
HW/SW Co-design for Security
Systems and the Investigation of
Deep Learning-based Side-
channel Analysis

Huimin LI

H
W

/S
W

 C
o
-d

esig
n

 fo
r S

ecu
rity

 S
y
stem

s a
n

d
 th

e In
v
estig

a
tio

n
 o

f D
eep

 L
ea

rn
in

g
-b

a
sed

 S
id

e-ch
a
n

n
el A

n
a
ly

sis
H

u
im

in
 L

I

HW/SW CO-DESIGN FOR SECURITY SYSTEMS AND
THE INVESTIGATION OF DEEP LEARNING-BASED

SIDE-CHANNEL ANALYSIS

HW/SW CO-DESIGN FOR SECURITY SYSTEMS AND
THE INVESTIGATION OF DEEP LEARNING-BASED

SIDE-CHANNEL ANALYSIS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J.van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Date 17 April 2024 at 12:30 o’clock

by

Huimin LI

Master of Engineering in Micro-electromechanical Systems,
Northwestern Polytechnical University, China,

born in Guangyuan, China.

This dissertation has been approved by the promoters.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. ir. R.L. Lagendijk, Delft University of Technology, promotor
Dr. S. Picek, Delft University of Technology, copromotor

Radboud University, The Netherlands

Independent members:
Dr. S. Bhasin Nanyang Technological University, Singapore
Prof. dr. G. Smaragdakis Delft University of Technology
Prof. dr. L. Batina Radboud University, The Netherlands
Prof. dr. M. Conti Delft University of Technology & University of Padua, Italy
Prof. dr. P. Grosso University of Amsterdam, The Netherlands

Keywords: Electronic Systems, Security, HW/SW Co-design, Cryptographic Algo-
rithms, Trusted Execution Environments, Side-channel Analysis

Printed by: Ipskamp Printing

Front & Back: Wenjun Wang

Copyright © 2024 by Huimin Li

ISBN 978-94-6473-466-9

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To my beloved family.

Huimin Li

CONTENTS

Summary xi

Samenvatting xiii

Part I Introduction and Preliminary 1

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis Outline . 4

1.2.1 Part I: Introduction and Preliminary 4
1.2.2 Part II: HW/SW Co-design for Security Systems 4
1.2.3 Part III: The Study of Deep Learning-based Side-channel Analysis . . 9
1.2.4 Part IV: Discussion . 11

1.3 About the Thesis . 11
1.4 List Of Excluded Publications . 12

2 Preliminary 13
2.1 Cryptography . 13

2.1.1 Symmetric Cryptography . 14
2.1.2 Asymmetric Cryptography . 15
2.1.3 Hash Functions . 15
2.1.4 Post-quantum Cryptography. 16

2.2 Side-channel Analysis. 16
2.2.1 Leakage Model . 17
2.2.2 Non-profiled SCA and Profiled SCA 18
2.2.3 Countermeasures . 24

2.3 Trusted Execution Environments . 25
2.4 RISC-V Instruction Set Architecture . 25
2.5 Vector Processing . 28
2.6 Federated Learning . 30

2.6.1 Poisoning Attacks . 30
2.6.2 Privacy Attacks . 31

2.7 Summary . 32

Part II HW/SW Co-design for Security Systems 33

3 A Scalable SIMD RISC-V based Processor with Customized Vector Extensions
for CRYSTALS-Kyber 35
3.1 Introduction . 36
3.2 Notation . 37

vii

viii CONTENTS

3.3 Background . 38
3.3.1 Module Learning with Errors Problem 38
3.3.2 CRYSTALS-Kyber . 38
3.3.3 Number Theoretic Transform . 38
3.3.4 RISC-V Vector Extensions . 39
3.3.5 Customize RISC-V Instructions 42

3.4 The Design of An SIMD RISC-V Processor. 43
3.4.1 Scalar Core. 43
3.4.2 Vector Processing Unit . 44

3.5 The Design for Polynomial Multiplications in Crystal-Kyber 47
3.5.1 Register Pooling . 47
3.5.2 Automatic Index Generation . 49
3.5.3 Customized Vector Instructions for NTT 50
3.5.4 Optimization for Finite Field Arithmetic Operations 50

3.6 Experimental Results . 51
3.7 Summary . 52

4 Maximizing the Potential of Custom RISC-V Vector Extensions for Speeding
up SHA-3 Hash Functions 55
4.1 Introduction . 56
4.2 Background . 57

4.2.1 Keccak-f[1 600] Permutation . 57
4.2.2 Related Works . 58

4.3 System Design . 60
4.3.1 64-bit Architecture . 61
4.3.2 32-bit Architecture . 62
4.3.3 Custom Vector Extensions . 63

4.4 Implementations and Results . 67
4.5 Summary . 70

5 FLAIRS:FPGA-Accelerated Inference-Resistant & Secure Federated Learning 71
5.1 Introduction . 73
5.2 Background . 75

5.2.1 Federated Learning . 75
5.2.2 Remote Attestation. 76
5.2.3 TEEs on FPGAs. 76
5.2.4 Related Works . 77

5.3 Problem Setting . 77
5.3.1 System Model . 77
5.3.2 Adversary Model . 77
5.3.3 Design of FLAIRS . 78

5.4 Design & Implementation. 80
5.4.1 Analysis of FLAME Algorithm . 80
5.4.2 Implementation . 81
5.4.3 Evaluation . 85

5.5 Summary . 86

CONTENTS ix

Part III The Investigation of Deep Learning-based Side-channel Analysis 87

6 Overview of Recent Applications of Deep Learning to Profiled Side-channel
Analysis 89
6.1 Introduction . 90
6.2 Deep Learning-based SCA . 91

6.2.1 Notation . 91
6.2.2 Profiled SCA and Deep Learning 92

6.3 Recent Results in Deep Learning-based SCA 94
6.3.1 From Machine Learning to Deep Learning in SCA 94
6.3.2 Deep Learning Techniques in SCA 95

6.4 Advantages of Deep Learning for Profiled SCA 96
6.4.1 SCA without Preprocessing . 96
6.4.2 Bypassing Desynchronization . 97
6.4.3 Deep Neural Networks can Learn Second-order Leakages 98
6.4.4 Take Advantage of the Domain Knowledge. 99
6.4.5 Visualization Techniques to Identify Input Leakage 100

6.5 Metrics for Deep Learning-based Profiled SCA 101
6.6 Tuning Neural Network Hyperparameters for SCA 102
6.7 Different Applications of Deep Learning to SCA. 105
6.8 Summary and Perspectives . 106

7 A Comparison of Weight Initializers in Deep Learning-based Side-channel
Analysis 109
7.1 Introduction . 110
7.2 Background . 111

7.2.1 Weight Initializers . 111
7.3 Experimental Setup . 112
7.4 Experimental Results . 114

7.4.1 Results for the DPAv4.2 Dataset 114
7.4.2 Results for the AES_RD Dataset . 116
7.4.3 Results for the ASCAD Dataset . 117

7.5 Weight Initializer Influence on Other Hyperparameters 119
7.6 Summary . 123

8 A Systematic Study of Data Augmentation for Protected AES Implementa-
tions 125
8.1 Introduction . 126
8.2 Background . 127

8.2.1 Data Augmentation . 127
8.2.2 Datasets . 128

8.3 Related Works . 129
8.4 Analysis Methodology. 130

8.4.1 Adding Hiding Countermeasures 131
8.4.2 Data Augmentation Hyperparameters 133

x CONTENTS

8.5 Experimental Results . 134
8.5.1 Desynchronization Countermeasure. 134
8.5.2 Gaussian Noise Countermeasure 140
8.5.3 Discussion . 143

8.6 Summary . 147

Part IV Discussion 149

9 Discussion 151
9.1 Summary of Contributions . 151

9.1.1 Implementation-related . 151
9.1.2 SCA-related . 154

9.2 Limitations . 156
9.3 Future Works . 157

9.3.1 HW/SW Co-design for Other Cryptographic Algorithms with RISC-
V Vector Extensions . 157

9.3.2 Extending Utilization of FPGA-based TEEs for More Trusted Com-
puting Scenarios . 157

9.3.3 Investigation of the Potential Vulnerabilities of the SIMD RISC-V
Platform . 158

9.3.4 RISC-V Platform with Extensions to Mitigate SCAs 158

Acknowledgements 183

Curriculum Vitæ 187

SUMMARY

Electronic devices have permeated into all aspects of our lives, from basic smart cards to
sophisticated hybrid automobile systems. These devices comprise a range of products
like sensors, wearable gadgets, mobile phones, personal computers, and others, playing
vital roles in many applications and enabling the Internet of Things (IoT). However, with
this interconnectedness comes the associated security risks since attackers can exploit
vulnerabilities in the system.

Securing electronic devices requires the use of cryptographic algorithms and trusted
execution environments (TEEs). Cryptographic algorithms ensure data confidentiality
and integrity through encryption/decryption, hashing, and digital signatures. TEEs pro-
vide secure enclaves within the system for critical operations that prevent unauthorized
modifications and access by imposing stringent access restrictions. These two measures
have become robust mechanisms for enhancing the security of critical operations and
data access control.

Despite the above security measures, electronic systems are susceptible to various
attacks, including side-channel analysis (SCA), in which attackers exploit information
leakage from physical devices while executing instructions or cryptographic algorithms.
Power consumption and electromagnetic radiation (EM) are common indicators of this
leakage. Countermeasures such as masking and hiding techniques are commonly em-
ployed to enhance resistance against SCA. However, the advent of deep learning in SCA
has brought forth new challenges, rendering previously efficient countermeasures inef-
fective. Moreover, deep learning-based SCA has the potential to eliminate preprocessing
and alignment requirements inherent in earlier methods.

Therefore, this thesis focuses on two main objectives. The first objective is the im-
plementation of cryptographic algorithms and the incorporation of TEEs for secure-
sensitive applications. HW/SW co-design approach will be utilized to attain optimal
performance while preserving flexibility. The second objective of this thesis is the inves-
tigation of deep learning-based SCA to explore its effectiveness in detecting side-channel
vulnerabilities.

xi

SAMENVATTING

Elektronische apparaten hebben zich verspreid naar alle aspecten van ons leven, van
eenvoudige smartcards tot geavanceerde hybride autosystemen. Deze apparaten om-
vatten een scala aan producten zoals sensoren, draagbare gadgets, mobiele telefoons,
persoonlijke computers en andere, die een cruciale rol spelen in vele toepassingen en
het Internet of Things (IoT) mogelijk maken. Echter, met deze onderlinge verbonden-
heid komen ook de bijbehorende beveiligingsrisico’s, aangezien aanvallers kwetsbaar-
heden in het systeem kunnen misbruiken.

Het beveiligen van elektronische apparaten vereist het gebruik van cryptografische
algoritmes en vertrouwde uitvoeringsomgevingen (Trusted Execution Environments, TEEs).
Cryptografische algoritmes waarborgen de vertrouwelijkheid en integriteit van gegevens
via encryptie/decryptie, hashing en digitale handtekeningen. TEEs bieden veilige en-
claves binnen het systeem voor kritieke operaties die ongeautoriseerde wijzigingen en
toegang voorkomen door strenge toegangsbeperkingen op te leggen. Deze twee maatre-
gelen zijn robuuste mechanismen geworden voor het verbeteren van de beveiliging van
kritieke operaties en data-toegangscontrole.

Ondanks bovengenoemde beveiligingsmaatregelen zijn elektronische systemen vat-
baar voor diverse aanvallen, waaronder zijdelingse kanaalanalyse (Side-Channel Analy-
sis, SCA), waarbij aanvallers informatie lekken uit fysieke apparaten tijdens het uitvoeren
van instructies of cryptografische algoritmes. Energieverbruik en elektromagnetische
straling (EM) zijn veelvoorkomende indicatoren van deze lekken. Robuuste tegenmaat-
regelen zoals maskering en verbergtechnieken worden vaak gebruikt om de weerstand
tegen SCA te vergroten. Echter, de opkomst van deep learning in SCA heeft nieuwe uit-
dagingen met zich meegebracht, waardoor eerder efficiënte tegenmaatregelen ineffec-
tief zijn geworden. Bovendien heeft op deep learning gebaseerde SCA het potentieel om
voorbewerking en uitlijningsvereisten, die inherent zijn aan eerdere methoden, te elimi-
neren.

Daarom richt deze scriptie zich op twee hoofddoelstellingen. De eerste doelstelling
is de implementatie van cryptografische algoritmes en de integratie van TEEs voor vei-
lige gevoelige toepassingen. De hardware/software co-design benadering zal worden ge-
bruikt om optimale prestaties te behalen terwijl flexibiliteit behouden blijft. De tweede
doelstelling van deze scriptie is het onderzoek naar deep learning-gebaseerde SCA om
de effectiviteit ervan bij het detecteren van zijdelingse kanaal kwetsbaarheden te ver-
kennen.

xiii

PART I INTRODUCTION AND

PRELIMINARY

1

1
INTRODUCTION

1.1. MOTIVATION
In recent decades, electronic devices have become essential and integrated components
that are indispensable in our daily lives. The devices encompass a spectrum that spans,
from basic smart cards with a solitary microcontroller to advanced hybrid automobile
systems, which integrate many units, peripherals, and networks. The aforementioned
items include sensors, wearable gadgets, cell phones, personal computers, cloud com-
puting platforms, household appliances, intelligent vehicles, medical equipment, etc.
The importance of these devices has greatly increased due to their widespread integra-
tion into a wide range of applications, hence offering essential functionality and facil-
itating the implementation of automation capabilities. The emergence of the Internet
of Things (IoT) has been facilitated by the ongoing development of these electronic sys-
tems, enabling the establishment of connections and communication.

Microcontroller Units (MCUs), Central Processing Units (CPUs), Application-Specific
Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs) facilitate the
ability to customize and enhance a wide range of applications. Nevertheless, the in-
corporation of essential functionality also poses security concerns for designers. Adver-
saries can exploit potential vulnerabilities inside the system, resulting in data loss and
system malfunctions. Attacks frequently focus on the manipulation and compromise of
data transmission, data storage, execution processes, and system configurations, neces-
sitating the implementation of robust security measures by designers.

To enhance the security of various systems, it is crucial to employ cryptographic al-
gorithms and trusted execution environments (TEEs). Cryptographic algorithms use
mathematical processes that transform information into an incomprehensible format,
thereby playing a pivotal role in upholding data confidentiality and integrity [1]. TEEs,
also known as enclaves, provide a secure and isolated area within the system wherein
critical operations can be executed with a high level of assurance [2]. By enabling strict
access restrictions and safeguarding against unauthorized modifications, TEEs are ca-
pable of securing applications effectively [3]. This concept has emerged as a robust

3

1

4 1. INTRODUCTION

mechanism for protecting critical operations, allowing data access exclusively to au-
thorized programs possessing specific permissions. Thus, the first goal of this thesis is
implementation-related: implementing cryptographic algorithms and utilizing TEEs for
security-sensitive applications. Here, hardware/software (HW/SW) co-design is imple-
mented in order to attain optimal performance while emphasizing timely design and
adaptability.

Even though electronic systems may be protected by the aforementioned measures,
they remain vulnerable to various types of attacks, among which is side-channel analy-
sis (SCA) [4]. SCA is categorized as an implementation attack, wherein adversaries shift
their focus from directly targeting algorithms to exploiting vulnerabilities, which are in-
herent in the physical devices responsible for algorithm execution. These attacks take
advantage of unintentional information leakage from various sources. This study con-
centrates on utilizing power consumption and electromagnetic radiation (EM) as indi-
cators of information leakage, during the execution of security-related instructions or
cryptographic algorithms [4]–[6]. To enhance resistance against SCA, it is common prac-
tice to employ countermeasures, such as masking and hiding techniques. However, the
emergence of deep learning in SCA has brought about new challenges. Certain counter-
measures that were previously considered efficient are no longer effective [7], [8]. Addi-
tionally, deep learning-based SCA has the potential to eliminate the preprocessing and
alignment requirements inherent in earlier SCA methods [9]. Consequently, the second
goal of this thesis is SCA-related: the investigation of deep learning-based SCA to explore
its effectiveness in detecting side-channel vulnerabilities.

1.2. THESIS OUTLINE
As mentioned in Section 1.1, the primary focus of this thesis revolves around two main
objectives: the utilization of HW/SW co-design for the development of security sys-
tems (implementation-related) and the investigation of deep learning-based SCA (SCA-
related). The entire thesis comprises four parts as illustrated in Figure 1.1.

1.2.1. PART I: INTRODUCTION AND PRELIMINARY
Part I consists of two chapters that establish the foundation for the research works. Chap-
ter 1, titled "Introduction," illuminates the significance of the undertaken research, pro-
vides insights into the motivation behind the works, and outlines the structure of the
thesis. Chapter 2, "Preliminary," presents an overview of the relevant background infor-
mation necessary for understanding the proposed research works.

1.2.2. PART II: HW/SW CO-DESIGN FOR SECURITY SYSTEMS
In the realm of system design, three distinct techniques have emerged, namely software
(SW) design, hardware (HW) design, and hardware/software (HW/SW) co-design [10],
[11]. Each method has unique characteristics and serves specific purposes within the
specified field.

• The SW design strategy involves the full implementation of a system using soft-
ware executed on processors or computer platforms (i.e., CPUs or MCUs). SW
design offers considerable flexibility, making it a highly appropriate choice for ap-

1.2. THESIS OUTLINE

1

5

Figure 1.1: Thesis Outline.

1

6 1. INTRODUCTION

plications that stress adaptability and expedited development cycles. The usage
of processors inside a particular system allows for the implementation of soft-
ware design, which empowers developers to leverage the functionalities of pro-
gramming languages, libraries, and frameworks to create complex software solu-
tions [12]. The intrinsic flexibility of software programs enables straightforward
adaption to certain processors. However, a notable challenge in the implementa-
tion of software is the substantial latency that occurs when doing computations
at the level of individual words. Furthermore, it is crucial to acknowledge that all
processes rely on a pre-established set of instructions. In numerous instances, the
execution of software design may not exhibit optimality in effectively managing
intricate system activities.

• HW design is designed solely using dedicated hardware components. The present
methodology capitalizes on the inherent advantages of hardware, such as its abil-
ity to perform speedy processing and efficient parallel operations. The incorpora-
tion of hardware components such as FPGAs or ASICs in the HW design showcases
exceptional performance and computing capabilities, hence significantly enhanc-
ing the overall efficiency of the system to unparalleled extents. On one hand, hard-
ware design entails a significant level of complexity in terms of its design intrica-
cies, accompanied by substantially higher costs and longer time-to-market peri-
ods [13]. However, it is important to note that these increased costs come with
improved performance, which may be desirable in some applications. Currently,
there is a prevalent utilization of hardware designs in high-end cloud server ap-
plications. For instance, machine learning accelerators are implemented as cloud
services on servers [14].

• HW/SW co-design integrates the beneficial aspects of hardware and software de-
sign methodologies. The process of HW/SW co-design involves the partitioning of
the complete system into two distinct entities: a hardware component and a soft-
ware component. The hardware part, which usually uses FPGAs or ASICs, takes
advantage of the built-in computing power and high efficiency of specialized hard-
ware. Concurrently, the software component is located within one or many pro-
cessors. There are two types of processors: hard-core and soft-core. Hard-core
processors are integrated within System-on-Chip (SoC) FPGAs or connected to
ASIC chips, while soft-core processors often utilize FPGA resources, such as Xilinx
MicroBlaze, Intel Nios II, and open-source RISC-V core, for the purpose of build-
ing processors [15]–[17]. The use of HW/SW co-design methodology provides the
necessary flexibility and adaptability required for effectively managing intricate
systems and executing algorithms. This approach achieves the optimal balance of
hardware efficiency and parallelism, combined with software modifiability.

Given the numerous benefits associated with HW/SW co-design, we have chosen to
utilize this methodology for the development of security systems. The study is to lever-
age the advantages offered by parallelism, efficient processing, and flexibility, achieved
through the integration of hardware and software components, to yield favorable out-
comes.

1.2. THESIS OUTLINE

1

7

Part II is dedicated to addressing the implementation-related objective and consists
of three chapters. These chapters will explore the HW/SW co-design approach for se-
curity systems, leveraging both the RISC-V based platform and the SoC FPGA platform.
Specifically, our focus will be on implementing cryptographic algorithms on the RISC-
V based platform, as well as utilizing TEE for security-sensitive applications on the SoC
FPGA platform to establish secure frameworks.

HW/SW CO-DESIGN FOR CRYPTOGRAPHIC ALGORITHMS ON RISC-V PLATFORM

RISC-V is a freely accessible open-source Instruction Set Architecture (ISA) based on
RISC principles. It offers a small base instruction set (base ISA) that is suitable for sim-
plified general-purpose computers, as well as rich optional instruction extensions for
more comprehensive applications [18]. These extensions are designed to work seam-
lessly with base ISA without conflicts. Additionally, RISC-V allows users to customize
their instructions to accelerate specific applications, making it a versatile and adaptable
architecture [18]. Among the many available extensions, RISC-V vector extensions are
designed explicitly for vector operations. They enable multiple data to be processed si-
multaneously in a highly parallel manner under a single instruction. In Chapter 3 and
Chapter 4, we will explore the potential of RISC-V vector extensions in cryptographic
algorithms.

In Chapter 3, we first design a novel RISC-V based platform incorporating a scal-
able SIMD (Single Instruction Multiple Data) processor implemented in SystemVerilog
to support RISC-V vector extensions. The designed processor not only supports RV32IMC
but also integrates RISC-V vector extensions into its functionality. Additionally, it allows
users to customize instructions to meet their specific application requirements. Next, we
analyze the structure of the three polynomial multiplication algorithms in CRYSTALS-
Kyber, namely NTT, INTT, and CWM. To optimize the HW/SW interface, we propose
two techniques, called register pooling and automatic index generation. These tech-
niques enhance the efficiency of data transfer between hardware and software compo-
nents. Afterward, we proceed to customize vector extensions for CRYSTALS-Kyber mul-
tiplication and finite field operations. By tailoring the vector extensions to the specific
needs of CRYSTALS-Kyber, we aim to maximize the performance of these cryptographic
operations. Subsequently, we design the program for the three polynomial multiplica-
tion algorithms using the existing RISC-V instructions and the customized extensions.
We then compare their performance with both the baseline implementations and the
state-of-the-art HW/SW co-design using RV32IMC. The comparative analysis provides
insights into the effectiveness of vector extensions in improving the overall performance
of CRYSTALS-Kyber algorithms. Related publication:

• Li, Huimin, Nele Mentens, and Stjepan Picek. "A scalable SIMD RISC-V based pro-
cessor with customized vector extensions for CRYSTALS-kyber." Proceedings of the
59th ACM/IEEE Design Automation Conference. 2022.

In Chapter 4, we utilize the SIMD RISC-V based processor designed in Chapter 3 to
explore the utilization of vector extensions for implementing the Keccak-f[1 600] permu-
tation in SHA-3 hash functions. Our investigation begins with a comprehensive analy-
sis of the five-step mappings within the Keccak permutation. Based on this analysis,

1

8 1. INTRODUCTION

we propose customized vector extensions specifically tailored for both 64-bit and 32-bit
architectures. These custom instructions are realized in the SIMD processor using Sys-
temVerilog, ensuring seamless integration and efficient execution. To further optimize
the performance of the Keccak permutation, we develop programs that are specifically
designed for both the 64-bit and 32-bit architectures. These programs leverage the cus-
tom vector instructions in conjunction with the existing RISC-V vector extensions. Sub-
sequently, we conduct a comparative analysis of the performance achieved by our 32-bit
architecture and the 64-bit architecture. Additionally, we compare the performance of
our designs with existing parallelized implementations. These evaluations allow us to
assess the effectiveness of vector extensions and their impact on overall performance
for SHA-3 hash functions. Related publication:

• Li, Huimin, Nele Mentens, and Stjepan Picek. "Maximizing the Potential of Custom
RISC-V Vector Extensions for Speeding up SHA-3 Hash Functions." 2023 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.

HW/SW CO-DESIGN FOR PRIVACY-PRESERVING BACKDOOR-AWARE AGGREGATION FOR FED-
ERATED LEARNING ON FPGA-BASED TEE
The ongoing progress in FPGA technology has resulted in the emergence of SoC FPGAs,
which offer a comprehensive framework for HW/SW co-design. These platforms facili-
tate the creation of highly customized systems that can effectively address various appli-
cation needs. The reconfigurable characteristics of SoC FPGAs enable the development
of specialized hardware accelerators that operate in conjunction with software executed
on processors, leading to improved system performance and system flexibility. More-
over, SoC FPGAs provide the establishment of TEEs in order to guarantee the security of
essential workloads. This includes the safeguarding of the FPGA configuration, which
may include valuable Intellectual Property (IP) designs, as well as the protection of pro-
cessed data while maintaining optimal performance.

A prominent utilization scenario for FPGA-based TEEs involves the implementation
of federated learning (FL). FL is a collaborative learning methodology that enables in-
dividual clients to independently train their own local deep neural network models and
thereafter transmit solely the training parameters to a central aggregation server. Nev-
ertheless, previous research has demonstrated that FL is susceptible to both backdoor
attacks and inference attacks. In the first scenario, adversaries introduce modified up-
dates into the process of aggregating data. In the second scenario, they exploit the local
models from clients to infer their confidential information. Current methods aimed at
mitigating the security challenges associated with FL exhibit either significant perfor-
mance overheads, which render them inappropriate for practical implementation, or
are tailored to tackle specific risks, such as defending against backdoor attacks or safe-
guarding privacy during aggregation.

In Chapter 5, given the limitations associated with existing solutions, we introduce a
novel framework named FLAIRS, which leverages FPGA-based TEEs for the aggregation
process of FL. Our framework is designed to address the performance bottlenecks com-
monly encountered in software-only solutions, while simultaneously providing defenses
against backdoor and inference attacks. To demonstrate the efficacy of our approach, we
implement a prototype that incorporates the defense mechanism known as FLAME, as

1.2. THESIS OUTLINE

1

9

proposed in the recent publication by Nguyen et al. [19]. Our implementation involves a
detailed analysis of the FLAME algorithm, and we realize the backdoor defense mecha-
nism in FPGA to enhance operational efficiency. Additionally, we integrate FPGA-based
TEEs as the privacy defenses against inference attacks. Subsequently, we conduct ex-
periments to compare the performance of FLAIRS with FLAME in the original software
context. These experiments are evaluated using the IoT-Traffic dataset and CIFAR-10
dataset. Finally, we compare the performance of our experiments with the original per-
formance, offering an assessment of the advancements achieved through our proposed
framework. Related publication:

• Li, Huimin, Phillip Rieger, Shaza Zeitouni, Stjepan Picek, Ahmad-Reza Sadeghi.
"FLAIRS: FPGA-Accelerated Inference-Resistant & Secure Federated Learning." 2023
33rd International Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 2023.

• Shaza Zeitouni, Li, Huimin. FPGA-based Trusted Execution Environments and
Their Use Cases. Crosscon: Cross-platform Open Security Stack for Connected De-
vices. December 14, 2023. https://crosscon.eu/blog/fpga-based-trusted-execution-
environments-and-their-use-cases.

1.2.3. PART III: THE STUDY OF DEEP LEARNING-BASED SIDE-CHANNEL

ANALYSIS
Cryptographic algorithms play an important role in safeguarding sensitive information,
emphasizing the need to protect the private keys utilized in their software or hardware
implementations. However, electronic devices are susceptible to a range of attacks, in-
cluding side-channel analysis (SCA) [4]–[6]. Through SCA, adversaries can exploit vul-
nerabilities that arise during the execution of cryptographic algorithms, potentially com-
promising secret keys and exposing sensitive data. To address the consequences of SCA
and establish comprehensive safeguards against breaches of confidentiality, it is crucial
to prioritize the implementation of effective countermeasures. These countermeasures
include various masking and hiding techniques aimed at mitigating the risk of side-
channel leakages and impeding adversaries from exploiting vulnerabilities.

Profiled SCA is considered the most powerful form of SCA and can be divided into
two distinct phases [20]. In the profiling phase, adversaries obtain a clone device, col-
lect side-channel traces, and analyze the physical leakages exhibited by these traces to
characterize them. This process involves creating a template or statistical model that
describes the patterns and characteristics present in the leaked data. Subsequently, in
the attack phase, the adversary uses the collected side-channel traces from the targeted
device along with the model created earlier to deduce the most likely correct key values.

However, ongoing research in the field of SCA consistently uncovers novel function-
alities through the application of sophisticated methodologies. Deep learning has re-
cently emerged as a prominent method in the realm of SCA, offering novel opportunities
to exploit leakages in diverse systems. Deep learning-based SCA has the ability to over-
come specific countermeasures that were previously considered impervious to conven-
tional techniques [7], [8]. Furthermore, unlike traditional approaches in SCA that heav-
ily rely on the selection of significant features and alignment processes, deep learning-

1

10 1. INTRODUCTION

based SCA eliminates the need for such preprocessing steps [9]. To further explore the
realm of deep learning-based SCA, Part III of this thesis, dedicated to the SCA-related
objective, comprises three chapters focused on this subject.

In Chapter 6, we aim to provide a comprehensive overview of the current state-of-
the-art in deep learning-based SCA. Our chapter begins by establishing a foundational
understanding of deep neural networks and profiled SCA. Subsequently, we conduct a
survey of the latest advancements in utilizing deep neural networks for profiled SCA,
highlighting their numerous advantages over traditional methods. Our primary objec-
tive is to underscore the potency of deep neural networks as viable alternatives to clas-
sical profiled attacks, such as Template Attacks (TAs) and traditional machine learning,
which have long been recognized as highly effective in SCA. We emphasize the potential
of deep learning techniques and their ability to outperform traditional approaches. Fur-
thermore, our chapter delves into the appropriate interpretation of metrics when eval-
uating deep learning-based profiled SCA. Another aspect explored within our chapter
is the fine-tuning of hyperparameters during the training of deep neural networks. We
examine this problem in the specific context of profiled SCA, providing insights into op-
timizing network performance. Additionally, we describe various applications of deep
learning in SCA, showcasing the adaptability of this approach across different scenarios.
This highlights the wide range of possibilities for leveraging deep learning techniques in
the SCA field. Lastly, our chapter concludes by providing a concise summary of direc-
tions for future research in the field of deep learning-based profiled SCA. Related publi-
cation:

• Marina Krček, Li, Huimin, Servio Paguada, Unai Rioja, Wu,Lichao, Guilherme Perin,
and Łukasz Chmielewski. "Deep learning on side-channel analysis." Security and
Artificial Intelligence: A Crossdisciplinary Approach. Cham: Springer International
Publishing, 2022. 48-71.

In Chapter 7, we focus on an investigation to understand the influence of weight ini-
tializers on the performance of deep neural networks within the realm of profiled SCA.
The application of deep learning-based profiled SCA requires careful consideration of
neural network hyperparameters. Recent publications have introduced various network
designs as effective profiling methods against protected AES implementations, with dif-
ferent convolutional neural network (CNN) models showing comparable performance
when applied to public side-channel trace databases. Our study focuses on a specific
hyperparameter: the selection of different weight initializers directly responsible for the
weight parameter. We aim to explore how these weight initializers impact the perfor-
mance of the CNN architectures used, identify the most suitable initializer for a specific
dataset and architecture, and determine whether a universal best weight initializer exists
for all datasets. To achieve this, we evaluate a total of 11 weight initializers across three
distinct datasets, two leakage models, and two CNN architectures. Our assessment of
the weight initializers includes an examination of guessing entropy, result stability, and
the evolution of weights during the training process. Related publication:

• Li, Huimin, Marina Krček, and Guilherme Perin. "A comparison of weight initializ-
ers in deep learning-based side-channel analysis." Applied Cryptography and Net-
work Security Workshops: ACNS 2020 Satellite Workshops, AIBlock, AIHWS, AIoTS,

1.3. ABOUT THE THESIS

1

11

Cloud S&P, SCI, SecMT, and SiMLA, Rome, Italy, October 19–22, 2020, Proceedings
18. Springer International Publishing, 2020.

In Chapter 8, we conduct a series of systematic experiments to explore the advan-
tages of using data augmentation techniques in the context of masked AES implementa-
tions enhanced with hiding countermeasures. The purpose of employing hiding coun-
termeasures is to reduce the Signal-to-Noise Ratio (SNR) of measurements by introduc-
ing noise or desynchronization effects during cryptographic operations. In response
to these protective measures, attackers employ signal processing methods such as pat-
tern matching, filtering, averaging, or resampling. CNNs have demonstrated the ability
to mitigate the impacts of countermeasures without necessitating trace preprocessing,
particularly alignment, due to their shift-invariant property. Data augmentation tech-
niques are also considered as a means to enhance the regularization capability of the
network, thereby improving generalization and reducing attack complexity. To simu-
late a hiding countermeasure effect, we applied desynchronization and Gaussian noise
to the original measurements. Initially, we introduce one of the aforementioned hiding
countermeasures to the selected dataset. Subsequently, we conduct a hyperparameter
search to identify the most effective CNN models capable of recovering the target key
in a profiled attack scenario, even in the presence of added hiding countermeasures.
Subsequently, to explore the optimal implementation of data augmentation for specific
models, we carry out additional training for each CNN model. This involved consider-
ing various data augmentation techniques such as the number of augmented traces, as
well as hyperparameters like the range of trace shifts for desynchronization or standard
deviations for Gaussian noise. For each scenario, we test different desynchronization
levels or noise levels to determine if there exists an optimal value that yields improved
performance. Related publication:

• Li, Huimin, and Guilherme Perin. "A Systematic Study of Data Augmentation for
Protected AES Implementations." Cryptology ePrint Archive (2023). (Under peer re-
view)

1.2.4. PART IV: DISCUSSION

Part IV consists of a single concluding chapter titled "Discussion". This chapter offers
a comprehensive summary of the thesis, including its contributions, limitations, and
future works.

1.3. ABOUT THE THESIS

This thesis comprises seven distinct publications, spanning from Chapter 3 to 8. The
content in each chapter is essentially an expansion from one or two publications, or a
derivation with minor modifications. The original titles of the publications are retained
for most corresponding chapters. As these chapters are reproductions of previously pub-
lished works, there may be some overlap in certain sections, such as the introduction,
background, notations, and datasets, across multiple chapters.

1

12 1. INTRODUCTION

1.4. LIST OF EXCLUDED PUBLICATIONS
The following papers were published during the Ph.D. period but have been excluded as
they fall outside the scope of the thesis. Related publication:

• Wu, Lichao, Léo Weissbart, Marina Krček, Li, Huimin and Guilherme Perin, Lejla
Batina, and Stjepan Picek. "Label correlation in deep learning-based side-channel
analysis." IEEE Transactions on Information Forensics and Security (2023).

• Mohamadreza Rostami, Chen, Chen, Rahul Kande, Li, Huimin, Jeyavijayan Rajen-
dran, and Ahmad-Reza Sadeghi. (2024). "Fuzzerfly Effect: Hardware Fuzzing for
Memory Safety." IEEE Security & Privacy (2024).

2
PRELIMINARY

This chapter is structured as follows. Section 2.1 provides an introduction to cryptog-
raphy. Section 2.2 presents preliminary information about side-channel analysis (SCA).
Section 2.3 provides a review of trusted execution environments (TEEs). Section 2.4 in-
troduces the RISC-V Instruction Set Architecture (ISA). Section 2.5 presents an overview
of vector processing. Lastly, Section 2.6 introduces federated learning (FL), poisoning
attacks, and privacy attacks.

2.1. CRYPTOGRAPHY

Cryptography, dating back over two millennia, is an ancient discipline with fundamental
processes of encryption and decryption [21], [22]. Encryption is a process where a mes-
sage is encoded in such a manner that it becomes incomprehensible to those who are
not aware of the specific method (or keys) employed. The encrypted message is called
ciphertext, while the unencrypted message is plaintext. The deciphering of the cipher-
text to retrieve plaintext is referred to as decryption. Cryptographic algorithms today
include intricate mathematical computations to ensure security within communication
systems. Such applications render it highly improbable for a third party to obtain the
original data without an increasing duration of time.

Contemporary communication has a significant focus on handling sensitive infor-
mation, requiring features of confidentiality, identification, and data authentication [23].
The primary objective of cryptography is to maintain the confidentiality of transmit-
ted data by preventing unauthorized parties from accessing it. Identification is possi-
ble through cryptographic techniques such as digital signatures [24], certificates [25],
and secure protocols [26], which verify the authenticity and legitimacy of parties in-
volved. Data authentication [27] plays a vital role in ensuring the validity and integrity of
communicated data by preserving the content in its original unaltered state throughout
transmission. Cryptographic hash functions and digital signatures are crucial in identi-
fying and detecting any unauthorized alterations.

13

2

14 2. PRELIMINARY

Figure 2.1: The Encryption and Decryption Process of AES [33], [34].

2.1.1. SYMMETRIC CRYPTOGRAPHY
Symmetric cryptography [28], also known as private key cryptography, is a technique
that utilizes the same private key to both encryption and decryption operations. Sym-
metric cryptographic techniques that are frequently employed include the Data Encryp-
tion Standard (DES) [29] and the Advanced Encryption Standard (AES) [30]. The Data
Encryption Standard (DES), which was adopted in 1977, was rendered vulnerable as a
result of its relatively short key length of 56 bits. In order to tackle this concern, the
introduction of Triple DES [31], also called 3DES, which is a form of DES that is cas-
caded three times, was proposed as a viable and secure solution. However, it should be
noted that Triple DES could not fully satisfy the demands of forthcoming applications
[32], prompting the National Institute of Standards and Technology (NIST) to initiate an
open competition aimed at establishing a novel block cipher standard.

ADVANCED ENCRYPTION STANDARD

In 2001, the revelation of AES followed the conclusion of the above-mentioned NIST
competition. After that, AES is widely acknowledged within the academic and industrial
communities as a highly safe and efficient symmetric algorithm [34]. AES operates as
a block cipher, processing fixed-length data blocks. During the encryption process, the
plaintext input is divided into blocks of 128 bits, sequentially traversing multiple rounds.
Each round uses a segment of the key, derived from a key schedule algorithm, where the
original key generates several subkeys, one for each round. The selectable key sizes of
128, 192, or 256 bits correspond to the execution of 10, 12, or 14 rounds, respectively.

Figure 2.1 illustrates the sequence of operations within each round, comprising four

2.1. CRYPTOGRAPHY

2

15

fundamental operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. Sub-
Bytes involves substituting bytes in the state matrix using a predefined substitution ta-
ble (S-Box), enhancing confusion. ShiftRows manipulates bytes within the state matrix
rows, ensuring diffusion. MixColumns performs a matrix multiplication operation on
state matrix columns, augmenting diffusion and complicating the encryption process.
AddRoundKey XORs each byte of the state matrix with a round key, injecting crypto-
graphic strength derived from the expanded key schedule. Notably, the last round in
AES excludes the MixColumns operation. The decryption process in AES mirrors the
encryption process but employs inverse transformations for each step. The decryption
structure in each round incorporates invShiftRows, invsubBytes, invMixColumns, and
AddRoundKey functions, necessitating modifications in the key schedule to maintain
this symmetry.

AES demonstrates exceptional performance across software and hardware platforms.
It is widely utilized in diverse security frameworks and systems, such as WiFi-protected
access [35], SSL/TLS protocols [36], and IoT environments [37]. This wide adoption un-
derscores AES’s prominence in contemporary cryptographic applications.

2.1.2. ASYMMETRIC CRYPTOGRAPHY

Symmetric cryptography can efficiently encrypt and decrypt data but encounters chal-
lenges in secure communication and signature validation due to inherent limitations [38],
[39]. These challenges include secure key distribution, particularly in scenarios involv-
ing multiple pairs, resulting in complexities and scalability concerns in key manage-
ment. Moreover, symmetric cryptography lacks mechanisms for partner authentication.
To overcome these obstacles, the utilization of asymmetric cryptography [38], also re-
ferred to as public key cryptography, becomes relevant, such as Diffie-Hellman [40], El-
liptic curve cryptography (ECC) [41] and Rivest-Shamir-Adleman (RSA) [42].

The concept of asymmetric cryptography refers to a cryptographic system that uti-
lizes a pair of keys, namely a public key and a private key. The public key is widely
accessible to all users and serves the purpose of encryption or signature verification,
whereas the private key is securely held by its owner and is utilized for decryption or
signature generation. The utilization of this cryptographic methodology facilitates the
establishment of a safe data transmission channel between users, as the transmission
is executed through the utilization of a unidirectional function. These algorithms can
establish a mutually agreed-upon secret key between entities involved in communica-
tion, thereby facilitating subsequent communication through the utilization of efficient
symmetric encryption techniques such as AES. Digital signature algorithms (DSA) are a
distinct subset that employ a secret key to generate signatures and a public key to verify
them, thereby guaranteeing the secrecy and integrity of digital communication.

2.1.3. HASH FUNCTIONS

In addition to symmetric and asymmetric cryptography, another fundamental category
of cryptographic algorithms known as hash functions plays a significant role in mod-
ern cryptography [43], [44]. These functions are mathematical algorithms designed to
transform messages of varying lengths into fixed-length values, commonly referred to
as digest values or hash codes/values. Their fundamental objective lies in rendering it

2

16 2. PRELIMINARY

computationally infeasible to deduce the original input that generated a specific hash
value or to find two distinct messages that produce the same hash value. By generat-
ing a unique fixed-size output for each unique input message, hash functions facilitate
the verification of data integrity during transmission and storage. Notably, these func-
tions are extensively used in conjunction with other cryptographic methods, forming a
vital component of digital signatures [45], message authentication codes (MACs) [46],
and various security protocols. Well-known hash functions include the secure hash al-
gorithms (such as SHA-1, SHA-2, and SHA-3), message-digest algorithms (such as MD4
and MD5), and Whirlpool [47].

2.1.4. POST-QUANTUM CRYPTOGRAPHY

Asymmetric cryptography, or public key cryptography, relies on complex mathemati-
cal problems that pose significant computational challenges. The security of crypto-
graphic systems like RSA and ECC is based on computationally difficult tasks such as
factorizing large integers and calculating discrete logarithms [48], [49]. These prob-
lems present considerable computational hurdles for conventional classical comput-
ers. However, the emergence of quantum computers poses a substantial threat to these
public key algorithms. Quantum computers have the potential to perform calculations
on a much larger scale, thereby challenging the security of existing cryptographic tech-
niques. Shor’s algorithm [48], [50], which falls under the category of quantum algo-
rithms, demonstrates the capability to effectively solve these aforementioned problems.
Although large-scale practical quantum computers are currently limited in availability,
their development is anticipated in the coming decades [51], [52].

To address this imminent concern, there is a concerted effort to develop and deploy
post-quantum cryptography (PQC) algorithms. The aim of PQC is to protect commu-
nication networks against attack from classical computers, and potential threats from
quantum computers. NIST has initiated a competition focused on post-quantum cryp-
tography [53]. The primary objective of this competition is to identify and establish se-
cure PQC algorithms that can replace current asymmetric cryptography methods. PQC
algorithms cover five different categories, including lattice-based cryptography [54], code-
based cryptography [55], multivariate cryptography [56], hash-based encryption [56],
and isogeny-based cryptography [57]. Lattice-based cryptography utilizes the math-
ematical framework of lattices to ensure security. Code-based cryptography employs
error-correcting codes to establish cryptographic systems. Multivariate cryptography re-
lies on multivariate polynomial equations to withstand different forms of attacks. Hash-
based cryptography derives its security from the characteristics of cryptographic hash
functions, making it resistant to attacks from quantum computers. Isogeny-based cryp-
tography relies on problems involving isogenies of elliptic curves or other algebraic va-
rieties to offer post-quantum security.

2.2. SIDE-CHANNEL ANALYSIS

Side-channel analysis (SCA) is a type of cryptography attacks that exploits system vul-
nerabilities by analyzing its physical properties [4], [5]. This thesis specifically focuses on
power consumption and electromagnetic (EM) radiation as indicators of leakage when

2.2. SIDE-CHANNEL ANALYSIS

2

17

executing security-related instructions or cryptographic algorithms. During the exe-
cution of these instructions or algorithms, sensitive variables that directly depend on
the secret undergo manipulation as part of the computing tasks performed by devices.
Changes in the status of registers, data buses, and memory, which typically have large
capacitances, often result in significant fluctuations in power consumption or EM radi-
ation [5], [58], which can disclose information about the circuit’s calculations.

Malicious adversaries can exploit this information leakage from the actual imple-
mentation by analyzing the acquired traces. By understanding the relationship between
the observed trace patterns and the corresponding instructions/operations, the secrets
can be retrieved [59]. To obtain traces for digital exploitation and subsequent analysis,
a carefully structured setup is necessary. This setup typically comprises devices serving
as the platform for executing cryptographic algorithms, such as AES, a specialized probe
employed to monitor power consumption or EM radiation, and a digital oscilloscope ca-
pable of observing, capturing, and storing variations in voltage levels. Ultimately, this
procedure yields a set of recorded signals, collectively referred to as the "measurement".
Each recorded signal is commonly known as a "trace," comprising a series of sample
points. Adversaries can analyze a large dataset of traces, mitigate noise, and employ sta-
tistical methods to discern underlying patterns and extract sensitive information.

Let us consider a collection of traces, denoted as T, comprising of M traces. Each
trace in Ti contains recorded data at N different time points. Therefore, T consists of
elements ti , j ∈R, where 0 ≤ i ≤ M −1 and 0 ≤ j ≤ N −1. To simplify notation, we employ
Ti to represent a finite sequence of length N , given by Ti = [

ti ,0, ti ,1, . . . , ti ,N−1
]
. This

sequence represents one trace sampled at different time points j .

T =

T0

T1
...
TM−1

=

t0,0 t0,1 . . . t0,N−1

t1,0 t1,1 . . . t1,N−1
...

. . .
...

tM−1,0 tM−1,1 . . . tM−1,N−1

 (2.1)

2.2.1. LEAKAGE MODEL

In SCA, attackers need to establish a correlation between the data values processed and
the power consumption associated with those operations [5], [60]. To do so, it is neces-
sary to identify a target intermediate value within the cryptographic algorithm. However,
the intermediate value does not directly reveal the secret information. Instead, a leakage
model is needed to characterize the relationship between the intermediate value and the
corresponding power consumption. This model is then used to determine the selected
leakage function. There are four widely recognized leakage models:

• Bit-level model: This model focuses on a single bit of the processed data. It as-
sumes that the side-channel measurements are directly proportional to this par-
ticular bit at the attack point [4], [5], [61]. Consequently, the bit-level model results
in two possible labels for each processed data: 0 and 1.

• Hamming weight (HW) and Hamming distance (HD) model: The HW model fo-
cuses on counting the number of ones in the processed data. HD model assumes

2

18 2. PRELIMINARY

that the side-channel measurements are related to the number of 0 ↔ 1 transi-
tions [5], [60]. HW and HD models lead to nine possible labels (ranging from 0 to
8) for a single byte.

• Identity (ID) model: This model assumes that the side-channel measurements di-
rectly reflect the direct value of the data processed. As a result, this model yields
256 possible labels (ranging from 0 to 255) for a single byte [62].

These leakage models offer distinct perspectives on the vulnerabilities that may be
exploited. Let us denote the input plaintext/ciphertext as pti and define the secret key as
k. When considering the AES algorithm employing the HW model, targeting the output
of the S-box as the intermediate value. We can define the leakage function as f (pti ,k) =
{HW (Sbox[pti ⊕k])}.

2.2.2. NON-PROFILED SCA AND PROFILED SCA
SCA can be divided into two categories: non-profiled SCA [63] and profiled SCA [7]. Non-
profiled SCA, also known as direct attacks, involves utilizing traces directly. This category
includes simple power analysis/simple electromagnetic analysis (SPA/SEMA) [4], [64],
differential power analysis/differential electromagnetic analysis (DPA/DEMA) [4], [64].
On the other hand, profiled SCA, also referred to as two-stage SCA, assumes the avail-
ability of open devices or their clones that can be utilized for leakage characterization.
With this information, attackers can construct a model to predict the leakage behavior of
the target device. This category offers improved performance compared to non-profiled
SCA since it can significantly reduce the number of attacks.

NON-PROFILED SCA
Simple Power Analysis
Simple power analysis (SPA) refers to the technique of directly interpreting observed
power as a means of retrieving information about the underlying processing. This at-
tack method was initially documented by Kocher et al. [4]. The focus of this attack is on
deducing sensitive values through the visual analysis of individual power traces or av-
eraged traces. Generally regarded as an initial phase, SPA serves as a foundational step
preceding more intricate attack [6], [65]. For instance, SPA can determine the crypto-
graphic algorithms through visual observation and identify the optimal time window for
subsequent attacks. Note that when the attacker utilizes EM radiation instead of power
consumption in this case, it is called simple electromagnetic analysis (SEMA) [64].
Differential Power Analysis
Differential power analysis (DPA) was first introduced by Kocher et al. [4], utilizing a spe-
cific statistical method. The DPA attack aims to extract a secret key, denoted as k∗, by an-
alyzing the gathered traces T from Equation 2.1. To perform the DPA attack, we consider
a leakage function denoted as f (pti ,k), which processes an input (plaintext/ciphertext),
pti , along with the unknown secret key, k∗. To extract the secret key, we generate a range
of key hypotheses k. For each hypothesis, we construct a corresponding vector using the
function f . Among these vectors, the one that is constructed with the correct hypothesis
will exhibit the strongest dependency on the input pti . This is because the side-channel

2.2. SIDE-CHANNEL ANALYSIS

2

19

signal carries information about the correct key. The goal of the DPA attack is to dis-
tinguish this correct key hypothesis from the incorrect one. When the attacker exploits
the EM emissions of the chip in this case, it is referred to as differential electromagnetic
analysis (DEMA) [64].

The Difference of Means (DoM) technique [4], represents the first side-channel dis-
tinguisher in the literature. The DoM technique involves testing the hypotheses using
two groups: G0 and G1, which can be determined by focusing on the Least Significant Bit
(LSB) in the bit-level model. When the targeted function is applied, it yields either a 0 or
a 1. By assigning each hypothetical value to one of the groups, we average the associated
traces based on their respective group. Subsequently, a difference trace is computed for
each key hypothesis. This is achieved by calculating the difference between the means
of the two groups. Specifically, for attack variable at point j , the difference trace for the
guess key k is computed as Equation 2.2 [65]:

∆ f [j] =G1 −G0 =
∑m−1

i=0 f
(
pti ,k

)∗ ti , j∑m−1
i=0 f

(
pti ,k

) −
∑m−1

i=0

(
1− f

(
pti ,k

))∗ ti , j∑m−1
i=0

(
1− f

(
pti ,k

)) (2.2)

For the correct key hypothesis, when k = k∗, this difference will be significantly greater
than zero, resulting in the largest spikes in the difference trace. On the other hand, for all
other cases, the difference will be approximately zero because only when the correct key
and the samples representing the target function are aligned, the side-channel signals
exhibit a distinguishable difference in means.

Correlation power analysis (CPA) represents an advanced iteration of DPA, exploit-
ing the inherent correlation between power consumption and internal data or opera-
tions within a targeted device [66], [67]. Unlike DPA, which solely considers one bit of
side-channel information, CPA makes use of the full range of available side-channel in-
formation. In a CPA attack, the attacker carefully analyzes power traces to identify cor-
relations with hypothetical power consumption models that would emerge for different
secret key values or other sensitive information. Following the acquisition of traces, we
obtain M power traces, each containing N data points. Utilizing subscript notation, ti , j

denotes point j in trace i . let’s assume there are K different subkeys to test. Conse-
quently, hi ,k represents our power estimate model in trace i , presuming the subkey is k
(0 ≤ i ≤ M−1, 0 ≤ k ≤ K −1). Subsequently, the hypothesized power consumption values
are juxtaposed with the collected traces via Pearson’s correlation coefficient, denoted as
ρ, as illustrated in Equation 2.3 [67].

ρk, j =
∑M−1

i=0

[(
hi ,k −hk

)(
ti , j − t j

)]
√∑M−1

i=0

(
hi ,k −hk

)2 ∑M−1
d=0

(
ti , j − t j

)2
(2.3)

ρ allows us to evaluate the degree of correlation between the power estimate model
and the collected traces for each guess k and time j . A higher correlation indicates a
more accurate key guess. The correlation is evaluated within the range of -1 to 1, where
values close to ±1 indicate a strong linear dependency, while zero suggests no linear
dependency.

2

20 2. PRELIMINARY

PROFILED SCA
Profiled SCA assumes the presence of an attacker with access to a cloned device. It in-
volves a two-step process: profiling and attack. In the profiling phase, adversaries sys-
tematically gather traces from the clone device while varying the known key used in
cryptographic operations. These traces form the basis for constructing a template or
statistical model, which captures and describes the behavior of leaked information. The
adversary constructs a model that maps from the traces Tp to the labels Yp , which are
the results of the leakage function. In the attack phase, traces from an unknown key on
the target device, Ta, are collected. These traces are independent of the profiling phase.
Then, Ta is applied to the pre-constructed model, allowing for the identification of the
most probable key values through statistical analysis and comparison.

Profiled SCA exploits complex relationships between side-channel leakage and sen-
sitive information, making it a powerful attack technique. One of the advantages of pro-
filed SCA is that it requires fewer attacks to recover the key in the attack phase. How-
ever, building a proper model still requires a substantial number of traces during the
profiling phase. Traditional profiled SCA, Template Attack (TA) [68], was considered the
most powerful attack from a theoretical perspective [69]. However, it faces challenges
when dealing with traces consisting of numerous features, as calculating the covariance
between all features becomes infeasible. To overcome this, selecting points-of-interest
(POIs), that leak the most is crucial [70], [71]. Typically, features with the highest vari-
ance are chosen.

