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Chapter 1

Introduction

The automatic interpretation of a scene in an image is the ultimate goal in computer
vision. It is an ambitious goal, since the aim is essentially to create a human-like
system. Humans, as we all know, have a remarkable ability in processing and inter-
preting visual information. We can make the transition from the pictorial informa-
tion to the meaning of the image content in milliseconds. The scene is decomposed
into separate objects and each is compared to collected information from past ex-
periences. Without a serious effort we are able to identify the objects and reason
about their structures.

The structure of objects is essential in the recognition process. Our experience
tells us in what way structures may change when viewed under different conditions.
For example, an object may be imaged from another viewpoint or the amount of
illumination may change. Furthermore, other objects may partially occlude the
object of interest. All these factors should be taken into account when an automated
system, i.e. a camera connected to a computer, is designed to interpret or recognize
a scene.

Modeling of the imaging process inside the camera seems to be the first step in
designing such a system. A camera model describes the projection of 3D world points
onto 2D image coordinates. A combined model of two differently positioned cameras
will reveal the relation between their projections. This model of the two views is
called the epipolar geometry and is described by the fundamental matrix [15, 24]. It
gives the relation between different projections of a single world point, see Fig. 1.1.
The epipolar geometry relates all possible image pairs that can be made from a
particular object. It therefore provides a valuable ingredient for computer algorithms
interpreting the camera images.

One group of algorithms making use of the epipolar geometry is directed towards
analysis of the scene. Object recognition approaches [75, 8] can compare in this way
the configurations of image points in different images. When the point projections
in two images allow a common camera configuration, we can affirm the presence
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2 Introduction

Figure 1.1: An object viewed from different directions. The relation between the
projections of a 3D point (e.g. the black dot) is described by the epipolar geometry.
The pair of point projections forms a correspondence.

of the same 3D object in the images. This automated method is useful for visual
retrieval [21, 7, 76, 22], where the goal is to search large image or video archives for
particular content. Especially in the “query by example” scenario, where an image
example of the desired target image(s) is provided, object recognition techniques are
applicable (see Fig. 1.2). In [72] the epipolar geometry is used to find similar scenes
throughout a movie. This has its application in the grouping of movie frames, such
that the logical structure of a movie can be deduced. Another example is the use of
the epipolar geometry for location matching during visual navigation [20].

A second group of algorithms uses the epipolar geometry to find the structure
of an imaged scene (see Fig. 1.3). Two images of a scene are sufficient to perform
reconstruction of that scene up to some projective transformation [15, 27]. In case
a whole sequence of images from a scene is available, this will allow an even better
estimate of the structure. In so called “structure from motion” algorithms, epipolar
geometries in an image sequence are used to establish a scene structure for 3D
modeling [78, 67, 85] or robot navigation [6, 54]. Also three-view relationships
between images are used for scene reconstruction [5, 17], though their computation
usually relies on finding epipolar geometries first.

In general, it is important that the epipolar geometry can be estimated efficiently,
both in case of visual retrieval [75] and scene reconstruction [63]. When scene re-
construction algorithms are required to run in real-time, e.g. for robot navigation,
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retrieval system

retrieved image(s)

query archive

Figure 1.2: A retrieval system compares the query image with the images in the
archive, and outputs any similar archive images.

Figure 1.3: The epipolar geometry can be used to reconstruct a scene, using the
rays crossing the camera’s optical center (white dot) and the image points. At the
intersection point of two rays lies the 3D scene point.



4 Introduction

they impose strict time constraints on the computational routines. In a sequence of
images, the epipolar geometry is estimated between all pairs of consecutive frames
and is therefore a constantly recurring routine.

In case of visual retrieval, the amount of data being considered is often substan-
tial. A retrieval system should be able to process the user’s requests in a small
amount of time. Efficient estimation of the epipolar geometry can speed up the
finding of two similar scenes. Detecting the absence of an epipolar geometry, in case
of images from different scenes, will also be very useful; it is a situation which occurs
frequently in image retrieval. It is desirable that this can be detected quickly as well.

1.1 From image features to imaging geometry

When there is no information available on the way an image pair has been cap-
tured, the epipolar geometry for the particular pair is unknown. The sole source of
information available is the image pair itself, and features in the images should be
found which can relate their contents. The fundamental matrix can be determined
from a set of correspondences, which are pairs of 2D projections from 3D points (like
the dots in Fig. 1.1). To find such correspondences, we can compare local image
neighborhoods and search for regional similarities. There has been done much work
on the development of local features to obtain reliable correspondences across two
different views of an object.

For local features it is important to accurately determine their positions of ex-
traction in the image; the features should be computed at exactly the same positions
on the object. This can be achieved by using interest points, which are positions
in the images where the image structure is somewhat special. A part of an object
which causes an interest point in one image, is likely to cause it in another image
too. In this way, a subset of interest points in one image will have corresponding
points in the other image, covering identical parts of an object.

After extraction of local features at the interest points (see Fig. 1.5), the features
can be matched to obtain a set of initial correspondences. Each feature in the first
image is compared to all the features in the second image, and the feature giving
highest similarity is used to form a correspondence. Some of these will be true
correspondences and connect identical object parts, but others may be incorrect due
to accidental similarities of non-corresponding features. The true correspondences
are called inliers with respect to the true fundamental matrix relation (the model
describing the epipolar geometry). False correspondences are called outliers; they
may be arbitrarily far off from this model, see Fig. 1.4.

To derive the fundamental matrix from the set of initial correspondences, we
need to identify a sufficient number of inliers in the data. This can be accomplished
through the use of robust estimators, which can find the inlier model even under the
presence of many outliers. Unfortunately, they make fundamental matrix estimation
much more complex. The goal of this thesis is to develop methods which reduce the
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Figure 1.4: Inlying (solid) and outlying (dotted) correspondences between local
features.

complexity of this estimation process.

1.2 Scope

There exist several different robust estimators which all have their own mechanism
of dealing with outliers. The methods in this thesis are designed for one particular
robust estimator: the RANSAC (RANdom SAmple Consensus) algorithm [16]. This
algorithm has become the standard for fundamental matrix estimation under the
presence of outliers. It randomly samples data points for the generation of models,
and subsequently finds the model with most support points among the data.

The strength of the RANSAC algorithm is the sampling of minimal point sets for
generating models; some of the computed models may then be unaffected by outliers.
At the same time, however, the random sampling stage is very time-consuming. It
may take many random samples before a set of inliers is found. For this reason,
two methods (Chapter 3 and 4) have been developed to guide the sampling process.
Instead of a purely random search, the search will be directed by using non-uniform
sampling probabilities for the correspondences.

Another reason for the lengthy sampling stage, is the size of the sampled point
set. The larger the point set, the longer it takes before an inlier is sampled for each of
the points simultaneously. Therefore, a method (Chapter 5) has been developed that
samples smaller-than-minimal point sets for estimating the fundamental matrix.

Although the proposed methods are directed towards fundamental matrix esti-
mation, some of them have a larger extent. In particular, the methods in Chapter 4
and 5 are also applicable to hyperplane estimation. Line and plane fitting in 2D and
3D, respectively, will serve as examples in these chapters.

The methods described in Chapter 3 and 4 assume the presence of a single
(dominant) epipolar relation. This holds when there is no independent movement
of objects between two recordings. If objects do move independently, then multiple
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find interest

points

extract local

features

find
corresponding

features

calculate the
epipolar

geometry

Figure 1.5: The sequence of steps necessary to find the epipolar geometry. The
input is a pair of images showing a common scene, and the output is information
about the camera configuration used for capturing the scene (see also Fig. 1.1).
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epipolar relations are present; one for each of the moving objects. The method
proposed in Chapter 5 may also be used for sequential extraction of multiple epipolar
geometries.

1.3 Thesis outline

This thesis starts with an introduction to the field of epipolar geometry estima-
tion. Then three different methods are presented that contribute to a more efficient
estimation process.

In Chapter 2, a detailed description of the steps in Fig. 1.5 will be given. Different
types of interest points and local features are discussed, along with their specific in-
variance properties. The features are matched to find a set of initial correspondences,
which is likely to contain a certain percentage of outliers. The imaging process will
be described and the concept of the epipolar geometry. It is shown how to calculate
the epipolar geometry from the correspondences, and in what way robust estimators
can deal with the outliers. Several robust estimators will be discussed, among which
the RANSAC algorithm.

Chapter 3 will discuss methods for producing a priori inlier confidence values for
the correspondences. These can help in determining which subset of correspondences
is most likely to produce the true fundamental matrix. An algorithm is proposed
which is capable of collecting such confidence values very quickly. It considers the
relative position of correspondences in the images, and derives through a series of
comparisons the probable set of inliers. Afterwards, the RANSAC algorithm can
use the confidence values in the sampling stage.

The confidence values can also be acquired during fundamental matrix estima-
tion, as is shown in Chapter 4. Here an adjustment of the RANSAC algorithm itself
is proposed, which iteratively modifies the sampling probabilities of correspondences
based on intermediate results from the estimation process. Experiments will show
that this stimulates the sampling of inliers, and that the model with most support
points is found more quickly.

A more fundamental adjustment of RANSAC is made in Chapter 5, where a
combination of different model estimation methods is used to find the fundamental
matrix. In particular, the generation of model hypotheses is applied together with
a parameter voting step. It is shown that by a suitable definition of the parameter
space, the fundamental matrix can be estimated using fewer correspondences. This
is beneficial since it decreases the chance of having outliers in the sample.

The final chapter will present possible extensions of the proposed methods and
topics for future research.
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Chapter 2

Local Features and the

Epipolar Geometry

In this chapter we will describe the process of epipolar geometry estimation from a
pair of images. We first illustrate the use of interest points and the extraction of
regional descriptors at these points. The extracted descriptors or features are then
compared across the images to obtain a set of preliminary correspondences.

We then give an illustration of the process of image capture by a camera. This
leads us to the concept of the epipolar geometry, which is the relation between
images of a scene captured by two different cameras. It is indicated how we can find
this relation from a set of correspondences, especially under the presence of outliers.
Finally, we discuss complexity issues of the different stages of epipolar geometry
estimation.

2.1 Interest points

The complexity of extracting and comparing features from all image positions is
too high, especially when pixel increments are used. For this reason, a subset of
positions in the images is selected, where the images shows some specific recognizable
structure. This forms the collection of interest points. When the imaging conditions
do not change too much, the same object part is likely to cause interest points in
several differently captured images.

One of the first interest point detectors proposed was the Harris corner detec-
tor [23]. Corners are points in the image where the intensity changes substantially
in two mutually orthogonal directions. When the original intensity image is denoted
by I(x, y), the Harris detector finds corners by using the second moment matrices

9



10 Local Features and the Epipolar Geometry

C(x, y) = g(x, y, σ) ∗
[

I2
x IxIy

IxIy I2
y

]

(2.1)

where the elements contain the partial derivatives Ix = ∂
∂x

I(x, y) and Iy = ∂
∂y

I(x, y).

The derivatives are approximated in the detector by convolution with [−1 0 1] in
horizontal and [−1 0 1]> in vertical direction, respectively. The values in C(x, y)
are obtained by averaging the I2

x, I2
y and IxIy in a local region with the Gaussian

g(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 (2.2)

for some reasonable choice of σ. A corner is detected when the measure

det(C(x, y)) − κ trace2(C(x, y)) (2.3)

exceeds a threshold, where κ is some small constant. The measure roughly equals
the determinant, and thus the product of the eigenvalues. Two large eigenvalues
will thus indicate the presence of a corner point. An example of the function (2.3) is
shown in Fig. 2.1 for a 800×640 sized image. Most corners are found at the window
corners of the building, which have abrupt intensity changes.

Figure 2.1: The Harris corner measure for a test image. White areas indicate high
“cornerness” of the region.

An important issue that remains in corner detection is the selection of a scale for
the derivative operators Ix and Iy. The Harris detector just takes the derivatives of
I(x, y) at the highest resolution, yielding corners at detailed structures. A multi-scale
approach may also result in corners that are caused by larger structures in the image.
If the imaged objects have different scales, it is necessary to find corners of varying
size to be able to establish correspondences. Different scales of the image are acquired
by convolution with a Gaussian through I(x, y, σ) = g(x, y, σ) ∗ I(x, y), giving an
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increasingly blurred image (see [46] for an overview). The derivative operation then
follows as

∂

∂x
I(x, y, σ) =

∂

∂x
g(x, y, σ) ∗ I(x, y) (2.4)

where the convolution is taken with the Gaussian derivative. Application of the
Harris detector for different such scales may result in other interest point locations.
Fig. 2.2 shows the corner measure for a Gaussian derivative of σ = 5; the corners now
belong to the blurred test image. Note that the corners are mostly found at larger
structures of the building; the corners at the windows are not detected anymore.

Figure 2.2: The image in Fig. 2.1 blurred with a Gaussian (σ = 5) and its Harris
corner measure.

When all scales have to be considered, the number of interest points may become
very large. As alternative, a characteristic scale can be found at which an interest
point is extracted. A characteristic scale is the intrinsic scale of the local image
structure [47]. This intrinsic scale can be retrieved for images of different resolutions,
and should conform with the scale difference between them. As shown in [47], the
characteristic scale can be found by looking for a local extremum of the normalized
Laplacian operator. In [56] this concept is used to find scale-invariant interest points.
The Harris detector is used here to find interest points at all scales, but only the
interest points for which the Laplacian achieves a local maximum are retained.

The corner detector can be further enhanced by taking affine transformations
of the image region into account. To acquire an accurate position, the area used
for averaging the derivatives should be similar for all images. However, the object’s
position and pose may change in between images, and a circular neighborhood does
not necessarily cover the same part of the object. If we view the object locally, the
transformation of the object’s surface can also be viewed locally. Since the object
can be assumed to be locally planar, the transformation of the image neighborhood
is a projective transformation. In case these small planes are relatively far away from
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the camera when compared to their depth variation, the projective transformation
can be approximated by an affine transformation [82]. It is therefore sufficient to
find an image neighborhood that is invariant under an affine transformation. An
iterative algorithm accomplishing this for the Harris detector is given in [57].

Next to corner point detection, several other interest point detectors have been
proposed. A similar approach to detecting corner points and filtering them on the
characteristic scale, is evaluating a suitable function directly over scale space. Ex-
trema of such a function can be used to find potential interest points. In [47] the
normalized Laplacian was used for finding scale-space extrema, which results in
intensity blobs at different scales for interest points. A function that is somewhat
similar to the normalized Laplacian, is the direct evaluation of differences over image
scales [50]

D(x, y, σ) = g(x, y, βσ) ∗ I(x, y) − g(x, y, σ) ∗ I(x, y) (2.5)

where the scale difference is chosen β = 3
√

2. Local extrema of this function in
position and scale are marked as interest points. We have shown in Fig. 2.3 the
absolute value of this function for σ = 5. It can be seen that the function is triggered
by extrema in image intensity, which match this particular choice of scale σ.

Figure 2.3: The absolute value of the difference of Gaussian (2.5) for σ = 5.

There are several other approaches which search for intensity extrema in the images,
like [90] and [53]. In the latter, regions with extreme intensity values are sought that
have pixel values all higher/lower than the surrounding boundary pixels. Using a
thresholding operation, the intensity threshold where the smallest change of the
region’s size is observed, is selected for defining the final region.

A few comparative evaluations of interest point detectors have been performed
so far. In [74] two evaluation criteria, repeatability and information content, were
introduced and applied to a small set of detectors. Repeatability is the ratio of
the number of detected common 3D-points in both images and the total number of
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detected points. It measures how well the detector performs after a change of the
imaging conditions. Information content is the entropy of local image descriptors
at the positions found by the detector. The higher the entropy of the descriptor,
the more interesting the positions are. It was shown that the Harris detector using
Gaussian derivatives gave the best results for the two criteria.

In a more recent evaluation [59] a larger set of detectors was compared. The
results showed that none of the detectors performed best in all experiments. Some
detectors work better for specific types of scenes or objects. Multiple detectors may
therefore be used to cope with a large variety of images.

2.2 Local descriptors

When the interest point locations are established, the surrounding regions can be
used for comparison. To this end we need to extract a descriptor or feature from
each region, which is unaffected by illumination or viewpoint changes. The local
effect of changing illumination can be modeled by cI(x, y) + b, where c is a change
in contrast and b in brightness. Subtracting the mean intensity and dividing by
the standard deviation normalizes the intensity values, so that they can be used for
comparison. Concerning the change in viewpoint, it was already noted that affine
invariance is generally sufficient since the imaged objects are locally planar. Ideally,
the descriptor should then be invariant to rotation, scaling and shear change.

Many descriptors that have been introduced are based on gradient information
in the region. The image retrieval method in [73] uses a set of rotationally invariant
Gaussian derivatives [18]. The descriptor is computed at several scales to compensate
for possible scale change.

A descriptor based on local gradient orientation histograms is used in [50, 51].
This SIFT (Scale Invariant Feature Transform) descriptor collects the gradients
around the interest point in a 4 × 4 array of histograms. Each histogram quan-
tizes the gradients from a 4 × 4 pixel region in 8 different directions. They are
weighted by their gradient magnitude and the value of a Gaussian function at the
center, which emphasizes gradient directions in close proximity of the interest point.
The characteristic scale and dominant orientation of the region determine the size
and orientation of the histogram array. The descriptor is in this way invariant to
scaling and rotation. Due to the fact that a histogram is used, inaccuracies in the
position of the descriptor can be compensated. An example of the histogram array
for an interest point and the resulting descriptor are shown in Fig. 2.4. The arrow
in Fig. 2.4(b) indicates the orientation of the interest region. The image is shown at
the scale of the detected interest point, which is also used to compute the gradients.
Fig. 2.4(c) shows the values of the resulting SIFT descriptor. It contains 8 direction
bins for each histogram, which makes 128 histogram entries in total.

