hy) and (u,0), which are used to define the likelihood functions

(2.3.12) and (2.3.13), as well as with parameters d and o,  used to
formulate the conditional probability function (2.3.15).

The only parameter which needs to be adjusted depending on the type of
sequence is p, which is used in the formula (2.3.11) to define the a priori

probability. However, setting the value for u is easy, since it determines

the average shot length characteristic for a certain program type. For
instance, the p value for movies can be set to a value within a range 80-
100, and for music TV clips to 30-40. The adjustment of the u value can be
performed fully automatically if the program type information is available
in the shot-boundary detection system. An example is a video analysis
system, as illustrated in Figure 1.2, which operates directly on DVB
streams. Here, each transmitted program compliant to DVB standard also
contains a header, which — among other data — contains the program type
(movie, documentary, music TV clip, etc.). Therefore, i can be set easily by
means of a simple look-up table.

Since the parameters used in our framework can either be assumed
generally valid or be adjusted automatically, no human supervision is
required during the detection procedure. At the same time, since the
parameters are optimized for a general case, similar high detection
performance can be expected for any input sequence. Both of these aspects
make the developed framework suitable for an implementation in a fully
automated sequence analysis system. The facts that the detection method
presented in this chapter can operate on a wide range of video sequences
without human supervision, and keep the constant high detection quality
for each of them, are the major advantages the proposed detection
framework has over the methods from recent literature.
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Chapter 3

Automatically Abstracting
Video using Key Frames

3.1 Introduction

A structured collection of selected video frames, or key frames, is a compact
representation of a video sequence and is useful for various applications on
a video. For instance, it can provide a quick overview of the video-database
content, enable access to shots, episodes and entire programs in video-
browsing and retrieval systems and be used for making a commercial for a
video. Furthermore, a video index may be constructed based on visual
features of key frames, and queries by example may be directed at key
frames using image-retrieval techniques [Zha97a]. Also the higher-level
video processing and analysis steps involving comparisons of shots can
benefit from visual features captured in key frames [Yeu95a], [Yeu97],
[Han99b]. To enable these applications, key frames can be extracted in
various fashions, such as

e Extracting the most memorable video frames: It is in human nature to
remember some most memorable segments of a video, e.g. a zoom of an
actor in a funny pose, a slow camera pan along a beautiful landscape or
an impressive action scene. A number of key frames can be extracted to
represent each of these segments.

e Summarizing the visual content of a video: The visual content of a
video can be “compressed” by first collecting fragments showing all of
its relevant elements, such as landscapes, objects, persons, situations,
etc., and by then searching for a limited number of frames to represent
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each of these elements. An alternative summarizing approach is to
investigate the story flow of a video sequence and to represent each
successive logical segment (event, episode) by suitable frames. Then, by
concatenating these frames chronologically, a storyboard can be obtained
giving a compact video overview [Pen94a].

Key frames can be extracted manually or automatically. Both possibilities
are illustrated in Figure 3.1. If key frames are extracted manually, they
comply with human cognition, that is, human understanding of a video
content and human perception of representativeness and technical quality
of a frame. For instance, each key frame can be extracted based on the role
the persons and objects captured therein play in the context of the target
application. From several candidate frames, the one being most
representative (e.g. taken under the best camera angle) is chosen.
Furthermore, it is expected that no blurred or “dark” frames are extracted,
or those with coding artifacts, interlacing effects, etc.

Cognition domain (human)

Manual
key-frame
extraction

Cognition-based §
content analysis §

"""""" E Mapping cognition
Retrieval [ . onto system?
task | [ v

Algorithms for
audiovisual
content analysis

Automated |
key-frame §
extraction

Feature domain (system)

Figure 3.1: Manual vs. automated key-frame extraction

In order to develop feature-based algorithms for automatically extracting
key frames that have the same quality as those extracted manually, we
must map the extraction criteria complying with human cognition onto the
machine criteria. However, such mapping is highly problematic, not only
technically (Chapter 1), but also due to the missing ground truth for the key-
frame extraction.
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If several users manually extract key frames from one and the same video
and for the same target application, it can realistically be assumed that each
of the obtained sets will be unique, concerning both the total number of
frames contained therein and the specific frames extracted. One reason for
this is the subjectivity of human perception of a video content. Especially
when choosing the most memorable video segments and extracting the
corresponding key frames are concerned, the dispersion among extraction
results obtained by different users will be high [Paa%97]. However, even if
there is a consensus among users about which segments should be
represented in the visual abstract, again different key-frame sets can be
expected. A trivial example is a stationary shot showing an anchorperson
in a news program. Such a shot can equally well be represented by any of
its frames.

Based on the discussion above we conclude that automatically extracting
key frames for the purpose of capturing the most memorable moments of a
video sequence is a difficult problem, mainly due to the subjectivity of the
definition what is memorable. Compared to this, the role of subjectivity in
extracting key frames for making a visual summary of a video is
significantly smaller. This can be explained by the fact that such a summary
ideally contains all relevant visual-content elements (faces, objects,
landscapes, situations, etc.) and not a subjective selection of these elements.
In this way, we understand the key-frame based video summary as a unity
of all possible subjective key-frame selections. This makes the extraction of
“summarizing” key frames easier to automate. The only aspect which
remains subjective and therefore difficult to take into account by
automation is to choose a representative frame out of several equally
acceptable candidate frames. However, as illustrated in the example that
involves a stationary anchorperson shot, selecting any of the candidate
frames does not considerably influence the quality of the resulting key-
frame set. For this reason, instead of considering the possibility of selecting
any frame out of equally acceptable candidates as a problem for
automation, we hold that it is an additional degree of freedom in the
automation of the key-frame extraction procedure.

We now define the objective of this chapter so as to provide methods for
automatically extracting key frames which summarize the visual content of
a video. Since the complex extraction criteria related to human cognition
are difficult to map onto the system level, we circumvent this mapping by
applying a practical extraction methodology which is based on reducing
the visual-content redundancy among video frames. In the following, we
define and discuss three different groups of key-frame extraction
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techniques belonging to this methodology: sequential extraction in a local
context (SELC), sequential extraction in a global context (SEGC) and non-
sequential extraction (NSE).

A typical video can be seen as a concatenation of frame series, each
characterized by a high visual-content redundancy. These frame series can
be entire video shots or shot segments. Then, the redundancy of the visual
content found in such series can be reduced by representing each of them
by one key frame. Taking again as an example a stationary shot showing an
anchorperson in a news program, the frames of such a shot are almost
identical and can be compressed to a single frame. Applied to the entire
video sequence, key frames can then be seen as its (non)equally distributed
sample frames [Pen94a]. This we call sequential extraction in a local context
(SELCQ).

Since a SELC technique extracts key frames only in the local context, similar
key frames may be extracted from different (remote) sequence fragments,
which results in a redundancy within the obtained key-frame set. This
indicates that by using some alternative techniques one can further reduce
the number of extracted key frames while still keeping all the relevant
visual information of a sequence. One of possibilities is to modify SELC
approaches by taking into account all previously extracted key frames each
time a new frame is considered. Then, a new key frame is extracted only if
it is considerably different from all other already extracted key frames. We
call such a technique sequential extraction in a global context (SEGC). Another
alternative is a non-sequential extraction (NSE), where all frames of a
sequence are taken and grouped together, based on the similarity of their
visual content. The key-frame set is then obtained by collecting
representatives of each of the groups.

If concatenated, the key frames obtained by means of a SELC technique
represent a “red line” through the story of a video and closely provide a
storyboard. However, for some applications involving video content, having
a storyboard of that video is not required. This is the case with key-frame
based video queries in standard image retrieval tools. In such applications,
the redundancy among key frames makes the query database too large,
slows down the interaction process and puts larger demands on storage
space for keeping the key frames than actually necessary. In these cases,
SEGC or NSE techniques are more suitable. While SELC and SEGC
techniques allow for on-the-fly (on-line) key-frame extraction and are
computationally less expensive than the NSE techniques, the NSE
techniques consider the key-frame extraction as a postprocessing step and

42



mostly involve complex clustering procedures. However, a higher
complexity of NSE techniques is compensated by the fact that they are
more sophisticated and, therefore, provide a higher representativity of key
frames while keeping the number of key frames minimal.

After a review of existing approaches to automated key-frame extraction in
Section 3.2, we present in Sections 3.3 and 3.4 two novel extraction
methods. The first method belongs to the SELC group of approaches and
aims at providing a good video summary, also including its storyboard,
while keeping the total number of extracted key frames for the entire
sequence close to the prespecified maximum. This controllability is, on the
one hand, an important practical issue, regarding the available storage
space and the interaction speed with a video database, but, one the other
hand, it also means an additional constraint that needs to be taken into
account during the key-frame extraction procedure. In contrast to the
method in Section 3.3, the major objective of the method presented in
Section 3.4 is minimizing the redundancy among video frames and
providing a set of key frames which is similar to the one based on human
cognition for a given video sequence. We can explain this objective with the
example of a simple dialog sequence, where stationary shots of each of the
two characters participating in a dialog are alternated. Since a user would
summarize such a sequence by taking only two frames, one for each of the
characters, this should be obtained automatically as well. The approach in
Section 3.4 belongs to the NSE group; it is based on cluster validity analysis
and is designed to work without any human supervision. A discussion to
this chapter can be found in Section 3.5.

3.2 Previous work on key-frame extraction

A number of methods for automating the key-frame extraction procedure
can be found in recent literature. As will be shown in this section, some of
the methods are based on the criterion of reducing the visual-content
redundancy among consecutive frames, as defined above. However, some

characteristic key-frame extraction methods based on other criteria will be
described as well.

A first attempt to automate key-frame extraction was done by choosing as a
key frame the frame appearing after each detected shot boundary [Sha95b].
However, while one key frame is sufficient for stationary shots, in dynamic
sequences it does not provide an acceptable representation of the visual
content. Therefore, methods were needed to extract key frames that are in
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agreement with the visual-content variations along a video sequence. One
of the first key-frame extraction approaches developed in view of this
objective is presented in [Zha95a], with all details given in [Zha97b]. Key
frames are extracted in a SELC fashion separately for each shot. The first
frame of a shot is always chosen as a key frame. Then, similar methodology
is applied as for detecting shot boundaries. The discontinuity value

z(F, k) is computed between the current frame k of a sequence and the last

extracted key frame F, using color histograms as spatial features (Chapter

last
2). If this discontinuity value exceeds a given threshold T, the current frame
is selected as a new key frame, that is

Step1: F,

ast :1

Step2: Vke[2,S] if z(F, 621

k)>T=F, =k

ast 7 ast

Here, S is the number of frames within a shot. The extraction procedure
(3.2.1) is then adapted by means of the information on dominant or global
motion resulting from camera operations and large moving objects,
according to a set of rules. For a zooming-like shot, at least two frames will
be extracted, at the beginning and at the end of a zoom. The first frame
represents a global and the other one a more detailed view of a scene. In
case of panning, tilting and tracking, the number of frames to be selected
depends on the rate of visual-content variation: ideally, the visual content
covered by each key frame has little overlap, or each frame should capture
different object activities. Usually frames that have less than 30% overlap in
their visual content are selected as key frames. A key-frame extraction
method similar to (3.2.1) can also be found in [Yeu95a]. There, however, the
motion information is not used.

Another SELC extraction approach is proposed in [Gun98], where the
authors first compute the discontinuity value between the current frame k
and the N previous frames. This is done by comparing the color histogram
of the frame k and the average color histogram of the previous N frames,
that is

k-N
Ak fk=1,,k=N})= > > H()-+ ZH (i) (322)
j=k-1 e=Y U,V ] =k-1

If the discontinuity value (3.2.2) exceeds the prespecified threshold T, the
current frame k is extracted as a new key frame F,, , i.e.
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if #kik-1,..,k-N)>T = F, =k (32.3)

A possible problem with the extraction methods described above is that the
first frame of a shot is always chosen as a key frame, as well as those frames
lying in shot segments with varying visual content. As discussed in
[Gre97], when a frame is chosen that is close to the beginning or end of a
shot, it is possible that that frame is part of a dissolve effect at the shot
boundary, which strongly reduces its representative quality. The same can
be said for frames belonging to shot segments of great camera or object
motion (e.g. strong panning or a zoomed object moving close to the camera
and hiding most of the frame surface). Such frames may be blurred, and
thus in some cases not suitable for extraction. A solution to this problem
can be found in [DeM98], where the authors first represent a video
sequence as a curve in a high-dimensional feature space. The 13-
dimensional feature space is formed by the time coordinate and 3
coordinates of the largest “blobs” (image regions), where 4 intervals (bins)
are used for each luminance and chrominance channel. Then the authors
simplify the curve using the multidimensional curve-splitting algorithm.
The result is, basically, a linearized curve, characterized by “perceptually
significant” points, which are connected by straight lines. A key-frame set
of a sequence is finally obtained by collecting frames found at perceptually
significant points. With a splitting condition that checks the dimensionality
of the curve segment that is split, the curve can be recursively simplified at
different levels of detail, that is with different densities of perceptually
significant points. The final level of detail depends on the prespecified
threshold, which evaluates the distance between the curve and its linear
approximation. We consider the main problem of this approach to be
evaluating the applicability of obtained key frames, as it is not clear which
level and objective of video representation is aimed at. For instance, it is
unlikely that the objective of the approach is to provide a good video
summary, since there is no proof that extracted key frames lying at
“perceptually significant points” capture all important aspects of a video.
On the other hand, the connection between perceptually significant points
and most memorable key frames according to user’s cognition is not clear
either.

An example of NSE key-frame extraction approaches can be found in
[Zhu98]. There, all frames in a video shot are classified into M clusters,
where this final number of clusters is determined by a prespecified
threshold T. A new frame is assigned to an existing cluster if it is similar
enough to the centroid of that cluster. The similarity between the current
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frame k and a cluster centroid c is computed as the intersection of two-
dimensional HS histograms of the HSV color space (H - Hue, S - Saturation,
V - Value). If the computed similarity is lower than the prespecified
threshold T, a new cluster is formed around the current frame k. In
addition, only those clusters that are larger than the average cluster size in
a shot are considered as key clusters, and the frame closest to the centroid
of a key cluster is extracted as a key frame.

Extraction of key frames in all approaches discussed above is based on
threshold specification. The thresholds used in [Zha%95a], [DeM98] and
[Zhu98] are heuristic, while the authors in [Gun98] work with a threshold
they obtained by means of the technique of Otsu [Sah88]. By adjusting the
threshold, the total number of extracted key frames can be regulated.
However, such regulation can be performed only in a global sense,
meaning that a lower threshold will lead to more key frames, and vice
versa. An exact or at least an approximate control of the total number of
extracted key frames is not possible. First, it is difficult to relate a certain
threshold value to the number of extracted key frames. Second, one and the
same threshold value can lead to a different number of extracted key
frames in different sequences. A practical solution for this problem is to
make the threshold more meaningful and to relate it directly to the
extraction performance. An example is the threshold specification in form
of the maximum tolerable number of key frames for a given sequence. An
NSE approach using this sort of thresholds can be found in [Sun97]. There,
two thresholds need to be prespecified: r, controlling which frames will be
included in the set and N, being the maximum tolerable number of key
frames for a sequence. Key frame extraction is performed by means of an
iterative partitional-clustering procedure. In the first iteration step, a video
sequence is divided into consecutive clusters of the same length L. The
difference is computed between the first and the last frame in each cluster.
If the difference exceeds the threshold 7, all frames of a cluster are taken as
key frames. Otherwise, only the first and the last frame of the cluster are
taken as key frames. If the total number of extracted frames is equal to or
smaller than the tolerable maximum N, the extraction procedure is stopped.
If not, a new sequence is composed out of all extracted frames and the same
extraction procedure is applied. The biggest disadvantage of this method is
the difficulty of specifying the threshold 7, since it is not possible to relate
the quality of the obtained key-frame set to any specific r value.

If the total number of extracted key frames is regulated by a threshold, the

qualities of the resulting key-frame set and of the set obtained for the same
sequence but based on human cognition are not necessarily comparable.
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For instance, if the threshold is too low, too many key frames are extracted
and characterized by a high redundancy of their visual contents. As a result
of a threshold set too high, the key-frame set might be too sparse.
Especially if the rate of visual-content change allows for only one optimal
set of key frames for the best video representation, finding the threshold
value providing such a key-frame set is very difficult.

Authors in [Avr98] and [Wol96] aim at avoiding this problem and propose
threshold-free methods for extracting key frames. In [Avr98], the temporal
behavior of a suitable feature vector is followed along a sequence of frames;
a key frame is extracted at each place of the curve where the magnitude of
its second derivative reaches the local maximum. A similar approach is
presented in [Wol96], where local minima of motion are found. First, the
optical flow is computed for each frame and then a simple motion metric is
used to evaluate the changes in the optical flow along the sequence. Key
frames are then found at places where the metric as a function of time has
its local minima. However, although the first prerequisite for finding good
key frames was fulfilled by eliminating threshold dependence of the
extraction procedure, the two described methods have the same
disadvantage as the method proposed in [DeM98], namely an unclear
applicability of the resulting key frames.

3.3 Extracting key frames by approximating the
curve of visual-content variations

In the key-frame extraction method presented in this section we aim at
providing a good video summary while keeping the number of extracted
key frames close to the prespecified maximum. This SELC method can be
considered as an alternative to the approach from [Sun97]. However, it has
the advantage that the number of thresholds is reduced to one; it is the
maximum allowed number of key frames N for the entire sequence.

As illustrated in Figure 3.2, key frames-are extracted for each shot of a
sequence separately. This is done in two major phases. The first phase
starts at the beginning of a shot i and lasts until the boundary to the shot
i+1 is detected. During this time, the variation of the visual content is
modeled along a shot i. The result of this phase is twofold. First, a curve is
obtained which models the visual-content variations along shot i. Second,
the total magnitude C, of visual-content variations along a shot i is

available at the moment the boundary between shots i and i+1 is detected.
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The second phase starts at the moment the boundary to the shot i+1 is
detected, and consists of two consecutive steps. In the first step, a fraction
K, of the prespecified N key frames is assigned to shot i, proportional to
the computed value C;, and such that the sum of key frames assigned to all

shots of a sequence does not exceed the prespecified maximum N. The
number N can be adjusted if we know a priori the type of the program to be
processed. In the second step, a threshold-free procedure is applied to find
optimal positions for the assigned number of key frames along a shot i.
Such an optimal distribution is obtained iteratively, by means of a suitable
numerical algorithm. In the following subsections, we will describe both
extraction phases and all of their steps in more detail.