Recently, machine learning algorithms have been explored in the context of SCA [72]–
[74]. Various machine learning techniques such as Random Forest [72] and Support
Vector Machines (SVMs) [73] have been employed for SCA, demonstrating good perfor-
mance in various scenarios. Similar to TA, machine learning techniques perform better
when POIs are selected before the attack. In addition to machine learning, deep learning
techniques have garnered attention in the SCA community [75]–[78]. Previous studies
have shown that deep learning achieves state-of-the-art results, even in the presence of
countermeasures. Convolutional Neural Networks (CNNs), in particular, exhibit excep-
tional performance for various SCA problems.

MACHINE LEARNING-BASED SCA
Machine learning is a powerful methodology [79] that enables machines to solve com-
plex problems that would be impractical to tackle using traditional algorithms. Unlike
traditional algorithm development by human programmers, machine learning allows
machines to discover their algorithms through experience and dataset analysis [80]–[82].
One key capability of machine learning algorithms is their ability to identify patterns in
datasets, whether labeled or unlabeled. Based on the availability of labeled data and the
problem objectives, machine learning can be broadly categorized into two types: super-
vised learning and unsupervised learning [83].

Supervised learning involves providing the computer with example inputs and their
corresponding desired outputs, essentially acting as a "teacher" to train the model. The
objective is for the computer to learn a general rule that maps inputs to outputs. A com-
mon application of supervised learning is classification problems [84], [85], where inputs
are categorized into predefined classes. During the training phase, a classifier model is

2.2. SIDE-CHANNEL ANALYSIS

2

21

constructed based on existing labeled training datasets [84]. The complexity of model
training depends on the task difficulty and the complexity of the model itself. A well-
trained classifier should ideally accurately determine the output class for new inputs
not encountered during training, demonstrating its ability to generalize from the pro-
vided data. On the other hand, unsupervised learning does not rely on labeled data.
Instead, the learning algorithm autonomously explores the input data to discover un-
derlying structures or extract valuable features. Unsupervised learning techniques are
frequently utilized for tasks such as clustering and dimensionality reduction [86].

Profiled SCA can be framed as a classification or regression problem, establishing a
natural connection between supervised learning and profiled SCA. Both involve a learn-
ing phase (referred to as the profiling phase in SCA) and a prediction phase (known as the
attack phase in SCA). During the profiling phase in SCA, machine learning algorithms
learn patterns from a set of profiling traces and labels, known as the learning dataset,
which consists of input-output pairs. By adopting machine learning techniques, statis-
tics can be automatically learned from the unknown leakage distributions present in the
profiling dataset.

DEEP LEARNING-BASED SCA
Deep learning, which is a specialized branch of machine learning, focuses on the uti-
lization of artificial neural networks (ANNs) [87]. Currently, deep learning is widely used
in SCA. To understand neural networks, it is crucial to grasp the concept of neurons,
which serve as the fundamental building blocks of ANNs. Neurons receive input values
and compute the weighted sum using a weight matrix. Nonlinear activation functions
are applied to the weighted sum to enable neural networks to learn nonlinear func-
tions and models. The output of a neuron can be mathematically described by the
equation y = σ∗ (

∑n
i=1 xi wi + b) where the input x has a size of n, w represents the

weights, b denotes the bias, and σ signifies the activation function. The bias also acts
as a weight for the input x0, which is assigned a value of 1. Thus, the equation takes
the form y = σ∗ (

∑n
i=0 xi wi), with x0 = 1 and w0 = b. This calculation is performed

in all neurons within a layer, allowing us to describe it using matrices, where the input
sample features can be arranged as columns or rows. Therefore, the equation becomes
Y =σ∗ (X∗W+B), where X represents the input matrix, W is the weight matrix, B de-
notes the bias matrix, and σ denotes the activation function.

The essence of neural network learning lies in iteratively adjusting these weights and
biases during each epoch. Within an epoch, two critical stages occur: the forward pass
and the backward pass. During the forward pass, predictions are made based on input
data from the training or test dataset. On the other hand, the backward pass focuses on
updating the model’s weights and biases to refine the network’s predictions. This back-
ward pass commonly employs a technique called backward propagation. To optimize
the effectiveness of this procedure, a loss function is established to quantify the discrep-
ancy between the predicted output and the actual ground truth. Subsequently, during
the backward propagation stage, each adjustable parameter is updated using various
optimization algorithms such as Stochastic Gradient Descent, RMSprop, and Adam [88]
to efficiently locate the minimum of the loss function. These steps are repeated until the
network reaches an optimal minimum that satisfies the predefined criteria.

2

22 2. PRELIMINARY

Figure 2.2: Example of MLP with 8 units in the input layer, 2 hidden layers, and 7 units in the output layer. The
figure is generated by NN-SVG: http://alexlenail.me/NN-SVG/index.html.

.

A deep learning model is a sophisticated architecture comprising multiple intercon-
nected layers of neurons. Each layer plays a specific role in acquiring knowledge and
extracting complex features from input data. The input layers receive and preprocess
raw input data, establishing the foundation for subsequent processing. As information
flows through the network, hidden layers play an important role in transforming and
refining representations learned from previous layers. Ultimately, the output layer gen-
erates conclusive predictions or classifications based on the transformed features. One
example of a deep learning model is the multilayer perceptron (MLP) with more than one
hidden layer, illustrated in Figure 2.2. MLP contains several hidden layers and takes a set
of inputs to produce a corresponding set of outputs. The interconnections and multi-
layered structure of neurons allow deep learning models to effectively capture complex
data distributions and comprehend intricate decision boundaries.

Maghrebi et al. [75] conducted pioneering research in the realm of deep learning-
based SCA, showcasing the enhanced performance of various neural network models.
The authors looked into several different types of neural networks in SCA, such as an
MLP with a single hidden layer, a stacked autoencoder with three hidden layers, an LSTM
with two layers of 26 LSTM units, and the unique use of CNNs. While the MLP in the pa-
per does not fall under the category of deep learning techniques because it has only one
hidden layer, the other algorithms are positioned within this category. Since then, re-
searchers have looked into different architectures and hyperparameter settings, adding
to the variety of deep learning methods used for SCA [7], [8], [76], [77], [89]. Unlike tradi-

http://alexlenail.me/NN-SVG/index.html

2.2. SIDE-CHANNEL ANALYSIS

2

23

Figure 2.3: Example of CNN generated by NN-SVG.

tional methods that heavily rely on selecting POIs and alignment, deep learning-based
SCA eliminates the need for preprocessing, simplifies the attack process, and enhances
its effectiveness. Importantly, deep learning-based SCA can easily bypass certain coun-
termeasures previously considered unbreakable by conventional methods. This signifi-
cant advancement offers enhanced capabilities and holds great promise in the field.

CONVOLUTIONAL NEURAL NETWORKS

CNNs are extensively utilized within the deep learning field owing to their remarkable ef-
ficiency. As illustrated in Figure 2.3, the neural networks are composed of three primary
categories of layers, including convolutional layers, pooling layers, and fully-connected
layers.

• Convolutional layers serve as the fundamental component of CNNs, wherein in-
dividual neurons perform dot product operations between their own weights and
specific areas of the input. The utilization of the filter (sliding window operation),
conducted throughout the input, enables the network to extract properties. To
preserve the input’s dimensionality, padding is commonly employed, while the
stride parameter can be adjusted to control the size of the receptive field.

• Pooling layers, such as max-pooling and average-pooling, aim to reduce the spatial
dimensions of the extracted features. Average-pooling calculates the mean value
within a pooling block, while max-pooling selects the highest value. The choice of
pooling technique significantly impacts model performance. The pooling stride
parameter determines the step size taken over the feature map during pooling.

• Fully-connected layers, also referred to as dense layers, generate hidden activa-
tions or class scores, ultimately producing the final output of the network.

In addition to the fundamental CNN structure, several prevalent methodologies are
employed to improve performance. Batch normalization addresses the issue of internal
covariate shift by normalizing the inputs of each layer. This technique stabilizes and ac-
celerates the training process, resulting in improved generalization capabilities. Regular-
ization approaches, such as L1 and L2 regularization, are commonly utilized to prevent

2

24 2. PRELIMINARY

overfitting and enhance model resilience. By imposing constraints on the network’s pa-
rameters, unnecessary representations are discouraged. Dropout, another popular reg-
ularization technique, mitigates overfitting by randomly deactivating a subset of input
neurons during each training iteration. These deactivated neurons do not participate
in information transmission during both forward and backward propagation, effectively
enhancing generalization capabilities.

In the context of SCA, where traces represent time series of measurements, it is cru-
cial to process the data in a manner that preserves temporal characteristics and captures
relevant patterns. To achieve this, one-dimensional convolution and pooling operations
are adopted to suit the inherent characteristics of SCA traces.

2.2.3. COUNTERMEASURES

To enhance the security of implementations against SCA, it is common practice to em-
ploy countermeasures that strengthen cryptography systems [5]. These countermea-
sures have the primary objective of breaking the statistical correlation between side-
channel information and confidential secret keys, thus preventing adversaries from ex-
ploiting potential leaks of sensitive data. Masking and hiding techniques are two funda-
mental types of countermeasures widely used for this purpose [5].

Masking techniques involve introducing additional random values, known as masks,
during the execution of sensitive data processing. These masks act as protective shields,
effectively concealing any potential information leakage through side channels. The
underlying principle of masking is to divide each sensitive variable into multiple ran-
domized shares. This ensures that information obtained from any subset of shares is
insufficient to deduce the original shared variable. By injecting these random masks
into cryptographic operations, the statistical patterns that adversaries may exploit are
disrupted. This disruption makes it difficult to discern relevant details about the secret
keys, thereby reinforcing the security of the cryptographic implementation.

Hiding countermeasures play a crucial role in reducing the Signal-to-Noise Ratio
(SNR) of side-channel measurements. This involves intentionally introducing noise into
the circuit to conceal any potential leakage of sensitive information. Noise generators
are commonly employed for this purpose [5], [90], [91]. These generators often incor-
porate parallel circuits that generate power consumption. By doing so, side-channel at-
tackers are thwarted in their attempts to deduce meaningful information from power
analysis. Another commonly used technique in hiding countermeasures is desynchro-
nization. This involves introducing random delays that shift the execution timing of the
target operation, disrupting the alignment of side-channel measurements in the time
domain. This disruption poses significant challenges for SCA methodologies such as
DPA and TA. These attack methods heavily rely on precisely aligned side-channel traces
to extract meaningful information. Thus, utilizing desynchronization as a countermea-
sure greatly reduces the effectiveness of such attacks.

Deep learning has presented challenges to the above conventional countermeasures
in SCA. Recent studies have shown that deep learning techniques can be used to break
masking countermeasures, especially masked AES implementations [76], [92]. Addition-
ally, deep learning methods offer different ways to overcome hiding countermeasures.
This can be done by either preprocessing the traces with hiding countermeasures or di-

2.3. TRUSTED EXECUTION ENVIRONMENTS

2

25

rectly attacking the traces, for example, by using autoencoders [7]. Additionally, among
the different deep learning models that have been looked into, CNNs have become the
most popular way to combat the random delay countermeasure by using their built-in
spatial invariant property [76].

2.3. TRUSTED EXECUTION ENVIRONMENTS
In the contemporary era, electronic systems generate and share vast amounts of data.
As these systems continue to advance, people often run complex operating systems and
host applications from potentially untrustworthy sources, heightening the risk of secu-
rity breaches within these environments. Thus, security measures to protect security-
sensitive and privacy-preserving applications are highly necessary.

This reality emphasizes the need for the development of execution environments ca-
pable of isolating security-sensitive applications [93]. Trusted execution environments
(TEEs) have emerged as a crucial defense mechanism for safeguarding devices, includ-
ing ARM TrustZone [94], AMD SEV [95], and Intel Software Guard Extensions (SGX) [96].
TEEs provide an isolated environment, as depicted in Figure 2.4, enabling secure appli-
cation execution and ensuring the confidentiality and integrity of data and code.

These environments are designed to execute sensitive applications in a secure world
that is completely isolated from Rich Execution Environments (REEs). REEs are tra-
ditional computing environments where applications and operating systems execute,
granting them full access to system resources such as memory, storage, and input/output
inferences. However, this unrestricted access poses significant security risks, as mali-
cious applications or compromised operating systems can exploit vulnerabilities and
compromise sensitive data. On the contrary, TEE offers a restricted execution environ-
ment known as a secure enclave, which is isolated from the rest of the system. To ensure
the integrity and confidentiality of the enclave, TEEs typically rely on hardware-based
isolation mechanisms like secure processors or trusted platform modules (TPMs) [97].

One notable feature of TEEs is their ability to establish a secure channel between the
REE and the enclave [93]. Through cryptographic protocols, this secure channel allows
only authorized applications to communicate with the enclave, ensuring the security of
data exchanged between the REE and the enclave. Additionally, TEEs provide attesta-
tion mechanisms that enable remote parties to verify the integrity and authenticity of
the enclave, assuring that the code executed within the TEE is trustworthy [98]. Besides,
TEEs can mitigate the risks associated with attacks on the REE, such as privilege escala-
tion [99], and memory corruption [100], etc.

2.4. RISC-V INSTRUCTION SET ARCHITECTURE
Instruction Set Architecture (ISA) plays an important role as an abstract framework that
governs how software interacts with CPU. It defines the operational characteristics of
machine code executed on any implementations adhering to a specific instruction [103].
ISA includes a range of fundamental elements, including supported data types, register
configurations, memory management techniques employed by the hardware, permissi-
ble instructions that a processor can execute, and input/output functionalities. Serving
as the interface between hardware and software, ISA acts as a bridge that enables effec-

2

26 2. PRELIMINARY

Figure 2.4: Trusted execution environments (TEEs) [101], [102].

tive communication and coordination between the two components.
RISC-V [18] has brought about significant changes in CPU design, challenging the

long-standing dominance of entities like Intel and AMD with their x86 architectures, as
well as ARM, renowned for its processor designs optimized for mobile devices and mi-
crocontrollers [104]. While ARM licenses its designs to manufacturers, its closed-source
paradigm limits the potential for widespread adoption and hinders the progress of inno-
vative processors due to authorization requirements and royalty obligations.

The University of California, Berkeley has played a pivotal role since the inception
of RISC-V in 2010 [105]. The fundamental objective of RISC-V is to create an ISA that is
both extensible and open-source, enabling its adoption beyond academia and making a
significant impact in commercial domains. The RISC-V ISA [18] has emerged as a highly
promising technological advancement since its inception. It adheres to the principles
of Reduced Instruction Set Computing (RISC) while striking a balance between simplic-
ity and optimization. By providing a concise and efficient set of instructions capable
of performing various tasks, the RISC-V ISA minimizes complexity and facilitates easy
implementation in hardware designs. The open-source community has shown strong
support for RISC-V, with the availability of essential programming tools like a GCC com-
piler with integrated GDB support [106], simulators such as Spike and QEMU [107], and
a diverse range of open-source RISC-V cores.

RISC-V BASE ISAS

The RISC-V ISA is a flexible architecture that offers a mandatory base ISA in every sys-
tem, as well as optional extensions for enhanced functionality. Within the RISC-V ISA,
there are four different base ISAs: RV32I, RV64I, RV32E, and RV128. Each base ISA differs
in aspects such as the width of the integer registers, address space size and total number
of available integer registers. The primary base ISAs, RV32I and RV64I, both include 32
integer registers, but differ by offering 32-bit and 64-bit address spaces, respectively. The
RV32E, a variant of RV32I, caters to small microcontrollers by featuring a reduced num-

2.4. RISC-V INSTRUCTION SET ARCHITECTURE

2

27

ber of integer registers by half. Additionally, the RV128, which is under development,
also includes 32 integer registers. It is designed to accommodate larger address spaces
and meet future requirements that may surpass the 64-bit address space.

The fundamental architecture of RISC-V incorporates six distinct formats of 32-bit
instructions: R, I, S, B, U, and J, as illustrated in Figure 2.5. These instruction formats
serve as the cornerstones of the RISC-V architecture, each designed to address specific
functionalities and diverse computational requirements within the instruction set.

• The R-type format constitutes operations without immediate values. In this for-
mat, operations involving arithmetic, logical, and shift functionalities read the rs1
and rs2 registers as source operands and subsequently write the result into regis-
ter rd. The type of operation is selected by the funct7 and funct3 fields, providing
a flexible range of computations.

• The I-type format combines immediate values and registers, facilitating opera-
tions like load instructions and arithmetic/logical operations. The upper 12 bits
of the I-type format represent the immediate value, similar to the R-type, enabling
efficient computation with immediate values.

• The S-type format primarily handles store operations, transferring data from a reg-
ister to memory. Unlike the R and I formats, S-type instructions do not have an rd
register since they do not require a write-back operation.

• The B-type format is instrumental in executing branching operations, utilizing im-
mediate values to execute conditional branch instructions based on comparisons
or conditions.

• The U-type format assists in loading immediate values into registers, especially
larger constants. The final operation result is related to the 20-bit immediate, and
the result is written back to the rd register.

• Lastly, the J-type format manages jump instructions for control transfer, facilitat-
ing alterations in program flow within larger address spaces. This format incorpo-
rates immediate values and a register to enable efficient program control transfer.

RISC-V ISA EXTENSIONS

The RISC-V architecture goes beyond the base ISAs by supporting extra extensions. This
lets people make customized implementations that meet their specific needs [18]. These
extensions provide processors with the flexibility to accommodate a wide range of ap-
plications, from basic devices relying on the base ISA to more advanced processors. No-
table extensions include the M-extension, which facilitates multiplication and division
operations, the A-extension for atomic instructions, the F-extension enabling single-
precision floating-point instructions, the D-extension for double-precision floating-point
instructions, the C-extension accommodating compressed 16-bit instructions, the B-
extension supporting bit manipulation, and the V-extension facilitating vector opera-
tions [18]. To represent a specific RISC-V instruction-set variant concisely, one can com-
bine the fundamental integer prefix with the titles of the incorporated extensions, such
as "RV32IMC".

2

28 2. PRELIMINARY

Figure 2.5: RISC-V base instruction formats [18].

In Chapters 3 and 4, we specifically focus on leveraging the V-extension, commonly
known as the RISC-V vector extension, to explore and harness the vector capabilities of
RISC-V in the implementation of cryptographic algorithms.

CUSTOM ISA EXTENSIONS

RISC-V not only provides base ISAs and officially ratified ISA extensions but also allows
for the enhancement of its capabilities through custom instructions tailored for specific
purposes [18]. By leveraging custom instructions, users can not only improve the com-
putational power of RISC-V but also enhance its architectural flexibility and versatility.

2.5. VECTOR PROCESSING
The differentiation between a high-performance computing platform and a slower one
is primarily determined by the throughput performance of the architecture, which is im-
pacted by two main factors: workload and calculation time. Designers continually en-
deavor to enhance the workload while concurrently minimizing the computational time.
Flynn’s taxonomy [108]–[110] is employed to classify computing systems into four cate-
gories, which include Single Instruction Single Data (SISD), Single Instruction Multiple
Data (SIMD), Multiple Instruction Single Data (MISD), and Multiple Instruction Multiple
Data (MIMD), as shown in Figure 2.6. The classifications are derived from the degree of
parallelism exhibited in the execution of instructions and the processing of data.

• SISD architecture is characterized by conventional processors that do not possess
parallel hardware and do not demonstrate parallelism in either the execution of
instructions or the processing of data.

• SIMD architecture is capable of concurrently executing identical instructions on
various sets of data, hence leveraging data parallelism. This is achieved by execut-
ing instructions on a vector of data rather than on individual elements.

• MISD architecture exploits parallelism only in instructions, aiming to optimize the
efficiency of operations per data fetch, hence presenting certain complexities from
the viewpoint of a programmer.

2.5. VECTOR PROCESSING

2

29

Figure 2.6: Flynn’s Taxonomy in computer architecture. PE denotes the processing element [108]–[110].

2

30 2. PRELIMINARY

• MIMD architecture exploits parallelism in both instructions and data, generally
operating as numerous separate SISD processors concurrently.

Chapters 3 and 4 of this thesis adopts the SIMD architecture. By leveraging the data-
level parallelism, the architectural design efficiently processes multiple elements con-
currently, resulting in improved data throughput. This parallel processing is achieved
by integrating several processing elements (PE) units within the core, where each unit
performs computations on individual data.

2.6. FEDERATED LEARNING
Federated learning (FL) is an innovative collaborative learning approach that enables
multiple clients to jointly train a deep neural network on their private datasets [111],
[112]. The concept was first introduced by Google in 2016 and was initially implemented
in the Google Keyboard application, which allowed Android phones to train machine
learning models using decentralized data [111]–[113]. In traditional machine learning
approaches, all data is aggregated into a central server, which not only consumes sub-
stantial time but also raises privacy concerns. In contrast, FL ensures that data remains
on the client devices, with only model updates transmitted to the central server. This
increases efficiency and security in model training, as illustrated in Figure 2.7, which
shows an overview of FL.

FL enables multiple clients to collaborate on training a global model without sharing
their data. In each training round, each client utilizes its local dataset to further train
the previously received global model, and transmits its trained local model to the server.
The server aggregates these individual models to generate a new global model, which
is subsequently sent back to the clients [112]. Various types of aggregation algorithms
are employed for FL [113]–[116], and the federated averaging (FedAVG) algorithm [112]
has emerged as the most widely adopted approach. FedAvg involves the central server
aggregating model updates from each client device and computing their average.

However, there have been numerous proposals outlining attacks against FL that aim
to compromise the integrity of the model through poisoning attacks [117], [118] or pri-
vacy attacks [119], [120]. These attacks highlight the need for robust security measures
to protect the privacy and integrity of FL systems.

2.6.1. POISONING ATTACKS
Poisoning attacks aim to manipulate the global model, either by inducing undesired be-
havior or rendering the model useless. Adversaries with malicious intent often employ
techniques such as data poisoning [121]–[123] or model poisoning [124], [125]. Data
poisoning involves intentionally manipulating the training data by injecting biased or
manipulated samples. Model poisoning involves modifying the parameters or structure
of the model during the training process to manipulate its behavior.

There are two categories of poisoning attacks: untargeted attacks and targeted at-
tacks [126]. Untargeted attacks primarily focus on reducing the accuracy of the trained
model or making it useless. In contrast, targeted attacks, also known as backdoor attacks,
have a specific objective of manipulating the global model to exhibit particular misbe-
havior. The intention behind these attacks is to bias the predictions or decision-making

2.6. FEDERATED LEARNING

2

31

Figure 2.7: Overview of Federated Learning [102].

of the global model towards the attacker’s desired outcome. Backdoor attacks involve
inserting hidden triggers or patterns into the data, which can later be exploited to trigger
specific behaviors in the trained model. Then, attackers can poison the global model af-
ter the aggregation process by introducing subtle yet influential patterns, which are not
typically present in ordinary behaviors. Once the model is deployed, attackers can ex-
ploit these hidden triggers to manipulate its predictions or compromise its performance.
For example, Shen et al. [117] demonstrated backdoor attacks on image classification by
classifying a cyclist crossing sign as a wild animal crossing sign, and misclassifying the
sign for a 20 km/h maximum speed limit as 80 km/h.

2.6.2. PRIVACY ATTACKS

Privacy attacks, also called inference attacks, refer to malicious attempts to extract sensi-
tive information from the training data used in a machine learning model. These attacks
can take various forms, such as inferring the presence of specific samples in the training
data [119] or reconstructing individual samples from the training dataset [120].

In the context of FL, the aggregation mechanism plays a crucial role in safeguard-
ing against privacy attacks. FL is designed to ensure that the contributions of individ-
ual clients to the global model remain anonymous, making it challenging to associate
any inferred information with a specific client. This anonymity is achieved by aggre-
gating the model updates received from each client without revealing their individual
data. As a result, privacy attacks that rely on associating information with specific clients
can be mitigated in FL. However, it is important to note that the privacy of clients can
still be compromised if the aggregation server itself is malicious or curious. Despite
the anonymization of client contributions, an untrustworthy aggregation server may at-

2

32 2. PRELIMINARY

tempt to analyze the received local models and violate the privacy of the clients. This
scenario raises concerns, particularly if the server gains access to sensitive information
embedded in the local models, potentially leading to privacy breaches.

2.7. SUMMARY
This chapter serves as the foundation of this thesis, providing essential background in-
formation. It begins by introducing the field of cryptography, offering an overview of
its principles and different types of cryptography algorithms. Following this, it presents
preliminary information about SCA, emphasizing its importance in understanding po-
tential vulnerabilities in cryptographic systems. Subsequently, the discussion shifts to-
wards TEEs, exploring their significance and role in enhancing security within comput-
ing systems. Additionally, the chapter delves into the introduction of the RISC-V ISA,
shedding light on its unique features and advantages. Then, an overview of vector pro-
cessing is presented, highlighting its relevance and potential applications. Finally, the
chapter introduces federated learning, a collaborative machine learning approach that
enables multiple parties to train a shared model without sharing their data and also pro-
vides a brief introduction to poisoning attacks and privacy attacks, which compromise
the integrity of the federated learning model.

PART II HW/SW CO-DESIGN FOR

SECURITY SYSTEMS

33

3
A SCALABLE SIMD RISC-V BASED

PROCESSOR WITH CUSTOMIZED

VECTOR EXTENSIONS FOR

CRYSTALS-KYBER

This chapter utilizes the RISC-V vector extensions to enhance the efficiency of lattice-based
operations in HW/SW co-design architectures. In this study, we undertake a comprehen-
sive examination of the structure and characteristics of the number-theoretic transform
(NTT), inverse NTT (INTT), and coefficient-wise multiplication (CWM) operations within
CRYSTALS-Kyber, a lattice-based key encapsulation mechanism. Based on the above in-
vestigation, we present a comprehensive set of 12 vector extensions designed to enhance the
CRYSTALS-Kyber multiplication process. Additionally, we offer four extensions that aim
to facilitate finite field operations, along with two optimizations specifically targeting the
HW/SW interface. By employing this methodology, we observe significant enhancements
in computing efficiency, as indicated by speed-up measurements of 141.7, 168.7, and 245.5
times, correspondingly, for the NTT, INTT, and CWM procedures, in comparison to the
baseline implementation. In addition, we observe that our methodology attains perfor-
mance improvements exceeding four times the state-of-art HW/SW co-design employing
RV32IMC.

The material in this chapter has appeared in:
Li, Huimin, Nele Mentens, and Stjepan Picek. "A scalable SIMD RISC-V based processor with customized
vector extensions for CRYSTALS-kyber." Proceedings of the 59th ACM/IEEE Design Automation Conference
(DAC). 2022.

35

3

36
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

3.1. INTRODUCTION
Currently, public key cryptography (PKC) plays a crucial role in ensuring the confiden-
tiality and integrity of communication channels between multiple parties. However, the
emergence of quantum computers poses a threat to the security of these cryptographic
algorithms. Shor’s algorithm has the ability to efficiently solve the fundamental mathe-
matical problems that form the basis of their security, such as factorization of large inte-
gers and computation of discrete logarithms [49]. Therefore, there is a growing interest
in developing post-quantum cryptography (PQC) algorithms that can withstand attacks
from both classical and quantum computers.

Recognizing the urgency of this issue, the National Institute of Standards and Tech-
nology (NIST) initiated a global standardization process for post-quantum cryptogra-
phy in 2016 [53]. As of July 22, 2020, NIST announced the selection of 15 candidates
for Round 3 of this process [53]. Notably, seven of the selected PQC candidates are
lattice-based algorithms1. Lattice-based cryptography has gained significant attention
due to its strong security guarantees and computational efficiency. This cryptographic
framework finds applications in various security domains, including key-encapsulation
mechanisms (KEMs), identity-based encryption (IBE) [127], and Fully Homomorphic
Encryption (FHE) [128]. Implementing lattice-based algorithms is an important area of
research. As mentioned in Chapter 1, there are three strategies for implementing these
algorithms: HW design, SW design, and HW/SW co-design [129]. Among these strate-
gies, HW/SW co-design stands out as it combines the advantages of the other two ap-
proaches, namely high-speed processing and enhanced flexibility. This is achieved by
dividing the overall design into two components: the hardware part, implemented on
FPGAs or ASICs, and the software part, running on one or more processors embedded
within the FPGAs or ASICs.

Lattice-based algorithms heavily rely on various polynomial operations that possess
high complexity. Polynomial multiplication, in particular, is considered a major bottle-
neck in lattice-based implementations [129]. To address this challenge, certain lattice-
based algorithms like CRYSTALS-Kyber [130], CRYSTALS-Dilithium [131], and FHE uti-
lize the number-theoretic transform (NTT). NTT is a specialized form of the Discrete
Fourier Transform (DFT) [132]. Although NTT reduces the time complexity from O(n2)
(in traditional DFT algorithms) to O(nlog(n)), its execution remains computationally ex-
pensive.

Polynomial operations can be efficiently executed in data-parallel modes through
vector architectures, commonly known as SIMD processors. An essential requirement
for implementing SIMD processors is the availability of a vector ISA that is open-source
and freely accessible. Fortunately, the RISC-V ISA provides vector extensions that ful-
fill this requirement. However, it is worth mentioning that there is limited existing work
on the adoption of RISC-V Vector (RVV) for PQC implementations. To the best of our
knowledge, at the beginning of our research, only one study [133] explored the utiliza-
tion of RVV in Classic McEliece, a PQC algorithm based on code-based cryptography.
While regarding lattice-based cryptography, the potential performance enhancements
achievable through RVV remain unexplored.

1On July 5, 2022, NIST announced the first group of winners. Lattice-based algorithms occupy 3 positions out
of the four winners.

3.2. NOTATION

3

37

To bridge this research gap, we propose an HW/SW co-design approach that lever-
ages RISC-V vector extensions to enhance the efficiency of lattice-based operations. We
first realize a scalable SIMD processor written in SystemVerilog to support RVV. Then,
we conduct an analysis of the structure of NTT, inverse NTT (INTT), and coefficient-
wise multiplication (CWM) in CRYSTALS-Kyber. Based on these analyses, we present
optimizations for the HW/SW interface and introduce vector extensions for CRYSTALS-
Kyber multiplication and finite field operations. Our contributions are the following:

• We realize a scalable SIMD processor supporting RISC-V vector extensions and
implement it on a Xilinx Alveo U250 accelerator card.

• We propose two HW/SW interface optimizations and 16 vector extensions for poly-
nomial multiplication and finite field operations in CRYSTALS-Kyber. Our results
show a speed-up of 141.7, 168.7, and 245.5 times for NTT, INTT, and CWM, respec-
tively, compared with the baseline implementation, and a speed-up of over four
times compared with the state-of-the-art HW/SW co-design using the RV32IMC
ISA.

This chapter is structured as follows. In Section 3.2, we explain the notations uti-
lized throughout this chapter. Following this, Section 3.3 presents the background infor-
mation related to several aspects, including the module learning with errors problem,
CRYSTALS-Kyber, NTT, RISC-V vector extension, and strategies for customizing RISC-V
instructions. Continuing on, Section 3.4 elaborates on the design aspects of the SIMD
RISC-V processor, illustrating the HW/SW co-design platform employed in this thesis.
Building upon this platform, Section 3.5 introduces how to optimize HW/SW interfaces
and proposes the integration of customized vector instructions designed specifically
for polynomial multiplication and finite field arithmetic operations. The subsequent
section, Section 3.6, demonstrates the practical utilization of RISC-V vector extensions
along with the custom extensions to implement programs for NTT, INTT, and CWM algo-
rithms in CRYSTALS-Kyber. Additionally, a summary and comparison of resource utiliza-
tion and execution time are provided, comparing these results against the baseline im-
plementation and the state-of-the-art HW/SW co-design employing RV32IMC. Finally,
in Section 3.7, we conclude this work, summarizing the contributions made throughout
the chapter.

3.2. NOTATION
We use lower-case italic letters like p to denote polynomials, while lower-case bold let-
ters like p are used to denote vectors of polynomials, and upper-case bold letters like P
denote matrices of polynomials. Furthermore, we use p̂, p̂, and P̂ to represent these vari-
ables in the corresponding NTT domain. Further, let vT be the transpose of the vector v
and AT be the transpose of the matrix A. We define v[i] to denote a vector v’s i -th entry
(where i starts from zero), and A[i][j] to denote the entry in row i and column j in a ma-
trix A. We define polynomial rings Rq as Zq [X]/φ(x). Here, Zq is the integer modulo q ,
φ(x) is (X n +1), q is a prime, and n is a power of two. We use NTT, NTT−1, and CWM for
the corresponding functions. We use · to denote integer and polynomial multiplication,
and use ◦ to denote coefficient-wise multiplication. For two vectors of polynomials, f
and g, the product f ·g can be computed efficiently as NTT−1(NTT(f) ◦NTT(g)). Finally,
we denote messages as m, ciphertexts as ct , public keys as pk, and secret keys as sk.

3

38
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

3.3. BACKGROUND

3.3.1. MODULE LEARNING WITH ERRORS PROBLEM

Lattice-based cryptography is a branch of cryptographic techniques that relies on the
mathematical structures known as lattices [54]. A lattice can be thought of as a reg-
ular grid or a repeating pattern of points in multi-dimensional space. In the context
of lattice-based cryptography, these lattices are typically defined in n-dimensional Eu-
clidean space [134]. The fundamental idea behind lattice-based cryptography is to ex-
ploit the presumed hardness of certain computational problems related to lattices as the
basis for constructing secure cryptographic systems [54]. Examples of such problems
include the Shortest Vector Problem (SVP) [135], Learning with Errors (LWE) [136].

Within the realm of LWE, two notable variants have emerged. The first variant, known
as learning with error over rings (Ring-LWE), utilizes polynomial rings over finite fields as
the domain for LWE [137]. The secrets and errors involved are essentially represented as
polynomials derived from a polynomial ring, rather than integer vectors. Another vari-
ant of LWE is referred to as learning with error on modules (Module-LWE) [138]. Building
upon the Ring-LWE, Module-LWE replaces ring elements with module elements over the
same ring. In this scenario, the secrets and errors manifest as vectors of polynomials en-
capsulated within a matrix structure. These variations of LWE introduce additional flexi-
bility and complexity, enabling the design of more diverse and robust lattice-based cryp-
tographic systems. They also serve as the foundation for various post-quantum crypto-
graphic schemes that aim to address the security risks of quantum computers.

3.3.2. CRYSTALS-KYBER

CRYSTALS-Kyber is a lattice-based cryptosystem that uses the Module-LWE problem for
its security [130]. In addition to its high level of security, CRYSTALS-Kyber is also highly
efficient and suitable for deployment on a wide range of devices. Its key exchange pro-
tocol enables two parties to establish a shared secret key securely, while its encryption
scheme guarantees the secure transmission of data using the established key [130].

CRYSTALS-Kyber utilizes a parameter q set to 3,329 and dimension n set to 256 [130].
This cryptosystem’s public-key encryption scheme, known as Kyber.CPAPKE, achieves
indistinguishability under the chosen plaintext attack (IND-CPA) and involves three fun-
damental steps: key generation (KeyGen), encryption (Enc), and decryption (Dec) [130].
These three steps can be summarized as follows, assuming that Â ∈ Rk×k

q is generated

through uniform sampling, and s ∈ Rk
q , e ∈ Rk

q , r ∈ Rk
q , e1 ∈ Rk

q and e2 ∈ Rq are generated
through centered-binomial-distribution sampling [130], [139]:
KeyGen: pk := Â◦NTT(s)+NTT(e), sk := NTT(s).
Enc: ct := (u, v), with u = (NTT−1(ÂT ◦NTT(r))+e1 and v = NTT−1(pkT ◦NTT(r))+e2+m.
Dec: m := v −NTT−1(ŝT ◦NTT(u)).

3.3.3. NUMBER THEORETIC TRANSFORM

NTT is a computational technique derived from DFT that enables efficient polynomial
multiplication in the ring of integers modulo q , denoted as Rq . An n-degree polynomial
in Rq can be represented in two ways: by its n coefficients or by the n values obtained

from evaluating the polynomial at specific points, namely, ω0
n , ω1

n , ..., ω(n−1)
n . Here, ωn

3.3. BACKGROUND

3

39

denotes a primitive nth root of unity, satisfying the property ωn
n ≡ 1 mod q , and for all

1 ≤ k < n, ωk
n ̸≡ 1 mod q . To ensure the existence of primitive nth roots of unity, it is

necessary for n to be a divisor of q −1. A forward NTT can be understood as a mapping
that converts a polynomial expressed in its coefficient representation into the values ob-
tained by evaluating the polynomial at the powers of the primitive nth root of unity. Con-
versely, the reverse process, known as INTT, performs the mapping from the values back
to the original coefficient representation of the polynomial.

In CRYSTALS-Kyber, NTT employs the negative wrapped convolution technique to
perform polynomial multiplication with coefficients in the ring Rq , where φ(x) takes the
form of xn + 1 [140]. For a vector f = ∑n−1

i=0 fi xi , the NTT operation transforms it into

f̂ = NTT(f) = ∑n−1
i=0 f̂i X i . Here, f̂i = ∑n−1

j=0 ψ
j f jω

i j (mod q), where i ranges from 0 to

n −1. Additionally, ψ=p
ω. Similarly, the INTT operation is defined as f = NTT−1(f̂) =∑n−1

i=0 fi X i . The coefficients fi are computed as n−1ψ−i ∑n−1
j=0 f̂ jω

−i j (mod q), where i
ranges from 0 to n −1.

The negative wrapped convolution technique significantly enhances the efficiency
of NTT and INTT compared to the conventional approach involving zero padding and
separate polynomial reduction operations by φ(x) [140]. However, it introduces pre-
processing and postprocessing steps that involve multiplications with ψ j or ψ−i . With
the reduction of parameter q in CRYSTALS-Kyber from 7,681 to 3,329 since Round 2
of the NIST PQC competition [141], these preprocessing and postprocessing operations
are no longer required. The updated NTT operation terminates early and generates 128
degree-2 polynomials, while the INTT operation processes 128 degree-2 polynomials.
To multiply two degree-2 polynomials in Zq [x]/(x2 −ωi), an additional coefficient-wise
multiplication (CWM) is performed. In recent studies [142], [143], a technique called
DIVby2 is employed to eliminate the multiplication with n−1 (mod q) after the butterfly
structure of the INTT operation. If x is even, x/2 (mod q) is equal to (x ≫ 1). When x
is odd, x/2 (mod q) = (x ≫ 1)+ x[0]× ((q +1)/2). The three algorithms are shown in Al-
gorithms 1, 2, and 3, respectively, where brl−1(·) is the bit-reversal operation for a word
size of l −1 [130], [143], [144].

3.3.4. RISC-V VECTOR EXTENSIONS
RISC-V vector extensions (RVV) [145], [146] include a complete collection of instruc-
tions for vector processing. The extensions include the integration of parallel processing
methodologies to handle data elements. The vector extension in the RISC-V architec-
ture was initiated in June 2015, subsequently resulting in the achievement of version 1.0
in 2021 [146], a frozen version under public examination.

VECTOR REGISTERS

The register file is an essential constituent of RVV, designed to support up to 32 vector
registers, labeled as v0 to v31. The variable VLEN represents the size of a vector, which
signifies the number of bits stored within a single vector register. The constraint that
must be adhered to is that the value must be a power of 2 and should not surpass 216. The
Selected Element Width, also named SEW is a parameter that specifies the range of bits
that can be generated or consumed by each vector element during operations. SEW can
be configured to different lengths, including bytes (1 byte), half-words (2 bytes), words (4

3

40
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

Algorithm 1 NTT Algorithm in CRYSTALS-Kyber

Input: f (x) ∈Rq , ωn ∈Zq , n = 2l .
Output: f̂ (x) ∈Rq
1: k ← 1
2: for i from 1 by 1 to l −1 do
3: m ← 2l−i

4: for s from 0 by m to n do
5: for j from s by 1 to s +m do
6: a,b,w ← f [j], f [m + j],ωbrl−1(k) mod q
7: t ← (w ·b) mod q
8: e,o ← (a+ t) mod q, (a− t) mod q
9: end for
10: k ← k +1
11: end for
12: end for
Algorithm 2 INTT Algorithm in CRYSTALS-Kyber

Input: f̂ (x) ∈Rq , ω−1
n ∈Zq , n = 2l

Output: f (x) ∈Rq
1: k ← 0
2: for i from l −1 by −1 to 1 do
3: m ← 2l−i

4: for s from 0 by m to 2l do
5: for j from s by 1 to s +m do
6: a,b,w ← f̂ [j], f̂ [j +m],ωbrl−1(k)+1 mod q
7: e,o ← (a+b) mod q, (a−b) ·w mod q
8: f̂ [j], f̂ [j +m] ← DIVby2 (e), DIVby 2(o)
9: end for
10: k ← k +1
11: end for
12: end for
Algorithm 3 CWM Algorithm in CRYSTALS-Kyber
Input: f̂ (x), ĝ (x) ∈Rq , ω ∈Zq
Output: ĉ(x) ∈Rq

1: for i from 0 by 1 to 2l−1 do
2: w ←ωbrl−1(i)+1 mod q
3: a0,a1 ← f̂ [2i], f̂ [2i +1]
4: b0,b1 ← ĝ [2i], ĝ [2i +1]
5: ĉ[2i] ← (a0 ·b1 +a1 ·b0) mod q
6: ĉ[2i +1] ← (a1 ·b1 ·w+a0 ·b0) mod q
7: end for

3.3. BACKGROUND

3

41

bytes), or double-words (8 bytes). It provides developers with the capability to adjust the
width of elements following individual computing needs, hence promoting flexibility.
By default, a vector register is viewed as being divided into VLEN/SEW elements. In this
thesis, we use the term EleNum (element number) to denote VLEN/SEW, the number of
elements included within a vector register.

The vector length, referred to as VL, determines the number of elements to be pro-
cessed simultaneously within one vector processing. The variable VL can take on values
that are either smaller or bigger than the variable EleNum, leading to the formation of
alternate scenarios. When the value of VL is equal to or smaller than EleNum, it leads
to the consolidation of all data into a single vector register. On the other hand, when VL
exceeds EleNum, it becomes imperative to aggregate many vector registers to operate
simultaneously. The vector length multiplier, denoted as LMUL, defines the upper limit
of vector registers that can be utilized within a single instruction. The multiplier under
consideration can accommodate integer values within the range 8, inclusive. It is vital
to acknowledge that to ensure compatibility, the size of LMUL should not be lesser than
VL/EleNum.

THE OVERVIEW OF RISC-V VECTOR ISA
The RISC-V architecture incorporates vector extensions that provide versatility in operand
types and result types, accommodating immediate, scalar, and vector operands, and
producing scalar or vector outputs. These instructions can be executed unconditionally
or conditionally while being masked. Scalar operands are values from scalar registers
or values retrieved from the first element of a vector register. Vector operands are ob-
tained from one or many vector registers, with the number of vector registers specified
by ⌈V L/EleNum⌉. Each vector operand is characterized by an Effective Element Width
(EEW) and an Effective LMUL (EMUL), which determine the size and arrangement of
elements within a set of vector registers. In the default configuration, EEW is equivalent
to the SEW. Similarly, the EMUL is identical to the LMUL.

Masking is a supported feature in many vector instructions, allowing selective appli-
cation to specific locations within vector registers. The masking behavior is controlled
by the vm field present in vector load and store instructions, as well as vector arithmetic
instructions. Setting the variable vm to 1 indicates an unmasked instruction, meaning
that all elements inside the operand vectors participate in the operation. Conversely, a
value of 0 indicates a concealed instruction, where the operation is limited to elements
that have corresponding mask bits set to 1 in the mask vector register, which is stored
within the vector register file.

RVV instructions can be classified into three main categories: configuration-setting
instructions, vector load and store instructions, and vector arithmetic instructions.
Conguration-Setting Instructions
The configuration-setting instructions define essential parameters, including VL, LMUL,
SEW, etc. By using these instructions, developers gain the ability to tune the behavior of
vector operations according to specific computational requirements.
Vector Loads and Stores Instructions
Vector Load and Store operations, also known as vector memory instructions, provide a
range of addressing techniques to transfer data between vector registers and data mem-
ory.

3

42
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

• The unit-stride operations allow for accessing consecutive elements stored in mem-
ory, starting from a specified base address. This mode enables the processing of
contiguous data.

• The constant-strided operations offer versatility by accessing memory elements
with a fixed stride. The instruction retrieves the first element at the base address
and subsequent elements by incrementing the address based on a specified byte
offset. This mechanism facilitates the retrieval and manipulation of data stored at
regular intervals.

• The indexed operations use the contents of a vector register as an offset. Each ele-
ment within the offset vector is added to the base address. This capability enables
access to non-contiguous data, providing greater flexibility in data organization
and retrieval.

Note the parameter EEW in vector memory instructions can designate the data width
from memory. The range of this parameter may exhibit different from SEW. By appropri-
ately configuring the EEW, developers can optimize data transfer between vector regis-
ters and memory, ensuring efficient utilization of system resources while accommodat-
ing varying data requirements.
Vector Arithmetic Instructions
RVV introduces a comprehensive set of vector arithmetic instructions that cater to a
wide range of computational requirements. These instructions include various operands
and opcodes to ensure flexibility and versatility. In vector arithmetic instructions, the
funct3 field distinguishes between different operand types, namely vector-vector (.vv),
vector-immediate (.vi), and vector-scalar (.vx). By analyzing this field, the processor can
effectively handle different data types based on their specific characteristics. Another
important field in vector arithmetic instructions is the funct6 field, which specifies the
operation type. This field allows programmers to indicate specific operations such as
addition, shift, multiplication, etc. By using this field, programmers have the freedom to
choose the desired operation type based on the specific computational demands of their
applications.

3.3.5. CUSTOMIZE RISC-V INSTRUCTIONS
RISC-V architecture allows for expanding its functionality by incorporating custom in-
structions that are specifically designed to cater to particular purposes. There are three
commonly used approaches for this, including (1) using custom instructions [129], [147],
(2) modifying the compiler [148], and (3) repurposing existing unused instructions. The
process of modifying the compiler (the second approach) can be both time-consuming
and inflexible as it requires reconfiguring the entire toolchain whenever even a single in-
struction is altered. Thus. in this work, we consider using the first and third approaches.
The first involves utilizing custom instructions, namely custom_0 and custom_1 [18], to
create new vector extensions. The third is achieved by repurposing some unused in-
structions such as fixed point operations in the RISC-V vector extensions. These two
approaches enable us to enhance the capabilities of the architecture without having to
modify the compiler.

3.4. THE DESIGN OF AN SIMD RISC-V PROCESSOR

3

43

3.4. THE DESIGN OF AN SIMD RISC-V PROCESSOR
The investigation into the utilization of RISC-V vector extensions for implementing cryp-
tography algorithms underscores the necessity for one SIMD processor that can support
RISC-V based ISA, commonly used extensions (such as M and C), and the RISC-V vector
extensions. Additionally, it should provide customization options to cater to diverse ap-
plications. Unfortunately, when we initiated this research in December 2020, no existing
processors met these requirements. Consequently, we started to design and develop our
own SIMD RISC-V processor.

Following the approaches adopted in previous works [149], [150], our SIMD proces-
sor described comprises two essential components: a scalar core at the top and a vec-
tor processing unit at the bottom, as depicted in Figure 3.1. The scalar core executes
scalar instructions, while the vector processing unit handles vector extensions. These
two components seamlessly interact through vector instructions, scalar registers, and
memory data.

Figure 3.1: The architecture of the SIMD RISC-V based Processor.

3.4.1. SCALAR CORE
To expedite the design process, we decided to build upon the existing RISC-V core, Ibex
[151], as the foundation for our scalar core. Ibex is a well-established and reputable
core, initially developed by a team from ETH Zurich as part of the PULP platform. It was
later obtained by lowRISC for further development and maintenance. The architecture

3

44
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

of Ibex, shown in the upper portion of Figure 3.1 (sourced from the GitHub repository in
April 2021), mainly consists of an IF (instruction-fetch) stage, an ID (instruction-decode)
stage, an EX (execute) block, and a load-store unit.

Ibex is an open-source 32-bit RISC-V core implemented in SystemVerilog [151]. It
offers users the flexibility to use and customize it according to specific requirements.
The core is efficient, featuring a two-stage pipeline. The first stage, IF, retrieves instruc-
tions from memory using a prefetch buffer that can fetch one instruction per cycle. The
second stage, ID/EX, decodes the fetched instruction, executes it, and performs register
read and write operations. Multi-cycle instructions introduce delays in this stage until
their execution is complete. Additionally, Ibex can include a third pipeline stage when
utilizing the writeback mechanism. The Ibex core supports various extensions, including
RV32I, C, M, and B. It offers a wide range of parameter settings at the top level, allowing
for flexible customization of the core to accommodate different applications.

To facilitate the integration between the scalar core and the vector processing unit,
we implement several procedures. Initially, a communication pathway is established to
transmit the scalar registers and the memory data to the vector processing unit. This
enables effective data exchange between the scalar and vector elements. Additionally,
we make adjustments to the decoder module in the ID stage of the Ibex pipeline. These
improvements allow the decoder to identify vector extensions and transmit vector in-
structions to the vector processing unit.

3.4.2. VECTOR PROCESSING UNIT
The vector processing unit consists of four main modules: the Vector Instruction Inter-
face module (VecISAInterface), the Vector Load and Store module (VecLSU), the Vector
register file, and the Vector Operation Execution module (VecOpExec), as illustrated in
Figure 3.1. The flexibility of this SIMD processor lies in its ability to instantiate multiple
execution elements, adapting to varying computational demands.

VECTOR INSTRUCTION INTERFACE

The VecISAInterface module serves as the interface between the scalar core and the vec-
tor processing unit, performing two main functions: decomposing vector instructions
and configuring the vector processing unit. This module receives vector instructions
from the scalar core and retrieves any necessary scalar operands from the scalar regis-
ter file. The initial decoding step for vector instructions is conducted by the decoder in
the scalar core, which analyzes the 7-bit opcode field to determine the instruction type.
Once a vector instruction is identified, it is transmitted to the VecISAInterface module.
Additionally, when scalar operands are required, the scalar core transfers them from the
scalar register file to this module.

The VecISAInterface module further classifies the received vector instruction into
three groups: configuration-setting instructions, vector memory instructions, and vec-
tor arithmetic instructions. It is responsible for processing configuration-setting instruc-
tions, enabling parameter adjustments such as SEW, VL, and LMUL in different applica-
tions. Meanwhile, other instructions are directed to the appropriate modules for fur-
ther processing. The VecLSU module handles vector memory instructions, while the Ve-
cOpExec module processes vector arithmetic instructions. Besides, the vector process-

3.4. THE DESIGN OF AN SIMD RISC-V PROCESSOR

3

45

Figure 3.2: Mapping of Vector Elements to Vector Register State for different SEW and LMUL when
VLEN=128b [146].

ing unit and the scalar core share the same datapath, which allows for seamless reading
and writing of scalar registers and accessing memory data. The scalar register file has two
read ports that are always ready to provide data to the vector processing unit. However,
writing to the scalar register file is only enabled during the execution of configuration-
setting instructions.

VECTOR REGISTER FILE

In addition to the scalar register file within the Ibex core, the vector processing unit in-
corporates a vector register file. The vector register file plays two important roles in the
vector processor. Firstly, it provides temporary storage for intermediate values gener-
ated during vector operations. Secondly, it serves as the interconnection point between
the VecLSU module and the VecOpExec module, facilitating efficient data flow.

The structure of the vector register file is designed to be adaptable and scalable, able
to meet different computational requirements. Its configuration involves partitioning
vector registers into multiple vector elements, each with a given length. As described
in Section 3.3.4, our implementation includes 32 vector registers within the vector reg-
ister file. Each vector register comprises EleNum elements. When VL exceeds EleNum,
multiple vector registers are intelligently grouped to accommodate the extended vec-
tor length. The parameter LMUL defines the maximum number of vector registers con-
tained within each group. Figure 3.2 illustrates how elements with different widths, de-
fined by SEW, are arranged within a 128-bit vector register. When LMUL is equal to or
smaller than 1, the elements are arranged sequentially. However, when LMUL surpasses
1, vector registers are organized into groups, with each group’s elements packed contigu-
ously in a hierarchical order. The arrangement process begins by populating the vector
register with the lowest integer and continues by filling the successive vector registers
within the same group until all vector registers are properly filled.

VECTOR LOAD AND STORE

The VecLSU module is responsible for the transfer of data between the memory and the
vector register file. Its main tasks include loading data from memory into the vector
register file and storing data from the vector register file back to memory.

3

46
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

When the VecLSU module receives a vector memory instruction from the VecISAIn-
terface module, it further processes the instruction by breaking it down into various
fields. The opcode field indicates whether it is a load or store operation, while the vm field
determines if vector masking is enabled. The mop field specifies the memory addressing
mode, and both the mew and width fields define the size of the memory element (EEW),
which may be different from SEW. The rs1 field specifies the scalar register that holds
the base address for all three addressing modes, and rs2 indicates the scalar register that
holds the stride for constant-stride mode. The vs2 field denotes the vector register that
stores the address offsets for indexed mode, while vs3 specifies the vector register that
holds the data for store operations. The vd field identifies the destination vector for load
operations. This dissection of the instruction allows for precise interpretation and exe-
cution, ensuring smooth data flow between memory and the vector register file.