One way of obtaining shear invariant regions is using the second moment matrix
in (2.1). Building on the work in [48], it is shown in [3] that if the local image
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(a) Detail of the test image. (b) Orientation and scale of the array of
histograms for an interest point.
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(c) Values of the SIFT descriptor.

Figure 2.4: The extraction of the SIFT descriptor.

coordinates belonging to a correspondence are first transformed by

(xt yt)
> = C

1
2
a (x y)> (x′

t y′
t)

> = C ′
a

1
2 (x′ y′)> (2.6)

then they are related by a 2 × 2 rotation matrix R through

(x′
t y′

t)
> = R(xt yt)

> (2.7)

The matrices in (2.6) are the square roots of Ca = (C
1
2
a )>C

1
2
a and C ′

a = (C ′
a

1
2 )>C ′

a

1
2 ,

respectively. Ca and C ′
a are affinely adapted versions of the second moment matrix

C in (2.1). In particular, both the derivative operations and neighborhood averaging
are performed with non-circular Gaussian functions. An algorithm is given in [3],
which finds each of the matrices Ca and C ′

a in an iterative process by computing

C and transforming the neighborhood with C
1
2 . This process continues until C

has converged to the identity matrix. It is assumed here that no significant scale
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differences are present, and that the descriptor should only be rotation invariant.
Later an iterative algorithm was proposed that achieved full affine invariance [57].

Affine invariance of the region has also been achieved in [89], where regions are
defined by means of edges near corner points. The edges define an affine invariant
frame for the regions, and the size of the region is determined by some specific
criterion. The descriptor is a set of color moment invariants. Cross-correlation is
applied as additional check for the found matches, and is made possible by the affine
normalization of the region. In [90] regions are initially established based on local
intensity extrema. The boundary of the region is refined by extrema of a function
of intensity, which is measured along rays emanating from the region’s center. An
ellipse is then fitted to the region, and its interior serves as the affine invariant region.
The regions are described by color moment invariants and matches are additionally
cross-correlated. The method in [64] also selects the initial regions based on intensity
extrema. One of the affine normalization methods that is proposed in this work uses
two line segments that bridge concave parts of the region’s boundary. The segments
form an affine frame which is used for cross-correlating the pixel color values.

In a comparative study [58] it was shown that the SIFT [50, 51] descriptor per-
formed best among a variety of descriptors. An extension to SIFT was also given
and shown to give a further improvement; it uses a radial array of histograms and
a larger number of orientation bins. In addition it was shown that plain cross-
correlation is very sensitive to inaccuracies in the interest point position and affine
region parameters.

A somewhat different class of features than the discussed “point” features are
straight line segments, whose invariance properties have been used for object recog-
nition [31, 32, 34] and correspondence search [80, 81, 4]. Although correspondences
between lines are found, the goal is to eventually establish a set of point correspon-
dences. In [80] line segments are extracted between corner points in the images. The
segments are assumed to lie on planar surfaces, which allow the transformation to
be affine invariant. The intensity profiles along corresponding lines then only differ
by a scale factor. To acquire a set of point matches, the line segments originating
from a corner are used in a voting framework to find similar corner points. In [81]
the method was further improved by taking the ordering of line segments around
a corner point into account. In [4] an edge detector was used to define the line
segments. Here points were established by intersections of line segments, and the
method therefore works well on scenes having little texture.

2.3 Feature comparison and local geometric con-

straints

The descriptors at the interest points have to be compared across the images to
establish a set of initial correspondences. When there are n local features in the
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first image and m in the second, then nm feature comparisons will give us the set of
best matching pairs. In addition, there exist several local constraints which we may
apply to reject correspondences that are potentially outliers. In particular, when
two features are spatially close in an image, they are likely to describe parts of an
object that are close in 3D. In other images of the object these features should then
be close as well. When we encounter two correspondences in a small neighborhood
in the first image, they should as well be in a small neighborhood in the second
image.

This reasoning is used in [73], where a correspondence is only considered cor-
rect when half of its closest features also form correspondences. Furthermore, it is
required that the angles between the features are consistent. For example, for the
correspondences in Fig. 2.5, we should have that

∠(ab) − ∠(ac) ≈ ∠(a′b′) − ∠(a′c′) (2.8)

This only holds when there is no significant shear change between the images.

c

b
a

′

c
′

b
′

a

Figure 2.5: The correspondence a ↔ a′ is likely to be correct if there also exist
correspondences b ↔ b′ and c ↔ c′.

In [95] the quality of a correspondence is judged by its feature similarity score and the
number of correspondences in its neighborhood. The contribution of a neighboring
correspondence depends on both its own similarity score and the difference in feature
distances. In particular, the correspondence b ↔ b′ contributes to a ↔ a′ when
d(a, b) ≈ d(a′, b′). The contribution also depends on the total distance, so that the
influence of c ↔ c′ is smaller than b ↔ b′. In the cited work, multiple correspondences
for each feature are possible; a potential correspondence is present when the feature
similarity is above a certain threshold. The quality measure is used to select the
correct correspondences from this set of available ones.

The method in [9] checks pairs of correspondences by their positions and descrip-
tor properties. In addition to d(a, b) ≈ d(a′, b′) it requires that the difference in scale
σ of the features is comparable

σ(a) − σ(b) ≈ σ(a′) − σ(b′) (2.9)
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Also, the difference in orientation θ of a feature and the connecting line segment
should be comparable

θ(a) − ∠(ab) ≈ θ(a′) − ∠(a′b′) (2.10)

These pairwise constraints are used to group neighboring correspondences and sub-
sequently remove outliers.

After using local constraints the initial set of correspondences has undergone a
first filtering stage. However, the drawback of local constraints is that also inliers
can be filtered out, since the constraints are only local approximations of the image
transformation. The actual transformation is determined by the epipolar geometry,
which is discussed next.

2.4 The epipolar geometry

To see what the relation is between correspondences of an object, we will first de-
scribe the imaging process that transforms 3D world points into 2D image points.
The relation between correspondences will then follow from combining two different
imaging processes for the object.

2.4.1 Camera projection

We will consider the projection for an ideal pinhole camera, for which all light rays
go through a central point (the lens). In Fig. 2.6 this type of camera is illustrated.
The camera is positioned in the origin of the coordinate system, and the principal
axis points in the direction of the positive Z axis. The lens or center of projection
is located at the camera center C, and the image plane is positioned at focal length
f from the center. The light ray of a point X passes through the camera center C,
and the intersection with the image plane forms the projection x.

It is convenient to use homogeneous coordinates (see Appendix A) for the points.
So, let the 3D point be denoted by X = (X,Y, Z, 1)> and the projection in the
image plane by x = (x, y, 1)>. The coordinate system of the image plane is usually
mirrored, so that positive X and Y coordinates will also correspond to positive x
and y coordinates in the projection. In this way, the image plane can also be thought
of as being in front of the camera center at distance f , and having x and y axes
pointing in the same direction as the X and Y axes (see for example Fig. 2.7).

The position of the point x can be calculated by

x =
fX

Z
y =

fY

Z
(2.11)
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Figure 2.6: The projection x of a world point X made by a pinhole camera with
focal length f and camera center in the origin.

which can be written in matrix form as

x =





f 0 0 0
0 f 0 0
0 0 1 0













X
Y
Z
1









(2.12)

since division of x by Z yields the same point in homogeneous coordinates. In
general, a camera may be rotated or translated with respect to its position in Fig. 2.6.
To find the projection of a world point in this case, we can first transform the world
point to the camera frame (i.e. specific world frame) in Fig. 2.6 and subsequently
compute its projection. If the camera is rotated by a matrix R> and translated by
a vector C, then the inhomogeneous world point X is given in the camera frame as
Xc = R(X − C). In homogeneous coordinates this becomes

Xc =

[

R −RC

0 0 0 1

]

X (2.13)

If we now combine (2.12) and (2.13) we get

x =





f 0 0 0
0 f 0 0
0 0 1 0



Xc =





f 0 0
0 f 0
0 0 1



 [R − RC]X

= KR [I − C]X

= PX (2.14)
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where K is the diagonal matrix containing the entries (f, f, 1). This invertible
matrix contains the internal camera parameters, and is given here in its simplest
form which is sufficient for our discussion. The matrix P = KR [I − C] is the
3×4 camera projection matrix, which contains all internal and external (positional)
camera parameters.

2.4.2 The fundamental matrix

Having established the relation between world points and their projections, we can
now investigate the relation between different projections of a single world point.
Let us consider two cameras with projection matrices P and P ′, which are making
projections of an unspecified world point X (see Fig. 2.7).

x

C e

X

C
′

e
′

x
′

l
′

Figure 2.7: Two cameras with centers C and C′ make projections of the same
world point X. The projection on the first image plane corresponds to a line of
possible projections on the second image plane.

Given a projection x = PX in the first camera, the projection x′ = P ′X in the
second camera cannot be arbitrary. The projection x constrains the point X to
be somewhere on the line connecting C and x. The projection of this line in the
second image plane is the epipolar line l′, which contains all possible projections of
x′. The line l′ necessarily crosses the epipole e′ = P ′C, which is the projection of
the first camera’s center. Since the line contains x′ we must have that x′>l′ = 0.
The precise expression for l′ will depend on x, and follows from the fundamental
matrix relation [15, 24].
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Theorem 1. There is a 3×3 rank 2 matrix F , called the fundamental matrix, which
relates projections of a world point by

x′>Fx = 0 (2.15)

Proof. We follow the derivation in [94]. Without loss of generality, the first cam-
era is assumed to be placed as in Fig. 2.6 so that P = K [I 0]. The second
camera is rotated by R> and translated over C′ resulting in the camera matrix
P ′ = K ′R [I − C′]. Multiplying both sides of x = PX with K−1 gives

K−1x = [I 0]X =





X
Y
Z



 (2.16)

and multiplying both sides of x′ = P ′X with R>K ′−1 results in

R>K ′−1x′ = [I − C′]X =





X − C ′
1

Y − C ′
2

Z − C ′
3



 (2.17)

Now we construct the skew-symmetric matrix

[C′]× =





0 −C ′
3 C ′

2

C ′
3 0 −C ′

1

−C ′
2 C ′

1 0



 (2.18)

which has the property that (C ′
1, C

′
2, C

′
3)[C

′]× = 0>. When we combine this matrix
with (2.16) and (2.17) we get

x′>K ′−>R[C′]×K−1x = (R>K ′−1x′)>[C′]×K−1x

= (X − C ′
1, Y − C ′

2, Z − C ′
3)[C

′]×





X
Y
Z





= 0 (2.19)

where the last equality follows from (C ′
1, C

′
2, C

′
3)[C

′]× = 0> and the fact that the
quadratic form for any skew-symmetric matrix is zero.

The matrix F = K ′−>R[C′]×K−1 in the first line of (2.19) is the fundamental
matrix. It follows that rank(F ) ≤ rank([C′]×) = 2.

The epipolar line in the second image can now be written as l′ = Fx, and the
epipolar line in the first image as l = F>x′. The fundamental matrix is completely
specified by camera matrices P and P ′. If the camera parameters are unknown,
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which is usually the case, it is also possible to compute the fundamental matrix
solely from point projections. When the elements of F are written as

F =





f1 f2 f3

f4 f5 f6

f7 f8 f9



 (2.20)

the relation in (2.15) for a corresponding pair x = (x, y, 1) ↔ x′ = (x′, y′, 1) can be
rewritten as

x′xf1 + x′yf2 + x′f3 + y′xf4 + y′yf5 + y′f6 + xf7 + yf8 + f9 = 0 (2.21)

Since multiplying both sides of (2.15) with a scalar value does not change the relation,
the scale of the elements of F can be arbitrary. It is therefore possible to calculate
F from eight correspondences [49, 26]. However, because det(F ) = 0 the matrix F
has only seven degrees of freedom, and thus 7 different correspondences x ↔ x′ are
sufficient to find F (see e.g. [25]). Solving the system of equations







x′
1x1 x′

1y1 x′
1 y′

1x1 y′
1y1 y′

1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′
7x7 x′

7y7 x′
7 y′

7x7 y′
7y7 y′

7 x7 y7 1













f1

...
f9






= 0 (2.22)

gives a two-dimensional nullspace for F . Let this nullspace be spanned by matrices
F1 and F2, so that F = αF1 +(1−α)F2. We can then use the singularity constraint
of the fundamental matrix to find the solution. This constraint det(αF1 + (1 −
α)F2) = 0 gives a cubic polynomial in α. Solving the polynomial for α yields (at
maximum) three real solutions for F . The solution which satisfies (2.15) for most
correspondences is the final F .

2.4.3 Robust fundamental matrix estimation

The estimation of the fundamental matrix, or epipolar geometry, from a set of
correspondences is relatively easy when all of them are inliers. Their positions may
then be affected by noise, but they still conform with the ground truth epipolar
geometry. In practice, however, some correspondences will be outliers and their
image positions may be arbitrarily far from their correct positions. Outliers will
result from non-corresponding features which accidentally give good matches. To
illustrate the estimation process of the fundamental matrix under the presence of
outliers, we will use the case of 2D linear regression. In the data set from Fig. 2.8
we see that all points except one obey a linear model. The single deviating point is
clearly an outlier.

We can fit a line through this data by orthogonal regression, that is, minimizing
the sum of orthogonal distances from the points to the line. In contrast to least
squares on the y coordinates, this type of regression is required when both x and y
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Figure 2.8: A data set with a single outlier.

are noisy. If the normal vector of the line is denoted by n and its orthogonal distance
from the origin as b, the minimization of the sum of squared orthogonal distances
can be written as

min
n,b

∑

x

((x, y)n + b)
2

||n||2 (2.23)

This can be solved efficiently and results in the line indicated in Fig. 2.9(a). Al-
though the data contains mostly inliers, the single outlier causes the line to deviate
substantially from the true or best model. It is clear that when all data is used, the
outliers cause the squared error criterion to be inappropriate.

Both in statistics and computer vision a great deal of work has been done on
improving the robustness of model estimation methods. Robust estimators are in-
tended to be less susceptible to the influence of outliers. In the following we discuss
several such robust estimators.

M-estimators

In the statistics literature it has been proposed to replace the squared error criterion
with a different error function. Given the error value e, we may use instead of the
squared error ρ(e) = e2 another suitable function ρ(e). For example, in the class of
so called M-estimators, Huber’s function [30]

ρ(e) =

{

1
2e2 if |e| ≤ γ

γ|e| − 1
2γ2 if |e| > γ

(2.24)

is quadratic for small and linear for large e. As such, it decreases the influence of
large outlying values on the minimization. The constant γ is a control parameter
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and determines the extent to which the function is quadratic. To choose its value
correctly we must know the scale of the data, i.e. have knowledge of the degree
of variation caused by noise. The scale either has to be known beforehand or can
possibly be estimated from the data. An iterative procedure is then applied to find
the best estimate of the model using ρ(e).

The result of (2.24) for the line estimation example using automatic scale selec-
tion is shown in Fig. 2.9(b). The outlier does not corrupt the final model anymore.
Though the M-estimator performs satisfactory for this linear regression data, the
estimation of the epipolar geometry is not handled well by these estimators [87, 94].
In particular, the iterative estimation procedure needs a good initial estimate of the
model. For poor initialization and moderate outlier ratios, the procedure may not
converge to the true model.
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(a) Orthogonal regression
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(b) Huber’s M-estimator

Figure 2.9: Orthogonal regression can not find the true linear relation in the data.
The robust M-estimator using Huber’s function is able to find the model precisely.

Hough transform

A robust estimation approach which has been heavily used in computer vision is the
Hough transform [39, 14]. It has been applied for the detection of lines in images and
has later been generalized to detect other shapes as well [2]. The Hough transform
finds the model by a voting process in a parameter space, where each combination
of parameters corresponds to a different model. The range of possible models is
limited by quantizing the parameters; a particular bin in the parameter space will
actually correspond to a small range of almost similar models. The parameter space
is accumulated by letting the data points vote for each bin whose corresponding
model they are supporting. The bin in the parameter space which has received
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most votes, will produce the final set of model parameters. Since the quantized
parameters lack some accuracy, the model may not precisely pass through the inliers.
To improve its accuracy, several extensions to the standard Hough transform have
been proposed. For example, in [61] the voting pattern in the parameter space is
smoothed before searching for the maximum.

A notable drawback of the Hough transform is the large parameter space when
using more complex models like the fundamental matrix. Applying the Hough trans-
form for its estimation requires a 7-dimensional voting array (due to the 7 degrees of
freedom), which becomes unmanageable even for a moderate number of quantization
levels.

A different approach in the spirit of the Hough transform is tensor voting. This
method is less complex and can be used for fundamental matrix estimation [79, 83].
The idea is that data points will vote for structure at neighboring data points. In
Fig. 2.10 this is illustrated for the estimation of a line.

Figure 2.10: Illustration of the tensor voting process for estimating a line. Points
in the neighborhood of the voting point will get a vote for a direction (solid line) with
a certain weight (length of the line). The weight depends on the distance between the
points.

All points close to the voting point receive a direction along with a weight. The
farther the points are separated, the smaller the weight will be. After each point
has voted for its neighbors, the accumulated directions in each point are used to
find any dominant direction. If there is a dominant direction, the point should be
an inlier for a line. In case there is no dominant direction, the point is an outlier.
Afterwards, the inliers are used to find the model.