Phase 1

Shot-Boundary Modeling visual content

detected variations along shot i

Yes

Assigning K |
key frames to shot i

Distributing K,
key frames along shot i

Figure 3.2: Scheme of the key-frame extraction approach with controlled number

of key frames

3.3.1 Modeling visual content variations along a shot

In order to model the variations of the visual content along a shot i, we
must consider relevant content variations, i.e. those that make the extraction
of a new key frame necessary. For instance, object motion by a constant
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background is not as relevant for key-frame extraction as, for instance,
camera panning, tilting and tracking. This is because the object motion
alone does not result in a drastic change of the visual content, and does not
need to be captured by several key frames. Opposed to this, a camera
motion constantly introduces new visual material, which needs to be
represented by more than one key frame. For efficiently capturing camera
operations while excluding the sensitivity of key-frame extraction to object
motion, we compute the discontinuity values z(kk+1) using color
histograms and according to (2.2.7), but here in the YUV color space and
for I=1:

Nﬂns

2k, k+ )= Y (HY ()~ Hyo ) HHE () - HELG) HEY () - HEL ()
j=1
(3.3.1)

Accumulating the discontinuity values (3.3.1) along a shot and taking the
current cumulative value at each frame k results in the function C;(k),
which we consider as the model for visual-content variations along a shot i:

k-1

Ci(k)= Zl(j,j+1) (33.2)
J=hi

The frame f,;is the first frame of the shot i and the summation process
(3.3.2) is reset at the shot boundary. Since z(kk+1) can only have non-
negative values, C;(k)is a non-decreasing function. It has a close-to-linear
behaviour in shot segments with a uniform rate of visual content variations
(e.g. a stationary segment or a constant camera motion) and changes in
steepness wherever changes in the variation rate occur (e.g. camera motion
after a stationary segment). Figure 3.3a shows the discontinuity values
computed for nine shots of a typical movie sequence and Figure 3.3b the

behavior of the corresponding functions C;(k). When the end of a shot is

reached, we obtain with (3.3.3) the total magnitude of visual content
variations along the shot i, with S; being the number of frames in that shot:

§i-1

C,=Ci(S)= > z(j,j+1) (33.9)
J=h.i
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Figure 3.3a: Discontinuity values for nine shots of a typical movie
Figure 3.3b: Functions (3.3.2) modeling the visual content variations

3.3.2 Distributing N key frames over the sequence

After the total magnitude of visual content variations for the shot i has been
obtained by means of (3.3.3), the total prespecified number N of key frames
is distributed along all shots of a sequence proportional to values C;. The

higher C;, the more diverse visual content is assumed in the shot i, which
then requires more key frames in order to be represented well. As N, is
the number of shots in the entire sequence, we assign K; key frames to shot
i according to the following ratio:

K. = i N (3.3.4)
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Figure 3.4: Key-frame assignments according to the procedures (3.3.4) and (3.3.5)

Equation (3.3.4) assumes that the values C; are known for all shots of a
sequence, so the denominator in (3.3.4) can now be computed. Since, in
practice, on-line key-frame extraction is more appealing, we adapt the
assignment rule (3.3.4) so that a suitable number of key frames can be
assigned to a shot i immediately after the boundary between shots i and i+1
has been detected. The adapted assignment rule is given as follows:

N S : N ;Sj
F e int| C; ———— (3.3.5)

shots

Z Cf C}' Z Ci

j=1 j=1 j=1

Here, S is the total sequence length and S, is the length of the shot j.
Compared to the off-line assignment (3.3.4), the rule (3.3.5) uses only the
information available at the moment when K; is computed. Since the total
cumulative variations of the visual content along the entire sequence
(denominator in (3.3.4)) is not known, we can only summarize until the
shot 7. This disadvantage is, however, compensated by taking into
consideration also the time parameter, e.g. shot lengths. Thereby we
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assume that the ratio between the total sequence length and the values C,

for all shots of a sequence can be well approximated by the ratio between
these two quantities, where both are only taken up to the current shot i.

Assignment results obtained using (3.3.4) and (3.3.5) may differ in the
beginning, that is, for a low shot index i. However, with increasing 1 we
expect the value (3.3.5) to converge towards the value (3.3.4). In order to
show this, we chose to distribute an unusually large number of N=100 key
frames along nine shots of the sequence illustrated in Figure 3.3a.
Assignment results using both methods are presented in Figure 3.4.

3.3.3 Distributing key frames within a shot

In the final step, K; assigned key frames need to be located within a shot.

For the sake of notation and derivation, in the following we will consider k
in (3.3.2) to be a continuous variable, although a practical implementation
will use a discretized version. If we would interpolate C;(k) for non-integer

values of k from neighboring values for integer k, i.e. C;( k) and C,;([k]).

then C;(k) becomes a non-decreasing function. We will assume this

property in the sequel. The underlying theory used here for distributing
key frames along a shot is that K; key frames should be distributed along a
shot such that the visual content is summarized in the best possible way.
Since the function C,(k)represents the variations of the visual content

along the shot, it also provides the information about the amount of
redundancy present in each of the shot segments. The steeper the function,
the less redundancy is to be found among consecutive frames in that
segment, and vice versa.

Consequently, properly distributing key frames along a shot is equivalent
to finding a suitable way of representing the function C;(k) by K, (non-)
equidistant samples, where the sample density is dependent on function
steepness and where each sample is a key frame representing a series of
consecutive frames around it. A key frame F, j=1,.., K, lies in the middle

of the interval (¢, ;,;) and represents all frames in that interval. We
approximate the function C;(k) along this interval by its value at frame
k= Fj, that is, by C,-(F]-). By doing this for each key frame, a step curve is

obtained, which closely approximates the function C,(k) along a shot i.

Maximizing the quality of such an approximation is now equivalent to
properly placing the horizontal line segments and defining their optimal
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lengths, which is, again, equivalent to properly positioning the key frames
F; in the middle of these segments. To achieve such optimal positioning,

we choose to minimize the following L, error function:
K, i
gy o F byt )=y ﬂci (k)= C; (F, )| dk (336)
i i-1 ]_=1 tlv]

Note that fyand t  are the (known) temporal starting and endpoints of

the shot i. Figure 3.5 illustrates the meaning of (3.3.6). It shows the function
C;(k) and how the key frames are distributed such that the area between

this function and the approximating rectangles, defined by F; and t,, is
minimized. The minimization of (3.3.6) is carried out in two steps. First, if
we assume that the breakpoints ¢, jand f;are given, then the partial

integral

g(F)=[lc; k-, (F))|dk (337)

£y

is minimized by taking as key frame the center of the interval considered:

= ;‘—2 " for ji=12,...,K, (33.8)

Note that this result is independent of the actual cumulative action function
on this interval as long as C,(k)is a non-decreasing function. After
substituting (3.3.8) into (3.3.6), we can minimize the resulting expression
with respect to the breakpoints ¢;. The resulting solution is given by the
following set of K; equations:

C,(t))=3(C, (F)+C, (F,)) for j=1,...,K, (339)
The interpretation of this set of equations is that the breakpoint ¢, is chosen

such that the value of the function C, (k) at that breakpoint is the average of
the C;(k) values at the key frames preceding and following that
breakpoint. Together, (3.3.8) and (3.3.9) form the solution of the desired
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key-frame distribution according to the criterion (3.3.6). To solve the key-
frame positions from (3.3.8) and (3.3.9), one can employ a recursive search
algorithm. To this end, we rewrite (3.3.9) as follows:

Ci(F,)=2C;(t;)-C,(F;) for j=1,... K, (3.3.10)

If we start with assuming a breakpoint ¢, then we can compute key frame
F, using (3.3.8). From (3.3.10) we can then compute breakpoint t,
(substitute j=1 in (3.3.10)). Subsequently, from f, we can compute F, using
(3.3.8), from which 1, follows (substitute j=2 in (3.3.10)). In this way we can

recursively compute for the assumed value of t, the value of t}g , which

should be identical to the given length of the i-th shot. Depending on the
mismatch between the computed and actual value, the position of the
breakpoint f, can be adjusted. Note that this recursive search procedure is
very close to the one often used for designing scalar quantizers [Ll057],
[Max60].

» C,(k)
Area to be minimized as expressed
by the integral expression in (3.3.6) :
‘ | k
: ; : >
f, R t, F t, E 1

Figure 3.5: Illustration of the function C;(k), the distribution of key frames F,

j
and breakpoints ¢,
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Figure 3.6: Distribution of different number of key frames along a fictive video
shot with a variable rate of visual-content variations.

3.3.4 Experimental validation

The major issue in the key-frame extraction approach presented in this
section is related to distributing a given number of key frames along a shot,
such that the best possible summarization of the visual content of a shot is
obtained. We therefore concentrate here on testing the optimization process
(3.3.6) in the controlled situation. Visual content variations along an
arbitrary shot i are modeled by two artificially produced functions C;(k).
The form of the first function is given in the diagrams of Figure 3.6 and
indicates that there is a constant low rate of visual content variation in the
beginning of the shot, followed by an exponentially increasing variation
rate, while the shot ends with a segment having the constant variation rate,
but one that is higher than in the first shot segment. The exponential form
of the second function, shown in diagrams of Figure 3.7, indicates a steadily
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increasing rate of visual-content change, for instance, in the case of an
accelerated camera panning, tilting or tracking.

Independent of the number K; of assigned key frames, the varying key-
frame density along shot i should follow the visual-content variations
modeled by the function C,(k). Furthermore, in shot segments with a
constant variation rate, key frames are distributed homogeneously and all
shot segments need to be represented. The last requirement should prevent
that all or a large majority of key frames are concentrated on one small shot
segment, while the rest of the shot’s visual material is not captured by key
frames.
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Figure 3.7: Distribution of different number of key frames along a fictive video
shot with exponential visual-content variations.

We show in Figures 3.6 and 3.7 the results of distributing 2, 3, 5, 6,7, 11, 12
and 13 key frames along a shot i for both modeling functions C,(k). In all
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cases, key frames — represented by vertical lines - were distributed as
expected. On the one hand, it can be seen how in each case the
concentration of key frames follows the dynamic of the function C,(k). On

the other hand, from the fact that key frames are always distributed along
the entire shot, it can be concluded that the visual content of all shot
segments is well captured in each of the key-frame sets.

3.4 Key-frame extraction based on
cluster-validity analysis

The objective of the key-frame extraction method presented in this section
is to minimize the redundancy among video frames and provide a set of
key frames for a given video sequence, which is similar to the one based on
human cognition. While in the method from Section 3.3 key frames are
extracted separately for each shot, the extraction procedure described here
can be applied to a sequence containing an arbitrary number of shots.
Furthermore, the method presented in this section does not require any
human supervision or parameter (threshold) specification. This makes the
extraction procedure very user friendly and it supplies the user with a
stable quality of obtained key frames for any arbitrary sequence.

The visual-content redundancy is reduced here by applying a partitional
clustering [Jai88] to all video frames. The underlying idea is that all frames
with the same or similar visual content will be clustered together. Each
cluster can be represented by one characteristic frame, which then becomes
a key frame of a sequence, capturing all the visual material of that cluster.
Since frames in different clusters contain different visual material, the
redundancy among obtained key frames is low. At the same time, all
variations of the visual material along a sequence is captured in its key-
frame set.

Consequently, the problem of finding the optimal number of key frames for
a given sequence is reduced to finding the optimal number of clusters in
which the frames of a video can be classified based on their visual content.
The main difficulty here is that the optimal number of clusters needs to be
determined automatically. To solve this, we apply known tools and
methods of cluster validity analysis and tailor them to our specific needs.

As illustrated in Figure 3.8, the extraction approach in this section consists
of three major phases. First, we apply N times a partitional clustering to all
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frames of a video sequence. The prespecified number of clusters starts at 1
and is increased by 1 each time the clustering is applied. In this way N
different clustering possibilities for a video sequence are obtained. In the
second step, the system automatically finds the optimal combination(s) of
clusters by applying the cluster-validity analysis. Here, we also take into
account the number of shots in a sequence. In the final step, after the
optimal number of clusters is found, each of the clusters is represented by
one characteristic frame, which then becomes a new key frame of a video
sequence.

Video

L—L Clustering } Phase 1

N clustering options

Number
Detecting all of shots -
shot boungaries Cluster-validity
analysis

Optimal clustering option(s)

Phase 2

| Phase 3

Key frames
from clusters

Figure 3.8: Key-frame extraction scheme based on cluster validity analysis

3.4.1 Clustering

The clustering process is performed on all video frames. For this purpose,
each frame k of a video sequence is represented by a D-dimensional feature
vector [ﬁ(k) , consisting of features ¢, (k). The feature vector can be
composed using texture, color, shape information, or any combination of
those. Similarly as in the previous section, we wish to efficiently capture
with key frames the changes introduced in the visual material, by e.g.
camera panning, while the key frames must remain relatively insensitive to
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object motion. Therefore, we have chosen a D-dimensional feature vector,
consisting of the concatenated D/3-bin color histograms for each of the

component of the YUV color space. Furthermore, since ¢(k) is easily

computable, we also compensate in this way for an increased
computational complexity of the overall extraction approach due to the
extensive cluster validity analysis, but still achieve an acceptable frame
content representation. The feature vector used in this chapter is given as

30 ={p.(0)Iv=1,..,D)=
- <HZ 1),..H; (%),Hk' (1),.. HY (%) HY(1),..H/ [_g_)> (341)

By taking into account the curse of dimensionality [Jai82], we made the
parameter D dependent on the sequence length. Now we compute it as S/5
[Jai82], whereby S is the number of frames to be clustered, and in this case
also the number of frames in the sequence.

Since the actual cluster structure of the sequence is not known a priori, we
first classify all frames of a sequence into 1 to N clusters. Thereby, the
number N is chosen as the maximum allowed number of clusters within a
sequence by taking into account the sequence length. Since each cluster
corresponds to one key frame, the number N is equivalent to the maximum
allowed number of key frames used in the previous section; here we use
the same notation. Although N can be understood as a threshold
parameter, its influence on the key-frame extraction result is minimal. This
is because here we choose N much higher than the largest number of
clusters to be expected for a given sequence. The longer the sequence, the
higher is the potential number of clusters for classifying its video material.
We found the variation of N with the number of sequence frames S defined
by the function (3.4.2) suitable for the wide range of sequences tested:

S
N=N(S)=10+ mt(z—s) (3.4.2)

When we defined (3.4.2), we took into account that enough alternative
options should be offered to the cluster validity analysis to obtain reliable
results and that the number of options should increase with sequence
length. On the other hand, the value N needs to be kept in limits, since the
“noisy” clustering options become more probable with an increasing
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number of clusters and can negatively influence the cluster validity
analysis.

After the clustering phase we perform a cluster-validity analysis to
determine which of the obtained N different clustering options, i.e. which
number of clusters, is the optimal one for the given sequence. In the
following we will explain this procedure in full detail.

3.4.2 Cluster-validity analysis

For each clustering option characterized by 7 clusters (1<n< N ), we find
the centroids c¢; (1<i<n) of the clusters by applying the standard k-means

clustering algorithm to feature vectors (3.4.1) for all frames in the sequence.
In order to find the optimal number of clusters for the given data set, we
compute the cluster separation measure p(n) for each clustering option
according to [Dav79] as follows:

p(n) == Z max (§i+§j} . on>2 (3.43)

1<]<n/\1¢; ,uij

with the following parameters:

1 1
2 n
q [ > foive b J ,u,-,-=[ m(c»—m(e»]“}” G4

v=1

The better all of the n clusters are separated from each other, the lower is
p(n) and the more likely is that the clustering option with n clusters is the
optimal one for the given video material. The value &, is called dispersion of
the cluster i, while u, is the Minkowski metric [Fri67] of the centroids
characterizing the clusters i and j. For different parameters 7,and n,,

different metrics are obtained [Dav79]. Consequently, the choice of these
parameters has also a certain influence on the cluster-validity investigation.
We found that the parameter setting n,=1 and n,=2 gave the best

performance for our purpose. E; is the number of elements in the cluster i.
Note that the p(n) values can only be computed for 2<n< N due to the
fact that the denominator in (3.4.3) must be nonzero. We now take
all p(n) values measured for one and the same sequence and for 2<n<N,
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and normalize them by their global maximum. Three different cases are
possible for the normalized p(n) curve, as illustrated in Figure 3.9a-c.

a) b) /] ¢)

p(n)

nopt noptl nop[ 2

Figure 3.9: Illustration of three possible cases for the normalized p(n) curve.

Case 1: The normalized p(n) curve is characterized by a pronounced global
minimum at n=#,, , as shown in Figure 3.9a. This can be interpreted as the

>1. In

this case, we assume a set of n,, clusters to be the optimal cluster structure

existence of n,, clear natural clusters in the video material with n,,

for the given video sequence.

Case 2: The normalized p(n) curve has s distinct low values. This means
that it is possible to classify the given video material into s different
numbers of clusters with a similar quality of content representation. An
example of this is illustrated in Figure 3.9b for s=2 with options containing
Moyt OF Ny, clusters.

Case 3: All values of the normalized p(n) curve are high and remain in the
same range (around 1), as illustrated in Figure 3.9c. This case can be
interpreted twofold: either there is no clear cluster structure within the
given video material (e.g. an action clip with high motion) or the video
sequence is stationary and it can be treated as one single cluster. In the
remainder of this chapter we will consider a sequence as stationary if there
is no or only non-significant camera or object motion (e.g. a zoom of a
person talking, characterized by head and face motion). In general,
if p(n)curve is obtained as shown in Figure 3.9¢c, the decision about the
optimal cluster structure is made depending on the detected number of
shots in that sequence.
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As a result of the above, the problem of finding the optimal cluster
structure for any video sequence given by the normalized p(n) values for
2<n< N is reduced to recognizing the most suitable of the three above
cases. To be able recognize this, we first must sort all the normalized values
p(n), 2<n<N, in the ascending order, resulting in a sorted set
Psorted(M), 1< m< N-1. Then, we introduce the reliability measure r(m),
1<m< N-2, defined as:

r(m) = M (34.5)

P sorted (m + 1)

Finally, we search for the value of the index m for which the function r(m)
has its minimum. Two possible results of the minimization procedure are
given by the expressions

1srmr;11{11-2(r(m)) =7(1) (34.6a)
Jin 2(r(m)) =r(s), s#1 (3.4.6b)

We will interpret these results for two different types of sequences, namely
sequences containing several video shots and sequences corresponding to
single video shots.

Sequences containing several video shots

We first analyze the situation involving sequences which contain more than
one video shot. If there is a pronounced global minimum of the p(n) curve
at n=mn,,, as shown in Figure 3.9a, the reliability vector r(m) has its global

minimum at m=1. Therefore, the validity of (3.4.6a) is equivalent to the
defined Case 1. Then, the optimal number of clusters is chosen as

Mo = Min (p(m) (3.4.7)

If the equation (3.4.6b) is valid, the scope of possible options is constrained
either to Case 2 or to Case 3, where Case 3 can be considered less probable
for the following two reasons: On one hand, the probability that there is a
highly stationary content across several consecutive shots is low. On the
other hand, enough distinction of the visual material belonging to different
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shots of the sequence can be expected, so that — if not only one -also several
equally acceptable clustering options can be allowed. Therefore, we relate
the validity of (3.4.6b) in case of complex sequences to the defined Case 2.
That is, all cluster sets belonging to p ., (i), 1<i<s, are taken as possible
solutions for grouping the frames of a sequence.

Single video shots

The probability that one finds a natural cluster structure containing more
than one cluster in sequences consisting of only one video shot is generally
much smaller than finding one in sequences containing several shots. This
is because changes of the visual content within a shot are continuous,
mostly characterized by a camera/object motion without dominant
stationary segments. For this reason, a large majority of p(n) curves
obtained for single video shots can be expected to correspond to the model
in Figure 3.9c. Hence, it is crucial that a reliable distinction can be made
between stationary shots and non-stationary shots of which the natural
cluster structure is unclear, as this is the basis of obtaining a suitable
abstract structure for single video shots.