It is important to note that vector load and store instructions cannot be executed in
a data-parallel manner due to their limitation of accessing only one RAM address at a
time. As a result, these memory instructions represent the most time-consuming op-
erations within the SIMD processor. When a store instruction is executed, the VecLSU
module starts by reading all elements from the address stored in the first vector register.
It then sequentially sends these elements to the Data RAM, following the order of ele-
ments ranging from zero to EleNum - 1. Subsequently, the elements from subsequent
vector data registers belonging to the same vector are fetched in sequence and transmit-
ted to the RAM using the same procedure. On the other hand, the load instruction re-
verses this process. The required data is retrieved from the RAM, with the address order
defined by the three address modes mentioned earlier. All read data is then sequentially
sent to the vector register file, completing the load instruction’s operation.

Figure 3.3: Vector register file and address allocation.

VECTOR OPERATION EXECUTION MODULE

The VecOpExec module is composed of two sub-modules: the Arithmetic Operation Pre-
Processing (ArithOpPrepro) submodule and multiple Execution (Ex) submodules. The
ArithOpPrepro submodule dissects vector instructions received from the VecISAInterface

3.5. THE DESIGN FOR POLYNOMIAL MULTIPLICATIONS IN CRYSTAL-KYBER

3

47

module and directs them towards the corresponding Ex submodule. The number of Ex
submodules is determined by the value of EleNum, with each Ex consisting of an ALU, a
multiplier/divider (MULT/DIV).

Within the VecOpExec module, vector arithmetic instructions undergo further de-
coding in the ArithOpPrepro submodule through analysis of the funct3 and funct6 fields.
Take the instruction, vadd.vv v0, v0, v2, as depicted in Figure 3.3 for example. This
instruction signifies an integer operation involving two vector operands (.vv) and the
addition operation (vadd). As a result, vectors v0 and v2 are fetched from the vector
register file, with base addresses set as 0 and 2 respectively. To perform the addition
operation, all elements from the two operands, v0 and v2, are simultaneously accessed.
Upon completion of the addition operation in each Ex sub-module, the results are trans-
mitted back to the destination operand v0, based on their respective index order. This
process continues as all elements from the two operands, v1 and v3, are fetched. Once
again, two elements sharing the same index number are dispatched to their respective
Ex sub-modules, and the outcomes from each Ex sub-module are written back to the
destination operand v1.

This study focuses on harnessing the power of the SIMD processor for cryptogra-
phy algorithms, realizing only Vector Integer Arithmetic Instructions within the RISC-V
vector ISA. While Vector Fixed-Point Arithmetic Instructions and Vector Floating-Point
Instructions lie beyond the scope of this study. The Ibex core serves as a fundamental
basis for the design and development of this work, leveraging the VecOpExec module to
ensure that every vector instruction is executed with the same latency as its correspond-
ing scalar instruction in the execute block of the Ibex core. For example, the execution
module in the scalar core requires one clock cycle to complete the addition operation.
Similarly, the Ex submodule, residing in the vector processing unit, also utilizes one clock
cycle to realize the operation. However, the impact of VL and EleNum must be consid-
ered in the vector processing unit. For every vector arithmetic instruction, the number of
vector registers and arithmetic operations involved is determined by ⌈VL/EleNum⌉. The
latency of some vector instructions in the vector processing unit is shown in Table 3.1. It
is worth noting that the system possesses a remarkable degree of flexibility, allowing the
integration of additional RISC-V vector instructions in future work.

3.5. THE DESIGN FOR POLYNOMIAL MULTIPLICATIONS IN CRYSTAL-
KYBER

In this section, we will propose two HW/SW interface optimizations to improve the per-
formance of polynomial multiplications. Moreover, we will propose customized vector
instructions for related operations.

3.5.1. REGISTER POOLING

We use the term register pool for multiple registers doing the same job. Unlike RAM,
where there is often only one address that can be set, the data in the same register pool
operate independently, and multiple data can be read and written simultaneously. The
purpose of applying register pooling is to increase the loading and storing throughput in
every loop of NTT, INTT, and CWM and eliminate the time lost when exchanging data

3

48
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

Table 3.1: The latency of the vector extensions in the vector processing unit. Note that T is the latency of the
corresponding scalar instruction in the execute block of the Ibex core.

Instruction Type Instructions Description Latency

Configuration-setting
vsetvli

Setting SEW, VL, LMUL, etc. 2vsetivli
vsetvl

Vector Load
vle8/16/32.v Vector unit-stride load 8/16/32-bit elements

1+V Lvlse8/16/32.v Vector constant-strided load 8/16/32-bit elements
vlxe8/16/32.v Vector indexed load 8/16/32-bit elements

Vector Store
vse8/16/32.v Vector unit-stride store 8/16/32-bit elements

1+V Lvsse8/16/32.v Vector strided store 8/16/32-bit elements
vsxe8/16/32.v Vector indexed store 8/16/32-bit elements

Vector Arithmetic

vadd.vv/vx/vi
Vector Single-Width Integer Add and Subtract

1+⌈VL/EleNum⌉*T

vsub.vv/vx
vand.vv/vx/vi

Vector Bitwise Logical Instructionsvor.vv/vx/vi
vxor.vv/vx/vi
vsll.vv/vx/vi

Vector Single-Width Bit Shift Instructionsvsrl.vv/vx/vi
vsra.vv/vx/vi

vmseq.vv/vx/vi

Vector Integer Comparison Instructions

vmsne.vv /vx/vi
vmsltu.vv/vx
vmslt.vv/vx

vmsleu.vv/vx/vi
vmsle.vv/vx/vi
vmsgtu.vx/vi
vmsgt.vx/vi

vminu.vv/vx

Vector Integer Min/Max Instructions
vmin.vv/vx

vmaxu.vv/vx
vmax.vv/vx
vmul.vv/vx

Vector Single-Width Integer Multiply Instructions
vmulh.vv/vx

vmulhu.vv/vx
vmulhsu.vv
vdivu.vv/vx

Vector Integer Divide Instructions
vdiv.vv/vx

vremu.vv/vx
vrem.vv/vx

3.5. THE DESIGN FOR POLYNOMIAL MULTIPLICATIONS IN CRYSTAL-KYBER

3

49

with the Data RAM. Three types of register pools are proposed in this design to support
the parallel computation of the NTT, INTT, and CWM algorithms in CRYSTALS-Kyber.

The first register pool, named coeff _data, is used to store coefficient data. There are
two register sub-pools in coeff _data, called coeff _data0 and coeff _data1, respectively,
in which there are 256 12-bit registers to store all polynomial coefficients in one NTT
vector. coeff _data0 serves as temporary storage for the coefficient data of the NTT and
INTT algorithms, and for the first coefficient data in the CWM algorithm. coeff _data1

serves as temporary storage for the second coefficient data in the CWM algorithm. The
second register pool, called poly_index, is used to store the index number for each loop.
There are three register sub-pools in poly_index, called poly_indexa and poly_indexb,
and poly_indexw, respectively, in which there are 128 7-bit registers to store the index
number of a, b and w in Algorithms 1, 2, and 3. The third register pool, named tw, has
128 12-bit registers to store the twiddle factors. The initial value of all twiddle factors is
pre-calculated and stored in bit-reversal order, and updated to different values according
to the type of algorithms.

3.5.2. AUTOMATIC INDEX GENERATION
Before the three algorithms get started, all polynomials in one vector are stored in the
register pool coeff _data. That is, the result of the previous operation is not sent back to
the Data RAM but stored here in coeff _data. Our design keeps the outer loop structure
and unloops the inner two loop structures (Algorithms 1 and 2). Customized vector ex-
tensions control the loop number of the outermost layer. The register pool poly_index
changes automatically according to the loop number. In Figure 3.4, we illustrate the pro-
cessing of a vector in NTT with the polynomial number, the index, and the loop number
equal to 16, 8, and 3, respectively.

Figure 3.4: Automatic index generation for a, b, and w in NTT

Within each loop, the vector a and vector b are retrieved from the coeff _data, while
vector w is fetched from tw. Their polynomial orders are modified according to reg-
ister pool poly_indexa, poly_indexb, and poly_indexw, respectively. Subsequently, the
re-ordered vectors a, b, and w are stored in the destination vector registers for consec-
utive arithmetic operations. After all operations in one loop are finished, the order of
polynomials in vectors a and b will be changed back to their initial order according to
poly_indexa and poly_indexb, and written back to register pool coeff _data. Note that

3

50
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

vector w is not sent to tw because it does not change with the loop number. The whole
process is illustrated in Figure 3.5, where all parameters are the same as in Figure 3.4.

Figure 3.5: The polynomial order changes according to the loop number in NTT.

3.5.3. CUSTOMIZED VECTOR INSTRUCTIONS FOR NTT
To implement the above operations, we utilize custom instructions, namely custom_0
and custom_1, to extend the specific vector extensions for multiplication in CRYSTALS-
Kyber. Table 3.2 provides an overview of these extended vector extensions. We design
twelve customized vector extensions for NTT, categorized into six groups, all of which are
R-type instructions [129], [147]. These vector extensions operate on two source operands
and one destination operand, which can be either scalar registers or vector registers.

• Polynomial Load Extensions include vlpoly. It is used to load data from Data RAM
to the vector register file.

• Polynomial Store Extensions consist of vspoly. It is responsible for storing data
from the vector register file to Data RAM.

• Multiplication Configuration Extensions comprise vnttcfg, vinttcfg, and vcwcfg.
These extensions configure the multiplication for NTT, INTT, and CWM, respec-
tively, while also setting the loop number.

• Polynomial Read Extension, vreadpoly, enables the reading of a polynomial from
coeff _data to the vector register file.

• Polynomial Write Extension, vwritepoly, facilitates writing polynomials from the
vector register file to coeff _data.

• Twiddle Factor Read Extension, vreadtw, allows the retrieval of twiddle factors
from tw to the vector register file.

3.5.4. OPTIMIZATION FOR FINITE FIELD ARITHMETIC OPERATIONS
In this work, we also extend four vector extensions for finite field operations using the
third method mentioned in Section 3.3.5. These extensions, vaddmod, vsubmod, vmod,

3.6. EXPERIMENTAL RESULTS

3

51

Table 3.2: Customized vector extensions in the SIMD processor. * denotes ⌈VL/EleNum⌉.

Instruction Type Instructions Description Latency
Customized Polynomials Load vlpoly Load Polynomials from Data RAM to coeff _data. 1+VL
Customized Polynomials Store vspoly Store Polynomials coeff _data to Data RAM. 1+VL

Customized Multiplication Configuration
vnttcfg Configure multiplication type to be NTT, and set loop number. 2
vinttcfg Configure multiplication type to be INTT, and set loop number. 2
vcwcfg Configure multiplication type to be CWM, and set loop number. 2

Customized Polynomials Read vreadpoly Read polynomial from coeff _data to vector register file.

1+*

Customized Polynomials Write vwritepoly Write polynomial from vector register file to coeff _data.
Customized Twiddle Factor Read vreadtw Read twiddle factors from tw to vector register file.

Finite Field Addition vaddmod Finite Field Addition
Finite Field Subtraction vsubmod Finite Field Subtraction

Modular Reduction vmod Modular Reduction
Finite Field Division by Two vdivby2 Divide the butterfly output by two in the Finite Field

Table 3.3: Resource usage for SIMD Processor supporting CRYSTAL-Kyber multiplication.

EleNum LUT LUTRAM FF BRAM DSP
0 2.4K 48 890 16 4
4 45.5K 48 13.3K 16 26
8 93.2K 48 17.9K 16 42
16 166.1K 48 27.2K 16 74
32 318.2K 48 46.0K 16 138

and vdivby2, are listed in Table 3.2. The vaddmod instruction is used for performing fi-
nite field addition, while vsubmod is used for finite field subtraction. The vmod instruc-
tion carries out modular reduction, and vdivby2 computes x/2 mod q after the INTT
operation, as explained in Section 3.3.3. What is worth mentioning here is the modu-
lar reduction operation, vmod. To reduce the latency to just one clock cycle, we adopt
a technique proposed in [143]. This technique takes advantage of the property that
212 ≡ 29 +28 −1(mod 3329), enabling an efficient implementation of the vmod instruc-
tion.

3.6. EXPERIMENTAL RESULTS
To develop a scalable SIMD processor, we design its architecture employing SystemVer-
ilog. For a comprehensive evaluation, we assess its performance utilizing the Xilinx Alveo
U250 data center accelerator card [152]. Renowned for its robust FPGA architecture and
ample resources, the Alveo U250 stands as one of the largest FPGAs, rendering it an ideal
choice for conducting evaluations and comparisons. The Alveo U250 has an impressive
array of resources tailored to support multiple lanes, including 1 728K LUTs, 791K LU-
TRAM, 3 456K flip-flops, 2 688 BRAM, 12 288 DSP units, 676 IO pins, 1 344 BUFG, and
32 PLL. This rich resource ensures optimal flexibility and efficiency in accommodating
diverse computational workloads, positioning the Alveo U250 as an optimal choice to
investigate the performance scalability of our SIMD processor. After completing the be-
havioral simulations using Vivado 2019.2, we set EleNum to 4, 8, 16, and 32, respectively.
The four different architectures and the original Ibex core (zero lanes) are synthesized
and implemented through Vivado 2019.2 using the Alveo U250 card. The resource usage
is shown in Table 3.3, where the LUT, LUTRAM, FF, BRAM, and DSP usage is compared.

The next step is to optimize the NTT, INTT, and CWM algorithms. We use the RISC-

3

52
3. A SCALABLE SIMD RISC-V BASED PROCESSOR WITH CUSTOMIZED VECTOR

EXTENSIONS FOR CRYSTALS-KYBER

Table 3.4: Execution time for different values of EleNum in our SIMD processor and comparisons with the
baseline implementation and the work from [148].

Test
[148]

C-baseline
(Ibex)

Our SIMD Processor
EleNum = 4 EleNum = 8 EleNum = 16 EleNum = 32

Cycles Cycles Cycles Speedup Cycles Speedup Cycles Speedup Cycles Speedup
NTT 1 935 54 261 3 022 18 1 538 35.3 796 68.2 383 141.7
INTT 1 930 76 413 3 582 21.3 1 818 42 936 81.6 453 168.7
CWM — 28 228 926 30.5 466 60.6 236 119.6 115 245.5

V GNU compiler toolchain. Similar to [148], we set the optimization flag to ’O3’ to
compile the code and the baseline implementations to the clean C-code of the PQ-M4
project [153]. First, we run the baseline code on the pure Ibex core, the clock cycle
count for the three algorithms are 54 261, 76 414, and 28 228, respectively. Then we opti-
mize these three algorithms using RV32IMC, RVV, and customized vector extensions for
CRYSTALS-Kyber multiplication and finite field operations. Again, we set the EleNum to
4, 8, 16, and 32 and then count the clock cycles for the NTT, INTT, and CWM algorithms.
All results are shown in Table 3.4. From the results, we can see that the execution time
of NTT, INTT, and CWM in our design is optimized by 141.7, 168.7, and 245.5 times re-
spectively, compared to the baseline when the EleNum is set to 32. When compared with
relevant related work in [148], which is a RISC-V based HW/SW co-design written in Sys-
temVerilog using the RV32IMC ISA, the execution times of NTT and INTT are optimized
by nearly 5.1 and 4.3 times, respectively.

3.7. SUMMARY
This chapter introduces the design and development process of a new platform based
on the RISC-V ISA. The platform includes a SIMD processor, which is implemented us-
ing the SystemVerilog hardware description language. The utilization of this platform is
crucial for establishing the fundamental basis for ongoing research endeavors. It en-
ables the investigation of possibilities and advantages of harnessing the RISC-V vec-
tor extensions for cryptographic algorithms. Next, this chapter explores RISC-V vector
extensions to improve the efficiency of lattice-based operations based on HW/SW co-
design. The structure of the three polynomial multiplication algorithms in CRYSTALS-
Kyber (NTT, INTT, and CWM) are analyzed. Two techniques, called register pooling and
automatic index generation, are proposed to optimize the HW/SW interface, and 12 vec-
tor extensions for CRYSTALS-Kyber multiplication and four for finite field operations
are designed. The results indicate a speed-up of 141.7, 168.7, and 245.5 times for NTT,
INTT, and CWM, respectively, compared with the baseline implementation. Moreover,
the proposed method shows a speed-up of over four times compared with state-of-the-
art HW/SW co-design using RV32IMC.

Ultimately, through the acceleration of NTT operations within this work, the over-
all performance of decapsulation and encapsulation processes in CRYSTALS-Kyber is
poised for substantial enhancement. These advancements translate into expedited ex-
ecution times and heightened efficiency in cryptographic operations, underscoring the
transformative potential of this research endeavor. This work not only contributes to the
advancement of cryptographic algorithms but also paves the way for future innovations

3.7. SUMMARY

3

53

in the realm of HW/SW co-design within the RISC-V ecosystem.

4
MAXIMIZING THE POTENTIAL OF

CUSTOM RISC-V VECTOR

EXTENSIONS FOR SPEEDING UP

SHA-3 HASH FUNCTIONS

SHA-3 is considered to be one of the most secure standardized hash functions. It relies on
the Keccak-f[1 600] permutation, which operates on an internal state of 1 600 bits, mostly
represented as a 5×5×64-bit matrix. While existing implementations process the state se-
quentially in chunks of typically 32 or 64 bits, the Keccak-f[1 600] permutation can benefit
a lot from speedup through parallelization. This chapter explores the full potential of the
parallelization of Keccak-f[1 600] in RISC-V based processors through custom vector ex-
tensions on 32-bit and 64-bit architectures. We analyze the Keccak-f[1 600] permutation,
composed of five different step mappings, and propose ten custom vector instructions to
speed up the computation. We realize these extensions in a SIMD processor described in
SystemVerilog. We compare the performance of our designs to existing architectures based
on vectorized application-specific instruction set processors (ASIP). We show that our de-
signs outperform all related work in throughput due to our carefully selected custom vector
instructions.

The material in this chapter has appeared in:
Li, Huimin, Nele Mentens, and Stjepan Picek. "Maximizing the Potential of Custom RISC-V Vector Extensions
for Speeding up SHA-3 Hash Functions." 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2023.

55

4

56
4. MAXIMIZING THE POTENTIAL OF CUSTOM RISC-V VECTOR EXTENSIONS FOR

SPEEDING UP SHA-3 HASH FUNCTIONS

4.1. INTRODUCTION
Data integrity is a crucial metric to guarantee the accuracy and reliability of transmit-
ted information [154]. The Secure Hash Algorithm (SHA), a family of cryptographic hash
functions published by NIST, has a wide range of applications in the domain of data in-
tegrity verification [155]. These applications include regular hashing, message authen-
tication codes [156], digital signatures [157], pseudo-random number generators [158],
key derivation algorithms [158], stream encryption [159], etc.

SHA-3, the newest generation, is used in a number of candidate algorithms in the
NIST post-quantum cryptography (PQC) competition [160]. Especially in lattice-based
schemes, SHA-3 functions are used to calculate hashes and generate random numbers
on a large scale. The Keccak permutation in SHA-3 is computationally intensive due to
its high number of rounds and a high number of state bits. It is always one of the speed-
critical components in lattice-based algorithms [130], [161], [162]. In CRYSTALS-Kyber,
the same seeds are usually adopted as input data to generate the polynomial matrix A,
the secret key vectors s, and the error data vectors e using SHA-3 functions. Take the
matrix A generation in Kyber1024, for example ([130]). The public 4×4 matrix A is gen-
erated from a two-layer loop structure by SHAKE-128, an extendable output function in
SHA-3, whose input data is the seed concatenated with the row order and the column
order. Because of the large amount of computation and similar input data, it would be
beneficial if one or more Keccak states could work simultaneously to generate A, s, and
e. This work explores the feasibility of using vector instructions to make one or more
Keccak states work in parallel.

To realize this goal, we need a vector ISA supporting a flexible vector length that is
large enough to include one or more Keccak states. RISC-V vector extensions (RVV)
meet this requirement. To the best of our knowledge, there are no other papers that
use RVV for speeding up SHA-3. To investigate how RVV can improve the performance
of SHA-3, we use the same scalable SIMD RISC-V based processor as in Chaper 3, to
do HW/SW co-design method for application-specific instruction set processors (ASIP)
designs. We allow different numbers of elements in one vector register to process one
or more Keccak states simultaneously. We analyze the algorithm consisting of five dif-
ferent step mappings in the Keccak permutation, propose ten custom vector extensions
for 32-bit and 64-bit architectures, and realize all these custom extensions in the SIMD
processor described in SystemVerilog. Then, we design the Keccak permutation target-
ing the 32-bit and 64-bit architectures using our custom vector extensions and existing
vector extensions for RISC-V. Our contributions include the following aspects:

• We use RVV to vectorize the Keccak-f[1 600] permutation of the SHA-3 function.
To the best of our knowledge, we are the first to use these extensions to speed up
SHA-3.

• We analyze the five-step mappings in the Keccak permutation, propose ten cus-
tom vector extensions for 32-bit and 64-bit architectures, and realize all these ex-
tensions in a SIMD processor written in SystemVerilog.

• We optimize the Keccak program for the 32-bit and 64-bit architectures using the

4.2. BACKGROUND

4

57

custom and existing RVV. The results show that our ASIP designs significantly out-
perform all previously proposed implementations.

This paper is organized as follows. In Section 4.2, we describe the Keccak-f[1 600]
permutation and provide an overview of the most relevant related works to date. Follow-
ing this, in Section 4.3, we present our methodology for designing the 32-bit and 64-bit
architecture. We also elaborate on the custom vector extensions for each step mapping
in the two architectures. Moving on, Section 4.4 showcases how to utilize the RVV and
the custom extensions to implement the program for the two architectures. We then
provide a summary and comparison of the execution time, throughput, and resource
utilization against both the C-code implementation and four other relevant implemen-
tations in related works. Finally, in Section 4.5, we conclude this work, summarizing the
main contributions presented throughout the paper.

4.2. BACKGROUND
This section presents the background on Keccak-f[1 600] permutation and gives an overview
of previously proposed implementations.

4.2.1. KECCAK-F[1 600] PERMUTATION
All SHA-3 functions use the Keccak-f[1 600] permutation, which was selected by NIST
as the winner of the SHA-3 Cryptographic Hash Algorithm Competition [157], [163].
The Keccak permutation utilizes the sponge construction structure, as illustrated in Fig-
ure 4.1. This construction consists of three main phases: padding, absorbing, and squeez-
ing, complemented by two parameters: rate (r) and capacity (c). Essentially, this con-
struction provides a versatile framework that can accommodate input and output of ar-
bitrary lengths.

Figure 4.1: The sponge construction [157].

The Keccak-f[1 600] permutation operates on a 1 600-bit state, which is organized as
a three-dimensional matrix with dimensions x × y × z, as shown in Figure 4.2. Here, x
and y both equal 5, while z equals 64-bit. Consequently, the 5×5×64-bit state can be
visualized as 25 lanes, with each lane consisting of 64 bits. They can be partitioned as

4

58
4. MAXIMIZING THE POTENTIAL OF CUSTOM RISC-V VECTOR EXTENSIONS FOR

SPEEDING UP SHA-3 HASH FUNCTIONS

5 planes with each plane containing 5 lanes in the same row (plane-wise partition), 64
slices with each slice containing 25 bits (slice-wise partition), or 5 sheets with each sheet
containing 5 lanes in the same column (sheet-wise partition). Among these different
partition options, the plane-wise partition is preferable to work with vector instructions,
where lanes within the same row can be processed simultaneously by the same instruc-
tions [164]. For this study, we adopt the plane-wise processing approach.

The Keccak-f[1 600] permutation comprises 24 rounds, with each round containing
five step mappings: θ, ρ, π, χ, and ι. Algorithm 1 provides a detailed breakdown of the
operations involved in plane-wise processing. The θ step mapping, designed to achieve
linear diffusion, modifies lane values by XORing each state bit with the parities of ad-
jacent columns. The ρ step mapping, aimed at achieving inter-slice dispersion, rotates
each lane by a variable number of positions according to its location. The π step map-
ping, designed to disturb horizontal and vertical alignment, scrambles the position of
all lanes. The χ step mapping, designed to introduce non-linearity, updates the value of
each row through AND, NOT, and XOR operations involving different lanes. Lastly, the
ι step mapping, intended to break symmetry, XORs a round constant with lane 0. The
round constant (RC) value changes with each round.

Figure 4.2: Keccak state array.

4.2.2. RELATED WORKS
HW/SW co-design is a methodology that divides the entire system into hardware and
software components. The hardware parts are implemented on FPGA or ASIC, while
the software parts are embedded in processors. This approach offers a trade-off be-
tween performance, flexibility, and resource utilization, making it advantageous com-
pared to a software-only design. An effective technique employed in HW/SW co-design
is extending the ISA with customized extensions for specific functions. Typically, these
custom instructions are designed for fine-grained operations, seamlessly integrated into

4.2. BACKGROUND

4

59

Algorithm 1 Keccak-f[1 600] step mappings in plane-per-plane processing [157]
Input: Keccak state A[x, y]
Output: Keccak state H[x, y]
Note:
1. B,C,D,E,F,G are all intermediate values.
2. The pairs [x, y] define the lane(x,y), with 0 ≤ x < 5 and 0 ≤ y < 5.
3. r[x, y] is the rotation value for each lane in the ρ step mapping.
4. RC[i] is the round constant value in the ι step mapping.
1) θ step mapping:
for x = 0 to 4 do

B[x] = A[x,0]⊕A[x,1]⊕A[x,2]⊕A[x,3]⊕A[x,4]
end for
for x = 0 to 4 do

C[x] = B[(x −1) mod 5]⊕ROT(B[(x +1) mod 5],1)
end for
for y = 0 to 4 do

for x = 0 to 4 do
D[x, y] = A[x, y]⊕C [x]

end for
end for
2) ρ step mapping:
for y = 0 to 4 do

for x = 0 to 4 do
E[x, y] = ROT(D[x, y],r [x, y])
end for

end for
3) π step mapping:
for y = 0 to 4 do

for x = 0 to 4 do
F[x, y] = E[(x +3y) mod 5, x]

end for
end for
4) χ step mapping:
for y = 0 to 4 do

for x = 0 to 4 do
G[x, y] = (F[(x +1) mod 5, y]⊕1) ·F[(x +2) mod 5, y]
H[x, y] = F[x, y]⊕G[x, y]

end for
end for
5) ι step mapping:
H[0,0] = H[0,0]⊕RC[i]

4

60
4. MAXIMIZING THE POTENTIAL OF CUSTOM RISC-V VECTOR EXTENSIONS FOR

SPEEDING UP SHA-3 HASH FUNCTIONS

the processor pipeline. They offer software programmability while requiring minimal
hardware modifications to the processors [165], [166]. These instructions can be inte-
grated into general-purpose processors or application-specific instruction set proces-
sors (ASIPs) customized to meet specific application requirements.

When we started the work, three previously reported implementations utilized In-
struction Set Extensions for SHA-3 in FPGA or ASIC, all of which involve ASIPs. In 2015,
Wang et al. [167] proposed the first instruction set extensions for SHA-3 executed in
FPGA. They developed an ASIP implementation based on a tailored 32-bit LEON3 pro-
cessor with custom extensions, resulting in 87% reduction in cycle count compared to
a software-only implementation. In 2016, Elmohr et al. [168] presented two ASIP archi-
tectures based on a 32-bit MIPS processor. In the first architecture (Native ISE), they
introduced four custom instructions for SHA-3, made slight modifications to the MIPS
processor’s datapath, and achieved a 25% performance improvement. The second archi-
tecture added auxiliary registers to enable parallel inputs, incorporated a co-processor
for simultaneous operations on multiple inputs, and achieved a speedup of 61.4%. In the
realm of the RISC-V ISA, Rao et al. proposed two SHA-3 ASIPs for IoT systems based on a
RISC-V processor in 2018 [166]. Their designs resulted in performance improvements of
71% and 262%, respectively. The first ASIP, named OASIP, accelerated operations on the
existing datapath using seven instruction extensions without supporting parallel pro-
cesses. The second ASIP, named DASIP, supported data-level and instruction-level par-
allelism. For DASIP, the authors proposed 21 instruction extensions, extended a 64-bit
auxiliary register file, and modified the processor’s datapath to enable parallel execution
of data and instructions.

In the field of vector instruction set extensions, Rawa et al. [169] proposed six vec-
tor instruction extensions for 128-bit vector-processing units in some mainstream pro-
cessors such as ARM (NEON), Intel (SSE, AVX), etc. They designed the assembly code
program for Keccak-f[1 600] for a 64-bit architecture and integrated these vector instruc-
tions into the GEM5 micro-architecture simulator. As the authors mentioned in the pa-
per, they finally got the performance to be 66 instructions per Keccak-f[1 600] round, and
the latency also 66 clock cycles per round when working with one cycle per instruction.

When we finished the work in January 2022, no published works had utilized RISC-V
vector extensions to implement SHA-3 functions1. A detailed comparison of our designs
with the aforementioned works [166], [168], [170], [171] is provided in Section 4.4.

4.3. SYSTEM DESIGN
In this section, we will provide an initial introduction to our design methods for the 64-
bit and 32-bit architectures. In Section 4.3.1 and Section 4.3.2, we will discuss the de-
sign principles for each architecture respectively. Furthermore, we will elaborate on the
implementation of custom vector extensions for the permutation steps of both architec-
tures in Section 4.3.3.

To investigate the performance enhancement of SHA-3, we will utilize the same SIMD
processor design in Chapter 3. Our objective is to achieve low latency and high through-

1The RISC-V Cryptography Extensions Task Group published Vector Crypto Draft 20220920 on 20 September
2022. Until now, there are no vector extensions for Keccak in the draft.

4.3. SYSTEM DESIGN

4

61

put. The SIMD processor comprises a scalar core and a vector processing unit, both of
which are based on 32-bit architectures. However, the data width in the vector process-
ing unit does not necessarily have to be consistent with the scalar core due to the flexibil-
ity of vector instructions. As stated in [172], the data width can be any power-of-2 length
greater than or equal to 8. This mismatch does not affect load and store operations since
vector load and store instructions can define the data width read from memory, see 3.3.4.
Similarly, there are no considerations for vector arithmetic instructions when operating
on vector-vector (.vv) and vector-immediate (.vi) operands. However, if the operands
involve a vector-scalar (.vx) operation, the length of the scalar integer register needs to
be adjusted after reading it from the scalar core. To realize the 64-bit architecture and
the 32-bit architecture, we will configure the parameter SEW, named Selected Element
Width, to 64 bits and 32 bits, respectively. To show the entire vectorization process for
the Keccak permutation, we do not combine operations like many software designs do,
for example, by combining the ρ and π step mappings [164].

4.3.1. 64-BIT ARCHITECTURE

Figure 4.3: Memory allocation for Keccak states in the 64-bit architecture.

For the 64-bit architecture, we set SEW to 64 bits in order to enable the SIMD proces-
sor’s vector processing unit to handle 64-bit operands. The mapping of Keccak-f[1 600]
to the 64-bit architecture is straightforward as the lane width in the Keccak state is com-
patible with the element length in the vector register. To ensure that the EleNum pa-
rameter, is enough for accommodating five lanes in one plane, we carefully select the
appropriate vector length. By fitting the 5 × 5 lanes within the vector register file and
occupying 5 vector registers with 5 planes, we illustrate the capability to include more
than one Keccak state in the vector register file, as depicted in Figure 4.3. In this figure,
the EleNum parameter is set to 16, and the notation sx y represents the lane index in one
Keccak state with row index x and column index y . The planes with the same order from
different Keccak states reside in the same vector registers. We utilize the vector register
address for the y-axis and the element index order modulo 5 to indicate the x-axis of one
state. The first Keccak state, A0, occupies element index order 0 to 4, shown in green; the
second Keccak state, A1, occupies element index order 5 to 9, shown in purple; and the

4

62
4. MAXIMIZING THE POTENTIAL OF CUSTOM RISC-V VECTOR EXTENSIONS FOR

SPEEDING UP SHA-3 HASH FUNCTIONS

third Keccak state, A2, occupies element index 10 to 14, shown in blue.

4.3.2. 32-BIT ARCHITECTURE

Figure 4.4: Memory allocation for Keccak states in the 32-bit architecture

As for the 32-bit architecture, we set the SEW parameter to 32 bits and adjust the
EleNum parameter accordingly to accommodate one or more Keccak states. To work
with 32-bit operands, we need to consider splitting the 64-bit lane into two 32-bit lanes
within the vector register file. The most common method for achieving this is the bit
interleaving technique, where odd bits are stored in one 32-bit word and even bits in an-
other 32-bit word. This technique is beneficial to the rotation operation, particularly
in the ρ step mapping, where the rotation length sometimes exceeds 32 bits. How-
ever, when working with SHA-3 algorithms alongside other programs, extra efforts are
required to separate the lane into odd and even parts prior to SHA-3 operations, and
then combine these parts back into 64-bit data after the operations. In our design, we
split each lane into two parts: the most significant part and the least significant part,
each containing 32 bits. These parts are stored separately within the vector register file,
as shown in Figure 4.4. As a result, there is no need to partition each lane before and
after the Keccak permutation, as data exchange between the vector register file and data
memory can be achieved using vector load and store instructions with indexed address-
ing modes.

4.3. SYSTEM DESIGN

4

63

4.3.3. CUSTOM VECTOR EXTENSIONS
To implement Keccak in the 64-bit and 32-bit architectures using RVV, we need specific
instructions tailored for this purpose. The existing vector instructions are designed for
general-purpose applications and lack instructions like vector rotation or vector slide
that are necessary for our Keccak implementation.

In this section, we propose custom vector extensions for SHA-3 and implement them
in the SIMD processor using SystemVerilog. We introduce the parameter SN to represent
the number of Keccak states operating in parallel. 5× SN should not be greater than
the number of elements in one vector register. Note that all the following instructions
only operate on elements that store the Keccak state values (element index number ∈
[0,5×SN −1]). Elements with index numbers not smaller than 5×SN are unchanged.
Throughout the following sections, vd represents the destination vector operand, while
v1 and v2 denote the source vector operands. The unsigned immediate is denoted by
uimm, and the signed immediate is denoted by simm. The scalar register operand is
specified by rs1, and vm indicates whether vector masking is enabled.

Figure 4.5: Vector slide and modulo-five instructions. SN denotes the number of Keccak states. N is the offset.
Here, we take the offset of 1 as an example.

VECTOR SLIDE MODULO FIVE INSTRUCTIONS

In the θ step mapping, intermediate values are shifted up and down within their corre-
sponding vector registers after performing XOR operations on all planes. Similarly, in
the χ step mapping, all planes must be shifted downward within their respective vector
registers, with offsets of 1 and 2. To address these requirements, we propose two exten-
sions for both the 64-bit and 32-bit architectures: vslidedownm for the downward shift-
ing operation and vslideupm for the upward shifting operation. To prevent interference
between lanes belonging to different Keccak states, we employ modulo-five operations

4

64
4. MAXIMIZING THE POTENTIAL OF CUSTOM RISC-V VECTOR EXTENSIONS FOR

SPEEDING UP SHA-3 HASH FUNCTIONS

Table 4.1: Vector slide modulo five instructions.

Instruction Description 64-bit 32-bit

vslidedownm.vi vd, vs2, uimm, vm

for i from 0 by 1 to SN −1 do
for j from 0 by 1 to 4 do

vd [5× i + j] ← v s2[5× i + (j +ui mm) mod 5]
end for

end for

Yes Yes

vslideupm.vi vd, vs2, uimm, vm

from 0 by 1 to SN −1 do
for j from 0 by 1 to 4 do

vd [5× i + j] ← v s2[5× i + (j −ui mm) mod 5]
end for

end for

Yes Yes

Table 4.2: Lookup table for the ρ step mapping.

x=0 x=1 x=2 x=3 x=4
y=0 0 1 62 28 27
y=1 36 44 6 55 20
y=2 3 10 43 25 39
y=3 41 45 15 21 8
y=4 18 2 61 56 14

to constrain the element index numbers. This ensures that the shifting operations only
affect the intended elements within each vector register. A visual representation of the
element sliding process can be found in Figure 4.5, while a detailed explanation of the
two instructions can be found in Table 4.1. The latency for the two Vector slide modulo
five instructions is 1+⌈VL/EleNum⌉.

VECTOR ROTATION INSTRUCTIONS

Two step mappings are using the rotation operations: θ and ρ. In the θ step mapping, the
rightmost column undergoes a one-bit rotation towards the most significant direction.
For the 64-bit architecture, we propose the rotation operation vrotup, which utilizes two
vector operands, and one immediate value defining the rotation offset. In the case of the
32-bit architecture, we first concatenate two 32-bit words into a single 64-bit word and
then perform the rotation operation. Since there are two vector operands involved, we
use the default rotation offset of 1 and introduce two custom extensions: v32lrotup and
v32hrotup. These extensions produce the low 32-bit result and high 32-bit result from
the rotated 64-bit data, respectively.

The ρ step involves rotating each lane by a varying number of positions depend-
ing on the lane number. However, in the case of the 64-bit architecture, we opt not to
utilize the rotation operation vrotup for this particular step. This decision is motivated
by the fact that vrotup would result in all lanes within a plane rotating with the same
offset under a uniform immediate value. To handle the diverse rotation requirements,
we store the specific rotation values in a lookup table (refer to Table 4.2). Additionally,
we introduce the instruction v64rho tailored for the 64-bit architecture. Furthermore,
for the 32-bit architecture, we have devised two custom extensions, namely v32lrho and
v32hrho. These instructions ensure the appropriate lane rotation on both the 32-bit and
64-bit architectures.

For the v64rho instruction, it operates on two operands: a vector and immediate
data. When the immediate is set to −1, all five planes in the Keccak are sequentially

4.3. SYSTEM DESIGN

4

65

Table 4.3: Vector rotation instructions.

Instruction Description 64-bit 32-bit

vrotup.vi vd, vs2, uimm, vm
vd ← (v s2 ≪ ui mm)∨ (v s2 ≫ (64−ui mm))
Note: ∨ denotes a bit-wise OR operation.

Yes No

v32lrotup.vi vd, vs2, vs1, vm
vd ← (((v s2 ∥ v s1) ≪ 1)∨ ((v s2 ∥ v s1) ≫ 63))[31 : 0]
Note: v s2 ∥ v s1 is the concatenation of v s2 and v s1,
to build 64-bit word.

No Yes

v32hrotup.vi vd, vs2, vs1, vm vd ← (((v s2 ∥ v s1) ≪ 1)∨ ((v s2 ∥ v s1) ≫ 63))[63 : 32] No Yes

v64rho.vi vd, vs2, simm, vm

from 0 by 1 to SN −1 do
for j from 0 by 1 to 4 do

vd [5× i + j] ← (v s2[5× i + j] ≪ r ho_shi f t [si mm][j])
∨(v s2[5× i + j] ≫ (64− r ho_shi f t [si mm][j]))

end for
end for
Note: if si mm is -1, the five rows process in sequence.
The counter lmul_cnt in hardware indexes the row.

Yes No

v32lrho.vi vd, vs2, vs1, vm

1) v s2 ∥ v s1;
2) The counter lmul_cnt in hardware indexes the row
number automatically for reading the lookup table;
3) The same process as v64rho is executed, and the
least significant 32 bits are stored.

No Yes

v32hrho.vi vd, vs2, vs1, vm

1) v s2 ∥ v s1;
2) The counter lmul_cnt in hardware indexes the row
number automatically for reading the lookup table;
3) The same process as v64rho is executed, and the
most-significant 32 bits are stored.

No Yes

executed. The use of −1 as an immediate value is specifically intended for cases where
LMUL is greater than 1. To determine the row number for reading the offset from the
lookup table, we employ a counter called lmul_cnt within the execution module of the
SIMD processor. When the immediate value is 0, 1, 2, 3, or 4, only one plane is operated
upon with the row index defined by the immediate, and LMUL should equal 1.

Regarding the v32lrho and v32hrho instructions, they involve combining two 32-bit
words into a single 64-bit word before performing the rotation operation. Since there are
only two operands, i.e., two vectors, there is no separate value indicating the row num-
ber. Therefore, these instructions also utilize the lmul_cnt counter to index the row num-
ber for accessing the lookup table. The outcome of the v32lrho instruction is the least-
significant 32 bits of the rotated 64-bit data, while the v32hrho instruction produces the
most-significant 32 bits. A comprehensive overview of all rotation instructions can be
found in Table 4.3. The latency for all Vector rotation instructions is 1+⌈VL/EleNum⌉.

VECTOR π INSTRUCTION

The π step mapping involves two steps. Firstly, the elements are read from the vector
register file sequentially and then rearranged into columns. Subsequently, each column
is stored back into the vector register, with the column number corresponding to the
Keccak state number, SN . This entire operation is depicted in Figure 4.6 and detailed
in Table 4.4. To facilitate writing data in column mode, we have introduced interfaces
between the execution module and the vector register file within the SIMD processor.
To accomplish this, we propose a novel custom extension known as vpi.

The vpi instruction is designed to function on both the 64-bit and 32-bit architec-
tures. It operates on two operands: a vector and immediate data. When the immediate
value is set to -1, all five planes in the Keccak are sequentially executed. This particular

4

66
4. MAXIMIZING THE POTENTIAL OF CUSTOM RISC-V VECTOR EXTENSIONS FOR

SPEEDING UP SHA-3 HASH FUNCTIONS

Figure 4.6: π operation in the design.

Table 4.4: Vector π instruction.

Instruction Description 64-bit 32-bit

vpi.vi vd, vs2, simm, vm

The process is illustrated in Figure 4.6
1) Reading elements from vs2 in the vector register file and
re-arranging the elements into columns.
2) Storing each column in the vector register with the starting
address of the column equals to vd.
3) If si mm equals 0, 1, 2, 3 or 4, only one row is processed.
If si mm is -1, the five rows process in sequence. The counter
lmul_cnt in hardware indexes the row.

Yes Yes

configuration is utilized when LMUL is greater than 1. Conversely, when the immediate
value equals 0, 1, 2, 3, or 4, only one plane is processed, with the specific order being
defined by the immediate itself. For such cases, LMUL must be equal to 1. The latency
for the Vector π instruction is 2+⌈VL/EleNum⌉.

VECTOR ι INSTRUCTION

We propose the instruction viota to perform an XOR operation between a round con-
stant and lane 0 in the first row of each Keccak state during the ι step mapping. This
instruction utilizes two operands: a vector register and a scalar register. The scalar reg-
ister is employed to index the round constant data. The width of the round constant for
the 64-bit architecture is 64 bits, as illustrated in Table 4.5. However, for the 32-bit ar-
chitecture, each round constant is split into a high 32-bit value and a low 32-bit value,
requiring the viota instruction to be executed twice for every Keccak round. The latency
for the Vector ι instruction is 1+⌈VL/EleNum⌉.

4.4. IMPLEMENTATIONS AND RESULTS

4

67

Table 4.5: Vector ι instruction.

Instruction Description 64-bit 32-bit

viota.vx vd, vs2, rs1, vm

for i from 0 by 1 to SN −1 do
for j from 0 by 1 to 4 do

if(j ≡ 0)
vd [5× i + j] ← v s2[5× i + j]⊕RC [r s1]

else
vd [5× i + j] ← v s2[5× i + j]

end for
end for
Note: The round constant values RC are shown in Table 4.6.

Yes Yes

Table 4.6: The round constant value in the ι step mapping.

RC[0] 0x0000000000000001 RC[1] 0x0000000000008082 RC[2] 0x800000000000808A
RC[3] 0x8000000080008000 RC[4] 0x000000000000808B RC[5] 0x0000000080000001
RC[6] 0x8000000080008081 RC[7] 0x8000000000008009 RC[8] 0x000000000000008A
RC[9] 0x0000000000000088 RC[10] 0x0000000080008009 RC[11] 0x000000008000000A
RC[12] 0x000000008000808B RC[13] 0x800000000000008B RC[14] 0x8000000000008089
RC[15] 0x8000000000008003 RC[16] 0x8000000000008002 RC[17] 0x8000000000000080
RC[18] 0x000000000000800A RC[19] 0x800000008000000A RC[20] 0x8000000080008081
RC[21] 0x8000000000008080 RC[22] 0x0000000080000001 RC[23] 0x8000000080008008

4.4. IMPLEMENTATIONS AND RESULTS
After conducting behavioral simulation using the Vivado 2020.1 tools to evaluate each
instruction, we proceed with the realization of the program for the 64-bit architecture.
Initially, we set the LMUL parameter to 1, which enables the operation of one vector
register per vector instruction. Subsequently, we increase LMUL to a value greater than 1.
According to the RVV specification [172], when multiple vector registers work together,
LMUL should be an integer with a value of 1, 2, 4, or 8. In our case, we set LMUL to 8 for
processing the five vectors that correspond to the five rows of the Keccak state under the
same instruction. Additionally, we set VL to 5×El eNum. For the 32-bit architecture, we
only set LMUL to 8 and VL to 5×El eNum.

In this design, we utilize the RISC-V GNU compiler toolchain to compile all our soft-
ware programs. As for the hardware platform, we select the Xilinx Alveo U250 Data Cen-
ter accelerator card. To synthesize and implement the SIMD processors, we also uti-
lize the Vivado 2020.1 tools, aiming to achieve optimal results with a clock frequency
of 100 MHz. Throughout our implementations, we employ the RISC-V base ISA, neces-
sary RISC-V vector extensions utilized in this work, and custom extensions specifically
designed for Keccak. We keep all instructions in the scalar core of the SIMD processor,
where the RISC-V base ISA and multiplication and division extensions are supported.
The vector processing unit reserves configuration-setting instructions, vector load and
store instructions, vector logical instructions in vector arithmetic, and all custom exten-
sions for different architectures.

We compile optimized programs using vector extensions for three different struc-
tures: (1) 64-bit architecture with an LMUL value of 1, (2) 64-bit architecture with an
LMUL value of 8, and (3) 32-bit architecture with an LMUL value of 8. Each generated
binary machine code is stored in the program memory of the SIMD processor. The for-
mer two structures utilize the same SystemVerilog code since the instructions can sup-

4

68
4. MAXIMIZING THE POTENTIAL OF CUSTOM RISC-V VECTOR EXTENSIONS FOR

SPEEDING UP SHA-3 HASH FUNCTIONS

Table 4.7: Results of our 64-bit architectures and comparison with a 64-bit reference architec-
ture. The execution time for one round is reported as the number of cycles to complete one round
(cyc/rnd). The execution time to complete the entire permutation is reported as the number of
cycles per byte (cyc/byte).

Implementation
Execution time throughput

(bits /cycle)
Area
(slices)

Throughput/Area
(bits /(cycle × slices))cyc/rnd cyc/byte

Vector Extensions [169] 66 - 1 010.1×10−3 (only simulation)
64-bit with LMUL =1
(Elenum=5, SN =1)

103 12.8 624.02×10−3 7 323 85.21×10−6

64-bit with LMUL =1
(Elenum=15, SN =3)

103 12.8 1 872.07×10−3 24 785 75.52×10−6

64-bit with LMUL= 1
(Elenum=30, SN =6)

103 12.8 3 744.15×10−3 48 180 77.71×10−6

64-bit with LMUL =8
(Elenum=5, SN=1)

75 9.5 845.67×10−3 7 323 115.48×10−6

64-bit with LMUL =8
(Elenum=15, SN =3)

75 9.5 2 537.00×10−3 24 789 102.34×10−6

64-bit with LMUL=8
(Elenum=30, SN=6)

75 9.5 5 073.00×10−3 48 180 105.29×10−6

Table 4.8: Results of our 32-bit architectures and comparison with 32-bit reference architectures.

Implementation
Execution time Throughput

(bits /cycle)
Area
(slices)

Throughput/Area
(bits /(cycle × slices))cyc/rnd cyc/byte

LEON3 [167] - 369 21.68 ×10−3 8 648 2.51×10−6

MIPS Native [168] - 178.1 44.92×10−3 6 595 6.81×10−6

MIPS Coprocessor [168] - 137.9 58.01×10−3 7 643 7.59×10−6

OASIP [166] - 291.5 27.44×10−3 981 27.97×10−6

DASIP [166] - 130.4 61.36×10−3 1 522 40.31×10−6

32-bit with LMUL=8
(Elenum=5, SN=1)

147 18.1 441.98×10−3 6 359 69.5×10−6

32-bit LMUL=8
(Elenum=15, SN =3)

147 18.1 1 325.97×10−3 23 408 56.65×10−6

32-bit LMUL=8
(Elenum=30, SN=6)

147 18.1 2 651.93×10−3 48 036 55.2×10−6

4.4. IMPLEMENTATIONS AND RESULTS

4

69

port different LMUL settings. By increasing the EleNum value, the vector register file can
accommodate more than one Keccak state, enabling the architecture to perform mul-
tiple Keccak operations in parallel. The number of Keccak states processed in parallel,
denoted as SN , determines the parallel processing capability. The latency remains con-
stant regardless of the number of simultaneous Keccak states in the system.

We compare our results with four reference designs mentioned in Section 4.2.2. De-
tailed comparisons and results are presented in Table 4.7 and Table 4.8. The references
[166]–[168] employ the number of slices as a measure of resource utilization (area). In
our work, the number of slices is derived from post-implementation results in Vivado.
We define two types of execution time: cycles per Keccak round (cycles/round) and cy-
cles per message byte in one Keccak state (cycles/byte). Cycles/round represents the
latency required to complete one Keccak round, while cycles/byte denotes the latency
measured in clock cycles for hashing one byte of the message in the entire 24-round Kec-
cak permutation. Either measure can effectively present the execution time. The reason
for using both measures is that different references adopt different metrics. For instance,
reference [168] employs cycles/byte, while reference [166] uses bytes/cycle as a perfor-
mance comparison metric. Moreover, reference [169] utilizes cycles/round to represent
its running time. Additionally, we do not consider clock frequency in performance com-
parisons because the reference designs either employ different clock frequencies or do
not mention their frequency.

• LMUL = 1 vs. LMUL = 8: Table 4.7 illustrates that in the 64-bit architecture when
LMUL is set to 8, there is a noticeable performance improvement. The throughput
increases by a factor of 1.35 compared to when LMUL equals 1.

• SN = 1 vs. SN >1: As the number of states increases, both the throughput and
area expand. Nevertheless, the ratio Throughput/Area only experiences a slight
decrease.

• 64-bit architecture vs. 32-bit architecture: When comparing the 64-bit and 32-bit
architectures with LMUL 8, it is evident that the 64-bit architecture operates nearly
twice as fast as the 32-bit architecture while utilizing similar resources. The sim-
ilarity in resource usage stems from the fact that the 32-bit architecture allocates
more resources for rotation instructions, whereas the 64-bit architecture devotes
more resources to the datapath and register file.

• 32-bit architecture vs. MIPS Co-processor ISE [168]: Compared to the Co-processor
ISE in [168], which supports parallel operations, our 32-bit architecture (LMUL =
8 and Elenum = 30) exhibits a performance improvement of 45.7 times. However,
the area increases by a factor of 6.3.

• 32-bit architecture vs. DASIP [166]: Our 32-bit architecture (LMUL = 8 and Elenum
= 30) demonstrates a speed improvement of 43.2 times but at an increased area of
31.5 when compared to DASIP [166], which supports data-level and instruction-
level parallelism.

• 64-bit architecture vs. Vector Extensions [169]: For the 64-bit architecture (LMUL
= 8 and Elenum = 30), the performance increases by a factor of 5.3 compared to

4

70
4. MAXIMIZING THE POTENTIAL OF CUSTOM RISC-V VECTOR EXTENSIONS FOR

SPEEDING UP SHA-3 HASH FUNCTIONS

the vector extensions design for Keccak presented in [169]. This improvement is
attributed to the ability to process more simultaneous Keccak states.

4.5. SUMMARY
In this chapter, we explore the use of custom vector instruction set extensions for the
implementation of the Keccak-f[1 600] permutation in SHA-3 hash functions. We ana-
lyze the five step mappings, propose ten custom vector extensions for 64-bit and 32-bit
architectures, and realize these custom instructions in the SIMD processor in SystemVer-
ilog. Then, we design the Keccak-f[1 600] permutation for both the 64-bit and the 32-bit
architectures using the custom vector instructions and the existing RISC-V vector ex-
tensions. Our results for the 32-bit architecture show an improvement of 45.7 and 43.2
times in throughput compared to two existing parallelized designs [166], [168]. The 64-
bit architecture offers optimization of 5.3 times in throughput compared to an existing
design where vector extensions are supported [169]. Our work uses instruction-set cus-
tomization and does not fuse adjacent operations to show the whole vectorization pro-
cess using RISC-V vector extension. Predictably, the two architectures’ performance will
improve more if we increase the granularity or combine some adjacent operations.

5
FLAIRS:FPGA-ACCELERATED

INFERENCE-RESISTANT & SECURE

FEDERATED LEARNING

Federated learning (FL) has become very popular since it enables clients to train a joint
model collaboratively without sharing their private data. However, FL has been shown to
be susceptible to backdoor and inference attacks. While in the former, the adversary injects
manipulated updates into the aggregation process; the latter leverages clients’ local mod-
els to deduce their private data. Contemporary solutions to address the security concerns
of FL are either impractical for real-world deployment due to high-performance overheads
or are tailored towards addressing specific threats, for instance, privacy-preserving aggre-
gation or backdoor defenses. Given these limitations, our research delves into the advan-
tages of harnessing the FPGA-based computing paradigm to overcome performance bot-
tlenecks of software-only solutions while mitigating backdoor and inference attacks. We
utilize FPGA-based enclaves to address inference attacks during the aggregation process of
FL. These enclaves are akin to trusted execution environments (TEEs) in software, provid-
ing an isolated execution environment where FPGA hardware accelerators can securely
operate. We adopt an advanced backdoor-aware aggregation algorithm on the FPGA to
counter backdoor attacks. We implemented and evaluated our method on Xilinx VMK-
180, yielding a significant speed-up of around 300 times on the IoT-Traffic dataset and
more than 506 times on the CIFAR-10 dataset, resulting from our specific design for cosine
similarity and the clustering algorithm, as well as leveraging FPGA-based enclaves and

The material in this chapter has appeared in:
1. Li, Huimin, Phillip Rieger, Shaza Zeitouni, Stjepan Picek, Ahmad-Reza Sadeghi (2023). "FLAIRS: FPGA-
Accelerated Inference-Resistant & Secure Federated Learning." 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL). IEEE, 2023.
2. Shaza Zeitouni, Li, Huimin. FPGA-based Trusted Execution Environments and Their Use Cases. Cross-
con: Cross-platform Open Security Stack for Connected Devices. December 14, 2023. https://crosscon.eu/
blog/fpga-based-trusted-execution-environments-and-their-use-cases.