The size of the voting neighborhood is an important parameter of the method.
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To select it correctly, the size of the model should be known. In case of fundamental
matrix estimation, it has therefore been argued [83] that the method performs best
when the movement between two images is small.

RANSAC

In [16] the RANSAC (RANdom SAmple Consensus) estimator was proposed. It
has been applied for estimation problems in e.g. object recognition [45, 70], range
image registration [10] and mosaicing [55, 29]. The method is based on the random
selection of a small number of points (a sample) and the instantiation of the model
corresponding to these points; the sample contains only the minimally required
number of points to fully determine an instance of the model. The remaining data
points are then checked to see if they support this model, i.e. are close enough in
terms of some distance measure. Since there are outliers in the data, several samples
have to be tried to assure with high probability that a sample containing only inliers
is selected.

The number of iterations J needed to find such a sample can be determined from
the required probability of success, i.e. the probability that at least one all-inlier
sample is found in J iterations [16, 71]. Let ε denote the outlier ratio in the data,
and d the number of points needed to hypothesize a model. If p is the probability
of success, e.g. 0.99, then we have the relation

p = 1 − (1 − (1 − ε)d)J (2.25)

For the estimation of a line we have d = 2, and for the fundamental matrix d = 7.
We can see in Table 2.1 that the value of J increases rapidly for larger d and ε.

Table 2.1: The number J of RANSAC iterations according to (2.25) for success
probability p = 0.99 and different values of the sample size d and outlier ratio ε.

H
H

H
H

H
d

ε
0.1 0.3 0.5 0.7 0.9

2 3 7 17 49 459
4 5 17 72 567 46,050
7 8 54 588 21,055 46,051,700

In case the value of ε is known, the number of iterations to be executed would be
known beforehand. Usually, however, the outlier ratio is unknown and we must use
an alternative way for determining the number of iterations. An efficient manner is
to begin RANSAC with a conservative estimate of ε, for example 0.99, and adjust it
during following iterations [28]. When a certain hypothesized model has the largest
number of support points seen so far, we know that there are at least that many
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inliers in the data. This imposes a lower bound on 1 − ε for the data set, and we
can adjust the remaining number of iterations J according to (2.25). The RANSAC
algorithm using this strategy is given in Fig. 2.11. Here Sj is used to indicate the
set of support points in iteration j, which are the points within a small distance T
from the model. The largest support set found during the algorithm is denoted by
Smax. The re-estimation step at the end of the algorithm is performed to improve
the accuracy of the final model. Since Smax will contain only points on a model, an
ordinary least squares estimate will be sufficient.

• j = 1, J = ∞, Smax = ∅
• while j < J do

• Randomly select a sample of d points from the data and
compute the corresponding model.

• Determine the set of support points Sj for the model by
verifying which points are within distance T from the
model.

• if |Sj | > |Smax| then

• J = log(1 − p) · log−1

(

1 −
(

|Sj |
n

)d
)

• Smax = Sj

• end if

• j = j + 1

• end while

• Re-estimate the model based on the largest support set Smax.

Figure 2.11: The RANSAC algorithm using an adaptive number of iterations.

The RANSAC algorithm provides a suitable way of fundamental matrix esti-
mation [86] and has been used frequently for this purpose, see e.g. [5, 69, 67, 72].
The algorithm has essentially become the standard for epipolar geometry estima-
tion [87, 94, 28], and in the remainder of the thesis we will consider only this par-
ticular estimator.

The samples drawn in RANSAC should contain 7 correspondences x ↔ x′ for
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computing the fundamental matrix. We can then use a threshold on a suitably
chosen error criterion to evaluate the support. If the noise on the coordinates of
the inliers is assumed to be Gaussian, the Maximum Likelihood estimate of the
fundamental matrix follows by minimizing the sum of reprojection errors [28], given
by

∑

x↔x′

‖x − x̂‖2 + ‖x′ − x̂′‖2 (2.26)

where the inhomogeneous coordinate representation is used. The quantities x̂ and x̂′

are estimated positions of x and x′, respectively. These estimates are reprojections
of an estimated world point position X̂, and they satisfy the relation x̂′>F x̂ = 0. A
disadvantage of the error measure in (2.26) is that it is computationally complex.
Alternatively, an approximation to this error measure can be used: the Sampson
error. If we let A = x′>Fx denote the algebraic distance, the Sampson error can be
written as

A2

(

∂A
∂x

)2

+

(

∂A
∂y

)2

+

(

∂A
∂x′

)2

+

(

∂A
∂y′

)2 (2.27)

where the partial derivatives are evaluated at the positions (x, y) and (x′, y′) of the
correspondence. This error measure is only dependent on the value of F and can
therefore be computed much faster.

The threshold T for the error is based on the noise variance of the inliers. The
noise variance can be estimated from the data using the median error [71], provided
that the outlier ratio is lower than 0.5. Unfortunately, this will not always hold and
in general means that we have to set the threshold heuristically.

2.5 Complexity of epipolar geometry estimation

The total complexity of epipolar geometry estimation will be the combination of
interest point selection, feature extraction, feature comparison and robust estima-
tion. It is the question which stage can be optimized best for achieving the most
complexity reduction.

Apart from the complexity of the interest point algorithm itself, the selection
of interest points in the first stage has a profound impact on the complexity of
following stages. The number of interest points selected largely determines the
amount of data which is to be processed. Usually their number is selected by a
threshold on some interest function, which allows the selection of a varying number
of interest points. In the second stage, the features are extracted at the interest
points, where the chosen feature type determines the complexity of this stage and
the following feature comparison stage, see also [41]. The size of the representation
and the required similarity measure are important in this respect. The feature
comparison in the third stage is quadratic in the number of features, so a large
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number of features can slow down this stage significantly. In the fourth stage we use
the RANSAC algorithm on the set of initial correspondences from the previous stage
to find the epipolar geometry. As was shown in Table 2.1, the number of iterations
used by the algorithm is a major cause for its complexity, and it is the outlier ratio
that determines this number of iterations.

Reducing the number of features for controlling the complexity in the first three
stages, will only have a limited effect in the fourth stage. It is true that fewer cor-
respondences make individual iterations faster, but for an equal outlier ratio the
number of iterations remains unchanged. The outlier ratio can not be influenced a
priori. Even a very good interest point detector and feature extractor can not guar-
antee an upper bound on the outlier ratio. In particular, large viewpoint differences
between images will inevitably lead to many outlying correspondences. Furthermore,
a reduction in the complexity of the first three stages may potentially lead to fewer
inliers among the correspondences, and therefore a more complex fourth stage.

The abovementioned arguments motivate our choice of optimizing the fourth ro-
bust estimation stage. Our goal will therefore be to improve the RANSAC algorithm
such that it arrives at the solution in less iterations. As is clear from (2.25), a reduc-
tion in the number of iterations J is achieved by reducing either the outlier ratio ε or
sample size d. Although it seems that these quantities are fixed, they can be altered
by making some specific adjustments to the RANSAC algorithm. Chapters 3 and 4
will focus on different ways of reducing the outlier ratio. Chapter 5 will concentrate
on the use of a smaller sample size.

2.6 Discussion

We have described the extraction of local features at image positions which have some
characteristic image structure, so called interest points. Such points can be detected
on the same object part even when there has been a significant change in imaging
conditions. At the interest points, descriptors of the local image region are computed.
Assuming the object is locally planar, the descriptors only need to be affine invariant
to yield the same value across different views. However, descriptors invariant to
rotation and scaling may still show good performance, like the SIFT descriptor.
The descriptors are subsequently compared across two images to establish a set of
correspondences. To remove some of the outlying correspondences, local geometric
constraints may be applied. They are based on the assumed spatial consistency of
features from neighboring correspondences.

The epipolar geometry is the combination of two imaging processes, and gov-
erns the position of inlying correspondences in the images. It can be estimated
from the correspondences by robust methods, which reduce the influence of outly-
ing correspondences. The RANSAC algorithm is well suited for epipolar geometry
estimation, and, since a complexity reduction can best be achieved in the robust
estimation stage, it will serve as the basis for our discussion.
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In the following chapters we will present several methods, which aim at achieving
faster RANSAC execution by lowering the outlier ratio or the model dimensionality.
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Chapter 3

A Priori Inlier Probabilities

for Correspondences based

on Quadrics

In this chapter, we address methods for lowering the outlier ratio of a set of cor-
respondences before RANSAC execution. These methods work by incorporating
prior knowledge of the correspondences into the sampling process. We will propose
a new algorithm that is able to achieve this goal under a minimal computational
complexity. This chapter is based on [35].

3.1 Introduction

The outlier ratio equals the probability of randomly sampling an outlier from the
data, since all data points have an equal probability of being sampled. When we
would have a reason to assume that a particular data point is an inlier, it is beneficial
to increase the sampling probability of this point. The probability of sampling an
outlier will then become lower than the outlier ratio. Any confidence regarding
points being inliers can be reflected accordingly in the sampling probabilities. Data
points with high inlier confidence will then be sampled more often.

The measure of confidence used should be reliable and easy to compute. After
using the measure, the resulting probability of sampling an outlier, or the ’effective’
outlier ratio, should be lower than the original outlier ratio. If not, the RANSAC
algorithm will become even more complex, especially for high outlier ratios. Also,
the complexity of computing the measure should be small in comparison to the
RANSAC complexity, since an overall complexity reduction is desired.

In [84] a method in the context of motion estimation is proposed, which uses

31
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the matching score of a correspondence to alter the probability of selecting that
correspondence. This method is generally applicable since the comparison of local
descriptors will usually yield some confidence value about the similarity of a pair of
descriptors. The distinction can be further improved if spatial information of the
correspondences is taken into account. A method based on using this information is
the ROR (Rejection of Outliers by Rotations) algorithm [1]. Here it is shown that
there exists a 3D rotation of the points in one image, which makes the directions of
all good correspondences in the joint image plane equal. The directions that do not
conform to the most prominent direction, which is found by random trials, originate
from outlying correspondences. Eliminating these correspondences will decrease the
effective outlier ratio. The method shows very good results, but a drawback is that
it makes a few assumptions about the data, like a dominant depth value of the world
points and the absence of significant camera rotation about the principal axis. It
also assumes the camera’s focal length to be known. While the assumptions about
the scene may be justified for many image pairs, it will rarely be known beforehand.
In addition, information about the cameras is usually not available.

In this chapter, we propose a method to decrease the outlier ratio by using spatial
correspondence information, without making any assumptions about the cameras or
imaged points. The method is based on the comparison of the point correspondences
to a series of quadrics. Outlying correspondences tend to have an arbitrary position
with respect to a quadric. When we gather statistics about the correspondences’
positions, we can use this fact to decrease the effective outlier ratio. The complexity
of the proposed algorithm is low, since for each correspondence only a small number
of algebraic distances is computed.

In contrast to the ROR algorithm, the image points are not transformed in any
way, but rather compared to independent quadric models positioned in the space.
Furthermore, there is no search for a specific model which provides the distinction
between inliers and outliers. Though some quadrics will provide more information
than others in this respect, it is the complete set of quadrics that produces the result.

In Section 3.2 the proposed algorithm for outlier identification is explained. A
short discussion of the complexity of the proposed algorithm and ROR is given in
Section 3.3. The evaluation of both algorithms for synthetic and real data is given
in Section 3.4. Finally, in Section 3.5, we give some concluding remarks.

3.2 Quadric comparisons

Consider a set of points Xi for i = 1, . . . , n in P
3, which are indicated by homoge-

neous coordinates X = (X,Y, Z, 1)> (see Appendix A). Each point Xi results in
a correspondence xi ↔ x′

i. The fundamental matrix relation essentially defines a
quadric relation on the points X, which can be seen by writing

x′>Fx = X>P ′>FPX = 0 (3.1)
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where the quadric is given by P ′>FP . This quadric is special in the sense that the
locus, i.e. the points X obeying (3.1), consists of all world points X.

Replacing F with an arbitrary 3 × 3 matrix Q will yield a quadric P ′>QP , for
which the locus in general consists of a two-dimensional variety in P

3. The quadric
will split the points X into two sets: those with positive and those with negative
algebraic distance to the quadric, that is

X>
i P ′>QPXi ≷ 0 i = 1, . . . , n (3.2)

If the quadric is shaped in such a way that the space with positive (or negative)
algebraic distance is very small, few points X will yield X>P ′>QPX > 0 (or

X>P ′>QPX < 0). This is equivalent to having few image points with x′>Qx > 0

(or x′>Qx < 0). In the case of outliers, however, there are not necessarily few points
like that. Since the outliers do not correspond to real world points, their algebraic
distances do not follow the same subdivision as for the inliers. Ideally, the outliers
have an equal probability of yielding a positive or negative algebraic distance. The
idea is that by examining statistics of the signs for several different quadrics, we are
able to distinguish between inliers and outliers.

X

P ′>QP

l
′lC

C
′

Figure 3.1: The quadric P ′>QP formed by selection of lines l and l′ in the image
planes. Both camera centers C and C′ lie on a plane of the quadric, which subdivides
the points X in the space.

The type of quadric formed by Q depends on the rank of the symmetric part of
P ′>QP , which is given by

P ′>QP +
(

P ′>QP
)>

2
(3.3)
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X

l
′

C C
′

l

Figure 3.2: A quadric where nearly all world points X will yield the same sign for
the relation X>P ′>QPX.

The antisymmetric part, which equals (3.3) for a minus instead of a plus sign, always
yields zero in the quadric relation and therefore does not contribute to X>P ′>QPX.
If we choose Q to have rank 1, then both P ′>QP and (P ′>QP )> from (3.3) have
rank 1. As a result, the sum of these matrices in the symmetric part will generally
have rank 2. In this case the locus corresponds to two planes, see Fig. 3.1. The
camera centers C and C′ each lie on one of the planes, so that this plane is visible
as a line in the image. The quadric of rank 2 can therefore be defined by choosing
appropriate lines l and l′ in the image planes. An example of a highly imbalanced
quadric for this configuration is shown in Fig. 3.2. It is possible to choose Q with
higher rank, but the placement of lines l and l′ is the easiest way of letting the
quadric pass through the means of the projected points. This assures that points
will lie on all sides of the quadric, so that there is enough variation in the sign of
the algebraic distances in the point set. We select the lines l and l′ such that they
pass through the means x = (x, y, 1)> and x′ = (x′, y′, 1)> in the first and second
image, respectively. If the angles of the lines with the image x-axis are denoted by
θ and θ′, the lines are given by

l = (− sin(θ), cos(θ), x sin(θ) − y cos(θ))> (3.4)

in the first image and

l′ = (− sin(θ′), cos(θ′), x′ sin(θ′) − y′ cos(θ′))> (3.5)

in the second. Then the matrix Q is constructed by

Q = l′l> (3.6)

which is a rank 1 matrix.
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We do not know the precise position of the planes of the quadric P ′>QP , since
the camera matrices P and P ′ are unknown. Yet, we can pick an arbitrary θ and
θ′ with resulting Q, and subsequently examine the sign of the algebraic distances
of all correspondences xi ↔ x′

i. If the sign of the outliers is more or less random,
the inliers should determine the dominant sign. Therefore, a point belonging to the
set with the dominant sign is likely to be an inlier. Counting these occurrences for
several different Q’s will gather statistics about the probability of dealing with either
an inlier or an outlier. The counts will be put in variables ci for i = 1, . . . , n, which
are being updated after each quadric used. We select L equally spaced angles from
[0, π] for both θ and θ′, and for every pair of θ and θ′ a quadric is generated. It is
also possible to select θ and θ′ randomly for each Q, which gives almost comparable
results [36]. However, due to the randomness we should run the algorithm several
times for averaging and this is more costly. The resulting algorithm for equally
spaced angles is given in Fig. 3.3.

• ci = 0 i = 1, . . . , n
• for all θ = 0, π

L
, 2π

L
, . . . , π − π

L
do

• for all θ′ = 0, π
L

, 2π
L

, . . . , π − π
L

do

• Construct Q according to (3.4), (3.5) and (3.6).
• Find the index sets Ipos = {i : x′

iQxi > 0} and
Ineg = {i : x′

iQxi < 0}, and determine

I = arg max
Ipos,Ineg

(|Ipos|, |Ineg|)

• Set the new counts

ci =

{

ci + 1 if i ∈ I
ci if i /∈ I

i = 1, . . . , n

• end for

• end for

Figure 3.3: The quadric algorithm.

The resulting values of the counts can be incorporated into the sampling prob-
abilities of the correspondences. In particular, when the probability of selecting a
correspondence xi ↔ x′

i is the relative number of counts ci/
∑

i ci, the effective
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outlier ratio εquad after applying the quadric algorithm has become

εquad =

∑

i:xi↔x
′
i

∈outliers

ci

∑

i

ci

(3.7)

This measure is used to evaluate the algorithm in the experiments, where the ground
truth outlier data is available.

3.3 Complexity

The computational savings for a single iteration of RANSAC are the computation
of F and one or three times n distance computations. The quadric algorithm itself
should have a low additional complexity to retain most of these savings. We have
chosen for L = 8 in the experiments, which means that for the quadric algorithm we
need only 64n algebraic distance computations. This is a minor computational load
that justifies the use of the algorithm prior to RANSAC in almost every situation.

The standard implementation of the ROR algorithm, however, uses 1,000 random
rotations to reject the outliers [1]. The authors propose to take the majority vote
over 10 runs, so that the algorithm eventually requires 10, 000n computations of
segment angles and 10,000 computations of the mode of an angle distribution. This
makes ROR much more costly than the quadric algorithm.

