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Preface

This thesis reports on the results of the research in the �eld of noise	�ltering of
image sequences as carried out in the Information Theory Group at Delft University
of Technology� the Netherlands� from ���� to ����� The work started out as a
Chartered Designer
s project which was successfully completed in January �����
After that� it was continued as a Ph�D� research project�

Investigations into noise	�ltering of image sequences seriously took o� in the early

�s� The Information Theory Group has been active in this �eld of research since
the second half of the 
�s� Part of the work has been carried out in collaboration
with the Digital Signal and Image Processing Laboratory at the Technological
Institute of Northwestern University� Robert R� McCormick School of Engineering
and Applied Science� Illinois� USA� The work has resulted in a number of �joint�
publications�
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Summary

Image sequences are digital recordings of time	varying �D phenomena� Often�
the sequences are corrupted by noise� introduced by the image sensor and therefore
inherently present in the imaging process� This noise can be reduced to improve the
visual appreciation and the results of subsequent processing tasks� The reduction
is performed by noise	�ltering algorithms�

The �D image	sequence signals have two spatial coordinates� indexing the spatial
plane� and one coordinate in time� indexing the temporal direction� In video sig	
nals� the signals in the spatial plane and the signals in the temporal direction have
di�erent properties� As these properties concern the predictability and homogene	
ity of the signal� they are of importance for noise �ltering� In the spatial plane
the signal comprises image data� and is non	stationary� In the temporal direction
two situations can occur� First� in an inactive part of the sequence the temporal
signals are quite homogeneous and therefore particularly suited for noise �ltering�
Second� in an active part of the sequence moving objects and texture are passed�
making the temporal signal highly non	stationary� At most� parts of this signal
have a homogeneous character�

As non	stationarities in temporal signals are often due to object motion� a possible
avoidance is achieved by compensating the sequence for motion� This comprises
estimating the motion and indexing the signal along the motion trajectory� The
resulting �motion	compensated� noise �ltering is the subject of Chapter �� In prac	
tice� motion	compensated noise �ltering bene�ts from the increased homogeneity
in the temporal direction� However� motion estimation is usually not perfect� due
to the noise in the observation and the incompleteness of the motion models used�
Because of this imperfectness� it can be used as a sensible �rst strategy� but �also
because not all non	stationarities are caused by motion� non	stationarities are still
encountered along the motion	compensated temporal trajectory� To decrease the
in�uence of noise on the motion estimate we have used a recursive	search block
matcher� extended with a novel noise	insensitive criterion function based on third	
order statistics� With this modi�cation� the motion estimation is reliable even with
severe noise�

xv



xvi Summary

The lack of a de�nite homogeneous signal path in the image sequence� both spa	
tial and temporal� dictates the use of signal	adaptive �ltering algorithms� Several
adaptive �ltering algorithms have been proposed in literature� such as �lters that
switch	o� the �ltering action in non	stationary regions� order	statistic �lters� and
�ltering algorithms that perform a segmentation step prior to �ltering� Both tem	
poral and spatio	temporal data windows are used for �ltering� Overall� �lters with
a spatio	temporal data window achieve a higher noise suppression because of the
increased amount of data� However� this higher suppression is achieved with more
computational e�ort� Chapter � of this thesis gives an overview of noise	�ltering
algorithms�

In Chapter � we propose a novel adaptive spatio	temporal �ltering approach based
on ideas from non	stationary time	series processing� namely trend	removal and
normalization prior to �ltering� This algorithm uses the conception that a non	
stationary observed signal can be decomposed into two parts� namely� a non	
stationary part� consisting of the trend and the scale factor for normalization� and
a part consisting of the normalized signal� The noise� assumed to be stationary� is
entirely mapped into the normalized signal� This means that only the normalized
signal has to be �ltered� which is a relatively easy task as it can be reasonably
performed by simple noise	smoothing �lters�

As the trend corresponds to local mean and the scale factor for normalization cor	
responds to local deviation� estimates of these local statistics are necessary for the
signal decomposition� We develop adaptive estimators that use statistical proper	
ties of ordered observations� The ordered observations can be matched� using linear
regression� to ordered values from a given normalized distribution� The optimal
regression parameters are estimates of the local mean and deviation� By includ	
ing temporal recursion� the normalized distribution is adapted to slowly changing
statistics within the image sequence�

A popular adaptive noise �lter is the Linear Local Minimum Mean Square Error
�LLMMSE� �lter that uses estimates of the local statistics to adapt the transfer
function to local signal properties� This �lter is a member of the class of switching
�lters which switch	o� �ltering in the case of non	stationary situations to avoid
smoothing �moving� objects� In the case of homogeneous situations� they have
full noise suppression power� In Chapter � we propose the novel combination of
the LLMMSE �lter with order statistics based estimators for estimating the �lter
s
parameters� namely the local mean and deviation�

In the LLMMSE �lter� the estimates of the local statistics have a direct in�uence on
the �lter output� This demands a high estimation accuracy when outlying obser	
vations� non	stationarities� are present in the data� To guarantee this we consider
robust estimation techniques that detect and remove outlying observations from
the estimation process� We have proposed two techniques� First� an iterative tech	
nique involving robust regression� where detection and estimation are performed
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simultaneously� Second� a separate a	priori test for outlying observations� where
the detected outliers are ignored in the estimation process� This test is e�cient be	
cause it is performed on ranges instead of on individual observations� In addition�
the decision e�ciency is consistent for all data	window sizes�

Usually� the observation noise is assumed to be additive and signal independent
which is valid in many practical situations� However� in some practical situa	
tions� the observation noise is signal dependent� This means that �lters that are
based on the independence assumption will give sub	optimal results� or even fail�
We have devised new �ltering algorithms in Chapter � for two applications where
signal dependent noise is encountered� The �rst application is clinical X	ray im	
age sequences� where as a result of lowering the radiation dosage� the images are
quantum limited� The quantum	limited imaging process inherently su�ers from
signal	dependent noise with a Poisson	shape probability density function� Using
the properties of order statistics we propose a dedicated estimator in combination
with outlier rejection� The second application is gamma	corrected video signals�
where because of the non	linear gamma	correction stage� the observation noise has
signal	dependent statistics� For this application we derive an order	statistic �lter
with �xed coe�cients� This new �lter uses higher	order order statistics for opti	
mal estimation of the gamma	corrected original intensity� In combination with the
separate test for ranges� outliers in the data are detected and removed prior to
�ltering�
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Chapter �

Introduction to image sequence

noise �ltering

Image sequences are consecutive digital recordings of a time	varying �D scene ����
Image sequences are dealt with in a number of applications� for instance in broad	
cast� video	phone� tele	conferencing systems ���� satellite observation or surveillance
systems� and clinical radiology ��� ��� Often� image sequences are corrupted by some
amount of noise� This can be caused by imperfections of the scanner� or even be in	
herent to the image	formation process itself� Usually� the various corrupting noise
sources are lumped to one additive entity� In this way� the noisy� observed image
sequence g�i� j� k� can be expressed by the following observation model �

g�i� j� k� � f�i� j� k� � n�i� j� k�� �����

where f�i� j� k� denotes the original signal and n�i� j� k� the noise� The indices i� j
re�ect the vertical and horizontal� or spatial indices� and k is the temporal index
or frame number �see Figure �����

In most situations� we will assume that the additive noise is zero	mean� white�
independent of f�i� j� k� and Gaussian distributed with constant variance� We will
restrict ourselves to sequences containing gray	value images that are available in a
non	interlaced or progressive form ����

The amount of corruption by the noise is expressed by the Signal	to	Noise Ratio
�SNR� de�ned as�

SNR � �� log��
�original signal variance�

�noise variance�
�dB�� �����

Because of amplitude quantization� the SNR is limited to about �� to ��dB for
practical data quantized in ��� levels�

�
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Figure ���� Image sequences are consecutive digital recordings of a time�varying
scene

To improve visual appreciation and to facilitate subsequent coding or analysis� the
noise can be reduced by noise �ltering ��� �� 
�� This �ltering is the topic of this
thesis�

��� Image sequence noise �ltering

Of importance to noise �ltering is the fact that in image sequences two kinds of
approaches to the same signal with di�erent properties can be distinguished� These
sub	signals are the spatial and temporal signals and their properties in�uence the
choices for �lter support and �lter structure�

The spatial properties of images �k �xed� are widely known from image processing
literature ���� It was found that typical spatial information is non	stationary ���� ���
���� At best� the spatial signal consists of multiple wide	sense stationary regions�
For this reason it is required to use adaptive processing when dealing with spatial
signals

Temporal signals are obtained if we consider f�i� j� k� for a �xed spatial position
�i� j�� indicated by f�k�� Two situations can be distinguished with respect to the
properties of f�k�� f�k� can originate from an inactive part or from an active part
of the sequence�

In an inactive part of the sequence� where no object motion or scene changes occur�
the temporal signals are wide	sense stationary and highly correlated� Figure ���
gives an example of such a signal� Inactive parts of the sequence are encountered�
for instance� in a static background region�
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k
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0

100

200

signal from an active region signal from an inactive region

Figure ���� The differences between signals from active and inactive regions are
clearly recognizable

In an active part of the sequence� the temporal signal is non	stationary because
moving objects introduce intensity transitions or temporal edges� At most� the
temporal signal is wide	sense stationary in a short time window� Figure ��� also
gives an example of a temporal signal from an active part of a sequence�

From the above we can conclude that the main problem connected with noise
�ltering of image sequences is how to deal with spatio	temporal non	stationary
signals� One way of dealing with temporal edges caused by object motion is to
�lter the sequence along the motion trajectory� This is called motion compensation
and involves motion estimation� However� motion compensation is never perfect in
practical sequences �
� ��� ���� Therefore� this thesis is directed towards the design
of adaptive spatio	temporal �lter structures that can be applied with or without
motion compensation�

Most noise �lters estimate the original intensity f�i� j� k� from the observations
g�i� j� k� within a spatio	temporal window that is associated with the �lter support�
This support has a �nite spatio	temporal extent and contains noisy observations
g�i� j� k� and�or previous �ltering results �f�i� j� k� in case of recursive �lters� We
can distinguish the �ltering methods by their supports�

Purely spatial methods where the images are �ltered separately have been inves	
tigated extensively in the �eld of image �ltering ��� ��� ���� A drawback of this
approach is that the strong temporal correlation in image sequences is not used�
In addition� temporally inconsistent results may be obtained� causing annoying
artifacts� An advantage is that additional motion blurring is avoided� Although
purely spatial methods for image sequence �ltering will be often used in hardware
implementations� they are hardly reported in scienti�c literature� We will not deal
with spatial methods in this thesis� The emphasis will be on �ltering approaches
that combine spatial and temporal data�
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Figure ���� A schematic overview of the contents of this thesis

��� Outline of the thesis

This thesis is roughly organized into two groups of chapters �see Figure ����� In the
�rst group� Chapters � and �� we will revisit image sequence �ltering methods and
classify them according to their structure� In the second group� Chapters �� � and
� we present a new direction in image	sequence �ltering� using �lter techniques
involving order statistics�

In Chapter � �lter structures are investigated� This chapter contains a classi�cation
and a concise overview of most of the �ltering methods that were published� It
shows the importance of �lter structure for the �nal �ltering result� To stress the
importance of the �lter structure� we will not yet consider motion compensation�
In this light we discuss the use of classical �lter techniques� weighed	averaging
�lters� order	statistic �lters� �recursive� switching �lters� decomposition methods
and Bayesian approaches� This chapter concludes with an experimental evaluation
of some representative �lters�

Chapter � deals with the use of motion�compensation in image sequence �ltering�
We discuss the technique of compensating temporal signals and some of the pop	
ular motion	estimation algorithms that are exploited� As motion estimation has
to be performed on the noisy observations� various ways to decrease the noise sen	
sitivity of motion estimators are discussed� Here� we also discuss noise	�ltering
techniques that simultaneously estimate motion and original intensity from the
noisy observations� Again� an experimental investigation is presented of several
motion	compensated �ltering methods�

Chapter � investigates the use of trend removal and normalization to decompose

the observation into a non	stationary part and a wide	sense stationary part� It
appears that only the wide	sense stationary part has to be �ltered� which requires
only relatively simple �lters� For trend removal and normalization� estimates of the
local statistics �local mean and deviance� are necessary� Adaptive estimators using
ordered observations� also known as Order	Statistics �OS� estimators� are derived
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for this purpose� Chapter � is concluded with an experimental evaluation of this
novel decomposition method�

In Chapter � we address the combination of the OS estimators with the popular
Linear Local MinimumMean Square Error �LLMMSE� �lter which uses estimates
of the local statistics� Usually� this �lter employs simple box	average estimators
for local mean and deviance which cause sub	optimal results in the case of non	
stationary situations� We increase the performance of the LLMMSE �lter by sup	
plying accurate estimates of the statistics even in the case of severely non	stationary
observations� To this end� we improve the OS estimators by selecting homogeneous
parts of the spatio	temporal estimator support and using the appropriate part for
estimation� Employing the properties of ordered statistics� we have devised two
methods to perform this selection� First� an iterative method where the selection
and estimation are performed simultaneously� Second� a method where the selec	
tion is performed in a preprocessing step� Chapter � closes with an experimental
evaluation of the OS	supported LLMMSE �lter�

In Chapter � we consider two applications of the techniques derived in Chapters
� and � to situations where the noise is signal	dependent� As a �rst application
we look at quantum	limited image sequences that arise in clinical radiology� In
these systems� the image intensity is re�ected by a �low� number of photons per
pixel� Inherent to this image formation process� quantum noise is introduced which
has statistics that are related to the intensity of the image source� We propose
the use of a dedicated OS estimator for these sequences� The second applica	
tion is the reduction of noise originating from the electronics in video cameras�
The gamma	correction stage within the camera causes the observed noise to be
signal	dependent� Novel robust OS �lters� employing higher	order ordered statis	
tics are proposed� Both methods are experimentally evaluated using synthetically
corrupted data and practical data�

Chapter � summarizes the conclusions reached in the thesis� Also� some suggestions
for future research in the area of image	sequence noise �ltering are given�

Appendix A considers the stochastic properties of order statistics� It is included to
support the material of Chapters �� � and �� which deals mainly with applications
of order	statistic estimators to image	sequence �ltering�
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Chapter �

A survey of �lter structures

��� Introduction

In this chapter� we consider the basic �lter structures that have been used within
the �eld of research on image	sequence noise �ltering during the past decade� The
main objective is to analyze the di�erent ��ows of interests� and categorize them
accordingly� We look at and compare the most well	known methods including some
proposed by the author which will be investigated more thoroughly in later chap	
ters� The material in this chapter is presented in literature in ���� ����

The signals of image sequences are highly non	stationary because of spatial and
temporal edges� Because the temporal edges are caused by object motion� motion
compensation is an obvious part of the �ltering scheme� However� motion estima	
tion and compensation are far from perfect because of observation noise and incom	
pleteness of the motion model ���� �
� ���� In addition� non	stationarities are also
caused by changes of scene and lighting condition� As a result� motion	compensated
temporal signals can still contain non	stationarities� The spatial signals� being im	
age data� are in general also non	stationary� This leads to the conclusion that
any �lter� whether using motion compensation or not� will have to manage non	
stationary signals� The way in which the �lter performs this action� is re�ected in
the �lter structure� For this reason� this chapter focusses on �lter structures and
in particular on how signal adaptation is included in this structure�

The following classes of �lters are described� Section ��� deals with �lter structures
using weighed averaging� In most examples� the weights of these Finite Impulse
Response �FIR� �lters are adapted to the signal� In Section ��� weighed	averaging
�lters that order the data according to magnitude prior to �ltering are considered�
These order	statistic �lters are edge preserving and are therefore very suited for

�
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image �sequence� processing� In Section ��� �lters are described that adapt by
switching o� �ltering if non	stationarities are detected� They are mostly In�nite
Impulse Response �IIR� �lters� In Section ��� we describe a method that uses trend
removal and normalization in order to create a wide	sense stationary signal that
can be �ltered by a simple �lter� In Section ��� we deal with Bayesian estimation
methods� Here� a local criterion function is optimized by an iterative procedure�

In Section ��� the performances of several of the more popular noise �lters are
compared by noise �ltering of synthetically degraded image sequences�

��� Weighed averaging

A weighed	averaging �lter well known for its use in noise �ltering of time	series
and images� is the Wiener �lter ��� ��� ���� As a logical extension� this �lter was
used for noise �ltering and de	blurring of image sequences by �Ozkan et al� ���� and
Erdem et al� ����� The Wiener �lter for noise �ltering is given by�

�f � Rf �Rf � Rn���g� �����

where �f and g are the estimated and observed image sequences� respectively� writ	
ten down as lexicographically ordered vectors� Rf and Rn are the correlation
matrices of the original signal and noise� respectively�

There are four major disadvantages involved in this approach� First� the require	
ment that the �D auto	correlation function for the original sequence has to be
known a	priori� Second� the �D stationarity assumption� This assumption is detri	
mental to the performance of the �D Wiener �lter� A third disadvantage is the
huge number of calculations� which are performed in the frequency domain� This
also severely limits the number of frames used in this o�	line method� A fourth
disadvantage is that in practical motion	compensated schemes only compensation
for global translational motion can be incorporated� using the shifting properties
of the Fourier transform �����

The Wiener �lter from ����� usually involves a global image sequence operation�
i�e� all data is required to obtain a single element of the estimated sequence �f � Far
more attractive are �lters that perform local weighing in a restricted �lter support�

�f�i� j� k� �
X

p�q�l�S

wp�q�l�i� j� k�g�i� p� j � q� k � l�� �����

where S is the �lter support and wp�q�l�i� j� k� are the �lter weights� The sum of
the �lter weights has to be unity in order to have an estimate which is free of bias�
In a spatio	temporal �lter� S is a three	dimensional support� A typical support is�
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Figure ���� Some examples of spatio�temporal filter supports� The dark pixels
in these examples are active in the filter support� From left to right� the fig�
ure contains a temporal support comprising three frames� a temporal support
comprising five frames� a �six�nearest�neighbors� spatio�temporal support and a
cubic spatio�temporal support�

S � �p � ��� �� �� q � ��� �� �� l � ��� �� ��� For a temporal �lter with p � q � �� a
typical support is S � �p � q � �� l � ������ �� �� ��� Some examples of temporal
and spatio	temporal �lter supports are shown in Figure ���� Note that the temporal
extent determines the number of frame memories�

The di�erences between the various �lters that can be described by ����� are at	
tributed to the way in which the weights are established� In the simplest form� the
�lters have �xed weights with values that are globally optimal in a least	squares
sense to estimate a constant value or a signal with known correlation immersed
in noise� The resultant �lters are then constrained versions of the original Wiener
�lter� In a more advanced form� the weights are adapted for each pixel on the basis
of a segmentation procedure or least	squares minimization�

If all weights are given equal values within a temporal support� the �lter results
in a temporal averaging operator� A disadvantage of this �lter is that it severely
smoothes moving objects as reported by Huang and Hsu ���� However� in non	
moving areas such as the background� it is strongly noise suppressive� Temporal
averaging was also investigated by Boyce �����

Kalivas and Sawchuck ���� avoided smoothing of moving objects by the averag	
ing �lter by �rst using a segmentation step to classify objects and background�
The support of the averaging �lter was then restricted according to the shape
of these objects� E�ectively� this means a local adaptation consisting of zeroing
the corresponding weights if the �lter crosses a boundary� Temporal and spatio	
temporal supports were considered� Although temporal blurring was avoided in
both the temporal and spatio	temporal variants� the interior of the objects was
over	smoothed by the spatio	temporal variants�
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The contour plot method by Dekker et al� ���� is a method that assigns continuous
values to the weights wp�q�l�i� j� k�� It is based upon the same principle as the method
of Kalivas and Sawchuck ����� namely to avoid �ltering across object boundaries�
The main feature of the method is the algorithm to check whether pixels belong
to the same object or not� This is done by attaching an �altitude function� to the
paths from the current pixel to all other pixels within the spatio	temporal support�
The value of this altitude ap�q�l�i� j� k� measures the minimal e�ort of �climbing�
from g�i� j� k� to g�i� p� j � q� k � l� along path ��

ap�q�l�i� j� k� � min
���

Ufg�i� j� k�� g�i� p� j � q� k � l�g �����

where � is a limited set of �no	return� paths from �i� j� k� to �i�p� j�q� k�l�� The
positive climbing e�ort Ufgis found by considering the output of an edge detector�
Note that if two pixel values are equal but do not belong to the same object� the
e�ort Ufg is high and they are not regarded similar�

The conversion from altitude ap�q�l�i� j� k� to the �lter weights wp�q�l�i� j� k� is done
by means of the following function�

wp�q�l�i� j� k� �
c

� �
ap�q�l�i�j�k�

�

� � � �� � � �� �����

where c is for normalizing purposes and � and � are tuning constants� The results
obtained by the contour plot method are good for sequences that are corrupted with
a light to moderate level of noise� A too severe level of noise causes a degradation
in the performance of the edge detector� which in turn will e�ect the quality of the
�ltered sequence �����

The adaptive weighed	averaging �lter by �Ozkan et al� �
� ��� also adapts the weights
locally� The weights of the spatio	temporal �lter are as follows�

wp�q�l�i� j� k� �
c

� � �MAX���� �g�i� j� k�� g�i� p� j � q� k � l����
� �����

where c is a normalizing constant� and � and � are tuning parameters� It can
be seen that if the absolute di�erence of the intensities between the current pixel
g�i� j� k� and another pixel g�i� p� j � q� k � l� is less than �� the pixel is included
in the averaging� The value of the parameter � depends on the noise variance�

The parameter � is a penalty parameter controlling how rapidly the weights should
reduce as a function of the mismatch between pixel values� If � � � the �lter de	
grades to the temporal average� if � is large� then � � ��� � ��� and the �lter
performs averaging only over the matching temporal values� �Ozkan et al� have in	
vestigated temporal ���� and spatio	temporal �
� supports in a motion	compensated
context� and showed that the �lter performs well for several values of �� A practical
choice turned out to be � � ��
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The weight vector w� containing the weights� can also be assigned values that
minimize the mean square estimation error� This is the class of constrained� i�e�
limited support� Wiener �lters� The values of the weights are �rst established by
evaluating the statistical properties of the entire signal path� In a second pass these
weights are used for �ltering� thus making constrained Wiener �ltering an o�	line
technique�

The following criterion function is used to �nd the globally optimal weights�

w� min
w�

Ef �f �i� j� k�� f�i� j� k�g�� �����

Note that to solve ������ stochastic information about the original signal and noise
is needed� A temporal �lter of this form was investigated by Kleihorst et al� ��
��

Equation ����� can be extended by incorporating quadratic terms which are able
to more closely model non	stationary signals� The temporal version of this �lter�
known as a Volterra �lter� looks like �����

�f�i� j� k� �
X
l�S

wlg�i� j� k � l� �
X
l�t�S

bt�lg�i� j� k � l�g�i� j� k � t�� �����

The weight vectors w and b are also found by minimizing the mean square error
as in Equation ������ To this end� up to �th	order statistics of the original signal
and noise are necessary� Chan and Sullivan ���� proposed to use the Volterra
�lter for �ltering clinical sequences in a spatio	temporal form following a motion	
compensation step�

��� Order�statistic �lters

Order	Statistic �OS� �lters are variants of weighed	averaging �lters� The distinc	
tion is that in OS �lters the data is ordered before being used in the weighed
averaging� Because of the ordering operation� correlation and time information are
ignored in favor of magnitude information� The ordering action makes it possible
to perform a very basic signal segmentation� Pixels belonging to the same object
are usually automatically grouped� OS �lters such as median �lters are known
for their edge	preserving properties ���� and are therefore often proposed for �lter	
ing the non	stationary image sequences� The linear OS �lters have the following
general structure�

�f �i� j� k� �
mX
r��

wr�i� j� k�g�r��i� j� k�� ���
�

where g�r��i� j� k� are the ordered observations �ranks� from an observation window
of odd size m centered at position �i� j� k�� The �lter weights are w�i� j� k�� where
wr�i� j� k� is the �lter weight connected with rank r within the observation window�
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The OS �lters used in image	sequence �ltering are mostly median �lters� They
range from the simple temporal median to multilevel median �lters that can be
designed to preserve certain image features� In later chapters we will consider
other OS �lters�

An early attempt to apply OS �lters to the problem of image	sequence �ltering
was the straightforward temporal median �lter proposed by Huang and Hsu ���
and by Naqvi et al� ����� In this method� only the center weight wm��

�
�i� j� k� has

a non	zero value� and the resulting �lter is�

�f�i� j� k� � g�m��
� ��i� j� k�� �����

This �lter has the advantage that it can be implemented in hardware if m is not
too large ���� ���� A disadvantage of the temporal median �lter is that temporal
�impulses�� originating from moving thin structures are removed if their temporal
support is less than half of the �lter support ���� ���� This causes artifacts which
are called �edge busyness�� Examples of such artifacts are shown in Figure ��� in
the lower part of the right image� which was �ltered with a temporal median �lter�
Parts of the moving characters and even entire characters are removed� The e�ect
is even worse when seen in real	time video�

The artifacts of the temporal median �lter can be avoided by the use of concate	
nated median �lters� each with carefully designed spatio	temporal supports� Arce
���� and Alp and Neuvo ���� proposed methods which are based on multi	stage and
multi	level spatio	temporal median �lters� respectively�

A multi	stage median �lter �MMF� is a method that combines the output of basic
OS �lters operating at the �rst stage of a cascaded �ltering structure� The basic
OS �lters are designed to preserve speci�c features� such as lines� edges and object
corners in a certain direction� By incorporating several sub	�lters� basic image fea	
tures in di�erent orientations can be preserved� The type of feature to be preserved
determines the subclass of the MMF� If the feature spans a �D spatio	temporal line
segment� a unidirectional support is employed� If the feature spans two line seg	
ments� each in orthogonal directions �for instance one in space� the other in time��
a bidirectional support is employed�

Arce ���� considered two variants of the �rst stage� First a set of unidirectional
median �lters and second a set of bidirectional median �lters �see Figure ����� The
results of those sets of medians are used in the �nal stage� The �nal result is de�ned
as the median value of the minimum and the maximum found in the �rst stage and
the center pixel value�

�f �i� j� k� � medianfmax��rst stage�� g�i� j� k��min��rst stage�g� ������

Using bidirectional medians in the �rst stage resulted in a higher noise suppression�
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unidirectional bidirectional

Figure ���� The MMF spatio�temporal sub�windows designed by Arce 	�
�

k

median

median median median

input from the planar windows

f̂(i,j,k)

Figure ���� The planar multi�level median filter from Alp and Neuvo 	���
 the
orientation of bidirectional median filters on the left and the overall structure
on the right

Kokaram and Rayner ��
� experimented with a motion	compensated version of
Arce
s �lter� Their aim was the removal of impulsive noise and they noted that
a global operation of the �lter would also distort image features� Therefore� they
only applied the �lter if impulse noise was detected in the current pixel� They
concluded that their algorithm improved the result of Arce
s� both in terms of
quality of output and operation speed�

Alp and Neuvo ���� proposed the use of a multi	level median �lter for the reduction
of Gaussian noise� This �lter will be described with the aid of Figure ���� Three
�	tap median �lters operate on di�erent planes in the �D cube� A fourth median
�lter �� taps� combines the outputs of the planar �lters into a single result� This
�lter outperformed Arce
s multistage �lter in noise suppression �����

Lee et al� ���� reported the use of the spatio	temporal median �lters of Alp and
Neuvo ���� in a motion	compensated environment� Their aim was to postprocess
video sequences su�ering from coding artifacts such as the �mosquito phenomenon�
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motion direction motion direction

"comet tail" effect "edge busyness" effect

Figure ���� The lower half of the image on the left is processed with a recursive
filter with a global control parameter� The �comet tail� effects are clearly
visible with the moving characters� The lower half of the right image is pro�
cessed with a temporal median filter� The filter removes certain moving line
structures� In video� the effect is irregular� hence its name �edge busyness��

with inter	frame motion	compensated coding and the �blocking e�ect� with DCT	
based schemes� The authors claim better results than Alp in dynamic scenes and
comparable results in static scenes�

��� Switching �lters

The Kalman �lter is a popular choice for noise �ltering time	series and images
���� ���� For image sequences� a Kalman �lter was considered by Cano and Bernard
����� Their proposed �D Kalman �lter is given by�

	Sa�i� j� k� � 	Sb�i� j� k� �K�i� j� k�
h
G�i� j� k�� 	Sb�i� j� k�

i
� ������

where 	Sa�i� j� k� is the �D global state vector of intensity values containing the
current estimate after updating and 	Sb�i� j� k� the state vector before updating�
G�i� j� k� is a vector containing the current observation and K�i� j� k� is the �D
Kalman gain which is calculated for each pixel�

Cano and Benard avoided the processing burden of a full Kalman �lter by sepa	
rating the �lter in a temporal and spatial part and regarding signal and noise as
stationary signals� Their results indicate that the �D Kalman �lter can suppress
the visibility of additive noise� However� the assumption of stationarity resulted in
the introduction of unacceptable artifacts�
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f̂b(i,j,k)

Figure ���� Among the nonlinear approaches without motion compensation this
recursive signal�adaptive filter is often used� The current result is stored in
the delay D� and is used in the next recursion pass� The actual differences in
implementation are in the control parameter C�

Woods and Kim ���� avoided the computational burden associated with ������ by
utilizing a �reduced update� Kalman �lter which included motion compensation�
Overall� despite actions to relieve the computational e�ort� it appears that the cal	
culation of the Kalman gain and the state transitions for each pixel is considerable�

The following simpli�ed Kalman	like structure is computationally more e�cient�
and was therefore substantially exploited ��� ��� ��� ��� ��� �
��

�fa�i� j� k� � �fb�i� j� k� � C�i� j� k��g�i� j� k�� �fb�i� j� k��� ������

Here �fb�i� j� k� is the estimate �before updating� and �fa�i� j� k� the �nal estimate
�after updating�� The estimate before updating is often chosen as ��� ��� ��� ����

�fb�i� j� k� � �fa�i� j� k � ��� ������

which implies a recursion in the temporal direction� This is a great advantage
compared to the weighed	averaging �lters� as it requires only � frame memory� The
relatively simple structure of the �lter is illustrated in Figure ���� By adapting the
value of control parameter C�i� j� k�� it is possible to instantaneously �switch o��
or �switch on� the �lter� For instance� if C�i� j� k� � � the observation g�i� j� k�
is forwarded� however� if C�i� j� k� � � then the corresponding estimate in the
previous frame is forwarded� Any value between these extremes can be used� An
advantage of the switching �lter is that the response of the �lter can be changed
by varying a single parameter� A disadvantage of this type of adaptation is that
the noise is not reduced when C�i� j� k� � ��

The actual di�erences between the several proposals based on Equation ������ lie
in the choice of the control parameter C�i� j� k�� They range from �xed� discrete
values to continuous values which are for instance found by locally minimizing the
mean square estimation error�

The simplest case is to �x C�i� j� k� globally to a constant value� Dennis ���� reports
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of an experiment with C � ����� The long step	response of this �lter� however�
causes distortion of moving objects in the sequence� The resulting visual e�ect is
called the �comet	tail� e�ect and is visible in Figure ����

A large di�erence between the current observation and the previous �lter output
is usually due to motion or scene changes� This di�erence can be used for locally
adapting C�i� j� k�� In this case� the value of C�i� j� k� depends on the �prediction
error� e�i� j� k� � g�i� j� k� � �fb�i� j� k�� This causes the �lter response to adapt
instantaneously to the characteristics of the signal� In this light� McMann ����
used the following approach�

C�i� j� k� �

�
� if je�i� j� k�j � ��
� if je�i� j� k�j 	 ��

������

where � is an appropriately chosen threshold which depends on the noise deviance�

A �ner adaptation is used by Dubois and Sabri ���� Reinen ���� and Dubois �����
who used the following double threshold function for the control parameter�

C�i� j� k� �

���
��

� if je�i� j� k�j � ��
���
�
je�i� j� k�j � ��� � � if � � je�i� j� k�j � ���

� if je�i� j� k�j 	 ���
������

Practical values for � are ��� � � � ���� The �lter was used in combination with motion
compensation ��� ���� Reinen ����� also used a �nd order variant of this �lter for
application to clinical image sequences�

A continuous adaptation of the control parameter was suggested by Crawford �����

C�i� j� k� � � � exp

� je�i� j� k�j
�

��

� ������

where � and � are tuning constants� Again� �nd order variants of the �lter were
proposed�

The recursive �lter from ������ can be improved by using a priori information of
the image sequence model� for instance in a Kak �lter� Motivated by its earlier
success in image and speech processing� the Kak �lter was investigated in a �D
variant by Triplicane ���� and Katsaggelos et al� ����� The �D Kak �lter assumes
a �D AR model for the original signal�

f�i� j� k� �
X

p�q�l�A

a�p� q� l�f�i� p� j � q� k � l� � v�i� j� k�� ������

Here� v�i� j� k� is a white� signal	independent driving noise and a�p� q� r� are the
�xed model coe�cients� The order of the model is determined by its support A�
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The e�ect of the image model on the �lter ������ manifests itself in the estimate
before updating�

�fb�i� j� k� �
X

p�q�r�S

a�p� q� r� �fa�i� p� j � q� k � r�� ����
�

Note the similarity with the update equation ������ discussed earlier if a��� �� �� � �
and all other model coe�cients are zero� Triplicane ���� and Katsaggelos et al� ����
used a �xed control parameter C�i� j� k�� the value of which was optimal in mean
square estimation	error sense� given the image models and the noise statistics�

Katsaggelos et al� ���� also considered concatenated unidirectional Kak �lters� In
this method� the �nal estimate is given by�

�f�i� j� k� � 
t �f�i� j� k � �� � C�k�� �fj�i� j� k�� 
k �f �i� j� k � ���� ������

where�

�fj�i� j� k� � 
v �f�i� j � �� k� � C�j�� �fi�i� j� k�� 
j �f �i� j � �� k��� ������

and�

�fi�i� j� k� � 
h �f �i� �� j� k� � C�i��g�i� j� k�� 
i �f �i� �� j� k��� ������

Here� C�i�� C�j� and C�k� are the horizontal� vertical and temporal control pa	
rameters� respectively� and 
h� 
v and 
t are the horizontal� vertical and temporal
correlation coe�cients�

Non	adaptive and an adaptive versions of this �lter have been proposed in ����� In
the non	adaptive version� the correlation coe�cients and global control parameters
were globally �xed to optimal values� As this tends to blur spatio	temporal edges�
an adaptive version was designed� In this version� the correlation coe�cients and
control parameters are controlled by spatio	temporal edge detectors�

A relatively popular �lter structure arises when the �before update� estimate is
replaced by an estimate of the local mean of the observation ���� �
��

�fb�i� j� k� � ��g�i� j� k�� ������

Note that by this choice� the �lter structure is not longer recursive� It will be
shown in Chapter � that the optimal MinimumMean Square Error �MMSE� control
parameter for ������ is�

C�i� j� k� � � � ���n
���g�i� j� k�� ������

With the use of this control parameter� estimates of the noise variance ��n and the
local variance of g�i� j� k�� denoted by ��g�i� j� k�� have to be established� The combi	
nation of ������� ������ and ������ is called the �Local Linear MMSE� �LLMMSE�
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�lter� It is used in combination with motion compensation by Sezan et al� �����
They used temporal �box averages� for ���g�i� j� k� and ��g�i� j� k�� which are inac	
curate if the �box� crosses object boundaries� The e�ect is that the estimate of
local variance is too high which causes the control parameter to switch o� �ltering�
yielding sharp but noisy spatio	temporal edges�

Martinez and Lim ���� tried to avoid this undesirable e�ect in the LLMMSE �lter
by performing an implicit form of motion estimation and compensation� They
estimated ���g�i� j� k� and ��g�i� j� k� by �box averages� from unidirectional windows
which were directed to mimic certain motion trajectories of the current pixel� They
distinguished between no	motion and four types of possible motion� left� right� up�
and down translation�

The �ltering was performed for each direction in a concatenated way� In case of
operating in a stationary part of the sequence� all � �lters contribute to the �nal
result� giving a maximum spatio	temporal span� If the concatenated �lter crosses
moving objects� the estimator which is oriented along the motion trajectory will
provide the �nal result� as its window has the correct estimate for ��g�i� j� k� and
all other �lters are switched o� by their respective control parameters�

Kleihorst et al� ��
� ��� used robust estimators based on order statistics to avoid the
inaccuracy at object boundaries of �box averages�� Both non motion	compensated
spatio	temporal estimators ��
� and motion	compensated recursive spatio	temporal
estimators ���� were considered� These LLMMSE �lters will be the subject of
discussion in Chapter ��

��� Signal decomposition

A classical way to handle the �ltering of non	stationary signals is to decompose
the signal into a non	stationary and a homogeneous part by trend	removal and
normalization� If the noise is a stationary signal it is entirely mapped into the
homogeneous part� Any linear noise �lter can then be used for the �ltering this
part�

Signal decomposition involves the estimation of local signal statistics� Kleihorst et
al� ��
� and Katsaggelos et al� ���� have used adaptive order	statistic based esti	
mators to estimate the local mean �g�i� j� k� and local deviation �g�i� j� k� from the
observed signal� With the estimated values of these statistics� the non	stationary
signal can be decomposed into a non	stationary part consisting of ��g�i� j� k� and
��g�i� j� k� and a homogeneous part y�i� j� k��

y�i� j� k� �
g�i� j� k�� ��g�i� j� k�

��g�i� j� k�
� ������
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If we denote the actual noise �ltering operation by Ffg� the result of the decom	
position method can be written as follows�

�f �i� j� k� � ��g�i� j� k� � ��g�i� j� k� F

�
g�i� j� k�� ��g�i� j� k�

��g�i� j� k�

�
� ������

Note the similarity of the overall structure with the switching �lters from the
previous section�

Kleihorst et al� ���� and Katsaggelos et al� ���� used a simple� causal weighed	
averaging �lter for noise �ltering of y�i� j� k��

Ffy�i� j� k�g �X
l�S

w����l�i� j� k�y�i� j� k� l�� ������

The components of the weight vector w�i� j� k� are found by recursively minimizing
the cumulative square error�

w�i� j� k� � min
w��i�j�k�

��
�

kX
p��

�k�i �y�i� j� p�� Ffy�i� j� p�g��
��
� � ������

where the updating is performed along the temporal direction� and � serves as a
forgetting factor ����� The reason for using the cumulative updating including the
forgetting factor� is to adapt to the auto	correlation of y�i� j� k�� Although this
signal is homogeneous� it does not necessarily have a �xed auto	correlation�

This approach was investigated using temporal ��
� ��� and spatio	temporal esti	
mators ���� for estimating the local statistics� The decomposition method� and in
particular the estimation method� are investigated more thoroughly in Chapter ��

��� Bayesian approaches

A number of methods were proposed for �ltering image sequences that are based
upon the maximization of a likelihood function� More formally�

�f �i� j� k� � max
f ��i�j�k�

pfg�i� j� k�jf ��i� j� k�g� ����
�

The estimator obtained in this way �nds the most probable original image that has
caused the observed signal� Maximum likelihood or Bayesian approaches are often
applied in image restoration and identi�cation ���� ��� and motion estimation ��
��
Likelihood methods strongly depend on stochastic observation and noise models�
This is in contrast with many of the previous methods� where it was tacitly assumed
that the noise was Gaussian�
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By using edge	dependent weighing in the criterion function� Bayesian approaches
are able to handle non	stationary signals� Because of the complexity of the likeli	
hood function� maximization of ����
� is usually performed by iterative procedures�

Hong and Brzakovic ���� have investigated a probabilistic approach by modeling
image sequences as Markov Random Fields �MRF� ����� The speci�c problem they
were trying to solve was�

�f �k� � max
f

�

pff �jg�k�� �f�k � ��g� ������

where g�k� and �f �k� denote the observed and estimated frame k� Using Bayes

theory and the Markov Random Field �MRF� property �the current pixel only
depends on neighboring pixels�� ������ can be written for pixel values instead of
full frames as�

�f�i� j� k� � max
f ��i�j�k�

pfg�i� j� k�jf ��i� j� k�g pff ��i� j� k�j neighboring pixelsg�
������

Assuming that the additive noise is white and Gaussian� the �rst part of ������ can
be written as�

pfg�i� j� k�jf ��i� j� k�g � �

�n
p
��
exp

���g�i� j� k�� f ��i� j� k���

���n

�
� ������

Using the properties of MRFs� the second part in ������ can be written as a �Gibbs�
distribution ��
��

pff ��i� j� k�j neighboring pixelsg � �
�
exp

n
�Uff ��i� j� k�� �f�i� j� k � ��g

o
� ������

Here� � is a normalizing constant and Ufg is an �energy function��

The actual estimate is found by solving Equation ������� Hong and Brzakovic ����
solved this likelihood function iteratively with the �Iterated Conditional Modes�
�ICM� approach�

Geman and McClure ���� discuss an approach based on regularized minimization
of the following� more general criterion function�

�f �i� j� k� � min
f ��i�j�k�

�Uff ��i� j� k�g� V ff ��i� j� k�� g�i� j� k�� g�i� j� k� ��g� ������

It involves two terms of which the relative levels of importance are weighed by ��
The functional Uff ��i� j� k�g incorporates the image model and assigns high values
to undesirable estimated images� In e�ect� it compromises a function that penalizes
large �nd order derivatives�

The functional V ff ��i� j� k�� g�i� j� k�� g�i� j� k � ��g incorporates the observation
model� It denotes the relation between the candidate estimate and the observed
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Table ���� Summary of the filters implemented from this chapter

Filter Equation Reference Description
average ����� ��� Temporal averaging �lter
Naqvi ����� ���� Temporal median �lter
Arce ������ ���� Spatio	temporal median �lter
�D Kak ����
� ���� ��� Least	squares adaptive �lter
Kleihorst �������������������� ��
� Locally	adaptive �lter
Martinez �������������������� ���� Motion	tracking �lter

data� It penalizes candidates f ��i� j� k� that have not likely resulted in the obser	
vation�

The functional in ������ was solved iteratively for each pixel� Geman and McClure
���� have used this algorithm in a motion	compensated form to restore motion
picture material� Their aim was to correct for scratches and accumulation of dirt
on �lm material�

��	 Experimental evaluation

We compared the performances of several �lters described in this chapter� The
selected �lters are listed in Table ���� Included are representative methods from
most classes with the exception of the Bayesian method� which will be evaluated in
Chapter � and the decomposition method which is the subject of Chapter �� The
methods that have been evaluated in this chapter were all reported in literature to
operate without motion compensation�

From the weighed	averaging class we have selected the temporal averaging of Huang
and Hsu ���� The class of OS �lters is represented by the temporal median �lter
of Naqvi et al� ���� and the spatio	temporal multi	stage median �lter by Arce
����� From the switching �lters we have tested the recursive �D Kak �lter by
Triplicane ���� and Katsaggelos et al� ����� and the non	recursive OS	supported
LLMMSE �lter by Kleihorst et al� ��
�� In addition� we have investigated the con	
catenated motion	tracking LLMMSE �lter by Martinez and Lim ���� that contains
implicit motion compensation� as discussed in Section ���� The ��D Kak� �lter was
evaluated at the Digital Signal and Image Processing Laboratory of Northwestern
University� Illinois�
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Figure ��
� Frame �� of the �Trevor� sequence on the left and frame � of the
�mobile� sequence on the right�

Each �ltering technique listed in Table ��� was applied to noisy versions of the
image sequences �mobile� �frames �	��� and �Trevor� �frames ��	���� These im	
age sequences are generally used for evaluating �ltering and coding methods� We
have selected representative sections with image sizes of ���� ��� pixels from the
original sequences� The �Trevor� sequence contains a lot of jerky motion whereas
the �mobile� sequence contains �predictable� smooth motion� The image data in
�mobile� has a more detailed nature than the �Trevor� sequence� Frames of both
sequences are shown in Figure ����

The sequences were degraded using simulated additive� white Gaussian noise up to
signal	to	noise ratios �SNRs� of �� and �� decibels �dB�� The expression used for
de�ning this SNR� already stated in Chapter �� is repeated here�

SNR � ��log��

�
��f
��n

�
�dB�� ������

Here� ��f is the variance of the original signal and ��n is the variance of the ad	
ditive noise� To evaluate the performance of each �ltering technique we use the
improvement in SNR per frame� which is de�ned as

SNRi�k� � ��log��

��
�
PI

i��

PJ
j�� �f�i� j� k�� g�i� j� k���PI

i��

PJ
j�� �

�f�i� j� k�� f�i� j� k���

��
� �dB�� ������

where I� J are the spatial dimensions� Although it has been argued that this type
of metric is a poor measure of the true visual image quality� we have decided to use
it because of the lack of any other widely accepted metric� This does not mean that
limited e�ort is devoted to other metrics as can be appreciated from ���� ��� ��� ����
In addition to the SNRi measure� we will also give some visual impressions of the
�lter performance�
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Table ���� Average improvement in SNR for the �mobile� sequence�

Filter Average Improvement in SNR �range�
SNR���dB SNR���dB

average ��
 ����� 	��� �����
Naqvi ��� ����� 	��� �����
Arce ��� ����� ��� �����
�D Kak ��� ����� ��� �����
Kleihorst ��� ����� ��� �����
Martinez ��� ����� ��� �����

Table ���� Average improvement in SNR for the �Trevor� sequence�

Filter Average Improvement in SNR �range�
SNR���dB SNR���dB

average ��� ����� 	��
 �����
Naqvi ��� ����� 	��
 �����
Arce ��� ����� ��� �����
�D Kak ��� ����� ��� �����
Kleihorst ��� ����� ��
 �����
Martinez ��� ����� ��� �����
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The experimental results are summarized in Figures ��
 and ��� and Tables ���
and ���� In the tables� the average improvement per frame and the range �between
parentheses� of the improvements are presented� We have avoided the in�uence
of �start	up� or �shut	down� e�ects of certain �lters in the average improvement
metric and the range� From the results we can deduce that methods that take non	
stationarities explicitly into account� such as the �lter �Martinez� and �Kleihorst�
outperform methods which assume stationary signals such as �average��

The spatio	temporal �lters such as ��D Kak�� �Arce�� �Kleihorst� and �Martinez�
that can exploit more data than the temporal �lters have an overall larger improve	
ment�

The response to motion can be most clearly seen from the improvement in the
�Trevor� sequence� An irregular curve indicates either deterioration of moving
objects or a �legitimate� �lter shutdown of the switching �lters� The irregular
curve generated by the non switching �average� and �Naqvi� �lters are caused by
deterioration of moving objects� The irregularities caused by �Martinez� are the
result of a diminishing �lter support in non	stationary regions�

Filters that assume stationary signals have more di�culties in �ltering non	
stationary signals at high SNRs� Ideally� a �lter should not a�ect the original
signal� but it is clear from the tables that �lters such as �average� and �Naqvi� are
distorting the original signal at ��dB SNR�

From a visual point of view� the �average� �lter tremendously deteriorates the
signal� The �Naqvi� and �Arce� �lters are not very noise	suppressive and the
��D Kak���Martinez� and �Kleihorst� �lter yield an appreciable image quality
improvement� Some results from �average���Naqvi���Kleihorst� and �Martinez�
are shown in Figure ���� The �lter results in this chapter can be used as reference
material with respect to the methods dealt with in the remaining chapters� where
we will consider motion compensation and adaptive order	statistic �lters�
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"average" "Naqvi"

Figure ���� Filter results for ��dB SNR of some specific filters
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Figure ���� Experimental results for the non�motion�compensated temporal fil�
ters�
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Figure ���� Experimental results for the non�motion�compensated spatio�
temporal filters�
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Chapter �

Motion�compensated �ltering

��� Introduction

In the Chapter � we have seen that many �ltering methods rely on adaptivity
to handle �temporally� non	stationary signals� As the temporal non	stationarities
are often caused by object motion� they can be avoided in these cases by �ltering
along the motion trajectories� For instance� instead of the familiar expression for
a �recursive� �lter Ffg�

�f�i� j� k� � Ff �f�i� j� k � ��g� �����

we use a motion	compensated form�

�f�i� j� k� � Ff �f�i� di� j � dj� k � ��g� �����

where di and dj represent the vertical and horizontal displacement�

The �ltering algorithm can now be described as a three	step process as illustrated
in Figure ���� First� in a motion	estimation part� the object motion is estimated
from the observed signal� Second� the temporal signal is compensated for motion
based on the motion estimates �d�i� j� k�� The third part comprises the noise �lter�

Compensation for motion improves the �ltering results of any noise �lter which is
�partly� active in the temporal direction� Filters that hardly manage non	stationary
signals will de�nitely bene�t because signal distortion is avoided� Filters that man	
age non	stationary signals will bene�t� although less� because the motion compen	
sation results in an e�ectively larger homogeneous section of the �lter support�

In general� object motion is estimated from the noisy observation� Depending on
the robustness of the motion estimator� the noise may result in inaccurate motion

��
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filtermotion
estimator
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(i,j,k) (i,j,k)