71

https://crosscon.eu/blog/fpga-based-trusted-execution-environments-and-their-use-cases
https://crosscon.eu/blog/fpga-based-trusted-execution-environments-and-their-use-cases

5

72
5. FLAIRS:FPGA-ACCELERATED INFERENCE-RESISTANT & SECURE FEDERATED

LEARNING

acceleration.

5.1. INTRODUCTION

5

73

5.1. INTRODUCTION
FPGAs have emerged as powerful and versatile devices, providing flexible platforms for
the development of custom hardware solutions. These devices possess unique charac-
teristics, including parallel processing capabilities, support for various data types, low
latency, and lower power consumption compared to general-purpose computing plat-
forms. These attributes enable FPGAs to excel in accelerating computations and ad-
dressing complex challenges across diverse domains.

Continuous advancements in FPGA technology have given rise to System-on-Chip
(SoC) FPGAs, which integrate programmable logic with additional components such as
processors, memory, and peripherals. SoC FPGAs offer a comprehensive platform that
facilitates the HW/SW co-design, enabling the development of highly customized sys-
tems to meet specific application requirements. The reprogrammable nature of SoC
FPGAs allows for the creating of custom hardware accelerators that collaborate with
software executed on processors, resulting in enhanced system performance and effi-
ciency. Moreover, The adoption of FPGAs is prevalent across various domains, including
high-performance computing, data centers, the Internet of Things (IoT), and embed-
ded systems. Their deployment within well-known commercial cloud platforms, known
as cloud FPGAs, like Amazon EC2 [173], Microsoft Azure [174], and Alibaba Cloud [175]
further emphasizes their significance in today’s technological landscape.

In addition to their inherent benefits, SoC FPGAs enable the establishment of TEEs,
ensuring the security of critical workloads. This includes protecting the FPGA configu-
ration, which may comprise valuable Intellectual Property (IP) designs, as well as safe-
guarding the processed data, without compromising performance. Recent advance-
ments in FPGA research have demonstrated the feasibility of establishing TEEs on cloud
FPGAs [176], [177]. Consequently, FPGAs can provide not only accelerated processing
but also secure applications in potentially hostile cloud environments. The shift towards
trusted execution on cloud FPGAs brings forth numerous advantages. It grants organiza-
tions greater control over application and data security, even when physical access to the
FPGA is limited or unavailable. To distinguish them from TEEs implemented on CPUs,
we refer to these TEEs on FPGAs as FPGA-based TEEs.

One of the compelling applications for FPGA-based TEEs is federated learning (FL),
a collaborative learning approach. FL has emerged as a collaborative approach that en-
ables multiple clients to collectively train a deep neural network (DNN) on their respec-
tive private datasets. In contrast to the traditional centralized learning paradigm, FL em-
powers individual clients to train their own local DNN models, sharing only the training
parameters with a central aggregation server. By doing so, sensitive data remains se-
curely confined within the clients’ computing premises and is not exposed during trans-
mission. Consequently, FL not only enhances client privacy but also enhances compu-
tation efficiency for the aggregation server through parallelized and outsourced training
across multiple clients [112].

Despite the numerous benefits of FL, recent research has unveiled vulnerabilities
and attacks that target the integrity of the FL model or violate client privacy. Poison-
ing attacks aim to manipulate the global model to misbehave, also called targeted or
backdoor attacks, or they aim at rendering the model useless, also called untargeted at-
tacks. Backdoor attacks are crucial because the adversary injects a stealthy function to

5

74
5. FLAIRS:FPGA-ACCELERATED INFERENCE-RESISTANT & SECURE FEDERATED

LEARNING

influence the outcome without violating the model’s utility. For example, a backdoor
attack can force a word suggestion system, like Google Gboard [112], [118], to predict
a specific brand name after the sentence "buy a new phone from" [118]. On the other
hand, privacy attacks, also called inference attacks, aim to infer information about the
training data, such as identifying specific samples [119] or reconstructing samples from
the training dataset [120]. The aggregation process in FL effectively mitigates such at-
tacks by ensuring the anonymity of individual client contributions, thereby preventing
the association of inferred information with any specific client. However, even with this
protection, a curious aggregation server can exploit its access to the local models and
violate client privacy.

Existing defenses proposed for FL typically focus on addressing one type of attack,
either protecting client privacy [111], [178], [179] against potentially malicious servers
or mitigating specific backdoor attacks initiated by malicious clients [19], [117], [180],
[181]. However, defenses that aim to tackle both types of attacks encounter a dilemma.
On the one hand, detecting and filtering poisoned models requires the server to inspect
model updates, potentially compromising client privacy. On the other hand, privacy de-
fenses should prevent the server from examining local models. To solve this dilemma,
several privacy-preserving approaches such as Homomorphic Encryption (HE) or Secure
Multi-Party Computation (SMPC) [19], [182], [183] have been proposed to process mod-
els without divulging any information. However, such solutions result in significant per-
formance overhead and scalability issues, particularly for complex backdoor defenses
involving vector metric computations or clustering. An alternative approach is to utilize
TEEs on CPUs to ensure local models’ privacy while the aggregator inspects them. For in-
stance, CPU-based TEE implementations of Krum [180] have been explored [184], [185].
However, TEEs’ limited computation capacities introduce significant overhead for some
computation-intensive algorithms like Krum, which involves calculating Euclidean dis-
tances between local models.

Therefore, utilizing FPGA-based TEEs seems to be an intuitive approach for achiev-
ing secure and privacy-preserving FL. Among recent software-based proposals, FLAME
[19] aims to address backdoor and inference attacks to be independent of the attack
strategy. To counter backdoor attacks, FLAME combines outlier-detection-based filter-
ing with model clipping and noising. However, FLAME suffers from significant perfor-
mance overhead due to the deployment of SMPC for protecting clients’ privacy. SMPC
protocols enable the secure evaluation of a public function, e.g., the aggregation process,
on private data, e.g., local models, from N mutually distrusting parties. SMPC finds util-
ity in outsourcing scenarios [186], where multiple parties/clients can secret-share their
private inputs among two or more non-colluding, well-connected, and powerful servers
responsible for executing the SMPC protocol, yet resulting in a significant computation
overhead and hence does not scale. In the case of FLAME, for aggregating 50 models
trained on the CIFAR-10 dataset, SMPC increases the execution time of FLAME from
2.6s to 766.1s. Additionally, SMPC requires non-colluding aggregation servers. Conse-
quently, the privacy guarantees of FLAME only apply to semi-honest aggregation servers
that adhere to the SMPC protocol [19], [186].

In this work, we propose to leverage FPGA-based TEEs to enable privacy-preserving
backdoor-aware aggregation for FL. Our optimized FPGA-accelerated approach enables

5.2. BACKGROUND

5

75

the aggregation server to perform a privacy-preserving backdoor analysis of the client
models with only a negligible computation overhead. The described techniques allow
the acceleration of arbitrary backdoor defenses. We exemplary prototype our approach
using the recently proposed defense FLAME [19].

The contributions of our work can be summarized as follows:

• Leveraging FPGA-based TEEs: We demonstrate the practicality and efficacy of uti-
lizing FPGA-based TEEs, which enable us to achieve backdoor-aware FL aggre-
gation while preserving clients’ privacy. Our approach operates under a stronger
adversary model compared to SMPC, ensuring robust protection against potential
privacy breaches.

• Arbitrary Backdoor Resilient Aggregation Schemes: Our proposed methodology
offers the flexibility to implement arbitrary backdoor resilient aggregation schemes
on secure FPGAs.

• Exemplary Implementation of FLAME Defense on FPGA: To showcase the security
and performance gains achievable through our approach, we have implemented
the entire FLAME algorithm [19] on an FPGA. Our results demonstrate remarkable
speed-ups, surpassing 288 times on the IoT-Traffic dataset and over 506 times on
the CIFAR-10 dataset. It is noteworthy that these results were obtained from a sin-
gle FPGA, and the runtime can be further reduced by almost m if m FPGAs operate
in parallel. This scalability highlights the potential for even greater efficiency gains
in real-world FL deployments.

• Cascade Structure for Enhanced Efficiency: To improve calculation efficiency, we
propose a cascade structure that enables the computation of cosine distance with
a time complexity of O(n) instead of O(n2). This structure also significantly re-
duces the access time to the main memory, further enhancing the overall perfor-
mance of the FL system.

5.2. BACKGROUND

5.2.1. FEDERATED LEARNING
FL allows multiple clients to collaboratively train a global model while preserving the
privacy of their respective data. In this paradigm, each client, denoted as i ∈ {1, . . . ,n},
leverages its local dataset Di to iteratively train the shared global model. This iterative
process takes place in training rounds denoted by t , where at each round, client i utilizes
its local dataset to further improve the previously received global model G t . Following
this local training, client i transmits its trained local model W t

i to a central server. At the
server, a step entails aggregating the individual client models to obtain an updated global
model denoted as G t+1. This refined global model is subsequently communicated back
to the participating clients. The FedAVG algorithm [112] is employed as the aggregation
technique in our study.

Fed AV G(W t
1 , . . . ,W t

n) =
n∑

i=1

W t
i

n
. (5.1)

5

76
5. FLAIRS:FPGA-ACCELERATED INFERENCE-RESISTANT & SECURE FEDERATED

LEARNING

Aligned with recent work on backdoor attacks [19], [118], [180], [187], we weight all
clients equally, therefore, having an equal impact during the aggregation to prevent ma-
licious clients from increasing their impact by submitting wrong/larger dataset sizes.

5.2.2. REMOTE ATTESTATION

Remote attestation is a security protocol that enables an external party, the verifier, to
verify the authenticity and integrity of code or memory on a remote device, the prover.
Typically, trusted components on the prover device compute a cryptographic hash of the
code or memory content and sign it with a secret key shared with the verifier. The veri-
fier compares the received digest to the expected reference value to decide the prover’s
status.

5.2.3. TEES ON FPGAS

Trusted execution environments (TEEs) allow the execution of secure enclave applica-
tions, isolated from all other untrusted software in the system, including the operating
system (OS), hypervisor, and other applications. Ideally, the TEE aims to protect the
confidentiality and integrity of the enclave’s code and data. Remote clients can use at-
testation to verify the authenticity and integrity of the enclave’s binaries before sharing
confidential data with the enclaves. While the enclave’s code and data are typically pro-
cessed unencrypted in the CPU’s caches and registers, they get encrypted and integrity-
protected with an enclave-specific secret key before moving to untrusted storage. Com-
mercial TEEs, Intel SGX [96], AMD SEV [95], and ARM TrustZone [94], are widely de-
ployed in today’s computing systems, including SoC FPGAs, e.g., ARM TrustZone on Intel
Stratix 10 SoC and AMD Xilinx ZCU102.

Trusted execution in the context of FPGAs allows for safeguarding the configuration
(called Intellectual Property, IP) and the processed data. The IP represents the hardware-
designed accelerator that implements a specific algorithm intended to be programmed
and executed on the FPGA. Prominent FPGA manufacturers, such as Intel and AMD Xil-
inx, have integrated hardened cryptographic cores into their FPGAs to ensure robust
protection of IP designs’ confidentiality and integrity. In the conventional FPGA us-
age model, users have physical access to their FPGAs at least once and can program
the cryptographic keys on the FPGAs in a secure facility before deployment. However,
in the cloud FPGAs, where the clients do not have physical access to the FPGA, the in-
volvement of a trusted third party or FPGA vendors is required to provide IP protec-
tion [176], [188]–[190]. This scenario is analogous to TEEs, where clients rely on CPU-
manufacturer-issued certificates. Thereafter, two strategies exist for establishing TEEs
on the FPGA, i.e., securely loading the IP design, depending on the FPGA environment.
For SoC FPGAs with built-in TEEs on the hardened processing units (hard-core proces-
sors), such as ARM TrustZone, the TEE can be used to configure the FPGA and thus guar-
antees its trustworthiness [177], [191]. In the case of cloud FPGAs, where FPGAs lack
explicit TEEs on the hard-core processors, for establishing trusted execution, a trusted
shell (trust-anchor) that provides remote secret key generation, secure configuration,
isolation, and cryptographic operations for data is required. The trust shell can be en-
tirely configurable. However, it must be protected by the FPGA vendor and loaded on the
FPGA before loading the cloud client’s design [176]. Note that a remote user can attest to

5.3. PROBLEM SETTING

5

77

the FPGA configuration to ensure the authenticity and integrity of its design [176], [192].

5.2.4. RELATED WORKS

PRIVACY-PRESERVING BACKDOOR DEFENSES IN FL
To protect the clients’ privacy, the server should not be able to inspect the individual lo-
cal models. At the same time, mitigating a backdoor requires an inspection of the local
models. Different approaches have been proposed to solve this dilemma. Baffle uses
SMPC and lets the clients validate the aggregated model based on the predictions for
their local data [193]. This privacy-preserving approach relies on the assumption that
the attack changes the predictions for benign data. However, since an attacker will avoid
changing the predictions of not-triggered samples (see Section 5.3.2), the defense is im-
practical. Other approaches use trusted hardware, e.g., implement existing poisoning
defenses on TEEs [184], [185]. For example, Hashemi et al. [185] implement Krum [180]
on SGX. However, as regular TEEs can not utilize accelerators, expensive operations such
as calculating pairwise distances result in a significant overhead, rendering these ap-
proaches impractical. Different approaches against targeted and untargeted poisoning
attacks use SMPC [19], [182], [194]. However, the computationally expensive operations,
such as calculating pairwise distances on models with many parameters, cause a high
overhead of SMPC and TEE-based approaches and limit their scalability.

FPGA ACCELERATION FOR FL
Multiple research studies have been conducted using FPGAs to expedite FL that lever-
ages HE to preserve clients’ privacy. For example, in [195], an HE framework that utilizes
FPGAs to accelerate the training phase of FL is presented. In [179], the authors utilized
an HW/SW co-design for SoC FPGAs to speed up the cryptographic algorithms in HE
for privacy-preserving aggregation in FL. However, neither of these works addresses the
issue of backdoor attacks. To date, no work has been conducted in the realm of using
FPGA to accelerate SMPC.

5.3. PROBLEM SETTING

5.3.1. SYSTEM MODEL
In the following, we consider a system that comprises an aggregation server and n clients
collaborating to train a DNN model. As the clients’ inputs may contain sensitive data,
they do not share their datasets directly. Instead, they utilize FL to collectively train the
desired neural network model. Each client denoted as Ci , trains a local model using its
own dataset and subsequently transmits the local model to the aggregator. The aggre-
gator operates in the cloud and can leverage the power of one or multiple FPGA devices
enabled with TEE to expedite the aggregation process. This system configuration is de-
picted in Figure 5.1, which also illustrates the individual steps of the FLAIRS methodol-
ogy. Detailed information about FLAIRS will be provided in Section 5.3.3.

5.3.2. ADVERSARY MODEL
In our analysis, we consider two types of adversaries: (1) A that aims to inject a backdoor,
and (2) AS that aims to extract information about clients’ training data.

5

78
5. FLAIRS:FPGA-ACCELERATED INFERENCE-RESISTANT & SECURE FEDERATED

LEARNING

TEE
Client 𝓒𝟏

3

5

FPGA
FPGA

FPGA
FPGA

FPGA

1

6
Client 𝓒𝒏

2

4

7

2

4

7

3

Aggregation Server

Figure 5.1: Workflow of FLAIRS.

To inject a backdoor, A modifies the predictions of all samples within a trigger set
I ⊂ D, shifting them towards a specific label. It is crucial for A to ensure that this at-
tack remains undetected, which includes preventing a significant drop in the aggregated
model’s utility on regular samples. We assume that A has full control over a subset of
nA < n/2 clients and can manipulate their training process and data. However, A does
not possess knowledge about the data or models of other clients.

On the malicious server side, AS aims to infer information about the utilized train-
ing data by analyzing clients’ local models. Aligned with existing work, our focus lies
in attacks that extract information from individual local models [19], [182], [193]. The
aggregation process anonymizes the individual contributions of clients, making it chal-
lenging for adversaries to associate information gained from the aggregated model with
specific clients. We assume that AS has control over the aggregation server and a few
clients, has full software-level access, and can arbitrarily deviate from the aggregation
process. Denial-of-service attacks intended to disrupt computational resources are ex-
cluded from our analysis as they can be detected. Furthermore, we consider physical
attacks on the infrastructure, including the FPGAs, to be beyond the scope of our in-
vestigation. However, remote physical attacks using malicious FPGA configurations can
be mitigated through the use of FPGA scanners [196], [197], as demonstrated in [176]. In
fact, all clients can vet the FPGA configurations that represent the accelerators and verify
their integrity and authenticity as a part of attesting the TEE, as we will show next.

5.3.3. DESIGN OF FLAIRS
We first define the requirements for secure and practical FL and then describe the work-
flow of FLAIRS.

REQUIREMENTS

We derive the following set of requirements for achieving a secure and practical aggre-
gation process:

• R1. Mitigating backdoor attacks against the aggregated model.

5.3. PROBLEM SETTING

5

79

• R2. Protecting the integrity and confidentiality of clients’ models and prevent-
ing the aggregation server from performing model inference attacks on the local
models.

• R3. Enabling the clients to verify the authenticity and integrity of the privacy-
preserving aggregation, thus, verifying that the server can neither perform infer-
ence attacks on the models nor leak the models.

• R4. Reasonable resources and performance overhead for real-world applications.

WORKFLOW

To mitigate backdoor attacks (R1), we employ FLAME [19], which is a state-of-the-art de-
fense mechanism. FLAME combines outlier-detection-based clustering techniques with
Differential Privacy measures, such as clipping and noising, to effectively mitigate back-
door attacks, including sophisticated attacks such as multi-backdoor attacks or defense-
adapted attacks. Note that as this work focuses on the privacy-preserving acceleration of
backdoor defenses using FPGAs, the design of entirely new defenses is out-of-the-scope.
Nevertheless, our approach is not restricted to FLAME. FLAME includes different com-
ponents that are frequently used by backdoor defenses in general, including pairwise
distances [180], [198], clustering [117], vector norms [118], and median calculation [199].
Therefore, using exemplary FLAME also demonstrates the general applicability of our
approach.

Further, clients need to have the assurance that their data will be stored and han-
dled securely (R2 & R3). However, relying solely on the computation capabilities of TEEs
may result in significant performance degradation, making it impractical for real-world
applications. To accelerate this process, we propose leveraging the advantages of FP-
GAs for two primary reasons. Firstly, FPGAs offer the promise of enhanced performance,
enabling faster computations compared to software-based approaches. Secondly, FP-
GAs can facilitate the implementation of TEEs. Thus, both security and performance
requirements are met (R4). This approach leverages prior research and advancements in
developing TEEs on FPGAs [176], [177], [188]–[191].

Note that the entire aggregation algorithm (demonstrated in Section 5.4.1) might be
unlikely to fit on a single FPGA, considering a large number of clients and model pa-
rameters. Therefore, the aggregation algorithm can be split into several accelerators and
benefit from using several FPGAs or swapping in and out the different accelerators on a
single FPGA. Hence, when multiple FPGAs/accelerators are used, a scheduler algorithm
must coordinate the work of the accelerators and receive clients’ models. The scheduler
can be implemented as a software application in a TEE or a hardware IP continuously
running on the FPGA. In both cases, the scheduler can be attested by clients to ensure
its authenticity and integrity.

In the following, we describe FLAIRS’ workflow (Figure 5.1).

• Step 1. This step establishes a TEE on the cloud FPGA, where clients’ models can
be processed securely [176], [177].

• Step 2. The clients attest the TEE, i.e., verify the integrity and authenticity of the
FPGA configurations that process clients’ models. Thus, the clients have the as-

5

80
5. FLAIRS:FPGA-ACCELERATED INFERENCE-RESISTANT & SECURE FEDERATED

LEARNING

surance that the code processing their models is benign, i.e., not corrupted by AS,
and can exchange secret session keys with the TEE to encrypt their models.

• Step 3. The clients encrypt their models using individual secret session keys ex-
changed with the TEE.

• Step 4. The clients send their encrypted models to the aggregator.

• Step 5. The models are then stored in memory, ready for aggregation.

• Step 6. The TEE and FPGAs use FLAME to aggregate the models and mitigate back-
door attacks.

• Step 7. The aggregated model is sent back to all clients.

5.4. DESIGN & IMPLEMENTATION

5.4.1. ANALYSIS OF FLAME ALGORITHM
For the backdoor-aware aggregation, we used FLAME [19], which consists of three de-
fense layers (outlier-detection-based filtering, clipping, and adding noise). The ratio-
nale here is that a sufficiently high noise can remove the backdoor but will also drop the
models’ utility in terms of accuracy on the main task. The filtering and clipping mitigate
backdoored models that would require a high amount of noise, allowing FLAME to miti-
gate the remaining poisoned models with a low noise level, causing only a tolerable drop
in the model accuracy. These three layers, namely Model Filtering, Model Clipping, and
Noising, are shown in Figure 5.2. However, to optimize FPGA utilization and effectively
harness its parallelism, we do not strictly adhere to the definition of the steps. Instead,
we thoroughly analyze FLAME and define the hardware components or processing ele-
ments (PEs) that realize an efficient FPGA implementation.

One of the most compute-intensive steps of FLAME is the cosine distance (Model Fil-
tering). It comprises the computation of dot products and Euclidean distances (L2_norms).
To maximize the performance, we break it down into two components that can run in
parallel: preprocessor and cosine similarity.

Model Filtering Model Clipping Noising

Lo
ca

l M
o

d
el

s
𝓦

1
,…

,𝓦
𝑛

A
cc

ep
te

d
 M

o
d

el
s
𝓦

𝑏
1
,…

,𝓦
𝑏
𝐿

C
lip

p
ed

 M
o

d
el

s
𝓦

𝑏
1

∗
,…

,𝓦
𝑏
𝐿

∗

A
gg

re
ga

te
d

 M
o

d
el

 𝓖
𝑡

C
lip

 u
p

d
at

es
 t

o
 𝓢
𝑡

A
gg

re
ga

te
 m

o
d

el
s

to
 𝓖
𝑡∗

N
o

is
e
𝓖
𝑡∗

C
al

cu
la

te
 P

ai
rw

is
e

C
o

si
n

e
D

is
ta

n
ce

s

H
D

B
SC

A
N

 C
lu

st
er

in
g

C
al

cu
la

te
 L

2-
n

o
rm

s
o

f
M

o
d

el
 U

p
d

at
e

C
al

cu
la

te
 M

ed
ia

n
 𝓢
𝑡

o
f

L 2
-n

o
rm

s

Figure 5.2: High-Level Overview of FLAME [19]

5.4. DESIGN & IMPLEMENTATION

5

81

FPGA

CPU

Prep.
PE

Cosine
PE

HDBSCAN
PE

Scale
PE

Agg. PE

Control & Memory Addresses

Client Models,
Global Model

Differential
vectors

Cosine
Distance

Labels

Scales

Median

Aggregated
Model

Clipping

Aggregation

Noise

Memory (DRAM)

Differential
vectors

Differential
vectors

Differential
vectors

L2_norms

Figure 5.3: System Architecture of FLAIRS

Preprocessor component Prep. PE (1) receives the client models and the global model,
(2) computes the differential vector between each client model and the global model,
and (3) calculates the Euclidean distance L2_nor ms for each client’s differential vector.

Cosine-similarity component Cosin. PE runs in parallel to Prep. PE and uses the dif-
ferential vectors, the outcome of Prep. PE (2), to compute the dot products of clients’
differential vectors. Then, the resulting L2_norms and dot products are used to com-
pute the cosine distances for all clients. Note that we reuse the outcome of Prep. PE, i.e.,
L2_norms results in FLAME’s Model Clipping step.

HDBSCAN (Model Filtering) classifies the clients’ models using their cosine distances
and gives a label to each client’s model: 1 for benign models and 0 for malicious models.

Scale (Model Clipping) calculates the median value (St) of the resulting Euclidean
distances. The median value is then used to generate the scaled model for each client.
Note that there is no data dependency between HDBSCAN and Scale components. There-
fore, they run in parallel.

The Aggregation component Agg. PE encompasses the clipping (Model Clipping),
aggregation, and noise addition (Noising) steps. It receives model labels, the median
value, and model scales from previous components. These three steps work sequentially
to generate the final aggregated model.

5.4.2. IMPLEMENTATION

We implemented FLAIRS (Figure 5.3) on the Xilinx Vitis 2022.2 platform. In contrast to
utilizing the Xilinx Alveo U250 accelerator card (without hard-core processors) in Chap-
ters 3 and 4, we opted for the VMK180 Evaluation Kit for this implementation. This kit
offers an SoC FPGA solution with a built-in ARM TrustZone within its hardened process-
ing unit, providing a holistic solution for our requirements. Using Vitis, we generated a
host program and a kernel module for our implementation. The host program runs on
the processing unit, the TEE-enabled CPU, and is responsible for managing hardware
components and the operation process [200]. The kernel module can be written in RTL,

5

82
5. FLAIRS:FPGA-ACCELERATED INFERENCE-RESISTANT & SECURE FEDERATED

LEARNING

pre_loop1
pre_loop2

…

SUB MUL ACC SQRT

Global Model

Client Models

Differential Vectors

… … …

c1 c2 c3 …

L2_norms

…

… … …

d1 d2 d3 …

…

Figure 5.4: The proposed structure of Preprocessor PE.

C/C++, or OpenCL languages. For this project, we leverage high-level synthesis (HLS) to
translate our C++ kernel module into device logic fabric and RAM/DSP block [201]. The
FPGA platform is split into two parts: Shell and Kernel. Shell is the static component
representing a predefined FPGA configuration. It contains the essential functions for
execution, security, and communication interfaces. The kernel serves as the dynamic
region where the custom logic implementation of the accelerator function is realized.
We set the operating frequency of the kernel to 300 MHz while ensuring timely closure.
To fully utilize the AXI interfaces throughput, we adopt the burst mode and configure the
width of the AXI4 Memory Mapped interface between DDR-RAM and FPGA to 512 bits,
and set the burst length up to the maximum 4k bytes transfer each time [200].

PREPROCESSOR PE
As depicted in Figure 5.4, it receives the global model first and stores it locally. Then,
clients’ models are sequentially transmitted from the DDR-RAM to the FPGA. Each client
model undergoes subtraction with the global model to obtain its respective differential
vector, which is subsequently routed to the Cosine-similarity PE and simultaneously
back to the DDR-RAM. Then, each differential value is squared and accumulated. As
each client completes its computation, the accumulated value is processed using the
square root function, which yields the L2_norms value for that client. The entire process
operates in parallel within a pipeline structure. The pipeline size is defined by the to-
tal number of clients (pre_loop1) and the total number of parameters per client model
(pre_loop2).

COSINE-SIMILARITY PE
The pairwise cosine distances between clients can be represented as a matrix, as illus-
trated in Figure 5.5. In this matrix, the values on the diagonal are uniformly set to 0. For
all other positions in the matrix, the cosine distance is determined using Equation 5.2,
where d represents the differential vector and p denotes the total number of parameters.
The denominator of Equation (5.2) is obtained from L2_norms and the numerator is de-
rived from the dot product of two differential vectors of clients i and j . Since the cosine
distance matrix exhibits symmetry, we only need to evaluate either the upper triangu-
lar or lower triangular part. This computational optimization reduces redundancy and

5.4. DESIGN & IMPLEMENTATION

5

83

Figure 5.5: Cosine Distance. We take n = 5 for example.

ensures efficient processing while providing a complete representation of the pairwise
cosine distances among the clients.

di sti j = 1−
di d j∥∥di
∥∥∥∥∥d j

∥∥∥ = 1−
∑p

k=1 dk
i dk

j√∑p
k=1

(
dk

i

)2
√∑p

k=1

(
dk

j

)2
(5.2)

To obtain the dot products, we utilize a cascade structure depicted in Figure 5.6b.
This structure consists of multiple stages. Each stage in the cascade structure stores the
first-arriving differential vector locally in RAM. This initial vector is used to calculate the
cosine distance for the entire row, along with the following differential vectors in the
cosine_process phase (Figure 5.6a). Meanwhile, each stage except the last one sends out
differential vectors (excluding the first vector) to its subsequent stage. The total number
of stages is determined by the device resources, number of clients number, and num-
ber of parameters. If the number of stages is insufficient to calculate the cosine distance
for all clients (rows), we resort to using the hls :: burst_maxi<> to manually read the re-
maining differential vectors in bursts from DDR-RAM after each operation of the cascade
structure [201]. Subsequently, the new readout differential vectors go through the same
cascade structure for the following cosine distance computations.

HDBSCAN PE
In the HDBSCAN PE [202]–[204], the primary objective is to identify a cluster that rep-
resents the majority of models and includes a minimum of n/2+1 benign clients. The
models that do not belong to this cluster are considered as noise. To achieve clustering,
FLAME employs the HDBSCAN algorithm implemented by McInnes et al. [204]. Based
on the FLAME’s parametrization of HDBSCAN, a simplified version is implemented in
the HDBSCAN PE, neglecting all unused aspects. For example, there is no need to deter-
mine whether two closely packed dense groups of models constitute separate clusters or
a single cluster.

SCALE PE
In this module, we begin by sorting the L2_norm values in ascending order. From the
sorted list, we then select the median value denoted as St . Next, we proceed to calculate

5

84
5. FLAIRS:FPGA-ACCELERATED INFERENCE-RESISTANT & SECURE FEDERATED

LEARNING

cosine_loop1

cosine_loop2

…

d1

RAM1 MUL ACC

…L2_norms

mul_sum

MUL
L(0)

L(i)
denom

DIV SUB

1

cosine_process

dist12 , dist13

,
dist14 , dist15

(a) Cosine Process.

Stage 2

Stage 1

cosine_process

Differential Vectors
… … …

d1 d2 d3 …

…

…

d1

RAM1

L2_norms

…

cosine_process…

d2

RAM2

……

d2 d3 …

d3 …

… ……

d2 d3 …

dist12 , dist13 , dist14 , dist15

dist23 , dist24 , dist25

… ……

……

(b) The Cascade Structure of Cosine-similarity.

Figure 5.6: Cosine-similarity PE.

5.4. DESIGN & IMPLEMENTATION

5

85

γ[i] = St
L2_norms[i] , where i corresponds to the order of the client. Finally, we obtain the

model scale for each client as mi n(1,γ[i]).

AGGREGATION PE
In the aggregation PE, the differential vectors stored locally in RAM from the cascade
structures are read out sequentially and multiplied by the corresponding scale value. The
resulting product is added to the global model if the model label is 1. The resultant value
is accumulated into add_sum. If the RAM cannot accommodate all differential vectors,
we utilize hls :: burst_maxi<> again to retrieve the remaining differential vectors from
the DDR-RAM. After obtaining add_sum for all clients, we divide it by accepted_num,
representing the number of 1’s in model labels (i.e., the number of benign clients). This
generates a quotient, which is then added to the noise to obtain the final aggregation
model. To generate the noise, we use the MT19937IcnRng Random Number Generator
function from the Vitis Library provided by Xilinx [205]. This function can generate ran-
dom numbers following a normal distribution N(0,1). To conform to the noise range of
FLAME, we multiply the MT19937IcnRng function’s output with the required range λ.

THE SCHEDULER

The scheduler is the host program that runs on the TEE-enabled CPU and orchestrates
the work of the FPGA accelerators, i.e., the kernels. Once the aggregation process is ini-
tialized, the scheduler is set up as an enclave application. Clients attest the authenticity
and integrity of the scheduler to ensure its code has not been modified. The scheduler
then receives clients’ encrypted models, re-encrypts them with a unified secret key, and
stores them in the DDR-RAM. The scheduler detects the Xilinx device, attests the FPGA
binary file, and programs it into the device. Then, it creates the buffers needed by the
kernel in the DDR-RAM and sets up the input parameters (mapping ports) of the kernel.
The scheduler writes the data into buffers and triggers the execution of the kernel. When
the kernel finishes execution, it notifies the scheduler. Finally, the scheduler reads back
the aggregated model from the DDR-RAM and sends it to the clients.

5.4.3. EVALUATION
To facilitate the comparison with FLAME [19], we reproduced its experimental setup and
evaluated FLAIRS using two distinct datasets: IoT-Traffic and CIFAR-10. Throughout the
evaluation, we varied the parameter n, considering values of 10, 50, and 100.

For a comprehensive analysis of the FLAME algorithm, we measured the runtime of
each component as well as the overall system performance, as summarized in Table 5.1
and 5.2 respectively. It is important to note that the runtime of FLAIRS includes both
the execution time of the Kernel and the data transfer duration between the host and
the FPGA. The performance gains were observed for the IoT-Traffic dataset, achieving
speed-ups of 1 340.1, 382.1, and 288.9 times for n values of 10, 50, and 100, respectively.
Similarly, on the CIFAR-10 dataset, the acceleration was achieved with speed-ups of 513
and 506.7 for n values of 10 and 50, respectively.

Compared to the implementation without SMPC, FLAME requires approximately
2.62 seconds for 50 CIFAR10 models, whereas our approach only takes about 1.5 sec-
onds, underscoring the superiority of using FPGAs for accelerating operations.

5

86
5. FLAIRS:FPGA-ACCELERATED INFERENCE-RESISTANT & SECURE FEDERATED

LEARNING

Table 5.1: Runtime of each component in seconds of FLAME using FLAIRS (F) compared to FLAME using
SMPC (S) for n clients.

Dataset n
Cosine Distance HDBSCAN Scale

Aggregation
(+ Clipping +Noise)

F F S F F

IoT-Traffic
10 5.3553×10−2 1.5628×10−5 3.64 1.420×10−6 1.6465×10−2

50 0.453 1.509×10−3 41.84 1.4019×10−5 0.238
100 2.072 1.1851×10−2 253.87 5.2265×10−5 0.939

CIFAR-10
10 0.21 1.5628×10−5 3.64 1.420×10−6 4.0984×10−2

50 1.235 1.509×10−3 41.84 1.4019×10−5 0.263

Table 5.2: Runtime of the overall system in seconds of FLAME using FLAIRS (F) compared to FLAME using
SMPC (S) for n clients.

Dataset n
Kernel

Runtime
Data Transfer
(Host↔ DDR)

Runtime
Speed-up

F F F S

IoT-Traffic
10 7.0034×10−2 1.0677×10−2 8.0711×10−2 108.16 1 340.1
50 0.693 1.1809×10−2 0.705 269.35 382.1

100 3.023 1.2245×10−2 3.035 876.96 288.9

CIFAR-10
10 0.251 1.2104×10−2 0.263 134.93 513
50 1.5 1.2258×10−2 1.512 766.12 506.7

Our evaluation has demonstrated the impressive ability of our accelerators to sig-
nificantly enhance performance across various datasets while accommodating different
values of n. The results mentioned above are obtained from a single FPGA. However, it is
worth emphasizing that the computation of both Cosine Distance and Aggregation can
be partitioned into multiple FPGAs and calculated simultaneously, thereby reducing la-
tency. These two components can account for up to 98% of the total runtime. Therefore,
running m FPGAs simultaneously can lead to a runtime reduction of almost m. This dis-
tributed FPGA computing approach offers a promising solution to further enhance the
performance of our proposed framework.

5.5. SUMMARY
In this chapter, we have presented FLAIRS, a framework that capitalizes on the benefits
of FPGA-based computing to overcome performance bottlenecks that are inherent in
software-only solutions. FLAIRS integrates robust backdoor and inference attack mitiga-
tion measures, thus providing enhanced security measures. We demonstrate how TEEs
can be leveraged to enable practical and privacy-preserving backdoor-aware FL aggre-
gation on cloud FPGAs. FLAIRS provides stronger security guarantees than SMPC while
minimizing the performance overhead. Its flexibility allows for the implementation of
arbitrary aggregation schemes on secure FPGAs. Furthermore, our successful FPGA-
accelerated implementation demonstrates the exceptional computational capabilities
of FPGAs for accelerating FL algorithms.

PART III THE INVESTIGATION OF

DEEP LEARNING-BASED

SIDE-CHANNEL ANALYSIS

87

6
OVERVIEW OF RECENT

APPLICATIONS OF DEEP LEARNING

TO PROFILED SIDE-CHANNEL

ANALYSIS

This chapter provides an overview of recent applications of deep learning to profiled side-
channel analysis (SCA). The advent of deep neural networks, mainly multiplelayer per-
ceptions (MLPs) and convolutional neural networks (CNNs), as a learning algorithm for
profiled SCA opened several new directions and possibilities to explore the occurrence of
side-channel leakages from different categories of systems. This is particularly important
for designers to verify to what extent an adversary can extract sensitive information when
possessing state-of-the-art attack methods. Deep learning is a fast-evolving technology
that provides several advantages in profiled SCA and we summarize what are the main
directions and results obtained by the research community.

The material in this chapter has appeared in:
Marina Krček, Li, Huimin, Servio Paguada, Unai Rioja, Wu, Lichao, Guilherme Perin, and Łukasz Chmielewski.
"Deep learning on side-channel analysis." Security and Artificial Intelligence: A Crossdisciplinary Approach.
Cham: Springer International Publishing, 2022. 48-71.

89

6

90
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

6.1. INTRODUCTION
Side-channel analysis (SCA) is a well-known and powerful class of implementation at-
tacks against different types of systems, such as cryptographic implementations, pro-
cessors, communication systems, and, more recently, machine learning models. What
makes these attacks powerful is the fact that they use unintended leakage of information
conveyed from different sources: power consumption, electromagnetic emanations, time,
temperature, acoustic, photonic emission, etc. An adversary uses specialized equipment
to monitor some of those side-channel leakages to extract secret information. For exam-
ple, the amount of time needed to process a specific secret byte in a computer might be
different from the amount of time needed to process other possible values for this byte.
The monitoring of a side-channel can lead an adversary to recover secret information
from time measurements.

In this chapter, we focus on the predominantly used form of SCA that is based on
power consumption and electromagnetic analysis to extract secret cryptographic keys.
Embedded devices make use of cryptographic primitives to protect the processing and
storing of sensitive information. However, the cryptographic algorithmic implementa-
tions (e.g., AES, 3DES, RSA, etc.) in software and hardware also need protection on their
private keys. SCA can extract those keys from unintended leakage of information if the
device is not properly protected. Differential power analysis (DPA) [4] and correlation
power analysis (CPA) [66] appeared in 1999 and 2004, respectively, as powerful statis-
tical methods to recover private keys. These attacks, classified as non-profiled attacks,
assume that an adversary can query multiple encryption (resp. decryption) executions
from a target cryptographic operation by controlling, at least, the plaintext (resp. ci-
phertext). All the executions represent a set of side-channel measurements. Usually, an
adversary splits the target key in chunks (divide-and-conquer strategy) and for each pos-
sible value of a key chunk, he or she creates a list of predicted labels based on the cryp-
tographic algorithm (e.g., when attacking an AES implementation, an adversary predicts
what are the values of S-box output in the first round based on possible byte key guesses).
As a final act, the adversary performs a differential or correlation analysis between side-
channel measurements and all possible sets of predicted labels. The key guess associ-
ated with the highest difference-of-means (DoM) or correlation value is assumed as the
correct key chunk value.

In 2002, Chari et al. [68] proposed a different category of SCA known as Template
Attacks (TAs), or profiled SCA. Profiled SCA is a specific class of SCA that is conducted
in two phases: profiling and attack phase. To profile a cryptographic implementation,
the adversary collects a set of side-channel measurements where the key of the target
cryptographic execution is known and may vary from measurement to measurement.
Thus, the adversary creates statistical models (commonly called templates) that can de-
scribe the leakage and noise of the device under control. In the second phase, a separate
set of side-channel measurements is collected from another or (usually) identical device
running an unknown key. The attack (also known as the matching phase) applies the
learned templates to this second device, which can indicate what are the most likely key
values ordered according to their probabilities.

After the aforementioned publications, several countermeasures to protect crypto-
graphic implementations were proposed and applied by the security industry. Random-

6.2. DEEP LEARNING-BASED SCA

6

91

ization of sensitive information, boolean masking schemes, noise addition are among
the most common forms of protection against SCA. However, the research on SCA is
constantly discovering new capabilities of SCA when adopting more advanced statisti-
cal techniques. The main goal is to investigate how far an adversary can go when using
the most advanced and realistic attack techniques. Results in this sense are important
for developers to know what kind of protections their cryptographic designs need de-
pending on their applications and risk. Recently, publications considering deep neural
network approaches demonstrated the ability to break protected cryptographic imple-
mentations [7], [8]. This is the main reason why deep learning is the predominant form
of profiled SCA nowadays. Indeed, deep neural networks perform extremely well on a
wide variety of learning tasks. Observe that in the profiled SCA setting, the profiling and
attack phases are similar to the learning and prediction steps of a deep neural network-
based supervised classification task. The deep learning field is continuously evolving
and impacting SCA in general even beyond profiled SCA. In this chapter, we summarize
results from recent publications where non-profiled SCA attacks also leverage powerful
deep neural networks.

This chapter’s focus is on deep learning-based SCA. We start by providing background
knowledge on deep neural networks and profiled SCA. Section 6.3 provides an overview
of the state-of-the-art in the application of deep neural networks to profiled SCA. In Sec-
tion 6.4, we analyze the advantages of using deep learning in the context of profiled SCA.
The main idea of Section 6.4 is to highlight why deep neural networks can be seen as
powerful alternatives to classical profiled attacks such as TA and traditional machine
learning, which have been considered the most powerful class of SCA for many years.
Section 6.5 brings an important discussion about the correct interpretation of metrics
for deep learning-based profiled SCA. As reported in recent publications, the usage of
well-known supervised classification metrics (e.g., accuracy, loss, recall, etc.) can be
meaningless in the context of SCA when evaluating protected targets. In Section 6.5, we
describe solutions for such an important problem. Another important aspect of train-
ing deep neural networks is the hyperparameters tuning. In Section 6.6, we describe
this problem in the context of profiled SCA. As we will see, there are still no published
efficient solutions for this problem for SCA, and we describe possible alternatives. Sec-
tion 6.7 describes different applications of deep learning to SCA. Finally, Section 6.8 con-
cludes the chapter while giving an overview of what we believe to be the most important
perspectives and directions for future work.

6.2. DEEP LEARNING-BASED SCA
In this section, we explain the notation we use throughout the chapter.

6.2.1. NOTATION

Throughout this chapter, we use X = {X ,Y } to denote a dataset composed of feature
array X and label vector Y . The feature array X = {xi , f } defines a set of N side-channel
traces, where i indicates the trace index and f indicates the feature index (a sample) in-
side a trace. In the label vector Y = {yi }, each element yi indicates the label associated
with a side-channel trace i . The terms Xtr ai n , Xval and Xtest denote the training, vali-

6

92
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

dation, and test sets, respectively. The terms profiling traces and training traces are used
interchangeably throughout the chapter.

The term k refers to a single key byte belonging to the full encryption or decryption
key K with dimension |K |. An input plaintext byte used as input to the encryption or
decryption operation i (executed in order to obtain a side-channel trace) is referred to as
pti . The plaintext byte pti belongs to the full input plaintext PTi . Let also f (pti ,k) de-
note the function that returns the label associated with one execution of a cryptographic
operation.

Let also pi , j = P [y = j |X = xi], where pi , j ∈ P , denote the probability that a side-
channel trace xi contains the label j . In this chapter, bold letters and bold acronyms, e.g.,
a, denote vectors of dimension 2b , where b is the bit-length of the target intermediate
value in a cryptographic execution.

6.2.2. PROFILED SCA AND DEEP LEARNING

The deep learning-based profiled SCA requires a training set of size N for the profiling
phase. Ideally, the training set should consist of side-channel traces where each trace
is measured with random input data (ciphertext or plaintext) pt and random key k. To
create a labeled dataset for SCA, also known as the training set Xtr ai n , it is important to
first select a leakage model that accurately describes the physical side-channel leakage
present in the measurements. Commonly chosen leakage models for symmetric cryp-
tographic implementations (e.g., AES) include HW, HD, ID, or bit-level models. In this
case, the leakage is modeled for an intermediate value represented by a single byte or
bit. This intermediate value, in an encryption or decryption operation, depends on a
key byte k and input pt which can be either plaintext or ciphertext.

The number of possible classes for labeling a dataset is directly determined by the
selected leakage function f (pti ,k). As an example, the target intermediate value for an
AES implementation is usually a byte in the S-box state during the first or last encryp-
tion/decryption round. In such cases, HW or HD models define 9 classes for the datasets.
If the ID model is used, the dataset is defined for 256 classes. When attacking a single in-
termediate bit, there are only two possible classes. The bit-level leakage model is also
commonly used when attacking public-key implementations (e.g., RSA, ECC). In this
scenario, the attacker possesses specific knowledge about the target implementation,
such as scalar multiplication or modular exponentiation method.

For training a deep neural network, the labeled set is divided into training (Xtr ai n)
and validation (Xval) sets. As we will discuss in Section 6.5, classic validation metrics
(e.g., accuracy, loss, recall, precision, etc.) obtained during training might not accurately
reflect the leakage detection performance of a neural network, especially when dealing
with protected targets. Therefore, to have a meaningful validation metric for SCA, the
best possible scenario is to compute the guessing entropy or success rate during training.
For that, it is crucial to have a validation set Xval where the key K is fixed for the full
validation set. If K is random for each trace in Xval , then a different efficient validation
metric must be found.

Understanding deep learning metrics within the context of SCA is essential back-
ground knowledge for training effective models. Conventional deep learning metrics
typically include accuracy and loss (or error). Accuracy represents the ratio of correctly

6.2. DEEP LEARNING-BASED SCA

6

93

predicted data to the total number of predictions. Loss is determined by selecting a loss
function (the most common form for profiled SCA is cross-entropy) and measures the
overall error for the evaluated set. These metrics are monitored during the training phase
and can indicate different stages that occur as the parameters (weights and biases) are
updated using stochastic (or adaptive) gradient descent methods.

Common metrics in SCA are rank, success rate, and guessing entropy [206]. In pro-
filed SCA, these metrics are not aimed only at predicting correct labels as is the case with
machine learning metrics, but also to reveal the secret key. In particular, let us assume
that given Q amount of traces in the attacking phase, an attack outputs a key guessing
vector g = [g0, g1, . . . , g |K |−1] in decreasing order of probability with |K | being the size of
the keyspace. So, g0 is the most likely and g |K |−1 the least likely key candidate. When
predicting an attack set Xtest with a fixed key k∗, we obtain a prediction array P = {pi , j }.
This array has the number of rows equivalent to Q, and the number of columns is equiva-
lent to the number of possible classes. For all key candidates, we compute the probability
that k is the correct key k∗ in Xtest as follows:

P [k = k∗] =
N−1∑
i=0

log (pi , j) (6.1)

where pi , j is the j -th class probability (or prediction) of the neural network for side-
channel trace i . The class index j is determined according to a leakage model function
j = f (pti ,k).

The definition of rank, success rate (SR), and guessing entropy (GE) is shown as be-
low:

• Rank. The rank metric measures the position of the secret key k∗ within the key
guessing vector g.

• Success rate. The success rate metric defines the probability of an attack success-
fully recovering the secret key k∗ among all the hypotheses. The first-order success
rate is defined as the average empirical probability that g0 is equal to the secret key
k∗.

• Guessing entropy. The guessing entropy is the average position of k∗ in g. It pro-
vides insights into the performance of the selected distinguisher, with a lower rank
indicating a more successful attack.

In profiled attacks, the main goal during the training phase is to reach a general-
ization performance so that the trained deep neural network can obtain a low guessing
entropy (resp. a high success rate) after predicting Q attack traces. The generalization
phase usually happens after the model starts fitting the side-channel leakages (after un-
derfitting) and before this same model starts to degrade its performance, i.e. when it
usually reaches an overfitting phase. Fitting refers to how well the model approximates
the unknown underlying mapping function given the input and output variables. When
overfitting occurs, the neural network can fit the training set with very high accuracy
and small errors, but it cannot fit the validation or test sets. Ideally, we should always
train a neural network until it achieves the maximum quality in terms of generalization

6

94
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

concerning the validation set. If this happens, we should be able to assess whether the
model is in the generalization phase or not. This seems to be an easy task, but there are
quite some difficulties in the interpretation of metrics to identify what phase the model
belongs to while the training evolves. An interesting observation would be the detection
of the boundaries between two of the phases above. These boundaries may be detected
with the observation of conventional metrics (loss, accuracy, recall, or precision) using
validation data. In Section 6.5 we discuss potential solutions to identify the generaliza-
tion phase during training in the SCA context.

6.3. RECENT RESULTS IN DEEP LEARNING-BASED SCA

This section provides an overview of recently published results on deep learning-based
SCA. Various types of deep neural networks have been used, and we summarize what is
state-of-the-art regarding the selection of neural network topologies. The information
contained in this section is a summary of recent results that mainly target cryptographic
primitives based on AES [207], RSA [208], and ECC [209], [210].

6.3.1. FROM MACHINE LEARNING TO DEEP LEARNING IN SCA

Machine learning techniques are quite successful in a lot of different fields, such as im-
age classification [211] or speech recognition [212]. Due to the shared similarity between
profiled SCA and supervised machine learning, researchers started experimenting with
machine learning techniques in profiled SCA. They utilized standard machine learning
techniques, such as Support Vector Machines (SVMs) and Random Forests [72], neural
networks [74], and, more recently, deep learning [75]–[78].

Deep learning is a class of machine learning where the learning algorithm (i.e., a
deep neural network) extracts higher-level features from the raw input. Usually, in the
case of deep neural networks, it is considered that the neural network has multiple lay-
ers. Therefore, multilayer perceptrons (MLP), with more than one hidden layer, are deep
neural networks. Some other examples of deep learning techniques include deep be-
lief networks (DBNs), recurrent neural networks (RNNs), convolutional neural networks
(CNNs), etc.

The first publication to explore deep learning-based SCA results is from Maghrebi et
al. [75]. In this case, the authors applied MLP with one hidden layer (which is not consid-
ered a deep neural network), a stacked autoencoder with three hidden layers, and also
introduced the application of CNNs for SCA. The authors also applied a specific RNN ar-
chitecture called a long short-term memory (LSTM) network with two layers of 26 LSTM
units and a Random Forest algorithm. Except for the Random Forest algorithm and
the MLP the authors used, other algorithms are considered deep learning techniques.
The authors also suggested hyperparameters tuning for SCA with a genetic algorithm, as
stated in the appendix of their paper. Since then, there has been a variety of different ar-
chitectures with different hyperparameter settings. We provide an overview of the deep
learning techniques that were applied to SCA and discuss state-of-the-art results.

6.3. RECENT RESULTS IN DEEP LEARNING-BASED SCA

6

95

6.3.2. DEEP LEARNING TECHNIQUES IN SCA
After the appearance of the first publication with deep learning results for SCA, researchers
started to investigate the benefits of well-known learning techniques, such as regulariza-
tion, visualization, hyperparameters optimization, and model interpretation, to improve
the attack performance.

Regularization techniques are used to avoid overfitting during the training phase. Ex-
amples of regularization techniques are data augmentation, noise addition, weight de-
cay, dropout layers [213], and early stopping. In [77], the authors presented the first re-
sults with data augmentation techniques for CNNs to bypass desynchronization in side-
channel measurements. The adopted techniques are based on random trace shifting
and trace warping during the training phase. This way, the trained CNNs can generalize
to side-channel measurements where the leaking samples appear in random time lo-
cations due to desynchronizations caused by measurement setup or countermeasures.
Results achieved for protected AES implementations demonstrate the benefits of these
well-known regularization techniques. Kim et al. [8] explored how additional noise can
be used as a regularization for preventing overfitting, and they also present their CNN
architecture. Here the authors compare the performance of their CNN architecture to
the CNN architecture introduced in [76] paper. Also, the authors explore more datasets,
and their neural network is larger in the number of layers, indicating the benefits of more
convolution layers for leakage detection.

The selection of hyperparameters for deep neural networks is also explored in some
of the publications. In [76], the authors provide several results for different CNN and
MLP configurations and also introduce the open ASCAD dataset to serve as a basis for
further work on the SCA. The authors also tested Self-Normalizing Neural Networks (SNN),
but the performance compared to the MLP did not show any significant improvement.
Considering how to develop an adequate CNN architecture for SCA, the authors chose
to test some state-of-the-art CNN architectures from the image recognition field, such
as VGG-16 [214], ResNet-50 [215], and Inception-v3 [216]. From the initial architecture,
the authors performed tuning of the hyperparameters having guessing entropy as the
metric to define the model. Another relevant paper to mention is the paper where the
authors present a methodology for creating neural network architectures for SCA appli-
cations [78]. The paper introduces several CNN architectures, each fine-tuned for cer-
tain characteristics of utilized datasets, showing how the initial CNN architecture can be
light-weighted by searching for appropriate hyperparameters.

