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Summary

The “telephone” model has been, for the last one hundred thirty years, the base of

modern telecommunications with virtually no changes in its fundamental concept.

The arise of smaller and more powerful computing devices have opened new possi-

bilities. For example, to build systems able to give to the user the illusion of being

talking to the remote party as if both where in the same place. To achieve this still

many challenges have to be overcome. In this thesis, a part of the acoustical signal

processing problem is treated.

To acoustically create the illusion of presence, fast and accurate control over

the sound field in a room is required. The sound field given one or more sources is

subject to different acoustical phenomena, such as reflection and diffraction. Because

of these, to model or estimate the sound field in a room is in general a difficult task. In

particular acoustical reflection poses an important challenge. The sound field reflects

on the walls, ceiling and floor and a moment later those reflections reflect again,

and later these reflect again. This recursive process makes the number of reflections

as a function of time to increase, in general, at a geometric rate. To synthesize an

artificial sound field in real time, one has to be able to model these reflections fast

and accurately enough. In this thesis a fast algorithm to model the sound field in

box-shaped rooms is proposed.

Part one of this thesis begins with an introduction to the topic, here the different

acoustical phenomena of interest are explained, and the concept of room impulse

response (RIR) is introduced. The RIR is defined as the time-domain signal sensed

at a receiver position as generated by a point source that emits an impulse. Assuming

a linear time-invariant (LTI) model, if the point source emits not an impulse but an

arbitrary signal, the actual sound field at a given observation location can then be

modeled as a convolution of the source signal with the RIR. Moreover, since we are

assuming a linear model, the sound field generated by an arbitrary number of point

sources emitting arbitrary signals can be easily computed once the RIRs from the

locations of the sources to the observation locations are known. Efficient computation
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of the RIR is therefore of theoretical and practical interest. Consequently, this part

concludes with a summary of the most prominent algorithms to simulate the RIR.

Part two of this thesis contains the relevant papers that make up this work. The

analysis is given first for the case of fully reflective walls. It is noted that in this case

all the acoustical reflections can be modeled by a set of virtual sources following a

periodic structure over a lattice. The whole set of virtual sources is generated by the

repetitions of a small set of sources called “the mother sources”. On the other side,

the Poisson summation formula establishes the relation between periodicity and dis-

cretization under the Fourier transform. Relating these concepts, it is shown that by

carefully discretizing the spectral representation of the RIR of the mother sources in

free-field, the exact periodic structure that makes up the sound field in a room can be

obtained. This is the key idea behind the proposed method. Carefully discretizing

all domains, and making use of the fast Fourier transform (FFT), a fast multichan-

nel RIR simulation method is obtained. Unfortunately this idea only works for fully

reflective walls. By allowing the walls to have constant complex-valued reflection

coefficients (this is, to model absorption and phase shift at the walls) the sound field

of the set of virtual sources is not anymore periodic. A generalization of the Fourier

transform is then introduced. First, a generalized Poisson summation formula is de-

rived. This formula relates discretization in the generalized Fourier domain to a geo-

metrically weighted periodic summation in the reciprocal domain. Basic properties

of this transform are derived, its application to non zero-padded linear convolution is

derived, but moreover a fast implementation, called the generalized fast Fourier trans-

form (GFFT), is given. The proposed method is then extended to account for walls

with constant complex-valued reflection coefficients. It is shown that by separating

the sound field of the mother sources into its orthant-sided parts (the analogue of the

single-sided parts of a function of a scalar variable), the sound field inside a room can

be expressed as a sum of geometrically weighted sound fields generated by the peri-

odic set of virtual sources. This summation is then related to a sampling condition on

the generalized spectrum of the orthant-sided parts of the sound field of the mother

sources. Using the GFFT the method simulates the RIR given a source at a dense set

of spatial positions with very low complexity. In the experiments a comparison with

a model called the mirror image source method (MISM) is given. In one scenario, the

time the MISMwould take to compute the RIR at a dense set of positions is estimated

to be about one and a half years. The newly proposed method computes the RIR at

all positions in only forty-eight minutes. This shows the contrasting difference in

computational complexity, making the new method an important step on the road to

simulate realistic sound fields in real time.
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Samenvatting

Stel je een telecommunicatie systeem voor waarmee je het gevoel hebt dat je echt

met de andere partij in dezelfde ruimte aan het praten bent.

Dit proefschrift is een kleine stap in die richting.

Telecommunicatietechnologie nadert een cruciaal moment. Het honderddertig

jaar oude “telefoon” paradigma begint te veranderen. Het doel voor komende tech-

nologieën is om realistischere systemen te ontwikkelen. Systemen waarmee de ver-

bonden partijen het gevoel hebben dat ze samen in dezelfde ruimte zijn. Dat is zeker

een uitdaging voor meer dan één tak van wetenschap. In dit proefschrift wordt alleen

de geluidstechnische kant van het probleem besproken.

Nauwkeurige en snelle controle over het geluidsveld is het doel. Dit kan alleen

bereikt worden als het geluidsveld van de zender snel genoeg kan worden ingeschat

en realistisch worden nagebootst voor de ontvanger. Het probleem zijn de reflecties

(reverberatie en echo) in een kamer. Wiskundige modellen om een geluidsveld in een

kamer te kunnen bepalen zijn reeds sinds het begin van de twintigste eeuw bekend.

De oplossingen van dit soort modellen zijn echter of niet bekend (behalve voor de

eenvoudigste gevallen), of zeer ingewikkeld te berekenen met behulp van computers.

In dit proefschift wordt een nieuw, snel algoritme om het geluidsveld in rechthoekige

kamers te kunnen simuleren geintroduceerd.

Deel één van dit proefschrift verklaart het wiskundige concept van “room impul-

se response” (RIR), waar dit proefschrift om draait. In grote lijnen is de RIR het

geluidsveld dat ontstaat door een puntvormige geluidsbron die een puls uitzendt. De

RIR is een wiskundige afbeelding van de bron en de reverberatie in een kamer. Het

is een essentiële werkwijze want daardoor kan elk ander geluidsveld gemakkelijk

berekend worden. In hoofdstuk twee wordt, daaropvolgend, een samenvatting van

gangbare computer gebaseerde methodes om de RIR te kunnen berekenen gegeven.

Deel twee van dit proefschrift volgt een andere stijl. Hier zijn kopieën van de

gepubliceerde artikelen verbonden aan dit promotieonderzoek toegevoegd. In het
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eerste hoofdstuk wordt het hoofdconcept achter de nieuw methode uitgelegd. Het

idee is simpel. Elk geluidsreflectie in een kamer wordt als een virtuele bron gezien

die zich buiten de kamerruimte bevindt. Reflecties van reflecties maken dus een (in

principe oneindige) collectie van virtuele bronnen. In een rechthoekige kamer vormt

de collectie van bronnen een periodiek patroon. Sommige computer algoritmes pro-

beren direct de virtuele bronnen te modeleren, maar hoe meer reverberatie hoe meer

bronnen gemaakt moeten worden. Zulke algoritmen vragen om zeer omvangrijke be-

rekeningen. Aan de andere kant vertelt de Fourier theorie (de wiskundig theorie over

de relatie tussen tijd en frequentie) dat als een functie in de tijd domein een periodiek

patroon vertoont, dan wordt haar frequentie representatie door een discrete functie

gegeven. Het geluidsveld is een functie van tijd en ruimte. Het domein van deze

functie wordt dus tijdruimte genoemd. Je begint met de frequentie representatie van

het geluidsveld (de RIR) zonder kamer, vervolgens bemonster je het op een exacte

manier om een discrete functie te maken. Als je terug naar het tijdruimte domein gaat,

krijg je automatisch het periodieke patroon van de virtuele bronnen, en dus de RIR in

de kamer. Dat is het hoofdconcept. Bovendien is het via een bekend algoritme, “the

fast Fourier transform” (FFT), snel om tussen de frequentie en tijdruimte te wisselen.

De nieuwe methode maakt dus gebruik van de FFT om zeer snel het geluidsveld in

de kamer te berekenen.

Helaas werkt dit idee alleen als het geluidsveld van alle virtuele bronnen perfect

periodiek is, met andere woorden, alleen als de muren geen absorptie vertonen. In

het praktijk is dit nooit het geval. De muren absorberen altijd een deel van de ge-

luidsenergie. Om de methode te kunnen uitbreiden, wordt in hoofdstuk twee een

uitbreiding van de Fourier theorie voorgesteld. De “generalized” Fourier theorie ver-

telt dat als je een discrete functie in dit domein hebt, dan toont het in het tijdruimte

domein een periodiek patroon met een exponentiële demping aan. Verder is een snel-

le implementatie van de generalized Fourier transformatie (GFFT) ontwikkeld.

Hoofdstuk drie gaat over een diepere analyse van de generalized Fourier theorie

en maakt de eerste verbindingen voor de toepassing van de nieuw RIR simulatie

methode.

In hoofstuk vier is het concept van de snelle RIR simulatie methode gecombi-

neerd met de generalized Fourier theorie om een algemene methode te ontwikkelen.

Via de GFFT is een snelle simulatie van de RIR in rechthoekige kamers mogelijk. In

de experimenten, met een computer algoritme dat direct de virtuele bronnen probeert

te modelleren zou het anderhalf jaar kosten om het geluidsveld te berekenen. De

nieuwe computer algoritme doet deze berekening in slechts achtenveertig minuten.

Dit is een groot verschil in berekeningssnelheid. Hiermee is een belangrijke stap

gezet naar nauwkeurigere en snellere controle over het geluidsveld.
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Resumen

El paradigma telefónico, en el cual se han basado las telecomunicaciones en los

últimos ciento treinta años, está cambiando. La nueva meta tecnológica es la creación

de sistemas de telecomunicación que proporcionen al usuario la sensación de encon-

trarse en el mismo lugar que sus interlocutores, con un realismo que permita crear la

ilusión de telepresencia. El trabajo descrito en esta tesis constituye un paso impor-

tante en esta dirección, centrándose en el aspecto acústico del problema.

Para crear la ilusión de telepresencia es necesario simular el campo de sonido en

tiempo real. El principal problema al caracterizar el campo de sonido son las refle-

xiones acústicas; es decir, la reverberación que existe en cualquier espacio cerrado.

En la actualidad, los métodos para calcular la reverberación son excesivamente com-

plejos. El trabajo aquı́ descrito propone un nuevo algoritmo para simular el campo

de sonido en habitaciones rectangulares en un tiempo muy reducido.

La tesis está estructurada en dos partes. La primera presenta una introducción al

problema. En el primer capı́tulo se describen conceptos importantes, por ejemplo, el

de respuesta al impulso de la habitación, room impulse response (RIR). De manera

general, la RIR es una representación matemática de los fenómenos acústicos que

ocurren en la habitación, incluida la reverberación. Es una herramienta muy útil, ya

que el campo de sonido se modela muy fácilmente a partir de la RIR. El segundo

capı́tulo presenta un análisis de los métodos más relevantes para simular la RIR en

una habitación. Entre éstos, el algoritmo conocido comoMirror Room Image Method

(MISM) se usa como punto de comparación, ya que es un algoritmo ampliamente

estudiado y utilizado.

La segunda parte de la tesis sigue un estilo diferente. Los capı́tulos asociados

son reproducciones de las publicaciones cientı́ficas que conforman este trabajo. El

tercer capı́tulo expone la idea principal del nuevo algoritmo, que se resume a con-

tinuación. Cada una de las reflexiones acústicas que ocurren sobre las superficies

de una habitación se expresa como una copia de la fuente de sonido. El proceso

seguido es similar a la forma en la que se simula la imagen de un objeto frente a un
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espejo, posicionando una copia del objeto al otro lado del espejo. Estas copias de la

fuente original constituyen un conjunto de fuentes virtuales (reflexiones), y cada una

de estas reflexiones genera a su vez otras. Para simular todos los posibles órdenes

de reflexión se requiere un número infinito de fuentes virtuales. En una habitación

rectangular, esta colección de fuentes virtuales forma un patrón periódico. Algunos

algoritmos (por ejemplo el MISM) calculan la RIR usando un conjunto finito de

fuentes virtuales, descartando aquellas cuyo efecto sobre el campo de sonido es poco

apreciable. Sin embargo, cuanto mayor es la reverberación, mayor es el número

de fuentes virtuales que deben considerarse. Por lo tanto, la complejidad de dichos

algoritmos es alta.

La teorı́a de Fourier define que si una función en un dominio es periódica, su

representación en el dominio transformado – el dominio de la frecuencia – viene

dada por una función discreta. El campo de sonido – o de manera equivalente la

RIR – es una función en el dominio espacio-tiempo. En ausencia de reflexiones ésta

función no es periódica, pero si suponemos que las superficies de una habitación son

totalmente reflejantes, en este caso el campo de sonido es periódico. Inicialmente, el

algoritmo propuesto representa en frecuencia el campo de sonido sin reflexiones. El

siguiente paso consiste en calcular un conjunto discreto de muestras de esta función.

Esta discretización en el dominio de la frecuencia induce el patrón periódico que

forman las fuentes virtuales. De esta manera se generan, en un solo paso, todas las

reflexiones acústicas que constituyen el campo de sonido en la habitación. Esta es la

idea fundamental del nuevo algoritmo.

Desafortunadamente, el método anterior sólo funciona si el campo de sonido es

perfectamente periódico, es decir, si las superficies de la habitación son totalmente

reflejantes. Pero en realidad nunca se da este caso; en el momento en que las on-

das de sonido alcanzan las superficies de una habitación, éstas absorben parte de la

energı́a sonora. Por este motivo, en los capı́tulos cuarto y quinto se introduce una

generalización de la teorı́a de Fourier, que permite extender la idea fundamental del

algoritmo. La RIR – o el campo de sonido – se calcula siguiendo el mismo procedi-

miento descrito en el tercer capı́tulo, pero en este caso, se usa la teorı́a generalizada

de Fourier para calcular las reflexiones acústicas en una habitación con superficies

absorbentes. Para avalar la rapidez del nuevo método, uno de los resultados finales

de este capı́tulo compara el algoritmo MISM con el algoritmo propuesto. En el esce-

nario analizado, se estima que el MISM tardarı́a más de un año y medio en simular el

campo de sonido, mientras que el nuevo algoritmo lo calcula en solo cuarenta y ocho

minutos, demostrandose ası́ la impresionante reducción de complejidad. El trabajo

en esta tesis constituye un paso importante en la búsqueda cientı́fica por simular el

campo de sonido en tiempo real y proporcionar la ilusión de telepresencia.
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Preamble

1.1 Motivation

The invention of the telephone more than 130 years ago marked a major milestone

in the history of human communication. After all these years, it is still changing

the way people communicate and interact with each other. Telephonic technology

has improved to such extent that today digital solutions not only provide instant and

reliable connections, but also remote access from virtually any place on earth. The

telephonic paradigm, however, has not changed much. Communication is still based

on a central device that is either a static base station, or has to be carried or worn.