If n,, clusters are suggested by (3.4.7) for a given shot, and if that shot is
stationary, the average intra-cluster dispersion Enm computed over all n,,
clusters should be similar to the dispersion &, computed for one cluster
containing all frames of that shot. Otherwise, the dispersion §,,, can be
assumed to be considerably larger than E”M . In view of this analysis, we

define the decision rule (3.4.8) to distinguish stationary shots from the non-
stationary ones. For this purpose we first use (3.4.7) to find n,, clusters for

a given shot and compute the dispersion E”m . Then we also compute the

dispersion &, and compare both with En,f , which can be understood as

the reference for the stationarity and is obtained by averaging dispersions
measured for a large number of different stationary shots.

not stationary

> - -
Ié one 3 refI < lé Mot S rcfl (3.4.8)
stationary

63




If the shot is stationary, it is represented by only one cluster, including all
frames of a shot. With non-stationary shots we proceed by checking the
evaluations (3.4.6a-b). If the equation (3.4.6a) is valid, n,, is chosen as the

optimal number of clusters, indicating that clearly distinguishable natural
clusters exist within the shot. If (3.4.6b) is valid, we can either assume that
there are several clustering options for the given shot, or that no natural
cluster structure can be recognized by the algorithm. The first possibility is
relatively improbable because the range of content variations within a shot
of an average length is limited. Therefore, the validity of (3.4.6b) for a single
shot is related to an unclear cluster structure, which is difficult to represent.
On the one hand, one single cluster is too coarse, since variations of the
visual content are present. On the other hand, choosing too many clusters
would lead to an over-representation of the shot. For these cases we found
the smallest number of clusters proposed by (3.4.6b) as a good solution for
this problem. Thus, from s clustering options suggested by (3.4.6b), we
choose n,,, clusters, defined by (3.4.9), to represent a single video shot

with an unclear cluster structure:

Nmin = MUN(A; ) (3.4.9)

m ;
l<i<s

3.4.3 Key frames from clusters

Once a suitable cluster structure is found for the given video sequence, one
representative frame is chosen from each of the clusters and taken as a key
frame of the sequence. As being usual in the clustering theory, we choose
for this purpose the cluster elements being closest to cluster centroids. We

find the key frame F; of the cluster i by minimizing the Euclidean distance

between feature vectors (3.4.1) of all cluster elements k and the cluster
centroid c;, that is

D
fie 15312 ‘/VZ; o, ®)-0, ()’ (3.4.10)

3.44 Experimental validation

In order to test the video-abstraction method presented in this section, we
concentrate here first on the evaluation of the proposed procedure for
cluster-validity analysis, since both the key-frame sets and the preview

64




sequences of a video abstract are directly dependent on the number and
quality of obtained clusters.

We first tested the algorithm performance on sequences consisting of single
video shots. For this purpose, we used 76 shots of a typical Hollywood-
made movie and characterized them manually regarding the variations in

their visual contents. The value of the parameter é,ef from (3.4.8) was

obtained experimentally as 0.0228, for which we used a number of
stationary shots of different lengths and containing different visual
material, and can therefore be assumed generally valid. As illustrated in
Table 3.1, each of the shots belonging to the test set is assigned a
description of how its content varies in time. From this description, the
most suitable number of clusters for grouping all the frames of a shot is
derived and used as a ground truth. For instance, a stationary shot should
get assigned 1 cluster, and a shot with Q distinct stationary segments
should get assigned Q clusters. For 66 shots (87%) of the test set, their
frames were clustered in the same way as given by the ground truth.

Shot 2: Frames 42-286 stationary with minor object
motion (1 cluster)

Shot 10: Frames 1582-1751 slight zoom (1 or 2 clusters)

Shot 24: Frames 4197-4358 two stationary camera positions

(2 clusters)

Shot 29: Frames 5439-5776 three stationary camera
positions (3 clusters)

Shot 45: Frames 7218-7330 slow camera panning
(1 or 2 clusters)

Shot 51: Frames 8614-8784 stationary camera, followed by
a strong zoom (2 clusters)

Table 3.1: A fragment of the test set for evaluating the performance of the cluster-
validity analysis algorithm for single shots

In order to test the performance of the cluster-validity analysis algorithm
for sequences containing several shots, we established a controlled test
environment involving a set of sequences with a clearly defined structure
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in terms of the possibilities for clustering their frames. For each of these
sequences we estimated the suitable number of clusters for organizing their
visual content and used this estimation as the ground truth. An indication
of the algorithm performance can be found in Table 3.2 for the following
test sequences used:

e Sequencel: A dialog between two movie characters. Due to two
fixed camera positions, two clearly defined clusters are expected, one
for each of the characters.

e Sequence 2: Three movie characters in discussion, with the
camera showing each of them separately and all together. Four clear
clusters are expected.

e Sequence 3: Two major camera positions to be captured by two
clear clusters.
e Sequence 4: A long sequence covering different visual material in

a series. Five clear clusters are expected for sequence representation

Although for the fourth sequence a clear cluster structure containing 5
clusters was expected, the algorithm suggested two possible clustering
options. However, this was still acceptable, since the 5 clusters found
corresponded to the expected ones and the option with 6 clusters contained
the same clusters and an additional one, capturing a segment with object
motion.

Test Expected | Expected | Obtained | Obtained
sequences number cluster number cluster
of clusters | structure | of clusters | structure
Sequence 1 2 Clear 2 Clear
Sequence 2 4 Clear 4 Clear
Sequence 3 2 Clear 2 Clear
Sequence 4 5 Clear 5,6 Unclear

Table 3.2: Algorithm performance for some video sequences containing more than
one video shot

Based on the results of cluster-validity analysis, key-frame sets and
preview sequences were formed. For each of the obtained clusters, a key
frame was extracted using (3.4.10). Besides of the fact that in each case the
obtained cluster combination corresponded to the one given by the ground
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truth, we also found the resulting key-frame set providing a good
representation of the video content. This implies that frames nearest to
cluster centroids are suitable to be used as key frames, and that the cluster-
validity analysis is here the crucial step in making the video abstract.

3.5 Discussion

After discussing the possibilities for automation of the key-frame extraction
in the first section of this chapter, we presented in Sections 3.3 and 3.4 two
methods by which key frames are automatically extracted for making a
summary of a video’s visual content. Both methods were developed such
that the human intervention in dimensioning the extraction process is
either limited to easily specified parameters or not necessary at all. In the
method from Section 3.3, the maximal number N of key frames for the
entire sequence is prespecified, while the approach from Section 3.4 is
capable of functioning without human supervision. There, the value of the

reference dispersion for stationary shots &, given in subsection 3.4.6 can

widely be used for measurements on different sequences. Compared to the
majority of key-frame extraction methods from recent literature, such a
transparent parameter dependence makes the two approaches described in
this chapter highly user-friendly.

Regarding the achieved visual-content representation, we first discuss in
more detail the approach from Section 3.3. Two conclusions related to the
ability of the method to summarize the visual content of a video can be
drawn from the experimentally obtained key-frame distribution in Figures
3.6 and 3.7. First, the “sampling interval” between consecutive key frames
is clearly dependent on the rate of visual content variation, i.e. on the
steepness of the function C; (k). The higher the variation rate, the more key
frames are used to capture the appearing new visual material. This
indicates that all relevant elements of the visual content appearing in a shot
will be represented in the resulting key-frame set. Second, although the
sampling of the function C,(k) is generally not equidistant, key frames are
always distributed such that the entire visual material of a shot is captured.
This is opposed to an alternative where e.g. all K; frames concentrate only
on one shot segment. However, if the total number of key frames or any
other threshold parameter is a constraint, it is difficult to prevent the cases
of redundant key frames or to prevent ending up with too few key frames
for a good sequence representation. Clear practical advantages of this
method are the possibility of extracting key frames on-the-fly and of
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obtaining a good video summary and storyboard of a video, while keeping
the amount of extracted information limited and closed to the prespecified
one.

By using the extraction method presented in Section 3.4, one can obtain a
very compact set of key frames for an arbitrary sequence, the quality of
which is similar to a key frame set based on human cognition. Each frame
selected using (3.4.10) can be assumed to have a high technical quality,
since it corresponds to a cluster centroid, which is by definition the cluster
element most similar to all other elements of that cluster. For that reason,
having an “outlier” as a key frame, lying e.g. in a high-motion, in a blurred,
dissolve or fade segment, is not as probable as having as a key frame a
frame lying in a stationary, minimum-motion and maximum-clarity
sequence segment. Although this method can be applied to a video
segment of an arbitrary length, the segments of interest in this chapter are
rather constrained to specific events, like for instance a dialog discussed
before. The reason for this constraint is that long video segments are mostly
characterized by an enormous variety in their visual contents, which is
difficult to classify in a number of distinct clusters and, consequently, to
represent by a limited number of key frames.
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Chapter 4

High-Level
Video Content Analysis

41 Introduction

Segmenting a video into shots, as discussed in Chapter 2, can be considered
an elementary or a low-level video-analysis step. The reason for such a
characterization is that this process, as well as the obtained results, do not
depend on the actual content of the segmented video. In this chapter we
concentrate on automatically analyzing a video at a higher level, at which
semantic video segments can be distinguished.

_ High-level analysis
-  Sport-event ic segment
- Newsreport - Movieepisode Sg?gm:;;: : Topse segmen

of adocumentary = -+

Shot 1 Shot 2 Shot 3 Shot 4 Shot S Shot6  Shot7 ... I3

Low-level analysis

Figure 4.1: lllustration of two different video-analysis levels
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As illustrated in Figure 4.1, the semantic video segments can be the reports
in news programs, episodes in movies, highlights of sport events, topic
segments of documentary programs, etc, and are concatenations of
interrelated consecutive video shots. This indicates that the objective of
high-level video content analysis can be formulated as finding subsets of all
shot boundaries detected along a video, such that the series of consecutive
shots, captured by shot boundaries belonging to these subsets, correspond
to the semantic video segments of interest.

Autonomous systems able to analyze a video at a high (semantic) level can
effectively be used to facilitate the user interaction with large volumes of
video material stored in emerging digital video archives (libraries). Figure
4.2 illustrates how the results of high-level video analysis are used to
organize the incoming or already stored video material, in order to provide
access to semantic video segments of interest. The target applications of
interest can be formulated as, e.g., search requests for all news reports on
Bosnia, a movie episode containing the Alpine landscape or a favorite
action scene, the “match point” of a tennis game, etc.

Similarly as in the case of key-frame extraction, the possibilities for
automation of high-level video analysis are not unlimited. The first
problem, as already discussed in Chapter 1, is that embedding the human
ability of understanding the content of a video into an autonomous system
is technically not feasible. A technically feasible solution to this problem is
to find ways of relating the video semantics to some specific temporal
behavior of suitable low-level features. There are numerous examples,
which can indicate the possibilities for developing such methods. Some of
them are described in sections 4.2, 4.3 and 4.4 of this chapter, such as
detecting TV commercials in various programs, recovering the semantic
structure of a news program or detecting the episodes in movies. However,
since low-level features are powerless in some cases, for instance, when
extracting video segments where a specific actor or the “Alpine landscape”
appears, realistic objectives need to be set when choosing the target
applications. Thus, instead of attempting to develop algorithms capable of
finding the movie episode where “Alpine landscape” appears, alternative
algorithms are aimed at, which first find all episode boundaries of a movie,
represent them by a number of key frames and then submit the entire
episode structure together with the key frames to a browsing tool. There, a
user can easily get an overview of the movie content by looking at episode
representation, recognize the “Alpine landscape” in one of the key frames
and quickly retrieve the corresponding episode. As it will be shown in
sections 4.2 and 4.3, detecting episode boundaries in a movie is possible by
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analyzing only the temporal consistency of low-level visual features of a
movie.

The second problem concerns the missing ground truth for the results of
high-level video analysis. These are the cases of, for instance, extracting the
highlighting or most memorable video segments: due to a highly subjective
human perception of the video content in such cases, the dispersion among
the results obtained by a subjective analysis of one and the same sequence
by several users will be high [Paa97]. However, in many other analysis
cases, the problem of missing ground truth is not present, for instance,
when detecting TV commercials in an arbitrary video or segmenting news
programs into reports. Therefore, only the latter cases are considered in this
chapter, although some examples of extracting semantic segments with a
“questionable” ground truth will be described in Section 4.2.

/ Autonomous system
—

High-level analysis

-

Application Organizing video material |
based on high-level analysis |
\.
. 4
Interaction Access to semantic

video segments

Video archive

Retrieval

Figure 4.2: High-level video analysis and related operations embedded into an
autonomous system

An important issue which needs to be taken into account when automating
the high-level video analysis is that no generally applicable analysis
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methods exist. One reason for this is that the semantic video segments of
interest vary for different program types, user environments and
applications. Furthermore, the characteristics of such segments, in terms of
low-level features being most suitable for their detection, vary over
different programs. Therefore, rather a specific analysis methodology can
be developed for each particular program type. We set as the objective of
this chapter to develop methods for automated high-level analysis of two
specific video types: movies and news programs. In the remainder of this
section, we will explain our motivation for choosing these two particular
program types, and give an overview of methods for their analysis
developed in Section 4.3 and Section 4.4 of this chapter.

With respect to the discussion in Chapter 1 of this thesis, we witness a
strong development of home video libraries and expect that the digital
storage of video material at home will soon overtake the current analog
video cassette recording systems [Oka93], [dWi92], [dWi93], [Yan93], and
that the volumes of stored data in home video archives will rapidly grow in
time. Stored in these archives we find programs of various types, such as
movies, news, documentaries, TV shows, sport broadcasts, etc. In view of
their large popularity with private users, it can realistically be assumed that
now and in the future, movies belong to the most frequently stored
programs, covering the highest percentage of the stored data volumes in
home video archives. Although the major user interest regarding a movie is
simply to watch it, some other applications involving movie content may
be desirable to users as well. Such applications include, for instance,
retrieving and watching of selected movie scenes, searching for a shot
where an actor appears in a funny pose and watching a short preview of a
movie. Although they are still new for a common user, these applications
can be expected to become more and more popular with the emerging and
quickly developing technology [SMA]. The most important objective in this
development is to provide methods and tools for automatically analyzing
movie content and providing the user with semantic video segments of
interest, with minimal user involvement in the analysis process. This is
understandable, since users at home want to be entertained; they do not
want to be burdened with programming or adjusting their video
equipment, especially not if this burden exceeds the level reached by some
current VCRs that can be programmed in various ways, but are already too
complicated for an average user.

Regarding the movie analysis in this chapter, we follow the objective of

automatically providing semantically meaningful entry points into a
movie. These points are ideally the boundaries between consecutive movie
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episodes. We define an episode as a series of consecutive shots unified by
the same chronological time-frame of the story. Since we can base our
episode-boundary detection only on low-level features, it is unlikely that
the detected boundaries always correspond to the actual episode
boundaries. For this reason, the results of our approach generally do not
reveal movie episodes but their approximates, which we define as Logical
Story Units (LSUs). Compared to episodes, which are defined by their
semantic contents, LSUs are defined in terms of specific spatio-temporal
features which were found to be characteristic for an episode. As it will be
explained later, we found the global temporal consistency of the visual
content of an episode a powerful means for defining an LSU as an episode
approximation.

A news broadcast, which is the other program type considered in this
chapter, has been widely recognized as a highly interesting “storing object”
in emerging large-scale digital video databases [Boy99], [Che97]. The main
reason lies undoubtedly in the information content of news programs,
which may be useful for applications in many professional areas (e.g.
education, journalism, government) as well as for private needs. One could
think of building up large information archives containing all available
sorts of informative programs, e.g. news, documentaries, TV-debates,
political or social discussions, reportages, etc. In such archives, news is at
least as important as all other mentioned program types, since it concisely
covers huge amounts of topics related to society, daily politics, sports,
business, etc. The importance of news programs may even be larger, since
not all daily events get a thorough coverage through e.g. a dedicated
documentary. Collecting news over a longer time period from different
broadcasters can therefore provide a solid top level for an information
collection, whereby other informative programs on certain topics, if any,
are linked to relevant news reports and serve as lower-level (more detailed)
information sources. If large information archives are to be used efficiently,
all the information segments need to be organized, either according to their
topics or to any other specific criteria. Here, the issue of automating the
news-program analysis and reducing human interaction is a great
challenge, and becomes more and more important, if not crucial, as
increasing information volumes are stored in video archives. Such tools
should be capable of autonomously segmenting a news program into
reports, recognizing the report topic or fulfilling of the specified application
criteria, and should classify it with all other closely related reports,
enabling, in this way, direct execution of search requests, such as “find me
a business report in a CNN news program from 2.4.1997”, or “give me
everything what is available on car races”.
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In this chapter we concentrate on developing methods for automatically
detecting anchorperson shots in an arbitrary news program. Since these
shots are directly related to news reports and since, in most cases, they
directly determine the report boundaries, their detection can be considered
as an important step in automatically recovering the report structure of a
news program, and also in reaching the overall topic-based organization
structure of a news archive. When developing our method, we made use of
a specific visual structure of an anchorperson shot, which can also be found
repeatedly in different segments of a news broadcast.

Before we present a method for detecting LSU boundaries in movies in
Section 4.3 and a method for detecting anchorperson shots in news
programs in Section 4.4, in Section 4.2 we give a brief overview of some of
the methods reported in recent literature, which indicate the current
possibilities in using low-level features in extracting semantic aspects out of
different types of video. The discussion belonging to this chapter can be
found in Section 4.5.

4.2 Related work

4.2.1 Detecting different temporal events in a video

We start this section by discussing the method of capturing and
characterizing a video by temporal events, such as dialogues, actions and
story units [Yeu97]. The method consists of two major steps. In the first
step, the semantic labeling of all video shots in a video is performed by
applying time-constrained clustering. There, shots of a video are clustered
based on their visual similarity and mutual temporal locality. In other
words, two visually similar shots are not clustered together if they are too
far from each other. G, is the i-th cluster, the shots x, y and w are elements,
d the distance between shots in terms of their visual similarity, T the
maximum allowed temporal distance between two shots within the same
cluster and 6 the maximum allowed visual dissimilarity between two
shots. The clustering procedure can be defined as follows:

° macxd(x,w) <é ,VxegG 4.2.1a)

® meéxd,(x,y)s T ,VxegG; (42.1b)
yely

e d(x,w)>6 or d,(x,w)>T, VxeG;, \'/weGj, JEIL 4.2.10)
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Assuming that all shots of a sequence are clustered in N clusters G;, all

shots within one and the same cluster get assigned a label. Then, by
replacing each shot of a video by its corresponding label, we can represent
the entire video as a series of labels, that is, as

ABCADGHBACDKHDBAC... 4.2.2)

In the second step, the label sequence (4.2.2) is investigated for different
prespecified patterns appearing therein and corresponding to dialogs,
actions, etc. For instance, dialog patterns are found as interchanging labels
such as

ABAXYZABABABCDEFEDEGHI... (4.2.3)
Dialog Dialog Dialog

Or, as another example, action patterns are characterized by a series of
shots with contrasting visual contents, expressed by no or only a minimal
repetition of shot labels, that is

ABCDEFBGHI... 4.2.4)
4.2.2 Detecting scene boundaries in a movie

In [Ken98], the authors consider a movie as a series of consecutive scenes
and propose an approach for finding probable boundaries of scenes. The
approach is based on investigating the coherence measured along a series of
consecutive shots and representing the consistence of the visual material
contained therein. We first introduce the recall between shots s, and s, as

SRecall(s,,,s,) being proportional to the function Sim(s,,,s,)describing

their visual similarity and the function TR(s,,,s,) taking into account their
lengths and their relative temporal positions within a video, that is

SRecall(s,,, s, )= Sim(s,,,s,) TR(s,,,s,) (4.2.5)

Then we define the total recall of all the shots older than the boundary by
all the shots newer than the boundary as

Recall(s,,s;,;) = Z Z SRecall(s,,,s,) (4.2.6)

m<i n>i+1
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The coherence at the boundary between shots s;and s;,, is now computed
as the total recall Recall(s;,s;,,;) normalized by the maximum potential
recall Ideal(s;,s,,;) possible at that boundary, that is

Coh(s;,s;,1) = Recall(s;. 5i1) (42.7)
Ideal(s;, s;,;)

The maximum potential recall Ideal(s;,s,;) is computed similarly as
Recall(s;, s;,;), except that Sim(s,,,s,) in (4.2.5) is fixed at its maximum
value of 1.