Visualization techniques are also explored for profiled SCA. These techniques indi-
cate the main features in input data that the trained model considers as most important
for its classification decisions. For instance, Masure et al. [217] provide results with gra-
dient visualization. In [218], the authors compare the performance of different visual-
ization techniques. These results are discussed in more detail in Section 6.4.5.

In the line of model interpretability, the work presented in [219] provides the first
results with the Singular Vector Canonical Correlation Analysis (SVCCA) tool to inter-
pret what neural networks learn while training on different side-channel datasets. All
the aforementioned deep learning techniques provide different perspectives for profiled
SCA.

In the next section, we explore what are the main advantages of deep learning in

6

96
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

comparison to classical profiled attacks, such as TA or machine learning.

6.4. ADVANTAGES OF DEEP LEARNING FOR PROFILED SCA
In this section, we analyze the advantages of deep learning for profiled SCA in compar-
ison to classic techniques such as TA and traditional machine learning. First, in Sub-
section 6.4.1 we discuss the fact that deep learning does not require preprocessing or
feature selection. Subsection 6.4.2 describes results indicating that CNNs are less sen-
sitive to trace desynchronizations. Subsequently, Section 6.4.3 discusses results indi-
cating that deep neural networks can learn high-order leakages. Then we explain how
deep learning can take advantage of the domain knowledge in Subsection 6.4.4. Finally,
Subsection 6.4.5 describes various attribution methods (or visualization techniques) for
leakage detection.

6.4.1. SCA WITHOUT PREPROCESSING

Template Attacks (TAs) [68] are commonly considered to be one of the most powerful
SCAs from an information-theoretic point of view. However, in practice for TA to be
successful, one needs to choose some special samples as the interesting points in actual
side-channel traces [70]. These points are usually referred to as points-of-interest (POIs).

Up to now, much research has been performed on choosing POIs that lead to the
most successful TAs (see [71]). This choosing process is often called POIs selection and
many different approaches were introduced for it over the years. However, it is unknown
that whether or not these approaches to choosing interesting points will lead to the best
classification performance of TAs. For example, it is hard to quantify whether all useful
points for TA have been chosen. In general, we do not know which approach is the best
for all possible devices and implementations, as the proposed techniques are only val-
idated experimentally and there has not been a universally optimal solution presented.
Moreover, significant processing of the samples, including, most notably, alignment, is
necessary before both POIs selection and TAs are being run.

Related to the POIs selection is the problem of feature extraction from the traces. The
goal of the extraction is to find the most leaking components in the traces and filter out
the noisy components. There has been a significant amount of effort in this research di-
rection. For example, Principal Component Analysis was used to extract features and use
them from TA [220]. Feature selection is also necessary for machine learning techniques,
such as SVM, random forests, or decision trees.

The significant problem of both the POIs selection and feature extraction techniques
is that they are not an integral part of TA and that they introduce additional complex-
ity. In comparison, the techniques based on deep learning suffer to a much lesser extent
from these problems. In particular, feature extraction is a part of the problem that deep
learning aims to solve. The input layer of a deep neural network directly receives the
side-channel trace interval corresponding to the interval of interest. It is expected that
during training, the backpropagation algorithm (often using stochastic or adaptive gra-
dient descent) will learn network parameters (e.g., weights and biases) in a way that only
some of the input features will be relevant in the neural network classification decisions.

As a result, an adversary does not need to identify leaking samples (or features) be-

6.4. ADVANTAGES OF DEEP LEARNING FOR PROFILED SCA

6

97

forehand, as this process is automatically done by the backpropagation algorithm. Of
course, the neural network selects input features representing POIs as long as it can fit
the leakage contained in the side-channel measurements. During the training process,
it is possible that the neural network overfits the training data and poor generalization is
provided. In this case, the neural network will mostly make a decision based on differ-
ent input features for each classified side-channel trace, meaning that automated POIs
selection was not successfully made. To address overfitting problems, the most recom-
mended method is regularization.

6.4.2. BYPASSING DESYNCHRONIZATION

Well-synchronized traces can significantly improve the correlation between the inter-
mediate data and the trace values. The alignment of the traces is, therefore, an essen-
tial step to enhance the efficiency of the SCA. Static alignment is the most commonly
used approach to align the traces. Usually, an attacker should select a distinguishable
trigger/pattern from the traces, so that the following part can be aligned using the se-
lected part as a reference. There are two limitations to this approach. First, the selected
trigger/pattern should be distinctive, so that it will not be obfuscated with other pat-
terns and lead to misalignment. Second, when countermeasures such as random delay
interrupts are implemented, the selected trigger should be sufficiently close to POIs to
minimize the countermeasure effect. From a practical point of view, a good reference
that meets both limitations is not always easy to find. Although the other optimized
alignment methods, such as Elastic Alignment [221] and Rapid Alignment Method [222],
could be candidates to reduce the effect of the countermeasures, the rising of the pre-
processing cost makes the traces synchronization a challenging task.

Deep learning provides alternative approaches to bypass desynchronization, which
can be realized by either trace preprocessing or direct attacks on the misaligned traces.
For traces preprocessing, autoencoder [223], an unsupervised-learning model well-known
for the ability for feature extraction [224], [225], could be applied for denoising purposes
and lead to an improvement of attack efficiency in both non-profiled [63] and profiled
SCA [7]. Specifically, to train an AE for the denoising purpose, the input and output are
represented by noisy-clean trace pairs. A well-trained denoising AE could keep the most
representative information (i.e., traces leakage) in the latent space while neglecting the
less important features such as random noise. Once the denoising AE is trained, much
cleaner traces can be recovered by feeding noisy traces to the input of the AE. Back to
desynchronization, it can also be considered as a type of noise that introduces variation
in the time domain. As stated in the paper [7], by training the denoising AE with a lim-
ited amount of traces, the reconstructed traces can lead to a good performance that is
comparable to the original one.

In terms of deep learning-based SCA, several works have presented their effective-
ness when compared with classical methods [76], [89], [226]. There are two reasons in
general: 1) deep learning-based attacks do not require critical preprocessing (i.e. re-
alignment), as it is covered in the learning phase; 2) deep learning-based attacks auto-
matically reduce the dimension of the traces by combining the raw features non-linearly
with the interconnection of neurons and transferring them to the low-dimensional rep-
resentations. Thanks to these two characteristics, the effect of misalignment can be re-

6

98
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

duced during the training of the network. Among different deep learning models, CNNs,
thanks to their spatial invariant property, were demonstrated to be the most preferred
architecture in coping with desynchronization and the random delay countermeasure
[76]. To further enhance the capability of CNN in handling the desynchronization, two
possible techniques could be applied: first, exploit the leakage in traces’ frequency rep-
resentation by transferring the traces with short-time Fourier transforms [227]; second,
applying data argumentation, such as artificially adding random delays, clock jitters [77]
or Gaussian noise [8], as it could help increase the diversity of the training sets and bal-
ance the class distribution of the profiling data.

In summary, compared with conventional profiled attack methods, deep learning
architectures are more resilient to variation in the time domain. Together with their
attacking performance compared with classical profiled attack methods, deep learning
becomes a preferable method for profiled SCA.

6.4.3. DEEP NEURAL NETWORKS CAN LEARN SECOND-ORDER LEAKAGES

SCA exploits the dependency between the power consumption of a cryptographic de-
vice and the intermediate values of the implemented cryptographic algorithm. Side-
channel countermeasures try to obfuscate the aforementioned data dependency. In
particular, masking countermeasures achieve it by randomizing the key-dependent in-
termediate values of the algorithm. The goal is to make the power consumption of the
device independent of the intermediate values. This is achieved with the Boolean op-
erations between random values (masks) and intermediate data. At the end of encryp-
tion/decryption execution, the mask is removed from the result [5], [228], [229].

Conversely, with the inclusion of deep learning techniques in the SCA field, masked
cryptographic implementations have a new threat: neural networks have shown their
capability to break masked cryptographic implementations. Up to now, publication re-
sults only demonstrated the capacity to break protected software implementations in
the profiled setting. Benjamin Timon in [92] proposed a deep learning solution for non-
profiled attacks against masked AES implementations. Even if the attack does not re-
quire the profiling on an identical device, it still requires the training of a deep neural
network for each key candidate, drastically increasing the attack complexity. The results
provided in [92] demonstrate the efficiency of their method against ASCAD dataset [76]
and custom ChipWhisperer implementations, however, it is difficult to assume that this
method will not be restricted by its high complexity limitations when applied to different
devices. Nevertheless, it was demonstrated with input-based sensitivity that deep neural
networks can fit high-order leakages. Figure 6.1 provides results from [92] demonstrating
that deep neural networks fit high-order leakages when the training set is labeled based
on the correct key candidate.

Masure et al. in [217] used loss function-based input activation gradients to demon-
strate that CNNs can learn second-order leakages, as indicated in Figure 6.2. Input ac-
tivation gradients based on loss function indicate what are the samples where the loss
function is more sensitive. As Figure 6.2 indicates, the input activation gradients are
higher for the samples representing the processing of mask values.

Although there are no formal explanations for the fact that deep neural networks are
able to fit second-order leakages, it actually combine multiple samples in order to make

6.4. ADVANTAGES OF DEEP LEARNING FOR PROFILED SCA

6

99

(a) Results on ChipWhisperer AES implementation.

(b) Results on ASCAD AES implementation.

Figure 6.1: Results from [92] (Figure 12) illustrating the ability of deep neural networks to fit high-order side-
channel leakages.

their decisions. As stated in section 6.4.1, deep neural networks can learn high-order
representations from data and it is expected that these complex learning systems would
be able to learn high-order side-channel leakages.

6.4.4. TAKE ADVANTAGE OF THE DOMAIN KNOWLEDGE

Domain knowledge (DK) [230] assumes that the information domain can be used as part
of the dataset to improve the generality (to different datasets) and robustness (towards
noise interference) of classifiers. The usage of DK neurons was first introduced to the
side-channel domain by Hettwer et al. in 2018 [231]. The authors provided the plaintexts
as additional information into the neural network to learn the leakage regarding the se-
cret key directly. Specifically, by concatenating the traces’ latent representation (a dense
layer of CNN) with the one-hot-encoded plaintexts at the byte level, better results can
be obtained when performing attacks. Figure 6.3 illustrates this procedure: the features
were extracted from the input by the convolution layers, which are then combined with
DK neurons containing the plaintext information to enhance the classification perfor-
mance. Following this, researchers found that combining the DK neurons (bit-encoded
plaintexts) with the denoising autoencoder could reduce the effect of the masking coun-
termeasure [63]. Indeed, merging domain-specific information with extracted features
of the convolution layers enables the network to converge to different statistics at the
decision level [232]. In other words, leakage traces are generated conditionally on the
provided plaintext and the secret key. Although the correlation between plaintext and
secret key may not exist, the extra information could be still helpful in extracting more

6

100
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

Figure 6.2: Results from [217]. Input activation gradients are indicative that CNNs can fit second-order leak-
ages.

meaningful features. By applying DK that may be not limited to plaintext (i.e. cipher-
texts), we see the potential of DK in performing more powerful attacks.

6.4.5. VISUALIZATION TECHNIQUES TO IDENTIFY INPUT LEAKAGE

As we have already mentioned, profiled attacks are classification problems, and in this
type of problem, it is always meaningful to have a method to visually interpret how the
learning model is using the features to conduct the classification. Visualization tech-
niques are very useful for manufacturers to evaluate the side-channel security of their
design. This is a useful fact to take advantage of. Recall that an important aspect of eval-
uating a supposedly secure device is to be able to point out where the leakage is being
generated. This way, it is possible to propose modifications and recommendations to
limit adversarial possibilities. Knowing where the leakage is generated becomes crucial
to improve security and eliminate the main flaws in the cryptographic implementation.

In general terms, visualization is conducted by analyzing what input features (given
by a neuron in the input deep neural network layer as a one-to-one mapping) have more
influence in classification during training. After the activation of the neurons, the learn-
ing algorithm back-propagates the error to update the weights in those neurons until
they reach the first layer. In [217] the authors proposed the visualization of input acti-
vation gradients as a technique to characterize the automated selection of POIs by deep
neural networks. The result is a vector of gradients that are computed by the backprop-
agation algorithm as the derivative of the loss function with respect to the input activa-
tion. Gradient visualization is the technique that computes the value of the derivatives
in a neural network regarding the input trace, such a value is then used to point out what
feature needs to be modified the least, to affect the loss function the most. In [92], the au-
thors proposed the same solution, defined as sensitivity analysis, and they used it in the
context of non-profiled SCA where input activation gradients are used as distinguishers.
Input activation gradient method has already been used as a tool to show that neural
networks can actually fit high-order leakages (see Section 6.4.3).

Another technique employed for this purpose is Layer-wise Relevance Propagation

6.5. METRICS FOR DEEP LEARNING-BASED PROFILED SCA

6

101

Figure 6.3: Image from ([231]). A CNN with domain knowledge in a fully-connected layer.

(LRP). LRP propagates the classification score through the network until the first layer
and then conducts the one-to-one mapping [233]. The work in [234] applied a method
gradient visualization to show how MLP could be used for the Leakage Assessment Method-
ology (see Section 6.7). In [218] authors used the LRP technique to identify which sam-
ples of the power trace have a greater influence on the learning process. They compared
three attribution methods (Saliency Maps [235], LRP and Occlusion [236]) on three dif-
ferent datasets, showing how LRP is the most suitable for finding POIs. Finally, one of the
most recent approaches is to use heatmaps (or feature maps) to interpret the impact of
filters (also known as convolutional matrices or kernels in the context of CNNs) in order
to adapt the neural network model according to how the features are selected [78].

6.5. METRICS FOR DEEP LEARNING-BASED PROFILED SCA
Supervised classification tasks require correct metrics to determine the performance of
the algorithm as well as to measure its learning capacity. Accuracy, precision, recall, and
log-loss are commonly used metrics in supervised classification tasks for many applica-
tion domains. Computer vision and natural language processing are among applications
where the classification accuracy must be very high to solve the underlying problem.
Each element in a test set is classified separately. Thus, we are only interested in the
generalization capacity of the trained algorithm as long as it provides a high classifica-
tion accuracy. In particular, deep neural networks have performed extremely well over a
wide variety of supervised classification tasks.

When a profiled SCA makes use of a deep neural network as the learning algorithm,
we are interested in verifying how effective these highly complex learning systems are
to learn side-channel leakages and retrieve the cryptographic secret by classifying side-

6

102
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

channel traces according to a leakage model. If we strictly consider SCA on an AES imple-
mentation (where the attacker trains a profiling model to attack each separate key byte),
a profiled attack is theoretically able to recover the correct target key byte with a single
side-channel measurement. This scenario would be possible if the ID leakage model of
S-box output in the first encryption round is defined as the leakage function. However,
real side-channel measurements are noisy, and several (from hundreds to thousands of)
traces are required to conclude attack capability. This is done by summing up the out-
put class probabilities for each classified side-channel trace, in which the selected out-
put probability value for each trace corresponds to the class associated with the guessed
key. For each key guess candidate, we compute a probability that key guess k is correct,
P [k = k∗], according to Equation (6.1). Therefore, in a situation where a deep neural
network is trained in a way that it can fit the existing leakages, classifying multiple traces
and combining their predicted class probabilities is necessary to estimate the success
rate or guessing entropy for a certain amount of traces.

Sometimes, the number of classified side-channel traces in a test or attack phase
needs to be very large to reach a consistent conclusion about the model generalization.
In such a scenario, the output class probability for the true label (or class) is not always
the highest value in the output layer. As a consequence, the overall test accuracy, pre-
cision, or recall will stay close to random guessing. In the same way, the cross-entropy
loss function for the test set also does not inform enough about the model generaliza-
tion. This brings us to an important question: what metric should a deep learning-based
SCA consider? The authors of [237] demonstrated that conventional machine learning
metrics are not very informative for the SCA domain, concluding that the best metrics
are guessing entropy and success rate. In [238], the authors proposed a didactic analy-
sis of output class probabilities obtained by attacking protected AES targets. They also
provided evidence that guessing entropy and success rate become the main metrics for
deep learning-based profiled SCA. Based on that, the analysis can be improved in many
different directions. Analyzing the guessing entropy during the processing of training
epochs can lead to the identification of an efficient early-stopping metric. As a result,
the neural network will be regularized for SCA. This is similar to what has been recently
proposed in [239].

Therefore, to improve side-channel leakage detection with deep learning, side-channel
metrics at a validation level still offer the best alternatives. The selection of correct met-
rics in deep learning-based profiled SCA is also important in hyperparameter tuning al-
gorithms. As we discuss in the next section, these optimization algorithms converge
according to a metric direction (minimum or maximum value) and if the selected metric
is not consistent with SCA, the optimization algorithm may have convergence problems.

6.6. TUNING NEURAL NETWORK HYPERPARAMETERS FOR SCA
This section discusses the problem of selecting efficient hyperparameters for deep learning-
based profiled SCA. The performance of deep learning-based profiled SCA depends greatly
on the selection of hyperparameters for neural network topology. Different from other
profiled attack methods, such as TA and machine learning-based attacks, deep neural
networks have tenths of hyperparameters to be defined.

The hyperparameters definition can be strictly related to the attacked dataset. Sev-

6.6. TUNING NEURAL NETWORK HYPERPARAMETERS FOR SCA

6

103

eral aspects in the dataset may directly affect the selection of specific hyperparameters:
countermeasures, noise levels, number of measurements, number of points in a side-
channel measurement, or trace and appropriate leakage model. This already means that
one of the main challenges in deep learning-based profiled SCA is the difficulty (if not
impossible task) of finding a universal deep learning model that works well on a variety
of datasets.

Hyperparameter search is a common task in all kinds of deep learning applications.
For profiled SCA, the situation is not different. Usually, several combinations of hyperpa-
rameters are evaluated against a dataset and the best possible combination that solves
the problem (i.e., recovers the target key byte(s)) is assumed as an optimal model for the
underlying task. Depending on the dataset features and target implementation details,
manually finding efficient hyperparameters can be very hard or near impossible. There-
fore, there are two main paths to solve this problem: by deeply understanding the role of
specific hyperparameters and their effect on specific datasets or, more recommended,
by adopting an optimization algorithm to automatically find the best possible configu-
ration given restricted computation time and resources.

Even if the second path is chosen, the analyst has to set hyperparameter ranges and
possible options to be searched by the optimization algorithm. If the search range for
a specific hyperparameter is completely wrong, it is very likely that the search or opti-
mization algorithm will never identify an efficient combination of hyperparameters that
solves the underlying problem. This can be a serious problem when evaluating the tar-
get with profiled SCA, as the analyst can draw wrong conclusions about the security of
the device. If deep learning-based attacks can’t recover sensitive information from side-
channel leakages, one of the main reasons can be the wrong definition of a deep neural
network architecture.

If a dataset is too large (with a few million side-channel measurements) and strong
countermeasures are present, we expect that a larger model is chosen. This can result
in MLP or CNN with several hidden layers, similar to competitive architectures such as
VGG-16. However, an appropriate definition of the size of the neural network (and con-
sequently the number of trainable parameters), is not sufficient to ensure its efficiency.
A very large deep neural network can overfit even large datasets. This means that alter-
native solutions to restrict the overfitting to the training set are necessary to improve the
performance in terms of generalization. Widely adopted techniques to improve general-
ization are regularization techniques and some of them can directly affect the selection
of hyperparameters and their ranges in a search problem. Some of the hyperparameters
are directly related to the way weights and biases are updated during network training.
In [240], the authors investigate the impact of different widely used optimizers in pro-
filed SCA. Their results indicate different performances concerning different amounts
of profiling traces and neural network sizes. Moreover, they demonstrate that some of
the optimizers (Adam and RMSprop) tend to provide fast convergence, however more
chances to overfit the network. For other cases, Adagrad and Adadelta optimizers are
appropriate for large network models and large datasets and tend to work better when
large amounts of training epochs are considered while offer smaller chances to overfit.
Although not investigated in [240], learning rate, batch size, and the number of epochs
is also training hyperparameters that have a huge influence on the attack performance.

6

104
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

The learning rate scheduler (by changing the learning rate during training) is an impor-
tant artifact to reduce overfitting and stabilize the generalization even if a large number
of epochs is considered.

A viable approach when manually tuning hyperparameters is their modification ac-
cording to observed metrics. As discussed in Section 6.5, accuracy and loss functions are
inconsistent metrics to evaluate attack performance (key recovery). However, these two
metrics can still be used to analyze how fast a neural network overfits the training data.
If this happens very early in the training phase while the guessing entropy or success
rate indicates no key recovery, the neural network model is probably too large for the
evaluated dataset. Alternative solutions are to increase the number of training or profil-
ing traces, reduce the size of the network, or adopt regularization techniques (e.g., early
stopping, data augmentation, noisy/batch normalization layers, regularization L1/L2,
etc.). Other SCA options, such as leakage models, and the number of attack/validation
traces, also directly influence the learning capacity of the model. For instance, to ease
the computation cost, it is crucial to verify if what is more efficient is to search for op-
timal hyperparameters or to change the amount of profiling traces. The same princi-
ple may apply to the number of attack traces, as a trained model could require a large
amount of traces to be able to select the correct key as the most likely one. Therefore,
this trade-off between the number of profiling traces, the number of attack traces, and
hyperparameters need to be taken into account. In order to analyze the effect of each of
the aforementioned aspects, the authors in [241] propose a new framework, where they
explore the number of traces and hyperparameter tuning experiments required in the
profiling phase such that an attacker is still successful. One important benefit from [241]
is the identification of what is the main attack component (hyperparameters, number of
attack traces, or number of profiling traces) that affects mostly the performance of the
profiled attack. With such a framework, an analyst can explore the minimum amount of
(profiling and attack) traces if the number of hyperparameter combinations can be very
large due to little limitations in time complexity.

Some hyperparameter selection techniques in the deep learning domain also apply
to the specific SCA field, such as Grid and Random Search Optimization [76], [78], [89],
[242], [243]. In terms of Grid Search Optimization, a step-wise search is defined by set-
ting a range of values for specific hyperparameters. Specifically, to get the optimal pa-
rameter combination, the network training is implemented sequentially for every value
in the grid. Thanks to its simplicity, Grid Search Optimization is the most widely (al-
though not efficient) used strategy for hyperparameter tuning in SCA. For instance, in
[76], the authors adopted Grid Search to experimentally show the process of choosing
each hyperparameter for MLP and CNN respectively, and presented the impact of each
hyperparameter on the performance of SCA. Besides, Grid Search is proved to be reliable
in low dimensional spaces [243].

For Random Search Optimization, similar to its counterpart, a fixed range of values
is required to be defined for each hyperparameter. Then, a set of hyperparameters is
chosen randomly from their range as a combination, which is applied to the neural net-
work for evaluation. The authors in [89] used Random Search to find the most optimized
CNN model for the datasets by tuning 13 hyperparameters. Indeed, Random Search Op-
timization can be implemented automatically with high efficiency in selecting the op-

6.7. DIFFERENT APPLICATIONS OF DEEP LEARNING TO SCA

6

105

timal hyperparameters. However, the impact of each hyperparameter is not taken into
consideration [76], [242].

Other optimization methods are also proved to be efficient in tuning the deep learn-
ing model. In [78], architecture hyperparameters were chosen by using the visualiza-
tion techniques to understand how each hyperparameter impacts the efficiency of the
CNN, and each optimizer hyperparameter was selected by Grid Search from a finite set
of values. Moreover, Evolutionary algorithms, such as genetic algorithms and simulated
annealing, could also provide better solutions as they implemented metric-based opti-
mizations. Note, Bayesian optimization and Gaussian processes could provide optimal
solutions when the training effort is very expensive, which is the case of profiled SCA.
For that, a proper metric needs to be defined in order to correctly judge the performance
of a deep neural network for profiled attacks, as discussed in Section 6.5.

6.7. DIFFERENT APPLICATIONS OF DEEP LEARNING TO SCA
The feasibility of the deep learning for SCA goes beyond the design and test of new
threats. In this section, we summarize different applications of deep neural networks
on SCA that differ from using deep neural networks as a supervised trained classifier.

DEEP LEARNING IN LEAKAGE ASSESSMENT

To the best of our knowledge, the work [234] was the first to present a version of leak-
age assessment methodology, where the mathematical foundation involves a function
inferred by a learning algorithm. The architecture of the neural network model used
could be categorized as MLP shallow network. Taking into account its relation with the
neural network we include this work as a different application of deep learning for side-
channel. The task of the learning algorithm is set for classification, where two types of
classes are aimed to be distinguished, to do so, the acquisition procedure in the method-
ology remains the same, and the classes are defined regarding the combination of input
data, i.e. random class and fixed class. Nevertheless, an extended version using more
than two classes is also possible, the evaluator can compose different sets using different
values of fixed data and group them by an identifier, creating more than two classes. Al-
though experiments with more than two classes are not conducted in the original work,
we could think that by doing so, a modification in the architecture might be required to
deal with the overfitting that having more classes could originate.

The leakage detection also involves a way to analyze graphically where the leak is
located. Having computed the statistical moments using even Welch’s t-test or Pear-
son’s χ2-test, a plot pointing out where the spikes exceed a fixed threshold is depicted,
showing what operation of the cryptographic algorithm is being compromised. This is
a particularly easy task for the statistical-based approaches. In the case of the learning
algorithm, dealing with the detection of the time sample where the leak happens is trick-
ier. Authors dealt with this by using sensitivity analysis [244]. By using this measure, it is
possible to backtrack the activated neurons until the most relevant time samples for the
classification task show up. Using this measure, it is still not possible to appreciate a p-
value that exceeds the threshold where the leakage happens as is the case for non-neural
network approaches. The only information that it brings is the time samples where the
leakage is located.

6

106
6. OVERVIEW OF RECENT APPLICATIONS OF DEEP LEARNING TO PROFILED

SIDE-CHANNEL ANALYSIS

A DEEP NEURAL NETWORK AS A SIDE-CHANNEL DISTINGUISHER

Timon in [92] presented the first non-profiled deep learning solution to attack protected
AES implementations. The trained deep neural network is used as a key distinguisher in
a non-profiled setting. For that, the authors train an identical deep neural network archi-
tecture for each key byte candidate. Separate training is then conducted based on train-
ing traces labeled according to the current key guess. In a divide-and-conquer strategy,
which is usually applied to AES, this analysis would require at least 256 training phases
to recover a single key byte. The authors demonstrated that the complexity is not too
high for some specific targets. However, besides the great contribution offered by this
paper, the complexity can easily escalate beyond control if training a single model for a
single key-byte candidate requires too much time.

DEEP LEARNING AGAINST PUBLIC-KEY IMPLEMENTATIONS

State-of-the-art public-key implementations, such as RSA or ECC-based protocols, are
nowadays protected with randomization techniques that make single trace attacks the
only feasible side-channel solution. These attacks are commonly referred to horizontal
attacks. In [245], the authors proposed a supervised single trace deep learning attack
on a real RSA target. Weissbart et al. in [246] applied CNNs to single trace EdDSA im-
plementations based on Curve25519. These two reported applications of deep learning
to public-key designs are supervised techniques and require the knowledge of random
blinding and secret variables to label the traces. As an example of a realistic scenario
application, the adversary would need to have access to the random number generator
in a chip to be able to label the single traces for training purposes. The main difference
from the application on symmetric cryptographic, where class probabilities from multi-
ple traces are combined in a summation probability for each key candidate, classifying
single traces resort again to conventional supervised classification metrics to analyze
the attack results. In [247], authors proposed a combination of horizontal attack to deep
learning techniques. Their proposed framework is able to break protected public-key
implementations with CNNs by assuming that an adversary is able to provide initial la-
bels (with a large amount of errors) to a trace set after applying an unsupervised hori-
zontal attack. In the end, the attack from [247] is kept unsupervised as no knowledge
about private key bits is assumed for the whole framework application.

6.8. SUMMARY AND PERSPECTIVES
This chapter described a general overview of state-of-the-art deep learning-based pro-
filed SCA. The main advantages of deep learning against traditional methods were de-
scribed. Important discussions about the correct usage of metrics in a deep learning-
based attack were addressed as well as the main concepts involving hyperparameters
tuning in the SCA domain.

The research on deep learning techniques for SCA still leaves several open questions.
The main challenge in profiled SCA is the ability of a trained model to generalize to dif-
ferent devices. In deep learning-based SCA, we suggest that this problem could be ad-
dressed with efficient regularization techniques able to understand the variations that
need to be applied to training traces to improve generalization.

The selection of an efficient metric for deep learning-based profiled SCA still poses

6.8. SUMMARY AND PERSPECTIVES

6

107

difficulties for security evaluators. As conventional deep learning metrics may be mean-
ingless in scenarios with SCA countermeasures, SCA metrics remain a solution. How-
ever, the calculation of guessing entropy or success rate during the training phase can
face complexity drawbacks, as these calculations can involve thousands of attack traces.
Therefore, interesting research could focus on defining efficient loss functions that are
based on SCA paradigms.

Finally, one of the main difficulties found by the SCA community in this domain is to
propose a non-profiled attack solution based on training a single deep neural network.
Autoencoders are usually suggested as unsupervised methods, however, their efficiency
for non-profiled SCA is still an open research question.

7
A COMPARISON OF WEIGHT

INITIALIZERS IN DEEP

LEARNING-BASED SIDE-CHANNEL

ANALYSIS

The usage of deep learning in profiled side-channel analysis requires a careful selection of
neural network hyperparameters. In recent publications, different network architectures
have been presented as efficient profiled methods against protected AES implementations.
Indeed, completely different convolutional neural network (CNN) models have presented
similar performance against public side-channel trace databases. In this work, we ana-
lyze how weight initializers’ choice influences deep neural networks’ performance in the
profiled side-channel analysis. Our results show that different weight initializers provide
radically different behavior. We observe that even high-performing initializers can reach
significantly different performances when conducting multiple training phases. Finally,
we found that this hyperparameter is more dependent on the choice of dataset than other,
commonly examined, hyperparameters. When evaluating the connections with other hy-
perparameters, the biggest connection is observed with activation functions.

The material in this chapter has appeared in:
Li, Huimin, Marina Krček, and Guilherme Perin. "A comparison of weight initializers in deep learning-based
side-channel analysis." Applied Cryptography and Network Security Workshops: ACNS 2020 Satellite Work-
shops, AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA, Rome, Italy, October 19–22, 2020, Proceed-
ings 18. Springer International Publishing, 2020.

109

7

110
7. A COMPARISON OF WEIGHT INITIALIZERS IN DEEP LEARNING-BASED SIDE-CHANNEL

ANALYSIS

7.1. INTRODUCTION
In recent years, there has been remarkable progress in the field of profiled side-channel
analysis (SCA) through the application of machine learning techniques. These tech-
niques have demonstrated great success, surpassing some of the classical attacks [77],
[248], such as Template Attacks[68]. Around a decade ago, machine learning algorithms
like SVM [249] and Random Forest [72], [237] represented the standard choice for ma-
chine learning-based SCA.

More recently, deep learning-based SCAs started when Maghrebi et al. demonstrated
the strong performance of several neural network types, most notably, CNNs [75]. De-
spite many successes, there are still many difficulties (and unanswered questions) when
training deep neural networks, especially those related to how to tune hyperparame-
ters. This tuning phase can highly influence the model’s performance, so it is important
to properly address the issue and have a good strategy for selecting the hyperparame-
ters. Hyperparameters are all those configuration variables external to the model, like
the number of hidden layers in a neural network. The parameters are the configuration
variables internal to the model and estimated from data (e.g., the weights in a neural
network).

As there are many hyperparameters and numerous possible combinations that can
be explored, selecting proper hyperparameters can be a very time-consuming process.
Researchers commonly approach this problem by selecting the hyperparameters they
deem relevant and then conducting a grid search. While such an approach works well
(as confirmed by successful attacks on various AES implementations), there are also po-
tential drawbacks. Most notably, grid search skips many possible values while limiting
the setup to only certain hyperparameters, completely disregarding other hyperparam-
eters’ influence. In [78], the authors proposed a methodology to select hyperparameters
that are related to the size (number of learnable parameters, i.e., weights and biases) of
layers in CNNs. This includes the number of filters, kernel sizes, strides, and the num-
ber of neurons in fully-connected layers. In [250], the authors conducted an empirical
evaluation for different hyperparameters for CNNs on the ASCAD database. Kim et al.
investigated how adding noise to the input (thus, serving as regularization) improves the
performance of profiled SCAs [8], which is a technique that can be used with any neural
network architecture.

In this work, we focus on the weight initialization strategies for CNNs in SCA, and we
explore their influence on the performance of the attacks. Thus, we investigate a hyper-
parameter, i.e., selecting different weight initializers directly responsible for the weights
parameter. Our experiments show that most of the weight initializers work well. More
precisely, there is a decent selection of weight initializers one can use in deep learning-
based SCA and expect good results. Next, our experiments show significant differences
concerning key rank results, as within one guessing entropy (GE) experiment, it is com-
mon to obtain both perfect attack and attack that does not work at all. Interestingly, our
results indicate that independent training phases result in significantly different GE per-
formances. This means that it is not enough to consider only one training experiment,
but one must conduct a proper statistical analysis for the training and testing phases. We
evaluate the evolution of weights and biases concerning the progress of epochs, and we
observe most changes in the Convolutional and Batch Normalization layers. In contrast,

7.2. BACKGROUND

7

111

the fully-connected layers (those responsible for classification) remain almost constant
throughout the training phase. Finally, we examine the connection between weight ini-
tializers and other hyperparameters, and we determine that the biggest influence comes
from the combination of activation functions and weight initializers. This indicates that
future experiments should consider both hyperparameters.

7.2. BACKGROUND

7.2.1. WEIGHT INITIALIZERS
Weight initializers are strategies for setting the initial values of a weight matrix for a
neural network layer. In the training phase during back-propagation, the weights in
the weight matrix are adjusted with the selected optimization algorithm. Commonly
used optimization algorithms are Stochastic Gradient Descent, RMSprop, and Adam
[88], which we use in our experiments. Here, we explore different weight initialization
strategies and how they impact the performance of deep learning-based SCA.

It is believed that neural networks are very sensitive to these initial weights [251]. Ini-
tially, when deep learning algorithms were first introduced, a common practice was to
initialize weights with Gaussian noise, setting the mean to zero and the standard devi-
ation to 0.01. However, this simplistic approach was not enough in effectively training
deep neural networks due to challenges such as vanishing gradients, exploding gradi-
ents, or dead neuron [251], [252], which significantly hindered further development. In
2010, Glorot and Bengio conducted a comprehensive analysis of these issues and pro-
posed a formula for weight initialization based on the number of input and output units
(neurons) [253]. Glorot initializer demonstrated excellent performance in many cases
and continues to be widely used today. In 2015, He et al. [254] put forward that Glorot
initializer does not work well with ReLU activation function, and extended the formula to
meet ReLU based neural networks through only using the number of input units and in-
creasing the scaling by

p
2. As more researchers dedicated themselves to studying weight

initialization, various other methods emerged. In general, these methods can be catego-
rized into two main groups: Zeros and Ones initialization, and Random initialization.

Zeros and Ones Initialization. With all weights initialized to 0 (1), all weights are the
same, and the activation in all neurons is also the same. That way, the loss function’s
derivative is the same for every weight in a weight matrix of a layer. When all weights
have the same value, in all iterations, this makes hidden layers symmetric. Every neuron
of the layer computes the same function, so the model behaves like a linear model.

Random Initialization. The weight matrix values in neural networks are typically ini-
tialized with random numbers selected from either a normal or uniform distribution.
However, random initialization can give rise to certain challenges, namely the issues of
vanishing and exploding gradients. In the case of vanishing gradients, the weight up-
dates become minor, leading to slower convergence during the training process. On the
other hand, with exploding gradients, large gradient values can cause oscillations around
the optimal solution, hindering effective optimization.

For deep networks, heuristics can be used to initialize the weights depending on the

7

112
7. A COMPARISON OF WEIGHT INITIALIZERS IN DEEP LEARNING-BASED SIDE-CHANNEL

ANALYSIS

nonlinear activation function. Heuristics set the normal distribution variance to k/n,
where k is a constant value that depends on the activation function, and n is the num-
ber of input nodes to the weight tensor or both input and output nodes of the weight
tensor. This is adjusted to a uniform distribution, which can be seen in the provided list
of initializers from Keras library [255]. While these heuristics do not entirely solve the
exploding/vanishing gradients issue, they help mitigate it to a great extent. Initializers
with explained heuristics are LeCun, Glorot/Xavier, and He initializers.

Different weight initializers available [256] in Keras are listed below with f an_i n be-
ing the number of input units in the weight tensor and f an_out the number of output
units in the weight tensor.

• Zeros: initializes all weights to 0.
• Ones: sets all weights to 1.
• Constant: allows us to specify a constant value for all weights, with the default

value being 0.
• RandomNormal: initializes weights using a normal distribution, with mean = 0,

stddev = 0.05.
• RandomUniform: assigns weights using a uniform distribution within the range

[−0.05,0.05].
• TruncatedNormal: Similar to RandomNormal, TruncatedNormal initializes weights

using a normal distribution, excepting that values more than two standard devia-
tions from the mean are discarded and redrawn.

• VarianceScaling: adapts the scale of weights based on their shape, default values
are scale = 1,mode = fan_in, and normal distribution.

• Orthogonal: generates a random orthogonal matrix for weight initialization. The
default multiplicative factor applied to the matrix is 1.

• Identity: produces an identity matrix as the initial weights, also with a multiplica-
tive factor of 1.

• lecun_uniform: employs a uniform distribution within the range [-limit, limit],
where the limit is calculated as sqrt(3/fan_in).

• lecun_normal: initializes weights using a truncated normal distribution centered
at 0, with a standard deviation calculated as stddev = sqrt(1/fan_in).

• glorot_normal: uses a truncated normal distribution centered at 0, with a standard
deviation calculated as stddev = sqrt(2/(fan_in+ fan_out)).

• glorot_uniform: employs a uniform distribution within the range [-limit, limit],
where the limit is sqrt(6/(fan_in+ fan_out)).

• he_normal: initializes weights with a truncated normal distribution centered at 0
with stddev = sqrt(2/fan_in).

• he_uniform: initializes weights using a uniform distribution within the range [-
limit, limit], where the limit is sqrt(6/fan_in).

7.3. EXPERIMENTAL SETUP
Algorithms used for these experiments are taken from [8] and [78], where CNN hyperpa-
rameters were fine-tuned specifically for each dataset the authors used. We vary avail-
able weight initializers in our experiments to investigate the performance difference ac-
cording to each weight initializer. All of the other hyperparameters are taken directly

7.3. EXPERIMENTAL SETUP

7

113

from the mentioned works. We have chosen these two architectures to represent the
top-performing models from related research. Additionally, these architectures differ in
size, allowing us to evaluate the impact of weight initializers on architectures of varying
complexity. We opt not to consider MLP as there are less "accepted" MLP architectures
in the literature, and the number of hyperparameters is more limited, which makes it
possible to include weight initialization in the hyperparameter tuning phase.

We will refer to CNN architecture as the Noise architecture for [8], and the Method-
ology architecture for [78]. For each architecture, two leakage models are used: Iden-
tity (ID) model [8], [78] and Hamming weight (HW) model [89], in which there are 256
classes and nine classes respectively corresponding to the output of neural networks. In
both architectures, hyperparameters are tuned with the ID model (as the original works
consider only ID model), but we use the same hyperparameters for the HW model.

Kim et al. [8] used glorot_uniform weight initializer, and Zaid et al. [78] used the
he_uniform weight initializer. In the last layer, [78] does not set weight initializer to
he_uniform, but instead, the default weight initializer is utilized, which is glorot_uniform.
We are not aware of this implementation’s motivation, so in our experiments, we vary
weight initializers in all layers, including the last layer with a Softmax activation func-
tion. This change causes a difference between our results with Methodology architecture
and ID leakage model compared to results presented in the work of Zaid et al. [78], as
shown later in Section 7.4.

We are not running experiments with Constant, VarianceScaling, Identity, and Or-
thogonal initializers from all available Keras weight initializers. Identity and Orthogonal
initializers are not actively used, and Constant and VarianceScaling correspond to Zeros
and lecun_normal, respectively, when using default values. We simulate ten times with
each initializer and average the results for comparison with other weight initializers.

To implement our experiments, we use the public source code provided on GitHub
by Zaid et al. [78] in Keras with Tensorflow backend [255]. The experiments in our work
are conducted using three publicly available datasets that consist of side-channel mea-
surements for the AES cipher. These three datasets were trimmed by Zaid et al. and also
listed in Github [78]. In this work, we also use the trimmed datasets. Following, we pro-
vide a brief description of these datasets and then present a detailed discussion of the
results for each dataset.

• DPAv4.2 dataset 1 is obtained from a masked AES software implementation [257].
Knowing the masked values, this dataset is easily converted into an unprotected
scenario. We attack the first round of the S-box operation and identify each trace
with Y (i)(k∗) = Sbox[P (i)

0 ⊕k∗]⊕M where P (i)
0 is the first byte of the i -th plaintext

and M is the known mask.

• AES_RD dataset 2 is obtained from an implementation on an 8-bit AVR micro-
controller with a random delay countermeasure [258]. This countermeasure shifts
each trace following a random variable of 0 to N [0]. The attack is on the first round
S-box operation, as in DPAv4.2 dataset, where traces are labeled as Y (i)(k∗) =
Sbox[P (i)

0 ⊕k∗].

1http://www.dpacontest.org/v4/42_traces.php
2https://github.com/ikizhvatov/randomdelays-traces

http://www.dpacontest.org/v4/42_traces.php
https://github.com/ikizhvatov/randomdelays-traces

7

114
7. A COMPARISON OF WEIGHT INITIALIZERS IN DEEP LEARNING-BASED SIDE-CHANNEL

ANALYSIS

• ASCAD dataset 3 is obtained from a masked AES-128 implementation on an 8-bit
AVR microcontroller introduced in [76]. The leakage model is the first round S-box
operation, such that Y (i)(k∗) = Sbox[P (i)

3 ⊕ k∗]. In contrast to the DPAv4.2 and
AES_RD datasets, the third byte is exploited (as this is the first masked byte).

7.4. EXPERIMENTAL RESULTS
This section shows the results for different weight initializers. We explore 1) how weight
initializers impact the performance of the utilized CNN architectures, 2) which one is the
best for a specific dataset and architecture, and 3) whether there is the best weight ini-
tializer for all datasets. As described in Section 7.3, we employ 11 weight initializers avail-
able in Keras and conducted experiments on the commonly used DPAv4.2, AES_RD, and
ASCAD datasets. For each dataset, we perform four experiments: utilizing the Methodol-
ogy architecture with the ID and HW models, as well as the Noise architecture with the
ID and HW models.

Recall, with Zeros and Ones initialization, the model is no better than a linear model.
In our experiments, we still choose to show the results with Zeros and Ones weight ini-
tialization to show that a linear model is not sufficient for considered problems. There,
all results show that GE is either staying at random guessing or increasing with Zeros and
Ones weight initialization. Consequently, when discussing the performance of weight
initializers, we usually ignore the performance of Zeros and Ones, as they never converge.

A good initializer is the one where GE decreases, preferably to zero, in the least num-
ber of traces, and is more stable, as observed from results from multiple independent
experiments. As such, those weight initializers where GE behaves similarly in multiple
experiments, we consider more stable than when this is not true. To get the best weight
initializer, we consider two additional metrics: speed and stability. We sort the averaged
GE value of all weight initializers to evaluate their "speed", and compare the consistency
in multiple experiments to obtain "stability". The key rank range shows the "best" GE
from 10 experiments to present the range from multiple performed attacks. The ”best”
GE is the one that reaches the lowest value, and if multiple GE results reach the same
minimum, then the one that reaches that value with fewer traces is considered better,
and we plot the key rank range for that experiment. The range is taken from the 100 at-
tacks that are executed for calculating the GE. Weights’ evolution figures show weights
for each layer, and the layers in the legend are ordered from the first input layer to the
last output layer of the neural network. We provide Table 7.1 as an overview of all exper-
iments and best initializers in each setup.

7.4.1. RESULTS FOR THE DPAv4.2 DATASET
As in [78], we use 4 000 traces for the training set, 500 traces for the validation set, and
500 for attacking the device. Each trace has 4 000 features. The GE rankings of the four
experiments are shown in Figure 7.1. In the two experiments with the Methodology ar-
chitecture (Figures 7.1a and 7.1b), most weight initializers perform similarly when the
weight initializer is varied, but RandomUniform is slightly faster in convergence and
more stable with both leakage models. With the Noise architecture and ID leakage model

3https://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD

7.4. EXPERIMENTAL RESULTS

7

115

Table 7.1: An overview of all experiments and best initializers in each setup.

Dataset Architecture Best initializer (ID/HW)

DPAv4.2 Methodology RandomUniform

Noise RandomUniform/RandomNormal

AES_RD Methodology he_normal/lecun_normal

Noise RandomUniform

ASCAD Methodology he_normal

Noise lecun_normal

(Figure 7.1c), the best weight initializer is RandomUniform, and with the HW model (Fig-
ure 7.1d), most weight initializers perform quite well, but we choose RandomNormal as
the best one.

(a) Methodology with ID. (b) Methodology with HW.

(c) Noise with ID. (d) Noise with HW.

Figure 7.1: Averaged GEs for all weight initializers with the DPAv4.2 dataset.

Figure 7.2 shows the key rank range for the best (Figure 7.2a) and the worst initializer
(Figure 7.2b) with the Noise architecture and ID model for the DPAv4 dataset when ignor-
ing the Zeros and Ones. While the GE is slowly converging with he_uniform initializer, in
Figure 7.2b, we can see significant differences in the key rank results from multiple per-
formed attacks within one guessing entropy experiment.

When looking at the weights’ evolution, we observe the change of weights and bi-
ases in every neural network layer in every epoch. We find that weights and biases
change in Convolutional layers and Batch Normalization layers, and other layers such as
dense layers do not exhibit much change. In the Methodology architecture, both weights,
and biases change significantly, while in the Noise architecture, only biases change, and
weights stay almost constant. According to the result, we can peek into the training pro-
cesses of the two architectures. The iterative processes of the two architectures are rad-

7

116
7. A COMPARISON OF WEIGHT INITIALIZERS IN DEEP LEARNING-BASED SIDE-CHANNEL

ANALYSIS

(a) RandomUniform. (b) he_uniform.

Figure 7.2: The key rank range of Noise architecture with ID model for decreasing GE in DPAv4.2 dataset.

ically different: in the Methodology architecture, both weights and biases are trained,
while in the Noise architecture, biases are the main training objects. This indicates that
the Noise architecture is more ”robust” as there is not much need for weight improve-
ment to reach strong attack performance. More precisely, there seems to be more weight
optima for the Noise architecture than for the Methodology architecture.

In the weights’ evolution for the DPAv4.2 dataset, the random initializers without
heuristics perform best for the Methodology ID setting and are very similar to Glorot
initializers. Weight initializers He and LeCun in this setting performed a bit worse, and
their weights’ evolution is also similar, but visually different from the weights’ evolution
of the other initializers. Similar weights’ evolution is seen with the HW model.

For the Noise architecture, in Figures 7.3a and 7.3b, we show weights’ evolution of
the best and worst initializer, respectively. It seems as the he_normal (Figure 7.3b) could
improve with more epochs and reach the performance of, at least, Glorot initializers.
Additionally, we show corresponding experiments of the same initializer to show their
stability in Figures 7.3c and 7.3d. Here, both are stable: RandomUniform is performing
well, and he_normal consistently has a slow convergence. This is again visible through
weights’ evolution because the weights and biases’ variance is not large. The perfor-
mance of different weight initializers with both architectures and models on the DPAv4.2
dataset is quite similar, and most of the initializers reach GE of zero.

Lastly, we run experiments with the Methodology architecture with both leakage mod-
els to explore the influence of the weight initializer in the last fully-connected layer, sim-
ilar to [78]. More precisely, we keep all hyperparameters of the two experiments except
that the setting of the last layer in the neural network is the same as paper [78]. The
results for the two experiments show that it has no impact on the outcome, and the per-
formances of all the weight initializers in the ID and HW model are almost the same.

7.4.2. RESULTS FOR THE AES_RD DATASET

AES_RD dataset is a protected implementation, where adding random delays to the nor-
mal operation of AES makes it more difficult to conduct attacks as features are mis-
aligned. The dataset consists of 50 000 traces of 3 500 features each, where 20 000 traces
are used for the training set, 5 000 for the validation, and 25 000 for the attack set. The GE
rankings for the AES_RD dataset are illustrated in Figure 7.4. By observing all weight ini-
tializers’ speed and stability, we get the best weight initializers in all scenarios: he_normal,
lecun_normal, RandomUniform, and RandomUniform, respectively.

7.4. EXPERIMENTAL RESULTS

7

117

(a) Weights’ evolution of RandomUniform. (b) Weights’ evolution of he_normal.

(c) Experiments with RandomUniform. (d) Experiments with he_normal.

Figure 7.3: Weights’ evolution and experiments with Noise ID setting on the DPAv4.2 dataset.

Like the DPAv4.2 dataset, weights and biases change mostly in Convolutional lay-
ers and Batch Normalization layers, but not in other layers. We can also see that in the
Methodology architecture, both weight and bias change significantly, while in the Noise
architecture, only biases change, and weights remain almost constant.

Figures 7.5a and 7.5b display the best and the worst initializer respectively in weights’
evolution for the Methodology architecture on the AES_RD dataset. The difference in the
initializers’ performance stems from their stability because all reach GE equal to zero in
several of ten simulations, which can be seen in Figures 7.5c and 7.5d. The stability of
the weight initializer is also seen in the weights’ evolution. Since we show the mean of
the weights and the range for the ten simulations: the more the weights’ evolution varies,
the more GE is also likely to vary.

Finally, we investigate the weight initializer’s influence in the last dense layer for the
Methodology architecture. All hyperparameters are the same, except for the weight ini-
tializer in the last layer, which is set as default, according to the settings in paper [78].
The new results show that the change in the last layer also does not have a big effect on
the initializer’s stability, but it impacts the speed. With the HW model, the convergence
for all weight initializers is slower. The best weight initializers for ID and HW models are
he_normal and lecun_normal, respectively.

7.4.3. RESULTS FOR THE ASCAD DATASET

Next, we compare the performance of different weight initializers for the ASCAD dataset.
We use the ASCAD dataset with 60 000 traces of 700 features without desynchronization.
The dataset is divided into 45 000 training traces, 5 000 validation traces, and 10 000 at-

7

118
7. A COMPARISON OF WEIGHT INITIALIZERS IN DEEP LEARNING-BASED SIDE-CHANNEL

ANALYSIS

(a) Methodology with ID (b) Methodology with HW

(c) Noise with ID (d) Noise with HW

Figure 7.4: Averaged GEs for all weight initializers with the AES_RD dataset.

tack traces. In Figure 7.6, we show the GE rankings. In the experiment with the Method-
ology ID setting (Figure 7.6a), increasing the number of attack traces leads to an increase
of the GE for the correct key byte, even with he_uniform, which was used in paper [78] in
all layers except for the last layer. By comparing the stability, we get that he_normal is the
best one. We observe that the GE value of weight initializers with heuristics converges to
zero with the HW model (Figure 7.6b). he_normal is the fastest one. In the setting with
the Noise architecture (Figures 7.6c and 7.6d), the best weight initializers, lecun_normal,
can be easily chosen by observing the speed.

Figure 7.7 shows the key rank range for he_normal initializer where GE reached zero
(Figure 7.7a), and RandomUniform where GE increases with an increased number of
traces (Figure 7.7b). Again, we see that even when the GE is increasing, some key rank
results are showing perfect attacks.

Then, we observe the weights and biases change of every layer throughout the epochs.
Like the previous two datasets, weight and bias change mostly in the Convolutional lay-
ers and Batch Normalization layers, but not in other layers. Once again, it can be seen
that in the Methodology architecture, both weights and biases change significantly, while
for the Noise architecture, only biases change and weights are almost constant.

In Figure 7.8, we show the weights’ evolution of the best initializer (Figure 7.8a) and
average performing one (Figure 7.8b). The corresponding experiments are shown in Fig-
ures 7.8c and 7.8d for the Noise architecture and the HW model. In these experiments,
the worst initializer, RandomUniform (see Figure 7.6d), performed similarly to Zeros and
Ones, as in every experiment, GE was increasing.

Finally, to explore the influence of weight initializers in the last layer, we run exper-
iments with the Methodology architecture, using all the hyperparameters of the two ex-
periments except the setting of the last layer in the neural network. Like [78], the weight
initializer of the last layer is a default one. The new results show that the weight initializer

7.5. WEIGHT INITIALIZER INFLUENCE ON OTHER HYPERPARAMETERS

7

119

(a) Weights’ evolution of he_normal. (b) Weights’ evolution of RandomUniform.

(c) Experiments with he_normal. (d) Experiments with RandomUniform.

Figure 7.5: Weights’ evolution and experiments with Methodology ID setting on the AES_RD dataset.

has a significant influence on the outcomes. In the experiments with the Methodology ID
setting, the average GE values of all weight initializers (except Zeros and Ones) decrease,
but there is a difference in the stability of the initializers. The best weight initializer is
he_normal. With the Noise architecture, the average GE values of all weight initializers
increase. The best weight initializer is lecun_uniform, since, for two out of ten simula-
tions, GE converged to zero.