Therefore it provides a different, unnatural communication experience compared to

on-site live interaction [1].

Human technologies are close to achieve the next milestone in communication

experience, closing the (audio-visual) gap between on-site interaction and telecom-

munication. These next-generation technologies will be capable of giving the illusion

of being at a remote place with great fidelity. Users will be able to roam freely, hav-

ing the experience of talking to the other peers in a normal conversation, without the

need to carry or wear any “intrusive” devices [1–3].

In order to create the illusion of presence and the ability to roam freely through

the place, accurate acquisition and control of the sound fields is necessary. Several

digital signal processing (DSP) technologies have appeared [4–7] that aim to create

and record 3-D acoustic scenes using sets of microphones/loudspeakers (input/output

channels). These can be installed, for example, on the walls, floor and ceiling in order

to be non-intrusive to the user. However, to achieve a realistic experience in the whole

space, large amounts of microphones/loudspeakers are needed [8]. To construct such

sound field rendering systems is becoming a possibility thanks to current research

in wireless sensor network (WSN) technologies [9], which focus on the efficient

3



1. Preamble

deployment of large amounts of devices. The next step is then to enable real-time,

true-to-life communication on those systems. This is fundamentally more difficult

that the creation or recording of immersive sound fields, since not only joint input-

output sound field control is necessary, but also other acoustic problems arise.

As an example, imagine a room where many, possibly thousands, of small loud-

speakers and microphones have been installed on the walls, floor and ceiling. These

devices have been smartly hidden, so the system is fully transparent to the users. In

order to achieve a natural communication experience, the sound fields of the far-end

party must be reproduced in the room and, at the same time, the sound fields of the

users of the system have to be recorded. If both the loudspeakers and the microphones

are operating at the same time, the far-end sound field would be fed back to each of

the microphones, resulting in a very disturbing echo at the far-end party in the best

case and, up to instability of the whole system in the worst case. The signals from

each loudspeaker to each microphone have then to be cancelled. If thousands of de-

vices are being used, this easily gives rise to millions of possible signal combinations

that have to be cancelled. However, the amount of signals is actually not the difficult

part. The problem is particularly challenging because of the reverberation that is in-

troduced by the acoustic properties of the room; this is, the sound field created inside

the room will be modified by all the possible sound reflections induced by the walls,

floor, ceiling and objects present in the room. Moreover, any small changes in the po-

sitions of the objects, the temperature and density of the air and many other phenom-

ena cause, in general, complex changes to the sound field. The modified sound field

is what is captured by the microphones. This particular problem is known as acoustic

echo. Acoustic echo cancellation (AEC) is therefore addressed using data-driven ap-

proaches (in the form of adaptive filters), since model-based methods are unsuitable

to characterize and track the underlying acoustical dynamics to the required degree

of precision. For the case of one microphone and one loudspeaker the acoustic echo

problem has been solved satisfactorily [10, 11], but in the multichannel case, starting

with two microphones and two loudspeakers, the problem becomes more challeng-

ing. Here the cross-correlations of the loudspeaker signals prevent the identifiability

of the unique reverberation paths from the loudspeakers to the microphones [12], and

the adaptive filters converge to solutions that are dependent on the characteristics of

the loudspeakers signals. Therefore, any changes in the acoustics of the transmis-

sion room result in discontinuous (often quite audible) errors, and the filters have

to reconverge [11]. Research addressing the multiple-input multiple-output (MIMO)

AEC problem has, consequently, dealt with the decorrelation of the loudspeaker sig-

nals. The addition of non-linear distortions [12] and uncorrelated noise [13], were

early approaches. These methods produce, however, either objectionable perceptual
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distortion or increase complexity and introduce delay, which makes them unattractive

options. A more recent frequency-selective phase modulation approach, used in con-

junction with a perceptual model, keeps the distortion below the human perceptual

threshold and performs with low complexity in a 5-channel surround sound scenario
[14]. However, systems that aim to render 3-D sound fields using large amounts of

loudspeakers, are very sensitive to phase modulations [15]. State-of-the-art research

on MIMO AEC has therefore started to investigate model-motivated, data-driven ap-

proaches. In this category, one prominent method employs a spatio-temporal decou-

pling of the degrees of freedom in the AEC system using orthogonal basis functions.

The selected basis functions are solutions to the wave equation and the approach

is therefore named wave-domain adaptive filtering (WDAF) [16–18]. This scheme

is scalable, and allows for a trade-off between low complexity and high accuracy.

Another approach exploits the capacity of the 3-D sound field rendering system to

synthesize quiet zones in the enclosure (normally up to a certain low-frequency). By

placing the microphones of the system inside these quiet zones, and performing phase

modulation on frequencies above the spatial resolution of the system, scalable and

accurate MIMO AEC is achieved [15]. The development of fast and scalable models

to characterize the acoustical dynamics in a room, can therefore result in improved

schemes to solve problems that are traditionally addressed using purely data-driven

approaches such as AEC.

Another interesting application where the sound field in a room has to be modeled

is immersive virtual gaming. So here we are again in our special room equipped with

a large amount of loudspeakers that can create immersive sound fields. The users

of the room start playing an immersive game where an audio-visual experience is

given to them such that they have the feeling of really being in the game field. The

game will take the users through different scenarios. For example, at one moment

the users could be at an open location such as a park while at a next moment they

could be inside a room. In order to create a realistic experience, the system has to

reproduce different acoustic scenarios in real time with transparent fidelity in a large

zone (ideally the whole room), since the users should be able to roam freely through

the room. Therefore, not only real-time simulation of the full sound field in a room

is needed, but also acoustic room compensation is necessary to equalize the acoustic

characteristics of the room in order to render the desired (virtual) sound field [19].

The main motivation of this thesis is to advance the state-of-the art of current

computer based acoustic modeling methods (for small-rooms acoustics), paving the

way towards the creation of next-generation communication technologies, where

large amounts of input-output acoustic channel configurations are common, and fast,

highly scalable algorithms are a must.
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1. Preamble

1.2 The room impulse response

Our perception of sound is continuous. Continuous sound fields, however, cannot

be modeled within a digital computing framework. Instead we approximate them

using discrete samples, both in time and space. The more samples we use, the more

accurate the approximation. Sampling the sound fields in time results in the well-

known approach used in single-channel digital signal processing (DSP) [10, 20, 21].

Sampling in space is as simple as to measure the sound field at discrete locations

in space. Positioning a microphone at a certain location is equivalent to taking one

spatial sample. Therefore, every time a reference to the sound field in a room is

made it actually means the (discrete-time) signals measured or reproduced at a set of

receiving or source locations.

Given a source of sound and an observation point in a room, a mathematical

description of all possible sound paths from the source to the receiver, which includes

the reflections due to the walls, floor, ceiling and other obstacles, is given by the room

impulse response (RIR) [11, 12, 22, 23]. This is, if the source is modeled as a point in

space and emits an impulse (a mathematical idealization of an explosive, very short

in time and loud sound), then what is measured at the receiver (e.g. a microphone) is

the RIR. This idealized point source is referred to as a monopole.

The acoustical phenomena (of interest in room acoustics) that are implicitly car-

ried by the RIR can be classified into the following categories, illustrated in Figs. 1.1

and 1.2 [22, 24, 25]:

• Specular reflection. Here the sound is reflected in a specular manner, follow-

ing a simple geometric law [22]. Normally only part of the sound energy is

reflected.

• Diffuse reflection. The sound is reflected in a scattered, not necessarily ho-

mogeneous, manner. Perfectly diffuse reflection occurs when the directional

distribution of the scattered energy is independent of the direction of incident

sound. Fully diffuse reflection in acoustics is described by Lambert’s cosine

law [22, 26].

• Diffraction. It is caused by the scattering effects that occur in some situations

when sound waves encounter an obstacle [23]. The phenomenon is described

as the apparent “bending” of the sound field around small obstacles, the spread-

ing of the sound field around edges of large objects, or when passing through

small openings [25].
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Figure 1.1: Specular and diffuse reflection.

• Absorption, transmission and refraction. When a sound wave encounters a

boundary, part of the energy is reflected while the remainder energy is trans-

mitted to the other side of the boundary [23, 24]. When the “outer” side of the

boundary is not part of the domain of interest the energy that is transmitted can

be seen as lost and is characterized by an absoption factor. Transmission from

a fluid (such as air) to a solid (such as a wall) involves not only longitudinal

waves (as in air), but also shear (transverse) waves [24]. However, only longi-

tudinal waves are transmitted from a solid to a fluid since shear waves cannot

exist in fluids [24]. The characterization of a transmitted sound wave through a

finite body (fluid-solid-fluid transmission) can thus be given in terms of absorp-

tion and refraction (i.e. changing of the angle of incidence at the boundaries)

[23, 24]. In practice, air also absorbs part of the sound energy.

Consider a monopole source that emmits an impulse. The signal observed at a loca-

tion in space is, by definition, an RIR. The generated sound field expands spherically

in time and is modified by the different acoustic phenomena present along a given

path until it reaches the receiver. The RIR is thus a signal made up of all possible

(modified) copies of the impulse that arrive at the receiver after traveling their cor-

responding paths. In Fig. 1.3 a simple reflection example with two paths is given.

One of the paths shown corresponds to the direct sound path (solid line), which is

the shortest possible path (if it is not occluded by any objects) and therefore the first

copy of the impulse to arrive at the receiver. The contribution to the RIR of this path

is indicated in Fig. 1.4. Another path is depicted (dashed line) which corresponds

to a specular reflection from two walls (hence a second order reflection). The con-
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Figure 1.2: Other phenomena of sound dynamics.

tribution of this path is part of what is called the early reflections. In Fig. 1.4 an

example of a recorded RIR is given. As it is seen the RIR is divided into three parts,

representing the contributions of the arriving pulses at different times. These com-

ponents represent different aspects of the acoustic perception from the point of view

of a listener and therefore, the distinction is important in many applications. The

exact number of RIR subdivisions and the time frames associated with them can vary

according to the application. Some authors agree that exact time boundaries are not

defendable [4, 27] and that overlap between zones must be allowed. The subdivi-

sion model given in Fig. 1.4 is described as follows. Perceptually the direct path is

the main carrier of the information content of the source. Early reflections arriving

normally between 0 and 20 ms after the direct path enhance the direct sound by the

human hearing mechanism [7, 28], together with the direct path they contribute to

the intelligibility and definition of speech and the clarity of music (see e.g. [29, 30]

for the technical descriptions of clarity and definition). Early reflections arriving in

a time window between 20 ms and 50 ms after the direct path can contribute to good

perceptual music conditions, for example, the spaciousness, loudness and clarity in

a concert hall. Reflections arriving later than 100 ms after the direct path create a

diffuse reverberant effect, the so-called late reverberation zone. In specialized en-

closures, such as concert halls, these contributions can determine qualifications such

as the warmth of music, but in non-acoustically specialized enclosures, such as a

swimming hall, this late reverberation field can be detrimental for speech intelligibil-

ity. The acoustic events in a room, under some assumptions, can be mathematically

idealized to be linear and time-invariant (LTI) [22, 23, 31]. Under this mathemati-
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Figure 1.3: A reflection example with two paths.

cal model if the source emits an arbitrary sound, the sound as it would be measured

at the receiver can be calculated directly by convolution of the RIR and the source

signal. In digital signal processing the convolution is an operation that can be per-

formed efficiently via the fast Fourier transform (FFT) [20, 21, 32–34], and thus the

RIR constitutes a powerful signal processing model that characterizes the acoustic

properties of a room.

Since it is generated by many different acoustic phenomena the RIR depends on

many factors, such as the geometry of the room, the acoustic characteristics of the

walls, the positions of the source and the receiver, objects present in the room and

even the temperature and humidity levels of the air [22, 23]. An accurate estimation

(modeling) of the RIR even for only one pair of source and receiver positions is in

general a computationally expensive task [22]. Today the computational complexity

of the fastest algorithms is still an issue (see Chapter. 2), especially if the goal is an

implementation in next-generation acoustic technologies where real-time modeling

of massive amounts of acoustic channels is needed.

This work follows an approach used in acoustical physics [23, 24, 35], and more

recently also in signal processing [31, 36]. Instead of looking at the RIR as a partic-

ular function per source location and receiver location, the RIR is seen as a global

space-time function. This multidimensional function characterizes the physics of

sound propagation at any point inside the room, quantifying the complexity and rich-

ness of a room’s sound field. Mathematically this spatio-temporal RIR model is

known as the Green’s function [7, 22, 23] (the fundamental solution to the wave

equation [37]). This approach leads to a theoretical framework based on fast multidi-

mensional Fourier techniques, to simultaneously model multichannel RIRs (i.e. the

RIR at many spatial locaions) with low computational complexity.
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Figure 1.4: Recorded room impulse response (RIR).

The details of the framework proposed in this thesis are given in Part II. Before,

a summary of contributions is given next, and a general overview of current RIR

simulation approaches is given in the next chapter.

1.3 Contributions

The main contribution of this thesis is the introduction of an efficient computer al-

gorithm to simulate the sound field in a box-shaped (empty) room. To have a better

appreciation of this contribution relative to the algorithms proposed in the literature,

a general overview of prominent RIR simulation approaches is given in Chapter 2.

At the end of this chapter a short description of the newly proposed algorithm, called

the generalized Fourier domain (GFD) method, is given together with a discussion on

the approach (the technical analysis is found in Part II). The overview given in Chap-

ter 2 also serves as an introduction to the topic, and to highlight the main challenges

involved in simulating the RIR on a computer. The overview includes different meth-

ods subdivided into two major frameworks: wave theory based methods, Sec. 2.2,

and geometrical acoustics based methods, Sec. 2.3, both cornerstones in the develop-

ment of RIR simulation algorithms. Wave theory represents a formal mathematical

description of the evolution of the sound field in a room and geometrical acoustics
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can be described as a (simpler) subset of wave theory.

Part II of this thesis presents the technical details of the newly proposed GFD

method. Efficient simulation of the sound field in a box-shaped (empty) room is

addressed using an innovative idea. The key observation is that the sound field in a

room with perfectly reflective walls can be modeled using a periodic spatial structure.