To illustrate this complexity difference, we have recorded the running times for
the “Valbonne church” data set from Table 3.3 on a Pentium IV 2.8 GHz com-
puter. The ROR algorithm needed approximately 2.0 seconds to complete, while
the quadric algorithm finished in 0.74 milliseconds.

3.4 Experimental results

We will evaluate the proposed quadric algorithm by comparing it to RANSAC with-
out any preprocessing and the ROR algorithm [1]. In ROR possible outliers are
completely rejected, so that the effective outlier ratio εROR is the ratio of the num-
ber of retained outliers and the total number of retained points. We have used the
standard implementation1 of the algorithm without adjusting any parameters. In
the quadric algorithm we have used L = 8 angles for θ and θ′.

3.4.1 Synthetic data

We have generated synthetic data by randomly positioning points in a cube in R
3.

The cameras with equal internal parameters are randomly positioned on a sphere

1The code is available at http://www.cs.technion.ac.il/Labs/Isl/Project/Projects done/ror/.
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around the cube. The radius of the sphere is twice the edge length of the cube.
The points are between 20 and 60 focal lengths away from the cameras. The image
coordinates of the inliers are perturbed by Gaussian distributed noise with a stan-
dard deviation of 0.3% of the image size. For the outliers we randomly select two
different space points, and use their non-corresponding projections as a data pair.
The experiment is run 100 times for a particular outlier ratio ε, and each run will
have different point and camera positions. For the ROR algorithm we have scaled
the coordinate values to resemble realistic pixel values.

The results for 50 and 200 points are shown in Table 3.1 and 3.2, respectively. In
the tables we have shown the average εquad and εROR and their standard deviations
over the 100 runs. In addition, we have calculated according to (2.25) for each run
the theoretical number of iterations J , Jquad and JROR corresponding to ε, εquad and
εROR, respectively. The quantities Jquad and JROR were then averaged over all runs
and these values are shown in the tables. In Fig. 3.4 also the ratios of J and the
average Jquad and JROR are depicted.
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Figure 3.4: The ratios
J

Jquad

and
J

JROR

for J , Jquad and JROR from Table 3.1

and 3.2.

In general, the results for 200 points are better than for 50 points both in terms of
the averages as well as the standard deviations. More points allow a better estimate
of the side of the quadric that is largest. We can see that our method reduces the
outlier ratio in both cases. An exception is the somewhat extreme case ε = 0.9 for
50 points, where only 5 inliers are present.

The synthetic data essentially violates the assumption of a dominant depth value
in the ROR algorithm. Yet, in most runs the algorithm performs well, as can be seen
by the lower average outlier ratio that it achieves when compared to our method.
However, the standard deviation of ROR is larger, so there are several runs where the
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outlier ratio is substantially higher. Since the number of iterations increases quickly
with the outlier ratio, the average number of iterations for high outlier ratios is
therefore much larger for ROR.

The results for synthetic data illustrate that over a large range of camera con-
figurations, the quadric algorithm essentially performs best. Camera configurations
which do not meet ROR’s assumptions make this algorithm increase the original
outlier ratio.

3.4.2 Real data

We have also applied the algorithms to some real stereo images, which are shown
in Appendix B. The results of applying the algorithms on the images are shown in
Table 3.3.

Table 3.3: The results on the real image pairs. The quantities indicated are the
total number of correspondences n, the outlier ratios ε, εquad and εROR, and the
number of iterations J , Jquad and JROR.

image pair n ε εquad εROR J Jquad JROR

books 740 0.74 0.679 0.165 5.7 ·104 1.3 ·104 14
pile of books 548 0.82 0.788 0.286 7.5 ·105 2.4 ·105 47

Valbonne church 299 0.58 0.512 0.056 1, 996 697 5
U. British Columbia 911 0.56 0.481 0.089 1, 441 452 7
U. British Columbia 911 0.56 0.481 0.598 1, 441 452 2, 712

(rotated 180◦)
corridor 262 0.43 0.380 0.082 234 129 6

Wadham college 921 0.71 0.655 0.183 2.7 ·104 7, 914 17
Wadham college 921 0.71 0.657 0.737 2.7 ·104 8, 243 5.3 ·104

(rotated 60◦)
tea box 221 0.71 0.698 1 2.7 ·104 2.0 ·104 ∞

Although the effective outlier ratio εquad is decreased compared to ε for all im-
age pairs, the ROR algorithm shows impressive results here. Most image pairs
apparently meet the assumptions that are needed for the algorithm. However, if we
introduce some additional transformation like image rotation, the ROR algorithm is
not able to handle it very well. We rotated the right images of all image pairs and
noticed that εROR generally increases. In two cases, which are indicated in Table 3.3,
the increase was such that εROR became larger than the original ε.

The image pair “tea box” provides a challenge for the algorithms. The box is
rotated between the views, and due to the similar text on both sides many outliers
arise from the same regions. As a result, the outlier distribution is somewhat struc-
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tured and confuses the ROR algorithm. Our algorithm also has difficulty with this
image pair, but it does show a reduction in the outlier ratio.

The given examples of image rotation and a somewhat special object may not
occur that frequently in practice. Though, they serve to illustrate that the proposed
method is able to perform consistently for various stereo pairs, rather than that it
shows a superior performance for a constrained set of stereo images. In addition, we
note that the complexity of the ROR algorithm makes it only useful for high outlier
ratios. Since the standard RANSAC algorithm finishes well within 2 seconds for the
“Valbonne church”, “U. British Columbia” and “Corridor” image pairs, it makes
the application of ROR for these pairs ineffective.

3.5 Discussion

We have proposed an algorithm that compares the point correspondences from an
image pair to a series of quadrics. Using the fact that outliers in the correspon-
dences tend to have an arbitrary position with respect to a quadric, we can decrease
the effective outlier ratio by gathering statistics over multiple quadrics. Subsequent
application of RANSAC will therefore be less complex. The quadric algorithm has
a low computational complexity and requires no assumptions on the data. Exper-
iments show that the algorithm reduces the original outlier ratio of both synthetic
and real data sets. In the synthetic data experiment, the quadric algorithm shows
better performance than the method based on random rotations, which itself is much
more complex. Although this method produces lower outlier ratios than the quadric
algorithm for many real data sets, it is ineffective for small and moderate outlier
ratios due to its higher complexity than standard RANSAC.

There is one specific quadric which may be useful in a different way. This is
the most imbalanced quadric which is formed when both planes coincide. All inliers
will have the same sign with respect to this quadric. The quadric is reached when
the rays of the mean projections approximately lie in a single plane. Whether this
condition is satisfied depends on the number of correspondences and the number
of outliers among them. In general, the more inliers are present, the closer the
backprojected means will be to the mean 3D position. The single plane quadric
will then be an epipolar plane containing both camera centers and the mean world
point. An epipolar plane places two constraints on the fundamental matrix, so fewer
inliers are required to fix the remaining degrees of freedom. It has to be investigated
whether such a quadric can be found in a reliable manner.



Chapter 4

Weighted Data Sampling in

the RANSAC Algorithm

In this chapter we will consider again the adjustment of sampling probabilities for
steering the sampling of correspondences. In contrast to the previous chapter, how-
ever, the confidence values are not acquired before but during RANSAC execution.
The modification of the RANSAC algorithm that is proposed, feeds back informa-
tion from previous iterations to adjust the sampling probabilities for the current
iteration. It is shown to be applicable to different types of models, including the
fundamental matrix. This chapter is based on [38].

4.1 Introduction

Several enhancements of the RANSAC algorithm have been proposed, which allow
faster execution through a reduction of the number of iterations. In [60] the points
are sampled in a small neighborhood of the first sampled point. Given that the first
point is an inlier, it is likely that mostly inliers are sampled in its neighborhood.
When compared to pure random sampling, this method has a higher probability
of sampling inliers. In [12] a model optimization step is performed on the support
sets of several hypothesized models. This is motivated by the fact that an all-
inlier sample may only provide an approximation to the true model due to noise on
the inliers. Optimization of the hypothesized model can compensate for this, and
therefore reduces the number of iterations needed.

A different approach is the speeding up of the support evaluation [11]. Here a
small number of randomly selected points is initially evaluated for support. Only
when the hypothesized model has sufficient support points among this number, the
remaining data is tested for support. Since it is unlikely that several data points
obey a random model, a significant speedup is obtained during the support evalu-

41



42 Weighted Data Sampling in the RANSAC Algorithm

ation phase. In [62] multiple hypothesized models are tested simultaneously using
an incremental number of data points. Models having few supporting points with
respect to the others are removed during the process, resulting in efficient support
evaluation. In [52] the scheme from [11] was further improved, by optimizing the
number of points used for the initial test.

As we have seen in Chapter 3, a change of the sampling probabilities of data
points can decrease the effective outlier ratio of the data and likewise the number of
RANSAC iterations. In this chapter we will also change the sampling probabilities
though not a priori. We propose a weighted sampling strategy for model estimation
among uniformly distributed outliers, where the sampling probabilities are changed
during RANSAC execution. We will prove that when estimating hyperplanes among
uniformly distributed outliers, the weighted sampling strategy can increase the prob-
ability of sampling inliers. By experiments we will show that this method can also
be successfully applied to fundamental matrix estimation.

The weighted sampling method will reduce the necessary number of iterations
under a small amount of additional computation. The additional computation will be
compensated by the reduction in iterations, except in case of very “light” iterations
where simple models are computed and few data points are observed. The method
does not rely on the setting of any additional thresholds like in [60], where the
selection of a good neighborhood size depends on the distribution of the data. It
may be difficult to select the size for diverse data sets. Our method can potentially
use fewer iterations than theoretically necessary; the model optimization step in [12]
can only reduce the number of iterations to the theoretically required number, but
is not designed to give a further improvement.

In Section 4.2 the proposed sampling strategy is explained and analyzed. The
evaluation of this strategy when RANSAC is applied to linear regression and the
estimation of the fundamental matrix is described in Section 4.3. Section 4.4 will
conclude the chapter.

4.2 Weighted sampling

In this section we introduce the weighted sampling strategy, which is followed by
an analysis of the method. Thereafter, the benefit for hyperplane estimation among
uniformly distributed outliers is shown.

4.2.1 Method of point weighting

Since the proposed method is not only limited to fundamental matrix estimation,
we use a more general formulation of the estimation problem. The data points
are denoted by xi for i = 1, . . . , n in R

N and the points in a sample of size d by
{x̃1, . . . , x̃d}. The number of inliers among these d points is indicated by din. We
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also denote with HT the subspace of R
N containing all points within distance T of

a particular model. This subspace necessarily includes {x̃1, . . . , x̃d}.
In the standard RANSAC algorithm the sampling of points is uniform; each

data point has an equal probability of being selected. To reduce the complexity, we
propose a weighted sampling strategy, which aims at increasing the sampling prob-
abilities of inliers during RANSAC execution. Data points are sampled according
to an evolving probability distribution, which favors the sampling of points found
in previous support sets. Since the model is most probably being hypothesized in a
dense point area, sampling from this area will therefore be further stimulated.

The probability distribution used for sampling is formed by a set of weights
{w1, . . . , wn} for each {x1, . . . ,xn}. In every iteration the weights of points in the
support set Sj are increased, except for the sample {x̃1, . . . , x̃d} (the reason for
this exclusion will be explained later on). The probability distribution in iteration
j will depend on the weights {wj−1

1 , . . . , wj−1
n } from the previous iteration j − 1.

The RANSAC algorithm with the proposed weighted sampling strategy is given in
Fig. 4.1. Note that when the weights are not updated, standard uniform sampling
is obtained.

4.2.2 Analysis of the effective inlier ratio

Weighted sampling should increase the probability of sampling an inlier from the
data. In case of uniform sampling this probability is constant, namely 1− ε. In the
proposed algorithm it will depend on the weights {w1, . . . , wn}, and is likely to be
different after each iteration. Let us denote by ρj the probability of sampling an
inlier after iteration j has finished. We can write ρj as

ρj =

∑

i:xi∈inliers

wj
i

∑

i

wj
i

=

n(1 − ε) +

j
∑

l=1

kl

n +

j
∑

l=1

ql +

j
∑

l=1

kl

(4.1)

where kj and qj denote the number of inliers and outliers, respectively, in the support
set Sj . Necessarily, we have that |Sj | = kj + qj . Also note that ρ0 = 1− ε, which is
the original inlier probability of the data set. Examining (4.1) shows us that ρj will
be difficult to evaluate directly, since the probability distribution of kj is essentially
unknown. To make the analysis tractable, we will use the expected value of ρj

as a criterion for evaluation. In particular, weighted sampling is readily preferred
over uniform sampling if for every iteration the expected inlier probability is non-
decreasing, that is

E[ρj ] ≥ E[ρj−1] j = 1, . . . , J (4.2)
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• Smax = ∅, J = ∞, j = 1, w0
i = 1 i = 1, . . . , n

• while j < J do

• Randomly select a sample {x̃1, . . . , x̃d} from {x1, . . . ,xn} according
to

p(xi) =
wj−1

i
n
∑

i=1

wj−1
i

i = 1, . . . , n

and compute the corresponding model.
• Determine the set of support points Sj for the model by verifying

which points are within HT .
• Adjust the weights by

wj
i =

{

wj−1
i + 1 if xi∈Sj\{x̃1, . . . , x̃d}

wj−1
i else

• if |Sj | > |Smax| then

• J = log(1 − p) · log−1

(

1 −
(

|Sj |
n

)d
)

• Smax = Sj

• end if

• j = j + 1

• end while

• Re-estimate the model based on the largest support set Smax.

Figure 4.1: The RANSAC algorithm with weighted sampling.
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This condition will assure that the expected total number of iterations for the algo-
rithm can only decrease during execution.

Before we evaluate (4.2) we will make a few assumptions. The first assumption
is frequently made and concerns the distribution of the outliers, namely that the
outliers have a uniformly distributed distance over a fixed range to any hypothesized
model [77, 88]. For a given threshold T , we therefore have that the expected number
of outliers within HT is equal for all models, and we can write E[qj ] = E[q] for
all j. In case of fundamental matrix estimation, the uniform distribution is an
acceptable approximation when the outlying feature matches have random positions
in the images. For many image pairs this will hold indeed, but some image pairs
may produce more structured outliers with clustered positions. Though, in case
the structured outliers do not dominate the outliers, the assumption may still be a
good approximation. The second assumption is that the inliers are influenced by
Gaussian noise with standard deviation σ on each coordinate independently. The
third assumption we make is formally stated below.

Assumption 1. The expected number of inliers E[k] in the support set S is a non-
decreasing function of the number of inliers in the sample din.

The most probable position for sampling an inlier is from a dense inlier area.
Since the hypothesized model passes through the selected inlier, the subspace HT

is likely to contain some of the surrounding inliers. When more inliers are sampled,
i.e. for larger din, this effect will be more prominent and motivates the assumption.
Several experiments that we have performed validate the assumption.

The following lemma shows under what condition (4.2) is fulfilled.

Lemma 1. E[ρj ] ≥ E[ρj−1] for j = 1, . . . , J if in the first iteration the expected
number of inliers in the support set satisfies

E[k1] ≥
1 − ε

ε
E[q] (4.3)

Proof. In order to simplify the analysis, the expected values E[ρj ] and E[ρj−1] will
be approximated by the ratio of expected nominator and denominator values in (4.1).
In this way, E[ρj ] ≥ E[ρj−1] can be written as

n(1 − ε) +

j
∑

l=1

E[kl]

n +

j
∑

l=1

E[ql] +

j
∑

l=1

E[kl]

≥
n(1 − ε) +

j−1
∑

l=1

E[kl]

n +

j−1
∑

l=1

E[ql] +

j−1
∑

l=1

E[kl]

(4.4)

After some algebraic manipulation and using E[ql] = E[q], this reduces to
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E[kj ] (nε + (j − 1)E[q]) − E[q]

(

n(1 − ε) +

j−1
∑

l=1

E[kl]

)

≥ 0 (4.5)

Evaluating (4.5) for j = 1 results in (4.3). Using an inductive argument, we can
show that if (4.5) holds for j = m then it also holds for j = m + 1. The left side
of (4.5) for j = m + 1 can be written as

E[km+1] (nε + mE[q]) − E[q]

(

n(1 − ε) +

m
∑

l=1

E[kl]

)

= E[km+1] (nε + (m − 1)E[q]) − E[q]

(

n(1 − ε) +
m−1
∑

l=1

E[kl]

)

+E[q] (E[km+1] − E[km])

≥ E[km] (nε + (m − 1)E[q]) − E[q]

(

n(1 − ε) +

m−1
∑

l=1

E[kl]

)

≥ 0 (4.6)

The first inequality follows from the induction hypothesis E[ρm] ≥ E[ρm−1] and
E[din

j ] = dE[ρj−1], which results in E[din
m+1] ≥ E[din

m ] and together with Assump-
tion 1 this gives E[km+1] ≥ E[km]. The second inequality follows directly from the
induction hypothesis.

As shown by the Lemma, weighted sampling will perform at least as well as uni-
form sampling when (4.3) holds. The exclusion of the sample {x̃1, . . . , x̃d} from
increasing its weights, is because for the points in the sample (4.2) is always satis-
fied with equality (due to E[din

j ] = dE[ρj−1]). In case the remaining support points
satisfy (4.2) by a strict inequality, the sample {x̃1, . . . , x̃d} will actually decrease the
value of E[ρj ].

4.2.3 Hyperplane estimation

Next, we give a result related to the estimation of hyperplanes using the weighted
sampling method.

Theorem 2. When the model is a hyperplane and assuming uniformly distributed
outliers and Gaussian noise with σ < 0.21 on the inliers, then E[ρj ] ≥ E[ρj−1] for
j = 1, . . . , J .