7.5. WEIGHT INITIALIZER INFLUENCE ON OTHER HYPERPARAM-
ETERS

Based on the best weight initializers that we find to provide better performance for spe-
cific neural network architectures and datasets, we now analyze whether a weight ini-
tializer’s performance depends on its combination with other hyperparameters or if a
weight initializer method is connected to the dataset itself. In other words, we wish to
understand if the selection of weight initializers is optimal for a restricted group of hyper-
parameters or if it is more dependent on the nature of the side-channel traces, meaning
that any small variations on hyperparameters would still lead to a successful attack in
the majority of tests.

We select the Methodology CNN architecture used in the previous sections and make
small variations in their hyperparameters to investigate the influence on the best-found
weight initializer. To do this analysis, we select the ASCAD dataset. For this dataset and
the Methodology CNN architecture, we find that he_normal weight initializer provides
better results. Table 7.2 shows the ranges of hyperparameters that we vary in different
CNN training phases. In total, we train 400 CNNs, and we use the HW leakage model.

7

120
7. A COMPARISON OF WEIGHT INITIALIZERS IN DEEP LEARNING-BASED SIDE-CHANNEL

ANALYSIS

(a) Methodology with ID. (b) Methodology with HW.

(c) Noise with ID. (d) Noise with HW.

Figure 7.6: Averaged GEs for all weight initializers with the ASCAD dataset.

(a) he_normal. (b) RandomUniform.

Figure 7.7: The key rank range of Methodology architecture with HW model for decreasing and increasing GE
in ASCAD dataset.

Table 7.2: Hyperparameter variations in the Methodology architecture.

Hyperparameters Original Minimum Maximum Step

Filters 4 4 8 1

Kernel Size 1 1 4 1

Neurons 10 5 15 1

Layers 2 2 3 1

Learning Rate 5e-3 1e-3 1e-2 1e-4

Mini-Batch 100 100 400 100

Activation function (all layers) SELU ReLU, Tanh, ELU, or SELU

Figure 7.9 shows that Tanh is the only activation function that does not provide suc-
cessful key recovery in any of the experiments. For the ReLU, ELU and SELU activation
functions, the different trained CNN architectures can return low GE.

Concerning the number of filters in the single convolution layer of this architecture,

7.5. WEIGHT INITIALIZER INFLUENCE ON OTHER HYPERPARAMETERS

7

121

(a) Weights’ evolution of lecun_normal. (b) Weights’ evolution of he_normal

(c) Experiments with lecun_normal (d) Experiments with he_normal

Figure 7.8: Weights’ evolution and experiments with Noise HW setting on the ASCAD dataset.

Figure 7.9: Activation functions and GE.

the usage of four filters tends to maximize the attack’s success, as demonstrated in Fig-
ure 7.10. Increasing the filter size decreases the probability of the attack to be successful.
Regarding kernel sizes, we observe that small variations on this hyperparameter do not
significantly affect the results. In Figure 7.11, for kernel sizes varying from 1 to 4, the
density of low GE values is similar in all the cases.

Finally, we also observe that making small variations in the number of layers and
neurons also does not provide too much effect on the final GE. As shown in Figures 7.12a
and 7.12b, more layers, and more neurons tend to provide a subtle increase in the con-
centration of low GE values. These variations are insufficient to assume that the combi-
nation of architecture hyperparameters and weight initializer strictly depends on a spe-
cific number of layers and neurons.

We also do not observe a significant effect on the final GE results for different mini-
batch sizes (from 100 to 400) and different learning rates (from 0.001 to 0.01). There-

7

122
7. A COMPARISON OF WEIGHT INITIALIZERS IN DEEP LEARNING-BASED SIDE-CHANNEL

ANALYSIS

Figure 7.10: Filters and GE.

Figure 7.11: Kernel sizes and GE.

(a) Layers and GE. (b) Neurons and GE.

Figure 7.12: Different layers and neurons variations and their relation to final GE results.

fore, the main conclusion of this analysis is that the choice of a weight initializer for
the Methodology CNN architecture (when using the ASCAD dataset with the Hamming
weight model), depends mostly on the activation function rather than the rest of hyper-
parameters. However, for this scenario, a more precise conclusion would be to assume
that for a specific dataset (and leakage model), there is an optimal combination of ac-
tivation function and weight initializer. Weight initializers with heuristics are derived
based on certain assumptions about the activation functions. For example, the Glorot
initializer assumes that the activations are linear. This assumption is not valid for ReLU
activation functions, so He et al. [254] derived a new initialization method, and it allowed
their deep models to converge as opposed to the Glorot initialization method. Therefore,
we see that weight initializers are closely related to activation functions, which supports
our conclusion.

7.6. SUMMARY

7

123

7.6. SUMMARY
In this chapter, we evaluate the influence of the weight initializer choice on the perfor-
mance of CNNs in the profiled side-channel analysis. We consider 11 weight initializ-
ers, three datasets, two leakage models, and two CNN architectures. We evaluate the
weight initializer performance by observing GE, the stability of results, and the evolu-
tion of weights through the training process.

Our results show that when the dataset is easy to attack, such as DPAv4.2, it is not
important what weight initializer to use. Going toward more difficult datasets, such as
AES_RD and ASCAD, we observe more influence stemming from this selection. Interest-
ingly, we see that specific key rank experiments can behave extremely well or extremely
badly from the GE results. What is more, we see significant differences in individual
training processes, which means that weight initializers play a significant role in the
training process, and it is necessary to run multiple training phases (and not only at-
tacks to obtain GE). Next, most of the changes in weights happen in the Convolutional
and Batch Normalization layer, while we observe almost no change in weights in dense
layers. Finally, we analyze the interconnection between weight initializers and other hy-
perparameters. Our results show a strong connection with activation functions and only
marginal connection to other commonly explored hyperparameters. This is supported
by the fact that the weight initializers with heuristics are designed based on certain prop-
erties of activation functions. However, more experiments could further support this
observation. Mathematical explanations of weight initialization strategies were out of
scope for this work, but this is an interesting and broad research topic that contributes
to a deeper understanding of the deep learning models. Our experimentation was pri-
marily focused on three software datasets as mentioned above. The methodology and
approach we employed in evaluating weight initializers remain applicable regardless of
the dataset used in deep learning-based SCA. Therefore, expanding our work to incor-
porate additional datasets, including hardware ones, would be a natural progression of
our research.

8
A SYSTEMATIC STUDY OF DATA

AUGMENTATION FOR PROTECTED

AES IMPLEMENTATIONS

Side-channel analysis (SCA) against cryptographic implementations is mitigated by the
application of masking and hiding countermeasures. Hiding countermeasures attempt to
reduce the Signal-to-Noise Ratio (SNR) of measurements by adding noise or desynchro-
nization effects during the execution of the cryptographic operations. To bypass these pro-
tections, attackers adopt signal processing techniques such as pattern alignment, filter-
ing, averaging, or resampling. Convolutional neural networks have shown the ability
to reduce the effect of countermeasures without the need for trace preprocessing, espe-
cially alignment, due to their shift invariant property. Data augmentation techniques
are also considered to improve the regularization capacity of the network, which improves
generalization and, consequently, reduces the attack complexity. In this chapter, we de-
ploy systematic experiments to investigate the benefits of data augmentation techniques
against masked AES implementations when they are also protected with hiding counter-
measures. Our results show that, for each countermeasure and dataset, a specific neural
network architecture requires a particular data augmentation configuration to achieve
significantly improved attack performance. Our results clearly show that data augmenta-
tion should be a standard process when targeting datasets with hiding countermeasures
in deep learning-based side-channel analysis.

The material in this chapter has appeared in:
Li, Huimin, and Guilherme Perin. "A Systematic Study of Data Augmentation for Protected AES Implementa-
tions." Cryptology ePrint Archive (2023). (Under peer review)

125

8

126
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

8.1. INTRODUCTION
Side-channel analysis (SCA) represents a realistic threat to electronic systems processing
confidential information. SCA is a non-invasive attack that targets assets such as keys
from cryptographic modules in software or hardware implementations. These crypto-
graphic implementations are present in chips applied to the Internet-of-Things, pay-
ment, automotive, and content protection industries, just to name a few. SCA is con-
ducted by monitoring physical side-channel information that is unintentionally leaked
by electronic circuits, such as power consumption, electromagnetic emissions, and ex-
ecution time. The leaked information might be statistically related to the confidential
data being processed by the circuit, such as cryptographic keys.

SCA is divided into two main categories: no-profiled attacks, or direct attacks, such
as differential power analysis (DPA) [4] or correlation power analysis (CPA) [66] that ex-
ploit the statistical relation between side-channel measurements and secret informa-
tion, and two-step or profiled attacks [68]. In those attacks, a profiling model is learned
from side-channel information collected from an open target, and this model is later
used to retrieve secret information from a victim’s device. This way, profiled attacks fol-
low a supervised learning strategy, and for this reason, recently, deep neural networks
have been widely considered for profiled attacks [259] due to their practical advantages
in comparison to previous techniques such as Gaussian Template Attacks (TAs) [68].

To mitigate SCA, manufacturers implement countermeasures that aim at breaking
the statistical relation between side-channel information and secret keys. Two main
types of countermeasures are typically applied: masking and hiding. Masking coun-
termeasures add random values (i.e., masks) to sensitive bytes during cryptographic ex-
ecutions. The main goal of hiding countermeasures is to reduce the SNR of side-channel
measurements by intentionally adding noise to the circuit. The most common hiding
countermeasures methods are noise generators, e.g., parallel circuits that produce sig-
nificant power consumption to hide the power consumption of sensitive operations, and
desynchronization, e.g., random delays that shift the target operation in time. Desyn-
chronization efficiently protects cryptographic implementations because SCA methods
such as DPA or TAs require side-channel measurements aligned in the time domain.

When dealing with hiding countermeasures, a standard SCA procedure is to apply
signal processing to remove noise with filtering, averaging, or resampling. To bypass
desynchronization, techniques such as static or dynamic alignment [221] are common
solutions. Although post-signal processing tends to improve SCA results, the process
faces several limitations, especially the large time overheads in side-channel evaluations,
the requirement for costly and specialized equipment, and, in some cases, the inability
to successfully conduct signal processing over raw measurements due to stronger hid-
ing countermeasures. CNNs have shown promising results in bypassing desynchroniza-
tion protections [77], [260]. Convolution blocks, typically composed of a combination
of convolution and pooling layers, provide a shift-invariant property that makes CNN
less sensitive to side-channel trace misalignment, especially when used as a profiling
model. One way to further improve the robustness of a CNN against trace misalign-
ment is by training the model with data augmentation. Data augmentation is an explicit
regularization technique that increases training data size by generating additional syn-
thetic data during training. Essentially, in SCA, what a data augmentation process does

8.2. BACKGROUND

8

127

is reproduce the effect of existing hiding countermeasures from measured side-channel
traces. This way, the augmented training set tends to represent a better sample of the
true (and unknown) leakage distribution of side-channel traces. This process improves
CNN generalization as the model has fewer chances to overfit the training data.

Although data augmentation is a well-known method to cope with hiding counter-
measures in side-channel measurements [77], [261], it is not clearly answered how to
implement data augmentation for specific targets or datasets properly and what is the
best augmentation configuration. For instance, to reduce the protective effect of desyn-
chronization, one tries to create a data augmentation process that randomly shifts the
training set at each training epoch. Still, knowing the ideal amount of trace samples to
shift for a certain trace set has been unanswered so far. Moreover, the required number
of augmented data that provides the best results was never investigated. In this work, we
provide results showing that each specific neural network architecture requires a par-
ticular data augmentation configuration, which makes the problem even more compli-
cated. The same also applies to hiding countermeasures based on additive (Gaussian)
noise.

In this chapter, we focus on profiled SCA and verify to what extent data augmentation
suppresses the protective effects of hiding countermeasures. We skip signal processing
and rely solely on the regularization and generalization ability of CNNs to deal with noisy
datasets. We perform a systematic data augmentation analysis by deploying an analy-
sis methodology that identifies the best data augmentation strategy for a given dataset
containing specific hiding countermeasures. Our results demonstrate that each neural
network architecture and dataset require a specific data augmentation strategy. Inter-
estingly, with the correct data augmentation configuration, we can turn an inefficient
CNN that does not recover the key (with a given number of attack traces) into a success-
ful CNN model that recovers the correct key with state-of-the-art results. Moreover, the
performance of CNN models with the best data augmentation configuration found with
our analysis methodology is the best reported in the literature so far with higher levels of
trace desynchronization. For the ASCAD dataset, we can successfully recover the key with
less than 50 attack traces when the desynchronization level is up to 200 sample points.
For the DPAv4.2 dataset, our best CNN model with the best data augmentation con-
figuration recovers the key with a single attack trace when the desynchronization level
is up to 150 sample points. Our analysis indicates that data augmentation should be a
standard process when evaluating cryptographic implementations with hiding counter-
measures in the context of profiled SCA when using deep learning (DL) techniques.

8.2. BACKGROUND

8.2.1. DATA AUGMENTATION

In the deep learning community, data augmentation is considered in state-of-the-art ap-
plications, such as image classification [262]–[264]. It refers to the process of increasing
the size of the training set by artificially generating additional training data with dynamic
changes during the training of a model. These changes must preserve the class proper-
ties of the training set. The training set represents an approximate distribution, given by
a finite set T , from a true and unknown distribution R. By augmenting the training set

8

128
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

T , one expects that the T becomes a better representation of R. A deep neural net-
work becomes less prone to overfit the training data by following a data augmentation
process. Among other regularization techniques such as weight decay, dropout, batch
normalization, and transfer learning [263], [265], data augmentation is an alternative
and efficient way to reduce overfitting.

To achieve this goal, data augmentation settings need to be carefully chosen. How-
ever, conventionally data augmentation involves many manual or random choices. The
main idea is to improve class representation inside of a dataset. For that, it is important
to understand what kind of effect the augmentation process needs to develop. For in-
stance, when training a convolution neural network to be as shift-invariant as possible
concerning images, adding rotation, shifts, resizing, or re-scaling improves the number
of examples with image variations. On the other hand, inappropriate choices of data
augmentation settings probably lead to no effect or even detrimental effect [262], [266].
To skip the manual augmentation process, different techniques have been proposed in
deep learning literature. In [266], the authors proposed a procedure called AutoAug-
ment to automatically search for the best data augmentation setting from training data
properties. Later, the authors proposed a new strategy called Randaugment [267]. Ran-
daugment greatly reduces the computational expense of automated augmentation by
simplifying the search space. Ultimately, these automated data augmentation processes
require optimization algorithms such as reinforcement learning.

8.2.2. DATASETS

In our experiments, we consider two publicly available software masked AES datasets.

ASCAD DATASET

ASCAD database [76] provides side-channel measurements collected from different soft-
ware AES implementations: AES protected with first-order Boolean masking running on
an 8-bit Atmega device 1, and AES protected with Boolean, affine, and shuffling run-
ning on a 32-bit STM32 platform 2. The former is considered in our experiments, and it
contains two main trace sets: (1) trace set with 60 000 traces, where each power measure-
ment contains 100 000 sample points, and all traces contain the same fixed key, and (2)
trace set with 300 000 traces, each measurement containing 250 000 sample points, with
first 200 000 containing random keys and the remainder 100 000 containing a fixed key.
We consider this last dataset with 300 000 measurements, hereby called ASCAD. In our
experiments, we take the trimmed version of ASCAD, which contains 1 400 sample points
per trace and represents the power consumption of the third key byte j (j ∈ [0,15]) of the
S-Box output in the first encryption round. Therefore, each trace xi is labeled accord-
ing to yi = S-Box(d2 ⊕k2) when we consider the ID model or yi = HW (S-Box(d2 ⊕k2))
when we apply the HW model. We use 200 000 traces for training, 5 000 for validation,
and another 5 000 as the attack set.

1https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
2https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2

8.3. RELATED WORKS

8

129

DPAv4.2 DATASET

The DPAcontest v4.2 dataset (DPAv4.2) 3 is the second implementation available in the
DPAcontest v4. It is an improved version implemented in software on an 8-bit Atmel
ATMega-163 smart card and corrects several leaks identified in its previous generation.
This dataset represents the power consumption of the first AES encryption round, and
the AES implementation is protected with RSM (Rotate S-box Masking). The dataset
contains a total of 80 000 traces, and each of them contains 1 704 402 sample points. In
our experiments, we trim the dataset to the interval representing the processing of the
twelfth S-box byte j (j ∈ [0,15]), resulting in 2 000 samples per trace. We use 70 000
traces for training (which contains 14 different keys), 5 000 for validation, and another
5 000 as the attack set. Each trace xi is labeled according to yi = S-Box(d11 ⊕k11) when
we consider the ID model or yi = HW (S-Box(d11 ⊕k11)) when we apply the HW model.

8.3. RELATED WORKS
Data augmentation has been widely applied to the SCA context. In [77], data augmen-
tation was considered to mitigate trace desynchronization effects caused by jitter ef-
fects. The results showed significant improvements in profiling attacks when compared
to Gaussian TAs. In that case, the authors applied two customized data augmentation
techniques based on shift deformation and add-remove deformation of side-channel
measurements. In [8], the authors considered a regularization technique that artificially
adds Gaussian noise to the training set. Results showed significant key recovery improve-
ments in the attack phase. Although this process only modifies the existing training set
without augmenting the training set during model training, we still consider this work
as data augmentation due to the modifications applied to input traces. In [237], the au-
thors applied SMOTE, a data augmentation technique to suppress imbalanced dataset
limitations. The authors of [268] applied mixup [269] technique for data augmentation.
Mukhtar et al. [270] considered Generative Adversarial Networks (GANs) and Siamese
networks to generate new side-channel traces for data augmentation. While this ap-
proach works well, due to its black-box character, it becomes more difficult to evaluate
the effect of a specific change. In [247], the authors demonstrated that data augmenta-
tion based on random shifts could act as a strong regularizer for label correction in an
iterative framework.

In the context of SCA, data augmentation essentially solves three main problems:
(1) it suppresses the lack of training data for better class representations (also to sup-
press class imbalance) [270], (2) it augments the training set to cover the effects of ex-
isting hiding countermeasures better (e.g., cover a wider range of trace shift positions
due to misalignment or jitter) [77], and (3) it regularizes the model to prevent overfit-
ting [238]. For SCA, data augmentation also creates an adversarial training effect [271]
on the model [272]. Indeed, hiding countermeasures that are expected to be presented in
side-channel measurements collected from the target device contain modifications (e.g.,
desynchronization, additive noise) that aim at perturbing the prediction of the trained
model. Training with data augmentation leads to a model that is more robust to unseen
modifications that can exist in measurements from different targets.

3https://www.dpacontest.org/v4/42_doc.php

https://www.dpacontest.org/v4/42_doc.php

8

130
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

However, it is still an open question of how to customize a data augmentation for
a specific dataset. More specifically, for each considered hiding countermeasure, data
augmentation requires defining optimal configuration hyperparameters. In Section 8.4,
we provide an analysis methodology to evaluate this open question, and in Section 8.5,
we provide experimental results for different datasets.

8.4. ANALYSIS METHODOLOGY
In this section, we present the analysis methodology employed in our experiments. The
proposed methodology utilizes a grid search approach to determine the optimal data
augmentation settings for specific countermeasures present in side-channel measure-
ments.

In a deep learning-based profiling SCA application, the main goal is to train a deep
neural network f (L ,θ,T), defined by a set of parameters θ, with a training set T =
(Xtr ai n ,Ytr ai n), to minimize the loss function L . The trained neural network, or simply
model, is validated with a separate validation set of size V , V = (Xval ,Yval) by mea-
suring the validation loss value. We refer to the guessing entropy (GE) of the correct
key byte candidate as ge∗. Another metric to verify the performance of a trained model
f (L ,θ,T) against a validation set V is by obtaining the minimum size of V (i.e., the min-
imum number of validation traces) that are necessary to achieve ge∗ = 0 (which means
that the correct key byte candidate has the lowest GE among all key byte candidates),
which we refer as Nge∗=0.

The analysis starts by taking clean side-channel traces, i.e., raw side-channel mea-
surements, where we assume hiding countermeasures such as noise and desynchro-
nization are not active to protect the underlying device under test. Obviously, as we
are dealing with real side-channel measurements, some level of noise is still present.
However, the SNR is sufficiently high to assume that side-channel measurements con-
tain irrelevant noise. Hiding countermeasures are artificially emulated by adding either
Gaussian noise or desynchronization to the raw measurements. This is done by choos-
ing different hiding countermeasures hyperparameters such as standard deviation for
the added Gaussian distribution and the maximum number of shifted samples in side-
channel traces in case of resynchronization.

Next, we perform the hyperparameter search to find the best possible CNN mod-
els that can recover the target key in a profiling attack scenario, even in the presence
of added hiding countermeasures. Table 8.1 shows the hyperparameter options from
where each CNN model is randomly configured during the search. In case when the
best-found neural network is not capable of successfully retrieving the key (i.e., Nge∗=0 >
V), the best model will be the one that presents lower GE. This analysis will serve as a
baseline comparison for the experiments with data augmentation. Note that the early
stopping process is not considered during the hyperparameter search process. To even-
tually implement early stopping, we would have to set an early stopping metric such
as GE, which would add significant overheads to the search process. Therefore, every
model is trained for a total of 100 epochs, as this number of epochs is in accordance with
related works [76], [273], [274] and, for a majority of cases, enough to find a CNN model
with Nge∗=0 ≤V .

After the random search process, we search for the best data augmentation config-

8.4. ANALYSIS METHODOLOGY

8

131

uration. We start from the best-found CNN models obtained with the hyperparameter
search, and we train these models from scratch with data augmentation by considering
a grid of different hyperparameters. For that, we consider the data augmentation that
implements the same effects provided by the given hiding countermeasure. This way,
data augmentation involves applying Gaussian noise to training data or desynchroniza-
tion. For the Gaussian noise case, we test different standard deviations to see if there is
an optimal value that provides better performance. In the same scope, we test different
desynchronization levels, i.e., the maximum number of randomly selected shifted sam-
ples in side-channel traces during model training. The idea is again to identify if, for a
given desynchronization provided by hiding countermeasures, there is an optimal range
of sample shifts for data augmentation. We also evaluate if there is a minimum number
of augmented traces that provide better results. For that, we train the best-found CNN
models with different numbers of augmented traces added to the original training set.

To summarize, our methodology implements four main steps:

1. Add hiding countermeasures to the raw side-channel measurements.

2. Deploy random hyperparameter search to identify the best CNN model for each
hiding countermeasure scenario (the hyperparameter range is in Table 8.1).

3. Investigate the best data augmentation hyperparameters (e.g., standard deviation
or maximum trace shifts) through a grid search.

4. Investigate the minimum number of augmented side-channel traces during neu-
ral network training that improves CNN performance.

8.4.1. ADDING HIDING COUNTERMEASURES
We emulate hiding countermeasures on raw side-channel traces. We explore two cases:
desynchronization and Gaussian noise. Desynchronization emulates the effect of hiding
countermeasures aimed at providing trace misalignment. The Gaussian noise emulates
the effect of additive noise provided by the target to reduce the SNR of measurements.
For that, we define the following hyperparameters:

• δhi d : maximum number of trace sample shifts. The shifts that are applied to
each measurement are drawn from a normal distribution with a mean equal to
δhi d /2. The blue lines in Figures 8.1a and 8.1b refer to the distribution of shifts
when δhi d = 25 and δhi d = 200, respectively. In the ASCAD dataset [76], in addi-
tion to the original traces extracted without modification that we are utilizing here,
the authors have also included two additional databases with traces intentionally
desynchronized with maximum windows of 50 samples and 100 samples, respec-
tively. While the option to use these modified databases is available, our current
study focuses solely on the original traces as we aim to manipulate the sample
shifts manually.

• σhi d : standard deviation considered to define a Gaussian distribution from where
we obtain a noise trace that is added to raw measurements. The mean of the
distribution is zero. Figures 8.2a and 8.2b show the SNR analysis for the ASCAD

8

132
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

Table 8.1: Hyperparameter variations in the CNN architecture.

Hyperparameters Options

neurons {20, 40, 50, 100, 150, 200, 300, 400}

batch_size {100, 200, 400}

layers {1, 2}

filters {4, 8, 12, 16}

kernel_size {10, 20, 30, 40}

strides {5, 10, 15, 20}

pool_type {"Average", "Max"}

pool_size 2

conv_layers {1, 2, 3, 4}

activation {"elu", "selu", "relu"}

learning_rate
{0.005, 0.0025, 0.001, 0.0005, 0.00025,

0.0001, 0.00005, 0.000025, 0.00001}

weight_init
{"random_uniform", "he_uniform",

"glorot_uniform", "random_normal",
"he_normal", "glorot_normal"}

optimizer {"Adam", "RMSprop"}

(a) Trace desynchronization distribution for different values of δaug
when measurements contain desynchronization of δhi d = 25.

(b) Trace desynchronization distribution for different values of δaug
when measurements contain desynchronization of δhi d = 200.

Figure 8.1: Trace desynchronization distribution for different values of augmentation shifts [−δaug ,δaug].

and DPAv4.2 datasets without adding Gaussian noise. We can see that the max
value for the ASCAD dataset is 1.52 when SNR is computed for the intermediate
v = S −Box(d2 ⊕k2)⊕m2. The max value for the DPAv4.2 dataset is 4.14 when the
intermediate is v = S −Box(d12 ⊕k12)⊕m12. When the Gaussian noise counter-
measure is added to these two datasets, and the standard deviation σhi d changes
from 1 to 6, the max values reduce accordingly in Table 8.2. Note that SNR or in-
termediate variables are significantly reduced.

8.4. ANALYSIS METHODOLOGY

8

133

(a) SNR analysis for the ASCAD dataset without countermea-
sure for masked S-Box output and corresponding mask.

(b) SNR analysis for the DPAv4.2 dataset without counter-
measure for masked S-Box output and corresponding mask.

Figure 8.2: SNR analysis without countermeasure

Table 8.2: The max values change in SNR analysis for two datasets with Gaussian noise countermeasure. The
mean of the distribution is zero. The standard deviation σhi d changing from 1 to 6.

σhi d = 0 1 2 3 4 5 6

ASCAD

v = S-Box(d2 ⊕k2)⊕m2 1.52 1.21 0.79 0.51 0.38 0.30 0.25
v = m2 1.13 1.07 0.94 0.78 0.64 0.50 0.41

DPAv4.2

v = S-Box(d12 ⊕k12)⊕m12 4.14 3.74 2.89 2.13 1.55 1.15 0.87
v = m12 4.40 3.92 2.97 2.21 1.66 1.26 0.98

8.4.2. DATA AUGMENTATION HYPERPARAMETERS

For our analysis, the data augmentation strategy requires the definition of the following
hyperparameters:

• Augmented hyperparameter: this hyperparameter refers to the data augmenta-
tion type that is applied to training data. If the data augmentation type is Gaus-
sian noise, the statistical hyperparameter to be tuned is the standard deviation,
σaug , of the applied normal distribution with zero mean. In case the data aug-
mentation type is desynchronization, the statistical hyperparameter is the range
of shifts, [−δaug ,δaug], applied to the training data. We randomly shift each trace
to the left and to the right by randomly taking the shift value from a normal dis-
tribution with mean zero and minimum value being −δaug and maximum value
being δaug . Note that random shifts during data augmentation are always selected
from a normal distribution, and the mean of the distribution is zero. Figures 8.1a
and 8.1b illustrate the final desynchronization distributions after we apply the data
augmentation shifts to trace sets containing δhi d = 25 and δhi d = 200, respectively.
Note how the final distribution, given by δhi d + [−δaug ,δaug], provides a larger
range of possible trace shifts during the training phase. This larger range is more
salient when δhi d = 25 than δhi d = 200.

8

134
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

• Augmented traces per epoch: this hyperparameter refers to the number of aug-
mented training side-channel measurements that are generated for each epoch.
In this case, augmented traces are different as they are randomly generated for
each epoch. Note that the resulting training set consists of original traces plus
augmented ones.

8.5. EXPERIMENTAL RESULTS
In this section, we provide experimental results by applying our analysis methodology to
the two datasets described in Section 8.2.2.

8.5.1. DESYNCHRONIZATION COUNTERMEASURE

RESULTS FOR ASCAD DATASET WITH DESYNCHRONIZATION COUNTERMEASURE

Tables 8.3 and 8.4 provide results for the ASCAD dataset labeled with the ID model and
HW model, respectively. As specified by the table’s header, the training is always con-
ducted for the 200 000 traces plus the augmented traces. When the augmented traces
are denoted by 0 (third column of the table), we indicate the Nge∗=0 value (i.e., the num-
ber of attack traces required to reach ge∗ = 0) for the baseline model trained without
data augmentation.

Note that for each different δhi d value, the CNN architecture is different, and it is
obtained from a random search. Then we deploy a new training for this CNN model
by considering data augmentation with a different number of augmented traces (from
20 000 to 200 000 augmented traces - from 10% of the number of the original traces up to
100%). For each number of these augmented traces, the model is trained with a different
range of shifts [−δaug ,δaug]. We always set this value to ensure that δaug ≤ δhi d .

Results shown in Table 8.3 demonstrate the efficiency of data augmentation for dif-
ferent CNN architectures with the ASCAD dataset and the ID model. The Nge∗=0 value
obtained for the baseline model (third table column) is always higher than the lowest
value obtained with the best Nge∗=0 when data augmentation is active during training.
Specifically, the case when δhi d = 25 is very representative. When this CNN model is
trained without data augmentation, we obtain Nge∗=0 > 3000, indicating that this model
cannot successfully recover the key with less than 3 000 traces. When data augmenta-
tion with 120 000 augmented traces is applied during training (these traces are randomly
generated for each epoch), with δaug = 25, the correct key candidate is recovered with
only 39 traces. Moreover, when δhi d = 175, which indicates a more aggressive desyn-
chronization level, the baseline model without data augmentation still successfully re-
covers the correct key with 2 195 traces. However, after applying data augmentation with
180 000 augmented traces at each training epoch and [−δaug ,δaug] = [−87,87], the cor-
rect key is recovered with only 76 traces, which is a significant improvement. Finally,
when δhi d equals 200, at the highest level of trace desynchronization in our experi-
ments, we get Nge∗=0 = 304 for the baseline model and Nge∗=0 = 44 for augmentation
with [−δaug ,δaug] = [−12,12] and 180 000 augmented traces.

The results in Table 8.4 show the performance of different CNN models with differ-
ent data augmentation configurations when the ASCAD dataset is labeled with the HW
leakage model. We also first choose the best CNN model through a random search un-

8.5. EXPERIMENTAL RESULTS

8

135

Table 8.3: Number of attack traces to reach GE equal to 0. Results obtained with the ASCAD dataset with desyn-
chronization countermeasure and the ID model. Neural networks are trained with data augmentation by gen-
erating different augmented traces at each epoch.

200k original traces +
δhi d [−δaug ,δaug] 0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

25
[-6, 6]

> 3000
- - 444 94 623 84 97 1477 73 68

[-12, 12] - - 181 268 49 90 80 82 49 57
[-25, 25] - - 1952 62 - 39 59 77 59 54

50

[-6, 6]

114

- - - 96 377 77 44 64 51 55
[-12, 12] - 105 - 152 107 58 64 55 53 33
[-25, 25] - - - 119 - 74 41 62 113 92
[-37, 37] - - - - - 215 92 - 81 69

75

[-6, 6]

317

- 549 208 89 111 65 72 116 92 71
[-12, 12] - 271 157 120 76 66 86 103 103 90
[-25, 25] - 815 229 139 86 115 101 58 69 59
[-37, 37] - 302 286 179 116 121 51 71 71 100
[-50, 50] - 980 230 224 140 84 64 56 92 100

100

[-6, 6]

774

- - - - 1090 1172 859 358 481 251
[-12, 12] - - - - 350 362 317 553 370 305
[-25, 25] - - - - 825 370 479 275 351 378
[-37, 37] - - - 876 624 598 667 368 353 498
[-50, 50] - - - 1741 642 423 346 509 484 472
[-62, 62] - - - 761 634 333 496 645 254 688

125

[-6, 6]

252

228 148 124 149 119 160 104 121 143 118
[-12, 12] 183 143 129 80 50 88 104 120 100 58
[-25, 25] 182 84 75 105 91 65 89 84 97 112
[-37, 37] 175 122 79 122 55 139 122 109 64 87
[-50, 50] 447 158 97 95 63 91 73 82 66 98
[-62, 62] 327 182 88 123 64 80 107 92 70 48
[-75, 75] 162 249 82 97 83 75 106 99 75 78

150

[-6, 6]

1615

- 1002 738 378 903 339 230 335 462 378
[-12, 12] - 719 462 551 264 442 322 489 276 246
[-25, 25] - 1202 508 318 243 272 306 302 252 255
[-37, 37] - 1374 526 339 280 223 335 204 311 156
[-50, 50] - - 254 337 405 254 427 281 187 286
[-62, 62] - 653 322 277 248 354 197 276 248 286
[-75, 75] - 2117 861 302 273 229 355 184 162 238
[-87, 87] - 1008 - 345 279 195 298 396 218 173

175

[-6, 6]

2195

2168 412 491 244 286 248 293 602 300 228
[-12, 12] 1117 923 1136 324 234 183 284 319 157 198
[-25, 25] 1310 970 694 220 226 184 159 150 266 137
[-37, 37] 2068 894 978 333 199 173 127 146 131 162
[-50, 50] 2986 1167 1289 291 335 197 117 120 108 132
[-62, 62] 2787 1785 1365 161 254 202 260 183 237 107
[-75, 75] 2638 1802 662 462 279 248 114 129 103 86
[-87, 87] 1393 2995 698 673 213 217 175 128 76 104
[-100, 100] 2546 - 847 453 191 202 153 80 219 126

200

[-6, 6]

304

- - - - 282 176 222 87 69 107
[-12, 12] - - - - 220 246 106 54 44 74
[-25, 25] - - - 211 143 153 239 698 57 75
[-37, 37] - - - - 365 201 255 97 107 50
[-50, 50] - - - - 265 129 111 120 85 88
[-62, 62] - - - - - 165 203 106 69 68
[-75, 75] - - - - - - 179 68 94 73
[-87, 87] - - - - - 296 180 52 109 79
[-100, 100] - - - - - 176 146 371 59 -

8

136
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

der different δhi d without augmentation. Then, for each δhi d , we use the same CNN
model to conduct the training process with 200 000 raw traces plus a different number
of augmented traces. We can see the improvement from data augmentation since the
Nge∗=0 value obtained for the baseline model is higher than the lowest value obtained
with the best Nge∗=0 for different δaug in most cases. Take δhi d = 100 for example. We
get Nge∗=0 = 1898 when the CNN model is trained without augmentation. When aug-
mentation is implemented, the correct key candidate is recovered with fewer traces in
each δaug when the augmented trace number is greater than 40 000. For δhi d = 125, we
often use fewer traces for every δaug than the baseline model when the augmented trace
number is greater than 80 000. Moreover, we can see that augmentation works with even
higher desynchronization levels. When δhi d = 200, the baseline model recovers the cor-
rect key candidate with 2677 traces. By adding 120 000 traces at each training epoch and
[−δaug ,δaug] = [−50,50], we can recover the correct key with only 533 traces.

RESULTS FOR DPAv4.2 DATASET WITH DESYNCHRONIZATION COUNTERMEASURE

Tables 8.5 and 8.6 demonstrate results for the DPAv4.2 dataset with desynchronization
countermeasure adopted with the ID model and the HW model, respectively. The train-
ing is always conducted for 70 000 traces plus the augmented traces. The augmented
traces denoted by 0 indicate the number of attack traces required to reach ge∗ = 0 for
the baseline model trained without data augmentation. For each different δhi d value,
the CNN architecture is obtained from a random search with 70 000 traces. Later, new
training is adopted for this CNN model with data augmentation for different δaug with
70 000 original traces plus 7 000 to 70 000 augmented traces (from 10% of the number of
original traces to 100%). The desynchronization levels δaug is also set to δaug ≤ δhi d .

Table 8.5 gives results for the DPAv4.2 dataset with the ID model. Forδhi d = {25,50,75,
125,150}, we observe that the Nge∗=0 value of the baseline model is often higher than
the lowest value obtained with the best Nge∗=0 when data augmentation is active dur-
ing training. However, there are also some cases where we get Nge∗=0 > 3000 when the
CNN model is trained with data augmentation. The case when δhi d = 150 shows how
data augmentation improves a CNN that, without data augmentation, requires 141 at-
tack traces to reach ge∗ = 0. After augmentation is applied, it requires a single attack
trace when at least 35 000 augmented traces are considered. When δhi d = {175,200}, we
cannot get the correct key using the chosen model under 3 000 traces without augmenta-
tion. We also cannot recover the correct key using augmentation techniques. This means
that when desynchronization is at a high level for this dataset and leakage model, it is not
easy to recover the correct key successfully, whether or not augmentation is adopted.

The results in Table 8.6 illustrate the performance of different CNN models with dif-
ferent data augmentation configurations for the DPAv4.2 dataset labeled with the HW
model. We also observe that the Nge∗=0 value obtained for the baseline model is always
higher than the lowest value obtained with the best Nge∗=0 when data augmentation
is adopted during training. This is even true for δhi d = 200, the highest level of Gaus-
sian noise. The baseline model without data augmentation gets the correct key success-
fully with 1 371 traces. However, after applying data augmentation with [−δaug ,δaug] =
[−100,100] and using 63 000 augmented traces at each training epoch, the correct key is
recovered with only 21 traces.

8.5. EXPERIMENTAL RESULTS

8

137

Table 8.4: Number of attack traces to reach GE equal to 0. Results obtained with the ASCAD dataset with desyn-
chronization countermeasure and the HW model. Neural networks are trained with data augmentation by
generating different augmented traces at each epoch.

200k original traces +
δhi d [−δaug ,δaug] 0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

25
[-6, 6]

1053
2288 - 1495 - 936 490 970 722 634 666

[-12, 12] 2166 - - 598 1317 1185 609 792 - -
[-25, 25] - - - - - - 2470 - - -

50

[-6, 6]

> 3000

- 2621 2454 2016 2020 2097 1260 1775 1344 -
[-12, 12] - - 2576 1897 2771 - 2809 - - -
[-25, 25] - - - - - - - - - -
[-37, 37] - - - - - - - - - -

75

[-6, 6]

1238

2599 2384 1562 1495 1608 1490 1627 1688 1913 2670
[-12, 12] 1928 2512 1482 1740 2029 1887 2145 1406 2331 1804
[-25, 25] 2972 2402 1750 566 2232 1426 1275 1957 1442 1419
[-37, 37] 2599 1997 1577 1471 1255 802 1921 1019 989 1414
[-50, 50] 2375 - 1414 1278 1192 1489 1215 747 1358 1194

100

[-6, 6]

1898

2818 2372 988 789 758 590 762 504 629 500
[-12, 12] - 676 1017 810 666 749 604 680 654 583
[-25, 25] 1614 686 1090 537 775 759 499 607 658 522
[-37, 37] - 1775 754 1170 499 681 780 545 303 427
[-50, 50] - 1534 691 938 737 889 683 727 464 797
[-62, 62] 1192 2596 1134 1036 810 1145 836 757 930 692

125

[-6, 6]

2509

- - 1175 1564 1438 1018 660 1475 1518 1211
[-12, 12] 2007 2007 1764 1706 836 1885 1404 1675 705 721
[-25, 25] 2259 1067 1613 2555 936 993 1201 1016 742 820
[-37, 37] 1389 - 1417 866 1225 788 603 823 841 869
[-50, 50] - 1504 2565 1460 1096 1593 1264 660 787 842
[-62, 62] 2139 920 1557 903 - 648 1787 971 904 810
[-75, 75] - 2239 1359 - 1299 2495 1063 - 1207 1569

150

[-6, 6]

851

2036 2138 1000 945 590 889 925 908 625 564
[-12, 12] 1254 1782 683 690 707 661 717 691 474 571
[-25, 25] 821 1427 922 645 929 568 540 595 584 729
[-37, 37] 1485 1077 895 458 571 512 357 693 641 515
[-50, 50] 1081 1132 617 739 791 406 586 716 322 465
[-62, 62] 1875 1140 727 850 445 613 521 948 561 689
[-75, 75] 1041 1526 486 718 1187 565 678 531 1197 596
[-87, 87] 982 1163 794 962 844 702 914 709 2771 748

175

[-6, 6]

592

679 723 460 496 568 564 484 465 521 319
[-12, 12] 639 639 492 527 592 429 446 508 400 459
[-25, 25] 621 598 552 376 515 429 745 405 419 420
[-37, 37] 686 422 486 633 516 416 443 407 465 554
[-50, 50] 677 426 546 660 395 586 384 450 408 466
[-62, 62] 705 574 651 843 494 495 689 - 433 549
[-75, 75] 674 800 471 665 736 580 - 397 554 404
[-87, 87] 1142 362 534 323 586 635 487 391 597 318
[-100, 100] 1025 837 645 774 434 537 597 470 599 412

200

[-6, 6]

2677

- 2067 1009 1413 1030 737 712 804 687 569
[-12, 12] - - 2068 829 994 1139 892 719 771 669
[-25, 25] 1056 - 2151 810 1537 730 818 677 1052 541
[-37, 37] - 2157 2053 1347 1098 1185 1327 703 846 1058
[-50, 50] 1007 - 1058 943 - 533 658 860 913 1038
[-62, 62] - 1469 1203 2098 - 709 899 876 830 887
[-75, 75] 1617 1480 - 890 984 1099 576 952 839 829
[-87, 87] - 924 2263 1508 1461 2018 865 999 636 1006
[-100, 100] - 1436 - - 1088 1246 1629 844 1010 709

8

138
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

Table 8.5: Number of attack traces to reach GE equal to 0. Results obtained with the DPAv4.2 dataset with
desynchronization countermeasure and the ID model. Neural networks are trained with data augmentation
by generating different augmented traces at each epoch.

70k original traces +
δhi d [−δaug ,δaug] 0 7k 14k 21k 28k 35k 42k 49k 56k 63k 70k

25
[-6, 6]

2712
- 276 478 362 335 147 315 261 170 220

[-12, 12] - 522 1233 1025 - - - - - -
[-25, 25] - 1383 1312 - - - - - - -

50

[-6, 6]

991

- 2174 252 - 548 - 679 - - -
[-12, 12] - - 138 - - - 201 - 188 440
[-25, 25] - - - 98 - 70 107 372 116 241
[-37, 37] - - - - - 55 225 131 56 199

75

[-6, 6]

108

141 47 31 32 9 6 8 4 4 4
[-12, 12] 112 29 6 3 3 7 3 11 23 4
[-25, 25] 96 44 21 4 4 3 2 1 5 5
[-37, 37] 159 45 23 7 3 2 1 8 2 28
[-50, 50] 114 36 5 5 4 9 2 25 4 2

100

[-6, 6]

317

640 300 141 124 97 92 145 45 56 94
[-12, 12] 607 204 118 68 59 59 20 22 27 28
[-25, 25] 680 86 61 25 36 6 47 17 12 51
[-37, 37] 353 178 75 16 18 5 11 15 33 23
[-50, 50] 657 192 58 98 15 17 13 34 45 9
[-62, 62] 387 276 82 126 22 16 5 6 24 71

125

[-6, 6]

223

1598 437 820 263 328 400 241 153 213 141
[-12, 12] 964 568 160 386 285 215 236 118 205 153
[-25, 25] 1585 1043 564 638 438 271 262 255 429 733
[-37, 37] 1212 2253 838 1132 782 454 178 287 214 492
[-50, 50] 1650 399 1076 515 292 236 303 209 912 613
[-62, 62] 1479 664 341 657 373 528 294 1004 655 559
[-75, 75] 1033 492 574 1750 463 745 275 886 341 1336

150

[-6, 6]

141

32 101 - 27 - 3 13 - - 1
[-12, 12] - - 107 - 3 19 2 8 3 2
[-25, 25] - - - - 21 2 1 1 1 1
[-37, 37] 41 - - 19 - - 1 2 2 1
[-50, 50] 1330 - - 2 - 2 3 1 2 1
[-62, 62] - - - 156 12 - 1 1 1 1
[-75, 75] - - 23 - 3 41 1 1 1 1
[-87, 87] - - - - 1 14 - 59 15 1

175

[-6, 6]

> 3000

- - - - - - - - - -
[-12, 12] - - - - - - - - - -
[-25, 25] - - - - - - - - - -
[-37, 37] - - - - - - - - - -
[-50, 50] - - - - - - - - - -
[-62, 62] - - - - - - - - - -
[-75, 75] - - - - - - - - - -
[-87, 87] - - - - - - - - - -
[-100, 100] - - - - - - - - - -

200

[-6, 6]

> 3000

- - - - - - - - - -
[-12, 12] - - - - - - - - - -
[-25, 25] - - - - - - - - - -
[-37, 37] - - - - - - - - - -
[-50, 50] - - - - - - - - - -
[-62, 62] - - - - - - - - - -
[-75, 75] - - - - - - - - - -
[-87, 87] - - - - - - - - - -
[-100, 100] - - - - - - - - - -

8.5. EXPERIMENTAL RESULTS

8

139

Table 8.6: Number of attack traces to reach GE equal to 0. Results obtained with the DPAv4.2 dataset with
desynchronization countermeasure and the HW model. Neural networks are trained with data augmentation
by generating different augmented traces at each epoch.

70k original traces +
δhi d [−δaug ,δaug] 0 7k 14k 21k 28k 35k 42k 49k 56k 63k 70k

25
[-6, 6]

714
760 747 673 439 203 589 393 216 286 316

[-12, 12] 563 486 398 741 484 467 637 460 - 2515
[-25, 25] 481 519 654 420 352 158 551 582 478 2032

50

[-6, 6]

411

359 367 403 375 197 187 244 222 219 297
[-12, 12] 538 145 237 206 161 164 351 184 214 275
[-25, 25] 366 273 188 207 341 204 160 426 211 293
[-37, 37] 410 199 213 182 195 180 150 343 180 195

75

[-6, 6]

417

1587 782 13 961 - - 659 - - 2557
[-12, 12] 1778 1329 - 462 - 762 - - - 1229
[-25, 25] 1436 1315 9 64 33 - 303 - - -
[-37, 37] 1031 426 - - - 178 - - - -
[-50, 50] 1811 481 - 254 545 13 - - - -

100

[-6, 6]

394

462 401 180 36 379 299 39 - - 25
[-12, 12] 700 640 355 25 - 127 40 154 - 352
[-25, 25] 162 159 19 145 240 141 - - - 11
[-37, 37] 497 225 149 - 45 31 16 - - 20
[-50, 50] 144 240 219 36 175 - 53 - - 12
[-62, 62] 606 314 188 1713 419 31 - - - 73

125

[-6, 6]

460

492 188 140 28 53 64 54 76 64 253
[-12, 12] 199 42 49 71 37 62 49 17 22 18
[-25, 25] 105 48 18 31 15 17 169 28 18 15
[-37, 37] 237 27 38 51 36 27 15 22 20 19
[-50, 50] 478 21 27 16 10 16 15 15 20 31
[-62, 62] 834 69 51 15 19 23 14 12 18 15
[-75, 75] 434 24 20 16 15 15 9 21 10 12

150

[-6, 6]

452

853 351 16 13 - 15 12 - - -
[-12, 12] 634 264 14 10 196 23 - 10 23 -
[-25, 25] 390 10 - - - - 10 - - 8
[-37, 37] 495 10 - - - - - - - -
[-50, 50] 24 - 16 12 12 - - - - -
[-62, 62] 35 14 12 - - - - - - -
[-75, 75] 224 16 - - - - - - - -
[-87, 87] 26 164 - 32 - - - - - -

175

[-6, 6]

1746

1501 1264 1131 943 1310 1185 852 629 1033 555
[-12, 12] 1858 1307 732 606 1131 697 766 698 314 574
[-25, 25] 1009 617 988 462 439 460 296 305 662 332
[-37, 37] 1134 684 608 399 556 672 271 250 529 273
[-50, 50] 1177 875 465 464 405 322 746 371 174 333
[-62, 62] 1150 638 571 446 337 316 284 361 260 314
[-75, 75] 492 709 677 497 379 181 253 315 140 271
[-87, 87] 1134 599 529 277 293 391 265 246 264 206
[-100, 100] 500 866 619 475 382 273 291 203 283 196

200

[-6, 6]

1371

- 1621 1501 1961 1379 993 1283 1113 1415 1433
[-12, 12] 1738 2731 1366 1576 645 1036 1149 1228 550 1151
[-25, 25] 1193 930 2038 858 679 752 1066 1215 763 702
[-37, 37] 1674 674 979 757 718 689 490 702 276 235
[-50, 50] 1983 1004 778 531 486 371 569 795 60 50
[-62, 62] 1507 1124 1329 1374 204 485 446 102 422 123
[-75, 75] 1484 1108 1872 500 191 86 347 59 76 87
[-87, 87] 1451 633 877 738 562 135 61 200 34 38
[-100, 100] 1634 1242 640 849 997 338 24 35 21 22

8

140
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

8.5.2. GAUSSIAN NOISE COUNTERMEASURE

RESULTS FOR ASCAD DATASET WITH GAUSSIAN NOISE COUNTERMEASURE

Tables 8.7 and 8.8 provide results for the ASCAD dataset for Gaussian noise countermea-
sure with the ID model and the HW model, respectively. The termσhi d refers to the stan-
dard deviation in Gaussian noise (with zero mean) applied to the raw traces for a hiding
countermeasure. The term σaug denotes the standard deviation in Gaussian noise ap-
plied to the augmented traces. The training is always conducted for the 200 000 traces
plus the augmented traces. The augmented traces denoted by 0 indicate the number of
attack traces required to reach ge∗ = 0 for the baseline model trained without data aug-
mentation. Again, for each different σhi d value, the CNN architecture is different, and it
is obtained from the best one from a random search. Then a new training is deployed for
this CNN model with the data augmentation and different numbers of augmented traces.
For each number of the augmented traces, the model is trained with Gaussian noise with
different standard deviationsσaug . We set this value to ensure 0.5 ≤σaug ≤σhi d +1. The
minimum value of 0.5 for σaug is to ensure that σaug is tested at least for a value that is
lower than the minimum value considered for σhi d , which is 1.0.

Table 8.7 presents the efficiency of data augmentation for different CNN architec-
tures with the ID model. When σhi d = {1.0,2.0,3.0}, the Nge∗=0 value obtained for the
baseline model is always higher than the lowest value obtained with the best Nge∗=0

when data augmentation is active during training. Take σhi d = 1.0 for example. When
the CNN model is trained without data augmentation, the baseline model can success-
fully recover the key with 514 traces. When data augmentation with 100 000 augmented
traces is applied during training and σaug = 0.5, the correct key is recovered with 200
traces. However, if Nge∗=0 > 3000 is obtained for the baseline model, we observe differ-
ent scenarios. Whenσhi d = {4.0,6.0}, the baseline model cannot successfully recover the
key with less than 3 000 traces, and neither can the CNN model do when data augmen-
tation is applied. This suggests that random search should be applied again to return
another best CNN model. When σhi d = 5.0, the baseline model cannot successfully re-
cover the key with less than 3 000 traces. However, when σaug = {1.0,2.0} is adopted, the
key can be recovered.

Table 8.8 presents the efficiency of data augmentation for different CNN architec-
tures with the HW model. Whenσhi d = 1.0, we do not see the performance improvement
from data augmentation except in one case with σaug = 0.5 and 200 000 augmented
traces. When σhi d = 2.0, there is not a single case where data augmentation can re-
duce the traces needed to recover the key successfully. We see the improvement from
augmentation for σhi d = 3.0. For example, we obtain Nge∗=0 = 2136 from the baseline
model without data augmentation. When data augmentation with 200 000 augmented
traces with σaug = 0.5 is applied during training, the correct key candidate is recovered
with 1 431 traces. For σhi d = 4.0, the Nge∗=0 value obtained for the baseline model is
always higher than the lowest value obtained with the best Nge∗=0 when data augmenta-
tion with σaug = {0.5,1.0} is applied during training. when σhi d = {5.0,6.0}, the baseline
model cannot successfully recover the key with less than 3 000 traces, and neither can the
CNN model do when augmentation is applied. This indicates that when Gaussian noise
is at a high level, and the SNR is low, it is not easy to recover the correct key successfully,
regardless of the fact that data augmentation is used.

8.5. EXPERIMENTAL RESULTS

8

141

Table 8.7: Number of attack traces to reach GE equal to 0. Results obtained with the ASCAD dataset with Gaus-
sian noise countermeasure and the ID model. Neural networks are trained with data augmentation by gener-
ating different augmented traces at each epoch.

70k original traces +
σhi d σaug 0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

1.0
0.5

514
642 345 311 598 200 350 304 258 203 288

1.0 556 416 376 592 336 318 218 351 274 233
2.0 736 476 376 495 330 273 544 391 304 306

2.0

0.5

1821

- 1393 964 - - 860 396 560 - 449
1.0 - - - 776 424 344 692 702 577 710
2.0 - 1976 2673 850 - - 622 279 - -
3.0 - - - - - - - - - -

3.0

0.5

828

- - - - - 819 - - - 1148
1.0 - - - - - - 665 525 317 604
2.0 - - - - - - - 818 277 751
3.0 - - - - - - - - 1822 -
4.0 - - - - - - - - - -

4.0

0.5

> 3000

- - - - - - - - - -
1.0 - - - - - - - - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -

5.0

0.5

> 3000

- - - - - - - - - -
1.0 - - - 2544 - - 868 2478 2938 1950
2.0 - - - 2663 - 2952 2412 2998 - 2169
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -
6.0 - - - - - - - - - -

6.0

0.5

> 3000

- - - - - - - - - -
1.0 - - - - - - - - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -
6.0 - - - - - - - - - -
7.0 - - - - - - - - - -

8

142
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

Table 8.8: Number of attack traces to reach GE equal to 0. Results obtained with the ASCAD dataset with Gaus-
sian noise countermeasure and the HW model. Neural networks are trained with data augmentation by gener-
ating different augmented traces at each epoch.