This is then mathematically related to a sampling condition in the Fourier domain. By

carefully making all relevant quantities discrete, a computer algorithm to model the

sound field is proposed. The FFT us used to compute the core components of the

algorithm. This model has, however, no practical application since sound energy

absorption at the walls cannot be simulated in this way. Consequently, a generalized

Fourier domain is proposed. It is shown how the sound field in a roomwith walls with

complex-valued reflection coefficients can be related to a sampling condition in this

domain. Further, a fast implementation of the generalized discrete Fourier transform

(the GFFT) is given. A low-complexity multichannel RIR simulation algorithm is

then obtained. The newly proposed method is compared against one well stablished,

important algorithm called the mirror image source method (MISM) (see Sec. 2.3.1).

These contributions are given in Part II, where each chapter corresponds to a journal

article in the list of publications in Sec. 1.4. The general flow of ideas is as follows:

1. Chapter 3 proposes a low-complexity multichannel RIR simulation algorithm.

Here, the fundamental idea behind the method is introduced in the context of

box-shaped rooms with perfectly reflective walls using standard Fourier theory.

The material presented in this chapter has been published in [i].

2. Chapter 4 introduces a generalized Poisson summation formula. This formula

relates the samples of a function in a generalized Fourier domain to a geomet-

rically weighted periodic summation of a function in the reciprocal domain.

A fast generalized discrete Fourier transform algorithm is proposed, and it is

shown how this theory can be used to perform fast linear convolutions in the

generalized Fourier domain without the need of zero-padding. The material

presented in this chapter has been published in [ii].

3. Chapter 5 presents a more detailed analysis of the generalized discrete Fourier

transform, its relationship with the z-transform and analyticity. Important prop-

erties of the GFT are derived and the first connections with its application to

multichannel RIR simulation are made. The material presented in this chapter

has been published in [iv].
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4. Chapter 6 presents a low-complexity multichannel RIR simulation algorithm

in box-shaped rooms with absorptive walls. The key idea behind the method

in Chapter 3 is extended to include a model of absorptive walls using the main

properties of the generalized Fourier transform. Comparisons with the MISM

are given. The efficiency of the method is stressed. The material presented in

this chapter has been submitted for publication in [v].

1.4 List of Publications

[i] J. Martinez and R. Heusdens. On low-complexity simulation of multichannel

room impulse responses, IEEE Signal Processing Letters, vol. 17, no. 7, pp. 667

-670, 2010.

[ii] J. Martinez, R. Heusdens and R.C. Hendriks. A generalized Poisson summation

formula and its application to fast linear convolution, IEEE Signal Processing

Letters, vol. 18, no. 9, pp. 501-504, September 2011.

[iii] J. Martinez, R. Heusdens. and R.C. Hendriks. A spatio-temporal generalized

Fourier domain framework to acoustical modeling in enclosed spaces, in: Proc.

ICASSP 2012, pp. 529 - 532, March 2012.

[iv] J. Martinez, R. Heusdens and R.C. Hendriks. A generalized Fourier domain:

signal processing framework and applications, Elsevier Signal Processing, vol.

93, no. 5, pp. 1259 - 1267, May 2013.

[v] J. Martinez, R. Heusdens. Fast modeling of multichannel room impulse re-

sponses, Submitted to IEEE Transactions on Signal Processing, July 2011 (Last

iteration August 2013).
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2
Computer simulation of room impulse

responses

2.1 Preliminaries

For many people, daily life activity occurs mostly indoors. Living rooms, offices,

restaurants, concert halls, factories, the cabin of a car, the passenger concourse of a

train or a plane, to name just a few examples. These spaces have different acous-

tic properties. They could be quiet, noisy, good for having a conversation, very

pleaseant for listening to music, or terrible to convey any acoustic activity. These

properties, inherent to the enclosure, have been subject to scientific interest for many

years [22, 38–41], for example, in the design of concert halls to provide a pleasant

acoustic experience. Depending on the specific application one would not necessar-

ily be interested in an accurate physical model of the RIR, but only in its subjective

properties. In the literature one can find several measures and techniques to charac-

terize and quantify the (psychoacoustic) listening conditions in a room [22, 42, 43].

In order to keep it focused, this thesis does not consider subjective qualities; the work

is restricted to mathematically characterize and efficiently model the spatio-temporal

RIR.

Since the introduction of the digital computer, acoustical design of halls and other

enclosures has been changing from expensive physical models, either in natural or re-

duced scale, to the cheaper and more efficient method of computer simulation. Some

authors credit the pioneering use of digital computers for the design of room acous-

tics to Manfred Schroeder and Heinrich Kuttruff [30, 40, 44], although the first pub-

lished computer algorithm for calculating the RIR in three-dimensional rooms is due

to Asbjørn Krokstad et al. [45] in 1968. This “early days” computer algorithm is

based on a theoretical framework known as geometrical acoustics. It is derived from
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2. Computer simulation of room impulse responses

the analogous and much older theory of geometrical optics [22] which can be tracked

back to the times of Newton and Fermat [46].

Twentieth century acoustic room theory saw the use of rigorous physics in the de-

veloping of accurate frameworks to model RIRs based on the wave nature of sound

dynamics [22–24, 35]. Although of important theoretical value, wave theory so-

lutions have been of relatively little use in digital room acoustic modeling. Wave

theory can be used to model all of the acoustical phenomena mentioned in Sec. 1.2

that are relevant to room acoustics, but even today this degree of precision comes at

the expense of highly complex models, both analytically and numerically. Geometri-

cal acoustics on the other hand represents a simplified physical model, which allows

faster but less accurate algorithms to be derived.

Although geometrical acoustics can be described by a simplified subset of wave

theory [23], these two descriptions of sound dynamics are separately cornerstone

in modern room acoustics. In trying to close the gap between accuracy and speed,

hybrid methods have also appeared that combine key elements of both descriptions.

These are often combined with stochastic models to achieve faster, more flexible and

more accurate room acoustics simulation algorithms. In the following sections these

frameworks are described. A graphical summary of the algorithms covered is given

in Fig. 2.1.
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2. Computer simulation of room impulse responses

2.2 Wave-theory based methods

The problem of computing the RIR is addressed in wave-based methods using math-

ematical models that describe the dynamics of wave propagation and wave reflection.

In this section an introduction to these mathematical models is given, followed by a

review of some prominent wave-based RIR simulation methods.

2.2.1 Introduction

The wave equation

A formal description, of the evolution of the sound field in a room is given by the

wave theory of room acoustics [7, 22, 23]. Using this theory, the problem can be

tackled by solving the acoustic wave equation together with some boundary condi-

tions that describe the acoustical properties of the walls and objects in a room, and a

driving function that represents the form and nature of the sound sources.

The sound field, as we perceive it, is given by the instantaneous variation of

pressure that occurs in air. Let these small variations of pressure be given by a scalar

function of space and time p(x, t), where x ∈ R
3 is the location in space, and t ∈ R

is time. This function cannot be arbitrary, since any sound field must obey the laws

of physics (conservation of momentum, continuity, etc [7, 22–24]). The acoustic

wave equation together with the boundary conditions and the driving function, also

referred to as the acoustic boundary value problem, characterizes these restrictions.

The solution to the acoustic boundary value problem gives the exact value of p(x, t),
this is, it tells us what the sound field is in the zone where the problem is defined.

Without boundary conditions (e.g. in free-field), the wave equation is given by,

∇2p(x, t)− 1

c2
∂2p(x, t)

∂t2
= s(x, t), (2.1)

where s(x, t) is a scalar function that represents a distribution (continuous or discrete)
of sound sources, c represents the speed of sound propagation. The Laplacian, de-

noted by∇2, is a second-order partial differential operator acting solely on the space

variable; its form is dependent of the coordinate system. In Cartesian coordinates it

is written as [22–24, 37, 47],

∇2 =

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

.

In plain words, the wave equation says that for a function p(x, t) to be a valid sound

field, the difference in the rate of variation of sound pressure in space and the rate of
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Wave-theory based methods

variation in time (proportional to the speed of sound) must be given by the distribu-

tion of sources.

Of equal importance is the homogeneous wave equation,

∇2p(x, t)− 1

c2
∂2p(x, t)

∂t2
= 0. (2.2)

First, it is clear that valid sound fields in zones “free of sources” (or equivalently

where s(x, t)=0) must fulfill this equation. Secondly, note that we can add any lin-

ear combination of solutions of (2.2) into (2.1) without altering the inhomogeneous

equation (2.1). Moreover, sources can also be defined purely in terms of boundary

conditions, so the acoustic boundary value problem can be expressed in terms of

(2.2), [23].

When a sound field is enclosed in a room with objects in it, all relevant acous-

tic phenomena that can occur (see Sec. 1.2) can be expressed mathematically. Of

all these effects, reflection is very important. Let us, therefore, analyze the theory

underlying sound reflection phenomena inside a room.

Wave reflection and wall reflection coefficient

Any sound field can be mathematically modeled as a superposition of basis waves,

e.g. plane waves [23, 24, 35]. To study and characterize the reflective properties of

a wall, we can start our discussion with the analysis of an idealized case involving a

single harmonic plane wave, – a wave with planar spatial geometry and with a purely

sinusoidal spatio-temporal dependency,

ppw(x, t) = Aej(kT x+ω0t), for k = [kx, ky, kz]
T ∈ R

3, with ‖k‖ =
|ω0|
c
, (2.3)

where the superscript T denotes vector or matrix transposition, A is an arbitrary

complex-valued amplitude and ω0 is a given temporal frequency. The wave vector

is given by k, where its Cartesian components kx, ky and kz are known as the trace

wave numbers, and its magnitude k= ‖k‖= |ω0|/c is called the wave number [35].

The wave number represents the number of spatial cycles (wavelengths) per 2π units

of distance and, therefore, it can be seen as a measure of spatial frequency. Wave

movement is, in this case, monochromatic in time (i.e. it represents a single temporal

frequency ω0), the phase function of this wave, say Φ(x, t), is therefore given by,

Φ(x, t) = k
T
x + ω0t = kxx+ kyy + kzz + ω0t.
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z
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x
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Figure 2.2: A plane wave traveling backwards in the x direction strikes a wall at

oblique incidence. The dip and azimuth angles are given by ϑ and ϕ respectively.

The outward wall normal is denoted η.

Looking at regions in space of constant phase at a given time and setting, without

loss of generality, t=0 and Φ(x, t)=0, we obtain,

kxx+ kyy + kzz = 0,

which is clearly the equation of a plane. The origin 0 is included in the plane and k

is perpendicular to any point x satisfying the equation, i.e. kT (x− 0)=0, where the
direction of propagation is perpendicular to the orientation of the plane and therefore,

given by the direction of the wave vector k. However, for ω0 > 0 the wave would

propagate backwards in space as time passes since k
T
x = −ω0t for Φ(x, t) = 0;

for ω = 0 the wave does not change in time. Note that if a negative time-domain

harmonic dependency is selected in the definition of the plane wave, i.e. ppw(x, t)=

Aej(kT x−ω0t), then the wave would be traveling forwards in space as time passes.

For several authors this is the preferred behavior (e.g. [35, 48–50]), but it has a minor

implication in the selection of a Fourier basis when the sound field is expanded in

terms of plane waves via the Fourier transform [24, 35].

Let a wall of infinite extent be positioned on the y, z plane at x= 0, so that its

outward normal, say η, is pointing in the negative x direction. Consider a plane wave

arriving at the wall with dip ϑ and azimuth ϕ angles as depicted in Fig. 2.2 The trace
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wave numbers can be expressed in spherical coordinates as,

kx = k cos(ϑ) cos(ϕ),

ky = k cos(ϑ) sin(ϕ),

kz = k sin(ϑ),

with ϑ, ϕ ∈ [−π/2, π/2], since the propagation direction is towards the wall. Note

that when ϑ= |π/2| or ϕ= |π/2|, the wave travels perpendicular to the direction of

the wall normal. Part of the energy is reflected in the form of another plane wave

originating from the wall. The original and the reflected waves interfere with each

other and form (at least partially) a standing wave.

The change in amplitude and phase taking place during a reflection is character-

ized by the complex-valued wall reflection coefficient or wall reflection factor,

̺ = |̺|ej∠̺, (2.4)

where ∠̺ quantifies the phase change and |̺| the amplitude change. This quantity is

a function of the wall surface, the arriving direction with respect to the wall normal,

and the temporal frequency of the plane wave (and therefore, it is function of k).

The acoustical properties of the wall are completely characterized if the reflection

coefficient is known for all points on its surface, for all incoming directions and for

all frequencies (i.e. for all plane waves). In some (rather rare) cases, a wall can

have reflective properties that are independent of the direction of arrival of the wave

[22, 24], in such cases the wall is said to be locally reactive.

Another quantity of importance is the wall impedance, Z, which describes the

opposition the wall presents to the force (in the form of the sound pressure at its

surface) that makes it vibrate [22],

Z =
ppw(x, t)

vn(x, t)
, for x ∈ S, (2.5)

where S is the set of space points comprising the wall surface and vn(x, t) is the

component of particle velocity normal to the wall. This quantity is a complex-valued

function of the angle of incidence and the temporal frequency of the plane wave.

The wall impedance can be derived for a given reflection factor and a direction of

arrival. Without loss of generality and for simplicity, we can set ω0≥0 and take the

wave normal (of the incident wave) to be in the x, y plane, so that kz =0 in (2.3) and

ϑ=0. Referring again to Fig. 2.2, the incident wave arrives from the direction given

by ϕ,

pin(x, t) = Aej(kT x+ω0t) = Aej(kxx+kyy+ω0t) = Aej(xk cos(ϕ)+yk sin(ϕ)+ω0t),
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2. Computer simulation of room impulse responses

since by assumption kz = 0, so that kx = k cos(ϕ) and ky = k sin(ϕ). Conservation
of momentum (mass-velocity) is derived using Newton’s second law [23, 24], and

characterized by Euler’s equation,

−∇p(x, t) = ρ0
∂v(x, t)

∂t
, (2.6)

where

∇=

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

,

is the gradient operator in Cartesian coordinates, ρ0 is the medium (in our context

air) density and v(x, t) is the particle velocity vector function. This equation allows

us to obtain the component of particle velocity normal to the wall vxin
(x, t) (since

the normal points in the x-direction), for the case of our plane wave pin(x, t),

∂vxin
(x, t)

∂t
= − 1

ρ0

∂pin(x, t)

∂x
,

jω0vxin
(x, t) = − 1

ρ0

∂pin(x, t)

∂x
,

vxin
(x, t) = − 1

jρ0ω0

∂pin(x, t)

∂x
,

vxin
(x, t) = − A

ρ0c
cos(ϕ)ej(xk cos(ϕ)+yk sin(ϕ)+ω0t),

since ω0 ≥ 0 and consequently k/ω0 = 1/c. When an incoming wave strikes the

wall at x = 0 it is reflected, the direction of propagation in the x-coordinate is re-

versed and the sound pressure and particle velocity are multiplied by the correspond-

ing reflection factor ̺. Moreover the particle velocity gets multiplied by −1 since

∂pin(x, t)/∂x has opposite sign for the reflected wave,

prf(x, t) = ̺Aej(−xk cos(ϕ)+yk sin(ϕ)+ω0t),

vxrf
(x, t) =

̺A

ρ0c
cos(ϕ)ej(−xk cos(ϕ)+yk sin(ϕ)+ω0t).