Proof. Let a point in R
N be denoted by x = (x1, x2, . . . , xN )>. A hyperplane with

normal vector N = (a1, a2, . . . , aN )> is given by a1x1 + a2x2 + . . . + aNxN + b = 0.
A hyperplane is therefore specified by (N, b), where we assume that N has unit
norm. The position of the inlying points xin

i , i = 1, . . . , n(1 − ε) in R
N (under the
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constraint that they are on the true model) can be described by a probability density
function. We will denote by pin(b|N) the probability that an inlier is found on the
hyperplane with offset b for a given normal N. The inlying points are assumed to
be independently distributed.

Since the inliers are influenced by Gaussian noise with standard deviation σ
on each coordinate independently, the noise distribution in the direction of N is
also described by a Gaussian distribution with the same standard deviation. The
distribution pin(b|N) can therefore be written as

pin(b|N) =

∫

u

p(b|u)p(u) du

=
1√
2πσ

∫

u

e−
(b−u)2

2σ2 p(u) du (4.7)

where u is the true inlier position (i.e. the true b) on the model.
Similarly, we denote by pout(b|N) the probability that an outlier xout

i , i =
1, . . . , nε is found on the hyperplane with offset b for a given normal N. Due to
the uniformly distributed distance of the outliers to any model, the probability
pout(b|N) is equal for all models and we indicate it by pout(b|N) ≡ po. Note that
∫

pin(b|N) db = 1 for all N and that
∫

po db = 1.
Let us first assume that din = 0. For a particular model to be selected, the points

in the sample must all lie on the model. Therefore, for a given normal direction N,
the probability that offset b is selected is

p(b|N) =
(po)

d

∫

(po)
d db

= po (4.8)

The number of inliers in HT in the first iteration for a hyperplane with parameters
N and b is

E[k1|N, b] =

n(1−ε)
∑

i=1

p(xin
i ∈ HT )

= n(1 − ε)

∫ b+T

b−T

pin(B|N) dB (4.9)

Using (4.8) we can now write

E[k1|N, din = 0] =

∫

E[k1|N, b]p(b|N) db

= n(1 − ε)

∫∫ b+T

b−T

pin(B|N)po dB db

= n(1 − ε)2Tpo (4.10)
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The expected number of outliers E[q|N] in each HT is equal, and we have
E[q|N] = nε2Tpo. As a result, we can write E[k1|N, din = 0] = 1−ε

ε
E[q|N] and

averaging over all N proves the claim for din = 0 by Lemma 1.
Let us now assume that din = 1. For a hyperplane with given normal direction

N, the probability that offset b is selected equals

p(b|N) =
pin(b|N)(po)

d−1

∫

pin(b|N)(po)
d−1 db

= pin(b|N) (4.11)

Combining (4.9) and (4.11) gives us

E[k1|N, din = 1] =

∫

E[k1|N, b]p(b|N) db

= n(1 − ε)

∫∫ b+T

b−T

pin(B|N)pin(b|N) dB db

= n(1 − ε)

∫ T

−T

∫

pin(b + τ |N)pin(b|N) db dτ

≥ n(1 − ε)

∫ T

−T

∫ ∫

p(b + τ |u)p(u)p(b|u)p(u) du db dτ

= n(1 − ε)

∫ T

−T

∫ ∫

p(u)2
1√
2πσ

e−
(b+τ−u)2

2σ2
1√
2πσ

e−
(b−u)2

2σ2 du db dτ

= n(1 − ε)
1

2πσ2

∫ T

−T

∫

p(u)2e−
τ2

4σ2

∫

e−
(b−(u−

1
2

τ))2

σ2 db du dτ

= n(1 − ε)
1

2
√

πσ

∫ T

−T

e−
τ2

4σ2 dτ

∫

p(u)2 du (4.12)

where the inequality follows from p(b2 − b1 = τ) ≥ p(b2 − b1 = τ, u2 = u1) for the
two inlier densities. The last equality follows from integrating the rightmost Gaus-
sian over the full range of b, which yields

√
πσ.

Threshold T is usually chosen as 1.96σ, so that the probability that an inlier is in
the support set of the true model is 0.95 (following a χ2 distribution). The Gaussian
integral in the last line of (4.12) for this choice of T yields

1

2
√

πσ

∫ 1.96σ

−1.96σ

e−
τ2

4σ2 dτ = 0.83 (4.13)

The integral of p(u)2 can be bound below using the Cauchy-Schwarz inequal-
ity [43]
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∫

p(u)2 du ≥

(∫

p(u)po du

)2

∫

p2
o du

=
p2

o

po

= po (4.14)

and combining (4.12), (4.13) and (4.14) we have that

E[k1|N, din = 1] ≥ n(1 − ε)0.83po

≥ n(1 − ε)2Tpo for σ < 0.21 (4.15)

where T is 1.96σ. From (4.15) we therefore have that E[k1|N, din = 1] > 1−ε
ε

E[q|N]
for small σ < 0.21, and after averaging over all N this completes the proof for din = 1
by Lemma 1.

In case din > 1 we can use Assumption 1, showing that E[k1] should increase for
a larger given value of din. Since the expected number of outliers in HT is still the
same as for din = 1, (4.3) will also hold for 1 < din ≤ d.

Although the resulting range of σ is rather small, the use of lower bounds in the
Theorem may suggest that it also holds for larger σ values.

We will show in the experiments that for hyperplane estimation, weighted sam-
pling indeed requires fewer iterations than uniform sampling.

4.3 Experimental results

The RANSAC algorithm with uniform and weighted data sampling will be compared
for linear regression and fundamental matrix estimation on both synthetic and real
data sets. The re-estimation in the last step of RANSAC is not performed, but this
will not affect the comparison. Most algorithms were implemented in C and ran
on Intel Xeon 3.07 GHz / 3.2 GHz computers. The singular value decomposition
needed for plane and fundamental matrix computation was taken from [68].

First the estimation of a simple hyperplane, a line, is considered. The number
of required iterations from (2.25) is already relatively small due to d = 2. The
reduction in number of iterations by weighted sampling is also small, since there are
few iterations for the weighting to take effect. For the estimation of a plane (d = 3)
the reduction will therefore be larger, and for the fundamental matrix (d = 7) even
more.

In practice, the weighted sampling of points according to weights {w1, . . . , wn}
is achieved by means of cumulative weights {c1, . . . , cn}, which are given by ci =
ci−1+wi with c1 = w1. The values of the cumulative weights need to be recalculated
in every iteration, which requires one pass of additions over all {c1, . . . , cn}. A
uniformly distributed random number between 0 and cn is then drawn, and the
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smallest index is for which cis
is larger than the random number corresponds to the

selected point xis
[40]. The search for is can be done efficiently with a binary search

over {c1, . . . , cn}, which has on average a log(n) complexity.

4.3.1 Line fitting

Consider the example of line fitting in Fig. 4.2(a), where the model has slope 0.5
and intercept 20. The outliers are uniformly distributed and the outlier ratio is
75%. Running the weighted sampling results in the weight distribution as shown
in Fig. 4.2(b)- 4.2(d). After 30 iterations the line already shows many high weights
when compared to the outliers. Due to the ratio of initial and incremental weights,
there is no incorrect clustering of high weights at a specific position in the plane.

For this type of dataset, we have determined the average performance of the
sampling methods for outlier ratios from ε = 0 to ε = 0.9. For each outlier ratio 500
runs are performed with random line parameters and point distributions. The inliers
are uniformly distributed along the line, and the outliers uniformly distributed in
2D-space. The coordinates x and y are bounded to the interval [0, 100]. We add unit
variance Gaussian noise independently to the x and y coordinates of the inliers. We
set the threshold for the orthogonal distance to the line to T = 1.96, so that 95% of
the inliers will be accepted given the true model. Table 4.1 shows for n = 50 points
the resulting number of iterations J , the size of the maximum support set |Smax|
and the running time t. Alternatively, in [33] some initial experiments have been
performed recording the number of iterations for finding a fixed number of inliers.

From Table 4.1 it can be seen that weighted sampling reduces on average the
required number of iterations and shows a smaller variation. The sizes of the max-
imal support sets found are comparable; weighted sampling gives a slightly larger
support set with less variation, which indicates that there is a gain in precision of
the estimated model. However, the average running times show that the additional
complexity of weighted sampling cancels the reduction in number of iterations. A
single RANSAC iteration is here relatively fast; a simple model is computed and
there are few data points to evaluate.

It may appear that the weighted sampling method is equivalent to a fixed density-
based prior, since weighted sampling stimulates the sampling from dense point areas.
To show the difference in results, we have additionally shown in Table 4.1 the number
of iterations needed for sampling according to density-based probabilities. It con-
cerns a simple method where the prior point probabilities are proportional to the
number of points in their local neighborhoods. The threshold for the neighborhood
radius was set to 15, which gave the best results for the case ε = 0.5. Note that in
practice, in the absence of a tuning stage, it may be difficult to come up with a good
threshold value. In Fig. 4.3 a graphical comparison is shown of the iteration data in
Table 4.1. Overall, the average number of iterations over 500 runs for the density-
based method turns out to be higher than for weighted sampling. The case where
the hypothesized model is nearly optimal, and many inlier weights are increased, is
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where weighted sampling improves over the purely density-based method. The total
complexity of the latter method will in general depend on the specific type of den-
sity estimation procedure, and requires just like weighted sampling a non-uniform
sampling procedure.

Structured outliers may cause the weighted sampling to be ineffective or give
worse performance than uniform sampling. This can be seen in Fig. 4.4 where a
line is shown in data with 60% outliers. Half of the outliers lie around a point, and
the resulting high point density causes increased point weights. If we run RANSAC
with both sampling schemes for 500 times on this particular point set, we get as
average and standard deviation 27.1 ± 4.4 iterations for uniform sampling, and 30.4
± 13.1 iterations for weighted sampling. The average size and standard deviation
of the support sets found are 40.6 ± 2.4 for uniform sampling, and 40.1 ± 4.1 for
weighted sampling. The performance of weighted sampling is here inferior to uniform
sampling. Although point weighting helps here in discerning structure from the rest
of the data (see Fig. 4.4(d)), it does not discriminate well between the structures.

When the structures are evenly distributed in the space and have an equal point
density, weighted sampling does not necessarily requires more iterations than uni-
form sampling. This is illustrated by line fitting in real images for the purpose of
straight edge detection. An edge detector will generally return multiple structures of
equal pixel density. Applying the Sobel edge detector to the test images of size 256
× 256 pixels in Fig. 4.5 and subsequent thresholding, gives the corresponding edge
maps. The RANSAC algorithm will now be repeatedly used to extract all straight
edges in the images. Each edge that is returned by the algorithm is deleted from the
image, and the extraction process continues until an edge with less than 50 pixels
is returned. The whole process is repeated 500 times for averaging. We set the
threshold for the orthogonal distance to the edge to T =

√
2 pixels. The results are

shown in Table 4.3. Weighted sampling requires slightly fewer or the same number
of iterations when compared to uniform sampling. The distribution of the pixels
largely determines whether there is any improvement possible. A sparse set of lines
like in Fig. 4.5(f) and 4.5(j) is far from being uniformly distributed, and therefore
no improvement is obtained. A distribution like in Fig. 4.5(i) is more uniform and
likewise suitable for the weighting of samples. Unfortunately, this only concerns
the theoretical benefit of the algorithm, since in practice it does not imply a faster
execution of the algorithm. The improvement is too small to compensate for the
additional complexity of weighted sampling.

4.3.2 Plane fitting

In a similar way as for fitting a line, we have generated points in 3D for testing
RANSAC on plane fitting. The inliers are uniformly distributed along the plane and
the outliers uniformly distributed in the space. The x, y and z coordinates of the
points are bounded to the interval [0, 100]. We add unit variance Gaussian noise
independently to the x, y and z coordinates of the inliers. The threshold for the
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Figure 4.2: A data set with 75% outliers. The sizes of the points reflect their
relative weights after several iterations.
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Figure 4.3: The ratios
JU

JD

and
JU

JW

for JU , JD and JW from Table 4.1.

Table 4.3: The results for extracting all lines in the edge maps of Fig. 4.5. Indicated
are the averages and standard deviations (±) for the total number of iterations

∑

J
per image, and the total size of the maximum support sets

∑ |Smax|, in case of
uniform (U) and weighted (W) sampling.

∑

JU (·104)
∑

JW (·104)
∑ |Smax|U (·103)

∑ |Smax|W (·103)

4.5(f) 1.45 ± 0.065 1.45 ± 0.069 1.41 ± 0.039 1.40 ± 0.042
4.5(g) 2.53 ± 0.18 2.48 ± 0.16 2.22 ± 0.045 2.22 ± 0.046
4.5(h) 5.95 ± 0.26 5.93 ± 0.25 2.01 ± 0.052 2.01 ± 0.055
4.5(i) 6.32 ± 0.39 6.09 ± 0.34 3.03 ± 0.068 3.05 ± 0.067
4.5(j) 0.32 ± 0.0061 0.32 ± 0.013 0.81 ± 0.012 0.81 ± 0.020

orthogonal distance to the plane is set to T = 1.96. The plane parameters are chosen
randomly for each run. The results over 500 runs are shown in Table 4.2 for n = 100
points, and are partly depicted in Fig. 4.6.

Weighted sampling requires fewer iterations and has smaller variation than uni-
form sampling; the decrease is also larger than with line fitting. The sizes of the
maximal support sets found are very much identical, though weighted sampling
shows here a slight improvement over uniform sampling. The running times indicate
that a single RANSAC iteration is already sufficiently complex for allowing weighted
sampling to be faster.

We have also used a fixed density-based probability distribution for the sampling
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Figure 4.4: A data set with 60% outliers that are partly structured. The sizes of
the points reflect their relative weights after several iterations.
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Figure 4.5: Test images and their corresponding edge maps.
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stage. The radius of the neighborhood was set to 15, which gave best results for the
case ε = 0.5. The number of iterations for this method is also shown in Table 4.2. It
can be seen that fewer iterations are required for weighted sampling when compared
to the density-based method.

Additionally, we have applied RANSAC for the fitting of planes in range image
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data to see the effects of structured outliers on the algorithm. Plane fitting in a range
image can be used to find a suitable segmentation of the image [44, 91]. For our
experiments we have used 10 images (“train” 0 to 9) from the ABW structured light
scanner in the USF database1. The images contain several different planar objects,
and the intensity values correspond to the measured depth by the scanner. An
example image is shown in Fig. 4.7. We have subsampled the images with a factor 2
to obtain 256×256 sized images, since each pixel in the image is a separate data point
and using all of them makes computation very complex. We search with RANSAC
for planes in the images and subsequently delete them. The repeated application of
RANSAC is stopped when a plane is returned with support smaller than 500 pixels.
As an example, the number of planes that can be extracted this way from Fig. 4.7
is about 11. The experiment is repeated 500 times for each image. The threshold
for the orthogonal distance to the plane is set to T = 2.5. Table 4.4 shows the
results of the experiments. Weighted sampling requires for most images on average
fewer iterations, while the number of points returned on the planes is comparable
to uniform sampling. However, as the running times indicate, the reduction is too
small to make the algorithm of practical use for this type of data.

Figure 4.7: An example of the range images used in the experiments.

4.3.3 Fundamental matrix estimation

Next, we consider the estimation of the fundamental matrix using synthetic data,
which is created by randomly generating points in a 3D cube. The cameras are

1Available at http://marathon.csee.usf.edu/range/seg-comp/images.html.
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placed at random positions on a sphere around the cube, where the radius of the
sphere is two times the cube size. The points are between 20 and 60 focal lengths
away from the cameras. For the inliers we add Gaussian distributed noise to both
coordinates with standard deviation of about 0.3% of the image size. For the outliers
we select two different space points, and use their non-corresponding projections as
a pair. The distance measure used is the Sampson approximation (2.27) to the
reprojection error, which is compared to the squared threshold T 2. The threshold
has been set to T 2 = 3.84σ2 where σ2 is the measured variance of the error with
respect to the true fundamental matrix. The variance is averaged over several runs
with each run having different point and camera positions. We also examined the
behavior for two larger threshold values 5T 2 and 20T 2, which correspond to an
increase in point distance by roughly a factor

√
5 = 2.24 and

√
20 = 4.47. Due to

practical considerations, we stopped the RANSAC algorithm whenever the number
of iterations exceeded 1,000,000. In these runs the number of iterations was set to
one million. The results over 500 runs for 200 correspondences are given in Table 4.5
and Fig. 4.8, and shown graphically in Fig. 4.9.

It can be seen from these results that on the whole weighted sampling saves iter-
ations and that it obtains better statistics for the maximum support sets. Though,
there are some cases where the performance is worse. For example, in case there are
no outliers (ε = 0), uniform sampling is better because weighted sampling is then
discriminating between the inliers. Also for high outlier ratios (ε ≥ 0.7) uniform
sampling requires fewer iterations in some cases. This is probably caused by the low
density of inliers in the space. For increasing threshold values, we see an improve-
ment for high ε but at the same time worse results for moderate ε. Since in real
imaged scenes the inliers are usually much more close when compared to a uniform
distribution in space, better results can be expected from weighted sampling for real
image pairs.

To verify this, we have used some of the images in Appendix B for the estimation
of the fundamental matrix using both sampling methods. The square root of the
threshold for the Sampson distance is set to T = 1.5 pixels. The results of 500
runs on the image pairs are shown in Table 4.6 and 4.7. Weighted sampling clearly
improves upon uniform sampling in all aspects. Also note that weighted sampling
approaches the true number of inliers much more closely. An exception is the image
pair “pile of books” where the improvement is minimal. The explanation for this
is that the inlying correspondences are very close to the outliers in the images, and
the outliers are therefore frequently weighted too.