70k original traces +
σhi d σaug 0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

1.0
0.5

610
1149 698 839 1221 823 908 1112 1174 860 606

1.0 865 789 1775 1091 928 1001 899 979 1476 1060
2.0 1265 1334 1874 1528 2004 1958 1977 2212 2041 1946

2.0

0.5

1357

1547 1555 2114 1867 1964 2075 1650 2172 1946 2425
1.0 1900 1370 2275 1950 1864 2196 1994 1914 1695 1842
2.0 1460 1686 1653 1924 1682 2561 2512 2208 2683 2397
3.0 2513 2469 2359 2215 2852 2797 2840 - - -

3.0

0.5

2136

1774 2015 2062 2149 1859 1698 1869 1576 1915 1431
1.0 2338 2153 1949 2255 1952 2451 1946 2103 1889 2068
2.0 1775 2746 2284 2438 - - - - - -
3.0 2798 2799 - 2989 - - - - - -
4.0 2844 - - - - - - - - -

4.0

0.5

2953

2034 2413 2698 2398 1608 2403 2111 2548 2662 2594
1.0 2993 - 2319 2370 2788 2544 2971 2654 2891 2709
2.0 - 2630 - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -

5.0

0.5

2758

- - - - - - - - - -
1.0 - - - - - - - - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -
6.0 - - - - - - - - - -

6.0

0.5

> 3000

- - - - - - - - - -
1.0 - - - - - - - - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -
6.0 - - - - - - - - - -
7.0 - - - - - - - - - -

8.5. EXPERIMENTAL RESULTS

8

143

RESULTS FOR DPAv4.2 DATASET WITH GAUSSIAN NOISE COUNTERMEASURE

Tables 8.9 and 8.10 illustrate results for the DPAv4.2 dataset with Gaussian noise coun-
termeasure applied with the ID model and the HW model, respectively. The mean value
of Gaussian noise is fixed at 0. The term σhi d refers to the standard deviation in Gaus-
sian noise used to the raw traces for a hiding countermeasure. The term σaug indicates
the standard deviation in Gaussian noise applied to the augmented traces. The training
is always conducted for the 70 000 traces plus the augmented traces. The augmented
traces denoted by 0 indicate the number of attack traces required to reach ge∗ = 0 for
the baseline model trained without data augmentation. For each different σhi d value,
the CNN architecture is obtained from a random search. Later, a new training is adopted
for this CNN model with data augmentation. For each of these augmented traces, the
model is trained with Gaussian noise with different standard deviations σaug , which is
set to 0.5 ≤σaug ≤σhi d +1.

Table 8.9 illustrates the efficiency of data augmentation for the DPAv4.2 dataset with
the ID model. When σhi d = {1.0,2.0,3.0}, the Nge∗=0 value obtained for the baseline
model is always higher than the lowest value obtained with the best Nge∗=0 when data
augmentation is active during training. Take σhi d = 1.0 for example. When the CNN
model is trained without data augmentation, the model can successfully recover the
key with 54 traces. When data augmentation with 42 000 augmented traces is applied
during training and σaug = 0.5, the correct key candidate is recovered with 24 traces.
However, if Nge∗=0 > 3000 is obtained from the baseline model, we can see different
cases. When σhi d = {4.0,6.0}, the baseline model cannot successfully recover the key
with less than 3 000 traces, and neither can the CNN model when augmentation is ap-
plied. When σhi d = 5.0, the baseline model cannot successfully recover the key with
less than 3 000 traces. We obtain Nge∗=0 = 1884,1794 when 42 000 training augmented
trace and σaug = 0.5, and 63 000 training augmented trace and σaug = 0.1 are applied,
respectively.

Table 8.10 presents the efficiency of data augmentation for the DPAv4.2 dataset with
the HW model. When σhi d = {1.0,4.0}, we do not observe the performance improve-
ment from data augmentation. When σhi d = {2.0,3.0}, the Nge∗=0 value obtained for
the baseline model is always higher than the lowest value obtained with the best Nge∗=0

when data augmentation is active during training. When σhi d = 5.0, the CNN model
can successfully recover the key with 2 025 traces. When data augmentation with 21 000
augmented traces and σaug = 0.5 is applied during training, the correct key candidate
is recovered with only 1 273 traces. For σhi d = 6.0, we obtain Nge∗=0 > 3000, and get
Nge∗=0 = 2479 when data augmentation is applied with 35 000 augmented traces with
σaug = 1.0.

8.5.3. DISCUSSION
Based on the obtained results, some general guidelines can be given:

• Is there a single best data augmentation setting for all cases?
We see that different settings (datasets, neural network architectures, leakage mod-
els) require different data augmentation settings, making the hyperparameter tun-
ing even more complex. At the same time, we deem this effort well spent as the
attack performance can improve significantly when careful data augmentation is

8

144
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

Table 8.9: Number of attack traces to reach GE equal to 0. Results obtained with the DPAv4.2 dataset with
Gaussian noise countermeasure and the ID model. Neural networks are trained with data augmentation by
generating different augmented traces at each epoch.

70k original traces +
σhi d σaug 0 7k 14k 21k 28k 35k 42k 49k 56k 63k 70k

1.0
0.5

54
33 43 38 46 47 24 29 33 44 42

1.0 38 30 44 43 49 42 49 63 42 60
2.0 39 54 - - 113 109 67 105 93 -

2.0

0.5

99

95 87 69 66 46 6 29 8 6 8
1.0 69 66 95 43 45 7 22 11 10 7
2.0 142 174 119 221 116 197 219 - 329 -
3.0 249 519 456 - 208 - - - - -

3.0

0.5

2426

1671 1149 878 756 983 895 617 392 672 299
1.0 1594 - - 1642 - 1765 972 821 868 411
2.0 - 2192 - - 2443 - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -

4.0

0.5

> 3000

- - - - - - - - - -
1.0 - - - - - - - - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -

5.0

0.5

> 3000

- - - - - 1884 - - - -
1.0 - - - - - - - - 1794 -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -
6.0 - - - - - - - - - -

6.0

0.5

> 3000

- - - - - - - - - -
1.0 - - - - - - - - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -
6.0 - - - - - - - - - -
7.0 - - - - - - - - - -

8.5. EXPERIMENTAL RESULTS

8

145

Table 8.10: Number of attack traces to reach GE equal to 0. Results obtained with the DPAv4.2 dataset with
Gaussian noise countermeasure and the HW model. Neural networks are trained with data augmentation by
generating different augmented traces at each epoch.

70k original traces +
σhi d σaug 0 7k 14k 21k 28k 35k 42k 49k 56k 63k 70k

1.0
0.5

15
601 - 70 80 - 101 42 29 52 -

1.0 - - 60 - 334 786 196 59 - 98
2.0 - - 160 577 - - - - - -

2.0

0.5

64

541 31 42 75 90 39 41 47 38 54
1.0 59 68 75 46 46 82 92 70 76 54
2.0 138 64 114 879 318 264 275 439 593 343
3.0 831 1431 674 1987 2991 - - - 1149 2408

3.0

0.5

719

2085 2206 1948 2084 1701 2024 805 1086 696 1076
1.0 2752 1282 2686 992 2490 1129 1122 1511 1187 833
2.0 2758 1944 - 2225 - 1875 1281 - - -
3.0 - - 2079 - - - - - - -
4.0 1827 - - 2989 - - - - - -

4.0

0.5

961

- - 1452 - 1810 - 1396 1392 1128 1215
1.0 - - - 1844 - - 1794 - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -

5.0

0.5

2025

- - 1273 - 2691 - - - 2107 2778
1.0 - - - - - - - - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -
6.0 - - - - - - - - - -

6.0

0.5

> 3000

- - - - - - - - - -
1.0 - - - - 2479 - - - - -
2.0 - - - - - - - - - -
3.0 - - - - - - - - - -
4.0 - - - - - - - - - -
5.0 - - - - - - - - - -
6.0 - - - - - - - - - -
7.0 - - - - - - - - - -

8

146
8. A SYSTEMATIC STUDY OF DATA AUGMENTATION FOR PROTECTED AES

IMPLEMENTATIONS

conducted.

• What countermeasure is more difficult? Compare the results with [275].
We observe that the Gaussian noise countermeasure is more difficult to break us-
ing data augmentation. For both datasets, we can use data augmentation to get
significant improvement for recovering the correct key under desynchronization
countermeasure, even when δhi d is at a high level, such as 175 or 200. This is
because of the shift-invariant property of CNN, which can extract the points of in-
terest in traces even when the misalignment of traces is large. When the Gaussian
noise countermeasure is applied, usually, we can see some improvement when
using data augmentation for σhi d < 5. When increasing the σhi d to 5 or 6, we of-
ten cannot recover the correct key using the baseline model or data augmentation
techniques because of the low SNR level and the shift-invariant property of CNN,
which cannot contribute to the reduction of noise.
The observation is different from the conclusions in [275], where the authors fo-
cused on SCA based on the ablation paradigm to explain how neural networks
handle countermeasures within the ASCAD dataset and stated that Gaussian noise
is easier than desynchronization as a countermeasure. The divergence may arise
from the authors’ selection of a significantly small standard deviation for Gaussian
noise (σhi d = 1) and desynchronization (δhi d = 5). As shown in Table 8.2, an SNR
of 1.21 is obtained when the Gaussian noise level is 1, making it still susceptible to
exploitation by deep neural networks as a countermeasure.

• Is there a range for the efficiency of data augmentation?
For the desynchronization countermeasure, we often observe the performance
improvement from data augmentation when the number of augmented traces is
above some value. Take the ASCAD dataset with δhi d = 100, for example. The
Nge∗=0 from data augmentation is always lower than that from the baseline model
when the number of augmented traces is larger than 120 000 and 40 000 for the
Identity and HW model, respectively. For the DPAv4.2 dataset with δhi d = 100, the
data augmented trace range is greater than 7 000 and 28 000 for the two leakage
models. At the same time, we do not observe this phenomenon for the Gaussian
noise countermeasure.

• What are the benefits of controlled settings of countermeasures in our work?
This work adopts controlled settings of countermeasures. In real-world settings,
we do not know countermeasure parameters. Even though these parameters may
be unknown in practical scenarios, conducting controlled experiments becomes
essential. This approach aims to systematically explore the impact of data aug-
mentation on deep learning-based SCA, thereby contributing to a more compre-
hensive understanding of the subject. These experiments serve as a foundation,
offering a baseline understanding and facilitating a systematic exploration of the
influence of various factors. The insights gained from such controlled experiments
can be instrumental in guiding practical implementations.

8.6. SUMMARY

8

147

8.6. SUMMARY
In this chapter, we evaluate the influence of data augmentation on deep learning-based
SCA and verify to what extent it can reduce the protective effect of hiding countermea-
sures. We apply our analysis to two public datasets with masked AES implementations.
We apply desynchronization and Gaussian noise to the original measurements to create
a hiding countermeasure effect. We first add the hiding countermeasure to the cho-
sen datasets and then deploy a hyperparameter random search to obtain the best CNN
model for each hiding countermeasure case. Later, to investigate how to properly im-
plement data augmentation for specific models, we deploy new training for each CNN
model by considering data augmentation with different numbers of augmented traces
and different data augmentation hyperparameters, such as range of trace shifts and stan-
dard deviations. Our results show that data augmentation can decrease the efficiency of
hiding countermeasures to protect the secret key for different datasets. In particular, we
can improve a CNN model generalization by making the model trained with data aug-
mentation to recover the key with less than 50 attacked traces for the ASCAD dataset when
the desynchronization level is up to 200 sample points, and a single attack trace for the
DPAv4.2 dataset when the desynchronization level is up to 150 sample points. These are
the best results against trace desynchronization reported in the literature so far for these
datasets. However, different data augmentation configurations are required for specific
neural network architectures to provide the best behavior.

PART IV DISCUSSION

149

9
DISCUSSION

The interconnected nature of electronic devices brings associated security risks, as at-
tackers can exploit vulnerabilities in the systems. Securing electronic devices necessi-
tates the utilization of cryptographic algorithms and TEEs. Cryptographic algorithms
ensure data confidentiality and integrity through encryption/decryption, hashing, and
digital signatures. Meanwhile, TEEs establish secure enclaves within the system for crit-
ical operations, preventing unauthorized modifications and access by imposing strin-
gent access restrictions. These measures serve as robust mechanisms for enhancing
the security of critical operations and data access control. Despite these security mea-
sures, electronic systems remain susceptible to various attacks, including SCA, wherein
attackers exploit information leakage from physical devices during the execution of in-
structions or cryptographic algorithms. Countermeasures such as masking and hiding
techniques are commonly employed to enhance resistance against SCA. However, the
emergence of deep learning in SCA has introduced new challenges, rendering previously
efficient countermeasures ineffective. Moreover, deep learning-based SCA has the po-
tential to eliminate preprocessing and alignment requirements inherent in earlier meth-
ods. Hence, this thesis focuses on two primary objectives: the utilization of HW/SW co-
design for the development of security systems (implementation-related) and the inves-
tigation of deep learning-based SCA to explore its effectiveness in detecting side-channel
vulnerabilities (SCA-related).

This chapter aims to provide a summary of the contributions made in both areas, the
limitations, and also list future works.

9.1. SUMMARY OF CONTRIBUTIONS

9.1.1. IMPLEMENTATION-RELATED
To investigate the HW/SW co-design approach for security systems, we employed the
RISC-V based platform and the SoC FPGA platform in Part II. Specifically, our focus in-
cluded the implementation of cryptographic algorithms on the RISC-V based platform
in Chapters 3 and 4. Additionally, we delved into the utilization of TEE for the aggrega-

151

9

152 9. DISCUSSION

tion process of federated learning (FL) on the SoC FPGA platform in Chapter 5.

HW/SW CO-DESIGN BASED ON RISC-V PLATFORM FOR CRYPTOGRAPHIC ALGORITHMS

In Chapters 3 and 4, we explored HW/SW co-design for implementing cryptographic al-
gorithms utilizing RISC-V vector extensions on the SIMD RISC-V platform. In Chapter 3,
we initially developed a novel RISC-V based platform featuring a scalable SIMD proces-
sor implemented in SystemVerilog. This platform laid the groundwork for our subse-
quent research, enabling us to explore the potential of RISC-V vector extensions. No-
tably, the designed processor not only works with RV32IMC, but includes RISC-V vector
extensions. This makes it easier to carry out a wide range of computing tasks in an effi-
cient and effective way, especially when they are done in parallel. Through harnessing
the power of SIMD operations, the processor can accelerate the execution of computa-
tionally intensive algorithms.

Subsequently, in the rest of Chapter 3 we utilized the SIMD RISC-V based platform
and explored RISC-V vector extensions to enhance the efficiency of lattice-based oper-
ations through the implementation of HW/SW co-design. The initial step involved an
investigation of the three polynomial multiplication algorithms utilized in CRYSTALS-
Kyber, specifically the NTT, INTT, and CWM algorithms. In this study, we introduced two
methodologies, namely register pooling and automatic index generation, with the aim
of enhancing the efficiency of the HW/SW interfaces. Additionally, we developed a total
of 12 vector extensions for CRYSTALS-Kyber multiplication and four extensions for finite
field operations. The results of the investigation indicate that the NTT, INTT, and CWM
algorithms achieve speed-ups of 141.7, 168.7, and 245.5 times, respectively, when com-
pared to the baseline implementation. Furthermore, these algorithms demonstrate a
speed-up of more than four times when compared to the current state-of-the-art HW/SW
co-design approach utilizing RV32IMC.

Moving on to Chapter 4, we leveraged the same SIMD RISC-V based platform and ex-
plored the use of custom vector extensions for the Keccak-f[1 600] permutation in SHA-3
hash functions. Our study involved an in-depth examination of the five-step mappings
and proposed ten customized vector extensions for both 64-bit and 32-bit architectures.
To implement these customized instructions, we utilized the SystemVerilog program-
ming language in the SIMD processor. Subsequently, we developed the program for
both the 64-bit and 32-bit architectures by leveraging new customized vector instruc-
tions alongside the existing RISC-V vector extensions. The findings of our study indicate
a significant enhancement in throughput, specifically 45.7 and 43.2 times while utilizing
the 32-bit architecture in comparison to two previously implemented parallelized de-
signs. The utilization of a 64-bit architecture results in an enhancement of 5.3 times in
throughput when compared to a pre-existing design that supports vector extensions.

These two works underscore the potential of RISC-V vector extensions in optimizing
lattice-based operations and SHA-3 hash functions, thereby demonstrating their capac-
ity to enhance performance in these domains. Additionally, they provide insights for fu-
ture research endeavors aimed at improving the operational efficiency of cryptographic
algorithms and other areas utilizing HW/SW co-design based on the RISC-V platform.

9.1. SUMMARY OF CONTRIBUTIONS

9

153

HW/SW CO-DESIGN BASED ON SOC FPGA PLATFORM FOR FEDERATED LEARNING

In Chapter 5, the utilization of FPGA-based TEEs on SoC FPGAs for the aggregation pro-
cessor in FL was explored. This approach was adopted to overcome the performance
limitations associated with relying solely on pure software design. Furthermore, the
adoption of FPGA-based TEEs aimed to mitigate the risks linked to backdoor attacks
and inference attacks.

We proposed a novel framework, named FLAIRS, which leverages FPGA-based com-
puting to overcome the inherent performance limitations of software-only solutions for
FL. Additionally, this framework integrated an effective method to mitigate backdoor at-
tacks and inference attacks, thereby providing enhanced security measures. To demon-
strate the security and performance benefits of FLAIRS, FLAME [19], a state-of-the-art
aggregation algorithm, was implemented as a prototype. In their work, Nguyen et al. [19]
designed three steps for FLAME: outlier-detection-based filtering, model clipping, and
noising, to mitigate backdoor defenses, and they utilized the Secure Multi-Party Compu-
tation (SMPC) protocol to mitigate privacy attacks. However, the software-only imple-
mentation and SMPC protocol incurred a notable performance overhead. In contrast,
our work realized the three backdoor defense steps in FPGA to improve work efficiency
and adopted FPGA-based TEEs as the inference defenses instead of SMPC.

We conducted a thorough analysis of the FLAME algorithm, leading to the careful de-
sign of five FPGA processing elements (PEs) to harness its parallelism in the FPGA vari-
ant. The VMK180 evaluation platform was employed to implement this work using Xil-
inx Vitis 2022.2. This platform features an SoC FPGA with an ARM TrustZone integrated
into its hardcore processing unit. Both the hardware and software programs were devel-
oped using Vitis. The TEE-enabled CPU served as the processing unit running the host
program, which controlled the operation process and the hardware components. The
hardware part comprised two sections: Shell, representing a predefined FPGA configu-
ration with essential functions for execution, security, and communication; and Kernel,
serving as the dynamic region where the custom logic implementation of the accelerator
function was realized, housing the five aforementioned PEs.

To compare the performance of FLAIRS with FLAME in the original SMPC work [19],
we conducted experiments and evaluated them on two different datasets: IoT-Traffic
and CIFAR-10. Throughout the evaluation, the parameter n, denoting the client number,
was varied to consider values of 10, 50, and 100. The runtime of each PE and the overall
system performance were measured. The evaluation demonstrated performance gains
for the IoT-Traffic dataset, achieving speed-ups of 1 340.1, 382.1, and 288.9 times for n
values of 10, 50, and 100, respectively. Similarly, on the CIFAR-10 dataset, acceleration
was achieved with speed-ups of 513 and 506.7 for n values of 10 and 50, respectively.

The FLAIRS framework offers work efficiency compared to SMPC. This improvement
can be attributed to the specialized design for cosine similarity and the clustering algo-
rithm, as well as the utilization of FPGA-based enclaves and acceleration techniques.
Notably, the FLAME algorithm, implemented for prototyping purposes, comprises sev-
eral components commonly utilized in backdoor defenses, including the pairwise dis-
tances [180], [198], clustering [117], vector norms [118], and median calculation [199].
Therefore, the use of FLAME as an example showcases the broad applicability of our
framework beyond the specific implementation.

9

154 9. DISCUSSION

The development of FLAIRS and its successful deployment on the SoC FPGA plat-
form represent an advancement in the field of FL. By effectively addressing the perfor-
mance limitations and security concerns associated with traditional software-only ap-
proaches, this research establishes a new benchmark for secure and high-performance
FL systems. The speed enhancements achieved on real-world datasets underscore the
practical significance of our work, positioning FPGA-based computing for accelerating
FL algorithms and fortifying security measures in distributed learning environments.
These findings not only contribute to the development of FL research but also hold po-
tential for broader applications in secure and efficient systems for cloud computing.

9.1.2. SCA-RELATED

The ongoing research in the field of SCA presents new challenges as advanced method-
ologies are utilized. One prominent approach that has emerged is deep learning, which
introduces novel difficulties in exploiting leakages across diverse systems and circum-
venting specific countermeasures. To recognize the significance of deep learning-based
SCA, we also devoted considerable attention to this subject in Part III of our thesis, specif-
ically in Chapters 6, 7, and 8.

Chapter 6 provides a comprehensive overview of the current state-of-the-art in deep
learning-based profiled SCA. First, we established a foundational understanding of deep
neural networks and profiled SCA. Then, we surveyed the latest advancements in this
field, highlighting the potential of deep neural networks as effective alternatives to clas-
sical profiled attacks, such as Template Attacks (TAs) and traditional machine learning
methods. To ensure a good evaluation of deep learning-based profiled SCA, we had a
detailed discussion regarding the appropriate interpretation of metrics. Furthermore,
we explored the fine-tuning of hyperparameters during the training of deep neural net-
works, specifically within the context of profiled SCA. This examination recognizes the
important role of hyperparameter optimization in achieving optimal performance and
robustness in deep learning models. In addition to theoretical discussions, we described
various applications of deep learning in SCA. Finally, we presented a summary of possi-
ble directions for future research in the domain of deep learning-based SCA.

In Chapter 7, we conducted a research study to investigate the impact of weight ini-
tializer selection on the performance of CNNs in the context of profiled SCA. Our study
examined a total of 11 weight initializers, three distinct datasets, two leakage models,
and two CNN architectures. We assessed the performance of the weight initializer by ex-
amining the guessing entropy, the stability of results, and the evolution of weights dur-
ing the training process. Our results indicated that weight initializer selection may not
be important when the dataset is easy to attack. However, as the difficulty of the dataset
increases, the influence stemming from this selection becomes more apparent. Notably,
we observed that specific key rank experiments can exhibit either exceptional or poor
performance based on the guessing entropy results. Furthermore, we noticed significant
differences in individual training processes, emphasizing the role of weight initializers in
the training process. As such, it is necessary to run multiple training phases (and not only
attacks to obtain guessing entropy). The results also showed that most weight changes
occurred in the Convolutional and Batch Normalization layers while we observed nearly
no weight changes in dense layers. Finally, we analyzed the interconnection between

9.1. SUMMARY OF CONTRIBUTIONS

9

155

weight initializers and other hyperparameters. Our findings indicated weight initializers
have a strong connection with activation functions and only a marginal connection with
other commonly explored hyperparameters. This is supported by the fact that weight
initializers employing heuristics are developed on the basis of certain features inherent
to activation functions.

In Chapter 8, we conducted an evaluation of the impact of data augmentation on
deep learning-based SCA and determined the extent to which it can mitigate the pro-
tective effect of hiding countermeasures. Our analysis focused on two public datasets
containing masked AES implementations. To create a hiding countermeasure effect, we
applied desynchronization and Gaussian noise to the original measurements. To begin,
we introduced the hiding countermeasure to the selected datasets. Subsequently, we
utilized a hyperparameter random search approach to identify the optimal CNN model
for each hiding countermeasure scenario. In order to explore the appropriate imple-
mentation of data augmentation for specific models, we conducted additional training
for each CNN model. This involved considering various data augmentation techniques
such as the number of augmented traces, as well as hyperparameters like the range of
trace shifts and standard deviations. Our findings demonstrated that data augmenta-
tion can effectively reduce the efficiency of hiding countermeasures in safeguarding the
secret key across different datasets. Notably, we were able to enhance the generalization
of a CNN model through data augmentation, enabling the model to recover the key using
less than 50 attacked traces for the ASCAD dataset when the desynchronization level is up
to 200 sample points, and even just a single attack trace for the DPAv4.2 dataset when
the desynchronization level is up to 150 sample points. The findings of our study clearly
show the necessity of including data augmentation as a fundamental procedure when
targeting datasets that involve hiding countermeasures in deep learning-based SCA.

Our research illustrates that deep learning-based SCA is effective, yet achieving op-
timal performance for diverse attack scenarios poses significant challenges. The selec-
tion of hyperparameters is intricately linked to the specific characteristics of the targeted
dataset, including factors such as countermeasures, noise levels, number of measure-
ments, points in a side-channel measurement, trace properties, and the appropriate
leakage model. The effectiveness of deep learning-based profiled SCA critically depends
on the tuning of hyperparameters for neural network topology, necessitating the defini-
tion of numerous hyperparameters. In Chapter 6, we introduced various hyperparame-
ter selection techniques, including grid and random search optimization. Moreover, in
Chapter 8, a random search approach was employed to identify the optimal CNN model
for each hiding countermeasure scenario across different datasets. Our findings reveal
that no universal deep learning model exists for a given dataset; instead, they highlight
the necessity for distinct combinations of hyperparameters tailored to each hiding coun-
termeasure applied to the same dataset. Additionally, Chapter 7 focused exclusively on
weight initialization strategies for CNNs in SCA and examined their impact on attack
performance. Our results indicate that the most suitable weight initializer varies across
different datasets. Furthermore, even for the same dataset, the optimal weight initializer
differs depending on the leakage model employed. Consequently, the need to imple-
ment automatic hyperparameter tuning in SCA is imperative for the advancement of the
SCA community. This entails an analysis of the intricate relationship between hyper-

9

156 9. DISCUSSION

parameters and specific dataset attributes, emphasizing the demand for nuanced and
adaptive hyperparameter configurations to optimize the performance of deep learning-
based SCA across diverse attack scenarios.

Furthermore, our research investigated the capabilities of deep learning-based SCA
in breaking countermeasures. In Chapter 6, an examination of existing literature on the
masking countermeasure reveals that deep learning-based SCA is capable of breaking
up to second-order leakage in block ciphers such as AES [92]. Our investigation in Chap-
ter 8 demonstrates findings in relation to specific hiding countermeasures. When em-
ploying the Gaussian noise countermeasure, notable enhancements are observed in sce-
narios where data augmentation is applied withσhi d < 5. Furthermore, in the case of the
desynchronization countermeasure involving random shifts, our study reveals the effi-
cacy of data augmentation in effectively recovering the correct key even at high levels
of trace misalignment, such as δhi d values of 175 or 200. These results offer insights for
developers by providing a new perspective from the attacker’s point, thereby facilitating
the development of more resilient products. Additionally, these results emphasize the
importance of securing implementations with countermeasures while remaining mind-
ful of their vulnerabilities. It becomes evident that a poorly designed implementation of
countermeasures can be easily circumvented by new techniques in deep-learning based
SCA. Consequently, there is a pressing need to strengthen existing countermeasures or
integrate diverse types of countermeasures to reinforce security. Besides, developers
should also consider the weaknesses of countermeasure strategies, and if some counter-
measure effect can be reduced or removed by deep-learning techniques, how to make a
secure resilient implementation.

9.2. LIMITATIONS
The thesis includes certain limitations that warrant attention and future consideration.

• L1. Our investigation into the efficiency of RISC-V vector extensions exclusively
focused on CRYSTALS-Kyber and SHA-3 hash functions. A more comprehensive
analysis involving additional algorithms could potentially yield valuable insights
into the broader applicability of RISC-V vector extensions.

• L2. Our utilization of FPGA-based TEEs was solely confined to the server for the
aggregation process in the context of FL. Notably, we did not leverage FPGA-based
TEEs on the client side to safeguard the private dataset and the training process.
The extension of FPGA-based TEE deployment to the client side presents an op-
portunity to enhance the overall security of FL.

• L3. One obvious gap in our work is the absence of SCA in the cryptographic imple-
mentations presented in the implementation-related part. Aligning implementation-
related part and SCA-related parts more closely would provide a holistic examina-
tion of the interplay between implementation security and SCA techniques, en-
riching the thesis.

• L4. The thesis does not propose strategies to enhance the security of implemen-
tations against evolving deep learning-based SCA techniques. Addressing this as-
pect would strengthen the overall security of the implementations.

9.3. FUTURE WORKS

9

157

9.3. FUTURE WORKS
To address the above-mentioned limitations and also extend our work, the following
works can be possibly done in the future.

9.3.1. HW/SW CO-DESIGN FOR OTHER CRYPTOGRAPHIC ALGORITHMS WITH

RISC-V VECTOR EXTENSIONS

To address L1, our ongoing research aims to further expand HW/SW co-design for other
cryptographic algorithms with RISC-V vector extensions. Specifically, we will delve into
the implementation of additional cryptographic algorithms that are compatible with
vector mode.

One focus will be lattice-based schemes, such as CRYSTALS-Dilithium [131], FAL-
CON [276], and FHE [128], which are suitable for parallel operations. We also intend to
delve into other families of algorithms, including prime field arithmetic, which forms the
basis for Elliptic Curve Cryptosystems (ECC) [277]–[279]. Moreover, our investigations
may extend to counter-mode encryption (CTR) algorithms, such as ChaCha20 [280].
By exploring the implementation of different cryptographic algorithms on RISC-V plat-
forms with vector extensions, we aim to showcase the versatility of these extensions in
accelerating diverse cryptographic operations.

9.3.2. EXTENDING UTILIZATION OF FPGA-BASED TEES FOR MORE TRUSTED

COMPUTING SCENARIOS

To address L2, we aim to extend the utilization of FPGA-based TEEs for more trusted
computing scenarios. First, our future work will focus on expanding the use of FPGA-
based TEEs on the client side of FL to protect private datasets and the training process.
Additionally, we are considering extending the usage in multi-tenant cloud environ-
ments [281]–[283]. In a multi-tenant environment, multiple users, or "tenants," share
common resources like servers, databases, and applications within the same infrastruc-
ture. This setup offers numerous benefits, including cost-efficiency through resource
pooling, improved hardware utilization, and scalability for varying workloads. However,
the sharing of resources in a multi-tenant cloud environment also introduces signifi-
cant security concerns [281], [283]. Data isolation and confidentiality become primary
worries as tenants may be concerned about unauthorized access to their sensitive infor-
mation. Furthermore, the risk of cross-tenant attacks and potential data compromise
poses substantial threats to the overall security of the cloud infrastructure. Addressing
these security challenges is crucial to establishing trust and confidence in multi-tenant
cloud environments.

FPGA-based TEEs present a compelling solution to mitigate the security concerns
prevalent in multi-tenant cloud computing. By leveraging FPGA-based TEEs, it becomes
possible to establish secure enclaves for individual tenants, ensuring strong isolation of
their computational and data processing activities from other co-located tenants. This
approach not only strengthens data confidentiality but also mitigates the risks associ-
ated with cross-tenant attacks, creating a more secure and reliable multi-tenant cloud
ecosystem. Moreover, FPGA-based TEEs enable the implementation of access control
mechanisms, allowing for fine-grained authorization and authentication protocols tai-

9

158 9. DISCUSSION

lored to each tenant’s specific requirements. Leveraging the parallel processing capabil-
ities of FPGAs, these TEEs can efficiently manage and enforce access policies, safeguard-
ing the integrity and confidentiality of data across diverse tenants while maintaining op-
timal performance.

9.3.3. INVESTIGATION OF THE POTENTIAL VULNERABILITIES OF THE SIMD
RISC-V PLATFORM

To address L3, we plan to explore the potential vulnerabilities of cryptographic algo-
rithms on the SIMD RISC-V platform to SCAs. In Chapters 3 and 4, our focus was pri-
marily on the performance optimization of cryptographic implementations. However,
we did not explicitly delve into the potential vulnerabilities of these implementations to
SCA or design countermeasures to mitigate such threats.

While we did not directly assess these vulnerabilities, it is worth noting that the par-
allel nature of vector implementations may inadvertently introduce a layer of security
against SCAs. Previous studies, such as [5], have demonstrated the increased difficulty
of targeting power consumption in SCAs on a 128-bit AES architecture compared to a
32-bit architecture. By processing multiple data elements simultaneously, vector oper-
ations minimize the exposure of intricate details that could potentially be exploited by
adversaries, thus limiting the effectiveness of SCAs. However, despite these initial ob-
servations, further investigation is necessary to comprehensively evaluate the vulnera-
bilities present in vector operations. Our future work will be dedicated to exploring the
potential vulnerabilities of these algorithms to SCAs and understanding the extent to
which vector extensions may unintentionally mitigate such risks. Additionally, we may
investigate the effectiveness of existing countermeasures and propose novel techniques
to enhance the security of these implementations against SCAs.

9.3.4. RISC-V PLATFORM WITH EXTENSIONS TO MITIGATE SCAS
To address L4, we propose the implementation of a specialized RISC-V platform with ex-
tensions that can effectively mitigate SCAs. Our future work will involve the customiza-
tion of new instructions capable of activating or deactivating various countermeasures
specifically designed to mitigate power and EM SCAs. The extensions we plan to develop
include the following key elements:

• Masking extensions. These customized extensions will be designed to mask dif-
ferent components within the system, including the data path, register bank, and
memory-access operations.

• Noise extensions. Our strategy involves designing a range of extensions that will
enable the activation of noise engines [5]. These engines will perform random
switching activities in parallel to actual operations, effectively injecting additional
noise into the system.

• Desynchronization extensions. We plan to develop customized extensions that in-
clude various operations aimed at introducing randomness and desynchroniza-
tion within the system. These operations may include adding random delays, in-
serting dummy instructions, adjusting clock frequencies, or introducing jitters.

9.3. FUTURE WORKS

9

159

Users have the flexibility to choose the appropriate extensions based on their specific
requirements. They can also select different extensions to enable and combine multiple
countermeasures simultaneously. By implementing these extensions within the RISC-V
platform, we anticipate an improvement in its resistance against SCAs.

BIBLIOGRAPHY

[1] S. Ozdemir and Y. Xiao, “Integrity protecting hierarchical concealed data aggre-
gation for wireless sensor networks”, Computer Networks, vol. 55, no. 8, pp. 1735–
1746, 2011.

[2] L. Guan, P. Liu, X. Xing, et al., “Trustshadow: Secure execution of unmodified ap-
plications with arm trustzone”, in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, 2017, pp. 488–501.

[3] Y. Wang, J. Li, S. Zhao, and F. Yu, “Hybridchain: A novel architecture for confidentiality-
preserving and performant permissioned blockchain using trusted execution en-
vironment”, IEEE access, vol. 8, pp. 190 652–190 662, 2020.

[4] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis”, in Advances in Cryp-
tology — CRYPTO’ 99, M. Wiener, Ed., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1999, pp. 388–397, ISBN: 978-3-540-48405-9.

[5] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Berlin, Heidelberg: Springer-
Verlag, 2007, ISBN: 0387308571.

[6] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power anal-
ysis”, Journal of Cryptographic Engineering, vol. 1, pp. 5–27, 2011.

[7] L. Wu and S. Picek, “Remove some noise: On pre-processing of side-channel mea-
surements with autoencoders”, IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 389–415, 2020.

[8] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make some noise. un-
leashing the power of convolutional neural networks for profiled side-channel
analysis”, IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 148–179, 2019.

[9] S. Jin, S. Kim, H. Kim, and S. Hong, “Recent advances in deep learning-based
side-channel analysis”, English, ETRI Journal, Jan. 2020, ISSN: 1225-6463. DOI:
10.4218/etrij.2019-0163.

[10] G. De Micheli, R. Ernst, and W. Wolf, Readings in hardware/software co-design.
Morgan Kaufmann, 2002.

[11] G. DeMicheli and M. Sami, Hardware/software Co-design. Springer Science & Busi-
ness Media, 2013, vol. 310.

[12] M. Rebouças, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F. Castor, “An empir-
ical study on the usage of the swift programming language”, in 2016 IEEE 23rd in-
ternational conference on software analysis, evolution, and reengineering (SANER),
IEEE, vol. 1, 2016, pp. 634–638.

161

https://doi.org/10.4218/etrij.2019-0163

9

162 BIBLIOGRAPHY

[13] R. J. Calantone and C. A. Di Benedetto, “Performance and time to market: Ac-
celerating cycle time with overlapping stages”, IEEE Transactions on Engineering
Management, vol. 47, no. 2, pp. 232–244, 2000.

[14] L. Du and Y. Du, “Hardware accelerator design for machine learning”, in Machine
Learning-Advanced Techniques and Emerging Applications, IntechOpen, 2017.

[15] H.-C. Ng, C. Liu, and H. K.-H. So, “A soft processor overlay with tightly-coupled
fpga accelerator”, arXiv preprint arXiv:1606.06483, 2016.

[16] R. Höller, D. Haselberger, D. Ballek, P. Rössler, M. Krapfenbauer, and M. Linauer,
“Open-source risc-v processor ip cores for fpgas—overview and evaluation”, in
2019 8th Mediterranean Conference on Embedded Computing (MECO), IEEE, 2019,
pp. 1–6.

[17] F. Farahmand, V. B. Dang, M. Andrzejczak, and K. Gaj, “Implementing and bench-
marking seven round 2 lattice-based key encapsulation mechanisms using a soft-
ware/hardware codesign approach”, in Proceedings of the Second PQC Standard-
ization Conference, Santa Barbara, CA, USA, 2019, pp. 22–24.

[18] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The risc-v instruction set
manual, volume i: User-level isa, version 2.1”, 2016.

[19] T. D. Nguyen, P. Rieger, H. Chen, et al., “FLAME: Taming backdoors in federated
learning”, in USENIX Security, USENIX Association, 2022.

[20] F.-X. Standaert, F. Koeune, and W. Schindler, “How to compare profiled side-channel
attacks?”, in Applied Cryptography and Network Security: 7th International Con-
ference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings 7,
Springer, 2009, pp. 485–498.

[21] N. Ferguson and B. Schneier, Practical cryptography. Wiley New York, 2003, vol. 141.

[22] M. AbuTaha, M. Farajallah, R. Tahboub, and M. Odeh, “Survey paper: Cryptogra-
phy is the science of information security”, 2011.

[23] W. E. Burr, D. F. Dodson, W. T. Polk, et al., Electronic authentication guideline.
Citeseer, 2006.

[24] C. N. Mathur and K. Subbalakshmi, “Digital signatures for centralized dsa net-
works”, in 2007 4th IEEE Consumer Communications and Networking Confer-
ence, Citeseer, 2007, pp. 1037–1041.

[25] M. Theoharidou and D. Gritazalis, “Common body of knowledge for information
security”, IEEE Security & Privacy, vol. 5, no. 2, pp. 64–67, 2007.

[26] N. J. Hopper and M. Blum, “Secure human identification protocols”, in Advances
in Cryptology—ASIACRYPT 2001: 7th International Conference on the Theory and
Application of Cryptology and Information Security Gold Coast, Australia, Decem-
ber 9–13, 2001 Proceedings 7, Springer, 2001, pp. 52–66.

[27] C. Campbell, “Design and specification of cryptographic capabilities”, IEEE Com-
munications Society Magazine, vol. 16, no. 6, pp. 15–19, 1978.

BIBLIOGRAPHY

9

163

[28] M. Bellare and B. Yee, “Forward-security in private-key cryptography”, in Top-
ics in Cryptology—CT-RSA 2003: The Cryptographers’ Track at the RSA Conference
2003 San Francisco, CA, USA, April 13–17, 2003 Proceedings, Springer, 2003, pp. 1–
18.

[29] D. E. Standard et al., “Data encryption standard”, Federal Information Processing
Standards Publication, vol. 112, 1999.

[30] V. Rijmen and J. Daemen, “Advanced encryption standard”, Proceedings of federal
information processing standards publications, national institute of standards and
technology, vol. 19, p. 22, 2001.

[31] D. Coppersmith, D. B. Johnson, and S. M. Matyas, “A proposed mode for triple-
des encryption”, IBM Journal of Research and Development, vol. 40, no. 2, pp. 253–
262, 1996.

[32] I. B. Damgård and L. R. Knudsen, “Two-key triple encryption”, Journal of cryptol-
ogy, vol. 11, pp. 209–218, 1998.

[33] S. Arrag, A. Hamdoun, A. Tragha, et al., “Design and implementation a different
architectures of mixcolumn in fpga”, arXiv preprint arXiv:1209.3061, 2012.

[34] A. Sachdev and M. Bhansali, “Enhancing cloud computing security using aes al-
gorithm”, International Journal of Computer Applications, vol. 67, no. 9, 2013.

[35] M. A. Alrammahi and H. Kaur, “Development of advanced encryption standard
(aes) cryptography algorithm for wi-fi security protocol”, International Journal
of Advanced Research in Computer Science, vol. 5, no. 3, pp. 62–67, 2014.

[36] H. K. Lee, T. Malkin, and E. Nahum, “Cryptographic strength of ssl/tls servers:
Current and recent practices”, in Proceedings of the 7th ACM SIGCOMM confer-
ence on Internet measurement, 2007, pp. 83–92.

[37] K.-L. Tsai, Y.-L. Huang, F.-Y. Leu, I. You, Y.-L. Huang, and C.-H. Tsai, “Aes-128
based secure low power communication for lorawan iot environments”, Ieee Ac-
cess, vol. 6, pp. 45 325–45 334, 2018.

[38] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, “A comparative survey of symmet-
ric and asymmetric key cryptography”, in 2014 international conference on elec-
tronics, communication and computational engineering (ICECCE), IEEE, 2014,
pp. 83–93.

[39] L. Harn, M. Mehta, and W.-J. Hsin, “Integrating diffie-hellman key exchange into
the digital signature algorithm (dsa)”, IEEE communications letters, vol. 8, no. 3,
pp. 198–200, 2004.

[40] M. Hellman, “New directions in cryptography”, IEEE transactions on Information
Theory, vol. 22, no. 6, pp. 644–654, 1976.

[41] N. Koblitz, A. Menezes, and S. Vanstone, “The state of elliptic curve cryptogra-
phy”, Designs, codes and cryptography, vol. 19, pp. 173–193, 2000.

[42] G. R. Blakley and I. Borosh, “Rivest-shamir-adleman public key cryptosystems
do not always conceal messages”, Computers & mathematics with applications,
vol. 5, no. 3, pp. 169–178, 1979.

9

164 BIBLIOGRAPHY

[43] B. Preneel, “Analysis and design of cryptographic hash functions”, Ph.D. disser-
tation, Katholieke Universiteit te Leuven Leuven, 1993.

[44] P. Gallagher and A. Director, “Secure hash standard (shs)”, FIPS PUB, vol. 180,
p. 183, 1995.

[45] S. Halevi and H. Krawczyk, “Strengthening digital signatures via randomized hash-
ing”, in Annual International Cryptology Conference, Springer, 2006, pp. 41–59.

[46] J. R. Black Jr, Message authentication codes. University of California, Davis, 2000.

[47] P. P. Pittalia, “A comparative study of hash algorithms in cryptography”, Interna-
tional Journal of Computer Science and Mobile Computing, vol. 8, no. 6, pp. 147–
152, 2019.

[48] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and fac-
toring”, in Proceedings 35th annual symposium on foundations of computer sci-
ence, Ieee, 1994, pp. 124–134.

[49] R. A. Perlner and D. A. Cooper, “Quantum resistant public key cryptography: A
survey”, in Proceedings of the 8th Symposium on Identity and Trust on the Inter-
net, 2009, pp. 85–93.

[50] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for elliptic
curves”, arXiv preprint quant-ph/0301141, 2003.

[51] J. Buchmann and J. Ding, Post-Quantum Cryptography: Second International Work-
shop, PQCrypto 2008 Cincinnati, OH, USA October 17-19, 2008 Proceedings. Springer
Science & Business Media, 2008, vol. 5299.

[52] M. Mosca, “Cybersecurity in an era with quantum computers: Will we be ready?”,
IEEE Security & Privacy, vol. 16, no. 5, pp. 38–41, 2018.

[53] NIST, Nist post quantum cryptography standardization, https://en.wikipedia.
org/wiki/NIST_Post-Quantum_Cryptography_Standardization, 2016.

[54] D. Micciancio and O. Regev, “Lattice-based cryptography”, in Post-quantum cryp-
tography, Springer, 2009, pp. 147–191.

[55] R. Overbeck and N. Sendrier, “Code-based cryptography”, in Post-quantum cryp-
tography, Springer, 2009, pp. 95–145.

[56] D. J. Bernstein, “Introduction to post-quantum cryptography”, in Post-quantum
cryptography, Springer, 2009, pp. 1–14.

[57] C. Peng, J. Chen, S. Zeadally, and D. He, “Isogeny-based cryptography: A promis-
ing post-quantum technique”, IT Professional, vol. 21, no. 6, pp. 27–32, 2019.

[58] D. D. Hwang, K. Tiri, A. Hodjat, et al., “Aes-based security coprocessor ic in 0.18-
muhboxm cmos with resistance to differential power analysis side-channel at-
tacks”, IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 781–792, 2006.

[59] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On code execution tracking
via power side-channel”, in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 1019–1031.

https://en.wikipedia.org/wiki/NIST_Post-Quantum_Cryptography_Standardization
https://en.wikipedia.org/wiki/NIST_Post-Quantum_Cryptography_Standardization

BIBLIOGRAPHY

9

165

[60] F.-X. Standaert, “Introduction to side-channel attacks”, Secure integrated circuits
and systems, pp. 27–42, 2010.

[61] T.-H. Le, C. Canovas, and J. Clédiere, “An overview of side channel analysis at-
tacks”, in Proceedings of the 2008 ACM symposium on Information, computer and
communications security, 2008, pp. 33–43.

[62] M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flandre, “A
formal study of power variability issues and side-channel attacks for nanoscale
devices”, in Advances in Cryptology–EUROCRYPT 2011: 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn,
Estonia, May 15-19, 2011. Proceedings 30, Springer, 2011, pp. 109–128.

[63] D. Kwon, H. Kim, and S. Hong, “Improving non-profiled side-channel attacks us-
ing autoencoder based preprocessing”,

[64] B. Badrignans, J. L. Danger, V. Fischer, G. Gogniat, and L. Torres, Security trends
for FPGAS: From secured to secure reconfigurable systems. Springer, 2011.

[65] M. Randolph and W. Diehl, “Power side-channel attack analysis: A review of 20
years of study for the layman”, Cryptography, vol. 4, no. 2, p. 15, 2020.

[66] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage
model”, in International workshop on cryptographic hardware and embedded sys-
tems, Springer, 2004, pp. 16–29.

[67] P. Bottinelli and J. W. Bos, “Computational aspects of correlation power analysis”,
Journal of Cryptographic Engineering, vol. 7, pp. 167–181, 2017.

[68] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks”, in Cryptographic Hardware
and Embedded Systems - CHES 2002, B. S. Kaliski, ç. K. Koç, and C. Paar, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 13–28, ISBN: 978-3-540-
36400-9.

[69] S. Picek, A. Heuser, and S. Guilley, “Template attack versus bayes classifier”, J.
Cryptogr. Eng., vol. 7, no. 4, pp. 343–351, 2017. DOI: 10.1007/s13389- 017-
0172-7. [Online]. Available: https://doi.org/10.1007/s13389-017-0172-
7.

[70] O. Choudary and M. G. Kuhn, “Efficient template attacks”, in Smart Card Research
and Advanced Applications - 12th International Conference, CARDIS 2013, Berlin,
Germany, November 27-29, 2013. Revised Selected Papers, 2013, pp. 253–270.

[71] G. Fan, Y. Zhou, H. Zhang, and D. Feng, “How to choose interesting points for
template attacks more effectively?”, in Trusted Systems, M. Yung, L. Zhu, and Y.
Yang, Eds., Cham: Springer International Publishing, 2015, pp. 168–183, ISBN:
978-3-319-27998-5.

[72] L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and F.-X. Standaert, “Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis)”, in International Workshop on Constructive Side-Channel
Analysis and Secure Design, Springer, 2015, pp. 20–33.

https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.1007/s13389-017-0172-7

9

166 BIBLIOGRAPHY

[73] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J. Vandewalle, “Ma-
chine learning in side-channel analysis: A first study”, Journal of Cryptographic
Engineering, vol. 1, no. 4, pp. 293–302, 2011.

[74] Z. Martinasek, J. Hajny, and L. Malina, “Optimization of power analysis using
neural network”, in Smart Card Research and Advanced Applications, A. Francil-
lon and P. Rohatgi, Eds., Cham: Springer International Publishing, 2014, pp. 94–
107, ISBN: 978-3-319-08302-5.

[75] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic implementa-
tions using deep learning techniques”, in Security, Privacy, and Applied Cryptog-
raphy Engineering - 6th International Conference, SPACE 2016, Hyderabad, India,
December 14-18, 2016, Proceedings, C. Carlet, M. A. Hasan, and V. Saraswat, Eds.,
ser. Lecture Notes in Computer Science, vol. 10076, Springer, 2016, pp. 3–26. DOI:
10.1007/978-3-319-49445-6_1. [Online]. Available: https://doi.org/
10.1007/978-3-319-49445-6%5C_1.

[76] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning for side-
channel analysis and introduction to ascad database”, Journal of Cryptographic
Engineering, vol. 10, no. 2, pp. 163–188, 2020.

[77] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks with data aug-
mentation against jitter-based countermeasures”, in International Conference on
Cryptographic Hardware and Embedded Systems, Springer, 2017, pp. 45–68.

[78] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for Efficient CNN
Architectures in Profiling Attacks”, en, IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, vol. Volume 2020, Issue 1-, 2019.

[79] Z.-H. Zhou, Machine learning. Springer Nature, 2021.

[80] J. Alzubi, A. Nayyar, and A. Kumar, “Machine learning from theory to algorithms:
An overview”, in Journal of physics: conference series, IOP Publishing, vol. 1142,
2018, p. 012 012.

[81] G. Bonaccorso, Machine Learning Algorithms: Popular algorithms for data sci-
ence and machine learning. Packt Publishing Ltd, 2018.

[82] S. Gollapudi, Practical machine learning. Packt Publishing Ltd, 2016.

[83] R. Sathya, A. Abraham, et al., “Comparison of supervised and unsupervised learn-
ing algorithms for pattern classification”, International Journal of Advanced Re-
search in Artificial Intelligence, vol. 2, no. 2, pp. 34–38, 2013.

[84] S. B. Kotsiantis, I. Zaharakis, P. Pintelas, et al., “Supervised machine learning: A
review of classification techniques”, Emerging artificial intelligence applications
in computer engineering, vol. 160, no. 1, pp. 3–24, 2007.

[85] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning”, in Machine
learning techniques for multimedia: case studies on organization and retrieval,
Springer, 2008, pp. 21–49.

[86] O. Kramer et al., Dimensionality reduction with unsupervised nearest neighbors.
Springer, 2013, vol. 51.

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6%5C_1
https://doi.org/10.1007/978-3-319-49445-6%5C_1

BIBLIOGRAPHY

9

167

[87] M. A. Nielsen, Neural networks and deep learning. Determination press San Fran-
cisco, CA, USA, 2015, vol. 25.

[88] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, Interna-
tional Conference on Learning Representations, Dec. 2014.

[89] S. Picek, I. P. Samiotis, J. Kim, A. Heuser, S. Bhasin, and A. Legay, “On the perfor-
mance of convolutional neural networks for side-channel analysis”, in Security,
Privacy, and Applied Cryptography Engineering, A. Chattopadhyay, C. Rebeiro,
and Y. Yarom, Eds., Cham: Springer International Publishing, 2018, pp. 157–176,
ISBN: 978-3-030-05072-6.

[90] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side—channel
(s)”, in Cryptographic Hardware and Embedded Systems-CHES 2002: 4th Interna-
tional Workshop Redwood Shores, CA, USA, August 13–15, 2002 Revised Papers 4,
Springer, 2003, pp. 29–45.

[91] T. Güneysu and A. Moradi, “Generic side-channel countermeasures for reconfig-
urable devices”, in International workshop on cryptographic hardware and em-
bedded systems, Springer, 2011, pp. 33–48.

[92] B. Timon, “Non-profiled deep learning-based side-channel attacks with sensitiv-
ity analysis”, IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2019, no. 2, pp. 107–
131, 2019. DOI: 10.13154/tches.v2019.i2.107- 131. [Online]. Available:
https://doi.org/10.13154/tches.v2019.i2.107-131.

[93] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure channel be-
tween rich execution environment and trusted execution environment.”, in NDSS,
2015, pp. 1–15.

[94] ARM, ARM TrustZone technology, https://developer.arm.com/ip-products/
security-ip/trustzone.

[95] D. Kaplan, J. Powell, and T. Woller, Amd memory encryption, https://developer.
amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_
v7-Public.pdf, 2016.

[96] Intel, Intel software guard extensions, https://software.intel.com/content/
www/us/en/develop/topics/software-guard-extensions.html.

[97] P. Maene, J. Götzfried, R. De Clercq, T. Müller, F. Freiling, and I. Verbauwhede,
“Hardware-based trusted computing architectures for isolation and attestation”,
IEEE Transactions on Computers, vol. 67, no. 3, pp. 361–374, 2017.