Figure ���� A motion�compensated filtering scheme consists of three parts� First�
the motion is estimated� second� the observed temporal signal is compensated for
motion� and third� it is filtered�

estimates ��� ��� ���� This causes colored noise in the compensated temporal sig	
nal which will aggravate the �nal noise �ltering process� The e�ects are annoying
patches in the �lter result� The danger of temporal coloring depends on the SNR
and is more severe in the low	variance areas such as the background where the local
SNR is low�

Early motion	compensated �ltering techniques relied on motion estimators that
were originally designed for motion	compensated coding purposes ��� ��� Among
those are the gradient and pel	recursive techniques and the full	search block	
matching algorithm ���� Those estimation methods could not handle the noise
very well� The application area of motion	compensated noise �ltering was there	
fore initially limited to relatively high SNRs�

Later on� more e�ort was devoted to decreasing the noise sensitivity of motion
estimators� Suggestions arising from this e�ort are for instance pre	�ltering of the
noisy sequence ���� and modifying the structure of the motion	estimation algorithm
�����

Motion estimation and estimation of the original sequence can be regarded as
coupled problems� This point of view has resulted in simultaneous estimation
approaches� where the object motion and the original sequence are estimated jointly
by a single estimator ��
��

In this chapter we will discuss motion estimation and compensation as a means
of circumventing non	stationarities in temporal signals� First� in Section ��� we
consider various ways to compensate the temporal signal for motion� based upon
the �lter support and the motion estimates available� In Section ��� we deal with
the use of well	known motion	estimation techniques on noisy data� In Section
��� we discuss reducing the noise sensitivity of motion	estimation methods� Here�
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we also consider the simultaneous approaches that regard estimation of original
signal and noise as coupled problems� Finally� Section ��� gives an experimental
evaluation of a noise	robust motion	estimation algorithm and some representative
motion	compensated �ltering methods�

��� Motion�compensation strategies

Motion compensation in image sequence �ltering can be performed in a number of
ways depending on demands related to the �lter support and the assumptions on
the motion� This section gives an overview�

The motion	compensation stage in Figure ��� uses the object motion vector calcu	
lated by the motion estimator to compensate the sequence� Often� the temporal
support of a noise �lter covers multiple frames in which case additional motion
vectors are necessary for compensation� These additional motion vectors can be
established in two ways� First� additional motion estimates can be used or second�
previous motion estimates are simply copied to avoid the computational burden
involved with motion estimation� The decision to copy the previous motion esti	
mate is based upon the assumption that the object moves in a non	accelerated�
translational fashion� If the assumption fails in a speci�c situation� compensation
errors result�

The simplest compensation occurs in �st order temporally recursive �lters that
only depend on �lter results of the previous frame and the current pixel� We have
already given an example in Equations ����� and ������ Here� only the motion
estimated from frame k to frame k � � is used in compensation �Figure ���a��

Non	causal �lters such as weighed average and LLMMSE �lters also exploit data
from future frames such as k � �� Compensation can be performed in two ways�
One way is to assume non	accelerated motion� in which case no additional motion
estimates are performed but symmetrically extended vectors are used� Then� the
motion vectors describing displacements from frame k � � to k are simply applied
to frame k � � �Figure ���b�� The other way is not to assume non	accelerated
motion� Then� an additional motion estimate from frame k to frame k�� is used for
compensation �Figure ���c�� The latter method has a more accurate compensation�

Filter structures using an even larger temporal support such as some temporal �nd

order recursive �lters ���� ���� non	recursive temporal switching �lters ���� ��� and
temporal weighed	averaging �lters ��� 
� need additional compensation� for instance
to frame k � �� The displacements necessary for this additional compensation can
be derived in several ways� The least expensive way is by assuming non	accelerated
motion and extending previous motion estimates �Figure ���d�� In a more complex
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Figure ���� Motion compensation can be implemented in a number of ways depend�
ing on complexity considerations and assumptions� �st order recursive filters
need only one motion estimate �dark vector� to the previous frame as in a�� In
other simple schemes no motion estimate is performed but the available motion
estimate is applied to adjacent frames� b� or extended d� �light vectors�� In more
advanced methods the motion is estimated from the current frame to all frames
used by the filter� c�� e� and f��
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situation� additional motion estimates are retrieved between frames k and k � �
and frames k � � and k � � as in Figure ���e or from the current frame to each
future frame exploited by the �lter as in Figure ���f� This is a complex method�
The motion estimates relative to the previous frames can be established in a similar
manner� Usually� stored results from previous frames can be employed�

��� Motion estimation from noisy sequences

Several motion	estimation algorithms are used in image	sequence analysis� motion	
compensated coding� sub	sampling and �ltering� The methods can be classi�ed into
several categories ���� ���� segmentation	based methods� transform	domain meth	
ods such as phase	plane correlation� matching methods including block	matching�
gradient methods such as pel	recursive motion estimation and statistical methods
including maximum likelihood and Bayesian approaches�

Early motion	compensated �ltering techniques relied on motion	estimation tech	
niques derived for coding purposes� namely matching and gradient techniques� Af	
ter deriving the motion model used in these methods� we consider the in�uence of
noise on their behavior�

����� The motion model

All motion estimators relate to a model for the object motion� Most motion models
are related to the optical �ow model which assumes that brightness changes are
only due to motion� The resulting optical �ow equation is based on the assumption
that the object brightness is constant over time along the motion trajectory ���� �
��

df�i� j� k�

dk
� �� �����

where i� j and k are now considered as continuous variables� The intensity f�i� j� k�
is a function of the coordinates i� j and time k� Therefore� rewriting ����� gives�

�f�i� j� k�

�i

di
dk
�
�f�i� j� k�

�j

dj
dk
�
�f�i� j� k�

�k
� �� �����

where di
dk and dj
dk are the components of the optical �ow which are regarded as
the motion parameters� They can be estimated if the spatial gradients �f�i� j� k�
�i
and �f�i� j� k�
�j are known� Setting �k � � and �f�i� j� k�
�k � f�i� j� k� �
f�i� j� k� �� will then yield the motion estimates� E�ectively� the following motion
model is assumed�

f�i� j� k� � f�i� di� j � dj� k � ��� �����
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This relation shows that the motion between subsequent frames is locally transla	
tional� i�e� can be entirely described by the motion vector �di� dj�T � As a result�
occlusion� variations in object intensity� and non	translational motion such as ��D�
rotation� are not covered�

Commonly� in motion	compensated noise	�ltering� the motion vectors are esti	
mated from the noisy sequence� This implies that the motion model of Equation
����� is used on the observation g resulting in�

g�i� j� k� � g�i� di� j � dj� k � �� � n�i� j� k�� n�i� di� j � dj � k � ��� �����

The noise terms corrupt the motion model and may cause inaccurate motion esti	
mates�

����� Gradient techniques

Gradient techniques for motion estimation can be derived by specifying the frame
di�erence  g�i� j� k� as follows�

 g�i� j� k� � g�i� j� k � ��� g�i� j� k�� �����

Substitution of Equation ����� results in�

 g�i� j� k� � g�i� j� k � ��� g�i� di� j � dj� k � ��
�n�i� di� j � dj� k � �� � n�i� j� k�� ���
�

This relation can be linearized in di and dj as follows�

 g�i� j� k� �
�g�i� j� k � ��

�i
di �

�g�i� j� k � ��
�j

dj � ��i� j� k�� �����

here� �g�i�j�k���
�i

and �g�i�j�k���
�j

are the spatial gradients and ��i� j� k� represents the
approximation error�

Assuming that the motion vector� which will be denoted as d � �di� dj �T � is equal
for a number of neighboring pixels� ����� can be expanded and written in a matrix	
vector form�

�g � Gd � �� ������

Here� G is a matrix containing the spatial gradients estimated from the observed
sequence� The motion vector is found by solving�

�d � min
d
�

jj�g �Gd�jj� � ������

Usually� the problem is over	determined and the motion vector is found using the
generalized inverse of G�

�d � �GTG���GT�g ������



�
�
 Motion estimation from noisy sequences ��

If applied to noisy image sequences� all gradient techniques su�er from the noise
which causes inaccuracy of the gradient estimates� To suppress the inaccuracy�
regularization methods such as smoothness constraints are often used ��
� ����

Gradient techniques in motion�compensated �ltering

Gradient techniques for motion	estimation were for instance used by Huang and
Hsu ��� in combination with temporal mean and median �lters� Popular descen	
dants of this method are pel�recursive motion estimators where the approxima	
tion in Equation ����� is re�ned by solving ������ recursively ���� ��� ���� Pel	
recursive motion estimation has been used in a number of motion	compensated
�ltering methods� Among them are Kak �lters ���� ���� recursive �lters ��� ��� and
a Bayesian approach �����

����� Matching techniques

A popular motion	estimation technique is that of matching ���� In this method� a
number of unidirectional supports are de�ned as�

�g�i� di� j � dj� k � ��� g�i� j� k�� g�i� di� j � dj� k � ���� di� dj � S� ������

Here� S describes the candidate set� which is typically limited� for instance to�
S � ������� �� ������ Among the unidirectional supports the one with the smallest
signal variance is selected�

�di� �dj � min
d�
i
�d�
j

var�fg�i�d�i� j�d�j � k���� g�i� j� k�� g�i�d�j � j�d�j � k����g� ������

The parameters �di and �dj comprise the resulting motion estimate�

An extension of the matching method is block matching� where two	dimensional
supports are matched� Then� the image data within a block in the current frame
is matched� using a criterion function� to a block in the previous frame� Typical
criterion functions used in block	matching algorithms are�

�di� �dj � min
d�
i
�d�
j
�S

X
p�q�A

jg�i� p � d�i� j � q � d�j� k � �� � g�i� p� j � q� k�jc� ������

Comprising the square error for c � � and the absolute di�erence for c � �� A is
the block support and S is the candidate area� A �full	search� algorithm evaluates
the criterion function at every location within the candidate area� To decrease the
calculational e�ort� several strategies such as �three	step� and �cross	search� were
developed ���� Practical block matching will only supply one motion vector for each
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block� Some sort of interpolation scheme is then used to generate a vector for each
pixel�

In general� the noise sensitivity of matching methods depends on the block size�
search algorithm and criterion� We will consider ways to robustify the popular
block	matching algorithm in Section �����

Matching techniques in motion�compensated �ltering

It is straightforward to incorporate the matching method in� for instance� a tem	
poral FIR �ltering strategy� because it simultaneously compensates the signal as
can be seen from Equation������� This property was exploited in temporal median
and average �lters ���� and concatenated estimators �����

The �D variant� block matching� is quite popular in motion	compensated �ltering�
Among the �lter strategies for which it was used are a spatio	temporal Volterra
�lter ����� a Bayesian approach ����� a decomposition method ���� and an LLMMSE
�lter �����

��� Noise�robust motion estimation

The observation noise limits the usefulness of motion estimation in general� This
is especially apparent at lower SNRs ���� ���� In areas with a low image contrast a
non	robust motion estimator is easily distracted by the noise�

There are some ways to avoid inaccuracies caused by noise� we consider two� The
�rst method is to cure an existing motion estimator� for instance by estimating
from pre	�ltered frames or by tuning and�or modi�cation� This is done by in	
cluding noise in the motion model and deriving a noise	robust estimation scheme�
The second method� which has appeared recently� is to regard motion estimation
and �ltering as coupled strategies� That is� the motion and the original sequence
are simultaneously estimated from the noisy observation using a single criterion
function �����

In this section we �rst consider several ways to cure a motion estimator from
noise sensitivity� As an example� a noise	robust block	matching algorithm that
includes some of these remedies is presented in Section ������ Simultaneous motion
estimation and �ltering is the subject of Section ������
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Figure ���� Motion estimation using a pre�filtered frame is easily accomplished in
the switching filters

����� Improving the noise robustness of an existing

method

The noise sensitivity of an existing method can be decreased by considering the
following approaches�

� use pre	�ltered frames to estimate motion�
� use an increased amount of data to invoke an averaging e�ect�
� apply a noise	insensitive criterion function�
� use a tracking algorithm that enforces consistent estimates�

The pre��ltering of frames prior to motion estimation

The usual remedy proposed in the early motion	compensated schemes was to pre	
�lter the observed frames with a simple spatial �lter ��� ���� An obvious method of
pre	�ltering is to use the previous �lter result� This can easily be accomplished with
the switching �lters as seen in Figure ��� where motion estimation is performed
within the feedback loop�

In ���� a spatio	temporal motion	compensated Kalman �lter is described where the
motion is initially estimated from the �lter result on the previous frame and the
current observation� After motion	compensated �ltering of the current frame using
these estimates� an additional motion estimate is performed between the previous
and initial �lter result� This motion estimate is then used for an additional and
also �nal �ltering result�
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Using an increased amount of data to invoke an averaging e
ect

Incorporating more data per motion estimate will decrease the noise sensitivity
because of the averaging e�ect� Ways to increase the amount of data are for instance
increasing the matching window in block	matching methods and the derivation of
gradient estimates from a larger window in the gradient method� However� using
more data will produce inaccurate vector �elds because larger spatial areas are
more likely to cover more than one object with di�erent motion vectors�

Applying a noise�insensitive criterion function

A useful modi�cation is taking the noise explicitly into account in the criterion func	
tion� Some techniques that use a noise	robust criterion function are the method
using the Generalized Maximum	Likelihood �GML� criterion by Namazi and Lee
����� and the method using cumulants by Anderson and Giannakkis ���� for Gaus	
sian noise� Another noise	robust criterion function suited for block matching is
presented by Kleihorst et al� ���� ���� This is based on triple correlation which is
blind to Gaussian noise �����

Boyce ���� has improved the criterion function of a block	matching scheme by
including a	priori knowledge of the noise� She only performs a motion estimate for
a certain block if the Mean Absolute Di�erence �MAD� without motion exceeds a
certain threshold which is based on the noise variance� Also� if the displacement
found will not result in a convincingly lower MAD� then it is assumed that the
di�erence was caused by noise instead of motion� This simple improvement of a
block matcher has been successfully applied with temporal averaging ����� and with
a spatio	temporal median �lter ��
��

Using a tracking algorithm that enforces motion estimate consistency

Enforcing consistency in the motion estimates is done by stimulating similarity
between the motion vectors of the entire frame� Motivated by similar assump	
tions� the regularized estimation algorithms that assume spatial �and�or temporal�
smoothness of the vector �eld ��
� ��� were introduced�

Hierarchical motion	estimation algorithms ���� �
� are inherently spatially consis	
tent� In these algorithms� the frames are represented by a resolution pyramid
containing the image at various resolution levels� The estimation starts at the im	
age representation that has the lowest resolution� The motion vectors found in this
image are used as initial estimates for the estimation process at a lower level with
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a higher spatial resolution� At this lower level� only �ne adjustments of the motion
vectors are permitted�

There are some hierarchical motion	estimation algorithms exploited in �ltering
methods� One is the �Fogel� ���� algorithm which is a gradient	based algorithm
with additional smoothness constraints� Another is the hierarchical block	matching
algorithm by Bierling ��
� which uses regular block matching in every resolution
level� The �Fogel� algorithm was used with LLMMSE ����� AWA �
� ��� and Wiener
�lters ����� The hierarchical block	matching scheme was used with the spatio	
temporal median ��
�� AWA �
� and spatio	temporal Kalman �lters �����

Recursive motion estimation can also be used to enforce consistency as in the
recursive block	matching algorithm by de Haan et al� ��� ��� 
��� This algorithm
was used in combination with the decomposition method ���� ��� ��� and with an
LLMMSE �lter in ����� It will be considered in greater detail in the following�

����� A noise�robust block�matching algorithm

A typical criterion function used in block matching is the correlation function�

Critfd��gg � Ei�jfg�i� d�i� j � d�j� k � �� g�i� j� k�g� ������

Here� Ei�j denotes averaging over the ��nite� block area� A drawback of this func	
tion is that it is rather noise sensitive �����

We propose to modify the correlation function to a triple	correlation function in
the following way�

Critfd��gg � Ei�jfg�i� d�i� j � d�j� k � �� g�i� j� k� g�i� d�i� j � d�j � k � ��g� ������

The advantages of this new criterion function based on �rd order statistics are
twofold� First� the use of three frames �Figure ���� will enforce a smooth temporal
variation of the motion �eld� Second� the ratio of signal	induced value and noise	
induced value of the triple	correlation measure ������ is high because of the �rd	
order terms in g�i� j� k� and n�i� j� k�� Note that the �rd	order moment of zero	mean�
symmetrically distributed noise is zero ���� 
���

In comparison to ���� where the use of cumulants was also suggested in a crite	
rion� the use of � instead of � consecutive frames avoids the use of the �dummy�
variables to establish the third term� These dummy variables made the problem
computationally very demanding�

The reason why ������ is less sensitive to the noise compared to ������ can be seen
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k-1 k k+1

Figure ���� By using three frames in the criterion function temporal smoothness
is increased and a triple�correlation criterion function can be applied

by inserting the motion model from Equation ����� and expanding the product�
For this� we use the following short	hand notation�

nk�� � n�i� d�i� j � d�j � k� ��� nk � n�i� j� k�� nk�� � n�i� d�i� j � d�j � k � ���

fk�� � f�i� d�i� j � d�j � k� ��� fk � f�i� j� k�� fk�� � f�i� d�i� j � d�j � k� ���

Using g�i� j� k� � f�i� j� k� � n�i� j� k�� yields for the correlation criterion �������

Critfd��f � ng � Ei�jffkfk��g� Ei�jfnkfk�� � nk��fkg� Ei�jfnknk��g� ����
�
This can be seen as a match on the noise	free data and error terms caused by the
noise� The triple�correlation criterion ������ now becomes�

Critfd��f � ng � Ei�jffk��fkfk��g� Ei�jfnk��fkfk�� � nkfk��fk��

� nk��fk��fk � nknk��fk�� � nk��nk��fk � nk��nkfk��g
� Ei�jfnk��nknk��g� ������

At �rst� the error term associated with this criterion may seem larger than the error
term in ����
�� However� the term regarding the match on the noise	free intensity
data is much larger in value� creating a higher data	to	error ratio�

In Figure ��� the typical shapes of both criterion functions as a function of d� for
di�erent noise levels are illustrated� The criterion function ������ is more peaked
about the true displacement and approaches zero for incorrect displacements� This
will give a more accurate estimate�

By enforcing consistency� the block matcher will deviate less from an estimated
motion path due to noise� This can be achieved in a block matcher by introducing
recursion ����� A candidate motion vector d� is then established by the sum of a
prediction and an update� For the prediction part the result found for a previous
block is used� For instance� a recursion from the left with block sizes of N � N
yields�

d��i� j� k� � �d�i�N� j� k� � u� ������
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Figure ���� The typical shapes of the correlation and triple�correlation crite�
rion functions for SNRs of ��� �� and � dB

where u is a vector from the update set�
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which is restricted in order to stimulate consistency in the estimate�

Using only one direction of recursion will cause convergence inaccuracies at motion
discontinuities� e�g� moving objects� Because of the restricted update set� the
estimate will only slowly converge to the true value� More accurate estimates are
obtained using four directions of recursion�

d��i� j� k� � �d�i�N� j� k� � u�

d��i� j� k� � �d�i� j �N� k� � u� ������

d��i� j� k� � �d�i� j �N� k � �� � u�
d��i� j� k� � �d�i�N� j� k � �� � u�

Note that two spatial recursions and two temporal recursions are included� The
�nal estimate becomes that candidate vector which results in the smallest value
of the criterion function ������� For a more detailed description of the recursive
block	matching algorithm the reader is referred to ��� 
���

����� Simultaneous motion estimation and �ltering

The �ltering methods that we have considered so far all perform motion estimation
and �ltering separately� As both displacement and original signal are estimated
from the noisy observation� they can be seen as coupled estimation problems ���
�
� ��� 
���

Simultaneous estimation can be stated formally as�

�f � �d � min
f ��d�

Critfg� f �� d�g ������
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where the criterion function remains to be chosen�

In general� simultaneous motion estimation and �ltering are computationally far
more expensive than separate motion estimation and �ltering� Chan et al� ��� used
a maximum	likelihood approach to simultaneously estimate motion and original
sequence in low	dosage cine	angiographic image sequences� Rewriting their method
for intensity �ltering� they considered maximizing the following likelihood function�

�f �k�� �d�k� � max
f ��d�

pfg�k��g�k � ��jf ��d�g� ������

where g�k��f �k��d�k� are the observed and original frame and the vector �eld
between frames k and k � �� Chan et al� ��� proposed to use the Expectation	
Maximization �EM� algorithm which is a method for maximizing log	likelihood
functions ���� 
���

Starting with estimates �f
s
� �d

s
� the EM algorithm �nds the conditional expecta	

tion of the log	likelihood of f� d� g given the observed data and current estimates�
Within each iteration of the EM algorithm Chan et al� ��� decoupled the estima	
tion of original intensity and motion �eld� This resulted in the following interleaved
iteration procedure�

�f
s��
�k� � max

f �
Eflog pff� d� ggjg�k��g�k � ��� �f s

�k�� �d
s
�k�g� ������

�d
s��
�k� � max

d�
Eflog pff� d� ggjg�k��g�k � ��� �f s��

�k�� �d
s
�k�g� ������

Brailean and Katsaggelos ���� 
�� have proposed a pixel	recursive estimator to
solve ������� They used Markov random �elds to model the displacement and
original intensity� These models included �line processes� to adapt the models to
discontinuities in the motion �eld or intensity�

To determine the estimates of the displacement and the intensity �elds� Brailean
and Katsaggelos proposed to maximize the joint a	posteriori probability density
function with respect to the motion �eld� the original intensity and the corre	
sponding line processes� This resulted in a set of �ltering equations consisting of
two coupled extended Kalman �lters�

Driessen ��
� follows a simultaneous approach by minimizing the following concate	
nated energy function�

�f �k�� �d�k� � min
f ��d�

Uff �� �f �k � ���d�� �d�k � ���g�k�g� ������

Here Ufg is composed of the following parts�
Ufg � Ugff ��g�k�g� Ufff �� �f �k � ���d�g� Udfd�� �d�k � ��g� ����
�
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where the operator Ug re�ects the observation model� Uf the motion	compensated
spatio	temporal model of the original image and Ud a spatio	temporal motion	
smoothness constraint� The problem was attended to by an interleaved iteration
process�

�f
s��
�k� � min

f �
Uff �� �ds�k�g� ������

�d
s��
�k� � min

d�
Uf�f s��

�k��d�g� ������

The minimization was performed by sub	optimal Kalman estimators�

��� Experimental evaluation

����� Demonstration of the noise�robust block matcher

In this section we compare the proposed robust recursive block	matching algorithm
with a regular full	search block matcher as a function of the SNR� Both algorithms
operate with block dimensions of �� � ���

In the upper row of Figure ��� a frame from the synthetic image sequence used
is shown at noise levels of SNR��� ��� �� and � dB� The underlying sequence
contains synthetic movement� the background slightly pans and the disk moves
along the diagonal� In the center row of Figure ��� the motion �eld found by the
full	search block	matching algorithm is shown for the various noise levels� It can
be seen that the motion estimator starts breaking down at �� dB and produces
useless results for �dB� The motion �eld estimated by the robust block	matching
algorithm is shown in the bottom row of Figure ���� The results show that the
estimator produces reasonable results� even at �dB SNR�

Figure ��� illustrates the motion in the �mobile� and �Trevor� sequences that are
used in the experimental evaluation of motion	compensated noise �lters� Here�
the motion vectors� estimated with block sizes of ����� pixels by the noise	robust
block	matching algorithm from Section ������ are shown in overlay with the original
images�

����� Evaluation of motion�compensated �lters

In this section we present the experimental results obtained with some represen	
tative motion	compensated �ltering methods proposed in literature� As original
sequences� we have used parts of the �mobile� and �Trevor� sequence� The type of
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Figure ��
� In the top row� images from a sequence with synthetic motion at SNRs
of �� ��� �� and � dB� In the center row results of a full�search block�matching
algorithm and on the lower row the results of the noise�robust block�matching
algorithm�

Figure ���� The motion vector fields for the �mobile� and �Trevor� sequence
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Table ���� Summary of the filters evaluated in this chapter