Also shown in Table 4.6 and 4.7 are the results for a density-based sampling
method. This method follows the same principle as used in line and plane fitting,
except that the distance is now computed in the 4D joint image space (x, y, x′, y′).
We have manually selected an appropriate threshold value in this space, namely
50 pixels. Although the number of iterations is slightly higher than for weighted
sampling, the difference in running times is negligible. For image pair “pile of books”
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Figure 4.8: The statistics of |Smax| for fundamental matrix estimation from syn-
thetic data with 200 correspondences.
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for the results from Table 4.5.

the performance is even better. This raises the question whether there is a reason
to prefer weighted sampling over the density-based method.

There are two reasons which can be given in this respect. The first, already
mentioned before, is that a density-based prior needs an appropriate value for the
neighborhood threshold. In our method, this threshold was selected manually in
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such a way that good results were obtained. When the threshold is chosen very
small, e.g. equal to the threshold T = 1.5, the density-based method gives much
worse results than weighted sampling. The weighted sampling method does not
require tuning of an additional threshold value. The second issue is that the running
times indicated do not include the computation of the density-based prior. This
operation is of the order O(n2) and needs to be included in the computation time.
Although depending on the specific implementation chosen, it can make density-
based sampling less favourable than weighted sampling.

Recently it was shown that for having many inliers on a plane, the fundamental
matrix computed from a sample of five such inliers and two outliers covers all the
remaining plane inliers [13]. Such a fundamental matrix may mistakingly be consid-
ered correct due to its large support. One may suspect that this same phenomenon
is responsible for the success of weighted sampling in the images containing planes.
For example, in Fig. B.5 the walls of the building form two planes containing many
inliers. However, the probability that five inliers are selected on the same wall is
relatively low, since the inliers are evenly distributed over both walls. The proba-
bility this would happen is thus approximately 2−5 given that the sample contains
five inliers. This indicates that it does not occur frequently enough to explain the
improvement of weighted sampling. Evenmore, when we ran the experiment with
the explicit requirement that weights can only be updated in case less than 5 inliers
are sampled, we still noticed an increase in speed for weighted sampling.

4.4 Discussion

We have presented a weighted sampling scheme for the RANSAC algorithm, which
adjusts the sampling probabilities of points to increase the probability of sampling
inliers. The method is applicable for different types of models. It is proven that
for estimation of a hyperplane among uniformly distributed outliers, the expected
inlier ratio in the samples obtained this way is non-decreasing. Experiments on
line and plane fitting in synthetic data generated under these conditions, confirm
that weighted sampling reduces the number of RANSAC iterations. Experiments on
real data with multiple lines or planes, show that weighted sampling roughly gives
comparable performance in terms of the number of iterations but takes more time
to complete. Furthermore, it has been shown that fundamental matrix estimation
can benefit from the application of weighted sampling.

If we use sampling probabilities proportional to the local point densities, we need
only slightly more RANSAC iterations when compared to the weighted sampling
method. Weighted sampling seems to follow a similar strategy as the density-based
method, since points are sampled independently and are most likely to originate from
dense point areas. Though, the method not only benefits these particular points,
but also points which together form a good model. This holds in particular for point
subsets of the true model, which are then sampled more frequently and can steer
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the sampling towards the true model. A disadvantage of the density-based approach
is that it requires some scale estimate of the data. Only then a good measure of
proximity is available to compute the point density.

Although the chosen weighting scheme gives good results, it may not be optimal;
different weighting strategies could be explored to find the most useful one. We can
think of weight values that depend on the size of the support set or the number of
executed iterations so far. Care must be taken, however, that the sampling does not
get stuck at a specific point in the model space. Additional measures may be taken
to prevent this by examining the variation in hypothesized models or the current
weight distribution.

A possible adjustment of the algorithm is to use weighting only in a subset of
iterations. Although this may seem to hamper the speed, it will reduce the chance
of the algorithm getting stuck at some point. The weight distribution is basically
prevented to evolve so far that only a few models remain possible. Especially when
multiple models are present, this issue becomes more important. One possibility is
to let the update take place when the largest support set so far is found [12], which
happens approximately log(J) times. This may still give a reasonable performance,
while the number of weight updates is limited.



Chapter 5

A Six-Point RANSAC

Algorithm for Fundamental

Matrix Estimation

In this chapter we will consider a combination of the RANSAC algorithm and the
Hough transform. The model will be computed by sampling a smaller than minimal
subset, followed by a voting process of the remaining data. To be able to use the
combined method for this purpose, an adequate parameterization of the model in the
Hough space is required. We will show that in case of hyperplane and fundamental
matrix estimation, there is a similar and very general parameterization possible.
This allows both models to be estimated in a very efficient manner. This chapter is
based on [37].

5.1 Introduction

The Hough transform determines for every data point the parameter subspace of
models it supports, and increases the votes in the Hough space for all these models.
An extension of this principle is to vote for sets of data points instead of single points.
The subspace of supported models is then smaller, while the number of different
point sets is larger. For example, a hyperplane in R

N is specified by N points, and a
single point imposes a N−1 dimensional subspace of supported models in the Hough
space. When a pair of points is considered, the set of supported models is a N − 2
dimensional subspace. The voting process is then faster, but we have to consider
(

n
2

)

different pairs instead of only n points. The limiting case is when precisely sets
of N points are selected, which then results in a single point in the Hough space.
This is the principle of the randomized Hough transform [93]. Instead of the total

65
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number of possible sets
(

n
N

)

, only a small number of random sets is selected which
is sufficient to find the best model.

In contrast to the Hough transform, the RANSAC algorithm samples N points
and verifies the amount of support for the corresponding model. In view of the
above, it is also possible to sample less than N points and verify the support for each
supported model in the parameter subspace. This use of RANSAC in combination
with the Hough transform has been proposed in [65, 66] to improve the efficiency
and quality of model estimation. It was argued that using sets of N − 1 points is
probably the best choice in terms of efficiency. This results in a one-dimensional
subspace of models, which may be parameterized by a single quantity. Then there
is no need to accumulate the large N dimensional Hough space.

The necessary number of iterations of the combined RANSAC and Hough method
is clearly lower than for standard RANSAC; only sets of N−1 instead of N points are
sampled for forming model hypotheses. The quality of the model can be improved
by using an error propagation mechanism for the data. Uncertainty in the point
positions is translated into an error for the supported models. This error is then
projected onto the one-dimensional subspace of models.

As discussed in Section 2.4.3, an explicit parameterization of the fundamental
matrix in the Hough space is impractical. To be able to use the method in [65], we
propose a new parameterization for hyperplanes which can also be applied to the
fundamental matrix. The parameterization is based on the nullspace of a sample,
where the sample will contain one point less than the minimally required number.
For hyperplane estimation, we can include the threshold for the support set directly
into the voting process. As a result, the whole range of models supported by the
remaining data is taken into account. For fundamental matrix estimation, the corre-
spondences will vote for single models. The resulting estimation by 6-point samples
will be very efficient due to the reduced number of iterations. Error propagation
is not incorporated in our method, since no explicit parameterization of the model
is used. Note that the standard RANSAC algorithm also neglects noise effects of
points in the sample [12].

In Section 5.2 the proposed parameterization technique is discussed for hyper-
plane estimation. Section 5.3 describes the application of the method to fundamen-
tal matrix estimation, and Section 5.4 contains specific implementation issues. In
Section 5.5, hyperplane estimation is evaluated for synthetic data and range data.
Fundamental matrix estimation is evaluated on both synthetic and real correspon-
dences. Section 5.6 will conclude the chapter.

5.2 Hyperplane estimation

The data points xi for i = 1, . . . , n in R
N will be denoted by x = (x1, x2, . . . , xN )>.

A hyperplane with normal vector n = (a1, a2, . . . , aN )> and offset b is given by
a1x1 + a2x2 + . . . + aNxN + b = 0. In short, the parameters of the hyperplane will
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be indicated by h = (n> b)>. The random samples that will be drawn consist of
N − 1 points {x̃1, x̃2, . . . , x̃N−1}, and solving for the hyperplane











x̃>
1 1

x̃>
2 1
...

...
x̃>

N−1 1











h = 0 (5.1)

yields a two-dimensional space {h1,h2} for h. This nullspace can in practice be
computed by a singular value decomposition of the lefthand-side matrix. If the
sample {x̃1, x̃2, . . . , x̃N−1} contains only inliers, then the true hyperplane can be
given by a linear combination of the nullspace vectors as

h = αh1 + (1 − α)h2 (5.2)

The value of α can be found by solving (x> 1)h = 0 for another inlying point x, and
should be the same for all other inliers. The outliers will produce different values
for α.

To find the true value of α we use a Hough-based voting mechanism for the
remaining n − N + 1 data points [65]. We could use the projections of x onto h1

and h2 directly for computing α, but this may result in α values which are difficult
to quantize. In particular, the nullspace vector with the largest singular value, say
h1, is likely to constitute the largest part of h and therefore α ≈ 1. The binning of
many values close to 1 and possibly some values far from 1 is impractical. It would
be more convenient to have an α with equiprobable values over a large range.

For this purpose, we will make use of an orthonormal basis {u1,u2} for the space
spanned by n1 and n2, which are the normals in h1 and h2 from (5.2). We will take
a point x̃1 from the sample, and project all vectors xi − x̃1 for i = 1, . . . , n (except
those from the sample) onto this basis. The point x̃1 can be seen as the origin for
the space spanned by {u1,u2}, which is shown in Fig. 5.1 for a line in 2D. From (5.2)
we have that n = αn1 + (1 − α)n2, and since n1 and n2 are linear combinations of
{u1,u2} we can write

n = c1u1 + c2u2 (5.3)

for certain values c1 and c2. It then follows, that for the inliers the ratio of projections
onto u2 and u1 becomes

(x − x̃1)
>u2

(x − x̃1)>u1
=

(x − x̃1)
>(n − c1u1)

1
c2

(x − x̃1)>u1

=
(x − x̃1)

>u1
−c1

c2

(x − x̃1)>u1

=
−c1

c2
(5.4)
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x1

x2

n1

u1

u2

n2

x

x̃1

Figure 5.1: The sampled point x̃1 will serve as the origin for the space spanned by
{n1,n2}. Each point x is projected onto this space by projecting the vector x − x̃1

onto the orthonormal basis {u1,u2}.

since (x− x̃1)
>n = −b− (−b) = 0. The outliers will produce different values for the

projection ratio since in that case x>n 6= −b. The projection ratio in (5.4) will cover
a relatively large range of values, and the angle γ of the projected vector x− x̃1 with
respect to the basis {u1,u2}

γ = arctan

(

(x − x̃1)
>u2

(x − x̃1)>u1

)

(5.5)

offers a quantity which can conveniently be used in a voting space.
In principle, not only the hyperplane which crosses a point x should receive a

vote, but all possible hyperplanes that are within allowable distance of the point.
A data point will support a hyperplane if its orthogonal distance to the hyperplane
is smaller than T , see Fig. 5.2. Here the angle β determines for which models the
indicated point can possibly be a support point, and we have sin(β) = T

δ
where

δ =
√

((x − x̃1)>u1)2 + ((x − x̃1)>u2)2. A data point will vote for all angles in the
range [γ−β, γ+β]. We note that the distance from point x to the hyperplane is equal
to the projected distance in the space spanned by {u1,u2}, since the component of
x that lies outside this space is orthogonal to it.

The angle γ will be measured in degrees and we choose to use a voting space of
180 bins; one bin for each degree from -90 to 89. After calculating this angle for
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T

T

u2

β

x̃1 u1

x

δ

Figure 5.2: The projection of the point x in the frame {u1,u2}. There is a range of
hyperplanes which the point supports. The maximum angle β for the range depends
on threshold T and the length δ of the projection of the vector x − x̃1.

all points, it should result in a large number of votes in the bin of the true angle.
A drawback of using all data points for voting, is that the voting operation may
become quite complex for large data sets. Following the concept of the probabilistic
Hough transform [42], we can also examine a subset of randomly sampled data
points and calculate the best angle for this subset. This should give a sufficiently
accurate estimate of the angle γ while making the voting process much faster. In
the experiments we have chosen for a total of 100 randomly sampled data points,
and only in case n ≤ 100 we use all data.

The bin containing most votes determines the angle γ∗, for which the final hy-
perplane is calculated according to

h =

(

u1 + tan(γ∗ + 1
2π)u2

−x̃>
1 (u1 + tan(γ∗ + 1

2π)u2)

)

(5.6)

where point x̃1 is taken from the sample.
The complete estimation algorithm, incorporating all steps, is shown in Fig. 5.3.

5.3 Fundamental matrix estimation

The fundamental matrix can be estimated by following roughly the same technique
as for hyperplane estimation. However, there are two major differences with the
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• j = 1, J = ∞, Smax = ∅
• while j < J do

• Randomly select N − 1 points {x̃1, x̃2, . . . , x̃N−1} and compute the
nullspace {h1,h2} by solving (5.1).

• Determine the orthonormal basis {u1,u2} for the space spanned by
the normals in {h1,h2}.

• if n > 100 then

• form the set C by randomly selecting 100 points from
{x1, . . . ,xn}\{x̃1, x̃2, . . . , x̃N−1}

• else

• form C = {x1, . . . ,xn}\{x̃1, x̃2, . . . , x̃N−1}
• for each x in C do

• Compute δ =
√

((x − x̃1)>u1)2 + ((x − x̃1)>u2)2 and
β = barcsin

(

T
δ

)

c
• Determine γ according to (5.5) and round the angle to the nearest

degree.
• Add one vote for the angles [γ − β, γ + β].

• Determine the angle γ∗ for which the number of votes is maximum.

• Construct h from (5.6) using γ∗.

• Determine the set of support points Sj for h by verifying which points
are within distance T .

• if |Sj | > |Smax| then

• J = log(1 − p) · log−1

(

1 −
(

|Sj |
n

)N−1
)

• Smax = Sj

• j = j + 1

• Re-estimate the hyperplane based on the largest support set Smax.

Figure 5.3: The RANSAC-Hough algorithm for hyperplane estimation using a one-
dimensional voting space.
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preceding scenario.
First, the 7-point algorithm uses the singularity constraint to determine the fun-

damental matrix. After seven correspondences are selected, solving (2.22) yields
a two-dimensional nullspace. Then the singularity constraint of the fundamental
matrix needs to be used to find the solution. If we sample six points, the resulting
nullspace is three-dimensional. We would like to use the singularity constraint for
removing one dimension and use voting to find the final solution. Unfortunately, the
singularity constraint on the three-dimensional nullspace is a cubic polynomial in
two variables, which does not allow voting with respect to a fixed pair of nullspace
vectors. As a result, we have to solve the singularity constraint for each correspon-
dence individually. The complexity of the algorithm will therefore increase, but
as we have already indicated, a subset of the data points will suffice in the voting
process.

Second, since there is no fixed two-dimensional nullspace during voting, we can
not calculate the range of allowable models as in Fig. 5.2. The number of fundamen-
tal matrices consistent with a seventh correspondence will be either one or three,
just like for the 7-point algorithm. Therefore, there is no range of matrices for which
the Sampson distance in (2.27) can be evaluated, and votes are cast for either one
or three separate angles.

To start the estimation process we sample 6 correspondences
{x̃1 ↔ x̃′

1, . . . , x̃6 ↔ x̃′
6}, and solve







x̃′
1x̃1 x̃′

1ỹ1 x̃′
1 ỹ′

1x̃1 ỹ′
1ỹ1 ỹ′

1 x̃1 ỹ1 1
...

...
...

...
...

...
...

...
...

x̃′
6x̃6 x̃′

6ỹ6 x̃′
6 ỹ′

6x̃6 ỹ′
6ỹ6 ỹ′

6 x̃6 ỹ6 1






f = 0 (5.7)

which results in a three-dimensional space of solutions

f = αf1 + βf2 + (1 − α − β)f3 (5.8)

If we take a single correspondence x ↔ x′ and solve

(

x′x x′y x′ y′x y′y y′ x y 1
)

f = 0 (5.9)

for f from (5.8) we get a linear constraint in α and β. When the correspondence is
an inlier, the true values for α and β will satisfy this constraint. Let the resulting
linear relation be β = rα + g. Then we use the singularity constraint

det(αF1 + (rα + g)F2 + (1 − α − (rα + g))F3) = 0 (5.10)

where F1, F2, and F3 are the 3× 3 matrices containing the elements of f1, f2 and f3,
respectively. This will result in either one or three real solutions for α and thus for f .
Now, writing the vectors f1, f2 and f3 in (5.8) as f1 = (n>

1 b1)
>, f2 = (n>

2 b2)
> and

f3 = (n>
3 b3)

>, we construct an orthonormal basis {u1,u2,u3} from {n1,n2,n3}.
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This basis is used for the projection of the solutions for f . In particular, we calculate
the angles

γ1 = arctan

(

(f1 · · · f8)u2

(f1 · · · f8)u1

)

γ2 = arctan

(

(f1 · · · f8)u3

(f1 · · · f8)u2

)

(5.11)

and use them to cast a vote in a two-dimensional array. The angles will be rounded
towards full degrees in the range -90 to 89.