At the wall surface, both the incoming and the reflected waves are superimposed.

Setting x=0, and using pin+prf and vxin
+vxrf

in (2.5), we obtain the wall impedance

for this direction of arrival (for ϑ=0 and a given ϕ) and frequency ω0,

Z =
ρ0c

cos(ϕ)

̺+ 1

̺− 1
, (2.7)
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and from this equation,

̺ =
Z cos(ϕ) + ρ0c

Z cos(ϕ)− ρ0c
. (2.8)

The wall impedance is therefore useful for the derivation of the reflection coefficient

and, as will be seen next, for evaluating the boundary conditions for a given enclo-

sure.

Until now the analysis to characterize the reflective properties of a wall has been

only for a special (idealized) kind of sound field, namely plane waves. As mentioned

earlier, any sound field can be modeled as a superposition of basis waves (e.g. plane

waves). We analyze next how a sound field can be decomposed into these basis

waves.

Helmholtz equation, boundary conditions and plane wave decomposition

The evolution of the sound field in a room is determined by solving the wave equation

together with some boundary conditions. These conditions mathematically define the

sound field at the position of acoustical obstructions. In a room the walls, floor, and

ceiling are arguably the most important boundary conditions. Since the boundary

conditions are normally functions of temporal frequency, it is customary to use the

time-independent form of the wave equation (2.2) obtained by applying the Fourier

transform over the time variable,

0 = Ft

{

∇2p(x, t)− 1

c2
∂2p(x, t)

∂t2

}

= ∇2P (x, ω)− 1

c2
(iω)2P (x, ω)

= ∇2P (x, ω) + k2P (x, ω), (2.9)

since k2 =(ω/c)2, where Ft {·} is the Fourier transform operator over the specified

variable, and P denotes the Fourier transform of p. The resulting equation is known

as Helmholtz equation. To work with the Helmholtz equation (2.9) instead of with

the wave equation (2.2) is preferred in many cases, since the time-domain derivative

is not present in the former.

It has been shown (e.g. in [23]) that solutions to (2.9) take the form,

P (x, ω) = C1(ω)ej(kT x) + C2(ω)e−j(kT x), (2.10)

for arbitrary constants C1 and C2, if and only if ‖k‖ = k = |ω|/c. The time-

independent part of a plane wave (see (2.3)), is therefore a solution to the Helmholtz
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2. Computer simulation of room impulse responses

equation. To see this consider the temporal Fourier transform of a plane wave at a

single frequency ω0,

Ppw(x, ω) = Aω0
Ft

{

ej(kT x+ω0t)
}

= Bω0
δ(ω − ω0)e

j(kT x), (2.11)

where δ(·) is the Dirac’s delta generalized function and Bω0
is a different coefficient

than Aω0
to account for any possible normalization factors of the Fourier transform.

Make C1(ω)=Bω0
δ(ω − ω0) and C2 =0 in (2.10), then (2.11) is a solution to (2.9).

Let us now make the connection with the reflection coefficient. If the wall is not

locally reactive, the reflection coefficient ̺ (and thus also the impedance Z) is de-
pendent on the arriving direction of the sound field. Fortunately, we can decompose

an incoming sound field at the wall surface in terms of plane waves via the Fourier

transform [24, 35]. To see this let us go back to our plane wave example. The sound

field pressure on a y, z plane at x=x0≤0 is given by,

pin(x, t) |x=x0
= pin(x0, y, z, t).

Here we assume that all sources are confined in the half space at x>0. The Fourier
synthesis of this function on the three remaining variables is,

pin(x0, y, z, t) =
1

8π3

∫

R3

P̆in(x0, ky, kz, ω)ej(kyy+kzz+ωt)dkydkzdω, (2.12)

where the complex-valued coefficient function P̆in(x0, ky, kz, ω), is given by the for-
ward Fourier transform,

P̆in(x0, ky, kz, ω) =

∫

R3

pin(x0, y, z, t)e
−j(kyy+kzz+ωt)dydzdt. (2.13)

Note that the complex exponential ej(kyy+kzz+ωt) has the form of a plane wave (as

in (2.3)) measured in the y, z plane at x=0. Let us then propose

P̆in(x0, ky, kz, ω)= P̆in(ky, kz, ω)ejkxx0 , (2.14)

where P̆in(ky, kz, ω), P̆in(0, ky, kz, ω). The Fourier synthesis (2.12) now looks like

a synthesis in terms of plane waves. Recall that we are assuming pin(x0, y, z, t) to
be a valid sound field in a zone free of sources. Therefore each of the weighted

waves P̆in(ky, kz, ω)ej(kxx0+kyy+kzz) must fulfill the homogeneous Helmholtz equa-

tion (2.9).

For this to be true, the relation k = ‖k‖ = |ω|/c must hold, which means that

the trace wave numbers kx, ky and kz are not independent of each other. We can
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choose a maximum of two independent wave numbers. Since kx does not enter into

the Fourier synthesis, it is the dependent variable. The following condition must then

hold,

kx = ±
√

(ω

c

)2
− (k2

y + k2
z).

The positive root is chosen since we want to decompose the sound field in terms of

plane waves traveling into the negative x direction. The other trace wave numbers ky

and kz take values from the entire real axis. The implication of this is thus,

pin(x0, y, z,t) =
1

8π3
×















∫

R3

P̆in(ky, kz, ω)ej(kxx0+kyy+kzz+ωt)dkydkzdω, k2
y + k2

z ≤
(

ω
c

)2
,

∫

R3

P̆in(ky, kz, ω)ek′
xx0ej(kyy+kzz+ωt)dkydkzdω, k2

y + k2
z >

(

ω
c

)2
.

where,

k′x =

√

k2
y + k2

z −
(ω

c

)2
.

Therefore, when k2
y + k2

z > ω/c the synthesis is made in terms of waves having an

exponentially decaying component in the (negative) x direction. These waves are

called evanescent waves [24, 35]. Notice that for evanescent waves the wave vector,

k = [kx, ky, kz]
T , contains one non-real component (kx ∈ C in the above example).

The constraint k ∈ R
3, see (2.3) is only required for plane waves.

At x0 =0 the Fourier transform (2.12) guarantees the representation of any sound

field pin(x0, y, z, t) in terms of P̆in(ky, kz, ω). Moreover this is equivalent to a plane-

evanescent wave decomposition. Given the dynamics of wave propagation, at any

other plane x0 < 0, plane-waves undergo only a phase shift ejkxx0 while evanes-

cent waves only an exponential decay ek′
xx0 , but their associated complex-amplitudes

given by P̆in(ky, kz, ω) do not further change, so that proposition (2.14) is well

founded. A rigorous proof is given in [23]. In this domain, the sound field at any

plane x0< 0 relative to the plane at x=0 is obtained by a simple phase shift ejkxx0

(where kx becomes purely imaginary for evanescent waves). This fact constitutes a

powerful approach for wave field extrapolation [24, 35, 51].

Continuing with the discussion on boundary conditions, let us place a wall at

x0 = 0 and express the wall reflection coefficient ̺ in the wave-number domain as

P̆(ky, kz, ω). This function modifies the complex amplitude of each of the waves
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computed in the expansion (2.12), accounting for both plane waves and evanescent

waves. We write for the reflected sound field at x0 =0,

P̆rf(ky, kz, ω)= P̆(ky, kz, ω)P̆in(ky, kz, ω), (2.15)

or in the space-time domain,

prf(x0, y, z, t) =

∫

R3

̺(y − y′, z − z′, t− t′)pin(x0, y, z, t)dy
′ dz′ dt′. (2.16)

This last equation clearly shows that angle, surface and frequency dependent reflec-

tion can be expressed in terms of a spatio-temporal convolution of the incoming

soundfield p(x, t) and the reflection function ̺(x, t) at the wall surface S.
Consider now an empty space enclosed by a wall surface denoted by S. For

a sound field given in the temporal frequency domain, we have from (2.5) that the

normal component of the particle velocity at the surface can be expressed as

Vn(x, ω) =
P (x, ω)

Z(ω)
, for x ∈ S.

According to Euler’s equation (2.6) the boundary conditions can then be expressed

as,

∇P (x, ω) · η(x) = −jωρ0
P (x, ω)

Z(x, ω)
for x ∈ S, (2.17)

where η(x) is the outward normal unit vector at every point of the boundary, (·) is
the dot product and Z(x, ω) is the impedance as a function of the wall surface and

temporal frequency.

To summarize, the problem of finding the sound field in a room is addressed in

wave-based methods using the theory of wave propagation and wave reflection. A

model consisting of a partial differential equation, for example, the wave equation

(2.1) or the Helmholtz equation (2.9), and a set of boundary conditions (e.g. (2.17))

are defined as the underlying problem to be solved. This model is commonly referred

to as the acoustic boundary value problem. The model can be made more accurate

(at the cost of higher complexity) by defining, e.g. non-linear versions of the wave

equation (see for example [52]) to more realistically characterize inhomogeneous

media (like air under nonuniform humidity and temperature conditions), or more

complicated boundary conditions to model sound sources (e.g. the vibration of a

loudspeaker membrane) or any other objects in the enclosure.

In the next subsections an analysis of prominent wave-based methods is given.

The first method, modal analysis [22, 53], computes any sound field in the room
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Figure 2.3: A box-shaped room with dimensions Lx, Ly and Lz . Its wall surfaces

are denoted by Si (i=0, . . . , 5).

by expressing it as a linear combination of a set of basis functions, called modal

functions, that are independent solutions of the boundary value problem. The wave

propagation-wave reflection-wave propagation (WRW) method [52], makes use of

extrapolation theorems to model sound propagation. Following are the finite ele-

ment method (FEM) [54], the boundary element method (BEM) [55, 56], the digital

waveguide mesh (DWM) [57] and the finite-difference time-domain (FDTD) meth-

ods. These methods first represent the wave equation together with all the relevant

conditions in different forms and then proceed with numerical evaluation of the equiv-

alent problem. The DWM and FDTD are numerical approaches to solve the wave

equation, while FEM and BEM attempt to solve the problem in the temporal fre-

quency domain, where solutions to the Helmholtz equation are to be found.

2.2.2 Modal analysis

Any sound field can be considered a superposition of basic sound waves. Therefore,

one way to find a solution to the problem is by expressing the sound field as the sum-

mation of a complete set of properly weighted modal functions (the basic waves) that

independently fulfill the wave equation and the boundary conditions. The method

that addresses the problem of determining the modal functions, their driving frequen-

cies and the coefficients necessary to synthesize the sound field is known as modal

analysis [22, 53]. Although mathematically rigorous, modal analysis turned out to

be quite limited in practical applications due to its high complexity both analytical

and numerical [22, 53, 58, 59].
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To have a glimpse of the problem, consider the simple scenario of a box-shaped

room enclosed by walls with direction and surface independent impedance. The

room space is given by V=[0, Lx]× [0, Ly]× [0, Lz], so that one corner of the room
is at the origin of the coordinate system and Lx, Ly, Lz , denote the dimensions of the

room in the x, y and z directions, respectively. The scenario is depicted in Fig. 2.3.

We would like to find the room’s steady-state modal functions. As is done in (2.17),

we set up the boundary value problem in the temporal frequency domain using (2.9)

and (2.6), as,

∇2P (x, ω) + k2P (x, ω) = 0, (2.18)

∇P (x, ω) · ηi = −jρ0ω
P (x, ω)

Zi(ω)
, for x ∈ Si, (2.19)

where ηi is the outward normal unit vector of the ith wall, Si is the set of space points

comprising the ith wall surface and Zi(ω) is the impedance of the ith wall, which is

constant for the wall surface. In the following, the dependence of Zi on the frequency

variable is not written explicitly for the sake of notational simplicity.

Normally, one starts with an educated guess on the form of the modal functions.

In this example, we can directly proceed with the technique of separation of vari-

ables [22, 23]. Exponential functions arise naturally as solutions. Let a solution,

say ψ(x, ω), of (2.18) be decomposed into three functions, each dependent on only

one spatial coordinate, i.e. ψ(x, ω) = ψx(x, ω)ψy(y, ω)ψz(z, ω). Inserting this so-

lution into the boundary value problem, (2.18) and (2.19), results in three ordinary

differential equations. For instance, ψx(x, ω) must satisfy

d

dx
ψx(x, ω) + k2

x ψx(x, ω) = 0, (2.20)

together with

d

dx
ψx(x, ω) = −jρ0ω

ψ(x, ω)

Z0
= −jξ0kψ(x, ω) for x = 0, (2.21)

d

dx
ψx(x, ω) = −jρ0ω

ψ(x, ω)

Z1
= −jξ1kψ(x, ω) for x = Lx. (2.22)

where Z0 is the impedance of the wall perpendicular to the x direction at x= 0 and

Z1 the impedance of the opposite wall (see Fig. 2.3). The specific wall admittances

ξi = ρ0c/Zi are used to simplify the notation. Solutions of (2.20) take the form

[22, 23, 59] (see also Eq. 2.10),

ψx(x, ω) = A(ω)ejkxx +B(ω)e−jkxx, (2.23)
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where kx can take on complex values. The constants A(ω) and B(ω) are used to

adapt the solution to the boundary conditions (2.21) and (2.22). Substituting (2.23)

into (2.21) and (2.22) we obtain an acoustic eigenvalue equation for the x-coordinate,

d

dx
(ejkxx + e−jkxx) = −jξik(ejkxx + e−jkxx), for

{

i = 0 and x = 0,
i = 1 and x = Lx,

so that,

jkx(ejkxx − e−jkxx) = −jξik(ejkxx + e−jkxx),

or,

(kx + ξik)e
jkxx = (kx − ξik)e−jkxx.

This implies

(kx − ξ0k)
(kx + ξ0k)

= 1, for x = 0 (setting i = 0),

(kx − ξ1k)
(kx + ξ1k)

=
ejkxLx

e−jkxLx
, for x = Lx (setting i = 1).