The significant local minima of the coherence curve measured along a
sequence indicate the potential scene boundaries. A methodology for high-
level video segmentation based on similar principles as the one from
[Ken98] was published in [Han99b] and [Han99¢] and is explained in detail
in Section 4.3.

4.2.3 Extracting the most characteristic movie segments

As discussed in the introduction to this chapter, it is very difficult to
develop methods which automate the detection of semantic content
elements for which no clear ground truth is defined. Therefore, in literature
not many approaches can be found dealing with this problem. In [Pfe96] the
most characteristic movie segments are extracted for the purpose of
automatically producing a movie trailer (a short summary). Movie segments
to be included in such a trailer are selected by investigating the specific
visual and audio features and by taking those segments which are
characterized by high motion (action), basic color composition similar to
average color composition of a whole movie, dialog-like audio track, and high
contrast. It is claimed that this method yields good quality movie abstracts,
since “all important places of action are extracted” [Pfe96).

4.24 Automated recognition of video genres

The method for detecting video types (genres) presented in [Fis95] is a good
example of an attempt to obtain some conclusions related to an extremely
high abstraction level of a video by simply investigating its low-level
features. The proposed approach consists of three steps. In the first step, the
syntactic properties of a digital video, such as color statistics, shot-
boundaries, motion vectors, simple object segmentation and audio-
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statistics, are analyzed. The results of the analysis are used in the second
step to derive video-style attributes, such as shot lengths, camera panning
and zooming, types of shot boundaries (abrupt ones vs. dissolves, fades,
etc.), object motion and speech vs. music, which are considered to be the
distinguishing properties for video genres. In the final step, an “educated
guess” is made about the genre to which the video belongs, based on a
mapping of the extracted style attributes with those corresponding to
different prespecified genres. Experiments were reported using a number of
sequences which were to be classified in one of the following genres: news,
car races, tennis, commercials and animated cartoon. It is interesting to see
in which way the style attributes were related to a particular genre. For
instance, for a news program, the appearance of interchanging low- vs.
high-motion video segments is investigated. There, low-motion segments
correspond to anchorperson shots, which are separated by high-motion
report segments. Also, a distinction is made between the anchorperson and
some other “talking head” through the requirement that the periodically
appearing low-motion segments need to be visually similar. This is done by
computing and block-wise comparing the histograms of three subsequent
low-motion segments. On the other hand, tennis is a good example of how
audio can be used for detecting a video genre. As reported in [Fis95], a
tennis game has a highly pronounced structure of the audio stream,
characterized by interchanging “bouncing-ball” and speaker phases.

4.2.5 News-program analysis

We now move to high-level analysis of news programs. Due to their
defined “container” structure, these programs are popular targets for
developing content-analysis algorithms. The guiding objective when
developing such algorithms is that these must automatically recognize the
report structure of news programs and reach a topic-based organization of
the news material on the system level with maximally reduced human
interaction. While some of the proposed methods address this objective
directly, many of them concentrate only on certain semantic aspects of a
news program, which can be used at some later stages to reach the above
objective. Examples are given in [Fur95}, [Ari9%], where the detection of
anchorperson shots within a news program is performed.

Anchorperson shot detection using temporal shot characteristics

The approach to anchorperson-shot detection, presented in [Fur95], consists
of three major steps. In the first step, potential anchorperson shots are
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found based on the fact that these shots are more or less stationary,
compared to other shots within a news program. So, a shot is considered a
candidate anchorperson shot if the following two expressions are valid,
with u and o’being the mean and variance of discontinuity values

z(k,k+1), measured along a shot:

p <T
4.2.8)
c?<T,

c) d)

Figure 4.3: Spatial structure models of four different types of anchorperson shots
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The second step is performed by taking a candidate anchorperson shot and
analyzing the temporal changes in regions A, B and C, indicated on four
characteristic types of anchorperson shots in Figure 4.3. Changes between
consecutive frames along these shots are expected in frame regions where
the speakers are, that is, in regions A and B. Opposed to this, no motion
should be registered in regions C. These conditions can mathematically be
formulated as follows:

[JA>T3>O O'2A>T4>O
pp>T;>0 and o6%>T,>0 (42.9)
pe=0 cc~0

If a candidate anchorperson shot fulfills the conditions (4.2.9) for any
combinations of regions, as indicated in Figure 4.3, it can be considered as
an anchorperson shot.

Obviously, this procedure can also provide the information on the
anchorperson-shot type (e.g. one of the four types from Figure 4.3). In view
of this, after the first anchorperson shot is found, it is used to find all
anchorperson shots of the same type among the remaining candidates. This
is done by computing the average frame of the detected anchorperson
(model image) and by comparing it to average frames of candidate shots. The
second step of the procedure is repeated until model images of all
anchorperson-shot types appearing in a news broadcast are computed and
all anchorperson shots have been detected.

Anchorperson-shot detection using planar graphs

The method for anchorperson-shot detection proposed in [Ari96] uses the
results of shot boundary detection to detect the appearance of an
anchorperson. The first frame of each detected shot is extracted and
considered as a “cut point”. Then, a planar graph is formed with the cut
points as nodes and the shots as edges connecting each two nodes. Under
the assumption that each news report starts and ends with the same
anchorperson shot, a loop structure can be assumed within the obtained
graph, where each loop corresponds to a report starting from one node
(anchorperson) and ending in the same node. This is illustrated in Figure
4.4. Then, in order to detect all starting frames of anchorperson shots, nodes
forming the loop points need to be detected. For this purpose, a threshold is
defined and all nodes with distances smaller than the threshold are
considered as starting frames of anchorperson shots.
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Figure 4.4: “Cut points” and “loop points”

Recovering news-program structure by combining different media

An attempt to automatically recover the entire semantic structure of a news
broadcast can be found in [Hua99b]. The proposed approach for high-level
news analysis is based on utilizing cues from different media and has the
objective of recovering semantic segments from broadcast news at different
levels of abstraction. The authors observe a hierarchy of a typical news
program, which consists of four semantic levels. At the lowest level, a news
program can be split into news material and commercials. Then, within the
news material, anchorperson shots can be separated from shots taken
outside the studio. Here, the anchorperson shot usually introduces and
summarizes a report, which is followed by detailed reporting from a site. At
the next level, anchorperson shots and related shots from different sites can
be merged into reports.
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In order to recover the first hierarchy level, news is separated from
commercials by registering the changes in the audio-waveform, which are
mainly caused by the background music in the commercials. In the second
step, the news material is classified into segments corresponding to
anchorperson shots and the rest using text-independent speaker recognition
techniques. These techniques make it possible to distinguish an
anchorperson segment from background speech coming from other sources
(non-anchorperson shots) as well as from various audio segments (e.g.
music in commercials). This step is meant to use the detected anchor’s
identity to hypothesize about a set of report boundaries that consequently
partition the continuous text into adjacent blocks of text, each
corresponding to a single report. In further steps this helps in obtaining
higher levels of hierarchy by grouping the text blocks into reports.

4.2.6 Methods for analyzing sports programs

Instead of movies and news, some authors considered sports programs
when they developed high-level video-analysis methods. The analysis
approach presented in [Sau97] uses spatio-temporal features to classify the
video material of a basketball sequence in segments such as wide-angle and
close-up views, fast breaks, steals, potential scores, number of ball
possessions and possession times. For instance, shots are classified as wide-
angles and close-ups, by an investigation of their motion intensity. While
wide-angle shots are taken from a distance and are relatively stationary,
close-up shots are highly dynamic, since the camera only shows a small
portion of a scene and usually follows an object. The term “fast break” is
defined as a “fast” movement of the ball from one end of the court to the
other. In order to detect fast breaks, one accumulates the magnitude of the
motion vectors along a sequence in such a way that the accumulation is
reset to zero each time the motion changes direction. If the camera follows
the ball during a fast break, a long and persistent pan is registered in these
segments. Therefore, the search for fast breaks is actually the search for
extremely long segments in the accumulation curve between two reset
points. By exploring specific camera motion and lengths of corresponding
video segments, one can also characterize steals and ball-possessions.

Also, as referred to in [Sau97], a system is developed in [Gon95], that can
automatically parse TV soccer broadcasts. There, the standard layout of a
soccer field was used to classify the video material into nine different
categories, such as “around the left penalty line” or “near the top right
corner”.
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4.3 Automatically segmenting movies into
Logical Story Units

As already discussed in Section 4.1, we here present an approach for high-
level movie analysis which was developed with the objective to provide
semantically meaningful entry points into a movie. Although we envision
such entry points as boundaries between consecutive movie episodes,
detecting episode boundaries with great precision is difficult if only spatio-
temporal features are used. Approximates of movie episodes captured by
the boundaries detected using our approach are defined here as Logical
Story Units. We start this section by justifying the episode boundaries as the
meaningful semantic entry points into a movie. Then, we choose
appropriate low-level features and define the LSU-boundary procedure
such that the detected boundaries are as close to the actual episode
boundaries as possible.

4.3.1 Hierarchical model of a movie structure

We first define a hierarchical model of a movie structure, which consists of
three hierarchy levels, namely

e Shots
e Events
e Episodes

While shots are elementary “technical” temporal units of a video in general,
we define an event as the smallest semantic segment of a movie. Such an
event can be a dialog, an action scene or, generally, any series of shots
unified by location or dramatic incident. However, an event does not need to
be an unbroken series of consecutive shots; it can also alternate with
another event. This is often used in the process of movie generation to
represent several events taking place in parallel. Several alternating events
are, all together, a good example of the highest semantic segment, which
we define in this chapter as an episode. There, all events are unified by the
same chronological time frame of the story and form a rounded context,
which is in a certain sense separated from the neighboring contexts.

An episode does not need to be related to several events; it can also

concentrate on a single event. Since no shot within a movie is isolated but
semantically it always belongs to a certain part of the story, each shot can
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be said to belong to one or to another episode. This implies that a movie
can be understood as a concatenation of episodes. The hierarchical model of
the movie structure, involving shots, events and episodes, is illustrated in
Figure 4.5. There, we denote the fragment i of the event j by E/. The model
shows how an episode is built up around one movie event or around
several of them taking place in parallel. Thereby a shot can either be a part
of an event or it can serve for its “description” by, e.g., showing the scenery
where the next or the current event takes place, showing a “story telling”
narrator in typical retrospective movies, etc. In view of such a distinction,
we further refer to shots of a movie as either event shots or descriptive shots.

Descriptive shots

E; E; K Ey

»le »

Event shots

) Episode 1 T Episode 2 b Episode 3 i

Figure 4.5: Episodes 1 and 3 cover only one event and have a simple structure.
Episode 2 covers two events, presented by their alternating fragments.

Based on the above definitions, it can be said that if a movie is segmented
into episodes, each boundary between two consecutive episodes provides
an entry point into a new global segment of a story, having a rounded
context and therefore being suitable for retrieval separately from the rest of
the movie.

4.3.2 Definition of LSU

We now define the procedure of detecting the LSU boundaries such that
they closely approximate the actual episode boundaries. In order to do this,
we first analyze the characteristics of an episode and investigate the
possibilities to efficiently capture them using suitable features.

It can realistically be assumed that an event is related to a specific location
(scenery) and to certain movie characters. In other words, every now and
then within an event similar visual content elements (scenery, background,
people, faces, dresses, specific patterns, etc.) appear, and some of them
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even appear repeatedly. Since an episode is built around events, the same
can be assumed for an episode as well; it is either related to only one event
or to several of them alternating in time:

Assumption: An episode can generally be characterized by a global
temporal consistency of its visual content, that is, by good matches of its
visual-content elements found anywhere within a certain limited time
interval.

According to this assumption, approximate episode boundaries can be
found by investigating the temporal behavior of visual low-level features.
In this sense, we define the LSU as follows:

An LSU is a series of temporally contiguous shots which is characterized by
overlapping links that connect shots with similar visual content elements.

Since the definition of an LSU is based only on an assumption about the
episode characteristics, which is not always fulfilled, the LSU boundaries
do not exactly correspond to the episode boundaries in some cases. We will
now explain some of the most characteristic problematic cases in view of
the LSU definition and the movie-structure model in Figure 4.5.

Episode
boundary

a b cdie|lflg h ij
LSU(m) LSU(m+1)

Displaced
boundary

Spread
boundary

Figure 4.6: Possible differences between an LSU and an episode boundary.

For this purpose, we first investigate a series of shots 4 to j, as illustrated in
Figure 4.6. Let the boundary between episodes m and m+1 lie between
shots e and f. We now assume that the shot e, although belonging to the
episode m, has a different visual content than the rest of the shots in that
episode. This can be the case if, e.g., ¢ is a descriptive shot, which generally
differs from event shots. Consequently, the content consistency could be
followed by overlapping links in the LSU(m) up to shot d, so that the LSU
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boundary is found between shots d and e. If the shot ¢ contains enough
visual elements also appearing in the episode m+1 so that a link can be
established, e is assumed to be the first shot of the LSU(m+1) instead of shot
f. This results in a displaced episode boundary, as shown in Figure 4.6.
However, if no content-consistency link can be established between shot e
and any of the shots from the episode m+1, another LSU boundary is found
between shots e and f. Suppose that f is a descriptive shot of the episode
m+1, containing a different visual content than the rest of the shots in that
episode, so again no content-consistency link can be established. Another
LSU boundary is found between shots f and g. If the linking procedure can
now be started from shot g, it is considered to be the first shot of the new
LSU(m+1). In this case, not a precise LSU boundary is found but one that is
spread around the actual episode boundary, where all places where the
actual episode boundary can be defined are taken into consideration.
Consequently, the shots e and f are not included in the LSUs, as shown in
Figure 4.6.

We now proceed to define the LSU analytically, using the illustration of the
LSU definition in Figure 4.7. The basis of the definition of an LSU given
above is that a visual dissimilarity between two video shots can be
measured. For now we assume that the dissimilarity D(kk+l) between the
shots k and k+! is quantitatively available. Then, three different cases can be
distinguished, depending on the relation of the current shot k and the m-th
LSU.

LSU (m) - LSU(m+])

K

ky kytpy ky-ps ky ky+p, ks

Figure 4.7: lllustration of LSUs characterized by overlapping links connecting
similar shots
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Case 1: Visual content elements from shot k, reappear (approximately) in
shot k; +p,. Then, shots k; and k, +p, form a linked pair, illustrated in
Figure 4.7 by the arrow. Since shots k, and k, +p; belong to the same
LSU(my), consequently all intermediate shots also belong to LSU(m):

[k, k +ple LSU(m) if p, < ] r{ﬁn D(k,, k; +1) < T(k;). 43.1)
=1,...c

Here c is the number of subsequent shots (look-ahead distance) with which
the current shot is compared to check the visual dissimilarity. The
threshold function T(k) specifies the maximum dissimilarity allowed within
a single LSU. Since the visual content is usually time-variant, the function
T(k) also varies with the shot under consideration.

Case 2: There are no subsequent shots with sufficient similarity to shot k,,
i.e. the inequality in (4.3.1) is not satisfied. However, one or more shots
preceding shot k, link with shot(s) following shot k, (see Figure 4.7). Then,
we enclose the current shot by a pair of shots that belongs to LSU(m), i.e.

ky — p3.k, + p,1€ LSU(m)

if (p;,p,>0)<=  min min  D(k, -1k, +1) < T(k,).
1=1,...rl=—i+1,...,c

43.2)

Here r is the number of shots to be considered preceding the current shot
k, (look-back distance).

Case 3: If for the current shot k; neither (4.3.1) nor (4.3.2) is fulfilled, and if
shot k; links with one of the previous shots, then shot k; is the last shot of
LSU(m). This can also be seen in Figure 4.7.

4.3.3 Novel approach to LSU boundary detection

The objective is to detect the boundaries between LSU’s, given the
definition of an LSU and the concept of linking shots described by Cases 1-
3 from the previous section. In principle one can check equations (4.3.1)
and (4.3.2) for all shots in the video sequence. This, however, is
computationally intensive and also unnecessary. According to (4.3.1), if the
current shot k is linked to shot k+p (link between shots (a) and (b) in Figure
4.8), all intermediate shots automatically belong to the same LSU, so they
need not to be checked. Only if no link can be found for shot k (shot (c) in
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Figure 4.8), it is necessary to check whether at least one of r shots preceding
the current shot k can be linked with a shot k+p (for p>0, as stated in
(4.3.2)). If such a link is found (link between shots (d) and (e) in Figure 4.8),
the procedure can continue at shot k+p; otherwise shot k is at the boundary
of LSU(m) (shot (e) in Figure 4.8). The procedure then continues with shot
k+1 for LSU(m+1).

LSU(m) LSU(m+ 1)

Figure 4.8: Dlustration of the LSU boundary-detection procedure. The shots
indicated by (a) and (b) can be linked and are by definition part of LSU(m). Shot
(c) is implicitly declared part of LSU(m) since the shot (d) preceding (c) is linked to
a future shot (e). Shot (e) is at the boundary of LSU(m) since it cannot be linked to
future shots, nor can any of its r predecessors.

In order to determine whether a link can be established between two shots,
we need the threshold function T(k). We compute this threshold
recursively from already detected shots that belong to the current LSU. For
this purpose we define the content inconsistency value u(k) of shot k as the
minimum of D(k,n) found in (4.3.1) (or in (4.3.2) if (4.3.1) does not hold),
that is

D(k,,k, + p;) if (4.3.1) holds
u(k) = . (4.3.3)
D(k, — ps,k, +p,) if (43.2) holds
Then the threshold function T(k) we propose is:
a |
T(k)= ulk—i)+u (4.3.4)
N, +1 ; °
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Here o is a fixed parameter whose value is not critical between 1.3 and 2.0.
The parameter N, denotes the number of links in the current LSU that have
led to the current shot k, while the summation in (4.3.4) comprises the shots
defining these links. Essentially the threshold T(k) adapts itself to the
content inconsistencies found so far in the LSU. It also uses as a bias the
last content inconsistency value u, of the previous LSU for which (4.3.1) or

(4.3.2) is valid.
3 key frames

2 key frames

P
~

Figure 4.9: Comparison of shot k with shot n by matching HxW blocks from each
key frame of shot image k with shot image n. Shot k had 2 key frames and shot n
had 3 key frames.

4.34 Inter-shot dissimilarity measure

The LSU detection algorithm and the computation of the threshold function
require the use of a suitable dissimilarity function D(k,n). We assume that
the video sequence is segmented into shots, and that each detected shot is
represented by one or multiple key frames so that its visual information is
captured in the best possible way.
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For each shot, all key frames are merged in one large variable-size image,
called the shot image, which is then divided into blocks of HxW pixels. Each
block is now a simple representation of one visual-content element of the
shot. Since we cannot expect an exact shot-to-shot match in most cases, and
because the influence of those details of a shot’s visual content which are
not interesting for an LSU as a whole should be as small as possible, we
choose to use only those features that describe the blocks globally. In view
of this we only use the average color in the L*1*v* uniform color space as a
block feature.