Filter Motion Equation Reference Description
estimation

AWA BM ���	� 
��� Temporal weighed

averaging �lter

Sezan BM ������ 
��� Temporal least

squares �lter

Dubois PR ����	� 
�� Recursive switching
�lter

�D MC Kak PR ������ 
	�� Recursive �D least

squares �lter

�D sep Kak PR ������ 
	�� Recursive separable �D
least
squares �lter

Adapt PR ������ 
	�� concatenated �
D
adaptive Kak
�lters

�
D AWA BM ���	� 
�� Spatio
temporal weighted

averaging �lter

Kleihorst MC BM ������ 
��� Spatio
temporal least

squares �lter

SDIE sim ������ 
��� Simultaneous Bayesian
method

motion present in both sequences is quite di�erent� Namely� the �mobile� sequence
contains smooth� mostly translational motion which is relatively easy to follow by
recursive motion estimators� In contrast� the �Trevor� sequence contains jerky�
relatively unpredictable motion� Both sequences were degraded using simulated
additive� white Gaussian noise up to SNRs of �� and �� dB�

Noise	�ltering algorithms using a block	matching algorithm for motion estimation
in their original publication were implemented here using the noise	robust block	
matching algorithm described in Section ������ A similar situation holds for the
�lters implemented using a pel	recursive algorithm� They were implemented using
a pel	recursive motion estimator with smoothness regularization �Section �������

The various methods� their symbolic names� and the type of motion estimator used
are shown in Table ���� In this table �BM� means that a block	matching algorithm
was used� �PR� a pel	recursive and �sim� denotes that the motion estimation is
part of the simultaneous motion estimation and �ltering algorithm� The �lter
methods ��D MC Kak�� ��D sep Kak�� �Adapt� and �SDIE� were evaluated at
the Digital Signal and Image Processing Laboratory from Northwestern University�
Illinois�
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The experimental results are summarized in Tables ��� and ���� The tables contain
a number of �lter structures that were discussed without motion compensation in
the previous chapter� Note that two of these methods were already evaluated with	
out motion compensation in Chapter �� namely the ��D MC Kak� �a �	dimensional
Kak �lter with �xed coe�cients� and �Kleihorst MC� �an adaptive switching �l	
ter�� The SNRi of both �lters has improved by including motion compensation�
The �D Kak	�lter has a larger improvement for the �mobile� sequence� which con	
tains relatively easy motion for the PR motion estimator involved�

Both a temporal and a spatio	temporal version of the �AWA� �lter� an adaptive
weighing	averaging �lter� are evaluated� The spatio	temporal version has the high	
est noise suppression for �� and ��dB SNR� This is because the spatio	temporal
version involves more data in the estimation than the temporal version� This is not
true for the ��dB corrupted �Trevor� sequence� where the result of the temporal
�lter is slightly better than the result of the spatio	temporal version� A probable
explanation for this behavior is that the motion compensation for this sequence
is not perfect� and the larger spatio	temporal support leads to more deterioration
of the original signal� The results per frame of the various �lters on the distorted
sequences are shown in Figure ��
� Figure ��� and Figure �����

It can be seen that the adaptive �lters have the highest improvement for the lower
SNRs� For higher SNRs� the adaptability is needed less� because the reliability of
the motion estimator increases� Especially the simultaneous approach� �SDIE� and
the adaptive switching �lter �Kleihorst MC� have very good results� The result of
these two methods are superior� also from a perceptual point of view� The edges
remain sharp and the noise is considerably suppressed�

From the results we see that the overall �best� �lters are the adaptive �lters� This
was also found in Chapter �� It supports our discussion that motion compensation
is not perfect and will therefore not remove all non	stationarities from the temporal
signal� In order to achieve good �ltering results� adaptation is still necessary�
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Table ���� Average improvement in SNR for the �mobile� sequence�

Filter Average Improvement in SNR �range�
SNR���dB SNR���dB

AWA ��� ����� ��� �����
Sezan ��� ����� ��� �����
Dubois ��� ����� ��� ���
�

�D MC Kak ��� ����� ��� �����
�D sep Kak ��� ����� ��� �����
Adapt ��� ����� ��� �����
�D AWA ��� ����� ��� �����

Kleihorst MC ��� ����� ��� �����
SDIE ��� ����� ��� �����

Table ���� Average improvement in SNR for the �Trevor� sequence�

Filter Average Improvement in SNR �range�
SNR���dB SNR���dB

AWA ��
 ����� ��� �����
Sezan ��� ����� ��� �����
Dubois ��� ����� ��� �����

�D MC Kak ��� ����� ��� �����
�D sep Kak ��� ����� ��� �����
Adapt ��� ����� ��� �����
�D AWA ��� ����� ��� �����

Kleihorst MC ��� ����� ��� �����
SDIE ��� ����� ��� �����
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Figure ���� Experimental results for the motion�compensated temporal filters�
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Chapter �

Decomposition and �ltering

��� Introduction

In the previous chapters we have seen that the main concern in image sequence
�ltering is handling the non	stationary signals� As the temporal non	stationarities
are often caused by motion� an obvious choice for creating stationary temporal
signals is using motion compensation� However� the motion models used are never
complete and motion estimation is relatively hard in noisy sequences� Therefore�
even motion	compensated temporal signals still contain non	stationarities� For
this reason� the majority of �lters proposed for image sequence noise	�ltering are
adaptive�

In this chapter� we consider signal decomposition by trend	removal and normaliza	
tion as a method to transform non	stationary signals into homogeneous variants�
In e�ect� the signal is decomposed into a noise	free non	stationary part and a noisy
homogeneous part which is �ltered� Signal decomposition is a classical method
�
�� which is used in time series and image processing ���� 
�� 
��� We have pro	
posed a novel image	sequence �ltering method by applying it to image sequences�
It will be shown that decomposition is bene�cial with motion compensated and
non	compensated noise �lters�

In Section ��� we will look from a formal point of view at creating wide	sense
stationary signals and the application to image processing� In Section ��� we will
derive and analyze estimators for the local statistics which are necessary for signal
decomposition� In Section ��� the implementation aspects of these estimators are
investigated� Finally� in Section ��� the decomposition method is experimentally
investigated in motion	compensated and non	compensated form for Gaussian and
Laplacian noise�

��
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��� Signal decomposition and its applications

����� Normalizing from an algebraic point of view

Non	stationarities manifest themselves as non	constant ensemble signal statistics�
In image sequences� the dynamic behavior of the local mean and local co	variance
cause the poor results of non	adaptive �lters� The introduced artifacts manifest
themselves as smoothing of spatio	temporal edges�

Any non	stationary signal� such as the observed noisy sequence g can be trans	
formed into a WSS signal y ��xed local statistics� by�

y � K�g � �g�� �����

where the trend �g � Efgg is a vector to remove non	stationarity in the mean� and
K is a transformation matrix used to normalize the co	variance �
��� It appears that
K � L��� where L is derived from a Choleski factorization �
�� of the symmetric
and positive de�nite co	variance matrix Cgg of g�

Cgg � Ef�g � �g��g � �g�
Tg � LLT � �����

This factorization is successful� because the co	variance matrix of the transformed
signal K�g � �g� �Karhunen	Lo!eve transform� becomes�

Cyy � EfK�g � �g��g � �g�TKT g � I� �����

which means that the signal y is uncorrelated�

Because the observation g contains a white noise component� Cgg will be of full
rank so the lower	triangular matrix L is invertible� The resultant transformation
matrixK has full rank� to guarantee that no components of the signal are mapped
to the null space of K and hence� left out of y�

However� computing L�� is an unrealistic task� It will� especially for image se	
quences� be very large and the amount of storage needed is signi�cant� In order to
be computationally realistic� a simple sub	optimal choice for K is a diagonal ma	
trix� with the reciprocals of the local standard deviation for the diagonal elements�

K � diag� ��
�g� � �����

where�
�g �

q
Ef�g � �g�

�g� �����

This choice will normalize the local variance in the signal by scaling each sample
to a variance of one� The overall process will not result in a wide	sense stationary
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signal y� as the amount of correlation between neighboring samples may vary with
time� However� as it is more homogeneous� y will be easier to process�

If accurate estimators for the local statistics are used� both �g and �g are noise free�
They comprise the non	stationary part of the decomposition� The signal y includes
the observation noise� which was assumed stationary� and the homogeneous part
of the original signal�

����� Application to non�stationary image data

The technique of removing local mean and local deviation �i�e� a diagonal K�
is often used for time series processing and image processing� Because the latter
application is closely connected to image sequence processing� we will investigate
this more closer�

Early attempts at restoring degraded images treated the image as a homogeneous
random �eld and used linear techniques for estimation ���� However� the �lters
resulting from these approaches are essentially low	pass �lters� Therefore� the
images are smoothed by these �lters which is especially apparent at the edges�

By recognizing that images are in	homogeneous random �elds with space	variant
mean and variance� Jeng and Woods ���� have improved the overall estimation
quality of a Kalman �lter operation� First� in a preprocessing step� they estimated
the local average and local deviation� By subtracting the local mean from the
observation� a residual image was created� and by dividing this by its local deviation
a normalized image was produced� The residual or normalized image was then
�ltered by a multiple model reduced	update Kalman �lter �RUKF��

They noted that the improvement achieved with this method was better than
the improvement by applying the RUKF directly to the observed image� One of
their suggestions for improvements was to use a more accurate estimator for the
local statistics instead of the �box averages� that they were using� Box averages
malfunction when the box covers an object edge�

Park and Lee �
�� used a median �lter as estimator for the local mean� After
subtraction� they employed a Wiener �lter for �ltering the residual signal� They
did not normalize the variance� as they assumed the original data to be a covariance	
stationary process� Their method was called a double smoother or a reroughing
method �Figure ����� The results of Park and Lee are not very good from a noise	
suppression view� but the edges remain sharp� Both e�ects are due to the use of
the median �lter� This �lter is not optimal in the presence of Gaussian noise� so
the estimates will be inaccurate and therefore rather noisy� Any noise that passes
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Figure ���� Double smoothing using a median and a Wiener filter� The median fil�
ter estimates the trend which is removed from the observation and then filtered
for noise by the Wiener filter� Trend and filter output are combined to produce
the final result�

the estimator is forwarded to the result� The sharp edges are retained because they
are roots of the median �lter ���� 

��

��� Order�statistic estimators

Successful signal normalization strongly depends on the accuracy of the estimators
of the local mean �g�i� j� k� and the local deviation �g�i� j� k�� The estimators
have to be noise	robust but edge	sensitive� The class of order	statistic estimators
has the bene�t that it members can be easily designed to be accurate for various
noise sources� In addition� the ordering process can be used as a crude form of
segmentation �i�e� pixels belonging to the same object are often grouped� in order
to deal with edges�

����� Decomposition and retrieval for image sequences

As seen from Equation ����� withK as in ������ the simplest form of signal decom	
position is to decompose the non	stationary observed signal as� ��
� ����

g�k� � f�k� � n�k� � �g�k� � �g�k� � y�k�� �����

Here� g�k�� f�k� and n�k� are temporal signals �i� j �xed�� The slowly changing
function �g�k� is known as the trend � consisting of the local mean at temporal
index k� The local deviation of g�k� is denoted by �g�k�� The normalized temporal
signal y�k� has a stationary zero mean and unity deviation� As �g�k� is free of
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noise� the stationary observation noise is entirely mapped to y�k�� The normalized
signal can be written using ����� as�

y�k� �
f�k� � n�k�� �g�k�

�g�k�
�

f�k�� �g�k�

�g�k�
�

n�k�

�g�k�
� r�k� � v�k�� �����

Here� v�k� is a zero	mean noise signal�

In practice� y�k� is estimated from g�k� in the following way�

�y�k� �
g�k�� ��g�k�
��g�k�

� ���
�

where ��g�k� and ��g�k� are estimates of �g�k� and �g�k� based on the observed noisy
sequence�

The homogeneous signal �y�k�� can be �ltered using a regular noise �lter to estimate
r�k�� Finally� an estimate of the original image sequence is obtained by combining
this estimate �r�k� with the estimated trend signal and deviation�

�f�k� � �r�k� � ��g�k� � ��g�k�� �����

In e�ect� the decomposition method can be formulated as�

�f�k� � ��g�k� � ��g�k�F

�
g�k�� ��g�k�
��g�k�

�
� ������

where Ffg is the noise �lter operation that estimates r�k� from y�k�� This method
was mentioned earlier in Section ����

����� Derivation of the estimators

In order to obtain the normalized signal y�k�� �g�k� and �g�k� have to be esti	
mated from g�k�� We will base our approach on the theory of Order	Statistic �OS�
estimators� To this end� we �rst assume that g�k� has the following parametric
Probability Density Function �PDF��

p�g�k�� �
�

�g�k�
q

�
g�k�� �g�k�

�g�k�

�
� �g�k� 	 �� ������

which we write in shorthand as�

g�k� 	 qf�g�k�� �g�k�g� ������

Examples of this parametric PDF are the Gaussian� Uniform and Laplacian PDF�
Some other PDFs� such as the Poisson and Gamma PDF are not parametric in this
way�
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The parametric PDF connects to each observation g�k� a parent PDF qfg� and a
particular �g�k� and �g�k�� Let us assume for the moment that the parent PDF
qfg is known�

Estimators of local statistics based on the class of OS estimators have been suc	
cessfully applied to digital signal processing ���� ��� 
�� ��� ���� In our application�
they have the following generic form�

���k� �

�
��g�k�
��g�k�

�
�

�
b��� b��� � � � b��m
b��� b��� � � � b��m

�
�



�����
g����k�
g����k�
���

g�m��k�

�
����� � Bg���k�� ������

where g���k� � �g����k�� � � � � g�m��k��
T � The ranks g�r��k� with g����k� � g����k� �

� � � � g�m��k�� are ordered realizations of g�k�� The subscript ���� denotes that the
elements of the vector g���k� are ordered� Note that ������ refers to an ensemble
operation� the relation with spatio	temporal �ltering will be addressed in Section
���� The scalars bp�q� with p � ��� ��� and q � ��� �� � � � �m�� are the weights of the
OS estimator�

A set of weights B needs to be derived for estimating �g�k� and �g�k� from g�k��
By normalizing g�k� according to ���
��

y�k� �
g�k�� �g�k�

�g�k�
� ������

y�k� will be distributed as�
y�k� 	 qf�� �g� ������

Relation ������ also holds for the ranks of the observation g�r��k�� �� � r � m�
and the ranks of y�k�� which are denoted by y�r��k��

g�r��k� � �g�k� � �g�k� � y�r��k�� � � r � m� ������

If we take expectations on both sides of this relation for all r� we arrive at�

Efg����k�g � �g�k� � �g�k� � p����
Efg����k�g � �g�k� � �g�k� � p����

���
���

Efg�m��k�g � �g�k� � �g�k� � p�m�� ������

Here� p�r� � Efy�r��k�g are the rank averages of y�k�� Note that these averages are
known because the PDF of y�k�� q��� �� is �xed� So� if q�� is speci�ed� they can be
calculated�

Equation ������ shows that for ordered realizations of g�k� we expect to �nd a set
of m linear relations� which is over	determined if m 	 �� The parameters ��g�k�
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Figure ���� A linear relation is expected between the ordered observations on
the vertical axis� and the rank averages from the parent PDF on the horizontal
axis� The parameters of this relation are the local mean �g�k� and the local
deviation �g�k��

and ��g�k�� governing the linear relations� can be estimated using linear regression
����� as illustrated in Figure ��� for m � �� The o�set in the linear relation is �g�k�
and the elevation is equal to �g�k��

To formulate the solution to this regression problem� we �rst rewrite Equation
������ as follows�

E
n
g���k�

o
�



���
� p���
���

���
� p�m�

�
�����k� �

h
� p�y�

i
��k� � A��k�� ����
�

Where�

��k� �

�
�g�k�
�g�k�

�
� ������

In practice� the ensemble averages over g���k� are not available� Instead� they are
approximated by the observations and Equation ����
� becomes�

g���k� � A��k� � ��k�� ������

We assume that ��k�� the residual error caused by dropping the expectation� is
zero	mean and uncorrelated with g���k�� The linear relation will most likely not
exactly have the same parameters for each rank� Therefore� a measure that �nds
the best �t of the linear relation in least	squares sense is used� This �generalized
least	squares estimate� of ��k� is found by minimizing the square of the residual
error� �T �k���k� for ��k��

���k� �� min
��k�

�g���k��A��k��TC��
�yy��g���k��A��k��� ������
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Figure ���� The uniform� Gaussian and Laplacian PDFs and their corresponding
estimator weights for �g�k� and �g�k�� The exploitation of the �ordered� values
is proportional to the probability of the values�

The above inner	product is weighed with the inverse co	variance matrix of y���k� to
remove the correlation introduced by ordering ensemble measurements from g�k��
This matrix is composed as�

C�yy� � E

����
���



���

y��� � p���
���

y�m� � p�m�

�
��� h y��� � p��� � � � y�m� � p�m�

i
����
��� � ������

The solution to Equation ������ is given by�

���k� � �ATC��
�yy�A�

��ATC��
�yy�g���k� � Bg���k�� ������

Equation ������ comprises the OS estimators for local mean and deviation� The
coe�cients of B can be interpreted as follows� The upper row supplies the weights
to �nd ��g�k� and the bottom row supplies the weights to �nd ��g�k�� If the PDF is
wide� such as the uniform PDF� only the extreme values are used� If the PDF is
long	tailed� such as the Laplacian� the center values of g���k� are relied upon� The
OS estimator for mean of a Gaussian PDF is equal to the sample average ���� ����
In this way all values are equally relied upon� The power of ������ is that it gives
optimal �in least	squares sense� weights for an OS estimator for the parameters
of any parametrizable PDF� The estimator weights for some common PDFs are
shown in Figure ����
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����� Estimation bias and variance

The quality of an estimator is re�ected by its estimation bias and estimation vari	
ance� Generally� the estimation bias ��k� � Ef���k�g should be zero� and the
estimation variance as low as possible� In the case of a non	scalar estimate� the
co	variance of the estimates� which re�ects their mutual in�uence due to errors�
should be as low as possible� Bias and variance can be expressed as a function of
the estimator weights and statistics of the input signal� In this way� estimators can
be compared�

In this subsection� we investigate the bias and estimation variance of the OS estima	
tor from Equation ������� Furthermore� we consider the special case of symmetric
PDFs for y�k� as this is often assumed in practical �ltering situations�

Bias and co�variance of the estimators for general PDFs

The OS estimator for local mean and deviation is unbiased� i�e� has a zero bias�
This is a property of the least	squares solution and can be shown using ������ and
����
��

Ef���k�g � BEfg���k�g � �ATC��
�yy�A�

TATC��
�yy�A��k� � ��k�� ������

The co	variance of the estimator is speci�ed by the following matrix�

C�� �

�
var�f��g�k�g cov�f��g�k�� ��g�k�g
cov�f��g�k�� ��g�k�g var�f��g�k�g

�
�

It can be evaluated as follows�

C�� � Ef�ATC��
�yy�A�

��g���k�g
T
���k�C

��
�yy�A�A

TC��
�yy�A�

�Tg � ��k��T �k��

� �ATC��
�yy�A�

�� Efg���k�gT���k�g C��
�yy�A�A

TC��
�yy�A�

�T � ��k��T �k��
� �ATC��

�yy�A�
�����g�k�C�yy� �A��k��

T �k�AT �C��
�yy�A�A

TC��
�yy�A�

�T

���k��T �k��
Finally� this will leave�

C�� � ��g�k��A
TC��

�yy�A�
���

Or in matrix form as�

C�� �
��g�k�

jATC��
�yy�Aj

�
pT�y�C

��
�yy�p�y� ��TC��

�yy�p�y�
�pT�y�C��

�yy�� �TC��
�yy��

�
� ������

indicating that the errors in the local mean and local deviance estimates are cor	
related for general PDFs�
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Co�variance of the estimators for symmetric� zero�mean PDFs

It is interesting to analyze the performance of the estimator for symmetric� zero	
mean PDFs� In order to do this� we �rst introduce the J operator� which e�ectively
mirrors the elements of a vector�

J �



�����
� � � � � � �
� � � � � � �
���
���
���

���
���

� � � � � � �

�
����� � ������

with properties� J � JT � J��� JT� � �� For a symmetric� zero	mean PDF it is
evident that the following holds�

p�y� � �Jp�y�� C��
�yy� � JC

��
�yy�J � ������

If we use these equalities on any non	diagonal element of C��� for instance�

� �TC��
�yy�p�y� � �

T JC��
�yy�J Jp�y� � �

TC��
�yy�p�y�� ����
�

it appears that they are equal to their own negatives� so must be zero� The co	
variance matrix now becomes�

C�� �



���

��g

�TC
��
�yy��

�

�
��g

pT
�y�C

��
�yy�p�y�

�
��� � ������

This shows that for symmetric� zero	mean PDFs there is no mutual correlation in
the local mean and local deviance estimate�

Variance of the local mean estimate for symmetric PDFs

Estimators for local mean such as the average and median are commonly used in
signal processing� Their estimation variances are well	known ���� 
��� To get a clear
idea of the special properties of the OS estimator for symmetric PDFs� we will look
closer into the variance of the OS estimate of the local mean� This variance can be
read from Equation ������ to be�

var�f��g�k�g �
��g�k�

�TC��
�yy��

� ������

The denominator can be evaluated as�

�TC��
�yy�� � �

TL�TL��� � uTu � juj�� ������
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Further�

var�f�Ty���k�g � �TC�yy�� � �
TLLT� � qTq � jqj� � m� ������

The relation between u and q is�

qTu � �TLL��� � �T� � m� ������

Using Schwarz
s inequality we have�

jqj� � juj� � mjuj� 
 �qTu�� � m�� ������

which means that�

var�f��g�k�g �
��g�k�

�TC��
�yy��

� ��g�k�
m� ������

Equality exists for a Gaussian PDF� Then� the maximum	likelihood estimator is
the sample average� which can be seen as a member of the class of OS estimators
�ordering does not change the result�� For all other cases� the OS estimate has a
lower variance than the sample average �����

��� Implementation aspects

In this section we consider the implementation aspects of the OS estimator �������
After discussing the window de�nition� a way to establish the parent PDF qfg is
dealt with� This PDF is described by p�y� and C�yy� which will be estimated from
the normalized signal itself� The estimation is performed in a way which enables
adaptive OS estimators�

����� Window de�nition

The OS estimators were derived on the basis of ensemble statistics� However� these
are generally not available� Consequently� we have to assume local ergodicy in
image sequences which makes it feasible to replace the ensemble statistics by the
local spatio	temporal statistics� This means that the ensemble measurements of
g�k� are given by the values within a spatio	temporal window of size m�

To support the assumption of ergodicy� the spatio	temporal window must be com	
pact� We have chosen to incorporate the current pixel in combination with its �
nearest spatio	temporal neighbors�

�g�i� j� k � ��� g�i� j� k � ��� g�i� j� k�� g�i� �� j� k��
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Figure ���� The average vector and co�variance matrix of the parent signal�
necessary for the estimator� can be established using the normalized signal itself�
To support the estimator two update processes� one for the average vector and
one for the co�variance matrix are employed�

g�i� �� j� k�� g�i� j � �� k�� g�i� j � �� k��� ������

which proved in a number of experiments to be a good trade	o� between low
estimation variance and correctness of the assumption of local ergodicity� Other
window de�nitions are discussed in Chapter ��

����� Parent PDF

The estimator from Equation ������ requires knowledge about the parent PDF�
which is expressed by the average vector of an ordered sample from this parent
p�y�� and the co	variance matrix of this sample� C�yy�� In this subsection� we will
describe how to estimate them�

The parent PDF can be derived from the normalized signal itself� The vector y���k�
can be used to establish the average vector and the co	variance matrix of the parent
PDF� as illustrated in Figure ����

Because it is not possible to accurately describe the co	variance matrix and the
average vector based upon a single observation� the accuracy has to be assured
by including more data� This is realized using two update processes which are
performed for every pixel� jointly with the �ltering process� These update processes
will also enable tracking of the PDF in non	stationary environments�
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����� Recursively updating the average vector

The vector p�y� can be estimated from previously normalized signals using�

�p�y��k� �
�Pk

l�� �
k�l

kX
l��

�k�ly���l�� ������

Here� we have introduced a temporal index with p�y� indicating its changing nature
and the updating process� From this� a recurrent equation can be found� so �p�y��k�
is updated in the temporal direction�

�p�y��k� � ��p�y��k � ���
�k�p�y��k � ��� y���k�Pk

l�� �
k�l

� ����
�

The coe�cient � is a forgetting factor ���� ��� which can be assigned values between
zero and one� If � � �� all previous samples are weighed equally� This is often
referred to as the pre�windowed case which is mostly used with stationary data�
If � � �� recent observations are weighed more heavily and therefore� the result
is more suitable as an estimate of the local statistics of a non	stationary signal�
Progressively smaller values of � compute �p�y��k� based upon e�ectively smaller
sections of data� There is an optimal value for a speci�c signal ����� but this
is applicable for o�	line processing only� Appropriate practical values for � with
image sequence �ltering are ���� � � � �����

The denominator in ����
� can be explicitly computed as�

kX
l��

�k�l �
k��X
l��

�l �
�� �k

� � �
� ������

or calculated recurrently� The average vector of the observation noise process�
scaled to have a unity variance� can be used as the initial �p�y����� In this case�
�p�y��k� will be optimal for estimating a constant signal immersed in this noise�
The average vectors are tabulated for some PDFs in �����

����� Recursively updating the inverse covariance matrix

In practical situations� the co	variance matrix C�yy� is approximated at time k by�

�C�yy��k� �
kX

l��

�k�l "y���l�"y
T
���l�� ������

where "y���l� � y���l� � �p�y��l�� Again� we have introduced the temporal index k

with �C�yy� to indicate its active nature and the update process� For wide	sense
stationary� ergodic data and � � ��

lim
k��

�

k
�C�yy��k� � C�yy�� ������
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where C�yy� is the true co	variance matrix�

A recurrent expression for ������ is�

�C�yy��k� � "y���k�"y
T
���k� �

k��X
l��

�k�l "y���l�"y
T
���l��

� � �C�yy��k � �� � "y���k�"yT���k�� ������

In the OS estimator ������ we need C��
�yy�� To this end� we use the matrix	inversion

lemma ���� ��� that states that since the square matrix C�yy� can be written as
������� its inverse C��

�yy� may be written as

�C
��

�yy��k� �
�C
��

�yy��k � ��
�

�
	C
��

�yy��k���

	
"y���k�"y

T
���k�

	C
��

�yy��k���

	

� � "yT���k�
	C
��

�yy��k���

	
"y���k�

� ������

�
�

�



� �C��

�yy��k � ���
�C
��

�yy��k � �� "y���k�"yT���k� �C
��

�yy��k � ��
�� "y���k�

T �C
��

�yy��k � �� "y���k�

�
� � ������

In this recursive algorithm �C
��

�yy���� has to be explicitly given� It is often advised
to use �I for this matrix� with a large � ����� As an alternative� a choice more
applicable to our situation and in correspondence with �p�y����� is to use the inverse
co	variance matrix from an ordered noise sample� with the variance of the noise
scaled to unity�

Computational aspects of the update process

A particular situation that is usually detrimental to an update system is when the
input is not persistently exciting ����� This will cause the elements of

�C
��

�yy��k � �� "y���k�"yT���k� �C
��

�yy��k � ���

and
"yT���k� �C

��

�yy��k � �� "y���k��

to be zero� because "y���k� will �nally lie in the null	space of �C
��

�yy��k�� As a result�
������ degenerates to�

�C
��

�yy��k� �
�C
��

�yy��k � ��
�

�

If � � �� the co	variance matrix will not change� but if � � �� the elements of the
co	variance matrix start to grow and numerical over�ow can occur� It is� however�
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not directly necessary to correct �C
��

�yy��k� for this growing� In the estimator �������

any multiplication factor in �C
��

�yy��k� is irrelevant� because this scalar will occur
both in direct and reciprocal form�

The recurrent calculation of �C
��

�yy��k� according to ������ is computationally more
e�cient than using ������ and inverting the result directly� Comparing a direct
method� which takes at least m
 multiplications for the inversion �Gauss	Jordan�
and an extra m for the update� with the recursive scheme� which takes �m� � �m
multiplications� shows that the recursive scheme is preferable form 	 �� In the case
where m � � �a relatively small operating window�� we have successfully applied

Singular Value Decomposition �SVD� to derive �C
��

�yy��k� ���� �
��

����� Parent mismatch

The parent PDF can have several shapes� Two global situations can be encoun	
tered� First� �ltering in a passive area� where no motion occurs and no edges are
crossed� Second� �ltering in an active area where several objects are crossed�

In a passive area� the estimation process is equal to estimating a constant signal
immersed in noise� Here� the parent PDF is a normalized version of the noise PDF�
The local mean is equal to the value of the constant signal �for zero	mean noise��
and the local deviation is equivalent to the standard deviation of the noise�

In an active area� with moving objects� the optimal parent PDF becomes less well	
de�ned� To enable accurate estimation of the local mean and deviation� the parent
PDF has to be a normalized version of the PDF of a signal including noise and a
component generated by moving objects�

Using an update process as considered in the previous subsections for the descrip	
tion of the parent can only guarantee slow adaptation to the current �desired�
PDF� Slowly tracking the parent PDF unavoidably leads to a mismatch between
the actual and estimated PDF� This might lead to biased estimates with a higher
estimation variance� Here� we will investigate the e�ect of a mismatch on the
estimation bias�
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Estimate bias as a result of parent mismatch

As seen before� the expectation of ���k� based on the current estimates �A� and
�C
��

�yy�� is given by�

Ef���k�g � � �AT �C
��

�yy�
�A��� �A

T �C
��

�yy�Efg���k�g� ������

If g���k� comes from another PDF with local mean "�g�k� and local deviation "�g�k��
then�

Efg���k�g �
h
� "p�y�

i � "�g�k�
"�g�k�

�
� "A"��k�� ������

where "A and "��k� are based on the actual PDF of g���k�� The bias on ���k� can be
evaluated as follows�

Ef���k�g � � �AT �C
��

�yy�
�A��� �A

T �C
��

�yy�
"A"��k�� ������

For symmetric PDFs this degenerates to�

�
Ef��g�k�g
Ef��g�k�g

�
�
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�

� �

	pT

�y�
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��
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	p�y�

�
���
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� �T �C��

�yy�� �

� �pT�y� �C
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�yy�"p�y�

�
�
�
"�g�k�
"�g�k�

�
�

�



���
� �
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	pT

�y�
	C
��

�yy�
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�
���
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�
� ����
�

It appears that there is no bias in the estimate for local mean and an uncorrelated
bias in the estimate for local deviation�

��� Experimental evaluation

In this section the proposed algorithm� shown in Figure ���� is evaluated on noisy
image sequences� We test its performance for several noise levels comprising Gaus	
sian and Laplacian noise� In addition� we test the e�ectiveness of an optional
motion	compensation preprocessing step�

We have again used parts of the �Trevor� sequence �images �� to ��� and the
�mobile� sequence �images � to ���� From the original sequences spatial parts of
��� � ��� pixels where selected for processing� For the optional motion estima	
tor we have used the recursive block	matching algorithm which was described in
Section ����� with correlation as the matching criterion �������
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Figure ���� An overview of the entire filter� First� in an optional motion�
compensation stage� most of the non�stationarities caused by motion can be re�
moved� Then� from this signal the local mean and local deviation are estimated
and the signal is normalized� This noisy signal is then filtered by a regular noise
filter� The final result is achieved after transforming the filter output�

Table ���� Average improvement in SNR for the �Trevor� sequence�

Method Average Improvement in SNR �range�
SNR��dB SNR���dB SNR���dB

Decomposition 
�� ����� ��� ����� ��� �����
MC�Decomposition ��� ����� ��� ����� ��� �����

The noise �lter used in Equation ������ is the RLS	�lter from Equation �������
For both update processes a forgetting factor of � � ���� was used� This value
was derived by experimental tuning for best result given both image sequences at
various noise levels� The estimated local deviance was also used to relax the update
process of the RLS	�lter ����� This is to re�ect the dynamic nature of the variance
of the noise v�k� in the normalized signal y�k� as seen in Equation ������

����� The e�ects of motion compensation

First� the e�ect of using motion compensation is illustrated for di�erent amounts
of Gaussian noise� For each noise level� the �ltering is performed with and with	
out motion compensation� In Table ��� the average SNR improvements are given�
Compared with the results from Chapters � and � it can be seen that the decompo	
sition method gives good results� The use of motion estimation has a positive e�ect
on the �nal result� except for �dB SNR where the motion estimator fails because of
noise� In Figure ���� the SNRi curves are shown for ��� �� and �dB Gaussian noise�
respectively� The precise e�ects of motion compensation are clearly visible from
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frame
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Figure ��
� Motion compensated and non motion�compensated results of the de�
composition method for �� �� and �� dB SNR on the �Trevor� sequence

these curves� For high SNRs ���dB�� motion compensation is a useful preprocess	
ing step� For moderate levels ���dB� the two curves are approximately identical�
while for low SNRs ��dB� the motion estimation fails� Therefore� the overall noise
�ltering becomes less successful�

To illustrate the signals created by the OS estimator� we show the estimated local
mean and the associated normalized signal for a single frame in Figure ���� These
frames are taken from the experiment on ��dB data without motion compensation�
It can be seen that the local mean signal is essentially noise	free and smooth� The
normalized signal is stretched and an o�set is added for maximum visibility�

The local mean and normalized signal for the experimentwith motion compensation
are shown in Figure ��
� It can be seen that the motion	compensated local mean
signal is sharper and the normalized signal contains fewer spatio	temporal edges�
The residual signal is scaled with the same parameters as used for the residual
signal in Figure ���� The �nal results of applying the proposed algorithm without
and with motion compensation are shown in Figure ��� for an SNR of ��dB�

����� Application to Laplacian noise

We have corrupted the �mobile� sequence with Gaussian and Laplacian noise at
a level of ��dB� This resulted in noise variances of ��n � ���� The results of
this experiment are presented in Figure ����� Motion compensation was used in
the algorithm� An observed and �ltered image of the sequence corrupted with
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Figure ���� Local mean and stretched normalized signal of the �Trevor� sequence
with ��dB noise without motion compensation

Figure ���� Local mean and stretched normalized signal of the �Trevor� sequence
with ��dB noise with motion compensation
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Figure ���� Filtered frames with the proposed decomposition method without
�left� and with �right� motion compensation for an SNR of ��dB

Table ���� Average improvement in SNR for Laplacian and Gaussian noise at
SNR���dB

Filter method Average Improvement in SNR �range�
Laplacian Gaussian

Arce ��
 ����� ��� �����
Sezan ��� ����� ��� �����

MC�Decomposition ��� ����� ��� �����

Gaussian noise is shown in Figure ����� An observed and �ltered image of the
sequence corrupted with Laplacian noise is shown in Figure �����

For comparison purposes we have processed both corrupted sequences with two
methods for general purpose image sequence noise �ltering� the spatio	temporal
median �lter ������ by Arce ����� denoted by �Arce� and the LLMMSE �lter
�������������������� by Sezan et al� ����� denoted by �Sezan�� Both methods are
reviewed in Chapters � and �� Motion compensation was used with �Sezan� as
originally speci�ed� The results are given in Table ���� It can be seen that because
the proposed method is able to adapt to the noise PDF� it gives good results for
both noise sources� while the other methods are sub	optimal with the Laplacian
noise� The LLMMSE �lter �Sezan� uses box	averaging to establish its parameters�
Averaging is only optimal for Gaussian noise and has a large estimation variance
for Laplacian noise� The median estimator as used in �Arce� is closer to the opti	
mal estimator for Laplacian noise� However� it has a larger estimation variance in
the Gaussian case�
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Figure ����� Results of the decomposition method with motion compensation for
Gaussian and Laplacian noise at ��dB SNR for the �mobile� sequence

Figure ����� Observed image of �mobile� at ��dB Gaussian noise and resulting
image of the decomposition method with motion compensation
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Figure ����� Observed image of �mobile� at ��dB Laplacian noise and resulting
image of the decomposition method with motion compensation

����� Discussion

In this chapter we have described an image sequence noise	reduction method that
relies on signal normalization prior to �ltering� The parameters for this normaliza	
tion� the local mean and deviation� are estimated by an estimator based on order
statistics� This estimator adapts to the current data PDF by an updating process�

We have shown experimentally that the method performs well for several noise
levels� both with Gaussian and Laplacian disturbances� We have also seen that
a motion	compensating preprocessing step improves the �nal result which means
that the normalization step is not able to remove all the non	stationarities caused
by motion� This is likely due to the complex update process which is rather slowly
reacting to sudden temporal changes�
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In Chapter � we have discussed �ltering of non	stationary signals from image se	
quences using trend	removal and normalization� Although the results obtained are
promising� the approach has two disadvantages� The �rst disadvantage is the huge
computational e�ort required for adapting the OS estimators and the noise �lter�
The second disadvantage is the slow adaptation to changes in the statistics of the
spatio	temporal signal� In this chapter� we will improve the usefulness of the al	
gorithm� First� we will reduce the computational e�ort by removing the residual
�lter� Second� instead of a recursive update process that tracks the statistics� the
OS estimators are now adapted �on the spot��

The omission of the residual �lter implies that the �nal result will be given by a
direct combination of the estimates of the local mean and deviation� This requires
fast adaptation and high estimation accuracy� These demands are met by adapting
the OS estimators to the local signal properties� Only those pixels which are �not
signi�cantly di�erent� from the current pixel should be used in the estimation
process� The other pixels within the window most likely come from a di�erent
object and have no relation to the current pixel�

The quali�cation of pixels requires detection of outlying observations� Two meth	
ods are known to realize this ����� One is robust estimation i�e� a strategy which
takes outlying data in the estimation window directly into account in the esti	
mation process and performs a simultaneous detection� ignoration and estimation
process� Usually� these methods are more complex than non	robust estimators and
involve an iteration process to detect and ignore �outliers� ��
�� A second method
to acquire accurate estimates from data with outliers is to use a two	step procedure
that separates detection and estimation� Prior to estimation� outlying pixels are
detected and removed from the data� The estimation is then performed using the
remaining reliable data� With this method� conventional estimators can be used�
In this chapter both methods will be investigated in the context of image sequence

��
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�ltering�

The outline of this chapter is as follows� First� in Section ��� we simplify the struc	
ture of the �lter from Chapter � and arrive at the well	known LLMMSE �lter� As
shown in Equation ������� this �lter needs estimates of the local mean and vari	
ance� We then discuss two robust estimation methods for these statistics� namely a
simultaneous method consisting of iterative weighed regression in Section ���� and
a method based on a range test of the data in Section ���� The noise	suppression
performance of the LLMMSE �lter in combination with both robust estimators
will be evaluated experimentally in Section ����

��� Simplifying the �lter structure

The overall �lter using the decomposition method from Chapter � has the following
structure �compare ��������

�f�i� j� k� � �g�i� j� k� � �g�i� j� k� F

�
g�i� j� k�� �g�i� j� k�

�g�i� j� k�

�
� �����

Here Ffg denotes the �ltering of the residual signal� where we used a recurrently
updated adaptive FIR �lter� �The parameters �g�i� j� k� and �g�i� j� k� are the local
mean and local deviance of the observation respectively��

The method can be simpli�ed and made more computationally e�cient by dropping
the �lter operation and using a simple scalar multiplication C�i� j� k� instead�

�f �i� j� k� � �g�i� j� k� � C�i� j� k�fg�i� j� k�� �g�i� j� k�g� �����

In the light of the Kalman �lters� this structure can be seen as the linear com	
bination of an initial estimate formed by �g�i� j� k� and an update consisting of a
fraction of the initial estimation error g�i� j� k���g�i� j� k�� This Kalman structure
is a member of the �switching �lters� class as introduced in Chapter �� The pa	
rameter C�i� j� k� controls the �lter action from purely averaging if C�i� j� k� � �
to the identity operation� i�e� forwarding the observation� if C�i� j� k� � ��

C�i� j� k� can attain a value which leads to the minimum mean square error in
�ltering�

C�i� j� k� � min
C��i�j�k�

E
n
�f�i� j� k�� �f�i� j� k���

o
� �����

The optimal value for C�i� j� k� is found by setting its derivative with respect to
C ��i� j� k� to zero�

dEf�f�i� j� k� � �f�i� j� k���g
dC ��i� j� k�

�

��g�i� j� k�C
��i� j� k�� ��f�i� j� k�� ��f �i� j� k� � �f �i� j� k��g�i� j� k� � ��
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Here� the property Eff�i� j� k�n�i� j� k�g � � was used� In this expression �f �i� j� k�
is the mean of f�i� j� k� and ��f�i� j� k� is the variance of f�i� j� k�� Because the noise
is zero	mean� �g�i� j� k� � �f �i� j� k�� and the optimal value for C ��i� j� k� can be
written as�

C�i� j� k� �
��f �i� j� k�

��g�i� j� k�
� �����

Using ��g�i� j� k� � ��f�i� j� k� � ��n� we arrive at�

�f�i� j� k� � �g�i� j� k� �
��g�i� j� k�� ��n

��g�i� j� k�
�g�i� j� k�� �g�i� j� k��� �����

This solution can be interpreted as follows� if f�i� j� k� is a constant signal� the
variance of g�i� j� k� is equal to ��n and C�i� j� k� is equal to � which causes the
�lter to become the average operator� the optimal estimator for a constant signal
immersed in noise ���� ���� If no noise is present� ��n � �� and the �lter becomes
the identity operator�

The derived �lter is called the Linear Local Minimum Mean	Square Error
�LLMMSE� �lter because C�i� j� k� is locally controlled in a minimummean square	
error sense� The LLMMSE �lter has been successfully applied to noise �lter	
ing of non	stationary images ���� ���� ���� and in image sequence noise �ltering
���� �
� ��� ���� �����

The assumption that an image sequence is locally ergodic makes it feasible to
replace the ensemble statistics by the local spatio	temporal statistics� In practi	
cal circumstances� �g�i� j� k� and ��g�i� j� k� are therefore estimated from a spatio	
temporal window surrounding the current pixel �i� j� k�� The �ltering results that
are obtained with ����� are however extremely sensitive to the accuracy of the
estimates of �g�i� j� k�� ��g�i� j� k� and �

�
n ��
� �����

Problems emerge when choosing an appropriate estimator support because two
con�icting requirements have to be satis�ed� The �rst requirement is that the data
within the spatio	temporal support has to be fairly homogeneous� This means that
the ensemble statistics of pixels contained in this window closely resemble those
of g�i� j� k�� This usually means a limited support which con�icts with the second
requirement that the support of the window has to be large enough to guarantee
accurate estimates�

In many applications �box averages� are used� where the statistics are calculated
by averaging as ���� ���� �����

��g�i� j� k� �

P
p�q�l�S g�i� p� j � q� k � l�

m
� �����

and

���g�i� j� k� �

P
p�q�l�S�g�i� p� j � q� k � l�� ��g�i� j� k���

m� � � �����
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S is the spatio	temporal support of the window of size m� Box averages give
inaccurate results if the window contains non	homogeneous data �spatio	temporal
edges�� The estimate for �g�i� j� k� is then inaccurate and the estimate for ��g�i� j� k�
is too high� This causes the control parameter C�i� j� k� to approach unity and
switch o� the �ltering action� Switching o� �ltering in the presence of spatio	
temporal edges causes annoying noisy contours of objects in image sequences�

In some applications of the LLMMSE �lter� estimators that use a selected homo	
geneous piece of the spatio	temporal window are applied� Usually� the selection
process is aided by the results of an edge detector ���� ���� ����� Then� if an edge
was detected within the window� only the near side of the edge is retained for es	
timation� The success of this method depends on the robustness and accuracy of
the edge detector� It has to be noted that detecting edges is not a trivial task in
noisy image sequences ������

In this chapter� two methods for arriving at accurate estimates are considered�
They are both based on observation models which take the outlying observations
directly into account without attaching them to image structures such as edges�

��� Simultaneous discrimination and estima�

tion
 IWLS

The estimators used in Chapter � are based on a linear regression through ordered
observations� The in�uence of outliers in regression can be reduced by the use of
�robust� regression techniques ����� In robust regression� outlying observations are
detected because they will not �t the model which is imposed on the data� After
detection� they can be discriminated in the estimation procedure�

It might be clear that the detection of the outliers is the main problem in robust
regression� They can only be identi�ed if the optimal �t is known� which already
requires the desired knowledge about the actual position of the outliers� We ap	
proach this problem by the selection of the main outliers based on an initial robust
regression� These outliers are then assigned weights to reduce their e�ect on the
�nal result� By iterating this process the weights are adjusted as more outliers are
identi�ed� The converged weights are then used to produce the �nal estimate of
�g�i� j� k� and ��g�i� j� k�� Because of its iterative nature� this procedure is called
Iterated Weighed Least Squares �IWLS��
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����� Estimation by regression with ordered observations

The OS estimators for local statistics derived in the previous chapter were based
on the assumption that within the acquired sample of size m the local statistics of
g do not change� Then� we found the following set of linear relations for the ranks
g�r��i� j� k� of the window centered at �i� j� k��

g�r��i� j� k� � �g�i� j� k� � �g�i� j� k�p�r� � �r�i� j� k�� � � r � m� ���
�

where p�r� are the ��xed� rank averages of a parent signal y which is distributed as
q��� �� and �r�i� j� k� are the residuals� The statistics �g�i� j� k� and �g�i� j� k� were
found by solving�

��g�i� j� k�� ��g�i� j� k� � min

g�i�j�k���g�i�j�k�

mX
r��

��r�i� j� k�� �����

It resulted in the following minimum	variance OS estimators for ��i� j� k� �
��g�i� j� k� �g�i� j� k��T �c�f� Eq� ��������

���i� j� k� �
h
ATC��

�yy�A
i��

ATC��
�yy�



���
g����i� j� k�

���
g�m��i� j� k�

�
��� � ������

where C��
�yy� is the inverse variance matrix of ordered samples from y� and A is the

design matrix which is composed as follows�

A �



���
� p���
���

���
� p�m�

�
��� � ������

����� Selecting and rejecting outlying observations

So far� we have assumed that within the data set pixels from only one parametrized
PDF with the same parameters are present� If pixels with other statistics are
present within the data set� the estimators must have a selection method to be
able to use only information from the same parametrized PDF�

The di�erence in the statistics of the outlying pixel can be used for detection�
Given a robust �t� i�e� a �t through points that are related to certi�ed pixels will
cause the outliers to have relatively high residual errors �see Figure ����� These
residual errors can be used to detect outliers�

Large residual errors have a substantial in�uence on the criterion ����� used for
derivation of the estimator ������� The aim in robustifying the estimator is to
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Figure ���� The large residual errors that some observed pixels give in a robust
fit� arise because these pixels have other ensemble statistics than the current
one that governs the robust fit�

reduce the in�uence of outliers on the criterion function and to compose a method
to detect them based on the same criterion� These requirements are con�icting for
most criterion functions� A criterion function that can ful�ll these demands is the
following non	linear function ���� �
� �����

��g�i� j� k�� ��g�i� j� k� � min

g�i�j�k���g�i�j�k�

mX
r��

#f�r�i� j� k�
�g� ������

Where the residual error �r�i� j� k� was�

�r�i� j� k� � g�r��i� j� k��
h
� p�r�

iT ���i� j� k�� ������

The deviation of the residuals is given by a robust measure �� Division by this
measure is necessary to make the non	linear function #fg scale insensitive�

The resulting robust estimates are found by di�erentiating Equation ������ with
respect to ���i� j� k� and forcing the result to zero�

mX
r��

h
� p�r�

iT
�f�r�i� j� k�
�g �

�
�
�

�
� ������

where �fg is the derivative of #fg� By introducing the following weights�

wrf���i� j� k�g � �f�r�i� j� k�
�g
�r�i� j� k�
�

� ������

equation ������ can be rewritten as�

mX
r��

wrf���i� j� k�g
h
� p�r�

iT
�r�i� j� k� �

�
�
�

�
� ������
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The scalar wrf���i� j� k�g can be seen as a weight indicating the outlying nature of
observation g�r��i� j� k� based on a given estimate�

Equation ������ is non	linear through �fg and is therefore usually solved by an
iterative procedure� We propose to use IWLS� where the following variant of �������

mX
r��

wrf��s�i� j� k�g
h
� p�r�

iT
�r�i� j� k� �

�
�
�

�
� ������

is solved for ��
s��
� The iteration step is denoted by s and �r�i� j� k� is the residual

of the next estimate ��
s��
�

�r�i� j� k� � g�r��i� j� k��
h
� p�r�

iT ��s���i� j� k�� ����
�

Performing linear regression on ������ results in the following IWLS procedure
��
� �����

��
s��
�i� j� k� �

h
ATC��

�yy�WA
i��

ATC��
�yy�W



���
g����i� j� k�

���
g�m��i� j� k�

�
��� � ������

Note that the di�erences with the non	robust estimator from Equation ������ lie
in the diagonal weighing matrixW �

W � diag�
h
wrf��s�i� j� k�g

i
������

The robust algorithm usually requires a few iterations to converge to a robust
estimate ���i� j� k�� A suitable robust initial estimate for ���i� j� k� is�

��
�
�i� j� k� �

h
g�i� j� k� �n

iT
� ������

This means that the initial estimate for �g�i� j� k� is the current observation� The
known noise deviation is used as an initial deviation estimate� This is based on
the assumption that the deviance of the original signal is fairly small compared
to the noise deviance within an object which will have a relatively �xed intensity�
An example of an initial �t for m � � is shown in Figure ���� where the current
observation� in this case the smallest� acts as a leverage point�

Important aspects in the robust estimator are the estimate of � and the function
#fg� The residual deviation � is estimated from ��i� j� k� by�

�� �
medianfj��j� j��j� � � � � j�mjg

������
� ������

which was shown by Hampel ����� to be the most robust estimate of deviation� This
estimate is repeated after each iteration based on the new residual errors �r�i� j� k��
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Figure ���� The Huber criterion function and its derivative

The function #fg has to ful�ll some requirements� it has to be symmetric� #fxg �
#f�xg and it has to have a unique minimum at #f�g� Further� it has to be convex
to guarantee convergence of ������ ���� ��
�� The following #fg and �fg� which
were derived by Huber ��
� ����� will lead to robust estimates �see also Figure �����

#fxg �
�

x�

�
� jxj � a

ajxj � a�

�
� jxj 	 a

� ��x� �

���
��
�a� x � �a
x� jxj � a
a� x 	 a

� ������

This speci�cation for #fg is associated with a Gaussian shape in the middle and
with �double exponential� tails� With Huber
s function #fg� �fg and ��� the tuning
constant a would be given a value of about ���� The reason for this selection is
that if ��i� j� k� actually comes from a Gaussian distribution� most of the residual
errors would obey the property that j�r�i� j� k�j � ����� If all residual errors satisfy
this inequality� then for all ranks� �f�r�i� j� k�
�g � �r�i� j� k�
� and the regular
least squares solution will arise ��
��

The derivation of the asymptotic e�ciency of the resultant estimator is rather
complex because of the non	linearity of #fg and the di�culty to establish the
degrees of freedom in ��� It has been established in ��
� ���� that if � is known�
the choice a � ����� is needed to achieve an asymptotic e�ciency of ��$ under
Gaussian assumptions� When the uncertainty in the value of �r�i� j� k�
� rises if �
has to be estimated from a limited number of residual errors in a robust way� then
using a � ��� will result in a comparable asymptotic e�ciency ��
�� An overview of
the IWLS procedure embedded within the LLMMSE �lter is given in Figure ����
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Figure ���� An overview of the LLMMSE filter supported by robust IWLS esti�
mators based on order statistics�

��� Rejection prior to estimation
 the Range

Test

This section investigates another method to remove outlying observations� namely
detection and rejection prior to the estimation of �g�i� j� k� and ��g�i� j� k�� The
selection is done by performing tests of similarity on the pixel values within the data
set� Only those pixels which pass these tests are used for subsequent estimation�
First� we discuss the use of regular tests such as the t	test to select pixels that
are not signi�cantly di�erent � We will show that the usefulness and the validity of
these tests is limited in our application� Therefore� we will subsequently investigate
the use of the Studentized range as an e�cient and e�ective measure of similarity
between groups of pixel values�

����� Testing pixel values for similarity

Selecting outlying observations prior to estimation is performed by comparing the
intensity of the current pixel with that of candidate pixels included in the sample�
A strict test would be equality� which selects only pixels with the same intensity�
but obviously� this will not be useful for estimation� As the noise has in�uenced
the observed intensity� the strict equality demand has to be relaxed� which means
accepting that pixels with �comparable� intensities are likely to belong to the
current object�

A mechanism has to be devised where perturbation by noise only will not result
in rejection of the tested pixel� The design of a test is based on the observation
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model and its connected assumptions� Tests will be formulated as hypothesis tests
in this section� For instance� the hypothesis that pixel a is similar to pixel b� will
be subject to testing and be accordingly accepted or rejected�

We assume the additive� uncorrelated and zero	mean noise model with qfg as the
PDF of the noise� An additional assumption for testing is that objects which occur
in the original sequence have a constant gray level within the spatio	temporal
window� Both assumptions suggest that� within the window� the observations
g�i� j� k� belonging to the same object are independently distributed with the same
mean f�i� j� k��

g�i� j� k� 	 qff�i� j� k�� �ng� ������

Let us denote the pixel values from the spatio	temporal window as� g�� g�� � � � � gm
�without any speci�c order� with gc as the current pixel value of g�i� j� k�� Each
pixel gl is then also distributed according to �������

gl 	 qffl� �ng� � � l � m� ������

A prior test can be performed to investigate the hypothesis that the window con	
tains no outlying pixel values� Based on ������� this test involves the following
hypothesis�

H � f� � f� � � � � � fc � � � � � fm�� � fm� ������

The test can be performed by an F	ratio test ������ Note that testing H will only
show whether all pixels are not signi�cantly di�erent� but outlying pixels are not
selected� Therefore� the F	ratio test has to be repeated for every combination of
the current pixel and the other pixels from the window� which is a huge task� even
for moderate m�

A popular test to investigate whether pixels are signi�cantly di�erent or not is the
t	test� Two pixels gc and gl are declared �signi�cantly di�erent� if�

jgc � glj
�n

	
p
�t���� ������

where t��� is the upper
�
�� signi�cance point whose value depends on qfg� They

are readily tabulated for the Gaussian distribution ������ As the parameter � is the
desired �false alarm� probability� the t	test has a reliability level of ����� � ��$�

If all pixels gl within the sample �� � l � m� are tested for similarity with the
current observation gc� the probability of making a correct overall decision is�

P � p
�
gmax � gmin

�n
�
p
�t���

�
� ����
�

where pfg denotes probability and gmax and gmin are the extremes of the accepted
set of m� pixel values� It appears that this probability P of making a correct overall
decision declines with increasing m� ���� �����

P � �� � ��m
���� ������
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Figure ���� Using the t�test� intensities ga and gb are found to be not significantly
different from the observation gc and both will be used in the estimation process�
However� this acceptance does not mean that ga and gb are regarded not signifi�
cantly different using the same test� So the uniformity of a group of intensities
that passes the t�test is questionable�

As a result� the probability � � P of at least one incorrect decision in the selected
set will be much larger than �� This phenomenon is illustrated in Figure ��� for
a Gaussian noise distribution� Here� both ga and gb are not regarded signi�cantly
di�erent to gc in individual tests because both values lie within a given distance
from gc� However� comparing ga with gb using the same test results in the decision
that ga and gb are signi�cantly di�erent� Yet� the above test considers them both
reliable enough for estimation purposes�

����� Using the range in testing

To overcome the problems with the t	test if decisions have to be made for a larger
number of pixels� Duncan suggested the �modi�ed range test� ������ A range is
a function of the ordered statistics� If the pixel values from the spatio	temporal
window are arranged in increasing values� g��� � g��� � � � � � g�m�� then the
di�erence g�m� � g��� is called the sample range� The absolute di�erence of two
arbitrary pixels jg�a� � g�b�j is simply called a range� The ratio of a range to an
independent �root	mean	square estimate� of the population standard deviation
�here �n� is called a Studentized range ������

The Duncan method tests various Studentized ranges within a sample with the
probability ����� of making an overall correct decision for the selected set� An ad	
ditional advantage is the relatively low computational burden of Duncan
s method�

The speci�c algorithm� involving the range test to select pixels belonging together
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proceeds as follows� A pixel value g�a� is declared not signi�cantly di�erent from
g�b� if�

jg�a� � g�b�j
�n

� 
ja�bj��� ������

Where 
ja�bj�� is the upper � signi�cance point for a Studentized range over ja� bj
values� These signi�cance points are tabulated in literature ���� ����� Figure ���
gives an idea of the values for � � �$ and a known value for �n for a number of
set sizes� If a range of pixels passes the test� all pixels covered by this range are
automatically regarded to be not signi�cantly di�erent� Of course� the opposite is
not true� If the range fails the test� the pixel values covered by the range have to
be considered more closely�

The ultimate goal of the Range Test is to select the largest subset of pixels including
the current observation that is homogeneous� More formally� if a � b�

g�a�� � � � � g�c�� � � � � g�b� � max
a��b�

�b� a� subject to�
jg�a� � g�b�j

�n
� 
�b�a����

and� g�a� � g�c� � g�b� ������

Using the properties of the Range Test and the ordered structure of the data in
the entire window means that outliers can be detected in an e�cient way� For
instance� �rst the range spanned by g��� and g�m� is tested for homogeneity� Then�
based on the speci�c results� the test can be stopped or tests can be performed
on ranks spanning smaller subsets� The algorithm continues until the �rst large
homogeneous subset� including the current observation is found�

To decrease the table dimension� the calculation e�ort� and to overcome some
inconsistencies if multiple pixels with similar values are tested� pixels with the
same value are placed on a single rank� as in the following ordering�

gm�
��� � g

m�
��� � � � � � � � � � gmm

�m� � g�r� � g�r��� � � � r � m� ������

where the superscripts mr denote the number of pixels available on rank r� Note
also that no equalities will occur anymore� This method of ordering is especially
e�cient if the data has limited accuracy�

With this new ordering� a slight modi�cation of the test is necessary� The pixels
within the range spanned by a and b are then regarded not signi�cantly di�erent
if� jgma

�a� � gmb

�b� j
�n

�
s
ma �mb

�mamb

ja�bj��� ������

The Range Test will specify a sub	set of pixel values from the operation window
containing the current observation� An example of the operation of the Range
Test on non	stationary image data is illustrated in Figure ���� In the left image the
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Figure ���� The critical values �ja�bj for the Range Test on Gaussian data� for a
significance level of � � ��� various number of values ja� bj� and a known value
for �n

square spatial window was placed just before the character� The white sections give
the pixels from the background that are selected� Note that even pixels separated
by the character are selected� In the right image the spatial window was centered
on the upper right part of the character and only pixels from the character are
selected� Note that in this example� a spatial window was employed� In image
sequences� the selection is performed from a spatio	temporal window�

��� Experimental evaluation

An experimental evaluation of both OS supported LLMMSE �lters� one supported
by the Iterated Weighed Least Squares �IWLS� algorithm and one by the Range
Test �RT� is considered in this section� Both methods are evaluated with and
without motion compensation� As object sequences we have used frames � to �� of
the �mobile� sequence and frames �� to �� of the �Trevor� sequence at noise levels
of �� and �� dB� The noise was white� Gaussian� invariant and independent of the
original signal� The results of the IWLS method were already listed in Chapter �
for the un	compensated and Chapter � for the motion	compensated case� speci�ed
as �Kleihorst� and �Kleihorst	MC� respectively�

In both methods� the spatio	temporal window used for estimating the local statis	
tics for the LLMMSE �lter was a spatio	temporal cube of �� pixels centered at the
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Figure ��
� A visualization of the selective properties of the Range Test� In
the left image� the operating window is centered in the background and pixels
from the background �white� are selected for filtering� In the right image� the
operating window is selected on a portion of the character� It can be seen that
pixels from the character �white� are selected for filtering�

Table ���� Average improvement in SNR for the �mobile� sequence�

Outlier Selection Average Improvement in SNR �range�
SNR���dB SNR���dB

IWLS ��� ����� ��� �����
IWLS	MC ��� ����� ��� �����
RT ��� ����� ��� �����

RT	MC 
�� ����� ��
 �����

current pixel� In the IWLS method the parent PDF that de�nes the estimators was
�xed at a Gaussian shape� The parameter in Huber
s functions for discriminating
outliers was set to a � ��� resulting in an estimator e�ciency of around ��$� The
iteration process was stopped if the LLMMSE �lter output had converged within
an integer value� which always occurred within � iterations� The Range Test used
the decision table presented in Figure ���� which is for Gaussian noise� based on a
critical value of � � �$� The known noise deviance was used to create Studentized
ranges�

The results are presented in Table ��� for the �mobile� sequence and in Table ���
for the �Trevor� sequence� In these tables �IWLS� and �IWLS	MC� denote the
LLMMSE �lter supported by IWLS estimation without and with motion compen	
sation� respectively� �RT� and �RT	MC� denote the LLMMSE �lter supported
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Table ���� Average improvement in SNR for the �Trevor� sequence�

Outlier selection Average Improvement in SNR �range�
SNR���dB SNR���dB

IWLS ��� ����� ��
 �����
IWLS	MC ��� ����� ��� �����
RT ��� ����� ��� �����

RT	MC ��� ����� ��� �����

by an estimation with selection by the Range Test without and with motion com	
pensation� respectively� The improvement �gures of both selection methods can
be compared because both IWLS and RT are tuned by a and � to the same e�	
ciency� From the tables� it appears that the LLMMSE �lter gives better result with
the RT outlier selection �i�e� prior to estimation� for the low SNR of ��dB� For
��dB� the IWLS outlier selection �i�e� simultaneous selection and estimation� gives
better results� This e�ect is present in both sequences� A probable explanation
is the strong model	based nature of the IWLS process that exploits the relations
between ordered observations� The RT selection method only uses the observation
model and assumes that f�i� j� k� is constant within the window� It can be noticed
from the tables that motion compensation will only slightly increase the SNRi�
This means that we have established adaptation methods that reduce the need for
motion compensation�

The SNRi curves are shown in Figure ��� for the IWLS selection and in Figure ��

for the RT selection� respectively� From the relatively smooth character of the re	
sults without motion compensation it can be seen that the OS supported LLMMSE
�lters are able to handle the non	stationary signals reasonably without motion com	
pensation� In addition� this observation is supported by the great similarity of the
un	compensated and compensated results� Overall� the noise suppressing charac	
teristics of the LLMMSE �lter are relatively high and consistent as can be seen
from the results on both sequences�

From a visual point of view� the noise is substantially removed without unreason	
ably a�ecting the sharpness of the sequences and without blurring moving objects�
This can be seen from a result image of the LLMMSE �lter supported by the Range
Test for the �mobile� sequence in Figure ��� where both the observation at ��dB
SNR and the �lter result are shown� The �lter result on the �Trevor� sequence is
shown in Figure �����
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Figure ���� Experimental results for the LLMMSE filter with outlier selection
by the IWLS method
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Figure ���� Experimental results for the LLMMSE filter with outlier selection
by the Range Test

Figure ���� The observed �mobile� sequence at ��dB SNR and the result after
applying the LLMMSE filter supported by the Range Test
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Figure ����� The observed �Trevor� sequence at ��dB SNR and the result after
applying the LLMMSE filter supported by the Range Test



Chapter �

Applications to signal�dependent

noise

��� Introduction

The �lters discussed in the previous chapters were designed to operate on obser	
vation models with additive� signal	independent noise� Although these �lters will
most certainly have many practical applications� a number of practical situations
result in noise which is signal dependent � The signal dependency manifests itself
in the statistical expressions of the observation noise�

In this chapter we consider two practical problems of interest in which the ob	
servation noise is signal dependent� namely quantum	limited imaging� for instance
with low	dosage X	ray imaging� and gamma	corrected video signals� The quantum	
limited image	formation process su�ers from noise because the observation intensity
depends on the stochastic arrival times of photons� The uncertainty �noise� in the
number of photons captured in a given period depends on the photon rate which is
in�uenced by the original intensity� Signal	dependent noise is also encountered in
gamma	corrected video signals� Here� the non	linear gamma correction introduces
a signal	dependent mapping of the sensor noise in the observed signal�

We will derive speci�c �lters� using techniques from the previous chapters for
these two practical applications� The main focus is on the implications of signal	
dependent noise for the OS estimators� In Section ���� we consider the �ltering
of quantum	limited images as available from clinical X	ray image sequences� In
Section ���� we consider the �ltering of gamma	corrected video signals with appli	
cation to removing noise caused by the electronics in the camera� In Section ���
we perform an experimental evaluation using synthetic and real sequences�

��
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X-ray
tube patient image

intensifier camera

Figure 
��� The typical components of a diagnostic X�ray system for medical
purposes

��� Quantum�limited image sequences

	���� Clinical X�ray imaging

Image intensities are generally the result of photons captured by an image	scanning
device� In most cases the number of photons captured in the area spanned by a
single pixel is super�uous� However� under some practical circumstances� this num	
ber is rather low yielding so	called quantum�limited images� The quantum	limited
imaging process su�ers from the stochastic nature of the photon arrival rate which
manifests itself as noise� called �quantum noise� or �quantum mottle� ����� �����
An intrinsic property of the quantum	limited imaging process is the dependency of
the noise characteristics on the signal intensity� This property necessitates the use
of special �lter techniques�

Quantum	limited images are encountered in a number of practical situations� in
astronomical imaging� where the exploration of remote galaxies is realized by cap	
turing the few radiated photons of remote stars� in night	vision systems� where
because of darkness� the entire scene radiates a limited amount of photons� also� in
clinical X	ray imaging where the number of photons is limited as a result of lowering
the radiation exposure� We focus on quantum noise in clinical X	ray sequences�

The characteristic components of an X	ray system are shown in Figure ���� An
X	ray tube generates a beam of X	rays� Upon passing the patient� the intensities
of these rays are reduced depending on tissue properties� in this way creating a
varying�modulated X	ray �eld� An image	intensi�er tube captures the modulated
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X	ray �eld and converts it to visible light� The resulting visible image is scanned
by a camera and then digitized�

Recently� X	ray image sequences are used as a diagnostic tool to monitor the phys	
ical dynamics for instance of heart and kidneys ������ To avoid blurring of moving
objects� a short exposure time is used� The short exposure time in combination
with the requirement to limit X	ray exposure to patient and sta� causes the im	
age frames to be quantum limited� These image sequences are therefore corrupted
by signal	dependent quantum noise� Although there are many factors in the X	ray
imaging chain that a�ect the overall image quality� this noise is the dominant image
corruption associated with reduction in dosage ����� �����

In earlier work� some methods were developed to �lter single images degraded by
quantum noise ����� ����� Clinical image sequence �ltering was investigated in
����� However� here the images were simulated with white� independent Gaussian
noise� which is not justi�ed for simulating quantum noise� In ����� ���� a switching
�lter was used to process image sequences� Recently� in ��� a maximum	likelihood
formulation was employed� We have proposed an OS	supported LLMMSE �lter in
������

	���� Modeling and statistical properties

The passage of photons through the patient under X	ray excitation can be described
by an inhomogeneous Poisson counting process ������ That is� a counting process
with a varying mean depending on the properties of the intervening tissue� which
changes in place and time� This mean is essentially the diagnostic information in
the image sequence� We investigate the statistics of the quantum	limited imaging
process to demonstrate the signal	dependent noise and to derive an estimator for
the original signal�

Observation model

For quantum	limited imaging� the number of photons captured in each pixel at the
camera� appears statistically independent of the other pixels ����� ���� ���� �����
The number of photons captured� expressed by the counting process c�i� j� k�� can
therefore be described as a discrete Poisson random variate�

pfc�i� j� k�jf�i� j� k�g � e�	f�i�j�k���f�i� j� k��c�i�j�k�

�c�i� j� k��%
� �����

The conditional mean and variance are given by ���
��

�cjf �i� j� k� � ��cjf �i� j� k� � �f�i� j� k�� �����
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The parameter � serves as a known proportionality factor relating the displayed
image intensity to the number of counts�

g�i� j� k� � c�i� j� k�
�� �����

This proportionality factor is introduced for convenience� In this way� the diagnos	
tic information f�i� j� k� can also be regarded as an intensity image with the same
intensity range as the observed image g�i� j� k��

The conditional mean and variance for g�i� j� k� become� using ������

�gjf�i� j� k� � f�i� j� k�� �����

��gjf�i� j� k� �
f�i� j� k�

�
� �����

The properties of the tissue� i�e� the original signal f�i� j� k�� are modeled as follows
������

f�i� j� k� 	 Nf�f �i� j� k�� ��f�i� j� k�g� �����

i�e� f�i� j� k� is Gaussian distributed with non	stationary mean �f �i� j� k� and non	
stationary variance ��f�i� j� k��

With these conditional statistics and the statistics of f�i� j� k�� the �unconditional�
mean of g�i� j� k� can be derived�

�g�i� j� k� � EffEgfg�i� j� k�jf�i� j� k�gg � �f �i� j� k�� �����

where Effg and Egfg denote averaging over f and g� respectively� The �uncondi	
tional� variance of g�i� j� k� becomes�

��g�i� j� k� � EffEgfg��i� j� k�jf�i� j� k�gg � ��g�i� j� k�

� Eff��gjf�i� j� k� � ��gjf �i� j� k�g � ��f �i� j� k�

�
�f �i� j� k�

�
� ��f �i� j� k�� ���
�

Statistical properties of the quantum noise

An �additive noise model� for the observation equation can be imposed�

g�i� j� k� � f�i� j� k� � n�i� j� k�� �����

Because the PDF of g�i� j� k� has a scaled Poisson shape� the PDF of the noise
n�i� j� k� has a scaled and translated Poisson shape with mean ������

Efn�i� j� k�g � �g�i� j� k�� �f �i� j� k� � �� ������
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It can be shown that n�i� j� k� is orthogonal to f�i� j� k��

Efn�i� j� k�f�i� j� k�g � EffEnfn�i� j� k�f�i� j� k�jf�i� j� k�gg
� Efff�i� j� k�Enfn�i� j� k�jf�i� j� k�gg
� Efff�i� j� k��Egfg�i� j� k�jf�i� j� k�g � f�i� j� k��g
� Efff�i� j� k��f�i� j� k�� f�i� j� k��g � �� ������

Although n�i� j� k� and f�i� j� k� are uncorrelated by ������ and ������� n�i� j� k� is
dependent as can be seen from the following expression for the noise variance�

��n�i� j� k� � ��g�i� j� k�� ��f�i� j� k��

�
�f �i� j� k�

�
� ������

Equation ������ shows that the noise variance depends on the mean value of the
original signal f�i� j� k�� In practice� it can be seen that the noise variance is
larger in brighter parts of the image than in the dark areas� The left image from
Figure ���� can be consulted for this phenomena�

	���� Estimating the modulation process from Poisson ob�

servations

In this section� we derive an OS estimator which is designed to estimate the mod	
ulation process� �f�i� j� k� from the quantum	limited observations� As we have
seen� �f�i� j� k� is the mean of the Poisson	distributed counting process c�i� j� k��
We will focus on the estimation of this mean from the counting process� which
can be retrieved from g�i� j� k� by inversion of ������ First� we will show that the
maximum	likelihood estimator of Poisson mean is the sample average�

The maximum�likelihood estimator for Poisson mean

Our aim is to estimate �f�i� j� k� from a sample of the counting process denoted
as� �c�� c�� � � � � cm� which resulted in the current number of photons c�i� j� k� �
�g�i� j� k�� The simultaneous distribution of this sample� assuming internal inde	
pendence� is�

pf�c�� c�� � � � � cm�j�f�i� j� k�g �
mY
i��

��f�i� j� k��ci

e	f�i�j�k�ci%
� ������

This results in the following log	likelihood function�

logfpf�c�� c�� � � � � cm�j�f�i� j� k�gg �
mX
i��

��f�i� j� k� � cilogf�f�i� j� k�g � logfci%g�
������
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By maximizing this function with respect to �f�i� j� k� the estimate of �f�i� j� k�
can be found�

� �f�i� j� k� �

Pm
i�� ci
m

� ������

Note that this maximum likelihood is the average of the counts within the sample�

In practical processing of image sequences local ergodicy has to be assumed as
the ensemble estimates are exchanged by estimates from spatio	temporal samples�
On these spatio	temporal samples� the maximum	likelihood estimator will not be
useful� This is because of the dynamic nature of the spatio	temporal original in	
tensity �f�i� j� k� which causes the assumption to fail� The sample average will
give inaccurate estimates when the sample does not contain a homogeneous set of
counts�

An OS estimator for Poisson mean

By ordering the sample according to value� �c���� c���� � � � � c�m��� the structure of the
counts can be exploited for robust and e�cient estimation purposes ���� ��� ��
�
���� ����

In e�ect� the rank averages describe the shape of the underlying PDF� By using
the a�ne relation between the observation ranks and the rank averages from a
normalized �parent� PDF� the mean of the observation PDF can be estimated by
applying linear regression as demonstrated in Chapters � and � ���� ��� ����

However� matters are more complex with the Poisson PDF� Compared with the
estimators derived in the previous chapters� the Poisson PDF changes its shape�
not only its position and width� as a function of its mean value� Therefore� the
relationship between the rank averages of the observation and the parent is not
a�ne as assumed in ������� and can not be as easily exploited as the relationship
with most other distributions� We will� however� approximate a linear relation�
in order to use the familiar linear	regression technique� In addition� it will be
demonstrated that this a�ne relation su�ces for the purpose intended�

We introduce a parent Poisson PDF with known mean value x and rank averages
denoted as p�r��x�� Let the averages of the ranks of the observed counting process
with mean value �f�i� j� k� be denoted as Efc�r�g � p�r���f �� In order to estimate
�f�i� j� k�� the following a�ne relation is ��tted� between the rank averages of the
observation and parent PDF�

p�r���f � � ap�r��x� � b� � � � r � m� ������
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If linear regression is performed on this relation� estimates for a and b are found�
In the linear regression� the following problem is solved�

a� b � min
a��b�

mX
r��

�p�r���f �� a�p�r��x�� b���� ������

Analytically� this gives the following exact values for a and b�

a �

Pm
r�� p�r��x�p�r���f �� �f�i� j� k�

Pm
r�� p�r��x�Pm

r�� p�r��x�p�r��x�� x
Pm

r�� p�r��x�
�

�

s
�f�i� j� k�

x
� ����
�

b �

Pm
r�� p�r���f �� a

Pm
r�� p�r��x�

m
�

� �f�i� j� k� � ax�

� �f�i� j� k� �
q
x�f�i� j� k�� ������

In this derivation� the identities
Pm

r�� �r�x� � mx and
Pm

r�� �r��f � � m�f�i� j� k�
are used ����� �����

To estimate the current original intensity� the parameters a and b are estimated
from the observation using linear regression to solve ������� The intensity of the
original signal which generated the counting process c�i� j� k� can then be found
using the analytical expressions from ����
� and ������ ������

� �f �i� j� k� � �ax��b� ������

Applying the IWLS estimation procedure

In practice� the rank averages of the observation are not available� and Equation
������ is replaced by�

c�r� � ap�r��x� � b� �r� � � � r � m� ������

where �r are the residual errors which are caused by removing the expectation over
c�r��

To obtain proper estimation results� the presence of outliers has to be taken into
account� In Chapter � we considered two robust estimation methods� Iterated
Weighed Least Squares �IWLS� and the Range Test �RT�� The computationally
e�cient RT is not directly applicable in this situation because it uses decision
thresholds based on the observation PDF which is not traceable because its mean
is a stochastic� unknown� value� Therefore� we have relied on the IWLS procedure
to solve the minimization problem in a robust way�
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This resulted in the following iterative estimation procedure�

�
�a
�b

�s�� h
ATC��

�yy�W
sA
i��

ATC��
�yy�W

s



���

c���
���

c�m�

�
��� � ������

In the present situation� the design matrix A is composed as follows�

AT �

�
� � � � � �

���x� ���x� � � � �m�x�

�
� ������

Initial estimates and the choice for x

Robust initial estimates to start the iteration procedure are�

�a� �

s
c�i� j� k�

x
and �b� � c�i� j� k��

q
c�i� j� k�x� ������

where the current count c�i� j� k� is used� The iteration procedure can be stopped
if �a and �b have converged� which is usually within a few steps�

The parameter x describes the shape of the parent PDF� In e�ect� it determines
the entries of C�yy� and A� In order to achieve a low estimation variance� the PDF
shapes have to be comparable� which is guaranteed if x � c�i� j� k�� For each sample
the matricesC�yy� and A have to be built� which is not a heavy burden as they can
be stored e�ciently for several values of x or calculated in an analytical way� In
addition� the estimation process is only sensitive to values of x for the lower region
of counts c�i� j� k� � ��� This gives a considerable degree of freedom and reduced
complexity in choosing x for higher counts�

Analysis of the a�ne approximation

The linear relation in ������ is su�cient for the purpose of estimating the mean of
an observation given a known parent� This can be seen by looking at the Taylor
approximation of p	ffg� a Poisson PDF with mean �f � by pxfg� a PDF with
intensity x� The kth order approximation of p	ffcg by pxfcg is given by�

p	ffcg �
kX

j��

��f � x�j

j%

jX
i��

	
j
i



����j�ipxfc� ig� ������

The average value of this approximation is given by�

Ec

��
�

kX
j��

��f � x�j

j%

jX
i��

	
j
i



����j�ipxfc� ig

��
� ������
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�
kX

j��

��f � x�j

j%

jX
i��

	
j
i



����j�i

�X
c��

cpxfc� ig� ������

which is equal to�

kX
j��

��f � x�j

j%

jX
i��

	
j
i



����j�i�x� i� ����
�

�
kX

j��

��f � x�j

j%

��
�x

jX
i��

	
j
i



����j�i � j

jX
i��

	
j � �
i� �



����j�i

��
� � ������

�
kX

j��

��f � x�j

j%
fx���j � j���j��g � �f� ������

It appears that the last summation is only nonzero for j � � and j � � which means
that the average �f can be su�ciently estimated from a linear approximation of
p	ffg by pxfg�

��� Gamma�corrected video signals

Most video sequences that we regard as �original� data are corrupted by a certain
amount of noise originating from the camera electronics� From measurements�
the SNR of un	processed image sequences appears to be unexpectedly low� For
instance� the well	known �mobile� sequence has an estimated SNR of �
dB�

The noise in �original� signals originates as thermal noise from the early electronic
circuits of the camera� The captured �noisy� signal passes a gamma	correction
stage that compensates for the non	linearity of a Cathode Ray Tube �CRT�� An
e�ect of this gamma correction is that the noise in the observed �original� sequence
has statistics that depend on the captured intensity�

In this section we will consider a method that is able to e�ectively reduce the
noise in the gamma	corrected �original� sequences� The method includes an order	
statistic estimator with weights that are optimally adapted� given the observation
model and PDF of the noise� The resulting �lter is an e�cient OS	FIR �lter �see
Chapter �� that can be used to reduce the noise in �original� video sequences�

	���� Signal model
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Figure 
��� The schematic structure of a color video camera

The structure of a color camera

The properties of camera noise intrinsically depend on the camera structure� This
structure can be schematically modelled for a color camera as in Figure ���� It
consists of three recognizable paths relating to the three colors red �R�� green �G��
and blue �B��

The electrical current generated by the light sensors depends directly on the object
intensity� and is ampli�ed by an electronic ampli�er �A� to a suitable level� After
ampli�cation� the smoothing e�ects caused by the �nite area of the sensor elements
are reduced in the aperture	correction stage� This stage usually consists of spatial
high	emphasis �lters�

To match the characteristics of a CRT� the video signal passes a gamma	correction
stage� Finally� in a processing stage� known as the �RGB	YUV matrix�� the R�G�
and B signals are transformed to the Y UV system� In this system Y is the intensity
signal and U and V comprise the color information� A portion of the G signal�
which usually contributes most to the intensity signal Y � is forwarded to the Y
path for spatial sharpening purposes� This �crispening� action and the aperture
correction can be switched o� on high	quality cameras� which facilitates additional
signal processing�
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Figure 
��� A schematic model of the path that object intensities follow yielding
a pixel value

Statistical properties of the gamma�correction

For the purpose of investigating noise �ltering of gamma	corrected video signals we
have simpli�ed the camera structure to the signal path shown in Figure ���� In this
simpli�ed structure we have focussed on one color signal which is regarded as a com	
mon intensity signal� We have ignored the aperture correction and crispening �lter�
The signal path now begins with amplifying the input signal f�i� j� k�� The thermal
noise introduced by the ampli�er can be modeled as zero	mean� signal	independent�
white Gaussian noise ����� ����� The noise variance ��n is time invariant and is as	
sumed to be known�

Ignoring the ampli�cation factor for simplicity� the corrupted signal can be written
as f�i� j� k� � n�i� j� k�� After the gamma correction� the observed signal g�i� j� k�
is modeled as ������

g�i� j� k� � �f�i� j� k� � n�i� j� k��� � f��i� j� k�

	
� �

n�i� j� k�

f�i� j� k�


�

� ������

with a typical value of � � ����� Note that we have assumed in this equation that
image intensities lie between � and ��

Some examples of the in�uence of gamma correction on images are illustrated in
Figure ���� The top image has a � � � and appears lighter� the darker parts of
the image are emphasized� The bottom image has a � 	 � and appears darker�
the lighter parts of the image are emphasized� Also� the input	output relations are
shown�

To facilitate noise �ltering we approximate ������ by a Taylor expansion of order

s about n�i�j�k�
f�i�j�k� � ��

�f�i� j� k� � n�i� j� k��� � f��i� j� k�

	
� �

sX
l��

	
�
l



nl�i� j� k�

f l�i� j� k�



� ������
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where we have used the convenient short	hand notation�	
�
l



�

��� � �� � � � �� � l� ��

l%
� ������

The above approximation now enables us to rewrite the observation equation as
an additive noise model�

g�i� j� k� � f��i� j� k� � n��i� j� k�� ������

n��i� j� k� � f��i� j� k�
sX

l��

	
�
l



nl�i� j� k�

f l�i� j� k�
�

For practical values of f�i� j� k� and n�i� j� k�� the approximation is acceptable if
s 	 �� We have used s � � to guarantee su�cient accuracy� A �st	order Taylor
expansion is not accurate enough at low frequencies ������

The additive noise component is signal dependent� This can be shown after speci	
fying the stochastic models for the original intensity f�i� j� k� and the additive noise
n�i� j� k��

f�i� j� k� 	 Nff�i� j� k�� �g� n�i� j� k� 	 Nf�� ��ng� ������

Using the additional properties Efn
�i� j� k�g � � and Efn��i� j� k�g � ���n for
the Gaussian noise� the average value of the observation noise is approximated by
�s � ���

�n� �i� j� k� �
		

�
�



f����i� j� k� � �

	
�
�



f����i� j� k�



��n� ������

The noise variance can be approximated for moderate and larger values of f�i� j� k�
as ������

��n� �i� j� k� � ����nf
�������i� j� k�� ��n� �i� j� k�� ������

It can be seen that the noise n��i� j� k� is not zero	mean and signal dependent as the
statistics depend on the value of the original signal f�i� j� k�� Note that if � � ��
the noise becomes zero	mean and the dependency disappears�

	���� An order�statistic �lter for ��corrected noisy signals

The desired signal is f��i� j� k�� and has to be estimated from g�i� j� k�� An obvious
approach would be to create a transformed observation g��i� j� k� by inversion of the
gamma correction� The signal g��i� j� k� can then be �ltered and gamma	corrected
to establish the �nal result� However� this approach is hindered by the presence of
�additive� quantization noise on the digitized signal g�i� j� k�� In addition� noticable
aliasing e�ects might be introduced�
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Most published noise �lters for video sequences do not take the gamma correction
into account� As a result� the sequence will have a darker appearance after pro	
cessing� We propose a spatio	temporal OS	FIR �lter that does take the correction
into account ������ It is again based on an OS estimator�

�f��i� j� k� �
mX
r��

wrg�r��i� j� k�� ����
�

Here� g�r��i� j� k� are the ordered observations within a spatio	temporal window of
size m� centered at �i� j� k�� The weights wr are �xed values that are optimal for
estimating a constant signal in signal	dependent noise� The weights depend on the
PDF of the noise n�i� j� k� in ������� On the basis of ������ and the signal and noise
properties in ������� we �nd the following expectation for g�i� j� k��

Efg�i� j� k�g � f��i� j� k� � f��i� j� k�
sX

l��

	
�
l



Efnl�i� j� k�g
f l�i� j� k�

� ������

The above relation still holds after ordering the data in m ranks� Thus we can
write for every rank � � r � m of g�i� j� k��

Efg�r��i� j� k�g � f��i� j� k� � f��i� j� k�
sX

l��

	
�
l



Efnl�r��i� j� k�g

f l�i� j� k�
� ������

This equation includes the expectation of the ranks taken to the power l� i�e� the
higher	order moments of ordered data� These moments� Efnl�r��i� j� k�g� are readily
available if the statistics of the noise source are known� However� the expectations
over the ordered observations Efg�r��i� j� k�g are not available� By approximating
these expectations by the observed ordered observations themselves� we arrive at�

g�r��i� j� k� � f��i� j� k� � f��i� j� k�
sX

l��

	
�
l



Efnl�r��i� j� k�g

f l�i� j� k�
� �r�i� j� k�� ������

where �r�i� j� k� is a stochastic error term due to approximating the expectations�

The relations in ������ can be written in a matrix	vector form as follows�



���
g����i� j� k�

���
g�m��i� j� k�

�
��� �



���
� � � � Efns����i� j� k�g
���

���
���

� � � � Efns�m��i� j� k�g

�
���


�����

f��i� j� k�
���	

�
s



f��s�i� j� k�

�
�����

�



���
���i� j� k�

���
�m�i� j� k�

�
��� � ������

Or� using a matrix	vector notation�

g���i� j� k� � A��i� j� k� � ��i� j� k�� ������
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Figure 
��� A graphical illustration of the OS�FIR filter shapes for several
window sizes and for 
nd and �th order approximation

Since Efnl�r��i� j� k�g� for � � l � s� are known constants� the matrix A is entirely
known� Equations ������ and ������ describe a set of linear relations in the s � �

unknown parameters

	
�
l



f��l�i� j� k�� for � � l � s� The top entry of ��i� j� k� is

f��i� j� k�� the desired signal value�

Usually� for common window sizes m 	 s � �� which means that this set is over	
determined� Equation ������ is solved in minimum	variance sense of ��i� j� k� by�

���i� j� k� � A�g���i� j� k�� ������

The pseudo	inverse A� is found by singular value decomposition ������ The top
row of A� contains the weights of the desired OS	FIR �lter to estimate f��i� j� k�
from g�i� j� k�� This means that only this row has to be computed� In addition�
because the PDF of the noise is known from Equation ������� the rank moments
of the noise establishing A can be calculated in advance� This means that the top
row of A� consists of �xed weights for the entire signal�

The �lter weights are illustrated in Figure ��� for some window sizes between �
and �� and for s � � and s � �� It can be seen that the use of higher	order rank
moments for the �th order approximation has resulted in more re�ned �lter shapes
compared to those resulting from a �nd order approximation� From experiments
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it appeared that the �lter shapes stay approximately the same if s is increased
even further� Note that the approximation order does not directly in�uence the
calculation e�ort in �ltering� A large s has only consequences in the pre	processing
step where the weights are determined and on the amount of over	determination
of the set of equations�

	���� Robust implementation using the Range Test

The data for the OS �lter ����
� is gathered from a spatio	temporal window cen	
tered at �i� j� k�� Because the value of every pixel used in �ltering has an in�uence
on the �nal result� the OS �lter designed so far is not robust� A selection proce	
dure to de�ne the homogeneous part of the operation window has to ascertain the
absence of outlying observations�

Using the model information� we can approximate the PDF of the observed signal�

g����i� j� k� 	 Nff�i� j� k�� ��ng� ������

This approximation and the assumptions regarding the distribution of f�i� j� k��

f�i� j� k� 	 Nff�i� j� k�� �g� ������

enable us to use the Range Test� This test was described in Chapter � as the heart
of a detecting and selecting stage�

The result of the Range Test is an ordered homogeneous selection of pixel values
comprising the current pixel� Based on the number of pixels in this selection� a
number of �lter weights has to be calculated� Because the set of selectable sizes is
limited and known� it is possible to pre	compute and store the �lter weights for all
possible sizes� The overall structure of the �lter can now be seen from Figure ����
In this �gure� we can distinguish the ordering stage� the Range Test which uses
a decision table to evaluate pixel values� and the �ltering stage� The latter stage
consists of a bank of OS	FIR �lters with �xed weights� The appropriate �lter is
chosen on basis of the number of homogeneous pixels that were found using the
range test�

��� Experimental evaluation

	���� Quantum�limited sequences

We have applied the OS estimator for quantum	limited data on synthetically dis	
torted sequences and on a clinical sequence su�ering from quantum noise� The
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Figure 
�
� Overview of the proposed robust OS�FIR filter for gamma�corrected
video signals
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Figure 
��� The simulation method used for introducing quantum noise in se�
quences

mechanism to introduce synthetic quantum noise in regular sequences is shown in
Figure ���� First� all pixels values are multiplied by the proportionality factor ��
The resultant values are then used as the mean value for the Poisson noise source�
yielding the counting process� To retrieve image intensities g�i� j� k�� comparable
with f�i� j� k�� the counts are divided by � ����� ����� It is clear that the value
of � necessary to scale c�i� j� k� to common image intensities re�ects the SNR of
g�i� j� k�� A large � indicates a high SNR whereas a low � indicates a low SNR�

We have synthetically distorted the �mobile� sequence using the simulation model
above for � � ���� ���� and ���� Expressed as SNRs �calculated in the usual manner
between f�i� j� k� and g�i� j� k��� these values amount to respectively ��� � and �dB�
The e�ect of scaling with � can be clearly seen from the histograms of the resulting
displayed data� For a comparison� the histograms of the original �mobile� sequence
and corrupted sequences with � � ���� ����� ��� are shown in Figure ��
� For lower
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original λ = 0.5

λ = 0.25 λ = 0.1

Figure 
��� The histogram of the original sequence and of the corrupted image
sequences for various values of the proportionality factor �

Table 
��� Average Improvement in SNR for the �mobile� sequence�

� SNR �dB� SNRi �range�
��� ��� ��� �����
���� �� ��� �����
��� �� ��� �����

values of �� fewer numbers of gray	level remain in the image� This �quantization�
e�ect can be used to identify � in practical situations of interest�

The OS estimator was used with a spatio	temporal symmetrical window of �����
pixels� The original intensity was estimated by the robust IWLS procedure� Motion
compensation was not used for two reasons� First� our recursive motion estimator
from Section ����� was unable to track the irregular motion that is usually present
in clinical sequences� Second� the motion estimator is optimized for Gaussian noise
and will therefore give sub	optimal results in the presence of asymmetric Poisson
noise ������

The SNR and the average improvement for the synthetic data is shown in Table ����
Frames of the distorted and �ltered sequence are shown in Figure ��� for � � ����
in Figure ���� for � � ���� and in Figure ���� for � � ���� respectively�

To illustrate the performance of the OS estimator on genuine quantum	limited
data� we have �ltered a clinical image sequence of a cardiac scene showing some
blood vessels and tissue� This clinical sequence su�ers from quantum noise with
an estimated � � ���� An image of the observed sequence and the �lter result are
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Figure 
��� Observed and filtered frame for � � ���

Figure 
���� Observed and filtered frame for � � ��
�

shown in Figure ����� As the original signal is not available� the improvement can
only be evaluated from a visual point of view� It appears that the noise is reduced
without a�ecting the sharpness�

	���� Gamma�corrected video signals

In the experimental evaluation of the OS	FIR �lter for �	corrected video signals we
have considered synthetically distorted sequences and a genuine �	corrected �origi	
nal� image sequence which su�ers from camera noise� The simulation procedure to
create the synthetically distorted sequences and to evaluate the �lter improvement
is shown in Figure ����� Signal	independent Gaussian noise is added to a sequence
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Figure 
���� Observed and filtered frame for � � ���

Figure 
���� A radiographic sequence suffering from noise and the filter output
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Figure 
���� The simulation of noisy ��corrected image sequences

Table 
��� Average Improvement in SNR� �range� for the �mobile� sequence at ��dB

� Average Improvement in SNR �range�
s�� s�� s�� s��

���� ���� ����� ���� ����� ���
 ����� ���
 �����
���� ���� ����� ���
 ����� ��
� ����� ��
� �����
���� ���� ����� ��
� ����� ��

 ����� ��

 �����

and the resulting value undergoes a �	correction� The real	valued signals are then
�ltered using the proposed algorithm and subsequently pass a stage where the �	
correction is inverted� This is then regarded as the �nal result� which is compared
with the original sequence to determine the SNRi� Notice that we have neglected
the introduction of aliasing e�ects� The synthetic noise is added to a level of ��dB�
which is several orders of magnitude greater in power than the �	corrected noise
present in this �original� sequence� The OS	FIR �lter was used for �ltering in
combination with the Range Test to detect outlying pixel values from a symmetric
motion	compensated spatio	temporal window of �� pixels�

The improvements in SNR of �f �i� j� k� compared with f�i� j� k� �see Figure �����
are given for several �lter orders s in Table ���� It can be seen that� for s 	 �� the
�lter result is practically insensitive to �� In addition� the �lter results are on par
with those of the previous chapters� The �lters with s � � are similar to ignoring
the gamma correction and e�ectively mean spatio	temporal averaging supported
by the Range Test� From the table it is clear that this gives lower results� It
can be seen that the improvement increases slightly for higher �lter order s� The
improvement has stabilized for s 	 ��

The �lter for �	corrected video signals is also applied on the original �mobile� se	
quence� This sequence inherently contains some camera noise which results in an
estimated SNR �dynamic range� of around �
dB for the original sequence� This
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Figure 
���� The original �mobile� sequence seems to suffer from camera noise�
on the left an enlarged and enhanced portion of the image and on the right the
filter result

camera noise can be made more visible by enlarging a part of the image and en	
hancing the contrast �left image of Figure ������ The right image in this �gure
is the result after �ltering with an assumption that � � ����� After �ltering� the
estimated SNR of the entire sequence becomes ��dB� The resulting image sequence
remains reasonably sharp and the noise is reduced�



Chapter �

Conclusions and topics for

further research

This thesis is devoted to noise �ltering of image sequences� We have reviewed
most well	known techniques in Chapters � and � and have proposed a number of
new techniques in Chapters � and �� In Chapter � we have focussed on speci�c
applications� In most chapters� we have performed an experimental evaluation to
support and discuss our ideas� This chapter summarizes the conclusions that were
reached in these situations� In addition� we will give our view of the path that
future research might follow in the �eld of noise �ltering of image sequences�

	�� Summary of the conclusions arrived at

The main problem in image	sequence noise �ltering is the dynamic behavior of the
spatio	temporal signal� This is not so much di�erent from the problems encountered
in spatial noise �ltering� but image sequences require additional �lter properties�
Non	adaptive �lters such as straight averaging do not produce useful results� as
moving objects and spatial detail are blurred� Even �lters that adapt globally to
the signal statistics such as Wiener� Kalman and switching �lters with �xed control
parameter are unable to give worthwhile results� Temporal median �lters remove
certain object features while the feature	preserving spatio	temporal median �lters
appear to be not very noise suppressive�

From the experiments we concluded that only locally	adapting �lters are able to
give good noise suppression without blurring the signal� Among these �lters are
some weighed averaging and switching �lters� the simultaneous approaches and the
adaptive order	statistic �lters� as developed in Chapters � to ��

���



��� Chapter �
 Conclusions and topics for further research

Motion compensation has been widely used as a preprocessing stage to aid the
noise �lter by supplying homogeneous temporal signals� However� the estimation
of motion su�ers from the observation noise and the incompleteness of the motion
model used� For these reasons� the use of motion compensation will not always
result in homogeneous temporal signals that can be �ltered by non	adaptive �lters�
Because of failure of the motion compensation� locally	adapting �lters are still
necessary for useful results� Motion compensation can only be seen as a �rst� but
not perfect� aid for creating stationary temporal signals�

Spatio	temporal methods are able to give more noise suppression than temporal
methods� This is obvious considering the increased amount of data involved with
�ltering� However� as spatial signals are usually also non	stationary� adaptation
is required to avoid blurring� From our experiments we have found that for the
proposed order	statistic �lters a centered spatio	temporal cube containing �� pixels
gives useful results�

The methods that we have developed in this thesis are spatio	temporal locally	
adapting �lters� The algorithms use estimates of the local statistics to normalize
the non	stationary signal �Chapter �� or to adapt the �lter characteristics locally
�Chapters � and ��� For estimation of the local statistics we have relied on e�cient�
in estimation	variance sense� order	statistic estimators� Apart from providing local
adaptation in non	stationary situations� the estimators also provide the opportunity
to track slowly changing noise statistics�

The adaptation power of the order	statistic estimator is substantially improved
by rejecting outlying observations from the data window� For this task we have
included the IWLS and the RT procedures� The RT procedure uses the assumption
that the original signal is constant within the data window for outlier selection�
whereas the IWLS method uses a stochastic model for the original signal� These
di�erent assumptions result in slightly better results for the IWLS method in low	
noise situations where the constant	intensity assumption fails�

The estimation properties of the order	statistic estimator were shown in appli	
cations to imaging processes with signal	dependent noise� These applications
were noise	�ltering quantum	limited clinical X	ray sequences and gamma	corrected
video signals� By linearizing the observation models we have developed dedicated
order	statistic estimators� Here� the estimators were used to provide direct inten	
sity estimates instead of estimates of the local statistics� Because of the outlier
rejection and the e�cient estimation procedure� the �lter results are good without
unreasonable blurring�
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	�� Suggestions for further research

Considering the conclusions reached� it is clear that the investigations into noise	
�lter structures are maturing� At this moment� only one �ltering structure� the
simultaneous motion estimation and �ltering approach seems to gain interest in
literature� However� the high additional computational e�ort may limit the prac	
tical application of this technique� Our view is that the research in simultaneous
motion estimation and �ltering will therefore be mainly dedicated to understanding
the relational and fundamental concepts of motion estimation and �ltering� The
future research in image sequence noise �ltering will most probably be systems
oriented and devoted to speci�c problems and applications�

The systems orientation is necessary to solve several problems concerning noise
�ltering in speci�c environments� As an example� we consider noise �ltering for
the television environment� Here� the environment in�uences the choice of the op	
eration window because of interlaced video formats� Also� the aperture correction�
gamma correction and crispening �lters will in�uence the �lter operation� In this
context the noise �ltering of color sequences will be interesting�

Noise �ltering of image sequences can be investigated in combination with speci�c
problems� For instance� the identi�cation and removal of distortion in combination
with noise �ltering� This might comprise multi	frame approaches extended with
ideas presented in this thesis� A speci�c application are sequences produced by a
surveillance camera that su�er from out of focus and motion blur in addition to
the sensor noise�

Another interesting problem where noise �ltering techniques can be applied is reso	
lution enhancement of images� In practical situations� time	consecutive recordings
of a dynamic scene are available or can be made available� From this image se	
quence a single image of higher resolution can be retrieved using aliasing e�ects
and fractional motion estimates ����� ��
�� However� these resolution enhancement
methods strongly su�er from observation noise which is always present in the prac	
tical applications� The noise	�ltering techniques from this thesis might help to
reach better results in practical situations�

Some subjects for further research directly connected with the material of this thesis
are estimation procedures for the variance of the observation noise and control of
the e�ect of scene changes and illumination changes on the motion estimation and
�lter behavior� Other subjects are the use of the developed �lters to color image
sequences and to sequences in interlaced video format� A very interesting subject�
initiated by this thesis� is the development of adaptive order	statistic estimators
for �ltering of image sequences with complex observation models� We have shown
in this thesis that the class of order	statistic estimators has some very interesting
properties for adaptive noise �ltering� These properties should be exploited%
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Appendix A

Stochastic properties of ordered

statistics

In this appendix we derive analytical expressions for the distribution functions of
a rank �Section A���� the �rst and second moments �Section A���� and the joint
distribution functions and correlations �Section A���� The results hold for both
continuous and discrete variates� Finally� in Section A��� as an example� we will
look at two particular distributions� namely the uniform and Gaussian Probability
Density Function �PDF��

A�� Distribution functions of ranks

If we denote an �unordered� sample X of size m by�

X � �x�� x�� � � � � xm�
T � �A���

and assume that each particular value xi is an independent variate with Cumula	
tive Distribution Function �CDF� P �v� � Prfxi � vg� where Prfg denotes the
probability of an event� Then� if the sample is ordered as�

X � �x���� x���� � � � � x�m��
T � �A���

where x��� � x��� � � � � � x�m�� the CDF of the largest rank x�m� is given by�

R�m��v� � Prfx�m� � vg � Prfall xi � vg � Pm�v�� �A���

In the same way� the CDF of the smallest rank is�

R����v� � Prfx��� � vg � �� Prfx��� 	 vg�
� �� Prfall xi 	 vg � �� ��� P �v��m� �A���

���
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The general result� for each rank r�

R�r��v� � Prfx�r� � vg � Prfat least r of the xi � v g� �A���

Or�

R�r��v� �
mX
i�r

	
m
i



P i�v���� P �v��m�i� �A���

In �A��� it will be very cumbersome� because of the summations� to calculate
cumulative probabilities of several ranks of the same sample or to express the
CDFs of each rank in analytical functions� Often� they have to be derived for each
rank with a �xed sample size� In this case� we can use �A��� in a recurrent version�

R�r��v� � R�r����v� �

	
m
r



P r�v���� P �v��m�r� �A���

with�

R�m��v� �

	
m
m



Pm�v���� P �v��m�m � Pm�v�� �A�
�

When the CDFs of the same rank r have to be determined for di�erent sample
sizes it is possible to write �A��� in an upward recurrent manner� �the superscript
��m� denotes sample size��

R
m
�r� � R
m��

�r� �

	
m� �
r � �



P r�v���� P �v��m�r� �A���

with� if m � r�

R
r
�r� � R
m

�m� � Pm�v�� �A����

It is also possible to determine the PDFs r�r� of the ranks� Let the variates have
PDF p�v�� Then� we can use�

r�r��v� �
dP�r��v�

dv
�

dP�r��v�

dP �v�
� dP �v�

dv
�

dP�r��v�

dP �v�
� p�v�� �A����

on �A���� After di�erentiating� the following result will be obtained�

r�r��v� � r

	
m
r



P r���v���� P �v��m�rp�v�� �A����

Note� that in the expression of the PDF of the ranks� the CDF of the original
variate distribution P �v� is present�
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A�� First and second moments of ranks

In several adaptive OS �lters the �rst moments of the ordered sample are needed�
There are various methods to determine the mean of a distribution� The choice
depends on which probability function of the variates and the rank is available
�CDF or PDF�� and whether the calculation

The classical methods are�

Evfx�r�g �
Z vmax

vmin

v r�r��v� dv �
Z �

�
v dR�r��v�� �A����

� vR�r��v�
���vmax

vmin

�
Z vmax

vmin

R�r��v� dv�

Evfx�r�g � vmax �
Z vmax

vmin

R�r��v� dv� �A����

where Evfg denotes expectation� in this case over v� The lower and upper limit
of the domain of v are vmin and vmax� Depending on whether the CDF or PDF is
available a choice is made for the middle expression in �A���� or the right expression
which is extended in �A����� Note that �A���� is useful if v has a �nite upper bound
vmax�

Equation �A���� can be used for calculating the �rst moment� Using the Law of the

unconscious statistician� the �rst moment of a function of the rank� EfFfx�r�gg�
can also be evaluated ������

EfFfx�r�gg �
Z vmax

vmin

Ffvgr�r� dv� �A����

If the integral sum in �A���� is absolutely convergent� then Efg�x�r��g exists� The
special cases g�x�r�� � xk�r�� �x�r� � Efx�r�g�k and etx�r� give� respectively� the raw
moments� the central moments� and the moment generating function of x�r��

Equation �A���� is used to �nd the second moments of the rank orders� These
form the diagonal entries of the autocorrelation matrix of ordered samples from a
certain distribution�

C�xx� � E

������
�����



�����
x���
x���
���

x�m�

�
�����
h
x��� x��� � � � x�m�

i
������
�����
� �A����

With Equation �A���� the diagonal entries are calculated by solving

Efx�r�x�r�g �
Z vmax

vmin

v�r�r��v� dv� �A����
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A�� Correlation and joint distributions of ranks

The o�	diagonal entries in the correlation matrix �A���� are de�ned as�

Efx�r�x�s�g �
Z wmax

wmin

Z w

vmin

vw r�r��s��v�w� dv dw� �A��
�

Here� r�r��s��v�w� is the joint PDF of two ordered statistics� A property of the
correlation is symmetry�

Efx�r�x�s�g � Efx�s�x�r�g� �A����

which causes the correlation matrix to be symmetrical� Another property� if the
variates originally stem from a distribution symmetric around �� with odd m is�

Efx�r�x�s�g � Efx�m�r���x�m�s���g� �A����

Combining both properties indicates that the correlation matrix is symmetrical in
both diagonals� In e�ect� roughly one fourth of the elements have to be calculated�
while the others can be copied�

The covariance of the ranks can be found from the correlations and the rank aver	
ages with�

cov�fx�r�x�s�g � Ef�x�r� �Efx�r�g��x�s� � Efx�s�g�g
� Efx�r�x�s�g � Efx�r�gEfx�s�g� �A����

Which always have the property�

cov�fx�r�x�s�g � cov�fx�s�x�r�g� �A����

If the original distribution is symmetric around its mean value and for odd m� they
also share the following property�

cov�fx�r�x�s�g � cov�fx�m�r���x�m�s���g� �A����

Combining both properties will cause the covariance matrix to be symmetrical in
both diagonals�

In order to use �A��
� and �A����� the joint PDF of two ordered statistics will have
to be de�ned�

Using deduction� we can establish an expression for the joint PDF r�r��s� of two
ranks� If the smaller rank is r and the larger rank is s� then r�� ranks are smaller
than r and m � s ranks are larger than s� Using this information� the joint PDF
can be constructed�

r�r��s��v�w� �
m%P r���v�p�v��P �w�� P �v��s�r��p�w��� � P �w��m�s

�r � ��%�s� r � ��%�m� s�%
� �A����
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Note that� as in �A����� the CDF and now also the PDF of the original variates
are needed for the expression of the joint PDF of the ordered variates �����

Because �A���� is often used if the correlation and the covariances of two ranks has
to be calculated� it is e�cient to use the following recurrence relations �again r � s
so v � w��

r�r����s��v�w� �
�r � ���P �w� � P �v��

�s� r�P �v�
� r�r��s��v�w�� �A����

r�r����s����v�w� �
�r � ����� P �w��

�m� s � ��P �v�
� r�r��s��v�w�� �A����

To be complete� we also derive the joint CDF R�r��s�� using the same reasoning as
for the development of �A���� Suppose there are two samples x�r� and x�s�� with
x�r� � x�s�� r � s� Then�

R�r��s��v�w� � Prfat least r xi � v� at least s xi � wg�

�
mX
j�s

jX
i�r

Prfexactly i xi � v� exactly j xi � wg� �A����

�
mX
j�s

jX
i�r

m%

i%�j � i�%�m� j�%
P i�v��P �w�� P �v��j�i��� P �w��m�j �

For v 	 w� the inequality x�s� � w implies x�r� � v� so that R�r��s��v�w� � R�s��w��

A�� The uniform and Gaussian distribution

In this section we use the expressions for the statistical properties of the ranks to
analyze an ordered sample from a uniform and a Gaussian distribution� First� we
will investigate the uniform distribution� because this distribution can be analyzed
analytically� We will then show that implicit expressions are not possible for the
Gaussian distribution� and therefore analyze it numerically�

Let us �rst calculate the CDFS of the ranks for a �	tuple sample drawn from a
uniform distribution� The CDF of each variate is�

P �v� � v� �� � v � ��� �A��
�

Then� for the separate ranks and using the recurrent equation �A���� the CDFs of
the ranks are�

R�
��v� � P 
�v� � v
�
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Figure A��� The CDF curves of the ranks from the uniform distribution

R����v� � v
 �

	
�
�



v���� v� � �v� � �v
�

R����v� � �v� � �v
 �
	
�
�



v��� v�� � �v � �v� � v
�

These three CDFs are plotted in Figure A��

The expression for the PDF of the ranks is found by using �A���� with p�v� � ��
for � � v � �� This results in�

r�
��v� � �

	
�
�



v���� v�
�
 � � � �v��

r����v� � �

	
�
�



v��� v� � � � �v � �v��

r����v� �

	
�
�



��� v�� � � � �� �v � �v��

The PDF curves are plotted in Figure A���

To establish the �rst moments we have used �A���� which resulted in� Evfx���g �
�
� � Evfx���g � �

� and Evfx�
�g � 

�� Note that the �rst rank moments of this

symmetrical distribution are symmetrically spaced� Efx���g�Efx���g � Efx�
�g�
Efx���g�
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Figure A��� The PDF curves of the ranks from the uniform distribution

The second moments� the diagonal entries of the correlation matrix �A���� become�

Efx���x���g �
Z �

�
v���v� � �v � �� dv � �

��
�

Efx���x���g �
Z �

�
v���v � �v�� dv � �

��
�

Efx�
�x�
�g �
Z �

�
v���v�� dv �

�

�
�

Using �A��
� enables us to establish the correlations�

Efx���x�
�g �
Z �

�

Z w

�
vw �v dv dw �

�

�
�

Efx���x�
�g �
Z �

�

Z w

�
vw ��w � v� dv dw �

�

�
�

Efx���x���g �
Z �

�

Z w

�
vw ��� � w� dv dw �

�

��
�

For the uniform distribution� the following joint PDFs for the ranks are found �we
have used �A����� �A���� and �A������

r����
��v�w� � �v�

r����
��v�w� �
�w � v�

v
� r����
��v�w� � �w � �v�

r�������v�w� �
��� w�

v
� r����
��v�w� � �� �w�

In Table A��� the results of �A���� for the �rst moments� and �A��
� for the corre	
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Table A��� First� second moments and correlations for the uniform ��� �� distri�
bution

r Efx�r�g Efx�r�x���g Efx�r�x���g Efx�r�x�
�g
� ����� ����� ����� �����
� ����� ����� ����� �����
� ����� ����� ����� �����

Table A��� Covariances for the uniform distribution

r cov�fx�r�x���g cov�fx�r�x���g cov�fx�r�x�
�g
� ������ ������ ������
� ������ ������ ������
� ������ ������ ������

lations are combined� In Table A��� the results of using �A���� for the covariances
are given�

For a uniform ������ ���� distribution� the results in Table A�� are obtained� The
covariances of the ������ ���� distribution are of course equal to those of the ��� ��
distribution�

In our �rst example� we have used the uniform distribution� This is because for
this distribution� the rank distributions and moments can be found explicitly� in
this case as algebraic equations� However� for the popular Gaussian distribution�
the rank distributions and moments cannot be stated explicitly� This is because
the CDF of the variates plays a major role in the equations for rank CDF and rank
PDF� The integral�

P �v 	 �� k�� � Qfkg � �p
��

Z �

k
e�

a�

� da� �A����

which is a variant of the error function� cannot be solved in closed form ������
Here� � is the mean value and � is the standard deviation of the distribution�

Table A��� First moments and correlations for the uniform ������ ���� distribution

r Efx�r�g Efx�r�x���g Efx�r�x���g Efx�r�x�
�g
� 	����� ����� ����� 	�����
� ����� ����� ����� �����
� ����� 	����� ����� �����
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 The uniform and Gaussian distribution ���

Table A��� First moments and correlations for the Nf�� �g distribution

r Efx�r�g Efx�r�x���g Efx�r�x���g Efx�r�x�
�g
� 	��
�� ����� ����� 	�����
� ����� ����� ����� �����
� ��
�� 	����� ����� �����

Table A��� Covariances for the Nf�� �g distribution

r cov�fx�r�x���g cov�fx�r�x���g cov�fx�r�x�
�g
� ����� ����� �����
� ����� ����� �����
� ����� ����� �����

However� the function Qfkg is described in extensive tables� by numerical methods�
Moreover� for k 	 � a quite accurate approximation for Qfkg is ������

�p
��k�

e�
k�

�

�
� � �

k�

�
� Qfkg � �p

��k�
e�

k�

� � �A����

For our purposes� where we will often work reasonably close to �� the use of this
approximation is very limited� Therefore� the integral will have to be solved by
numerical methods� The results are displayed in Table A�� for the �rst moments
and correlations and in Table A�� for the covariances of a �	tuple sample from the
standardized Gaussian distribution �Nf�� �g��
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Samenvatting

Ruis�lteren van beeldsequenties

Onder beeldsequenties verstaan we gedigitaliseerde opnamen van � dimensionale
dynamische scenes� Het komt nogal eens voor dat een beeldsequentie verruist is�
Deze ruis kan bijvoorbeeld zijn onstaan in de beeldsensor of in andere gedeeltes van
het beeldvormende systeem� Het is aan te bevelen om deze ruis te reduceren als er
sprake is van verdere verwerking van de beeldsequentie of natuurlijk ten behoeve
van de visuele waardering� De reductie van de ruis is de taak van het ruis�lter�
deze moet de ruis zoveel mogelijk onderdrukken zonder te veel vervorming van de
originele beeldinformatie� Het �ruis�lteren van beeldsequenties� is het onderwerp
van dit proefschrift�

Het beeldsequentiesignaal heeft drie co�ordinaten� Twee om de positie in het beeld	
vlak aan te duiden voor de spati�ele informatie� de beelden� E&en in de tijd om de
temporele richting te indexeren� het beeldnummer� De signalen in deze richtin	
gen� de �spati�ele� en �temporele� signalen� hebben verschillende eigenschappen�
Voor ruis�lteren is het belangrijk om deze eigenschappen te kennen� Ze hebben
betrekking op de homogeniteit en voorspelbaarheid van het signaal� De spati	
ele signalen beschrijven de beeldinformatie en zijn daarom meestal niet stationair�
waardoor ze moeilijk zijn te �lteren zonder de beeldinformatie te vervormen� Het
temporele signaal kunnen we in twee vormen tegenkomen� het kan van een niet ac	
tief gedeelte van de beeldsequentie� zoals een stilstaande achtergrond komen waar
het een homogeen karakter heeft en goed te �lteren valt� of het kan komen van
een actief gedeelte van de beeldsequentie waarin zich bewegende objecten voor	
doen� In dit laatste geval is het temporele signaal ten hoogste homogeen binnen
kleine tijdsvensters maar over het geheel niet	stationair en daardoor moeilijk te
verwerken�

De oorzaken van de niet	stationaire gedeeltes in de temporele signalen zijn be	
weging� scenewisseling� of verandering van belichtingscondities� Een voor de hand
liggende oplossing om de niet	stationaire situaties grotendeels te vermijden is om
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het temporele signaal voor beweging te compenseren� Dit komt neer op niet meer
langs de tijdas� maar langs het traject van de beweging te �lteren� Op deze manier
hebben we te maken met �bewegings	gecompenseerd� �lteren� Vanwege het meer
homogene� temporele signaal zijn de uiteindelijke resultaten beter� Meestal zijn
de schattingen van de beweging echter vrij onnauwkeurig vanwege de ruis en de
onvolledigheid van het bewegingsmodel dat bij het bewegingsschatten gehanteerd
wordt� Hierdoor� en doordat scene	 en belichtingswisselingen ook niet	stationaire
situaties veroorzaken� zullen er zich nog steeds niet	stationairiteiten voordoen in
het temporele signaal�

Om de problemen veroorzaakt door de ruis bij het bewegingsschatten enigszins te
kunnen opvangen wordt in Hoofdstuk � een ruisrobuuste bewegingsschattingsmeth	
ode beschreven� Deze methode is een gemodi�ceerde recursieve block	matcher en is
in originele vorm bekend vanwege zijn consistente resultaten en tamelijke ongevoe	
ligheid voor observatieruis� Om de ruisrobuustheid te vergroten hebben we enkele
modi�caties toegepast� Hieronder valt een nieuw schattingscriterium dat gebaseerd
is op derde orde statistieken en daardoor transparant is voor symmetrische ruis�

Omdat de signalen� zelfs in bewegingsgecompenseerde beeldsequenties� meestal
temporeel noch spati�eel stationair zijn� is het vereist om gebruik te maken van
adaptieve �ltertechnieken� Adaptieve �lters hebben de mogelijkheid om zich aan
te passen aan de globale of lokale kenmerken van het signaal� Het succes van lokaal
adapterende �ltertechnieken wordt duidelijk uit het expos&e in de hoofdstukken � en
� van dit proefschrift waar verschillende bekende �ltermethodes de revue passeren�
In een experimentele vergelijking blijkt dat alleen lokaal adapterende �lters succes
hebben in het vervormingsarm ruis�lteren van praktische beeldsequenties� Uit onze
experimenten blijkt bovendien dat voor een goed resultaat bewegingscompensatie
bij deze �lters niet altijd nodig is�

Een klassieke methode om niet	stationaire signalen te �lteren is om gebruik te
maken van trend	verwijdering en normalisatie� Na verwijderen van de trend� het
locale gemiddelde� en na normalisatie met de locale deviatie� blijft een homogeen
signaal over dat vrijwel alle ruis bevat en bovendien relatief eenvoudig te �lteren is�
In feite bevatten de trend en de normalisatie	co�e�ci�ent de niet	stationairiteiten�
Na het ruis�lteren wordt de normalisatie ongedaan gemaakt en de trend weer
toegevoegd om het uiteindelijke resultaat te verkrijgen� Deze klassieke methode is
op grote schaal toegepast in de tijdreeksverwerking maar slechts zelden bij beeld	
�lteren� In Hoofdstuk � van dit proefschrift hebben we deze techniek� de �decom	
positiemethode� genoemd� weten toe te passen op het probleem van beeldsequentie
ruis�lteren�

Zoals eerder gezegd was� komt de trend overeen met het lokale gemiddelde en
de normalisatiefactor met de lokale deviatie� Speciaal voor de decompositiemeth	
ode hebben we een schatter voor deze lokale statistieken ontwikkeld� De schatter
bepaalt het lokale gemiddelde en de lokale deviatie met behulp van in waarde
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geordende observaties binnen een spatio	temporeel venster� Een kenmerk van de
nieuwe schatter is dat hij optimaal is voor verschillende practische vormen van ruis�
Bovendien adapteert de schatter via metingen in de observatie naar de verdeling
van de observatieruis�

Een bruikbare en populaire �lterstructuur is te vinden in het LLMMSE	�lter waar	
bij de afkorting staat voor de eigenschappen van het �lter� een lineaire expressie
die lokaal optimale resultaten geeft� Parameters van het �lter zijn schattingen van
de locale statistieken� het lokale gemiddelde en de lokale variantie� Voor scherpe en
bruikbare resultaten zijn nauwkeurige schattingen van de lokale statistieken nodig�
In de meeste gepubliceerde methodes wordt als schatter een eenvoudig algoritme
gebruikt dat bij niet	stationaire situaties in het signaal sub	optimale resultaten
oplevert� In Hoofdstuk � behandelen we het gebruik van de schatter uit Hoofdstuk
�� die schat op geordende observaties� ter ondersteuning van het LLMMSE	�lter�
Bovendien bespreken we twee methodes om een homogeen gedeelte uit het spatio	
temporele schattings	venster te selecteren dat voor een goede schatting borg staat�
We demonstreren een iteratieve selectiemethode die binnen de schattingsmethode
te gebruiken valt en een e�ci�ente selectiemethode op basis van een statistische test
van de geordende observatiewaardes� De nieuwe combinatie van selectie� schatter
en LLMMSE	�lter geeft bijzonder goede �lterresultaten�

Tot dusver hebben we in dit proefschrift alleen nog maar gekeken naar onafhanke	
lijke observatieruis� Er zijn practische situaties denkbaar waar signaalafhankelijke
ruis voorkomt� Hoofdstuk � behandelt twee van deze situaties� R�ontgensequenties
en gamma gecorrigeerde beeldsequenties�

Binnen de medische wereld wordt de R�ontgendosis bij het maken van medische
beeldsequenties zo klein mogelijk gehouden� Bovendien wordt de belichtingstijd
per beeld kort gehouden om bewegingsvervorming te vermijden� Het resultaat is
dat slechts een beperkt aantal R�ontgendeeltjes de beeldinformatie moet genereren�
Hierdoor is er inherent met deze beeldvormingsmethode een vorm van ruis ge�'ntro	
duceerd die signaalafhankelijk is� Speciaal voor het schatten van de diagnostische
informatie uit de verruiste beeldsequentie ontwikkelen we in het eerste gedeelte
van Hoofdstuk � een �ltermethode� Deze methode maakt weer gebruik van geor	
dende observaties� Zij wordt ondersteund door de iteratieve selectiemethode uit
Hoofdstuk � om homogene gedeeltes uit het spatio	temporele schattingsvenster te
selecteren�

Om beeldsequenties natuurgetrouw weer te geven op een televisiescherm wordt
er gammacorrectie� een niet	lineaire bewerking� toegepast� Een nevene�ect van
deze bewerking is dat ruis� aanwezig voor de bewerking� nu signaalafhankelijk is
geworden� Om deze ruis te reduceren wordt in het tweede gedeelte van Hoofdstuk
� een �ltermethode ontwikkeld bestaande uit de selectiemethode op basis van een
statistische test� afgeleid in Hoofdstuk �� en een verzameling van schatters waaruit



��	 Samenvatting

de juiste geselecteerd wordt� Omdat de schatters constante� optimale co�e�ci�enten
hebben� is de gehele methode erg e�ci�ent�

Als conclusie van dit promotieonderzoek kan gesteld worden dat voor een bruik	
baar �lterresultaat een locaal adapterend �lter noodzakelijk is� Bij het gebruik
van sterk adapterende �lters blijkt dat het toevoegen van bewegingscompensatie
slechts tot detailverbetering leidt� Dit proefschrift introduceert het gebruik van
�order	statistic� �lters met locaal adapterende gewichten in het kader van het ru	
is�lteren van beeldsequenties� Uit een vergelijking met andere methodes blijkt dat
de geintroduceerde methodes zeer sterke kandidaten zijn� De prestaties kunnen
bovendien nog opgevoerd worden door met behulp van robuste technieken homo	
gene signaalgedeeltes te selecteren� Observatievergelijkingen met signaalafhankeli	
jke ruis kunnen eenvoudig in een vorm gebracht worden die door de voorgestelde
methodes ge�lterd kunnen worden�
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