(2.24)

Combining both conditions in (2.24) by multiplication we get,

(kx − ξ0k)(kx − ξ1k)
(kx + ξ0k)(kx + ξ1k)

= ejkx(2Lx). (2.25)

The (complex-valued) roots {knx}nx∈Z, of this eigenvalue equation are the eigenval-

ues in the x direction of the modal functions allowed in the room. Note that this is

no longer an uncountable set as it is in the free-field case. Adapting the constants in

(2.23), the nxth modal function is found,

ψnx(x, ω) =

(

knx + ξ0
|ω|
c

)

ejknxx +

(

knx − ξ0
|ω|
c

)

e−jknxx. (2.26)

The eigenfunctions ψny(y, ω) and ψnz(z, ω) with respective eigenvalues kny and knz

in the y and z directions are derived in the same way, and the complete eigenfunctions

are given by ψn(x, ω) =ψnx(x, ω)ψny(y, ω)ψnz(z, ω), with n = [nx, ny, nz] ∈ Z
3,

and eigenvalues k2
n=k2

nx
+ k2

ny
+ k2

nz
.

It has been proven that these eigenfunctions are mutually orthogonal [23]. More-

over, defining a suitable space of possible sound fields, it can be shown that the

eigenfunctions form a complete set (with respect to some suitable definition of con-

vergence) in this space (see e.g. [37, 60]) for all possible values of the impedances
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Zi ∈ C. Once this is rigorously established (although this can be nontrivial), we are

in principle able to evaluate any desired acoustical property of the room, such as the

sound field inside the room given an arbitrary set of sources. To see this, consider the

inhomogeneous Helmholtz equation,

∇2P (x, ω) + k2P (x, ω) = s(x, ω). (2.27)

Since the orthogonal eigenfunctions ψn(x, ω) form a complete set, we can expand

the source into a series of ψn(x, ω),

s(x, ω) =
∑

n∈Z3

Cn(ω)ψn(x, ω), with Cn(ω) =
1

Kn(ω)

∫

V
s(x, ω)ψ∗

n(x, ω)dx,

(2.28)

for some constants Cn(ω) and some normalization factors Kn(ω), where the super-
script ∗ denotes complex conjugation. In this way, the solution P (x, ω) is expanded
as,

P (x, ω) =
∑

n∈Z3

Dn(ω)ψn(x, ω). (2.29)

The problem is solved if the unknown coefficients Dn(ω) can be found in terms

of the known coefficients Cn(ω). Inserting both expansions (2.28) and (2.29) into

(2.27), and equating akin terms we obtain,

Dn(ω) =
Cn(ω)

(ω/c)2 − k2
n

, (2.30)

since∇2ψn(x, ω) = −k2
nψn(x, ω) and k= |ω|/c.

Thus, in order to find the sound field in a room p(x, t), first the problem is posed

in the temporal frequency domain, with the Helmholtz equation (2.18) as the partial

differential equation to be solved together with a set of boundary conditions. The

boundary conditions characterize the reflective properties of the walls (and possibly

any other reflective surfaces in the enclosure) and can be given, as in the example

of (2.19), in terms of wall impedances. Then a set of basis functions, also called

modal functions or eigenfunctions, that are (independently) solutions to the problem

is given or proposed (in the example, exponential functions where used). In order to

adapt these eigenfunctions to the boundary conditions, their eigenvalues are needed.

An acoustic eigenvalue equation is then formed to find the eigenvalues for each of

the eigenfunctions. Once the exact form of the basis functions is known, then any

acoustic event in the room can be expressed in terms of these.
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An unknown sound field is generated by an arbitrary but known set of sources.

The unknown sound field and the known set of sources are then expanded in terms of

the modal functions, resulting in a set of unknown sound field coefficients and a set

known source coefficients (in the example, Dn and Cn respectively). The unknown

sound field coefficients are then derived in terms of the known source coefficients

((2.30). The temporal frequency domain representation of the sound field, P (x, ω),
is then obtained by a linear combination of the basis functions weighted by the sound

field coefficients (i.e. Eq. (2.29)). The actual sound field, p(x, t), is then found by

applying an inverse Fourier transform over the temporal frequency variable. Recall-

ing that the RIR is the sound field when the source is modeled as a point source

(monopole) emitting an impulse, then modal analysis constitutes a RIR simulation

method.

In order apply the method, one must first solve the acoustic eigenvalue equation

for the set of modal functions. In the simple example given above, for a box-shaped

room and walls with angle and surface-independent impedances, we already see from

(2.25) that the resulting acoustic eigenvalue equation is non-linear and transcendental.

Until today we do not know how to solve this kind of equations analytically [53, 59].

To find the roots (i.e. the eigenvalues) of the eigenvalue equation one must then turn to

numerical methods, which are complicated and time consuming [53, 59]. Moreover,

the number of modal functions in (2.29) (and therefore the number of eigenvalues to

be found) is infinite. In practice one would be interested in band-limited sound fields

up to a maximum temporal frequency ωB . In this case, it is only necessary to find

eigenvalues and to limit the summation in (2.29) such that

|kn| ≤
(ωB

c

)

.

Then, the number of modal functions needed grows as the cube of the temporal fre-

quency. This is why modal analysis is normally used for the study of the room

responses at low frequencies in cases where the room geometry and boundary con-

ditions do not deviate too much from basic forms, like box-shaped rooms with fully

reflective (rigid), or slightly damped walls [53].

2.2.3 WRW model

One important approach due to Berkhout et al. [52], called the wave propagation-

wave reflection-wave propagation (WRW) model, can model realistic sound fields.

This method is based on a technique called wave field analysis/synthesis developed

in the 1980’s by Berkhout in the context of acoustic seismic exploration [24], and
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Secondary sources

Wave front
at time t0 + ∆t

Wave front
at time t0

Figure 2.4: Huygens Principle. A propagating wave front can be modeled in terms

of a set of “secondary sources” emanating from every point on the wavefront at a

previous instant.

later extended to room acoustics [4]. At the core of the approach lie the concepts

of wave field extrapolation and wave field reflection [24, 35], of which a glimpse is

already given in the discussion following equations (2.14) and (2.15).

Huygens principle states that the fronts of any wave field can be modeled in

terms of a set of “secondary” sources emanating from every point on the wavefront

at a previous instant. In the case of sound fields this can be regarded intuitively

as the air particles pushing each other while transmitting the sound. Every other

particle can be seen as a generating sound source for the next particles in the chain

(see Fig. 2.4). This principle is quantified and mathematically formalized by the

Kirchhoff-Helmholtz integral [24, 35, 52],

P (x, ω) =
1

4π

∮

S

(

P (x′, ω)
∂

∂η(x′)

(

e−jk‖x−x′‖

‖x− x′‖

)

+
∂P (x′, ω)

∂η(x′)

(

e−jk‖x−x′‖

‖x− x′‖

))

dS, for x ∈ V, (2.31)

where x
′ is the integration variable that takes values on the surface S and η(x′) is

the outward normal unit vector at surface point x′. The integral states that the sound

field in a source-free volume V is totally described by a distribution of secondary

sources on the boundary S of V , driven by the sound pressure function at the bound-

ary P (x′, ω) (see Fig. 2.5). The surface integral in (2.31) is composed of two sum-

ming terms. The second term contains an expression involving the free-field Green’s
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function,

e−jk‖x−x′‖

‖x−x′‖ ,

which is the temporal frequency domain representation of the RIR (also known as the

room transfer function) for unbounded space. The first term involves the directional

gradient of the Green’s function,

∂

∂η(x′)

(

e−jk‖x−x′‖

‖x− x′‖

)

.

These terms appear as extrapolation terms in the integral, in other words, they allow

the sound field inside the whole volume to be expressed in terms of its value on

the boundary. The Green’s function is the response to a monopole (point source)

emitting an impulse with its directional gradient being the response to a dipole. In

other words, a pair of acoustic point sources separated by an infinitesimal distance

emitting each an impulse, with both impulses being of equal magnitude but opposite

sign (see e.g. [23]). The Kirchhoff-Helmholtz integral (2.31) then states that the

sound field inside volume V can be reconstructed from a distribution of monopoles

and dipoles on the boundary. The dipoles are weighted by the sound pressure at the

boundary, and the monopoles are weighted proportionally to the local normal particle

velocity at the boundary, since (by Euler’s equation (2.6)) we have that,

∂P (x′, ω)

∂η(x′)
= jωρ0Vn(x

′, ω).

When the closed surface degenerates to a plane of infinite extent between source

and receiver domains, e.g. the y, z plane at x = x′, the Kirchhoff-Helmholtz inte-

gral can be simplified into the Rayleigh I and Rayleigh II integrals [4, 24, 52]. The

Rayleigh integrals are important as they explain that if the sound pressure field or

particle velocity at a certain infinite plane is known (all sources are assumed to be

behind this plane), then it is possible to extrapolate the sound field or the particle ve-

locity at a distant plane without error. The Rayleigh I integral extrapolates the sound

field with a distribution of monopoles on the plane using only particle velocity infor-

mation. The Rayleigh II integral describes the pressure field in terms of a distribution

of dipoles on the plane using only pressure information. The Rayleigh II integral is

the basis for the theory presented in [52]. Let the sound pressure P (x′, ω), be known
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Figure 2.5: Kirchhoff-Helmholtz principle. The sound field inside a source-free

volume, say V , can be totally described if the sound field and its local normal particle

velocity is known at a boundary surface, say S, enclosing the volume.

on the y, z plane at x=x′, then the Rayleigh II integral is written as [24],

P (x, ω) = − 1

2π

∫

R2

P (x′, ω)
∂

∂x′

(

e−jk‖x−x′‖

‖x− x′‖

)

dz′dy′,

=
|x− x′|

2π

∫

R2

P (x′, ω)e−jk‖x−x′‖ 1 + jk‖x− x
′‖

‖x− x′‖3 dz′dy′, (2.32)

for x<x′, where x
′=[x′, y′, z′]T . This is a convolution integral of the sound field at

the boundary P (x′, ω) with a propagation kernel,

G(x, ω) = − 1

2π

∂

∂x

(

ejk‖x‖

‖x‖

)

=
|x|
2π

e−jk‖x‖ 1 + jk‖x‖
‖x‖3 ,

such that the sound field is propagated to a more distant plane. In order to be calcu-

lated on a computer, the integral has to be made proper and discrete such that it can be

expressed in terms of matrix multiplications. When the integration limits are made

finite, truncation errors appear. Remarkably, the truncation error is equivalent to a

realistic diffraction effect at the boundary [61], and so the method accurately models

diffraction effects at object boundaries [52]. Furthermore, the convolution operator

can be diagonalized via the Fourier transform, increasing the efficiency of the compu-

tations. By performing a Fourier transform on P (x′, ω) over the two spatial variables,
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y and z, we obtain

P (x′, ω)
Fy,z←→ P̆ (x′, ky, kz, ω).

Moreover, it has been shown in [35, 52] that

G(x, ω)
Fy,z←→ Ğ(x, ky, kz, ω) = ejkxx,

with kx =(k2 − k2
y − k2

z)
1/2. Therefore, the Rayleigh II convolution integral (2.32)

can be expressed as,

P (x, ω) = F −1
ky ,kz

{

P̆ (x′, ky, kz, ω)Ğ(x, ky, kz, ω)
}

= F −1
ky ,kz

{

P̆ (x′, ky, kz, ω)ejkxx
}

,

whereF −1
ky ,kz

{·} is the inverse Fourier transform operator over the specified variables.

Sound field propagation is described by a simple phase shift in this spatio-temporal

Fourier domain, which is also known as the angular spectrum representation or the

wave-domain [35]. Sound reflection is also expressed as spatial convolution, that is a

function of the surface of the walls using a periodic (aliased) and discrete version of

(2.15), so that the full WRWmodel can be expressed conveniently in terms of matrix

multiplications.

The WRW method can model reflection and diffraction in rooms with arbitrary

piece-wise planar geometry (including any planar objects that might be in the en-

closure) and it is naturally a multichannel method, i.e. it simultaneously obtains the

RIRs at discrete positions on a line (or a plane). However, its computational complex-

ity is high and it heavily depends on the number (and size) of matrix multiplications

it has to perform, especially in the 3-D case. Higher order reflections are modeled

as recursive matrix multiplications. These are expressed as a Neumann series, and

therefore equal to the inverse of a certain matrix. The efficient inversion of this ma-

trix, however, remained a problem to solve [52]. Another problem that has to be

controlled carefully is aliasing due to the discretization and truncation of the under-

lying integrals [24, 31, 35], this occurs in space and time, and can become expensive

to overcome.

2.2.4 Finite element analysis and boundary element analysis

The finite element method (FEM) can be defined as “a general discretization proce-

dure of continuum problems posed by mathematically defined statements” [62]. The

FEM can be used to find numerically approximate solutions to, for example, partial

33



2. Computer simulation of room impulse responses

differential equations with boundary conditions. Finite element analysis is by itself

a very rich research area in engineering and mathematics, growing at an impressive

pace since the 1960’s [48, 62]. In acoustics, it is mostly used to model time-harmonic

sound fields, i.e. to find solutions to the Helmholtz equation, or to model narrow-

band sound fields (e.g. by synthesis of individual solutions at different frequencies).

In this method, the room space is subdivided into small volumetric elements, and a

large system of ordinary differential equations is formulated at the grid points. One

procedure, known as the Galerkin method [62], first ensures that the individual so-

lutions of these equations are the sound pressures at the grid points. These values

are then used as weights in the interpolation of a (finite) set of basis functions (rigor-

ously proven, numerically computed and optimized, or sometimes just conjectured)

to satisfactorily approximate the sound field. When the values at the grid points are

combined, an approximation of the solution to Helmholtz equation at any point can

be obtained [48]. One of the advantages of the FEM is that the space can be parti-

tioned using cells having different shapes, thus allowing complex room geometries

to be modeled accurately. Yet, to find good quality partitions for arbitrary domains

is a hard problem of central importance [63]. In practice, the number of unknowns

is too large for the system of differential equations to be solved in a reasonable time.

However, one can exploit the fact that the matrices that characterize the system are

in general sparse. One then resorts to different methods to directly solve, or to fur-

ther simplify the model. For example, transforming the system to a domain where it

can be accurately represented by a few eigenmodes. The eigenvalues for these trans-

formed modes are then found to solve the system. Still, the number of unknowns

(and therefore the complexity of the method) increases as the cube of the temporal

frequency [64], since the grid size must be smaller than the smallest wave-length to

achieve accurate approximations. Additionally, broadband solutions must be synthe-

sized from the individual results at the frequencies of interest. Because of this, FEM

solutions are commonly used to model the acoustics of a room at low frequencies, or

to simulate small enclosures.