For each pair of shots (k,n), with k<n, we would now like to find the
mapping between the blocks b, and b, each being an HxW block from the
shot image k and , respectively, such that

e each block b, in a key frame of shot image k has a unique correspondence
to a block b, in shot image n. If a block b, has already been assigned to a
block b, of a key frame belonging to shet image k, no other block of that
key frame may use it. All blocks b, are only available when a new key
frame of shot k is to be matched. Figure 4.9 illustrates this in more detail.

o the average distance in the L*u*v* color space between corresponding
blocks of the two shot images is minimized:

all possible bﬂrolilﬂombinations all t%ljgbk ! bn ) @3)
where
* * 2 * * 2 * * 2
d(bk,b,,)=,/(L b)-L @, )) +(u (b)—1' (b, )) +(v (b)-v' (b, )) 436)

and where all possible block combinations are given by the first item.
Unfortunately this is a problem of high combinatorial complexity. We
therefore use a suboptimal approach to optimize (4.3.5). The blocks b, of a
key frame of shot k are matched in the unconstrained way in shot image n,
starting with the top-left block in that key frame, and subsequently
scanning in the line-fashioned way to its bottom-right block. If a block b,
has been assigned to a block b,, it is no longer available for assignment until
the end of the scanning path. For each block b, the obtained match yields a
minimal distance value, d,(b,). This procedure is repeated for the same key
frame in the opposite scanning fashion, i.e. from bottom-right to top-left,
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yielding a difference mapping for the blocks b, and a new minimal distance
value for each block, denoted by d,(b,). On the basis of these two different
mappings for a key frame of shot k and corresponding minimal distance
values d,(b) and d,(b) per block, the final correspondence and actual
minimal distance d_(b,) per block is constructed as follows:

. d(b)=db), if d(b)=db,) (437)

o d (b)=4d(b,),if d(b)< d(b) and d,(b) is the lowest distance value
measured for the assigned block in the shot image n (one block in shot
image 7 can be assigned to two different blocks in a key frame of shot k:
one time in each scanning direction) (4.3.7b)
d_(b) = © , otherwise. (4.3.7¢)

e d(b) =d(b),if d(b)< d(b) and d,(b) is the lowest distance value
measured for the assigned block in the shot image n (4.3.7d)
d (b) = o0 , otherwise. (4.3.7¢)

where 90 stands for a fairly large value, indicating that no objective best
match for a block b, could be found. The entire procedure is repeated for all
key frames of a shot k, leading to one value d_(b,) for each block of a shot
image k. Finally the average of the distances d_(b,) of the B best-matching
blocks (those with lowest d_(b,) values) in the shot image k is computed as
the final inter-shot dissimilarity value:

D(k,n)= 1 Z d,(b,) (4.3.8)

B best matching
blocks

The reason for taking only the B best-matching blocks is that two shots
should be compared only on a global level. In this way, we allow for
inevitable changes within the LSU, which, however, does not degrade the
global continuity of its visual content.

4.3.5 Experimental validation

We illustrate the performance of the proposed LSU boundary-detection
approach with the example of two full-length movies which belong to quite
different categories in view of their dynamics and the variety of their
contents. The objective of the evaluation is to compare the obtained LSU

90




boundaries with the actual episode boundaries and to investigate the
consistency of results for both different types of movies.

Establishing the ground truth

In order to evaluate the performance of our segmentation procedure, we
need reference episode boundaries, serving as a ground truth. Generally,
such reference boundaries can be obtained if the information about the
movie generation process is available, i.e. the movie script. Since such
information was not available for our tests, the first step in the evaluation
procedure was to obtain a set of reference boundaries which (closely)
correspond to the ground truth. This was done by a number of test subjects,
who manually segmented both movies in units which they believed to be
episodes. The obtained segmentation results differed mainly in the number
of episode boundaries that were detected; this was especially noticeable in
the complex movie segments and can be explained by the fact that each
subject perceived that episode to be constructed differently. On the basis of
manual segmentation results, we defined two different classes of episode
boundaries

e  Probable boundaries — registered by all test subjects
e  Potential boundaries — registered by some of the test subjects

In total, 19 probable and 17 potential boundaries were detected for the first
movie and 26 probable and 16 potential boundaries for the second one.
Since the probable boundaries were those all test subjects had selected, we
considered them to be fundamental, and relevant for evaluating our
detection method. This is not the case with potential boundaries, and they
are, therefore, not considered in the boundary set belonging to the ground
truth.

Parametrizing the LSU-boundary detection procedure

After establishing the ground truth, we had our algorithm perform the
automatic segmentation of the movies for different values of parameters B
and a. Thereby, we limited the range of the parameter a only to [1.4-1.5],
while B, here expressed as a percentage of the total number of blocks in a
shot, varied in the range 40-70%. We learned that taking less than 30% of
the blocks makes the inter-shot comparison too coarse. On the other hand,
more than 70% makes the comparison too detailed. Although both
parameters determine the sensitivity of the detection procedure and,
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consequently, also the number and positions of detected boundaries,
parameter B is more interesting since it defines the limits of inter-shot
comparison, concerning both the amount of detail taken into account and
how “global” this comparison should be. On the other hand, we left the
parameters c and r, defined in (4.3.1) and (4.3.2), constant at values ¢=8 and
r=3, since the segmentation results were fairly insensitive to the setting of
these parameters. We represented each shot by two subsampled key
frames, taken from the first and last shot segment. Dimensions of key
frames were 88x72 and 80x64, and the parameters H and W determining
the size of the blocks to compute (4.3.8) were chosen correspondingly, as 8.

Evaluation

We now evaluate the performance of the detection algorithm for each
parameter pair (B, a). In view of the possible tolerable displacements
between an LSU and the corresponding episode boundary (Figure 4.6), we
consider here an automatically obtained LSU boundary as properly
detected if it was close enough to the one detected manually. For this
purpose we set the maximum tolerable distance to 4 shots. Any other
automatically detected boundary was considered to be false. Also, if no
LSU boundary was detected within 4 shots of the actual episode boundary,
it was considered missing.

In order to quantitatively estimate the quality of the automated boundary
detection for a certain parameter combination (B, a), we used the following
expression:

Q- Properly detected probable boundaries

- (4.3.9)
1+ Falsely detected boundaries

The parameter Q denotes the quality of the boundary detection, depending
on the number of properly detected LSU boundaries and the number of
falsely detected ones for a given parameter combination. As it will be
shown by the obtained experimental results, the quality parameter Q is
rather sensitive to the number of falsely detected boundaries. This was also
the main intention when we defined the function (4.3.9), since the objective
of the detection procedure, presented in this section, is to provide
semantically meaningful entry points into a movie. Such points can only be
found at properly detected boundaries, while the number of falsely
detected ones needs to be kept low. After computing the quality parameter
Q for each parameter combination (B, o) belonging to ranges defined
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above, we sorted all values of Q and ranked them in descending order. The
parameter combination having the largest Q gets the rank “1”. Parameter
combinations having the same value of Q are assigned the same rank.

MOVIE 1 MOVIE 2 Oversl
Quality
B,a i Ranking
Detected Detected Falscly Quality Detected Detected Falsely Quality
probable Lpolcilllgl R dclccw_d Ranking probab!c potential R de(e)cle_d ranking
(out of 19) (outof 17) (ot of 26) (out of 16)
40,14 11 2 0 2)_ 13 6 4 (6) ()
40, 1.5 9 1 0 3) 13 5 3 @) 3)
50, 1.4 12 3 0 1) 19 4 2 3) a_
50, 1.5 11 1 0 (2) 18 4 3 4) 2)
60, 1.4 14 4 1 (4 19 4 2 3) 3)
60,15 12 4 1 (6) 19 5 1 ) )
70, 14 14 6 p) ) 21 4 1 0 (35)
70, 1.5 13 4 1 () 20 7 4 5) (6)

Table 4.1: LSU boundary-detection results for different parameter settings. Bold
numbers indicate the parameter combination providing the optimal overall
detection performance. Combinations with the same Q values have been assigned
the same ranking.

The first column of Table 4.1 shows all parameter combinations (B, o) used
in the experiments. The other columns show for each of the movies the
number of probable and potential boundaries that were detected, the
number of false alarms and the ranking for each parameter combination
according to the computed detection quality Q. In the final step, ranks of
all pairs (B, o) obtained for both movies have been added up and the
obtained results have been sorted in ascending order. The parameter
combination with the lowest sum of two ranks was assigned the overall
rank “1” and considered as the optimal combination for both movies.

As shown by the overall ranking list in the last column of the table, the best
performance for both movies is obtained when 50% of blocks are
considered for computing the overall inter-shot difference value and when
the threshold multiplication factor o is 1.4.It can also be observed that the
quality of a parameter combination decreases the more it differs from the
optimal parameter set. This is mainly due to the influence of parameter B:
if less blocks are taken into account when (4.3.8) is computed, the inter-shot
comparison becomes too global, resulting in an unacceptably low number
of detected boundaries. On the other hand, the large number of blocks
considered in (4.3.8) can make the boundary detection too sensitive,
resulting in an increased number of falsely detected boundaries.
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For the chosen optimal parameter combination B=50% and a =1.4, the
average percentage of detected probable boundaries is 69%, with only 5% of
false detections. This is compatible with the requirement that, while as
many boundaries as possible are properly detected, the number of falsely
detected boundaries should be kept low, since they do not correspond to
semantically meaningful entry points into the movie. However, absolutely
seen, the obtained total percentage of 69% of properly detected boundaries
for the optimal parameter combination is low. This is mainly the
consequence of insufficient changes of visual features at certain episode
boundaries or, in other words, of having two consecutive episodes each
containing mutually similar visual content.

Table 4.1 also shows that the efficiency of the algorithm concerning the
detection of probable and potential boundaries is not the same. The higher
percentage of probable boundaries that were detected can be explained by
the fact that those boundaries were characterized by a radical change of the
scenery, which could easily be recognized by the algorithm. On the other
hand, most of the potential boundaries were marked by some of the users
in highly complex parts of the movies, where clearly distinguishing
different episodes was a difficult task. Since our assumption about the
temporal consistency of the visual content within an episode, i.e. its change
at an episode boundary, was often not fulfilled in such complex movie
segments, no good detection performance could be expected there.

4.4 Detecting anchorperson shots in
news programs

A typical news report consists of one or several consecutive segments, each
of them containing one or several concatenated video shots and belonging
to one of the following categories:

¢ An anchorperson shot
¢ A news shot series (e.g. a series of shots taken by a reporter on a site,
outside the studio)

Although the commercial segments can also be found in many news
broadcasts, we do not consider them here, since they can easily be detected
and separated from the actual news program by using any of the
approaches proposed in recent literature (e.g. [Liu98]). In order to recover
the next semantic level of a news-program structure, we must first classify
the entire news material into one of the above two categories. Such
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classification is required since the beginning and the end of an
anchorperson shot represents a potential report boundary which cannot be
determined otherwise, e.g. by just analyzing the audio track of a news
broadcast. After the classification is completed, the reports can be formed
by merging related anchorperson shots and news shot series. A method to
recover the report structure in this way can be found in [Hua99b]
(explained in Section 4.2).

In this section, we concentrate on the problem of automatically detecting
anchorperson shots in an arbitrary news program and propose a new
approach for performing this operation. Compared to already existing
anchorperson-shot detection methods described in Section 4.2, we believe
our method can yield an increase in detection robustness, mainly due to the
minimized usage of different thresholding parameters and, at the same
time, maximal exploitation of inherent properties of the news program
structure, related to anchorperson shots.

4.4.1 Assumptions and definitions

We base our anchorperson shot detection approach on the assumption that
an anchorperson shot is the only type of video shots in a news program
that has multiple matches of most of its visual content along the entire
news program. Other (news) shots may match well only in their closest
neighborhood (e.g. within a single report) where they can eventually find
enough similar visual features. Such an assumption is realistic due to
specific visual characteristics of anchorperson shots and their regular
appearance along a news sequence. We also assume that the first
anchorperson shot k,, in a news program containing S video shots certainly

appears within the interval [1, N], where N<S is assumed to be around 5
shots. In order to make the detection as robust as possible, we took into
account different types of anchorperson shots, including non-stationary
ones. We introduce now the following definition:

Anchorperson shots are visually characterized by studio background and by
one or two news readers sitting at the desk, appearing separately or together,
also with some possible variations of a camera angle and the magnitude of a
zoom. These shots can be static or dynamic (containing some camera
operations like zooming or panning). They all generally contain a certain
(high) percentage of the same or similar visual features.
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During the detection procedure we compare video shots based on their key
frames. Hereby, we assume that, prior to the anchorperson shot detection
procedure, a news sequence has already been segmented into video shots,
and that each shot is represented by a visual abstract consisting of a limited
number of key frames. The proposed anchorperson shot detection
approach consists of two steps:

e A threshold-free procedure of finding the sequence-specific template
for anchorperson shots,

e Using the template to detect all anchorperson shots in a sequence by
applying adaptive thresholding.

All video shots of a news sequence

-
<%

A\

First anchorperson shot Other anchorperson shots

Figure 4.10: Obtaining a dissimilarity values set for the shot k

4.4.2 Finding a template

Based on assumptions made above, we start the procedure for finding the
anchorperson- shot template by matching each shot k € [1,N], N<S, with all
other news shots 7 € [k + Ak, S], as shown in Figure 4.10. In this way, a set
of dissimilarity values {D(k, k + Ak ), ..., D(k,S)} is obtained for each shot k.

The dissimilarity measure used here to compute values D(k,n) compares
two shots on basis of their abstracts (key frames) and is the same as the one

used in the previous section. The “security” interval [k, k + Ak ] serves to
avoid a possible good match of a news shot with its surrounding shots and,
consequently, to separate the shot k,, even stronger from the rest. For each
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shot ke [1, N] we now take the P best matches (lowest values) from the set
of dissimilarities and average them to compute the overall matching value.
The shot with the lowest overall matching value is assumed to be an
anchorperson shot, and is used as the template for finding all other
anchorperson shots of a news sequence. With k. ; . being the j-th of the P

shots, between which and the shot k; the lowest dissimilarity D is
measured, we find the shot k,, using the following expression:

P
kyp <= miinz Dk Kpmins ) (44.1)

=1

44.3 Template matching

After the template has been found, again the inter-shot dissimilarity metric
D(k,n) is used on all shots of a sequence to test which are anchorperson
shots. Low dissimilarity values will be obtained when the template is
matched with another anchorperson shot. For each shot k of a sequence we
now define its similarity with the template shot as

1

s(k)= D(temp, k)

(44.2)

whereby D(temp k) is the dissimilarity between the template temp and the
shot k. In order to perform the detection of anchorperson shots
automatically, we use the similar adaptive threshold T(k) as in the previous
chapter, defined here as the function of the similarity (4.4.2):

Ny
T(k) = Nf‘” [Z s(k—i>+s0} 043)

Here o is again a fixed threshold parameter, as in the previous section.
The parameter N, denotes the number of shots until k and since the last
detected anchorperson shot. It also uses the similarity value s, computed

before the last detected anchorperson shot as a bias. For each shot k, a value
s(k) is available as well as the threshold value T(k). An anchorperson shot is
detected when s(k)>T(k).
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444 Experimental validation

We now illustrate the performance of the developed algorithm on the
example of two news sequences produced by different broadcasting
companies and having the following global characteristics:

e Sequence 1: 12 minutes long, 5 anchorperson shots, one news reader,
first appearance in the first sequence shot,

e Sequence 2: 25 minutes long, 17 anchorperson shots, two news readers,
first appearance in the third sequence shot.

We represented each video shot by two subsampled key frames with sizes
165x144 for Sequence 1 and 180x144 for Sequence 2. The parameter setting for
both sequences was N=5, P=3, ak=25 and « =3.1. For computing the inter-
shot differences (4.3.8) we chose the dimensions of the blocks in shot
images H=W=8 and found 70% of all blocks in a shot image to be a good
value for B. With this parameter setting we will now evaluate each of the
two steps separately.

RELATIVE | TOTAL NUMBER DETECTED FALSE
DISTANCE OF ANCHORPERSON | DETECTIONS
S(y,A) | ANCHORPERSON SHOTS
’ SHOTS
Sequence 1 73 % 5 5 0
Sequence 2 17 % 17 17 1

Table 4.2: Reliability evaluation of the template finding procedure and AP
detection results

On both sequences we applied the template-finding procedure and
managed to find the proper template for each of them. Figure 4.11 shows
the matching results of two template-candidates along the Sequence 2. We
then measured the relative distance

o(y,A) = 100(% - 1)% (4.4.9)

between the chosen minimum overall matching value 4 corresponding to
the template, and the second smallest matching value y corresponding to
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the major other competitor shot for template selection. The larger the
relative distance, the more reliable is the found template. Table 4.2 shows in
its second column these relative distances for both sequences. The lower
relative distance in the second sequence is most probably the result of the
particular sequence structure, which shows an introduction for the coming
reports after the first anchorperson shot. This introduction contains very
similar visual information as the shots in the later parts of that sequence,
which partially violates the assumptions made at the beginning of this
section.
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Figure 4.11: Results of the matching procedure for two different templates
ke[1,N] and shots [k + Ak, S]

We then matched the found templates along the corresponding sequences
to detect all anchorperson shots. The results of the template-matching
procedure are given in the third and fourth column of Table 4.2 in terms of
missed and false detections. Only one shot of Sequence 2 was falsely
interpreted as the anchorperson shot. This shot featured an interview
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between the news reader and a reporter outside the studio. Both the news
reader and the reporter were positioned within their “windows” and the
background of the screen in terms of its color composition fully
corresponded to the studio background found in regular anchorperson
shots. Similar color compositions were, thus, the most probable reason for a
falsely interpretation of this shot as a regular anchorperson shot.

An idea about the robustness of the method presented in this section can be
obtained by analyzing the types of anchorperson shots detected by each of
the templates, and the visual content of a template itself. The first sequence
contained three different variations of an anchorperson shot with one news
reader. In some cases, the news reader was on the left side, zoomed in or
zoomed out, with a news icon in the top right corner. In one of the shots,
the news reader was in the middle of the screen and no news icon was
present. This shot was also chosen as the template for Sequence 1.
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Figure 4.12: Detection diagram for Sequence 2 and o =3.1
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All 17 anchorperson shots from Sequence 2 were distributed as follows: 13
of them show the first (7 shots) or the second (6 shots) news reader on the
right side of the screen with a news icon on the opposite side, 2 of them
show the first news reader in the middle of the screen and no news icon,
and 2 of them show both news readers together from two different camera
positions. Two anchorperson shots were highly dynamic and characterized
by a strong zoom from the studio to a news reader. As the template, one of
the shots showing the first news reader on the right side of the screen was
chosen.

Reliability of the detection process can be evaluated by analyzing the
heights of the detection peaks in s(k) curves. One such curve,
corresponding to the second sequence, is shown in Figure 4.12 together
with the adaptive threshold T(k).

4.5 Discussion

As already mentioned in the introduction to this chapter, the need for tools
capable of automatically managing large amounts of information will
steadily become larger with increasing volumes of video contents stored in
emerging video archives. A high level of sophistication is required by such
tools, since video material needs to be analyzed at the semantic level. The
examples described in Section 4.2, as well as the methods for high-level
analysis of movies and news in Sections 4.3 and 4.4, respectively, have
shown a high potential of the low-level feature space in recovering the
semantic information. This potential needs to be further exploited in the
future.

In Section 4.3 an approach was presented for automatically segmenting
movies into units which closely approximate actual movie episodes. The
segmentation is based on an investigation of the visual content of a movie
sequence and its temporal variations, as well as on the assumption that the
visual content within a movie episode is temporally consistent.
Consequently, an LSU is defined on the basis of overlapping links, which
connect shots with similar visual content. We determine whether a link
between two shots exists or not by applying an adaptive threshold function
to shot dissimilarities. Based on the assumptions and definitions made in
Section 4.3, the number of missed episode boundaries for a particular
movie primarily depends on the degree with which an episode boundary
corresponds to a large discontinuity in the global visual content flow.
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Similarly, the number of falsely detected boundaries is directly related to
the global temporal consistency of the visual content within an episode.