As in hyperplane estimation, we do not use all data points during voting. When
the data set contains more than 100 correspondences, only 100 randomly selected
correspondences are considered. Examples of the votes casted in a 180 × 180 bins
array for the image pair “Wadham college” (see Appendix B) are shown Fig. 5.4
and 5.5. The image pair contains in total 921 correspondences. Fig. 5.4 shows the
votes resulting from a 6-points sample containing outliers, in case of 100 randomly
selected correspondences and all 921 correspondences. It can be seen that in both
cases the votes are rather spread in the array. In Fig. 5.5 the sample consists of only
inliers; there is a clear peak for the true pair of angles in case of 921 correspondences.
This peak coincides with the one for 100 randomly selected correspondences. One
hundred correspondences are here clearly sufficient to arrive at the right pair of
angles.

After having located the values of γ∗
1 and γ∗

2 for the bin containing most votes,
we can find the first eight elements of the corresponding f by







f1

...
f8






= u1 + tan(γ∗

1 )u2 + tan(γ∗
1 ) tan(γ∗

2 )u3 (5.12)

and the last element by

f9 = −
(

x̃′
1x̃1 x̃′

1ỹ1 x̃′
1 ỹ′

1x̃1 ỹ′
1ỹ1 ỹ′

1 x̃1 ỹ1

)







f1

...
f8






(5.13)

The correspondence x̃1 ↔ x̃′
1 is part of the 6-point sample, and therefore lies on the

final f .
The fundamental matrix that is found this way does not automatically satisfy the

singularity constraint. Due to the rounding effect in the voting array, the matrix will
slightly deviate from a singular one. We can solve this by applying the SVD to this
matrix, and setting the smallest singular value to zero [28]. A prerequisite for this to
work properly is a normalization of the correspondences. This entails a translation
which results in zero means for the (x, y) coordinates, followed by a scaling which
makes their average distance to the origin equal to

√
2. The transformation is

applied to both images’ correspondences independently. Before the support of the
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Figure 5.4: Fundamental matrix estimation for “Wadham college” pair. Votes for
a sample containing outliers.
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Figure 5.5: Fundamental matrix estimation for “Wadham college” pair. Votes for
an all-inlier sample.
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fundamental matrix is evaluated, the coordinates are transformed back again to their
original values.

The whole sequence of steps in the estimation process is listed in Fig. 5.6.

5.4 Implementation details

The implementations of the algorithms closely follow the descriptions in Fig. 5.3
and 5.6. The singularity constraint for the fundamental matrix in (5.10), however,
requires special care. This equation represents a cubic polynomial in α and can be
solved using the explicit solution for a cubic [92]. Though, to efficiently compute
the coefficients of the polynomial, we would like to put most operations outside of
the data loop in Fig. 5.6. We therefore split the coefficients in polynomials of r and
g, which gives

1 · α3 + 2 · α2 + 3 · α + 4 · 1 = 0

1 = ... · r3 + ... · r2 + ... · r + ... · 1
2 = ... · gr2 + ... · r2 + ... · gr + ... · r + ... · g + ... · 1
3 = ... · rg2 + ... · g2 + ... · rg + ... · g + ... · r + ... · 1
4 = ... · g3 + ... · g2 + ... · g + ... · 1 (5.14)

The coefficients for the polynomials in r and g are functions of the elements of F1,
F2 and F3 in (5.10). If we let A = F1 − F3 and B = F2 − F3, then the coefficients
of the powers in 1 are

5 · r3 + 6 · r2 + 7 · r + 8 · 1

5 = det(B)

6 = A11C
B
11 + A12C

B
12 + A13C

B
13 + B11(C

A+B
11 − CA

11 − CB
11)

+B12(C
A+B
12 − CA

12 − CB
12) + B13(C

A+B
13 − CA

13 − CB
13)

7 = B11C
A
11 + B12C

A
12 + B13C

A
13 + A11(C

A+B
11 − CA

11 − CB
11)

+A12(C
A+B
12 − CA

12 − CB
12) + A13(C

A+B
13 − CA

13 − CB
13)

8 = det(A) (5.15)

Here Aij represents the element in matrix A at row i and column j, and CA
ij is the

(i, j)-cofactor of matrix A. The coefficients in 2 , 3 and 4 can be derived in a
similar manner. It is clear that the values in (5.15) are independent of individual
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• j = 1, J = ∞, Smax = ∅
• Normalize the image correspondences.

• while j < J do

• Randomly select 6 correspondences {x̃1 ↔ x̃′
1, . . . , x̃6 ↔ x̃′

6} and use
them to compute their nullspace {f1, f2, f3} by solving (5.7).

• Determine the orthonormal basis {u1,u2,u3} for the space spanned
by the normals in {f1, f2, f3}.

• if n > 100 then

• form the set C by randomly selecting 100 points from
{x1↔x′

1, . . . ,xn↔x′
n}\{x̃1 ↔ x̃′

1, . . . , x̃6 ↔ x̃′
6}

• else

• form C = {x1↔x′
1, . . . ,xn↔x′

n}\{x̃1 ↔ x̃′
1, . . . , x̃6 ↔ x̃′

6}
• for each x↔x′ in C do

• Find the possible solutions for x↔x′ by solving (5.9) and (5.10).
• Determine γ1 and γ2 according to (5.11) for each solution, and

round the angles to the nearest degree.
• Add one vote for each pair of angles (γ1, γ2) in the voting array.

• Determine the pair (γ∗
1 , γ∗

2 ) with the maximum number of votes.

• Construct f from (5.12) and (5.13) for γ∗
1 and γ∗

2 .

• Find the closest approximation f̂ to f with det(F̂ ) = 0 using the SVD.

• Determine the set of support points Sj for the denormalized f̂ , by
verifying which points are within distance T .

• if |Sj | > |Smax| then

• J = log(1 − p) · log−1

(

1 −
(

|Sj |
n

)6
)

• Smax = Sj

• j = j + 1

• Re-estimate the fundamental matrix based on the largest support set Smax.

Figure 5.6: The RANSAC-Hough algorithm for fundamental matrix estimation
using a two-dimensional voting space.
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correspondences, and can be computed at the moment that the nullspace of the
sample is found in (5.7). This makes that the coefficients for the polynomial in α
are quickly found by multiplying the precomputed values with powers of r and g.

5.5 Experimental results

We will compare the proposed RANSAC-Hough method with the standard RANSAC
algorithm for plane fitting and fundamental matrix estimation. For all experiments
we report the averages and standard deviations over a number of runs of both the
executed number of iterations J and the size of the maximum support set |Smax|.
Furthermore, the average running time for a single run is listed. The final re-
estimation step in RANSAC will be omitted. The algorithms were implemented in
C and ran on Intel Xeon 3.07 GHz / 3.2 GHz computers.

5.5.1 Plane fitting

Synthetic data was generated in R
3 for the estimation of planes. The inliers are

uniformly distributed along the plane and the outliers uniformly distributed in the
space. Each point coordinate is bounded to the interval [0, 100]. We have added
Gaussian unit variance noise to the coordinates of the inliers. The orthogonal dis-
tance threshold is set to T = 1.96, which makes sure that 95 % of the inliers are
within T for the true hyperplane. The plane parameters are chosen randomly for
each run.

The results of this experiment over 500 runs are shown in Table 5.1 for a total
of 100 data points and different outlier ratios ε. It can be seen that the number of
iterations in RANSAC-Hough is clearly lower than in RANSAC. Also, the variation
over several runs is smaller. However, a single RANSAC iteration takes here only
little time to complete, and an improvement in running time for RANSAC-Hough
is therefore only visible for ε ≥ 0.7. An iteration of the voting process taking into
account 100 points is quite complex when compared to calculating a plane from
three points and evaluating its support. Though, the cases ε ≥ 0.7 are the most
interesting because the absolute running time is here the largest.

Considering the quality of the planes that are found, an increase in the number
of support points can be noticed while the standard deviation of this number is
smaller. It indicates that the RANSAC-Hough method produces more accurate
planes by using a larger part of the data, instead of only an additional third sample
point.

Table 5.2 shows the same experiment but now with 300 data points. In this case
100 randomly selected points are used in the voting process. Here the increase in
speed can already be seen for ε = 0.4, and the difference grows larger for higher
ε. Although the values of JR and JRH are comparable to those in the 100 point
experiment, an iteration for 300 points takes more time and causes a larger difference
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in running time. To illustrate this point, we have plotted the ratio of tR and tRH in
Fig. 5.7 for both experiments.
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Figure 5.7: The ratio
tR

tRH

for the data from Table 5.1 and 5.2.

Next, we consider the fitting of planes in range image data. Like in Chapter 4,
we have used 10 images from the ABW structured light scanner for which one of
the images is shown in Fig. 5.8. We have subsampled the images with a factor
2 to obtain 256 × 256 sized images. We search with RANSAC for planes in the
images, and subsequently delete the points from the data set which belong to a
plane. The repeated application of RANSAC is stopped when a plane is returned
with support smaller than 500 pixels. For the shown example image, the number of
planes extracted this way will be about 12. The experiment is repeated 500 times
for each image. The threshold for the orthogonal distance to the plane is set to
T = 2.5, which is large enough to capture noisy variations of the inliers. Table 5.3
shows the results of the experiments.

The RANSAC-Hough method outperforms RANSAC in all aspects; in some cases
it is up to a factor 5 faster. The total number of points on the extracted planes is
comparable, while the number of planes is a bit smaller. This means that the
extracted planes are actually better fits, since they contain a larger part of the data.

5.5.2 Fundamental matrix estimation

The synthetic data is produced by randomly generating points in a 3D cube. The
cameras are randomly positioned around the cube on a sphere, which has a radius
of two times the cube size. The points are between 20 and 60 focal lengths away
from the cameras.
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Figure 5.8: A range image used for plane fitting.

For the inliers we add Gaussian distributed noise to both coordinates with stan-
dard deviation of about 0.3% of the image size. For the outliers we select two
different space points, and use their non-corresponding projections as data points.
The distance measure used is the Sampson distance (2.27), which is compared to
the squared threshold T 2. The threshold has been set to T 2 = 3.84σ2 where σ2

is the measured variance of the error with respect to the true fundamental matrix.
The variance is averaged over several runs with each run having different point and
camera positions.

Since for ε ≥ 0.8 the number of iterations for standard RANSAC grows very
large (> 106) on occasion and we would like to record the running time, only outlier
ratios up to 0.7 will be considered. In case the number of iterations exceeded 106

for ε ≤ 0.7, it was clipped at 106.
The results over 500 runs are shown in Table 5.4 for 200 correspondences. The

number of iterations is reduced when using RANSAC-Hough and for ε = 0.6 and
ε = 0.7 the running time is shorter. Considering the support sets, we can see that
they are on average slightly smaller. This is a result of the rank 2 enforcement which
finds an approximation of the fundamental matrix computed from the data. Since
the data is not considered in finding this approximation, some inliers are lost in the
process.

The real images we have used for testing are shown in Appendix B. Again the
the Sampson distance is chosen as error measure, and we have set the square root
of the threshold to T = 1.5 pixels.

The results of running RANSAC 500 times on the image pairs are shown in
Table 5.5. Just as in case of synthetic data, the difference in running times is
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best noticeable for higher outlier ratios. The number of iterations is here reduced
considerably and the additional complexity of the voting process does not prohibit
a speedup anymore. The support sets found are slightly smaller than those for
RANSAC, due to the same reason as for synthetic data. In addition, we have
performed some experiments where the votes were not cast in a single bin but in a
small region of bins. This approach can in general provide a more accurate position
of the maximum in the Hough space, but it did not yield noticeable better results
in our case. The strict one-dimensional voting pattern in the array (see Fig. 5.4
and 5.5) assures that neighboring bin positions do not have to be considered.

For image pair “Valbonne church” the 6-point algorithm runs slower than the
standard 7-point algorithm. At the same time, the image pair “Univ. British
Columbia” with a comparable outlier ratio shows the opposite. This can be ex-
plained by the fact that the latter image pair has in total 911 correspondences and
the former 299. The standard RANSAC algorithm therefore takes less time to com-
plete for the “Valbonne church” pair.

5.6 Discussion

The combination of RANSAC and the Hough transform, that has been advocated
in the past, is made applicable to hyperplanes and the fundamental matrix by a
new parameterization of the model. For hyperplanes, the result is an efficient one-
dimensional voting space and a reduction of the sample size by one point. For
the fundamental matrix, a two-dimensional voting space is applied because of the
singularity constraint. Instead of sampling 7 correspondences per model, we now
only need to take 6-point samples. This makes it much easier to find an all-inlier
sample by random trials. In addition, we use for both models randomly selected
subsets of the data to speed up the voting stage.

Experimental results were shown on plane fitting in synthetic data and in range
data. The synthetic data showed faster estimation for high outlier ratios or a large
number of data points. Also the consecutive extraction of planes in range images
took considerably less time using the RANSAC-Hough method. The quality of the
solutions is either equal or better than standard RANSAC. The fundamental matrix
was estimated using synthetic and real image data. The results indicated that for
high outlier ratios a much faster estimation is achieved, with only a minor decrease
in the size of the support.

A further improvement of the algorithm may be the finding of a better approx-
imation to the fundamental matrix. In particular, the loss of support points is
caused by the enforcement of the singularity constraint, since an approximation to
the model is found independently of the data. Other methods to enforce singularity
may be tried to retain the same level of support, possibly at the cost of a higher
complexity.

Since the number of RANSAC iterations increases almost exponentially with the
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number of points in the sample, it is tempting to try to reduce the sample size
even further. Obviously, the voting stage becomes more complex for smaller sample
sizes. The voting stages for hyperplanes and the fundamental matrix have already
illustrated that the latter is less straightforward due to the singularity constraint.
Several computations have been taken outside the data loop of the algorithm, making
it possible to achieve the reported results. It therefore does not seem fruitful to
pursue a further reduction in sample size. If such an implementation would be
faster, then probably only for very high outlier ratios, while performing worse for
moderate values.



Chapter 6

Discussion

In this thesis we have described techniques for local feature extraction and matching,
and the subsequent estimation of the epipolar geometry. Several methods have been
proposed to expedite the estimation of the epipolar geometry. Below we will discuss
possible extensions of the presented work and indicate directions for future research.

6.1 Correspondence search

The extraction of local features from images has been described as a necessary
step for finding image correspondences. Interest points from an image pair will
likely cover some common world points in the scene, so that comparison of local
features computed at the interest points will yield a set of correspondences. These
correspondences allow the computation of the epipolar geometry, even when many
of them are erroneous.

Unfortunately, in case of large viewpoint changes, feature matching may yield
very few inliers due to significant changes of the local image structure. It is then the
question whether the set of best matches still forms the most logical choice for the
correspondences. When being optimistic about the possibilities for fast fundamental
matrix estimation, it is even the question whether feature matching is still necessary.
The interest points in the first image can simply be combined with all interest points
in the second image. Although the inliers are then hidden in a large amount of
data, every possible inlier for the interest points will be included since all point
combinations are considered. It will be interesting to see whether such an approach
to establishing correspondences can be useful, possibly under the requirement that
only the most salient interest points are selected.

85
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6.2 Non-uniform sampling

Two methods have been proposed in this thesis for calculating sampling probabili-
ties for the correspondences. Both methods achieve this goal without regard to the
original image content. Yet, the sampling probabilities for correspondences may also
be altered by incorporating specific image properties. For example, when a segmen-
tation of the images is available, the local features can be grouped accordingly. A
number of correspondences connecting two regions may indicate that all features
originating from these regions should form correspondences. The connecting cor-
respondences may then receive high sampling probabilities, while other correspon-
dences from the regions are assigned low probabilities. Furthermore, it is possible
to start the sampling in certain regions, and see if computed epipolar geometries
extend to the rest of the data.

In a way, the option of segmentation seems to be the opposite of what has been
achieved by using local features: the possibility to deal with occlusion and clutter
in the images. However, the locality of the features is not at stake when using a
segmentation. Only the selection of feature pairs is affected.

6.3 Zero or multiple epipolar geometries

The methods in this thesis have been directed towards finding a single epipolar ge-
ometry. Although this is a situation of significant practical interest, the number of
epipolar geometries in a scene may be different. When we have two completely unre-
lated images then no epipolar geometry will be present. As discussed in Chapter 1,
this may occur in the visual retrieval scenario. In case several objects are moving in-
dependently in a scene, multiple epipolar geometries will be present in images taken
at different time instants. The correspondences will then consist of distinct sets of
inliers and a number of outliers.

In contrast to the non-uniform sampling methods, the six-point method in Chap-
ter 5 can be applied directly to the abovementioned scenarios. The principle of sam-
pling fewer correspondences will always reduce the required number of iterations.
In both scenarios we may expect it to be faster than RANSAC because the method
works best for high outlier ratios. In case there is no epipolar geometry we have the
maximum outlier ratio, namely 1. For the sequential extraction of multiple epipolar
geometries, the initial outlier ratio is also high since it is determined by the inliers
of a single epipolar geometry. The remaining correspondences are all outliers with
respect to this geometry. The outlier ratio will decrease as more geometries are
extracted and have their inliers removed from the data.

An interesting possibility that the quadric algorithm in Chapter 3 may offer is
the detection of an epipolar geometry. Inliers are included in the dominant set a
large number of times, while the outliers are included only half of the time. There
should therefore be two clusters of count values in the set of correspondences. If we
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are able to detect the presence of these two clusters, we may affirm the presence of
an epipolar geometry. This would be very helpful in the retrieval scenario where we
are essentially not interested in the precise geometrical relation between the images,
but merely in the fact whether the images are from the same scene or not.