Another related technique is the boundary element method (BEM). Like the

WRW method, the BEM uses the Kirchhoff-Helmholtz integral to effectively reduce

the dimension of the problem by one [7, 55, 56, 65]. Therefore, to solve a 3-D
spatial problem, only a mesh of discrete surface (2-D) elements at the boundaries

are required to extrapolate the sound field of the whole enclosure. The Kirchhoff-

Helmholtz integral (2.31) is formulated in a discrete form and solved using matrix

algebra. Unlike the FEM, the application of the BEM reduces the Helmholtz prob-

lem to a non-linear eigenvalue problem, the matrices that characterize the system are

in general fully populated and have no particular structure, although they normally
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are much smaller than the ones generated by the application of the FEM (before

reduction). To help ease the problem, techniques have been developed to formu-

late equivalent or approximate systems that can be expressed as a linear, algebraic

eigenvalue problem [65]. More recent research has combined fast multipole methods

(FMM) with BEM. The resulting BEM-FMM has shown promising results, yielding

performances that scale as the square of the temporal frequency (and linearly as the

surface of the boundary) [63], making them better suited than the FEM for larger en-

closures, but they are still too complex to allow real-time simulation for broadband

acoustic scenes.

2.2.5 Time-domain wave solvers

Numerical techniques can be applied to solve the wave equation directly in the time

domain. Two common challenges of time-domain wave-based acoustic simulation

are computational complexity (particularly at high frequencies) and numerical dis-

persion. The latter refers to phase errors that occur since higher frequencies tend to

travel slower on the numerical mesh than lower frequencies, leading in virtually all

cases to an unnatural effect and mistuning of key modal functions [57, 63].

The digital waveguide

The digital waveguide is based upon the discretization of the d’Alembert solution

p(x, t) of the 1-D wave equation [7, 23, 57]. The solution reads p(x, t) = p+(x −
ct) + p−(x + ct), which represents two traveling waves: p+(x − ct) in the positive

x direction, and p−(x + ct) in the negative x direction. Assuming both functions to

be bandlimited, one can sample them with sampling intervals in x and t, and the re-

sulting system can be implemented with two parallel digital delay lines that represent

the left and right traveling functions. After defining the spatial length in number of

junctions (samples), the lines are terminated at both ends. Each junction, including

the termination junctions, is coupled in order to obey the dynamics of the vibrating

system. The junctions are therefore called scattering junctions. The chosen dynam-

ics at the junctions represent a discrete version of the boundary value problem. More

complex vibrating systems like the bridge of a guitar, wind instruments, or even the

vocal tract can be simulated through appropriate junction coupling [57]. In this way,

complex interconnections can be made via scattering junction conditions in order to

form 2-D, 3-D, and higher hyperdimensional meshes, which can model the vibrating

properties of multidimensional objects (and thus room acoustics). This technique

is therefore known as the digital waveguide mesh (DWM). Although the DWM has
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been used to efficiently model 1-D (and to a lesser extent but still efficiently 2-D)
spatial systems [57], its application to room acoustics comes not without challenges.

Besides the numerical dispersion problem, one major challenge is to reduce the com-

putational complexity of the model, since a direct application of the 1-D DWM to

multidimensional spaces implies the need of calculations at every junction in space

for every time-step, growing as the fourth power of the maximum temporal frequency.

In order to reduce the complexity of the problem, research has been conducted to ex-

plore, as in BEM or WRW, the possibility of using extrapolation techniques in order

to obtain the sound field using 2-D models [30, 66], and to efficiently model accurate

frequency and angle-dependent wall reflection coefficients [67, 68].

Finite-difference methods

Another time domain solver is the finite-difference time-domain (FDTD) method, a

technique originally developed to solve electromagnetic boundary value problems,

in an attempt to find solutions to the wave equation in the time domain [69]. In this

method, all the (partial) derivatives that occur in the problem are replaced by finite

differences. The discretization implies a point-wise evaluation of the sound field

at each volume element. In approximating the derivatives with time differences, one

must also restrict the order of the approximation to a finite value (see, e.g. [63]), with

larger values effectively reducing the numerical dispersion, but increasing complex-

ity. In order to better tackle the problem, in [50] the Laplacian operator (the spatial

partial derivatives) is approximated by a finite step size in the spatial discrete Fourier

domain. The result is then transformed back to the space domain. This is the pseudo-

spectral time-domain (PSTD) method. The technique allows to reduce the dispersion

errors even for meshes with sample rates approaching two times the maximum fre-

quency (the Nyquist rate). The main drawback is that such approximation only holds

for spatially periodic sound fields (because of the periodicity-discretization relation

of the discrete Fourier transform [21]), and therefore errors can be seen, especially

at the boundaries where the aperiodic transition of the waves is more prominent.

Although these errors can be controlled using “perfectly matched layers” schemes

[70], time update is performed using standard time-stepping (normally of the second-

order), and therefore errors due to temporal approximation still occur.

An important method that reduces numerical dispersion at low sampling rates

(potentially improving both speed and accuracy) is the adaptive rectangular decom-

position (ARD) method, originally proposed in [71] and further extended to allow

highly parallel execution on GPUs in [63]. In ARD the space is first partitioned into

small rectangular volumetric elements at a resolution that guarantees minimum or
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no dispersion errors and other numerical inaccuracies, and is close to the Nyquist

frequency. Afterwards it groups the different elements into two types of (also rectan-

gular) zones. The so called “air” zones are destined to model sound propagation in

air, whereas the “perfectly matched layer” (PML) zones are used to model (partially

or totally) absorptive surfaces. These two types of zones are 3-D. Besides these

zones, 2-D interfaces are created between adjacent air-air and air-PML zones. The

boundaries for all zones are assumed rigid (fully reflective boundaries), so that the

sound field naturally displays a spatially periodic behavior [22, 31, 72]. The wave

equation is therefore effectively solved in the spatial discrete Fourier domain using a

cosine basis, and can be efficiently implemented via 3-D FFTs and IFFTs, avoiding

numerical dispersion at minimum spatial sampling rates. Absorption is implemented

in PML zones, with the sound field also decomposed into a cosine basis, but modeled

by a highly dissipative (non-physical) wave equation. At all interfaces, a purely time-

domain set of finite-difference equations is formulated, which effectively controls the

behavior at the boundaries. This still introduces a certain amount of numerical disper-

sion, but since the interfaces are only 2-D, one can afford higher order representations
to minimize the error. The actual computation is then performed on a per-time-frame

basis, updating the values of the zones and the interfaces at each time-step. Although

the method does not attempt to model exact boundary conditions (i.e. the real fre-

quency and angle dependent wall reflection properties), in [71, 73] the performance

of the method is shown to be of enough perceptual quality to be used in broadband

(massive) multichannel RIR simulation for computer games or sound field visualiza-

tion purposes. Moreover, the computation times for single core machines are in the

order of hours (∼4 - 6), and for massive multicore (GPU) implementations [63], in

the order of minutes (∼18).

2.2.6 Conclusion wave-based methods

In room acoustics, wave-based methods play a very important role. As a mathe-

matical and physical framework, wave theory provides an insightful and rigorous

treatment of the underlying dynamics. This description can be made as rigorous as

our comprehension of the underlying physical problem goes, increasing the accuracy

and realism of the model with every added detail. Unfortunately, the complexity of

the problem often increases to a point where no solutions can be found, either ana-

lytically or numerically, with reasonable effort. In order to keep a balance between

accuracy and complexity, linear versions of the wave equation, e.g. (2.2) or (2.9), are

used (see [24] for an example of a non-linear version). The speed of sound is most

of the time assumed to be constant, which directly implies that the inhomogeneities
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due to air humidity and temperature are ignored. In some cases, the reflective prop-

erties of the walls and objects in the room are assumed surface, angle and sometimes

even frequency independent. Despite these simplifications such models are accepted

to be accurate enough for, e.g. predicting the subjective acoustical characteristics of

spaces such as concert halls, for testing the absorptive parameters of the walls in a

room, or for creating virtual acoustic scenarios for applications like video games (see

e.g. [74]). Numerical methods based on wave-theory are thus characterized as being

able to model complex scenarios across different room geometries and reverberant

conditions, generating realistic sound fields. Another advantage of wave methods is

that in many cases the RIR at many positions can be easily obtained. This is because

wave motion and wave reflection are modeled as spatio-temporal phenomena and so-

lutions are then normally obtained on a dense grid of spatial points; each of these

solutions represents an individual RIR. As previously noted, the degree of accuracy

and flexibility of these methods is, however, paid with a high level of complexity.

The numerical burden increases particularly rapidly as a function of the desired tem-

poral bandwidth. Because of this, wave-based methods have earned fame of being

prohibitively complex, limiting a widespread use. This may change in the near future

as latest research in wave methods, such as the ARD method discussed above [63],

is starting to approach real-time simulation of multichannel RIRs.

2.3 Geometrical acoustics

To obtain practical methods for modelling RIRs, often simplified models are used.

One greatly simplified theoretical description, called geometrical acoustics [22], which

has its origins in geometrical optics [75], replaces the concept of a sound wave with

the concept of a sound ray. In the limit of high frequency, the wave equation reduces

to a geometric description [23]. This is, wave propagation is modeled as rays of

sound energy quanta, that specularly reflect when encountering obstacles. The de-

scription thus assumes that the sound waves have significantly smaller wavelengths

than the size of the reflecting objects or surfaces. In its original description, geomet-

rical room acoustics neglects the effects of diffusive reflection, refraction, diffaction

and interference [22]. Because of these simplifications and the high frequency as-

sumption, algorithms based on this description achieve less realistic solutions, but at

least they aim to provide good quantitative/qualitative results. One particular draw-

back of this framework is that as a linear sound trajectory is assumed, if a receiver

moves from an area “visible” for the sound rays to an area occluded by an object,

a sudden discontinuous change in acoustic pressure is observed. This phenomenon
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Figure 2.6: Specular reflection is equivalently modeled with a virtual image (copy)

of the original source positioned at the far side of the reflective boundary.

is physically impossible, since the sound field in a zone free of sources must be a

continuous function (actually a smooth function [23, 37]) of space and time. To con-

ceal this error, techniques have been developed to account for sound diffraction (e.g.

[76]), at the cost of added complexity. Most geometrical acoustics methods are then

faced with the challenge of fast and accurate computation of propagation rays, espe-

cially in the case of complex room geometries. In many cases, geometrical methods

allow to model single RIRs at one spatial point independently of other spatial points,

contrary to the majority of wave-based methods where spatial grid discretization of

the waves imply calculations at several spatial points at the same time. This property

might be seen as a complexity advantage if only small sets of RIRs are needed, but

might impose a computational disadvantage if large amounts of RIRs are required to,

for example, model entire virtual acoustic spaces. There exist however, some more

advanced geometrical methods (e.g. [77]) that allow fast recalculation of the RIR at

different spatial positions, a very useful property in virtual walkthrough applications

where e.g. a moving receiving position is to be modeled.

2.3.1 The mirror image source method

Introduced by Allen and Berkey [78] as a digital computer algorithm, and later im-

proved by Peterson [79], the mirror image source model (MISM) or image method

models reflections using (virtual) image sources at the far-side of the boundaries

emulating the law of optical specular reflection [22, 75], see Fig. 2.6. When the

sound field is enclosed between two parallel reflective boundaries, the reflections in-

volved can be described in terms of the recursive mirroring of the original source,

generating an (in principle) infinite set of virtual sources outside the boundaries in

the direction perpendicular to the planes. Allen and Berkey considered the case of

box-shaped rooms with parallel walls positioned perpendicular to each Cartesian co-
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Lx

Ly

Figure 2.7: A (2D) top-view of the set of virtual source images (gray circles) gen-

erated by the Allen and Berkley’s image method inside a box-shaped room [78, 79].

The solid line rectangle denotes the room with dimensions Lx, Ly and Lz . The real

source is depicted by the black circle inside the room.

ordinate. The walls are assumed to have constant reflection factors. In this case,

virtual images of the original source are created in 3-D space, forming a periodic

set over a lattice [22, 72]. In Fig. 2.7 a (2D) top-view from the z direction of this

set is depicted. Their algorithm calculates the position of any virtual source and the

amplitude and time-delay its sound field has at the measuring position (inside the

room), and then adds the contribution to the total sound field. The contributions of

the virtual sources can arrive at arbitrary times, the RIR, however, is calculated in

discrete-time. To solve this problem Allen and Berkey associate the contributions to

the nearest sample time. This introduces interaural (spatially related) phase errors in

the computed RIR. In [79], Peterson proposes to filter the delta-pulse contribution

of each virtual source using a Hamming-windowed, ideal low-pass filter with cut-off

frequency set to the Nyquist rate, and to use the original arrival times of the contri-

butions. This preserves the phase coherence between RIRs at different measuring

possitions. In this way, when all possible virtual sources are considered, all possi-

ble reflection paths from the source to a receiver are covered and an RIR is formed.

Using this scheme it is not possible to model an infinite amount of sources, and one

stops calculating virtual sources after the total sound field decays beyond a certain

threshold. One popular threshold is the reverberation time (T60), defined as the time

it takes for the sound field energy to decay 60 dB from its original value. The T60 was

proposed by Wallace C. Sabine [38] in the early 20th century following his subjective

experiments. Expressing the reverberation time in samplesN60, the MISM simulates

the RIR from one source to one measurement point in O(N3
60) operations, making it

a relatively fast algorithm of special interest in simple scenarios when faster compu-
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Figure 2.8: A particular reflection sequence in the extended image method algorithm

by Borish [84]. The source S0 is mirrored over wall 1 to create source S1, S1 is

reflected over wall 2 (of the first virtual room) to create S2, and S2 is reflected over

wall 3 (of the second virtual room) to create S3. The visibility zone of S2 in the real

room is given by zone A. The visibility zone of S3 is given by the union of zones

A∪B. For a receiver positioned in zone C both the virtual sources S2 and S3 are

invisible. An example of an invalid virtual image is depicted.

tations take precedence over accuracy of the simulation. Although the MISM is an

old algorithm, the approach is of theoretical and practical importance. Many methods

have been introduced in the past that extend the MISM to, e.g., model diffraction [80]

and diffuse reflection [81], to synthesize the RIR per frequency band [82] allowing

for frequency-dependent (complex-valued) reflection coefficients, to model interfer-

ence through complex superposition [76], and to improve the speed of the method

by the use of efficient virtual source identification and search through look-up tables

[83]. Moreover, an extension of the method to model RIRs for arbitrarily shaped

(piecewise-planar) rooms has been derived [84].