Regarding the results in Table 4.1, it can be seen that, although the
percentage of the detected LSU boundaries is relatively low, the large
majority of all detected boundaries indeed provide meaningful entry
points into a movie. This is because the percentage of non-meaningful
entries (falsely detected boundaries) is low. Since this corresponds to the
objective of the approach, the results obtained for the optimal parameter
combination can be considered good. A strong improvement of the
performance, in terms of increasing the percentage of properly detected
boundaries, is not possible by using only the visual information. We expect
that involving of the audio-track analysis into the proposed procedure will
be helpful. Also, the results of applying the algorithm to two movies
belonging to quite different movie categories did not differ much,
indicating that the detection performance, and therefore also the defined
LSU model, are sufficiently consistent for different types of movies. And,
finally, as the proposed technique computes the detection threshold
recursively, and only looks ahead at a limited number of shots, the entire
process, including the shot-change detection, key-frame extraction, and
LSU boundary detection, can be carried out in a single pass through a
sequence.

Reports in a news program can be considered equivalent to episodes in a
movie, since they can also be retrieved separately from the news program
due to their rounded context. In this sense, a report boundary is the same
type of a meaningful entry point into a news program as the episode
boundary is for a movie. However, while episode boundaries can
approximately be determined by investigating only the visual content of a
movie, this cannot be said for the report boundaries. This is due to the fact
that a news report is composed out of “lossy” shots, describing the report
topic from different aspects and having generally a totally different visual
content. Besides this, also no visual content can be related to a certain topic.
An example for this is a report about a soccer match consisting of 4 higher-
level segments: an anchorperson shot characterized by a news reader and a
studio background, a series of shots from the soccer field, another
anchorperson shot and the series of shots showing the press conference.

The furthest we can get by analyzing only the visual content of a news
program is detecting the anchorperson shots. This is because anchorperson
shots are characterized by a relatively constant visual content along the
entire news program. A technique developed for the detection of
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anchorperson shots was demonstrated in Section 4.4. As shown by
experimental results, the detection can be performed with acceptable
reliability under the given assumptions. The most important assumption is
that no shot of a news sequence other than anchorperson shot can be used
to find P good matches along the entire sequence. And indeed, a definite
probability for failure of this condition can be the major reason for lowering
the algorithm’s robustness in a general case, which can be observed on a
lower relative distance for the second sequence in Table 4.2. We believe
that this problem can be solved by further improving the inter-shot
dissimilarity metric so that different types of anchorperson shots are
distinguished better from the rest of the sequence, while at the same time it
allows for variation among these types.
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Chapter 5

Trends in Image Coding;:
The “Fourth Criterion”

5.1 Introduction

For a long time, a considerable scientific and technical effort has been
invested in the development and improvement of high-quality image
CODECs’ with respect to three important classical criteria

e minimization of bit rate

e minimization of image distortion

e reaching balanced/low computational costs on both the encoder and
decoder side.

However, many recent developments and technical achievements in the
field of multimedia signal processing have created applications for which
the existing and widely used image CODECs may no longer be optimal.
For instance, during an image classification or a query procedure, a large
number of image comparisons needs to be performed, based on any of the
criteria specified by user. As discussed in previous chapters of this thesis,
the user’s cognitive criteria, on the basis of which the image classification or
query is to be performed, need to be transferred to the domain of spatial
image features. This may require various image analysis operations for
feature extraction (e.g. texture extraction, edge detection, shape-
information extraction by image segmentation, image or image-region
histogram computation). For many of these operations access to the full-

"CODEC is a common abbreviation for a joint COder-DECoder system.
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resolution spatial image content is needed, which is not a problem if the
images in a database are available in their uncompressed (e.g. RGB or
YUV) format. However, due to large information volumes, databases are
likely to contain compressed images, where in most cases currently available
image encoders based on image transformations such as DCT (JPEG),
subband or wavelet are used.

Compressed

image

decompression [

|
.

Feature
extraction

Existing CODECs |

JPEG
JPEG 2000
Subband

Access to
ial content

Partial image
decompression
(e.g. DC images)

Extraction of
> content
L descriptors

Image

Figure 5.1: Current possibilities to reach the spatial content in compressed images:
a) full image decompression, b) feature extraction in compressed domain, c) partial
image decompression, d) content access using content descriptors (MPEG-7)

In principle, there are several possibilities to reach spatial image content in
images, which are compressed using these encoders. These possibilities are
given in Figure 5.1. The first possibility is to decompress an image and then
to perform any feature-extraction operation. The disadvantage of this
option is that the complexity of the decompression procedure, when
combined with a large number of images in a database, can negatively
influence the efficiency of the interaction with a database to a large degree.
We can illustrate the complexity of the decompression procedure with the
example of the JPEG CODEC: decompressing a JPEG image involves a
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series of operations such as Huffman decoding, run-length decoding, Zig-
Zag decoding, dequantization, DPCM decoding of DC coefficients and the
block-wise inverse DCT.

In order to avoid full image decompression, one can attempt to develop
algorithms for extracting spatial features from compressed images directly.
Results are reported in [Smi94] on using the properties of an image signal
in the transform domain (DCT, Subband transform, Wavelet transform) to
approximate texture features. Transformed signal properties used are, for
instance, energies or first-order moments in each subband. In general,
considerable research has been done in compressed-domain image
processing and manipulation. Some characteristic approaches developed
for this purpose can be found in [Smi93], [Cha95a] and [Cha95b]. The
proposed algorithms are reported to perform efficiently, which was to be
expected with respect to some specialized applications. However, the
compressed-domain approaches show some inherent disadvantages. First,
algorithmic solutions proposed are not universal, meaning that for each of
the current and newly introduced compressed formats different algorithms
are to be developed and applied. Second, since currently available and
widely used image encoders are not designed with the objective to ease the
access to spatial information in the compressed domain, there are limits in
developing the algorithms mentioned above for reaching all possible
features which may be required for image-database operations. Even if
such algorithms can be developed, their complexity is likely to be greater
than the one involving image decompression and performing the feature
extraction on “raw” images.

Another alternative to full image decompression is partial decompression.
For instance, a JPEG encoder allows an easier access to a low-resolution
(subsampled) image version, as shown in Figure 5.2 on the example of a
“Lena” image. The subsampled version obtained from a JPEG-compressed
image consists of collected DC coefficients of all DCT image blocks, and can
be obtained after performing the JPEG-decompression steps preceding the
inverse DCT. In this way, some global aspects of the spatial image content
can be obtained by avoiding the complex procedure related to the inverse
DCT. Although the image content is perceptually recognizable when one
looks at the subsampled version of an image, the possibilities for
performing image analysis and processing operations on the subsampled
image are limited. This is mainly due to missing high-frequency
components and small dimensions of subsampled image versions (e.g.
eight times smaller height and width in case of the JPEG-DC image).
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Figure 5.2: Subsampled versions of the original image, which are obtained after
partial image decompression

Another possibility for getting access to the spatial content on compressed
images more easily is to extend current compression standards by “content
descriptors”, which is, for instance, done in MPEG-7 [ISO97]. The
descriptors can be of various types, and are available as a “side
information” to compressed image streams; they are meant to represent
certain aspects of the spatial image content. Then, any query or
classification operation on images from a database can be performed using
the weakly coded descriptors, without any need for decompressing the
images themselves. This alternative has the disadvantage that the
descriptors reveal only certain aspects of the spatial image content and
cannot take into account all possible image features required for an
arbitrary query or classification scenario, applied to a database. Thus, while
it is highly practical for specific applications, this alternative is not
sufficiently general to ensure unconstrained interaction with an image
database.

As discussed above, there are clear limitations where it concerns efficiently
accessing the spatial content in images compressed using currently
available and widely used CODECs. For this reason we see the
development of new image CODECs having an additional optimization
criterion, namely taking into account the spatial-content accessibility, as the
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most appealing long-term solution for maximizing the efficiency of
interaction with an image database. The proposal of a novel image CODEC
which complies with this solution is the main objective of this chapter.

In Section 5.2, we first describe the basic principles on which the proposed
CODEC is based. Then, all the components of the CODEC scheme are
defined in Section 5.3, which is followed by performance evaluation in
Section 5.4 and a discussion to this chapter in Section 5.5.

5.2 A concept of an alternative image CODEC

The need for considering an additional fourth criterion in a CODEC-
development procedure has already been pointed out several years ago
[Pic95a], [Pic95b]. New image CODECs envisioned there need to be
developed, where not the bit rate, distortion and computational costs must
be taken into account, but also the minimization of the content access work
[Pic95b]. However, still no concrete proposal has been made with respect to
a practical way of considering the fourth criterion during a CODEC
development.
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Figure 5.3: Scheme of an image CODEC based on vector quantization
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We approach this development by considering the following issues. First,
the investigation of transform-based CODECs in the previous section has
shown that the image transformation applied there (DCT, subband,
wavelet) is one of the major obstacles in reducing the complexity of
accessing the spatial image content. Therefore, here we concentrate on
spatial-domain image compression techniques, examples of which are Vector
Quantization (VQ) [Ger92] and Fractal Image Compression [Jac92]. Second,
it is not realistic to expect that a full-resolution spatial image content is
available in the compressed domain if a good compression ratio needs to be
obtained. This is simply because of the fact that the compression is based
on reducing the redundancy and the irrelevancy of this content, so that
only non-redundant and relevant content components are available in the
compressed format. However, in order to obtain an increase in the
efficiency of image-database operations we require that non-redundant and
relevant image information contained in the compressed format is already
usable for performing some of the image-database operations. We also
require that the full-resolution spatial image content should quickly be
reconstructable from its non-redundant and relevant elements, or in other
words, that the complexity of the image-decompression procedure is
considerably reduced if compared to transform-based decoders. In the
following, we first briefly describe the fractal image compression and
vector quantization and subsequently choose the most suitable of the two
techniques as the base for developing our CODEC.

In case of fractal compression, an image is first partitioned at two different
levels: in range blocks of size NxN at the first level, and in domain blocks of
size 2Nx2N at the second level. A transformed domain block is searched for
each range blocks such that the mean square error between the two blocks
is minimal. Hereby the following transformations are performed on the
domain blocks: they are first subsampled by factor two to get the same
dimensions as the range blocks. Then, eight isometries of subsampled
domain blocks are found, including the rotated original block and its
mirrored versions (mirroring over 0, 90, 180 and 270 degrees). Finally, an
adjustment of the scale factor and the luminance offset is performed.
Consequently, a fractal compressed image is defined by a set of relations
for each range block, the index number and the orientation of the best
fitting domain block, the luminance scaling and the luminance offset. Using
this description, the decoder can reconstruct the compressed image by
taking any initial random image and by calculating the content of each
range block from its associated domain block. This reconstruction is
repeated iteratively by taking the resulting image as a new initial image
until the desired quality of the reconstructed image is reached.

110




As illustrated in Figure 5.3, compressing an image using VQ is the process
of taking an image block of NxN pixels and finding its corresponding (most
similar) block in a code book. A code book is a collection of representative
blocks, constructed on the basis of a number of training images. Each image
block is then represented by the code-book address, where the
corresponding block is found. Consequently, a VQ-compressed image is
simply a concatenation of addresses, collected for all image blocks. If the
same code book is available at the receiver side, a VQ-compressed image
can easily be decoded by filling in the blocks from a code book in the
proper positions in the image, according to the addresses received by the
decoder.

Because of the above descriptions of Fractal and VQ image CODECs, we
find the CODEC based on Vector Quantization more suitable for our needs.
First, it realizes image decompression as a fast “look-up-and-fill” procedure
and involves no iterations. Second, VQ-compressed images can be
compared and classified based on their block correspondences. This is
because these correspondences directly depict the spatial image content
with respect to the code book used. Compared to this, a list of geometric
and luminance transformations of domain blocks describing the Fractal-
compressed images do not provide a clear impression about the spatial-
image content and, therefore, cannot be used as efficiently for image-
database operations as the block correspondences and code book of the VQ.
However, not all the characteristics of the basic VQ scheme are suitable for
direct usage for the CODEC development in this chapter. Therefore, we
adapt the basic VQ scheme in order to better suit the applications
addressed here.

The adaptation is related mainly to the highly complex and time-
consuming process of code-book generation. This process basically includes
a partitional clustering of the visual material collected from a set of training
images. Its high complexity is due to a large amount of data to be clustered
and due to the iterative nature of the clustering process. Consequently, the
code book is made only once and used to compress and decompress all
images in a database. It is also optimized to provide the maximal quality of
all reconstructed images from that database. This optimization is
performed such that, first, the training images are selected as the most
representative for all the images contained in a database. Second, the
clustering process is designed to take into account all linear and non-linear
dependencies among blocks to be found in training images. Each cluster is
then represented by one most representative image block, which then
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becomes an element of a code book. The described process of code-book
generation by the basic VQ implies that the code book can be used
effectively only for compressing images that belong to the same categories
as those from the training set. This is, however, unpractical for applications
in general image databases because of the following reasons. First, images
can be very diverse, so that one single code book might not be sufficient for
coding all of them with an acceptable quality. Second, if a database is
extended by new images belonging to a different class, a time-consuming
update of a code book is required. Third, image exchange among different
databases (users) is difficult if different code books are used.
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Figure 5.4: Image CODEC enabling easy access to spatial content in compressed
images

To provide an effective solution to these problems, we apply in our
CODEC a strongly simplified procedure for code-book generation, which -
due to a reduced complexity - allows for generating a code book for each
individual image. Using image-specific code books not only makes it
unnecessary to perform highly complex code-book generation/update and
to have one code book for the entire database; it has several other
important advantages as well. First, the quality of reconstructed images can
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only improve since an image is abstracted and later reconstructed using the
same blocks. Second, in contrast to the basic VQ, here the code book needs
to be included in the compressed image format. As will be shown in
Section 5.4, this makes it even easier to perform various image-database
operations without the need for image decompression.

5.3 Image CODEC based on simplified VQ

Figure 5.4 illustrates all components of our new image CODEC in form of a
block diagram. The first two steps of the encoder are the processes of
making a code book and of finding the correspondences of image blocks
with those belonging to a code book. Subsequently, a compressed image
stream is formatted, where we only use as many bytes as necessary to
encode all the addresses in order to minimize the resulting bit rate. Apart
from the fact that the code book used is image specific and therefore
included into the compressed stream, the decompression process fully
complies with the one of the basic VQ.

As indicated in the scheme by the full arrow, a low computational
complexity on the decoder side provides one possibility to reach the spatial
image content easily. The other content-access possibility indicated by the
dashed arrow is related mainly to the direct usage of the image-specific
code book and block correspondences for image-database operations. The
issues regarding the content accessibility will be discussed in detail in

Section 5.4. In the following we proceed by defining all major components
of the CODEC scheme in Figure 5.4.

53.1 Code-book generation

We first define an efficient methodology for generating an image code
book. For this purpose, an image is first divided into non-overlapping
square pixel blocks b, with dimensions NxN, and each block is represented
by the average color (L*u*v* color space)-of all block pixels. We choose to
work with relatively small blocks, i.e. with N =2 as the code book will have
to be included into the compressed image format. The experiments have
shown that if a similar quality of reconstructed images is to be achieved,
and larger blocks, e.g. N=4, are used, the code-book size becomes
unacceptably large (up to 20% of an image).

As shown in Figure 5.5, the code-book generation starts by including the
first image block b, into the code book. Each further block along the arrow
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is compared with all blocks already in the code book. For this purpose, the
Euclidean distance is computed for the three components of the average
colors of blocks, that is

e b,) = (L ) L 0,) +( )~ 0,) +(2'(0) - 2'0,)’ 631

A block b; joins the code book if it cannot be matched well with any of
already selected blocks, i.e. when the distance (5.3.1) between the block b,
and each block from the code book exceeds the threshold T.

b =
] b
by
= b

Figure 5.5: lllustration of the simplified procedure for making a VQ code book.
Grey blocks are included in the code book.

While the code book of the basic VQ is obtained by a sophisticated
procedure which optimally represents the visual material of training
images, the major objective of the sequential procedure from Figure 5.5 is to
quickly generate a code book. In order to achieve a code-book quality
similar to that of the basic VQ, the described fast procedure for code-book
generation requires some fine tuning. For this purpose, we make the
threshold T locally adaptive, based on the following analysis. Since coding
artifacts are particularly visible in smooth image regions (e.g. artifacts like
false contours), the threshold function needs to be chosen such that these
regions are represented by a sufficient number of code-book vectors. On
the other hand, the number of blocks extracted from textured regions can
be kept low since the coding artifacts are less visible there. This implies that
it is convenient to make the threshold value at each block b, dependent on

the amount of texture present in its surroundings, that is

T =T(b;)= f(texture around b;) (5.32)
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By properly choosing the threshold function (5.3.2), a number of code-book
blocks can be extracted that is similar to using a fixed value of T. However,
the extracted blocks are distributed better over an image, providing at a
later stage a higher overall quality of the reconstructed image. In other
words, the number of code-book vectors representing textured image
regions slightly decreases in favor of those representing smooth regions.
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Figure 5.6: Zero coefficients in a DCT block obtained by applying the quantization

We now define the threshold function T(b;) by suitably modeling the

variations of the amount of texture over an image. This is done by first
dividing the gray-scale version of an image into nonoverlapping blocks B,

with dimensions 8x8 pixels, and by applying the Discrete Cosine Transform
(DCT) to each of them. Then, all the elements of the DCT block are
quantized according to the following procedure, which is analog to the one
from JPEG:

50
DCT(u,0) PR A
ROUND(———-—’—), with Qg)={ (533)
Q) *W(u,v) 100 -g 5 50
50 0 717

We call g the quantization parameter which can vary in the range 0<q<100. Q
is the gain factor depending on g and W(u,v) is the corresponding element
of the JPEG luminance quantization table.
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As a consequence of the quantization, a number m; of DCT coefficients of
the block B]- will become zero, which is mainly the case with those

corresponding to higher frequencies, as shown in Figure 5.6. The more
texture is present in an image area, the stronger are the high-frequency
components of the image signal in that area. Then, the DCT coefficients
corresponding to these components are also high, and therefore will hardly
ever become zero after quantization. This is not the case with smooth
regions, where a large number of zero coefficients are present after the
quantization. For this reason we relate the number m; of zero-DCT
coefficients to the presence or absence of a texture and formulate the
threshold function as follows:

m,-—64

if bjeB, = T(b;)=p,—-p,|le ™ (53.4)

Parameters p,, p, and p, define the behavior of the threshold function

and are to be specified experimentally. Since the parameter g directs the
DCT quantization process (5.3.3), the threshold-function behavior can
indirectly be adjusted by specifying a value for 4. The higher the g, the
lower is the gain factor Q, the smaller is the quantization step, the less DCT
coefficients are zero and the threshold function (5.3.4) is shifted upwards.

a) b) )

Figure 5.7: Code book extraction for an image using a constant and a variable
threshold: a) original image, b) image blocks included in the code book by using a
constant threshold, c) image blocks included in the code book by using the threshold
function (5.3.4)
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Figure 5.7a shows an image from our test set, for which we generated two
code books of a similar size. The first one is obtained by using a fixed
threshold. The positions from which image blocks are taken and included
into the code book are indicated as black spots in Figure 5.7b. Then we used
the variable threshold to generate another code book, where we adjusted
the function (5.3.4) by choosing a suitable g such that a similar number of
blocks is extracted, as in Figure 5.7.b. The positions from where image
blocks are taken using the threshold (5.3.4) are indicated by black spots in
Figure 5.7c. It can be seen that the prevailing majority of blocks in Figure
5.7b are concentrated in high-texture regions, leaving the smooth regions
insufficiently represented.