6.4 Algorithm evaluation

Finally, which algorithm in this thesis is to be preferred? Considering the non-
uniform sampling methods, the quadric algorithm is perhaps most reliable. On the
other hand, weighted sampling can potentially make a better distinction between
inliers and outliers, which will eventually find the epipolar geometry faster. The
particular feature of weighted sampling is that it offers little control over the al-
gorithm. This may not be necessary in a scenario which meets the assumptions,
as the algorithm will generally find the desired model. In other scenarios, like the
presence of multiple epipolar geometries or structured outliers, it would be desirable
to have more control. Ideally, the algorithm should be able to check whether the
weight updates have been of any use up to the current iteration. If not, it may stop
producing updates and let RANSAC run unhampered. In this respect, the quadric
method is more suitable for a selective use, due to its low complexity and the fact
that it is only a preprocessor; the results may be evaluated before running RANSAC.
Furthermore, the quadric method is not random, which makes the evaluation easier
than for weighted sampling.

The six-point method is more general than the methods based on non-uniform
sampling, as it may be used for searching multiple epipolar geometries. A dis-
advantage of the method is that it performs worse for moderate outlier ratios in
combination with few correspondences. However, this may be improved by further
optimization of the method. The six-point method therefore belongs to the class of
RANSAC variations, which is most likely to provide the next standard for epipolar
geometry estimation.
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Appendix A

Homogeneous Coordinates

The coordinates of a point x = (x, y)> in 2D can be extended with a scalar s to
produce the homogeneous coordinates x = (x, y, s)>. Homogeneous coordinates [28]
describe the projective space P

2 as opposed to Euclidean space R
2. Coordinates

differing by a non-zero scalar value m are identical in P
2, i.e. x = (x, y, s)> and

x = (mx,my,ms)> represent the same point. It is convenient to select s = 1, so that
the original values x and y can be retrieved when dividing by the third coordinate.
We therefore adopt x = (x, y, 1)>.

l2

xl∞

l2l1
l1

Figure A.1: After projective transformation of the plane containing two parallel
lines l1 and l2 (left), their intersection point x on the line at infinity l∞ becomes
visible (right).

The projective space P
2 has an explicit notion of infinity. For example, two lines

always meet in a point, but when the lines are parallel they “meet in infinity”. If
we take two parallel lines l1 = (a, b, c1)

> and l2 = (a, b, c2)
> with defining equations

ax+by+c1 = 0 and ax+by+c2 = 0, then their point of intersection is x = (b,−a, 0)>

since (b,−a, 0)l1 = 0 and (b,−a, 0)l2 = 0. All points with their last coordinate equal
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to zero, are said to form the line at infinity l∞ = (0, 0, 1)>. The line l∞ can be made
visible by a projective transformation of the space, as shown in Fig. A.1. Instead
of looking at two parallel lines representing for instance the top view of a road, we
will then see a road disappearing at the horizon which is represented by l∞. Note
that the representation of lines is also homogeneous, since ml and l will contain the
same points.

Higher dimensional spaces can be extended in the same way to form projective
spaces. For example, points in a 3D space can be denoted as X = (X,Y, Z, 1)>.
Points whose fourth coordinate is zero then belong to the plane at infinity
π∞ = (0, 0, 0, 1)>.



Appendix B

Two-View Data Sets

Several real image pairs have been used for experimentation in this thesis, and they
are shown in Fig. B.1 to B.8. There are differences in viewpoint and/or zoom factor
between the left and right images. The image pairs in Fig. B.1 to B.3 are obtained
from the INRIA institutes Rhône-Alpes and Sophia-Antipolis (FR), and those in
Fig. B.4 and B.5 from the Visual Geometry Group in Oxford (UK). Pair B.6 is an
object from the Amsterdam Library of Object Images [19], and pairs B.7 and B.8
are made by the author himself.

The SIFT keypoint detector1 [51] has been applied for establishing correspon-
dences between the image pairs. As indicated in Chapter 2, the SIFT detector is one
of the most reliable methods for finding interest points and deriving local features.
For every feature in the left image of the pairs, we found the nearest feature in the
right image using Euclidean distance. The correspondence is retained if the distance
is smaller than 0.8 times the distance to the second-nearest feature [51]. The inliers
among the resulting correspondences are found by robustly estimating the funda-
mental matrix. We manually identified any remaining incorrect correspondences
among the inliers and labeled them as outliers. The left images in Fig. B.1 to B.8
show the final sets of inlying feature points, and the right images the outlying feature
points. Also indicated for every image pair are the total number of correspondences
n and the outlier ratio ε.

1The code is obtained from http://www.cs.ubc.ca/∼lowe/keypoints/.
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Figure B.1: Valbonne church: n = 299 and ε = 0.58.

Figure B.2: Boat: n = 358 and ε = 0.49.
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Figure B.3: University of British Columbia: n = 911 and ε = 0.56.

Figure B.4: Corridor: n = 262 and ε = 0.43.
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Figure B.5: Wadham college: n = 921 and ε = 0.71.

Figure B.6: Tea box: n = 221 and ε = 0.71.
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Figure B.7: Books: n = 740 and ε = 0.74.

Figure B.8: Pile of books: n = 548 and ε = 0.82.
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Appendix C

List of Symbols

n number of elements in data set
ε outlier ratio of data set
j iteration counter
J number of iterations
S support set which contains all data points close to a model
|S| size of the support set

Smax largest support set found
k number of inliers in the support set
q number of outliers in the support set
T threshold for determining the support set

HT subspace within distance T from the model
d number of points in a sample

din number of inliers in a sample
I(x, y) image intensity at pixel coordinates (x, y)

x data or image point
..′ quantity belonging to the second image

x ↔ x′ corresponding pair of image points
x̃ data or image point included in a sample
X 3D world point
C camera center
P camera projection matrix
F fundamental matrix
l line in the image plane
n normal vector of hyperplane
b offset of hyperplane
t running time of algorithm
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Summary

The model underlying two views of the same scene or object is the epipolar geometry.
It is the combined model of two differently positioned cameras that will reveal the
relation between the camera projections. Since it is such a basic element in the
analysis of multiple views of a scene, its computation by way of the fundamental
matrix is important for many vision algorithms.

The standard way of computing the epipolar geometry is finding image corre-
spondences by local feature matching. In Chapter 2 it is described how features are
commonly computed at interest point locations, which are positions where the image
shows some characteristic structure. Interest points are likely to be located in both
images at projections of some conspicuous scene point. The local features at the
interest points are then mutually compared to obtain a set of image-to-image corre-
spondences. However, some of the correspondences may be erroneous or outlying, so
that they yield useless information for the epipolar geometry. As a consequence, we
need to use robust estimation methods which can cope with the presence of outliers.
The RANSAC (RANdom SAmple Consensus) algorithm is particularly suitable for
epipolar geometry estimation and has been frequently used for this purpose. It takes
random samples of correspondences and evaluates the support for the corresponding
fundamental matrices. This process continues until sufficient samples are taken to
assure with high probability that an all-inlier sample has been found.

Unfortunately, the complexity of the algorithm increases substantially for higher
outlier ratios. It is therefore necessary to devise methods which make faster execution
of RANSAC possible. In this thesis we propose several methods for achieving this
goal.

In general, the RANSAC algorithm samples correspondences uniformly, i.e. each
correspondence has an equal probability of being sampled. In Chapter 3, the sam-
pling probabilities of correspondences are deliberately adjusted to speed up the find-
ing of an all-inlier sample. In particular, confidence values indicating the probability
of dealing with an inlying correspondence are used to alter their frequency of selec-
tion. These confidence values are acquired by comparing the point correspondences
to a series of planar quadrics. The distribution of outliers around the quadrics will
be more or less random, while the inliers will have an imbalanced distribution for
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imbalanced quadrics. This distinction can be made apparent by gathering statistics
over a series of different planar quadrics. The effective outlier ratio that results after
incorporating these statistics into the sampling probabilities, is likely to be lower
than the original outlier ratio. Experiments on both synthetic and real data sets
show that the effective outlier ratio is indeed smaller.

The adjustment of sampling probabilities is not necessarily performed prior to
RANSAC execution. It is also possible to acquire the confidence values during
execution of the algorithm. In Chapter 4 a weighted sampling scheme is proposed,
which adjusts the sampling probabilities after each RANSAC iteration to increase the
probability of sampling inliers. The probabilities are adjusted by positively weighting
points from previous support sets. The algorithm that is obtained this way is not
limited to epipolar geometry estimation. In particular, it is theoretically shown that
the algorithm decreases the effective outlier ratio for hyperplane estimation among
uniformly distributed outliers. Experiments on line and plane fitting in synthetic
data confirm this fact. However, it is also shown that the algorithm is not well suited
for multiple models, implying that there is no or only a minimal reduction in the
number of iterations. The tested image pairs contain a single fundamental matrix,
and weighted sampling shows an improvement for this type of data.

In Chapter 5, fundamental matrix estimation is performed using a combina-
tion of RANSAC and the Hough transform. It is shown that the nullspace of a
smaller-than-minimal RANSAC sample can be used for the Hough voting stage.
This principle is demonstrated on both hyperplanes and the fundamental matrix.
No explicit parameterization of the model is required, which would be very difficult
to obtain for the fundamental matrix. The combined method allows the drawing
of 6-point samples instead of 7-point samples, so that it is much easier to find an
all-inlier sample. The votes are cast in a two-dimensional space since six corre-
spondences leave two remaining degrees of freedom. One degree can be removed
by applying the singularity constraint, but voting in the two-dimensional space is
more convenient than the parameterized one-dimensional space. A drawback of the
combined method is the increased complexity of an iteration due to the voting stage.
Fortunately, by following the principle of the Randomized Hough Transform, we can
partly compensate for this by using just a subset of the data for voting. Experi-
ments on both plane fitting and fundamental matrix estimation show, as expected, a
reduction in the number of iterations. Faster execution is reached when the number
of 6-point samples is much smaller than the number of 7-point samples, i.e. for large
outlier ratios. A speedup is also obtained when the size of the subset used for voting
is small in comparison to the number of correspondences.

The adjustment of sampling probabilities can be done in several different ways,
e.g. by quadric comparisons or weighted sampling. Alternatively, the probabilities
may be adjusted by using certain image properties, like regional similarity as applied
for segmentation. This would allow grouping of correspondences and may enable the
further identification of outliers.
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In comparison to altering sampling probabilities, the use of smaller samples is
more generally applicable. The search is then not hampered by possible other epipo-
lar geometries. This is an important property which can make epipolar geometry
estimation in complex scenes more efficient as well.

Summary of the thesis: “Random Sampling Methods for Two-View Geometry Esti-
mation”.

R.J.M. den Hollander, Koudekerk aan den Rijn, March 2007.
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Samenvatting

Het onderliggende model van twee afbeeldingen van dezelfde scène of van hetzelfde
object is de epipolaire geometrie. Dit is het gecombineerde model van twee ver-
schillend gepositioneerde camera’s dat de relatie tussen hun projecties aangeeft.
Aangezien het de basis vormt voor de analyse van meerdere afbeeldingen van een
scène, is haar berekening door middel van de fundamentele matrix van belang voor
vele beeldalgoritmes.

De gebruikelijke manier om de epipolaire geometrie te berekenen is het vinden van
beeldcorrespondenties door vergelijking van lokale features. In hoofdstuk 2 wordt
beschreven hoe deze features gewoonlijk worden berekend nabij interessante posities,
waar de afbeelding een typische structuur vertoont. Deze interessante posities doen
zich waarschijnlijk in beide plaatjes voor bij de projecties van een opvallend punt
in de scène. De lokale features nabij de interessante posities worden daarna onder-
ling vergeleken om een verzameling beeld-naar-beeld correspondenties te verkrijgen.
Sommige correspondenties kunnen echter fout zijn of een outlier, zodat ze geen
informatie geven over de epipolaire geometrie. Dit betekent dat we robuuste schat-
tingsmethoden moeten gebruiken die geen last hebben van outliers. Het RANSAC
(RANdom SAmple Consensus) algoritme is met name geschikt voor epipolaire geo-
metrieschatting en wordt hiervoor vaak gebruikt. Het neemt random samples van een
aantal correspondenties en bepaalt de support voor de bijbehorende fundamentele
matrices. Dit proces herhaalt zich totdat voldoende samples zijn getrokken om een
grote kans op een sample met alleen inliers te garanderen.

Helaas neemt de complexiteit van het algoritme aanzienlijk toe voor hogere
outlierpercentages. Daarom is het noodzakelijk om methoden te ontwikkelen die
RANSAC sneller kunnen maken. In dit proefschrift stellen we verschillende metho-
den voor om dit doel te bereiken.

In het algemeen trekt het RANSAC algoritme correspondenties op een uniforme
manier, oftewel elke correspondentie heeft een gelijke kans om getrokken te worden.
In hoofdstuk 3 worden de trekkingskansen van de correspondenties opzettelijk veran-
derd om het vinden van een sample met alleen inliers te bespoedigen. Betrouwbaar-
heidswaarden omtrent de kans met een inlier van doen te hebben worden gebruikt om
hun trekkingskans te veranderen. Deze betrouwbaarheidswaarden worden verkregen
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door de puntcorrespondenties te vergelijken met een aantal vlakke quadrics. De
verdeling van de outliers rondom de quadrics zal min of meer willekeurig zijn, ter-
wijl de inliers een ongebalanceerde verdeling zullen hebben voor ongebalanceerde
quadrics. Dit verschil kan zichtbaar gemaakt worden door statistiek te bedrijven
voor verschillende vlakke quadrics. Het gebruik van deze gegevens voor aanpas-
sing van de trekkingskansen leidt tot een effectief outlierpercentage dat waarschijn-
lijk lager is dan het originele outlierpercentage. Resultaten van artificiële en echte
datasets tonen aan dat het effectieve outlierpercentage inderdaad kleiner is.

Het is niet noodzakelijk om de trekkingskansen vóór uitvoering van het RANSAC
algoritme aan te passen. Het is ook mogelijk om de betrouwbaarheidswaarden tij-
dens het uitvoeren van dit algoritme te verkrijgen. In hoofdstuk 4 wordt een gewogen
trekkingsmethode voorgesteld die na elke RANSAC iteratie de trekkingskansen aan-
past met het doel de inlier trekkingskans te verhogen. De aanpassing bestaat hier
uit het toekennen van extra gewicht aan de data punten uit vorige support sets.
Het resulterende algoritme is echter niet alleen toepasbaar voor het schatten van de
epipolaire geometrie. Om precies te zijn, er wordt theoretisch aangetoond dat het al-
goritme het effectieve outlierpercentage verlaagt voor hypervlakschatting temidden
van uniform verdeelde outliers. Dit wordt bevestigd door experimenten van lijn- en
vlakschatting in artificiële data. Echter, er wordt tevens aangetoond dat het algor-
itme niet geschikt is voor meerdere modellen, wat inhoudt dat er geen of slechts een
minimale besparing van het aantal iteraties is. De geteste beeldparen bevatten een
enkele fundamentele matrix, en de gewogen trekkingsmethode laat een verbetering
zien voor dit type data.

In hoofdstuk 5 wordt de fundamentele matrix geschat met een combinatie van
RANSAC en de Hough transformatie. Er wordt aangetoond dat de nulruimte van een
kleiner-dan-minimaal RANSAC sample gebruikt kan worden voor het accumuleren
van de Hough ruimte. Dit principe wordt gedemonstreerd voor hypervlakken en de
fundamentele matrix. Er is hierbij geen expliciete parameterisatie van het model
nodig, dat ook zeer moeilijk te verkrijgen zou zijn voor de fundamentele matrix.
De gecombineerde methode maakt het mogelijk om 6-punts samples in plaats van
7-punts samples te trekken, zodat het veel makkelijker wordt om een sample met
alleen inliers te vinden. Het accumuleren gebeurt in een tweedimensionale ruimte
omdat er twee vrijheidsgraden overblijven bij zes correspondenties. Eén vrijheids-
graad kan worden weggenomen door de singulariteitsvoorwaarde toe te passen, maar
het accumuleren in een tweedimensionale ruimte is toch makkelijker dan in een gepa-
rameteriseerde eendimensionale ruimte. Een nadeel van de gecombineerde methode
is dat een iteratie complexer wordt door het accumuleren. Gelukkig kan dit gedeel-
telijk gecompenseerd worden door hiervoor een subset van de data te gebruiken,
in navolging van de Randomized Hough Transformatie. Zoals verwacht laten ex-
perimenten voor vlak- en fundamentele matrixschatting een afname van het aantal
iteraties zien. Een snellere uitvoering wordt daadwerkelijk bereikt als het aantal
6-punts samples veel kleiner is dan het aantal 7-punts samples, oftewel voor hogere
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outlierpercentages. Dit is tevens het geval als de grootte van de subset voor de
accumulatie klein is in vergelijking met het aantal correspondenties.

Het aanpassen van de trekkingskansen kan in het algemeen op verschillende
manieren gebeuren, bijvoorbeeld door vergelijking met quadrics of met een gewogen
trekkingsmethode. Een alternatief is het gebruiken van bepaalde eigenschappen van
de afbeelding, zoals lokale gelijkenissen die worden gebruikt voor segmentatie. Dit
zou het groeperen van correspondenties mogelijk maken en een verdergaande iden-
tificatie van outliers.

In vergelijking met het aanpassen van de trekkingskansen, is het gebruik van
kleinere samples breder toepasbaar. Het zoeken kan dan niet gehinderd worden door
mogelijke andere epipolaire geometrieën. Dit is een belangrijke eigenschap die het
schatten van de epipolaire geometrie in complexe scènes ook efficiënter kan maken.

Samenvatting van het proefschrift: “Random Trekkingsmethoden voor Geometrie-
schatting van Beeldparen”.

R.J.M. den Hollander, Koudekerk aan den Rijn, Maart 2007.
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