In the extended MISM proposed by Borish et al. [84], the sound sources are

mirrored over each piece-wise linear surface in the enclosure. Virtual sources are

considered individually and are iteratively mirrored up to the desired reflection order.

Unlike the case of box-shaped rooms, a check for validity and visibility is needed for

each newly created mirrored source at the cost of extra complexity. For example, a

virtual source generated by reflection over the outer side of a wall cannot be valid.

Further, when a virtual source’s path is obscured by another surface, or when the

sound path from the virtual source to a receiver position intersects a point on a wall
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plane outside the boundaries, the source is deemed invisible. After detection, invalid

sources can be discarded and their recursive mirroring stopped. On the other hand,

descendant generation of invisible sources has to be continued, since higher-order

mirrored descendants of invisible sources may have visible paths to the receiver(s).

In Fig. 2.8 an example reflection sequence is given. The source S0 (and the room)

are mirrored over wall 1 to create source S1, S1 is then reflected over wall 2 (of the

first virtual room) to create S2, and then S2 is reflected over wall 3 (of the second

virtual room) to create S3. The visibility zone of S2 in the real room is given by

the gray-shadowed zone A. The visibility zone of S3 in the real room is given by

the union of the gray-shadowed zones A∪B. For a receiver positioned in zone C
both the virtual sources S2 and S3 are invisible. In zone B the sound field of S2

does not contribute to the RIR, but the generation of S2 is important as this virtual

source is the progenitor of S3, which does contribute to the RIR in zone B. An

example of an invalid virtual image is also depicted. In this extendend MISM, the

complexity involved in the visibility and validity tests is higher than the generation

of the response itself [84–86]. More strikingly, with a fixed number of (planar) walls,

say M , and a given number of desired reflections proportional to N60, the number

of virtual sources that have to be generated in the general case is upper bounded to

O(MN60), which is now exponential in N60. The symmetry of the rectangular case

is lost and different descendant paths in the recursion may lead to different virtual

sources. Even when holding the number of walls constant, distorting the shape of the

room space would affect the total number of virtual sources that have to be generated

for a given N60. Moreover, all possible reflection paths across all boundaries per

virtual source must be tested for validity and visibility. In the limit, as the number of

planar walls goes to infinity (which could be made to converge to a room with curved

boundaries), the algorithm would accordingly need to model an infinite amount of

virtual point sources even at low-order reflections. As a consequence, this extended

MISM is not suitable for modeling reflections due to curved surfaces.

The basic MISM guarantees that all specular reflection paths (up to the desired

order) from the source(s) to the receiver(s) are found. In non-convex rooms, or when

objects are present in the environment, diffraction (and to a given extent transmis-

sion) cannot be neglected and therefore a diffraction model has to be used at the cost

of increased complexity. Because of the added overall complexity of the extended

MISM approach, it is mainly used to model lower orders of specular reflections in

complex geometries/environments.
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Source

Reception cell

Receiver

Figure 2.9: Ray tracing method in 2D. A finite set of rays emanating from the source

are extended linearly and via specular reflection (traced). The tracing process finish

when the ray reaches the receiver cell (a volumetric cell in 3D) or when e.g., the

maximum reflection order has been reached. The method can be extended to trace

ray paths of diffuse reflection, diffraction and refraction.

2.3.2 Ray tracing

The first credited computer algorithm to simulate RIRs (as mentioned at the begin-

ning of Sec. 2) was based on ray tracing [45], which was during many years preferred

over other methods due to its algorithmic simplicity, particularly for complex room

geometries [84]. In ray tracing a set of sound rays is generated at the source of sound

(or the receiver position) emanating uniformly in all directions. Each ray is extended

linearly and via specular reflection until it reaches the zone of space surrounding the

receiver (or source) position. In this way, more realistic simulations can be obtained

as not only paths of specular reflection can be modeled, but also paths of diffuse re-

flection, diffraction and refraction can be generated and traced even for surfaces with

curved geometries [77, 87]. A RIR is thus formed by adding properly attenuated

contributions of the calculated paths. Since it is impossible to generate an infinite

number of rays (covering the 4π steradians around the point source), the method will

always find a certain number of paths (for the generated rays), but these are not nec-

essarily a complete set of paths for the desired simulation time slot (e.g. until T60 is

reached).

This can be seen (and it is defined) as an aliasing problem caused by the sampling

of a continuum of 4π steradians space of possible rays. Important propagation paths

might be missed by all samples. The countable amount of rays used and the fact

that receiver (or source) positions are approximated by volumes in space lead to

fundamental problems [88]. For instance, if the receiver is modeled with a large

volume, a ray that was supposed to pass close, but not yet exactly at the receiver

position could have been taken into account at the wrong reflection order. On the

other hand, if the receiver is modeled by a small enough volume, chances are that the

chosen rays would never hit the receiver at all. This happens because, in the limit,
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Figure 2.10: Beam tracing.

when a volumetric receiver zone becomes a point receiver, an uncountable amount or

rays (at a continuum of emanating directions) is needed to guarantee that the receiver

is reached by the rays at their correct reflection orders. Although one would think that

the volumetric representation of the receiver is actually a more realistic model than a

point receiver, the actual problem lies in the fact that there is no way to know whether

a given path has been missed. These anomalies and errors have been observed in

real-life experiments [88, 89]. Still, ray tracing can give accurate results (up to any

desired threshold) if a good ray generator is used and enough rays are employed. An

example of a good ray generator model is random generation using a Monte Carlo

approach. For the generation to be accurate and to ensure convergence as the number

of rays tends to infinity, a good quality pseudo-random generator must be employed.

Uniform (or close to uniform) ray generation on the surface of the unit sphere must

be ensured [90]. Using three independent random generators for the three Cartesian

spatial coordinates would not give the required results, as this produces a “cube of

rays” instead of a sphere. Another possibility, as used in e.g. [90], is to subdivide

the sphere surface into a large number of polygons of equal area, and to cover each

of them with random rays (see Fig. 2.11a). This ray generator method is reported to

be accurate and reliable provided a very large number of rays is generated (usually

more than 105) [90].

2.3.3 Beam tracing

Despite the flexibility and relative simplicity of ray tracing, aliasing due to sampling

the continuum space of possible rays remains an important problem. In order to solve

the problem, beam tracing was proposed as a natural generalization [91, 92], first in
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the context of computer graphics [77, 90, 93], and later applied to acoustic simu-

lations. Instead of using infinitely thin rays, in beam tracing volumetric “beams”,

i.e. solid-angles with finite polygonal cross-sections, are traced through the environ-

ment to find propagation paths from a source to a receiver. In this way, the full

4π steradians around a source can be covered exactly with a finite amount of non-

overlapping beams. Fig. 2.11c shows an example using pyramidal beams [77, 90, 94].

Intersections with polygons in the scene are evaluated in backward order, so that

no propagation-reflection on a polygon is included in the propagation-reflection se-

quence until all others that at least partially occlude the polygon have been first con-

sidered. After intersections with polygons are identified, the original beam is clipped

and (optionally) a transmission-refraction beam is created that exactly matches the

occluded region. A reflection beam is then constructed by mirroring the transmis-

sion beam over the polygon’s plane see, Fig. 2.10. Using the same approach, sets of

diffraction beams can be added following a given diffraction model to obtain more

realistic results. After the propagation-reflection sequence of each beam that inter-

sects the receiver is found, an algorithm to find the exact paths from the source to the

receiver is used (e.g. [90, 91, 94]). In this way, beam tracing eliminates the problems

related to sampled rays and allows intersections with infinitesimal (point) sources,

solving the problem of false path detection. The main disadvantage of beam tracing

is the complexity of the geometric operations (i.e. intersection and clipping) to trace

the beams in 3D spaces, as each beam is to be reflected and/or obstructed many times

by the surfaces present. Therefore, the main challenge of beam tracing is not only to

develop techniques to trace the beams fast and robustly but also to generate the actual

propagation paths as efficiently as possible.

Research in beam tracing methods has shown progress in reducing the com-

plexity of the algorithms (e.g. [77]), allowing RIR modeling at interactive rates

for e.g., virtual modeling of a moving receiver in large and complex room geome-

tries. To achieve this, Funkhouser et al. [77] separate the problem into a com-

putationally intensive off-line preprocessing step and a sufficiently lightweight on-

line stage. During the off-line process the space is carefully partitioned, different

propagation-reflection-transmission-scattering sequences of beams are constructed

for each source and stored in special beam-tree structures optimized for fast look-up

of critical parameters. In the on-line stage, the propagation paths are efficiently calcu-

lated from the a priori gathered information and the RIR is formed. In this stage, the

precomputed tables are first queried for beam sequences of transmissions, reflections

and diffractions potentially reaching the receiver position. Particular paths are then

computed by finding the shortest among all possible piecewise linear paths from the

source to the receiver inside the beam path. This is done by considering points of
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(a) A ray tracing approach. The

sphere surface is subdivided in

polygons of equal area. Each

area is uniformly covered by a

set of randomly generated rays.

Here four faces are covered with

250 rays each (blue dots).

(b) Cone tracing beams. The

space of possible rays around

the source cannot be totally cov-

ered without overlapping of the

beams.

(c) An example of a non-

overlapping partition of the

space of rays as used in pyra-

mid tracing [90]. The resulting

beams are triangular pyramids.

Figure 2.11: Examples of sphere surface covering approaches in different beam

tracing methods.

intersection of the path with every face and edge in the beam sequence. Additionally,

fast convolution of the RIR with an arbitrary time-domain signal can be performed

for interactive auralization purposes.

Ray tracing can be seen as a special case of beam tracing (using beams with

a point cross-section) see Fig. 2.11a. Another technique called cone tracing [91]

uses beams with circular cross-sections, i.e. cones. This technique is therefore also

a special case of beam tracing. Using cones as beams, however, it is impossible to

cover the entire space around the source without gaps or overlap, see Fig. 2.11b. If

gaps are allowed, it is likely that important paths will be missed. On the other hand, if

overlap is allowed, computer power is wasted as some paths are calculated multiple

times. Some techniques have been proposed to address this problem by, for example,

using windowing schemes (spatial weighting) across the cone faces to better account

for the overlap [92]. Redundancy is, however, not totally eliminated.

2.3.4 Acoustical Radiosity

Although the theory of radiosity has been historically derived and used in other fields

of science, e.g. optics [95, 96], thermal engineering [97–100] and computer graphics

[101–105], the first formulation of acoustic radiosity is given by Kuttruff [22], where
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he studied the reverberation properties in rectangular rooms with totally diffusive

(Lambertian) walls [22, 26]. Totally diffusive reflection is independent of the direc-

tion of the incoming ray (see Fig 1.1c). This has the advantage that reflections do

not need to be followed (traced) explicitly. The acoustic response is found in terms

of the total radiation density at the receiver given the energy exchanges between the

source and the enclosure. Neglecting (as in all geometrical methods) the effects of

phase coherence of the sound waves, Kuttruff derived an integral equation that char-

acterizes this exchange in acoustic energy due to a source and all diffusive reflections

in the room. Because of this, the approach is also referred to as “the integral equation

method”. A numerical solution of the integral equation for rectangular rooms is given

in [106]. There, an exponential time-decay of the radiation density is proven. More-

over, a solution is derived for both time-varying sources and steady-state sound fields.

In its original form, radiosity does not track specular reflections (not even partially),

and therefore simulations using this method where found to be similar to those us-

ing ray tracing with totally diffuse reflections [107]. Although not realistic [26], the

assumption of Lambertian reflection has been suggested to be less restrictive than

the assumption of purely specular reflection (as in the other geometric approaches)

[41, 108–110]. Besides, it is known that the fine structure of the RIR becomes more

diffusive as a function of time [22, 26] (it is in fact this property that motivates some

other hybrid and/or statistical methods). The accuracy of radiosity at modeling the

late-reverberation part of the RIR is explored in [41, 110, 111], where it is indeed con-

firmed that the method fails to model the fine and sharp detail of the early reflections

of the RIR, but matches more accurately the late reverberation part. Improvements

on the basic algorithm have been proposed in e.g. [41]. In [112], Le Bot proposes a

modification of the integral equation (in the form of a functional equation) with the

aim to include specular reflection in the model. In [94], Lewers proposes a combined

beam tracing-radiosity method. In general, the main challenge of radiosity is the effi-

cient solution of the underlying integral equation at every time step. A heavy off-line,

fast on-line, algorithmic partition is suggested in [26] to allow interactive modeling

rates for e.g. of moving receivers. More recently, the underlying integral equation

of the radiosity method has been generalized, giving rise to a theoretical framework

called the room acoustics rendering equation [87] that encompasses several geomet-

rical acoustic algorithms, being able to naturally model arbitrary levels of diffuse and

specular reflection.
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2.3.5 Conclusion geometrical methods

The geometrical acoustics description is in its original basic form constitutes a sim-

plified model that in many cases leads to fast broadband simulations and is known

to give good results under rather stringent assumptions. Many methods include ap-

proaches to model diffractions, transmissions, and to a lesser extent diffuse reflec-

tions (with the exception of radiosity which by construction only models diffuse

reflections), increasing realism and accuracy at the expense of the corresponding

penalty in complexity. One of the major challenges of geometrical methods is effi-

cient and accurate computation of the propagation paths. In complex scenarios, the

number of reflection, transmission and diffraction sequences increases very rapidly

as a function of time [77], and becomes expensive to compute.

2.4 Hybrid methods

To be useful in practical applications, the simulation of the RIR ought to be as realis-

tic and fast as possible. From the previous discussion we can summarize that wave-

based methods provide a mathematically rigorous description, but the proposed nu-

merical solutions are complex, their complexity increasing most drastically as a func-

tion of temporal frequency. On the other hand, the geometrical framework provides

a high-frequency approximation that increases its complexity mainly as a function of

the desired reverberation time.

It is then not surprising to see that from the above described methods, state-of-

the-art candidates (e.g. [73, 77]) are not purely based on a single approach, but com-

bine aspects of different models in order to bring together the contradictory goals

of speed and accuracy. Moreover, commercial acoustic simulation software such

as ODEON [113–116], CATT [81, 117], EASE [118], RAMSETE [90, 119], Bose

Modeler [120], and research projects such as MCRoomSIM [121] or DIVA [122],

use hybrid approaches or combine methods using spectral or temporal thresholds in

order to generate broadband results over long simulation times.