5.3.2 Finding the block correspondences

The step of generating the code book is followed by the search for
correspondences between image blocks b; and blocks ¢; of the code book.

In this way, each block b; is represented by an address in the code book,
which is embedded into the compressed image format and determines

which block ¢; is used to approximate block b; during the image

reconstruction in the decoder.

We find that block ¢; corresponds to the image block b; by comparing b,
with all blocks c¢; using the distance function (5.3.1) and then by

minimizing (5.3.1) for all indices j. As S is the total number of blocks b; in

an image, and M the number of code-book blocks, the procedure of
establishing the block correspondences can analytically be formulated as

Vie[l,S] b,yxc, < d(b;,c,)=mind(b;,c;) (5.3.5)
1<jsM
5.3.3 Compressed image format specification

The format of an image, compressed using the CODEC presented in this
chapter, is illustrated in Figure 5.8, and consists of the following
information:

¢ File header
e Code book
e List of addresses for block correspondences

We will now define each of these components in detail.
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File header

The file header contains 10 Bytes, which represent (in the order of
appearance):

e the format identification mark (3 Bytes),
¢ image width and height (4 Bytes)
¢ the number M of blocks in a code book (3 Bytes)

0 10 10+3N°M .
: Byres
[TTTTTITIT I[llllllllll|[m
Header Addresses oo ,\0”
1 2 3 M —
Code book I t

Figure 5.8: Format of a compressed image file

Code book

All code-book blocks ¢ s je€ L. M are addressed in the order in which they

are extracted. In the compressed bit stream, they are represented by the
RGB triplets of all of their pixels, ordered in the 1-dimensional

uncompressed array of 3MN? Bytes, that is
RyGiBiy--- RnGinBiy-- RvGavBaRiGHBl-+ RnGrBi- RaGaaBy— (5:36)
Block correspondences

The code book is followed by the list of addresses for block
correspondences. For the total number of S blocks b; in an image, there are

S addresses varying in the range 1..M. In order to reduce the size of this bit
stream component, we use only so many bytes as are necessary to represent
all addresses of characteristic blocks. For M blocks in a code book, the
minimum required number w of bytes is computed as

w= %([_log2 M|+ 1) (537)
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5.4 Performance evaluation

In this section we evaluate the performance of the developed image
CODEC. We concentrate in Subsection 5.4.1 on the CODEC performance
with respect to the obtained compression factor, the quality of
reconstructed images and the overall computational costs. For this purpose
we use a test-image set containing 54 different color images with
dimensions 320x320 pixels. We experimentally found good parameter
values in (5.3.4) as p,=5.35, p,=4, and p,;=3, and used them in our

experiments. Subsequently, in Subsection 5.4.2 we evaluate the possibilities
for easy access to spatial image content using CODEC we developed.

5.4.1 CODEC performance regarding classical criteria

We first investigate a typical range of the compression factor, which is to be
obtained using our CODEC. For this purpose we took one image from our
test set and compressed it for values of the quantization parameter g in
(5.3.3) varying between 5 and 95. The compression factor as a function of
the parameter g is displayed in Figure 5.9a. The obtained range for this
factor is [4.25, 7.93] for the test image used.

Then, we took the same test image and measured the PSNR (Peak-to-Peak
Signal-to-Noise Ratio) for R, G and B color component over the entire range
of the compression factor in order to see how the quality of reconstructed
images depends on compression efficiency. We averaged the PSNR values
of the three color channels at each measurement point and displayed them
over corresponding compression factors in Figure 5.9b. A range of the
average PSNR values was obtained as [30.74, 34.57]. In order to get a better
impression of the above results, we also compressed the same test image
using JPEG. We let the JPEG quality factor vary in its entire effective range
from 5 to 95 and obtained the compression factors between 9.02 and 94.3
and PSNR between 24.62 and 39.97. Especially for the range of the
compression factor obtained for our CODEC, the PSNR varied in the case
of JPEG compression between 39.97 and 43.6, as also shown in Figure 5.9b.
A comparison of the curves in Figure 5.9b indicates that JPEG performs
better in terms of compression efficiency and resulting image distortion.

Besides compression efficiency and image distortion, the classical criteria
also include the overall computational complexity. Compared to the basic
VQ, the JPEG CODEC is characterized by well-balanced computational
costs on the encoder and decoder side, which makes it more practical.
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Thus, in order to make the VQ competeable with JPEG regarding the cost
balance, a strong reduction of the encoder complexity would be required.
This was one of the objectives when developing the methodology for a
simplified code-book generation in Subsection 5.3.1. Although we managed
to considerably reduce the encoding complexity in our CODEC compared
to the basic VQ, this complexity is still relatively large. This is mainly due
to small block dimensions, which, as explained before, were chosen such to
increase the compression efficiency. For instance, only 4% of image
information, contained in the code book of an image with dimensions
320x320 pixels, corresponds to 1024 blocks with dimensions 2x2 pixels.
Consequently, for each of the 25600 blocks of that image, 1024
computations of difference values (5.3.1), threshold (5.3.4) and their mutual
comparisons are required.

8 T T T T 44 T T T
7.5F b
7L J
ol JPEG
5 6.5
8 38|
5 o
g 5
4 a
o
g 361
Sesl New CODEC
341
5 -
451 s2r
4 1 1 ) ) 30 ) " L A
0 20 40 60 80 100 4 5 6 7 8 9
Quantization parameter q Compression factor
a) b)

Figure 5.9: Measurements for one test image: a) Compression factor as function of
g, b) average PSNR of the R, G and B color component as a function of the
compression factor

The above comparison of our CODEC and JPEG regarding the classical
optimization criteria has shown that JPEG has a better performance. We,
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however, took this into account with a reference to the fact that a CODEC
that performs well regarding the three classical criteria is not necessarily
optimal when it comes to the fourth criterion: providing easy access to
spatial image content [Pic95b].

T T 7 T T T T T T T

——  Varying compression factor
12 - —-  Average compression factor: 6.57 |

Compression factor

5 10 15 20 25 30 35 40 45 50
Image index k
45 T T T T T T T T T T
———  Varying PSNR
aor -=-=--  Average PSNR:29.17 | ]

5 10 15 20 25 30 35 40 45 50
Image index k

Figure 5.10: Variations of the compression factor and PSNR for all test images
and =30

To complete the evaluation of the CODEC performance regarding the
compression efficiency and image distortion, we also investigated the
consistency of the CODEC performance regarding these criteria for
different images. For this purpose we fixed the quantization parameter 4 to
the value 30 and computed the compression factor and PSNR for all images
from our test set. The results are displayed in Figure 5.10. The variations of
computed values can be explained by the variability of the code-book size,
which depends on a spatial image content and is the only variable segment
of the compressed image stream. In our measurements, the relative code-
book size varied between 1.4% and 9.78%, with an average of 4.6%.
Perceptual quality of the reconstructed images for =30 can be evaluated by
comparing the originals and decompressed images in Figures 5.11a-c.
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c)

Figure 5.11: Reconstructed images followed by the originals. The following
quantitative data were obtained for g=30: a) code-book size 2%, compression factor
8, b) code-book size 5.3 %, compression factor 6, c) code-book size 4.1%,
compression factor 6.4
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5.4.2 Reduction of the content access work

We address in this section some of the possibilities for easy access to spatial
content in images which are compressed using the CODEC developed in
this chapter. These access possibilities are:

e Easy image or image-region decompression

e Easy access to some spatial image features directly in the compressed
domain (dominant and less important colors, image and image-region
histograms)

An advantage of having the VQ as the underlying principle of the CODEC
presented here is that decompressing an image is a simple “look-up-and-
fill” procedure. Namely, a VQ-compressed image can easily be decoded by
filling it with blocks from a code book, according to addresses received by
the decoder. This is a clear advantage regarding the computational
complexity of the decoder, if compared i.e. with the JPEG decompression
procedure, containing amongst others entropy decoding, dequantization
and inverse DCT. Further, since the list of addresses in the compressed
image format (Figure 5.8) preserves the information about image structure,
no decompression of the entire image is required in order to fully
reconstruct any of its regions. Such a reconstruction is easily performed by
simply choosing the region blocks in the address list, finding their
corresponding blocks in the code book and filling the image regions of
interest. However, an image, or any of its regions does not need to be
reconstructed in order to obtain certain spatial image features; an image-
database application involving these features can be performed directly on
compressed images.

As a first example, the image-specific code book itself, which is directly
accessible in the compressed image format (Figure 5.8), can effectively be
used for performing global classification of images or some more general
image queries. In our approach, a block is selected in a code book if the
average color of its pixels is sufficiently representative for that image. This
implies that if average colors are computed for all code-book blocks c,, a
general idea can be obtained about the colors present in the image. In this
way, images containing drastically different color content can be separated
from each other, or - if different from the query image regarding their
colors - not given by the system as query results.
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Image classifications and queries based on image-specific code books can
be made even more specific if also the information related to the usage of
code-book blocks for image reconstruction is taken into account. This
information can easily be retrieved from the list of addresses for block
correspondences. Then, by counting the numbers of times g,, that a code-
book block ¢; is present in the address list, the image and an arbitrary

image region can be represented as
image <> [a,cy,..apC] (5.4.1a)
image region << [a_c, ,..a,c (5.4.1b)

m=m n-n

After the average color of each block ¢; has been computed, the
expressions (5.4.1a-b) can provide a global idea about the color composition
of the image (region), both in terms of which general colors are present
there and in which amount. The higher the number 4, , the more important
role plays the block ¢; in the image (region), and thus also the average
color of its pixels, that is

mlaxa,. = Ayominant = Cdominant = dOminant average color (54.2)

As an example, we now estimate the computational complexity of
obtaining the information on a general color composition of an image based
on (5.4.1a) and on computing the average color of each block ¢;. We
estimate the complexity by determining the number of reading (O, ).

adding (O,,, ), multiplying (O,

mutipy ) and comparing (O

) operations,

compare

which are to be performed.
With S addresses to be found in the last segment of the compressed image

format in Figure 5.8, the number of operations required to obtain all the
coefficients a, can be estimated as follows:

C

a;

= 8(Oreps +O,a) (54.3)

Then, the average color is computed for each block of the code book with
the following amount of operations:

C, = 3(N 20, + Omu,ﬁp,y) (5.4.4)
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The entire complexity of obtaining the information on a general image
color composition complying with (5.4.1a) is now given as

C =C, + MC, + MO,y (5.4.5)

color composition

As another example, histograms for image (regions) can easily be
computed by collecting pixels of blocks ¢; and taking into account the
values a;. Here, we compute the bins h of an 1-dimensional color

histogram H(h), where h can be the value of any pixel-color component K
(K=R, G or B) and where only characteristic blocks c¢;, used for

reconstruction of an image region (5.4.1b), are considered:

Hg g 5(h) = Z a;0, (i)

i=m

with (5.4.6)

~ [y, pixe(K=h)ec;
v, (1) = .
0, otherwise

The function v, (i) indicates whether a pixel with its K color component
corresponding to & is present in the block c¢,, and in which amount 1, .

Also by counting the number of operations required for the expression
(5.4.6), we estimate the complexity of obtaining an image region histogram
directly from the compressed image in Figure 5.8 as

Chist = Ca, + (n - n1)(N2(Oread + Ocompare) + (Ii,h + 1)Oadd + Omulh’ply) (54.7)

We now like to compare the C,,, from (5.4.7) with the complexity of

computing the same histogram on the decoded image. This last complexity
is given as:

Chist,decumpressed = Cdecompressed + XY(Oread + Ocompare + Oadd ) (54.8)

Since the size of the code book M is only a small fraction (average of 4.6%
in our tests) of the total number of pixels in an image obtained by

multiplying both image dimensions X and Y, and since 0<1,, < N* with

N=2, the second summand in (5.4.8) can be considered considerably larger
than the second summand in (5.4.7). Further, if, for instance, JPEG CODEC

125




is used as alternative, the first summand C,ppreees D (5.4.8) includes the

number of operations required for Huffman decoding, run-length
decoding, Zig-Zag decoding, dequantization, DPCM decoding of DC
coefficients and the block-wise inverse DCT. As such, this summand can
realistically be assumed far larger than the value C, in (5.4.7). Therefore, it

can be said that the histogram computation using (5.4.6) is computationally
considerably less expensive than if performed after e.g. a JPEG-compressed
image is decoded.

5.5 Discussion

The image CODEC presented in this chapter was developed to suit
emerging applications on large-scale image databases, where a fast and
easy access to spatial image content can considerably improve the
efficiency of interacting with an image database. While the currently
available CODECs are optimized with respect to the classical criteria (bit
rate, image distortion and overall computational complexity), introducing
an additional fourth criterion related to providing easy access to spatial
image content has the effect that existing CODECs are no longer optimal
and, as discussed in Section 5.1, that the development of new CODECs is
needed. It would be best if we could retain an excellent compression
efficiency, low distortion of reconstructed images and nicely balanced and
low computational complexity of JPEG in newly developed CODECs and
still be able to easily perform any operation on spatial image content. Such
a perfect balance among the four optimization criteria needs indeed to be
the guiding objective of research in this area. The development of the
CODEC in this chapter can be understood as a first step in the process of
reaching this objective. We deliberately left the powerful concept of
transform-based CODECs in order to remain in the spatial domain and so
to provide means for accessing the spatial image content more easily. In
this way we expected a priori a lowering of the compression efficiency and
the quality of the reconstructed images, compared to JPEG. Also we took
into account a possible misbalance and an increase of computational
complexity at the encoder side. However, as a compensation, we are able to
decompress an image much more quickly and to reach some of the
characteristic image features directly in the compressed domain. Although
we can say that in some way we found an acceptable trade-off between
four optimization criteria, we are also aware of the fact that the developed
CODEC is far from optimal. Nevertheless, we hope with our CODEC to
provide a solid base for further research in this area.
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Chapter 6

Directions for
Future Research

6.1 Where are we now?

The amount of information that we are exposed to due to advances in the
digital transmission and storage technology is steadily rising. In principle,
this is not a problem at all, as there are many benefits that we can draw
from the “information avalanche”. The problem emerges only when this
avalanche reaches the size where it is difficult to handle it. Then, having
available systems for information retrieval is of the utmost importance. The
algorithms for visual-content analysis presented in this thesis were
developed with the objective of making a further contribution to a
successful practical realization of automated information retrieval systems.
Conclusions about the effectiveness of proposed approaches can be drawn
from previous chapters of this thesis. The questions that we like to address
in this chapter are: technologically, how far are we at this point, what is the
rate of technological growth regarding the automation of information
management processes, and what are the major directions for pursuing
further research in the area of automated information management and
retrieval systems.

On the one hand, we can claim that we have come far enough in terms of
the obtained technological know-how and regarding the time elapsed since
research in the area of information retrieval was initiated. What once
started as a modest effort at some industrial and academic research labs
(IBM, MIT, ISS) has grown into a research area involving an enormous

" Institute for Systems Science, National University Singapore
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number of people and showing its first concrete products (QBIC [Nib93],
VIRAGE {Jai97], INFORMEDIA ([Chr94], Alta Vista Photo and Media
Finder [ALT]).

Compared to the situation of only several years ago, where the biggest
issue regarding video-content analysis was to provide reliable ways for
automated shot-boundary detection, we currently have available a wide
selection of algorithms for high-level video analysis, some of them
presented in Chapter 4 of this thesis. Similar advances are obvious also in
the image analysis area: not many years have passed between realizing the
need for efficient image classification and retrieval systems and the
moment when advanced algorithms for these purposes based on high-level
criteria [Vai98] became available.

But on the other hand, we must realize that we are still at the very
beginning of developing robust solutions for information retrieval. It can be
even said that, in spite of all the achievements in the last several years, the
same conclusion can be drawn at this moment as in [Pic95]: “the theory and
tools that facilitate browsing, querying, retrieval and manipulation of
imagery are still in their infancy”. This is understandable if we are really
aware of the difficulty of transfering cognitive aspects of information
analysis and processing to the system level. Thus, the challenge for the
research community regarding the development of information
management and retrieval systems remains high and we anticipate that this
will be the case for many years to come. There are countless issues which
need to be addressed in order to meet this challenge successfully. We feel,
however, that most of these issues can be grouped into three major research
directions that we formulate and discuss in the next section.

6.2 Where to go?

As already discussed in Chapter 1, the user-specified request for
information search or its organization is based on his perception of the
information content. Such a request needs to be processed in the feature
domain, which implies that finding suitable features and related algorithms
for providing similar retrieval results as in the case of manual search is
crucial for successfully transferring information retrieval to the system
level. The methodologies presented in this thesis show some possibilities
for reaching this objective. However, a further intensive research is
required in order to increase the reliability of existing feature-based
image/video analysis methods and to provide solutions for new
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applications. We need to investigate the suitability of different features, to
model various cognitive aspects of video/image content in the feature
domain, to search for perceptual feature-comparison metrics, etc. Here we
also need to take into account the fact that no universal solutions are
possible. Moreover, finding optimal ways of using features for operations
on an information database needs to be pursued depending on the target
application. Not only is this the only feasible option, but in this way we
also have a chance to really optimize the system performance regarding
specific applications.

Further, we have to be aware of the fact that a perfect realization of the
cognition-based information analysis and processing in the feature domain
is not realistic. Therefore, the development of information retrieval systems
which are capable of learning through user interaction becomes very
important. Having such systems can compensate for an imperfection of
features and metrics used, and help improving the reliability and the
response time for future operations on a database. For developing such
systems, we can use the know-how from the areas of machine learning and
artificial intelligence.

Finally, we shown in Chapter 5 the importance of developing information
retrieval systems which are able to deal with compressed information
directly without reducing their efficiency due to compression. For this
reason, further research should be pursued for finding efficient
methodologies for extracting relevant features from image/video/audio
information compressed using current compression standards. Although a
considerable number of approaches related to this has been reported in
recent literature, such feature extraction is generally difficult to perform
because the optimization of the available compression standards did not
consider providing a fast content accessibility. Due to the last statement, we
strongly recommend pursuing intensive research toward new compression
methods, where the content-access criterion plays an important role. There,
either the content should be easily accessible directly in the compressed
domain, or the computational complexity of the decompression procedure
should be minimized. However, each of these objectives should be
combined with the classical criteria, that is, the minimization of the bit rate,
of the distortion and of the overall computational complexity. New
compression solutions based on the optimum synergy among the four
criteria, as discussed in Chapter 5, are required for compressing the
information when building the digital libraries of the next generation.
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Summary

In recent years, technology has reached a level where vast amounts of
digital information are available at a low price. During the same time, the
performance-versus-price ratio of digital storage media has steadily
increased. Because it is easy and relatively inexpensive to obtain and store
digital information, while the possibilities to manipulate such information
are almost unlimited, the digital libraries in the professional and consumer
environment have grown rapidly. Examples are digital museum archives,
Internet archives, image/video archives available to commercial service
providers and private collections of digital information at home. All of
these are characterized by a quickly increasing capacity and content
variety.