[98] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: What
it is, and what it is not”, in 2015 IEEE Trustcom/BigDataSE/Ispa, IEEE, vol. 1, 2015,
pp. 57–64.

[99] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding the pre-
vailing security vulnerabilities in trustzone-assisted tee systems”, in 2020 IEEE
Symposium on Security and Privacy (SP), IEEE, 2020, pp. 1416–1432.

[100] T. Cloosters, M. Rodler, and L. Davi, “{Teerex}: Discovery and exploitation of mem-
ory corruption vulnerabilities in {sgx} enclaves”, in 29th USENIX Security Sympo-
sium (USENIX Security 20), 2020, pp. 841–858.

https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i2.107-131
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html

9

168 BIBLIOGRAPHY

[101] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-tee–an open vir-
tual trusted execution environment”, in 2015 IEEE Trustcom/BigDataSE/ISPA, IEEE,
vol. 1, 2015, pp. 400–407.

[102] C. Shepherd, G. Arfaoui, I. Gurulian, et al., “Secure and trusted execution: Past,
present, and future-a critical review in the context of the internet of things and
cyber-physical systems”, 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 168–177, 2016.

[103] G. M. Silberman and K. Ebcioglu, “An architectural framework for supporting
heterogeneous instruction-set architectures”, Computer, vol. 26, no. 6, pp. 39–
56, 1993.

[104] C. Domas, “Breaking the x86 isa”, Black Hat, 2017.

[105] K. Asanović and D. A. Patterson, “Instruction sets should be free: The case for risc-
v”, EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2014-146, 2014.

[106] M. Poorhosseini, W. Nebel, and K. Grüttner, “A compiler comparison in the risc-v
ecosystem”, in 2020 International Conference on Omni-layer Intelligent Systems
(COINS), IEEE, 2020, pp. 1–6.

[107] A. Roelke and M. R. Stan, “Risc5: Implementing the risc-v isa in gem5”, in First
Workshop on Computer Architecture Research with RISC-V (CARRV), vol. 7, 2017.

[108] B. Barney et al., “Introduction to parallel computing”, Lawrence Livermore Na-
tional Laboratory, vol. 6, no. 13, p. 10, 2010.

[109] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-
proach. Elsevier, 2011.

[110] S. Smets, M. Verhelst, and T. Goedemé, “Highly parallel architectures–programmable
pipeline systems as a solution to the memory bottleneck”, 2021.

[111] K. Bonawitz, V. Ivanov, B. Kreuter, et al., “Practical secure aggregation for privacy-
preserving machine learning”, in proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1175–1191.

[112] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
Efficient Learning of Deep Networks from Decentralized Data”, in AISTATS, 2017.

[113] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency”, arXiv
preprint arXiv:1610.05492, 2016.

[114] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “Slowmo: Improving communication-
efficient distributed sgd with slow momentum”, arXiv preprint arXiv:1910.00643,
2019.

[115] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication effi-
cient momentum sgd for distributed non-convex optimization”, in International
Conference on Machine Learning, PMLR, 2019, pp. 7184–7193.

[116] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions”, IEEE signal processing magazine, vol. 37, no. 3,
pp. 50–60, 2020.

BIBLIOGRAPHY

9

169

[117] S. Shen, S. Tople, and P. Saxena, “Auror: Defending Against Poisoning Attacks in
Collaborative Deep Learning Systems”, in ACSAC, 2016.

[118] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How To Backdoor
Federated Learning”, in AISTATS, 2020.

[119] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership Inference Attacks
Against Machine Learning Models”, in IEEE S&P, 2017.

[120] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang, “Updates-leak: Data
set inference and reconstruction attacks in online learning”, in USENIX Security,
2020.

[121] T. D. Nguyen, P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poisoning attacks on
federated learning-based iot intrusion detection system”, in Proc. Workshop De-
centralized IoT Syst. Secur.(DISS), 2020, pp. 1–7.

[122] S. Shen, S. Tople, and P. Saxena, “Auror: Defending against poisoning attacks in
collaborative deep learning systems”, in Proceedings of the 32nd Annual Confer-
ence on Computer Security Applications, 2016, pp. 508–519.

[123] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Distributed Backdoor Attacks against
Federated Learning”, in ICLR, 2020.

[124] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor
federated learning”, in International conference on artificial intelligence and statis-
tics, PMLR, 2020, pp. 2938–2948.

[125] H. Wang, K. Sreenivasan, S. Rajput, et al., “Attack of the tails: Yes, you really can
backdoor federated learning”, Advances in Neural Information Processing Sys-
tems, vol. 33, pp. 16 070–16 084, 2020.

[126] P. Kiourti, K. Wardega, S. Jha, and W. Li, “Trojdrl: Evaluation of backdoor attacks
on deep reinforcement learning”, in 2020 57th ACM/IEEE Design Automation Con-
ference (DAC), IEEE, 2020, pp. 1–6.

[127] X. Zhang, Y. Tang, H. Wang, C. Xu, Y. Miao, and H. Cheng, “Lattice-based proxy-
oriented identity-based encryption with keyword search for cloud storage”, In-
formation Sciences, vol. 494, pp. 193–207, 2019.

[128] L. Morris, “Analysis of partially and fully homomorphic encryption”, Rochester
Institute of Technology, pp. 1–5, 2013.

[129] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “Isa extensions for finite
field arithmetic”, IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 219–242, 2020.

[130] R. Avanzi, J. Bos, L. Ducas, et al., “Crystals-kyber algorithm specifications and
supporting documentation”, NIST PQC Round, vol. 2, no. 4, 2017.

[131] V. Lyubashevsky, L. Ducas, E. Kiltz, et al., “Crystals-dilithium”, Algorithm Specifi-
cations and Supporting Documentation, 2020.

[132] P. Longa and M. Naehrig, “Speeding up the number theoretic transform for faster
ideal lattice-based cryptography”, in International Conference on Cryptology and
Network Security, Springer, 2016, pp. 124–139.

9

170 BIBLIOGRAPHY

[133] S. Pircher, J. Geier, A. Zeh, and D. Mueller-Gritschneder, “Exploring the risc-v
vector extension for the classic mceliece post-quantum cryptosystem”, in 2021
22nd International Symposium on Quality Electronic Design (ISQED), IEEE, 2021,
pp. 401–407.

[134] M. Rose, “Lattice-based cryptography: A practical implementation”, 2011.

[135] M. Ajtai, R. Kumar, and D. Sivakumar, “A sieve algorithm for the shortest lattice
vector problem”, in Proceedings of the thirty-third annual ACM symposium on
Theory of computing, 2001, pp. 601–610.

[136] O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-
phy”, Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40, 2009.

[137] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with er-
rors over rings”, in Advances in Cryptology–EUROCRYPT 2010: 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30–June 3, 2010. Proceedings 29, Springer, 2010, pp. 1–23.

[138] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for module lat-
tices”, Designs, Codes and Cryptography, vol. 75, no. 3, pp. 565–599, 2015.

[139] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “Towards efficient kyber on fpgas: A
processor for vector of polynomials”, in 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), IEEE, 2020, pp. 247–252.

[140] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware”, in International conference on cryp-
tology and information security in Latin America, Springer, 2012, pp. 139–158.

[141] D. Moody, “Round 2 of NIST PQC competition”, Invited talk at PQCrypto, 2019.

[142] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly efficient architecture
of newhope-nist on fpga using low-complexity ntt/intt”, IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 49–72, 2020.

[143] F. Yarman, A. C. Mert, E. Öztürk, and E. Savaş, “A hardware accelerator for polyno-
mial multiplication operation of crystals-kyber pqc scheme”, in 2021 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), IEEE, 2021, pp. 1020–
1025.

[144] G. Xin, J. Han, T. Yin, et al., “VPQC: A Domain-Specific Vector Processor for Post-
Quantum Cryptography Based on RISC-V Architecture”, IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 67, no. 8, pp. 2672–2684, 2020.

[145] A. S. Waterman, Design of the RISC-V instruction set architecture. University of
California, Berkeley, 2016.

[146] A. Amid, K. Asanovic, A. Baum, et al., Riscv-v-spec-1.0, https://github.com/
riscv/riscv-v-spec/releases/, 2021.

[147] E. N. İşman, C. Topal, L. Akçay, and B. Örs, “Instruction extension of an open
source rv32imc core for ntru cryptosystem”, in 2020 European Conference on Cir-
cuit Theory and Design (ECCTD), IEEE, 2020, pp. 1–5.

https://github.com/riscv/riscv-v-spec/releases/
https://github.com/riscv/riscv-v-spec/releases/

BIBLIOGRAPHY

9

171

[148] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: Tightly coupled risc-v accelera-
tors for post-quantum cryptography”, IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 239–280, 2020.

[149] K. Patsidis, C. Nicopoulos, G. C. Sirakoulis, and G. Dimitrakopoulos, “RISC-V 2:
A Scalable RISC-V Vector Processor”, in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), IEEE, 2020, pp. 1–5.

[150] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-core cpu accel-
erator”, in Proceedings of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays, 2008, pp. 222–232.

[151] lowRISC, Ibex documentation, https://ibex- core.readthedocs.io/en/
latest/01_overview/index.html, 2021.

[152] AMD Xilinx, Inc., Alveo U200 and U250 Accelerator Cards, https://docs.xilinx.
com/r/en-US/ug1289-u200-u250-reconfig-accel, 2020.

[153] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, Pqm4: Testing and
benchmarking nist pqc on arm cortex-m4, Cryptology ePrint Archive, Report 2019/844,
https://ia.cr/2019/844, 2019.

[154] A. Giani, R. Bent, M. Hinrichs, M. McQueen, and K. Poolla, “Metrics for assess-
ment of smart grid data integrity attacks”, in 2012 IEEE Power and Energy Society
General Meeting, IEEE, 2012, pp. 1–8.

[155] D. Bider and M. Baushke, “SHA-2 data integrity verification for the secure shell
(ssh) transport layer protocol”, Request for Comments, vol. 6668, 2012.

[156] H. Krawczyk, M. Bellare, and R. Canetti, Hmac: Keyed-hashing for message au-
thentication, 1997.

[157] M. J. Dworkin, “SHA-3 standard: Permutation-based hash and extendable-output
functions”, 2015.

[158] C. Cid, “Recent developments in cryptographic hash functions: Security implica-
tions and future directions”, Information security technical report, vol. 11, no. 2,
pp. 100–107, 2006.

[159] D. J. Bernstein, Salsa20 specification. eSTREAM Project algorithm description, 2005.

[160] NIST, PQC standardization process round4, https://csrc.nist.gov/News/
2022/pqc-candidates-to-be-standardized-and-round-4, 2022.

[161] F. Vercauteren, S. Sinha Roy, J.-P. D’Anvers, and A. Karmakar, “SABER: Mod-LWR
based KEM (Round 3 Submission)”, 2020.

[162] J. Wright, M. Gowanlock, C. Philabaum, and B. Cambou, “A CRYSTALS-Dilithium
Response-Based Cryptography Engine Using GPGPU”, in Proceedings of the Fu-
ture Technologies Conference, Springer, 2021, pp. 32–45.

[163] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Sponge functions”, in
ECRYPT hash workshop, Citeseer, vol. 2007, 2007.

[164] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Keer, Keccak implemen-
tation overview, https://keccak.team/files/Keccak-implementation-
3.2.pdf, 2012.

https://ibex-core.readthedocs.io/en/latest/01_overview/index.html
https://ibex-core.readthedocs.io/en/latest/01_overview/index.html
https://docs.xilinx.com/r/en-US/ug1289-u200-u250-reconfig-accel
https://docs.xilinx.com/r/en-US/ug1289-u200-u250-reconfig-accel
https://ia.cr/2019/844
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf

9

172 BIBLIOGRAPHY

[165] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “A synthesis methodology for hy-
brid custom instruction and coprocessor generation for extensible processors”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 26, no. 11, pp. 2035–2045, 2007.

[166] J. Rao, T. Ao, S. Xu, K. Dai, and X. Zou, “Design Exploration of SHA-3 ASIP for
IoT on a 32-bit RISC-V Processor”, IEICE TRANSACTIONS on Information and
Systems, vol. 101, no. 11, pp. 2698–2705, 2018.

[167] Y. Wang, Y. Shi, C. Wang, and Y. Ha, “FPGA-based SHA-3 acceleration on a 32-bit
processor via instruction set extension”, in 2015 IEEE International Conference
on Electron Devices and Solid-State Circuits (EDSSC), IEEE, 2015, pp. 305–308.

[168] M. A. Elmohr, M. A. Saleh, A. S. Eissa, K. E. Ahmed, and M. M. Farag, “Hardware
implementation of a SHA-3 application-specific instruction set processor”, in
2016 28th International Conference on Microelectronics (ICM), IEEE, 2016, pp. 109–
112.

[169] H. Rawat and P. Schaumont, “Vector Instruction Set Extensions for Efficient Com-
putation of Keccak”, IEEE Transactions on Computers, vol. 66, no. 10, pp. 1778–
1789, 2017.

[170] M. K. Jain, M. Balakrishnan, and A. Kumar, “Asip design methodologies: Survey
and issues”, in VLSI Design 2001. Fourteenth International Conference on VLSI
Design, IEEE, 2001, pp. 76–81.

[171] O. Schliebusch, A. Chattopadhyay, D. Kammler, et al., “A framework for auto-
mated and optimized asip implementation supporting multiple hardware de-
scription languages”, in Proceedings of the 2005 Asia and South Pacific Design
Automation Conference, 2005, pp. 280–285.

[172] RISCVTeam, RISC-V Vector Specification, https://github.com/riscv/riscv-
v-spec/releases/download/v1.0-rc1/riscv-v-spec-1.0-rc1.pdf,
2021.

[173] Amazon AWS, Amazon EC2 F1, https://aws.amazon.com/ec2/instance-
types/f1/.

[174] Microsoft Research, Project Catapult, https://www.microsoft.com/en-us/
research/project/project-catapult/.

[175] A. Cloud, FPGA-based Compute-Optimized Instance Families, https://www.
alibabacloud.com/help/doc-detail/108504.htm, 2019.

[176] S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A.-R. Sadeghi, and N. Mentens, “Trusted
configuration in cloud fpgas”, in International Symposium on Field-Programmable
Custom Computing Machines (FCCM), IEEE, 2021.

[177] M. Zhao, M. Gao, and C. Kozyrakis, “ShEF: Shielded Enclaves for Cloud FPGAs”,
in ACM SPLOS, ACM, 2022.

[178] H. Fereidooni, S. Marchal, M. Miettinen, et al., “SAFELearn: Secure Aggregation
for Private Federated Learning”, in IEEE Security and Privacy Workshops (SPW),
IEEE, 2021.

https://github.com/riscv/riscv-v-spec/releases/download/v1.0-rc1/riscv-v-spec-1.0-rc1.pdf
https://github.com/riscv/riscv-v-spec/releases/download/v1.0-rc1/riscv-v-spec-1.0-rc1.pdf
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.alibabacloud.com/help/doc-detail/108504.htm
https://www.alibabacloud.com/help/doc-detail/108504.htm

BIBLIOGRAPHY

9

173

[179] Z. Wang, B. Che, L. Guo, et al., “Pipefl: Hardware/software co-design of an fpga
accelerator for federated learning”, IEEE Access, vol. 10, pp. 98 649–98 661, 2022.

[180] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine Learning
with Adversaries: Byzantine Tolerant Gradient Descent”, in NIPS, 2017.

[181] N. M. Jebreel and J. Domingo-Ferrer, “Fl-defender: Combating targeted attacks
in federated learning”, Knowledge-Based Systems, vol. 260, p. 110 178, 2023.

[182] Y. Khazbak, T. Tan, and G. Cao, “Mlguard: Mitigating poisoning attacks in pri-
vacy preserving distributed collaborative learning”, in International Conference
on Computer Communications and Networks (ICCCN), IEEE, 2020.

[183] Y. Tian, R. Wang, Y. Qiao, E. Panaousis, and K. Liang, “Flvoogd: Robust and privacy
preserving federated learning”, arXiv preprint arXiv:2207.00428, 2022.

[184] A. Mondal, Y. More, R. H. Rooparaghunath, and D. Gupta, “Poster: Flatee: Fed-
erated learning across trusted execution environments”, in 2021 IEEE European
Symposium on Security and Privacy (EuroS&P), IEEE, 2021, pp. 707–709.

[185] H. Hashemi, Y. Wang, C. Guo, and M. Annavaram, “Byzantine-robust and privacy-
preserving framework for fedml”, in ICLR Workshops, 2021.

[186] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for efficient mixed-
protocol secure two-party computation.”, in NDSS, 2015.

[187] P. Rieger, T. D. Nguyen, M. Miettinen, and A.-R. Sadeghi, “Deepsight: Mitigat-
ing backdoor attacks in federated learning through deep model inspection”, in
NDSS, 2022.

[188] K. Eguro and R. Venkatesan, “FPGAs for Trusted Cloud Computing”, in IEEE Inter-
national Conference on Field Programmable Logic and Applications (FPL), IEEE,
2012, pp. 280–287.

[189] B. Hong, H.-Y. Kim, M. Kim, T. Suh, L. Xu, and W. Shi, “Fasten: An fpga-based
secure system for big data processing”, IEEE Design & Test, 2017.

[190] M. E. Elrabaa, M. Al-Asli, and M. Abu-Amara, “Secure Computing Enclaves Using
FPGAs”, IEEE Transactions on Dependable and Secure Computing (TDSC), 2019.

[191] N. Khan, S. Nitzsche, A. G. López, and J. Becker, “Utilizing and extending trusted
execution environment in heterogeneous socs for a pay-per-device ip licensing
scheme”, IEEE TIFS, vol. 16, pp. 2548–2563, 2021.

[192] J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, “Sacha: Self-attestation of
configurable hardware”, in DATE, 2019.

[193] S. Andreina, G. A. Marson, H. Möllering, and G. Karame, “BaFFLe: Backdoor De-
tection via Feedback-based Federated Learning”, in ICDCS, 2021.

[194] Y. Dong, X. Chen, K. Li, D. Wang, and S. Zeng, “Flod: Oblivious defender for pri-
vate byzantine-robust federated learning with dishonest-majority”, in European
Symposium on Research in Computer Security, Springer, 2021.

[195] Z. Yang, S. Hu, and K. Chen, “FPGA-based hardware accelerator of homomorphic
encryption for efficient federated learning”, arXiv preprint arXiv:2007.10560, 2020.

9

174 BIBLIOGRAPHY

[196] J. Krautter, D. R. Gnad, and M. B. Tahoori, “Mitigating Electrical-level Attacks To-
wards Secure Multi-Tenant FPGAs in the Cloud”, ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), 2019.

[197] T. La, K. Mätas, N. Grunchevski, K. Pham, and D. Koch, “FPGADefender: Mali-
cious Self-Oscillator Scanning for Xilinx UltraScale+ FPGAs”, ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 2020.

[198] C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated learning in
sybil settings”, in RAID, 2020.

[199] L. Muñoz-González, K. T. Co, and E. C. Lupu, “Byzantine-robust federated ma-
chine learning through adaptive model averaging”, arXiv preprint arXiv:1909.05125,
2019.

[200] AMD Xilinx, Inc., Vitis Unified Software Platform Documentation, https://docs.
xilinx.com/r/en-US/ug1393-vitis-application-acceleration, 2022.

[201] AMD Xilinx, Inc., Vitis High-Level Synthesis User Guide, https://docs.xilinx.
com/r/en-US/ug1399-vitis-hls, 2022.

[202] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering based on
hierarchical density estimates”, in Pacific-Asia conference on knowledge discovery
and data mining, Springer, 2013, pp. 160–172.

[203] R. J. Campello, D. Moulavi, A. Zimek, and J. Sander, “Hierarchical density esti-
mates for data clustering, visualization, and outlier detection”, ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 10, no. 1, pp. 1–51, 2015.

[204] L. McInnes, J. Healy, and S. Astels, “Hdbscan: Hierarchical density based cluster-
ing.”, J. Open Source Softw., vol. 2, no. 11, p. 205, 2017.

[205] AMD Xilinx, Inc., Vitis accelerated-libraries, https://github.com/Xilinx/
Vitis_Libraries, 2022.

[206] F. Standaert, T. Malkin, and M. Yung, “A unified framework for the analysis of
side-channel key recovery attacks”, in Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, A. Joux,
Ed., ser. Lecture Notes in Computer Science, vol. 5479, Springer, 2009, pp. 443–
461. DOI: 10.1007/978- 3- 642- 01001- 9_26. [Online]. Available: https:
//doi.org/10.1007/978-3-642-01001-9%5C_26.

[207] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption
Standard (Information Security and Cryptography), 1st ed. Springer, 2002, ISBN:
3540425802.

[208] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems”, Commun. ACM, vol. 21, no. 2, pp. 120–126,
Feb. 1978, ISSN: 0001-0782. DOI: 10.1145/359340.359342. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342.

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis_Libraries
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9%5C_26
https://doi.org/10.1007/978-3-642-01001-9%5C_26
https://doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342

BIBLIOGRAPHY

9

175

[209] V. S. Miller, “Use of elliptic curves in cryptography”, in Lecture Notes in Computer
Sciences; 218 on Advances in cryptology—CRYPTO 85, Santa Barbara, California,
USA: Springer-Verlag New York, Inc., 1986, pp. 417–426, ISBN: 0-387-16463-4. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=18262.25413.

[210] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, vol. 48,
no. 177, pp. 203–209, Jan. 1987, ISSN: 0025-5718.

[211] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep
convolutional neural networks”, Neural Information Processing Systems, vol. 25,
Jan. 2012. DOI: 10.1145/3065386.

[212] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks”, in 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2013, pp. 6645–6649.

[213] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting”, Journal of Machine
Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available: http:
//jmlr.org/papers/v15/srivastava14a.html.

[214] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition”, arXiv 1409.1556, Sep. 2014.

[215] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion”, Jun. 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90.

[216] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the incep-
tion architecture for computer vision”, Jun. 2016. DOI: 10.1109/CVPR.2016.
308.

[217] L. Masure, C. Dumas, and E. Prouff, “Gradient visualization for general charac-
terization in profiling attacks”, in International Workshop on Constructive Side-
Channel Analysis and Secure Design, Springer, 2019, pp. 145–167.

[218] B. Hettwer, S. Gehrer, and T. Güneysu, “Deep neural network attribution methods
for leakage analysis and symmetric key recovery”, in International Conference on
Selected Areas in Cryptography, Springer, 2019, pp. 645–666.

[219] D. van der Valk, S. Picek, and S. Bhasin, “Kilroy was here: The first step towards
explainability of neural networks in profiled side-channel analysis”, IACR Cryp-
tol. ePrint Arch., vol. 2019, p. 1477, 2019. [Online]. Available: https://eprint.
iacr.org/2019/1477.

[220] C. Archambeau, E. Peeters, F. .-. Standaert, and J. .-. Quisquater, “Template at-
tacks in principal subspaces”, in Cryptographic Hardware and Embedded Systems
- CHES 2006, L. Goubin and M. Matsui, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 1–14, ISBN: 978-3-540-46561-4.

[221] J. G. van Woudenberg, M. F. Witteman, and B. Bakker, “Improving differential
power analysis by elastic alignment”, in Cryptographers’ Track at the RSA Con-
ference, Springer, 2011, pp. 104–119.

http://dl.acm.org/citation.cfm?id=18262.25413
https://doi.org/10.1145/3065386
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://eprint.iacr.org/2019/1477
https://eprint.iacr.org/2019/1477

9

176 BIBLIOGRAPHY

[222] R. A. Muijrers, J. G. van Woudenberg, and L. Batina, “Ram: Rapid alignment method”,
in International Conference on Smart Card Research and Advanced Applications,
Springer, 2011, pp. 266–282.

[223] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representa-
tions by error propagation”, California Univ San Diego La Jolla Inst for Cognitive
Science, Tech. Rep., 1985.

[224] J. An and S. Cho, “Variational autoencoder based anomaly detection using recon-
struction probability”, Special Lecture on IE, vol. 2, no. 1, 2015.

[225] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression with
compressive autoencoders”, arXiv preprint arXiv:1703.00395, 2017.

[226] Z. Martinasek, L. Malina, and K. Trasy, “Profiling power analysis attack based on
multi-layer perceptron network”, in Computational Problems in Science and En-
gineering, Springer, 2015, pp. 317–339.

[227] G. Yang, H. Li, J. Ming, and Y. Zhou, “Convolutional neural network based side-
channel attacks in time-frequency representations”, in International Conference
on Smart Card Research and Advanced Applications, Springer, 2018, pp. 1–17.

[228] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches to
counteract power-analysis attacks”, in Advances in Cryptology — CRYPTO’ 99, M.
Wiener, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 398–412,
ISBN: 978-3-540-48405-9.

[229] L. Goubin and J. Patarin, “DES and Differential Power Analysis (The "Duplica-
tion" Method).”, Jan. 1999, pp. 158–172.

[230] V. Mirchevska, M. Luštrek, and M. Gams, “Combining domain knowledge and
machine learning for robust fall detection”, Expert Systems, vol. 31, no. 2, pp. 163–
175, 2014.

[231] B. Hettwer, S. Gehrer, and T. Güneysu, “Profiled power analysis attacks using con-
volutional neural networks with domain knowledge”, in Selected Areas in Cryp-
tography - SAC 2018 - 25th International Conference, Calgary, AB, Canada, August
15-17, 2018, Revised Selected Papers, 2018, pp. 479–498. DOI: 10.1007/978-3-
030-10970-7_22. [Online]. Available: https://doi.org/10.1007/978-3-
030-10970-7%5C_22.

[232] D. Wang, K. Mao, and G.-W. Ng, “Convolutional neural networks and multimodal
fusion for text aided image classification”, in 2017 20th International Conference
on Information Fusion (Fusion), IEEE, 2017, pp. 1–7.

[233] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation”, PloS one, vol. 10, no. 7, 2015.

[234] F. Wegener, T. Moos, and A. Moradi, “DL-LA: Deep Learning Leakage Assessment:
A modern roadmap for SCA evaluations”, IACR Cryptol. ePrint Arch., vol. 2019,
p. 505, 2019.

[235] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks:
Visualising image classification models and saliency maps”, preprint, Dec. 2013.

https://doi.org/10.1007/978-3-030-10970-7_22
https://doi.org/10.1007/978-3-030-10970-7_22
https://doi.org/10.1007/978-3-030-10970-7%5C_22
https://doi.org/10.1007/978-3-030-10970-7%5C_22

BIBLIOGRAPHY

9

177

[236] M. Zeiler and R. Fergus, “Visualizing and understanding convolutional neural
networks”, vol. 8689, Nov. 2013. DOI: 10.1007/978-3-319-10590-1_53.

[237] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse of class im-
balance and conflicting metrics with machine learning for side-channel evalua-
tions”, IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2019, no. 1, pp. 209–237,
2019. DOI: 10.13154/tches.v2019.i1.209-237. [Online]. Available: https:
//doi.org/10.13154/tches.v2019.i1.209-237.

[238] G. Perin, L. Chmielewski, and S. Picek, “Strength in numbers: Improving general-
ization with ensembles in machine learning-based profiled side-channel analy-
sis”, IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2020,
no. 4, pp. 337–364, Aug. 2020. DOI: 10.13154/tches.v2020.i4.337-364. [On-
line]. Available: https://tches.iacr.org/index.php/TCHES/article/
view/8686.

[239] J. Zhang, M. Zheng, J. Nan, H. Hu, and N. Yu, “A novel evaluation metric for deep
learning-based side channel analysis and its extended application to imbalanced
data”, IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp. 73–96, 2020.
DOI: 10.13154/tches.v2020.i3.73-96. [Online]. Available: https://doi.
org/10.13154/tches.v2020.i3.73-96.

[240] G. Perin and S. Picek, “On the influence of optimizers in deep learning-based
side-channel analysis”, IACR Cryptol. ePrint Arch., vol. 2020, p. 977, 2020. [On-
line]. Available: https://eprint.iacr.org/2020/977.

[241] S. Picek, A. Heuser, and S. Guilley, “Profiling side-channel analysis in the restricted
attacker framework”, IACR Cryptol. ePrint Arch., vol. 2019, p. 168, 2019. [Online].
Available: https://eprint.iacr.org/2019/168.

[242] J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio, “Algorithms for hyper-parameter
optimization”, Dec. 2011.

[243] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization”,
The Journal of Machine Learning Research, vol. 13, pp. 281–305, Mar. 2012.

[244] H. Shu and H. Zhu, “Sensitivity analysis of deep neural networks”, Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4943–4950, Jul. 2019,
ISSN: 2159-5399. DOI: 10.1609/aaai.v33i01.33014943. [Online]. Available:
http://dx.doi.org/10.1609/aaai.v33i01.33014943.

[245] M. Carbone, V. Conin, M.-A. Cornélie, et al., “Deep learning to evaluate secure
RSA implementations”, IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, vol. 2019, no. 2, pp. 132–161, Feb. 2019. DOI: 10.13154/tches.
v2019.i2.132-161. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/7388.

[246] L. Weissbart, S. Picek, and L. Batina, “One trace is all it takes: Machine learning-
based side-channel attack on eddsa”, in Security, Privacy, and Applied Cryptog-
raphy Engineering, S. Bhasin, A. Mendelson, and M. Nandi, Eds., Cham: Springer
International Publishing, 2019, pp. 86–105, ISBN: 978-3-030-35869-3.

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2020.i4.337-364
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.13154/tches.v2020.i3.73-96
https://doi.org/10.13154/tches.v2020.i3.73-96
https://doi.org/10.13154/tches.v2020.i3.73-96
https://eprint.iacr.org/2020/977
https://eprint.iacr.org/2019/168
https://doi.org/10.1609/aaai.v33i01.33014943
http://dx.doi.org/10.1609/aaai.v33i01.33014943
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.13154/tches.v2019.i2.132-161
https://tches.iacr.org/index.php/TCHES/article/view/7388
https://tches.iacr.org/index.php/TCHES/article/view/7388

9

178 BIBLIOGRAPHY

[247] G. Perin, L. Chmielewski, L. Batina, and S. Picek, “Keep it unsupervised: Hori-
zontal attacks meet deep learning”, IACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2021, no. 1, pp. 343–372, 2021. DOI: 10.46586/tches.v2021.i1.343-372.
[Online]. Available: https://doi.org/10.46586/tches.v2021.i1.343-372.

[248] L. Lerman, G. Bontempi, and O. Markowitch, “Power analysis attack: An approach
based on machine learning”, Int. J. Appl. Cryptol., vol. 3, no. 2, pp. 97–115, Jun.
2014, ISSN: 1753-0563. DOI: 10.1504/IJACT.2014.062722. [Online]. Available:
http://dx.doi.org/10.1504/IJACT.2014.062722.

[249] A. Heuser and M. Zohner, “Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines”, in COSADE, 2012, pp. 249–264.

[250] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning for side-
channel analysis and introduction to ASCAD database”, J. Cryptographic Engi-
neering, vol. 10, no. 2, pp. 163–188, 2020. DOI: 10.1007/s13389-019-00220-8.
[Online]. Available: https://doi.org/10.1007/s13389-019-00220-8.

[251] A. Y. Peng, Y. Sing Koh, P. Riddle, and B. Pfahringer, “Using supervised pretraining
to improve generalization of neural networks on binary classification problems”,
in Machine Learning and Knowledge Discovery in Databases, M. Berlingerio, F.
Bonchi, T. Gärtner, N. Hurley, and G. Ifrim, Eds., Cham: Springer International
Publishing, 2019, pp. 410–425, ISBN: 978-3-030-10925-7.

[252] S. Koturwar and S. Merchant, “Weight initialization of deep neural networks(dnns)
using data statistics”, CoRR, vol. abs/1710.10570, 2017. arXiv: 1710.10570. [On-
line]. Available: http://arxiv.org/abs/1710.10570.

[253] Y. B. Xavier Glorot, “Understanding the difficulty of training deep feedforward
neural networks”, Journal of Machine Learning Research, vol. 9, pp. 249–256, 2010,
ISSN: 15324435.

[254] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification”, IEEE International Conference on
Computer Vision (ICCV 2015), vol. 1502, Feb. 2015. DOI: 10.1109/ICCV.2015.
123.

[255] F. Chollet et al., Keras, https://keras.io, 2015.

[256] Keras, Layer weight initializers, https://keras.io/api/layers/initializers/.

[257] S. Bhasin, N. Bruneau, J.-L. Danger, S. Guilley, and Z. Najm, “Analysis and im-
provements of the dpa contest v4 implementation”, in Security, Privacy, and Ap-
plied Cryptography Engineering, R. S. Chakraborty, V. Matyas, and P. Schaumont,
Eds., Cham: Springer International Publishing, 2014, pp. 201–218, ISBN: 978-3-
319-12060-7.

[258] J.-S. Coron and I. Kizhvatov, An efficient method for random delay generation
in embedded software, Cryptology ePrint Archive, Report 2009/419, https://
eprint.iacr.org/2009/419, 2009.

[259] S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “Sok: Deep learning-based
physical side-channel analysis”, IACR Cryptol. ePrint Arch., p. 1092, 2021. [On-
line]. Available: https://eprint.iacr.org/2021/1092.

https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.1504/IJACT.2014.062722
http://dx.doi.org/10.1504/IJACT.2014.062722
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://arxiv.org/abs/1710.10570
http://arxiv.org/abs/1710.10570
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://keras.io
https://keras.io/api/layers/initializers/
https://eprint.iacr.org/2009/419
https://eprint.iacr.org/2009/419
https://eprint.iacr.org/2021/1092

BIBLIOGRAPHY

9

179

[260] Y. Zhou and F. Standaert, “Deep learning mitigates but does not annihilate the
need of aligned traces and a generalized resnet model for side-channel attacks”,
J. Cryptogr. Eng., vol. 10, no. 1, pp. 85–95, 2020. DOI: 10.1007/s13389- 019-
00209- 3. [Online]. Available: https://doi.org/10.1007/s13389- 019-
00209-3.

[261] S. Pu, Y. Yu, W. Wang, et al., “Trace augmentation: What can be done even be-
fore preprocessing in a profiled sca?”, in International Conference on Smart Card
Research and Advanced Applications, Springer, 2017, pp. 232–247.

[262] A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation
for image classification”, in 2016 IEEE international conference on image process-
ing (ICIP), Ieee, 2016, pp. 3688–3692.

[263] J. Wang, L. Perez, et al., “The effectiveness of data augmentation in image classifi-
cation using deep learning”, Convolutional Neural Networks Vis. Recognit, vol. 11,
pp. 1–8, 2017.

[264] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learn-
ing in image classification problem”, in 2018 international interdisciplinary PhD
workshop (IIPhDW), IEEE, 2018, pp. 117–122.

[265] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for
deep learning”, Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.

[266] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learn-
ing augmentation strategies from data”, in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 113–123.

[267] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated
data augmentation with a reduced search space”, in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, 2020, pp. 702–
703.

[268] Z. Luo, M. Zheng, P. Wang, M. Jin, J. Zhang, and H. Hu, “Towards strengthen-
ing deep learning-based side channel attacks with mixup”, in 20th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-
tions, TrustCom 2021, Shenyang, China, October 20-22, 2021, IEEE, 2021, pp. 791–
801. DOI: 10.1109/TrustCom53373.2021.00114. [Online]. Available: https:
//doi.org/10.1109/TrustCom53373.2021.00114.

[269] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empiri-
cal risk minimization”, in 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, OpenReview.net, 2018. [Online]. Available: https://openreview.
net/forum?id=r1Ddp1-Rb.

[270] N. Mukhtar, L. Batina, S. Picek, and Y. Kong, “Fake it till you make it: Data aug-
mentation using generative adversarial networks for all the crypto you need on
small devices”, in Topics in Cryptology - CT-RSA 2022 - Cryptographers’ Track at
the RSA Conference 2022, Virtual Event, March 1-2, 2022, Proceedings, S. D. Gal-
braith, Ed., ser. Lecture Notes in Computer Science, vol. 13161, Springer, 2022,

https://doi.org/10.1007/s13389-019-00209-3
https://doi.org/10.1007/s13389-019-00209-3
https://doi.org/10.1007/s13389-019-00209-3
https://doi.org/10.1007/s13389-019-00209-3
https://doi.org/10.1109/TrustCom53373.2021.00114
https://doi.org/10.1109/TrustCom53373.2021.00114
https://doi.org/10.1109/TrustCom53373.2021.00114
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

9

180 BIBLIOGRAPHY

pp. 297–321. DOI: 10.1007/978- 3- 030- 95312- 6_13. [Online]. Available:
https://doi.org/10.1007/978-3-030-95312-6%5C_13.

[271] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversar-
ial examples”, in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio
and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.
6572.

[272] J. Rijsdijk, L. Wu, and G. Perin, “Reinforcement learning-based design of side-
channel countermeasures”, in Security, Privacy, and Applied Cryptography En-
gineering - 11th International Conference, SPACE 2021, Kolkata, India, Decem-
ber 10-13, 2021, Proceedings, L. Batina, S. Picek, and M. Mondal, Eds., ser. Lec-
ture Notes in Computer Science, vol. 13162, Springer, 2021, pp. 168–187. DOI:
10.1007/978-3-030-95085-9_9. [Online]. Available: https://doi.org/
10.1007/978-3-030-95085-9%5C_9.

[273] L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “Revisiting a methodology
for efficient cnn architectures in profiling attacks”, IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, vol. 2020, no. 3, pp. 147–168, Jun.
2020. DOI: 10.13154/tches.v2020.i3.147-168. [Online]. Available: https:
//tches.iacr.org/index.php/TCHES/article/view/8586.

[274] G. Zaid, L. Bossuet, F. Dassance, A. Habrard, and A. Venelli, “Ranking loss: Max-
imizing the success rate in deep learning side-channel analysis”, IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 1, pp. 25–55, 2021. DOI: 10.46586/
tches.v2021.i1.25-55. [Online]. Available: https://doi.org/10.46586/
tches.v2021.i1.25-55.

[275] L. Wu, Y.-S. Won, D. Jap, G. Perin, S. Bhasin, and S. Picek, “Explain some noise:
Ablation analysis for deep learning-based physical side-channel analysis”, Cryp-
tology ePrint Archive, 2021.

[276] P.-A. Fouque, J. Hoffstein, P. Kirchner, et al., “Falcon: Fast-fourier lattice-based
compact signatures over ntru”, Submission to the NIST’s post-quantum cryptog-
raphy standardization process, vol. 36, no. 5, pp. 1–75, 2018.

[277] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of computation, vol. 48,
no. 177, pp. 203–209, 1987.

[278] A. Menezes and A. Menezes, “Implementation of elliptic curve cryptosystems”,
Elliptic Curve Public Key Cryptosystems, pp. 83–100, 1993.

[279] D. V. Bailey and C. Paar, “Efficient arithmetic in finite field extensions with appli-
cation in elliptic curve cryptography”, Journal of cryptology, vol. 14, pp. 153–176,
2001.

[280] D. J. Bernstein et al., “Chacha, a variant of salsa20”, in Workshop record of SASC,
Citeseer, vol. 8, 2008, pp. 3–5.

[281] A. Jasti, P. Shah, R. Nagaraj, and R. Pendse, “Security in multi-tenancy cloud”, in
44th Annual 2010 IEEE International Carnahan Conference on Security Technol-
ogy, IEEE, 2010, pp. 35–41.

https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.1007/978-3-030-95312-6%5C_13
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-030-95085-9_9
https://doi.org/10.1007/978-3-030-95085-9%5C_9
https://doi.org/10.1007/978-3-030-95085-9%5C_9
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.46586/tches.v2021.i1.25-55
https://doi.org/10.46586/tches.v2021.i1.25-55
https://doi.org/10.46586/tches.v2021.i1.25-55
https://doi.org/10.46586/tches.v2021.i1.25-55

BIBLIOGRAPHY 181

[282] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu, “Multi-tenancy
in cloud computing”, in 2014 IEEE 8th international symposium on service ori-
ented system engineering, IEEE, 2014, pp. 344–351.

[283] Z. Chen, W. Dong, H. Li, P. Zhang, X. Chen, and J. Cao, “Collaborative network
security in multi-tenant data center for cloud computing”, Tsinghua Science and
Technology, vol. 19, no. 1, pp. 82–94, 2014.

ACKNOWLEDGEMENTS

The past four and a half years have been a transformative journey that has profoundly
enriched my life. Throughout this time, I’ve been fortunate to have received support
from numerous individuals, including colleagues, friends, and family, whose presence,
understanding, and encouragement have been invaluable. I am grateful to each person
mentioned here, as well as the countless others who have contributed to making this
journey rewarding.

Foremost, my profound gratitude goes to my daily supervisor, Dr. Stjepan Picek, and
my promoter, Prof. Inald Lagendijk. Stjepan has consistently exemplified the qualities of
an exceptional supervisor, always providing steadfast support and consideration to his
students. His prompt responsiveness and patience in addressing our academic inquiries
and assisting with our daily tasks have been invaluable. Moreover, Stjepan offers me
the great freedom to explore diverse topics and facilitate collaborations with numerous
researchers, enriching my experience. Similarly, Inald’s insightful feedback and regular
guidance have been instrumental in shaping our progress. His suggestions to improve
my critical thinking skills and readiness to assist whenever needed have been invaluable
in the journey.

The foundation of my dissertation is rooted in collaborations with esteemed pro-
fessors and researchers, from whom I’ve had the opportunity to learn and grow. I am
grateful to Prof. Nele Mentens for her invaluable guidance, particularly in RISC-V re-
lated topics. Furthermore, I extend my appreciation to Prof. Ahmad-Reza Sadeghi for
his trust and support in our federated learning project, as well as for providing me with
the opportunity to spend six months visiting his Lab at TU Darmstadt. Deep gratitude is
also owed to Dr. Guilherme Perin for his mentorship in side-channel analysis. My sin-
cere thanks extend to Marina Krček, Lichao Wu, Servio Paguada, Unai Rioja, and Lukasz
Chmielewski. Additionally, I am appreciative of the cooperation with Dr. Shaza Zeitouni
and Phillip Rieger, whose assistance has been indispensable in realizing our research
endeavors.

Furthermore, I wish to express my gratitude to all committee members, including Dr.
Shivam Bhasin, Prof. Paola Grosso, Prof. Lejla Batina, Prof. Georgios Smaragdakis, and
Prof. Mauro Conti, for their invaluable feedback and presence at the defense ceremony.

I am deeply thankful for the support I’ve received from my dear colleagues at AISy-
Lab. Upon my arrival in the Netherlands, Lichao provided invaluable guidance, easing
my transition into new research topics and life in a foreign country. Also, thank both
you and Fengqiao for your kind invitations and for visiting me when I was injured; your
warmth and care meant a lot to me. Thank you, Jing, for your companionship through-
out our doctoral journey. It has been a constant source of mutual support and encour-
agement. Our shared experiences, from shopping and attending courses to traveling
and participating in conferences together, have been meaningful and joyful. Marina, I
want to express my thanks for your kind help and commitment to healthy dietary habits,

183

184 BIBLIOGRAPHY

which have inspired me to reflect on my lifestyle choices and their impact on both myself
and Mother Earth. I also wish to convey my thanks to Stefanos, for your advice during
my trip to Greece and also for your thoughtfulness and empathy that have created a
supportive atmosphere within our office. Despite the challenges posed by the COVID-
19 pandemic and your relocation to Radboud, Azade, I treasure the moments we shared
and value your friendship immensely. Lastly, I am grateful for the joyful time I spent
in conferences, summer school, and the outing to Giethoorn with Xiaoyun, Léo, Gorka,
Behrad, and other members of my supervisor’s team at Radboud University.

I wish to extend my gratitude to both current and former members of the Cyber Se-
curity group. Sandra, your support in the last four and a half years has been greatly ap-
preciated. Ruud and Bart, thank you for your assistance with IT matters. Georgios, your
reliability and support have been indispensable to us. Zeki, thank you for your weekly
"birthday" cakes before COVID-19 and your insightful advice on my studies and work.
Sicco, the invitations to your group meetings and Thursday drink activities made us feel
warmly welcomed and valued. Mauro, thanks for the presentations you’ve delivered and
for treating us to delicious snacks from Italy. Giovane, thanks for sharing those inter-
esting books with me. Tianyu, your adept organization of engaging group activities has
brought immense joy to everyone, and your skills as an organizer are truly commend-
able. Jelle and Daniël, your inclusivity and thoughtfulness in conversations always make
everyone feel valued and included. Florine, it was a pleasure attending conferences in
Darmstadt with you, and your courage in seeking your true self has been truly inspiring.
Jorrit, your thoughtful organization of group activities has fostered better connections
among the Ph.D. group. Rui, your talent as a photographer is unmatched, and I am
grateful to have witnessed your creativity firsthand. Huanhuan, your infectious smile
never fails to brighten our days, and I thank you and your wife, Xiaodan, for your help
and warm invitations. Yanqi, your patience and mentorship in our board games have
been invaluable to all of us. Shihui, Dazhuang, and Zeshun, thanks for your help and
good advice. Azqa and Gamze, thank you for the assistance you provided me when I first
arrived in the Netherlands. Clinton, thanks for sharing your life experiences in Aruba
and the stunning landscapes there. Robert, your fascinating life and travel experiences
have inspired me to embrace life more passionately. Simone, thanks for your help in
finding accommodation in Germany. Lastly, I extend my thanks to all other colleagues,
including Ozzy, Kaitai, Roland, Luca, Stefano, Marwan, Hao, Miray, Laurens, Chibuike,
Alexios, Lilika, Harm, Enrico, Chhagan and others in the group, for broadening my un-
derstanding and enriching my Ph.D. journey with their expertise beyond the scope of
this thesis.

To all the friends I’ve met in the Netherlands, I express my deep gratitude. Though
it’s impossible to name everyone, I carry with me cherished memories of our shared mo-
ments. Special thanks to Tian for your kindness in preparing delicious meals for me after
my injury and also for our joyful journeys in nature and cities. To Huiyuan and Jinke,
your help from the very beginning meant a lot to me. To Lingyun for the memorable
times at the gym and in the kitchen and for your lovely gift from Yunnan province. To
Wenxiu, your ability to bring smiles to those around you brought warmth to my days. To
Yiyun, Qingru, and Chengming, for your kind invitation. I am also grateful to Fenghua,
Li, Cheng, Xinrui, Yang, and many others for their kindness and warmth.

BIBLIOGRAPHY 185

I am greatly grateful for the time I spent in the System Security Lab of TU Darmstadt
in 2023. The invaluable assistance and support from colleagues such as Petra, Shaza,
Phillip, Mohamad, Kavita, Tigist, Carlotta, Alessandro, Marco, Richard, Thien, and oth-
ers transcended professional collaborations, enriching my experience with meaningful
interactions and discussions. Besides, I am grateful to Yuchen and Nana for their assis-
tance in daily life matters, which made my stay even more enjoyable.

I express my gratitude to TU Delft, the China Scholarship Council (No.201908510131),
and the CROSSING Doctoral Scholarship (Project: Secure Multi-Tenant Configuration of
Cloud FPGAs) for funding my Ph.D. research.

Lastly, I wish to convey my deepest appreciation to my family, whose love has been
the bedrock of my journey. To my dear parents, my grandparents, aunts, and uncles,
whose guidance and support have shaped my character and aspirations, I am eternally
grateful. Their belief in my abilities has been a constant source of strength. I extend
heartfelt thanks to my husband, Wenjun, and daughter, Luoluo, whose love and support
have been unwavering. Their faith in me has been a guiding light, propelling me forward
in times of uncertainty. I am forever indebted to them for their endless encouragement,
without which I could not have achieved my goals.

Huimin Li
Delft, March 2024

CURRICULUM VITÆ

Huimin LI

Huimin Li was born in Guangyuan, Sichuan, China. She received her bachelor’s
degree in Microelectronics from Northwestern Polytechnical University, Xi’an, Shaanxi,
China in June 2009, and subsequently pursued her master’s degree in the field of Micro-
electromechanical Systems (related to sensor signal processing) at the same university,
graduating in March 2012. Throughout her university period, she consistently earned
awards every year such as the School-Level Excellent Student Award, the First-Class Schol-
arship, and also the "Qing’an" Special Scholarship.

Post-graduation, Huimin Li commenced her career journey at the CT Business Unit
in Shanghai United Imaging Healthcare Co., Ltd. as an FPGA engineer. There, she earned
the Best New Employee Award and the Outstanding Contribution Award. In December
2014, she transitioned to HiSilicon, Huawei Technologies Co., Ltd., assuming the role of
a chip design engineer, where she received the Chip Star Award. In January 2016, she
joined Southwest University of Science and Technology, China, obtaining a High Educa-
tion Teacher Certificate while serving as a teaching faculty member.

Since September 2019, she has pursued her Ph.D. in the Cyber Security research
group at the EEMCS faculty of Delft University of Technology in the Netherlands, under
the supervision of Dr. Stjepan Picek and Prof. Inald Lagendijk. Between February and
August 2023, she visited the System Security Lab at the Technical University of Darm-
stadt, Germany, and worked under the supervision of Prof. Ahmad-Reza Sadeghi. Her re-
search interests include a wide array of domains, including deep learning, side-channel
analysis, post-quantum cryptography, RISC-V, and FPGA. She has published her work
at multiple international conferences and journals. Additionally, she has given several
invited talks and reviewed papers from esteemed security-related journals and confer-
ences.

187

	2. cover_Huimin Li
	幻灯片 1

	1. TUD_Dissertation_HuiminLi_2_4_2024
	Summary
	Samenvatting
	Part I Introduction and Preliminary
	Introduction
	Motivation
	Thesis Outline
	Part I: Introduction and Preliminary
	Part II: HW/SW Co-design for Security Systems
	Part III: The Study of Deep Learning-based Side-channel Analysis
	Part IV: Discussion

	About the Thesis
	List Of Excluded Publications

	Preliminary
	Cryptography
	Symmetric Cryptography
	Asymmetric Cryptography
	Hash Functions
	Post-quantum Cryptography

	Side-channel Analysis
	Leakage Model
	Non-profiled SCA and Profiled SCA
	Countermeasures

	Trusted Execution Environments
	RISC-V Instruction Set Architecture
	Vector Processing
	Federated Learning
	Poisoning Attacks
	Privacy Attacks

	Summary

	Part II HW/SW Co-design for Security Systems
	A Scalable SIMD RISC-V based Processor with Customized Vector Extensions for CRYSTALS-Kyber
	Introduction
	Notation
	Background
	Module Learning with Errors Problem
	CRYSTALS-Kyber
	Number Theoretic Transform
	RISC-V Vector Extensions
	Customize RISC-V Instructions

	The Design of An SIMD RISC-V Processor
	Scalar Core
	Vector Processing Unit

	The Design for Polynomial Multiplications in Crystal-Kyber
	Register Pooling
	Automatic Index Generation
	Customized Vector Instructions for NTT
	Optimization for Finite Field Arithmetic Operations

	Experimental Results
	Summary

	Maximizing the Potential of Custom RISC-V Vector Extensions for Speeding up SHA-3 Hash Functions
	Introduction
	Background
	Keccak-f[1600] Permutation
	Related Works

	System Design
	64-bit Architecture
	32-bit Architecture
	Custom Vector Extensions

	Implementations and Results
	Summary

	FLAIRS:FPGA-Accelerated Inference-Resistant & Secure Federated Learning
	Introduction
	Background
	Federated Learning
	Remote Attestation
	TEEs on FPGAs
	Related Works

	Problem Setting
	System Model
	Adversary Model
	Design of FLAIRS

	Design & Implementation
	Analysis of FLAME Algorithm
	Implementation
	Evaluation

	Summary

	Part III The Investigation of Deep Learning-based Side-channel Analysis
	Overview of Recent Applications of Deep Learning to Profiled Side-channel Analysis
	Introduction
	Deep Learning-based SCA
	Notation
	Profiled SCA and Deep Learning

	Recent Results in Deep Learning-based SCA
	From Machine Learning to Deep Learning in SCA
	Deep Learning Techniques in SCA

	Advantages of Deep Learning for Profiled SCA
	SCA without Preprocessing
	Bypassing Desynchronization
	Deep Neural Networks can Learn Second-order Leakages
	Take Advantage of the Domain Knowledge
	Visualization Techniques to Identify Input Leakage

	Metrics for Deep Learning-based Profiled SCA
	Tuning Neural Network Hyperparameters for SCA
	Different Applications of Deep Learning to SCA
	Summary and Perspectives

	A Comparison of Weight Initializers in Deep Learning-based Side-channel Analysis
	Introduction
	Background
	Weight Initializers

	Experimental Setup
	Experimental Results
	Results for the DPAv4.2 Dataset
	Results for the AES_RD Dataset
	Results for the ASCAD Dataset

	Weight Initializer Influence on Other Hyperparameters
	Summary

	A Systematic Study of Data Augmentation for Protected AES Implementations
	Introduction
	Background
	Data Augmentation
	Datasets

	Related Works
	Analysis Methodology
	Adding Hiding Countermeasures
	Data Augmentation Hyperparameters

	Experimental Results
	Desynchronization Countermeasure
	Gaussian Noise Countermeasure
	Discussion

	Summary

	Part IV Discussion
	Discussion
	Summary of Contributions
	Implementation-related
	SCA-related

	Limitations
	Future Works
	HW/SW Co-design for Other Cryptographic Algorithms with RISC-V Vector Extensions
	Extending Utilization of FPGA-based TEEs for More Trusted Computing Scenarios
	Investigation of the Potential Vulnerabilities of the SIMD RISC-V Platform
	RISC-V Platform with Extensions to Mitigate SCAs

	Acknowledgements
	Curriculum Vitæ