With steadily increasing information volumes stored in digital libraries of
various types, finding efficient ways to quickly retrieve information of
interest becomes crucial. Since searching manually through GBytes of
unorganized stored data is tedious and time-consuming, the need grows
for transferring information retrieval tasks to automated systems. Realizing
this transfer in practice is not trivial, and this specially for video and
images. The main problem is that typical retrieval tasks, such as “find me
an image with a bird!”, are formulated on a cognitive level, according to the
human capability of understanding the information content and analyzing
it in terms of objects, persons, sceneries, meaning of speech fragments or
the context of a story in general. Opposed to this, the only feasible way to
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analyze an image or a video at the algorithmic or system level can be in
terms of features, such as color, texture, shape, frequency components,
audio and speech characteristics, and using the algorithms operating on
these features. Such algorithms are, for instance, image segmentation,
detection of moving objects, shape matching, recognition of color
compositions, determination of relations among different objects or
analysis of the frequency spectrum of the audio or speech stream. These
algorithms can be developed using the state-of-the-art in image and audio
analysis and processing, computer vision, statistical signal processing,
artificial intelligence, pattern recognition and other related areas.
Experience has shown, however, that the parallelism between the
cognition-based and feature-based information retrieval is not viable in all
cases. Therefore, the development of feature-based content-analysis
algorithms has not been directed to enable queries on the highest semantic
level, such as the above example with a bird, but mainly towards extracting
certain semantic aspects of the information that would allow for a
reduction of the overall large search space. The material presented in this
thesis is meant to contribute further to research efforts in this direction and
concentrates on the specific problem of video and image retrieval.

The first contribution of this thesis is a series of novel algorithms for video
analysis and abstraction. These algorithms are developed to provide an
overview of the video-library content and logical entry points into a video
when browsing through a video library. Also a video index may be
constructed based on visual features contained in the abstract, which can
then be used for video queries using image retrieval techniques. On the one
hand, algorithmic solutions are provided for segmenting a video into
temporally homogeneous fragments called video shots, for condensing each
of the shots into a set of characteristic frames called key frames and for
performing a high-level analysis of a video content. This high-level analysis
includes determining semantic relationships among shots in terms of their
temporal characteristics and suitable features of their key frames, and
identification of certain semantically interesting video shots. Examples are
merging the shots of a movie into scenes or episodes or the identification of
anchorperson shots in news programs. On the other hand, we develop an
algorithm for automatically summarizing an arbitrary video by extracting a
number of suitable key frames in such a way that the result is similar as
when that video is summarized manually. One characteristic application
where having such abstracts is useful is browsing through a video and
searching for a scene of interest. The user only needs to check a limited
amount of information contained in an abstract instead of going through
the entire video in the fast-forward/rewind mode, while still having
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available all the characteristic information related to the video content and
thus being able to understand and follow that content exclusively on the
basis of the abstract.

The second contribution of this thesis is related to the fact that the
prevailing amount of information stored in digital libraries will be available
in compressed form. This is understandable in view of the existence and
further improvements of many powerful compression algorithms, through
which the space on digital storage media and the capacity of the
transmission channels can be used more efficiently. Consequently, features
required for information analysis at system level need to be easily
accessible in the compressed domain. If this criterion is not taken into
account when compressing images before they are included in a digital
library, a difficulty in reaching (computing) image features combined with
a large number of images in a large-scale library can considerably
negatively influence the efficiency of the interaction with that library. Since
existing image-compression standards like JPEG are optimized regarding
the compression efficiency, image distortion and computational costs, but
not regarding the accessibility of all image features which may be required
for image-database operations, there is a need for alternative image
compression methodologies by which all four optimization criteria are
considered. We address this issue in this thesis by developing a novel
image CODEC where an acceptable compromise among these four criteria
is reached.
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Samenvatting

In de afgelopen jaren heeft de technologie een ontwikkelingsniveau bereikt
waarbij grote hoeveelheden digitale informatie beschikbaar zijn tegen een
lage prijs. Tegelijkertijd is de prijs-prestatieverhouding van moderne
opslagmedia almaar verbeterd. Het gemak en de relatief lage kosten
waarmee digitale informatie kan worden verkregen en opgeslagen, naast
de bijna onbeperkte mogelijkheden om deze informatie te manipuleren,
zijn de belangrijkste oorzaken van de snelle groei van zogenaamde digitale
bibliotheken in zowel de professionele sfeer als in de consumenten-
omgeving. Voorbeelden hiervan zijn digitale museumarchieven,
Internetarchieven, beeld- en videoarchieven bij commerciéle aanbieders
van diensten en privé-collecties van digitale informatie thuis in de
huiskamer.

Met de toenemende hoeveelheden informatie in digitale bibliotheken
wordt het snel en efficiént zoeken naar de specifieke informatie steeds
belangrijker. Omdat het moeilijk en tijdrovend is om GBytes aan data
handmatig te doorzoeken, neemt de noodzaak toe om zoektaken te laten
verrichten door automatische systemen. De praktische realisatie hiervan is
echter verre van eenvoudig, en dit in het bijzonder voor het geval van
video en beelden. Het grootste probleem hierbij is dat typische zoektaken
zoals “zoek een foto met een vogel!” zijn geformuleerd op het cognitieve
niveau, op basis van het vermogen van de mens om de informatieinhoud te
begrijpen en te analyseren mb.t. objecten, personen, landschappen, de
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betekenis van spraakfragmenten en de context van een verhaal in het
algemeen. Hier staat tegenover dat de enige haalbare manier om beeld- of
videoinformatie te analyseren op algoritmisch of systeemniveau is door
gebruik te maken van kenmerken, zoals kleur, textuur, vorm, frequentie- en
tijdsignaaleigenschappen van audio en spraak, en door algoritmen te
gebruiken die operaties uitvoeren op deze kenmerken. Hierbij kunnen
verschillende  algoritmen worden  onderscheiden, zoals tb.v.
beeldsegmentatie, detectie van bewegende objecten, herkenning van
kleurcomposities, bepaling van relaties tussen verschillende objecten en
analyse van frequentie- en tijdsignaal-eigenschappen van audio en spraak.
Deze algoritmen kunnen worden ontwikkeld onder gebruik making van de
“state-of-the-art” op het gebied van de beeldverwerking, audio- en
spraakherkenning, computer vision, statistische signaalverwerking,
kunstmatige intelligentie, patroon-herkenning, etc. De ervaring heeft ons
echter geleerd dat het laten overeenkomen van cognitie-gebaseerde en
kenmerk-gebaseerde zoekprocessen nog verre van praktisch haalbaar is.
Om deze reden is de ontwikkeling van kenmerk-gebaseerde analyse-
technieken feitelijk niet gericht op het realiseren van zoekprocessen op het
hoogste semantische niveau, zoals bovengenoemde voorbeeld met een
vogel, maar meer op de extractie van bepaalde semantische aspecten van
de informatie, die vervolgens gebruikt kunnen worden om de (grote)
zoekruimte te beperken. Het materiaal zoals gepresenteerd in dit
proefschrift is bedoeld om verder bij te dragen tot het onderzoek in deze
richting en concentreert zich op het specifieke probleem van het zoeken
naar video en beelden.

De eerste bijdrage van dit proefschrift is een serie nieuwe algoritmen voor
de analyse en samenvatting van video-data. Deze algoritmen zijn
ontwikkeld om een overzicht te geven van de inhoud van een video-
bibliotheek en logische instappunten te verschaffen in een video-
programma gedurende het doorzoeken van zo'n bibliotheek. Ook kan een
video-index geconstrueerd worden op basis van visuele kenmerken binnen
de samenvatting van de video. Deze index kan vervolgens gebruikt
worden om bepaalde segmenten van een video te zoeken onder gebruik
making van beeld-zoekmechanismen. Zo worden in dit proefschrift aan de
ene kant algoritmische oplossingen gegeven voor de segmentatie van een
video in temporeel homogene fragmenten, ook wel video shots genoemd,
voor de representatie van elk shot door een aantal karakteristieke frames,
of key frames, en voor een “high-level” analyse van de video-inhoud. Deze
high-level analyse omvat het vinden van semantische relaties tussen shots
in termen van temporele karakteristieken en specifieke kenmerken van key
frames, en de identificatie van video shots met een hoge semantische
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waarde. Voorbeelden zijn het groeperen van film shots in episodes of
scénes of de identificatie van nieuwslezer shots in een nieuwsprogramma.
Aan de andere kant wordt er een algoritme ontwikkeld voor de
automatische samenvatting van een willekeurige video-sequentie door een
aantal geschikte key frames te extraheren op zodanige wijze dat het
resultaat gelijk is aan dat van een handmatige samenvatting. Eén
karakteristieke toepassing waarbij zo'n collectie key frames van nut is, is
het doorzoeken van de video en het zoeken naar een specifieke episode of
scéne. De gebruiker hoeft alleen de sterk gereduceerde hoeveelheid
informatie in de samenvatting te doorzoeken in plaats van de hele
sequentie in de “fast-forward/rewind” mode, terwijl hij/zij nog steeds
beschikt over alle karakteristicke informatie m.b.t. de inhoud van de
sequentie, en zodoende in staat is de inhoud te volgen louter op basis van
de samenvatting.

De tweede bijdrage van dit proefschrift is gerelateerd aan het feit dat
verreweg de grootste hoeveelheid aan opgeslagen informatie in digitale
bibliotheken beschikbaar zal zijn in gecomprimeerde vorm. Dit is gemakkelijk
te begrijpen in het licht van de beschikbaarheid van vele krachtige
compressiealgoritmen met nog mogelijke verbeteringen, waardoor de
opslagruimte in digitale bibliotheken en de capaciteit van transmissie-
kanalen nog efficiénter benut kunnen worden. Als gevolg hiervan dienen
kenmerken die noodzakelijk zijn voor de informatie-analyse op
systeemniveau gemakkelijk toegankelijk te zijn in het gecomprimeerde
domein. Als dit criterium niet in acht wordt genomen tijdens het
comprimeren van beelden en voordat zij deel uitmaken van een digitale
bibliotheek, dan wordt het moeilijk om bepaalde beeldkenmerken te
vinden (te berekenen), zeker als we te maken hebben met grote aantallen
beelden, met als gevolg een sterk negatieve beinvloeding van de efficiéntie
van de interactie met de digitale bibliotheek. Omdat bestaande standaarden
zoals JPEG  geoptimaliseerd zijn mb.t. compressie-efficiéntie,
beeldvervorming en rekenkomplexiteit maar niet m.b.t. toegangelijkheid
van alle kenmerken zoals nodig voor beeld-database operaties, zijn er
alternatieve  beeldcompressiemethoden nodig die alle genoemde
optimalisatiecriteria in beschouwing nemen. Hier wordt in het proefschrift
op ingegaan door een nieuw CODEC voor beelden te ontwikkelen waarbij
een acceptabel compromis is bereikt m.b.t. de vier genoemde criteria.

145



146




Acknowledgments

So, after a lot of “heavy science” from previous chapters, we come to the
point where I with a great pleasure wish to express my gratitude to many
individuals who in the one way or another supported me during the last
four years and helped me produce this thesis.

First of all, I was extremely happy to have had Inald Lagendijk and Jan
Biemond as guides through the complex labyrinth of science. I thank them
both for giving me a chance to do my Ph.D. at the ICT Group and for their
valuable support over the years. However, I owe an extremely pleasant
stay at the ICT Group not only to my direct advisors; I cannot avoid
expressing my enormous appreciation to Annett for being always there for
all of us and for keeping her smile and relaxness even in the busiest times.
Ben and Hans, thanks for keeping our engines running, and Peter, Gerhard,
Erik, André, Isabel and the rest of our lunch group for an always funny and
“inspiring” atmosphere in the cantina.

From the people outside the ICT Group, I would first like to thank Mirjam
Nieman for courageously fighting with my grammatical errors throughout
the thesis. I also feel obliged to mention an exceptionally good cooperation
among all partners within the EU-ACTS SMASH project in the time period
1995-1998. Special thanks to Marco Ceccarelli for many productive
discussions and for his contribution to our several publications.

147




Then, of course, a lot of things would have been different if I had not
visited Hewlett-Packard Labs in Palo Alto in Summer 1998. Therefore,
special thanks to HongJiang for making my visit to HP possible, to Wei for
his great help regarding various “every-day” issues, and to Cathy, Aditya
and Xavier for great times in our SEED corner.

Last but not least, special gratitude to my family for too many things to
write down...

148




Curriculum Vitae
& Bibliography

Alan Hanjalic was born on 23 April 1971 in Sarajevo, Bosnia and
Herzegovina. He completed his high school education in 1989 at Arlington
High School, LaGrangeville NY, USA, and at the High Music School in
Sarajevo where he majored piano and obtained an artistic diploma in 1990.

In 1991 he completed two years of studies at the Electrical Engineering
Department of the University Sarajevo, when he moved to the Friedrich-
Alexander University Erlangen-Nuremberg, Germany, to continue his
studies. There he received the Diplom-Ingenieur (Dipl.-Ing.) degree in
Electrical Engineering in 1995. From 1995 to 1999 he worked towards his
Ph.D. degree at the Information and Communication Theory (ICT) Group
of the Delft University of Technology, The Netherlands, in the area of
visual-content analysis for advanced multimedia retrieval systems.

In parallel with doing his Ph.D. he worked from 1995 to 1998 as a
researcher and software developer within the European ACTS SMASH
(Storage for Multimedia Applications Systems in the Home) project. From
May to September 1998 he was with Hewlett-Packard Laboratories, Palo
Alto (CA, USA), where his activities were concentrated on developing
efficient video segmentation and abstraction techniques.

In 1999 he joined the scientific staff of the ICT Group as Assistant Professor.

149



Bibliography

Books

1.

A. Hanjalic, G.C. Langelaar, PM.B. van Roosmalen, ]. Biemond, R.L.
Lagendijk: Image and Video Databases: Restoration, Watermarking and
Retrieval, Volume 8 of the series Advances in Image Communications, to be
published by Elsevier Science, 2000

Journal publications

1.

A. Hanjalic, R.L. Lagendijk, J. Biemond: Automated High-Level Movie
Segmentation for Advanced Video Retrieval Systems, IEEE Transactions on
Circuits and Systems for Video Technology, June 1999

A. Hanjalic, H. Zhang: An Integrated Scheme for Automated Video Abstraction
based on Unsupervised Cluster-Validity Analysis, IEEE Transactions on
Circuits and Systems for Video Technology, Special Issue on Object-based
Video Coding and Description

Patents

1.

Patent application in the area of automated video content analysis and
abstraction (in cooperation with Hewlett-Packard Labs, Palo Alto)

Various presentations

1.

RL. Lagendijk, A. Hanjalic, G.C. Langelaar, J.C.A. van der Lubbe: Methods for
Browsing and Copy Protection in Multimedia Storage Systems, Key note
presentation at ICOMT '96: International Conference on Multimedia
Technology and Digital Telecommunication Services, Budapest (H), 1996

R.L. Lagendijk, A. Hanjalic: (The SMASH project’s) Perspective on Browsing of
Consumer Video Archives, Presentation at MPEG-7 Seminar, Bristol (UK), 1997

A. Hanjalic: Image Compression for Database Retrieval Applications,
Presentation at the Fall 1999 Meeting of the Dutch Society for Pattern
Recognition and Image Processing, hosted by PHILIPS Medical Systems, Best
(N1), 1999

Technical reports

1.

D. Melpignano, C Tani, J. Tasic, A. Hanjalic, G.C. Langelaar, K. Makinwa, J.
Ero, M. van der Korst, F. Schalij, R. Tol: Report on Future Needs and Technical
Possibilities of a SMASH, EU-ACTS Project SMASH, Deliverable #3, August
1996

150




2.

A. Hanjalic, G.C. Langelaar, R L. Lagendijk, M. Ceccarelli, M. Soletic: Report
on Technical Possibilities and Methods for Security of SMASH and for Fast
Visual Search on Compressed/Encrypted Data, EU-ACTS Project SMASH,
Deliverable #5, November 1996

A. Hanjalic, G.C. Langelaar, R.L. Lagendijk, M. Ceccarelli, M. Soletic:
Specification of Hardware and Software Architecture for Security and
Intelligent Search Facilities, EU-ACTS Project SMASH, Deliverable #13,
February 1998

Papers in conference proceedings

1.

A. Hanjalic, RL. Lagendijk, J. Biemond: Achievements and Challenges in
Visual Search of Video, 17th Symposium on Information Theory in the
BENELUX, Enschede (NL), 1996

A. Hanjalic, R L. Lagendijk, ]. Biemond: A New Method for Key Frame based
Video Content Representation, In AW.M. Smeulders and R. Jain (eds.): Image
Databases and Multi-Media Search, ISBN 981-02-3327-2, World Scientific
Singapore, Singapore 1998 (Proceedings of the First International Workshop on
Image Databases and Multi-Media Search, Amsterdam (NL) 1996)

E. Steinbach, A. Hanjalic, B. Girod: 3D Motion and Scene Structure Estimation
with Motion Dependent Distortion of Measurement Windows, IEEE
International Conference on Image Processing (ICIP'96), Lausanne (CH), 1996

R.L. Lagendijk, A. Hanjalic, M.P. Ceccarelli, M. Soletic, E.H. Persoon: Visual
Search in a SMASH System, IEEE International Conference on Image
Processing (ICIP'96), Lausanne (CH), 1996

M. Ceccarelli, A. Hanjalic, RL. Lagendijk: A Sequence Analysis System for
Video Databases , In V. Cappellini (eds.): Time-Varying Image Processing and
Moving Object Recognition 4, ISBN 0 444 82307 7, pages 133-138, Elsevier,
Amsterdam 1997 (Proceedings of the 5th International Workshop on Time-
Varying Image Processing and Moving Object Recognition, Florence (I), 1996)

A. Hanjalic, M. Ceccarelli, RL. Lagendijk, J. Biemond: Automation of Systems
Enabling Search on Stored Video Data, SPIE/IS&T ELECTRONIC IMAGING
'97, Storage and Retrieval for Image and Video Databases V, San Jose (Ca,
USA), 1997

A. Hanjalic, R.L. Lagendijk, ]. Biemond: A novel video parsing method with
improved thresholding , Third Annual Conference of the Advanced School for
Computing and Imaging (ASCI "97), Heijen (NL), 1997

151




8.

10.

11.

12.

13.

J. Zaletelj, R. Pecci, F. Spaan, A. Hanjalic, RL. Lagendijk: Rate Distortion
Optimal Contour Compression Using Cubic B-Splines, IX European Signal
Processing Conference (EUSIPCO '98), Rhodos (Gr), 1998

A. Hanjalic, RL. Lagendijk, J. Biemond: Template-based Detection of
Anchorperson Shots in News Programs , IEEE International Conference on
Image Processing (ICIP '98), Chicago (Il, USA), 1998

A. Hanjalic, R.L. Lagendijk, J. Biemond: Semi-Automatic News Analysis,
Classification and Indexing System based on Topics Preselection,
SPIE/IS&T ELECTRONIC IMAGING '99, Storage and Retrieval for Image and
Video Databases VII, San Jose (Ca, USA), 1999

A. Hanjalic, H. Zhang: Optimal Shot Boundary Detection based on Robust
Statistical Models, IEEE International Conference on Multimedia Computing
and Systems (ICMCS’99), Florence (I), 1999

A. Hanjalic, R.L. Lagendijk, J. Biemond: Automatically Segmenting Movies
into Logical Story Units, Third International Conference on Visual
Information Systems (VISUAL '99), Amsterdam (N1), 1999

A. Hanjalic, R.L. Lagendijk, J. Biemond: Efficient Image CODEC with Reduced

Content Access Work, IEEE International Conference on Image Processing
(ICIP '99), Kobe (Jp), 1999

152