Some hybrid methods have been proposed that combine only geometrical ap-

proaches. As mentioned in Sec. 1.2, the density of reflections in the RIR grows

quadratically with time, giving rise to the distinction between early reflections and

late reverberation. With the exception of radiosity, this clearly has a direct impact

on all geometrical methods. Hybrid methods are then proposed to ease the computa-

tions needed, and/or to increase the accuracy of the solutions. For example, exhaus-

tive search for valid and visible virtual sources in the extended MISM is avoided by
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Vorländer [85] using the more efficient reflection path calculation of ray tracing to

identify the virtual sources. Lehmann and Johansson propose in [123] a combination

of an image model to model only early reflections of the RIR and to use a diffuse

reverberation model for the late reverberation part of the RIR. In this way the com-

putational complexity of the creation of higher order virtual images is avoided, while

still providing a perceptually accurate simulation performance.

2.5 The newly proposed GFD method

As described in Sec. 1.3, the main contribution of this thesis is the introduction of

an efficient method to simulate very large amounts of RIRs covering the entire room

space, i.e. to simulate the sound field given a set of sources in the room evaluated on a

dense grid of listening positions. The method is motivated by the observation that the

sound field in a box-shaped room can be modeled using a periodic spatial structure

of virtual sources (see Fig. 2.7). This is the same structure that models reflections in

the MISM. In principle the set of virtual sources is infinite, and therefore, in all algo-

rithms based on the MISM a finite subset of virtual sources must be chosen and its

contribution to the sound field computed in one way or another. The more the virtual

sources considered, the more accurate the computed sound field becomes. As it is

explained in Sec. 2.3.1, the density of virtual sources in box-shaped rooms increases

as the cube of the reverberation time. This translates to a high computational com-

plexity in the computation of the virtual sources, especially for large reverberation

times.

If the room has perfectly reflective walls, the sound field generated by the vir-

tual sources is also periodic [22, 72]. Moreover, in the original paper by Allen and

Berkley describing the MISM [78] it is shown that in this case the periodic summa-

tion of the individual sound fields is equal to the synthesis of the room modes as

given in modal analysis ( see Sec. 2.2.2). The sound field generated by the virtual

source model is then an exact solution to the wave equation with the given boundary

conditions of perfectly reflective walls.

It is well known from Fourier analysis that sampling in one domain results is an

(infinite) periodic summation in the reciprocal domain [21, 32, 37, 124]. The key

idea behind the newly proposed method exploits this property. The Fourier trans-

form of a free-field sound field is first calculated analytically. This spectrum is then

carefully sampled so that this sampling corresponds to the periodic sum of virtual

sources in the reciprocal domain. In this way, the contribution of all virtual sources

is considered at once, and no truncation of the number of virtual sources as in MISM
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related methods is needed. Further, all relevant quantities are made discrete resulting

in a DFT-based algorithm. The FFT is then used to compute the core components of

the algorithm.

This model, however, has no practical application since it is only valid for per-

fectly reflective walls. Consequently, a generalized Fourier domain (GFD) is pro-

posed. The sound field in a room with walls with complex-valued reflection coeffi-

cients can be related to a sampling condition is this domain. A fast implementation

of the generalized discrete Fourier transform (the generalized fast Fourier transform,

GFFT) is also described. A low-complexity multichannel RIR simulation algorithm

is then derived that can model frequency and angle dependent, complex-valued (and

thus can model absorption and phase changes) reflections. The method computes

the sound field at a dense grid of receiver positions and it is thus best suited for the

computation of large amounts of RIRs covering the entire room space. The GFD

method is compared against MISM to validate that the model indeed corresponds to

the exact periodic summation of virtual sources. The results of these comparisons

and the detailed technical analysis are given in Part II.

In this thesis, the GFD method has been implemented for box-shaped rooms.

The algorithm in its current form can model walls with frequency-dependent, angle-

dependent, constant (as a function of the wall surface) reflection coefficients. Al-

though the method has been implemented for box-shaped rooms only, the theory is

derived for any convex room geometry that tessellates the Euclidean 3-D space in a

periodic packing. It has been shown that some convex polyhedra, such as the equilat-

eral triangular prism or the hexagonal prism, have this property [125]. Therefore, the

method can be readily applied on those geometries.

For the GFD method to be of widespread use in addressing acoustic problems for

next-generation communication technologies, are still many challenges to overcome.

To model rooms with arbitrary geometries, to include reflection coefficients that are

function of the wall surface, and to model objects and changing conditions in the

enclosure are important extensions to the model, and the topic of of current research.

2.6 Conclusion

The combined research efforts in different fields, such as seismology [24], underwa-

ter and holographic acoustics [35], signal processing [31, 82, 83], computer vision

[64, 71, 73, 77], digital musical-instrument simulation [57], room acoustics [22, 75],

and the new possibilities open by massive multicore parallelization [34, 63], have led

to a plethora of algorithms for room acoustics simulation, – the generation of audio
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signals such that when played, they mimic as accurately as possible the impression

of actually being in the room space. This directly or indirectly involves modeling of

the RIR at different spatial positions. Historically, wave methods where used only as

theoretical formulations that provided insight into the problem [22, 23], and although

wave theory can be used to model all possible room sound fields, the lack of efficient

computational methods has confined the theory to the simulation of low-frequency

sound fields. On the other hand, the first computational methods to model RIRs

where based on the simpler geometrical acoustics [45, 78, 79], but this framework is

only realistic enough in the high-frequency range. Nowadays, this binary distinction

is not valid. In the quest to derive realistic and fast numerical methods, the newest

algorithms combine concepts, techniques and representations of wave and geometri-

cal acoustics alike. A real-time solution that offers flexibility and realistic accuracy

is still a major challenge.

As a final summary a comparison between all the algorithms reviewed in this

chapter is given in the table below. The algorithms are evaluated with respect to

some key properties discussed in this chapter using a discrete scale with seven steps:

(+ + +), (++), (+), (0), (−), (−−) and (− − −), where (+ + +) denotes a very
positive score and (− − −) denotes a very negative score. The properties evaluated

are the following:

• Computational complexity. It refers to how efficient an algorithm is in practice.

It does not represent a purely objective score since the practical complexity of

an algorithm is determined by many factors. For example, some algorithms

can be used for real-time RIR simulation by factoring the computation into a

complex off-line stage followed by efficient on-line computations. The scores

are thus given based on total average complexity.

• Accuracy. It refers to how accurate an algorithm models the acoustical phe-

nomena described in Sec. 1.2. In other words, how realistic the method is.

• Arbitrary geometry. It is an indication on how flexible an algorithm is with

respect to the boundary conditions. It quantifies how arbitrary the room geom-

etry is allowed to be and also if objects can be included in the model.

• Massive multichannel. It gives a score on how suitable an algorithm is to

model massive amounts of RIRs. This is also related to the low-complexity

score since the less complex an algorithm is, the more apt it is to model many

RIRs.
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Abstract

In this letter we present a method for low-complexity simulation of multi-channel

room impulse responses (RIRs). Low-complexity RIR methods will become in-

evitable in next generation communication systems having massive amounts of mi-

crophones/loudspeakers. For a room with rigid boundaries, we show that proper

sampling of the free-field plenacoustic spectrum results in the solution of the wave

equation at any position in the room. We show that the spatial aliasing introduced by

spectral sampling represents the wall reflections. These wall reflections are usually

modelled, at least in low-complexity simulation algorithms, by the creation of virtual

free-field sources outside the room, an image source model commonly referred to as

the image method. The image method requires O(N3) operations per receiver posi-
tion, whereas the newly proposed method requires only O(N logN) operations per
receiver position.

3.1 Introduction

In more than 30 years of research on digital modeling of room impulse responses

(RIRs) [1], methods have appeared that can achieve very realistic results. However,

the complexity of these methods increases rapidly with the desired reverberation time,

which makes them unusable in the case where a very large amount of channels are to

be simulated.

It is expected that the future of human communication technology will be based

on systems having massive multi-input, multi-output (MMIMO) channel configura-

tions. Such systems will offer never before achieved experiences in a variety of new

applications, like ambient telephony [2] or virtual teleconferencing. Going multi-

channel, however, has shown to be fundamentally different than its single-channel

counterpart in several acoustic signal processing problems. As an example, in the

multi-channel acoustic echo cancellation (AEC) problem, the optimal filter coeffi-

cients are, in general, not unique since instead of estimating the individual RIRs, we

only estimate the sum of them. As a consequence, drastic errors can occur with slight

changes of the acoustical environment (the problem is ill conditioned) [3]. This can

be overcome if we can accurately compute the individual RIRs as well and use these

estimates to construct the sum signal. Clearly, specially in the case of MMIMO AEC,

this is only feasible if the computation of the individual RIRs is of sufficiently low

complexity. In this letter we present a very low-complexity method for modeling

multi-channel RIRs. The method is based on proper sampling of the free-field ple-
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nacoustic spectrum. The theory and experimental results presented here are for the

case of rigid walls only. Efficient inclusion of wall reflection coefficients is the topic

of current research.

3.2 The evolution of the sound field in a room

The plenacoustic function (PAF), first introduced in [4], completely characterizes

the sound field in space. Given an omni-directional point source (monopole) S at

a certain position s ∈ R
3, the PAF is given by p(x, t) = (hs ∗ s)(x, t), where s

is the signal emitted by S, hs is the room impulse response (RIR) at location x ∈
R

3 with respect to the source location s and ∗ denotes the (temporal) convolution

operator. Multiple sources are considered as the superposition of single sources [4].

The plenacoustic spectrum (PAS) is given by the 4-D Fourier transform of the PAF,

that is, P (φ, ω) = Fx,t {p(x, t)}, where Fx,t {·} is the Fourier transform operator

over the specified dimensions x and t, φ ∈ R
3 is the spatial-frequency vector and ω

the temporal frequency. Consider a monopole S in free-field, emitting a Dirac pulse

at position s and time t = 0, and let c denote the speed of sound. The PAF (RIR in

this case) at position x, corresponds to the free space Green function given by [5]

p(x, t) =
δ
(

t− r
c

)

4πr
, r = ‖x− s‖,

and its corresponding spectrum by [4]

P (φ, ω) =
ejφ

T
s

‖φ‖2 −
(

ω
c

)2 , (3.1)

where the superscript T denotes matrix transposition. In order to study the sound

field in a box-shaped room we use the classical image source model proposed in [6],

which is generally referred to as the image method. The image method reconstructs

the sound field within a box-shaped room by creation of virtual free-field sources

(outside the room) which represent the reflections introduced by the walls. Fig. 3.1

shows an example of the constellation of virtual sources in the image method for a

2-D scenario. The solid rectangular box denotes the room with dimensions Lx and

Ly. The source S0 denotes the direct-path contribution of S, whereas the sources

S1, S2 and S3 denote the contributions due to reflections at the left, bottom and com-

bination of left and bottom wall, respectively. All other reflection contributions are

obtained by a periodic repetition of these four sources throughout the whole space.
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Lx

S0

S2

S1

S3

Ly

Figure 3.1: Example of the constellation of virtual sources in the image method [6]

for a 2-D scenario.

The set of (in this case four) virtual sources that generate the periodic constellation

will be referred to as the set of mother sources [4]. More general, in the ν-D scenario,

there are 2ν mother sources.

In order to derive an efficient algorithm for computing the complete sound field

in a real (3-D) scenario, we will formalize the above discussion. Given the set of

mother sources, the complete set of virtual sources is obtained by a 3-D periodic

packing [7] over a lattice, say Λ, given by

Λ = {λ ∈ R
3 : λ = Λn, n ∈ Z

3}.

The matrix Λ is called the generator matrix of the lattice of which the columns are

the basis vectors of the lattice. In the case of a box-shaped room with dimensions

Lx, Ly and Lz , Λ is given by

Λ = diag(2Lx, 2Ly, 2Lz).

Using this notation, the total sound field at any position x is given by

p(x, t) =
∑

n∈Z3

pm(x + Λn, t), (3.2)

with

pm(x, t) =
7
∑

l=0

δ
(

t− rl

c

)

4πrl
, rl = ‖x− sl‖,
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the contribution of the set of mother sources Sl, where l = 0, . . . , 7. Clearly, di-

rect computation of the sound field involves the contribution of infinite many virtual

sources, which is practically unfeasible. Therefore, the number of periodic repeti-

tions taken into account in practical situations is made finite, which will result in a

computational complexity of O(N3), where N is the number of repetitions per di-

mension which is proportional to the reverberation time. Over the past years, several

improvements of the image method have been proposed to reduce the computational

complexity [8], [9], [10]. However, none of these methods has led to a total com-

plexity less thanO(N3) per channel. Obviously, in real-time scenarios or large-scale

sensor network applications this complexity is far too high and alternative algorithms

for computing the sound field are necessary.

3.3 Fast computation of multichannel RIRs

We propose a new method to compute the complete sound field in a room by spatial

sampling of the PAS generated by the mother sources. For a 3-D scenario, this PAS

is given by

Pm(φ, ω) =

7
∑

l=0

ejφ
T
sl

‖φ‖2 −
(

ω
c

)2 . (3.3)

We have the following result.

Proposition 3.1. LetΛ be the generating matrix of the lattice specifying the periodic

packing of the mother sources in space, and let Φ denote the generating matrix of

the lattice Φ specifying the spectral sampling points. Then Pm(Φk, ω), k ∈ Z
3, is

the (spatial) Fourier series expansion of

q(x, t) = |Λ|
∑

n∈Z3

pm(x + Λn, t),

if and only if Φ = 2πΛ−T .

The proof is given in appendix 3.A. Proposition 3.1 gives us a recipe for con-

structing the complete sound field in a room, which is given by (3.2). We sample the

PAS of the set of mother sources given by (3.3) using the sampling lattice generated

by Φ = 2πΛ−T , scale the result by |Λ|−1 and inverse Fourier transform the coef-

ficients thus obtained. For a box-shaped room with dimensions Lx, Ly and Lz , the
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generator matrix for the sampling lattice is simply given by

Φ=diag

(

π

Lx
,
π

Ly
,
π

Lz

)

.

In order to implement the proposed algorithm on a computer, we need to sample ω as

well. However, since p(x, t) is not time limited (it has infinite support), the process

of sampling ω will introduce (undesired) time-domain aliasing. Let Ψ denote the

generating matrix of the lattice specifying the spectral sampling points of both the

spatial and temporal frequencies, defined by

Ψ = diag(Φ,Ωs),

where Ωs denotes the temporal-frequency sampling interval and where we assumed

separate sampling of spatial and temporal frequencies. Using the same arguments

as used in the proof of Proposition 3.1, it follows that sampling the PAS generated

by the mother sources using a sampling lattice Ψ generated by Ψ yields the Fourier

series expansion of

q(x, t) = |∆|
∑

n∈Z3

∑

n∈Z

pm(x + Λn, t+ Tpn), (3.4)

if and only if

Ψ = 2π∆−T = 2πdiag(Λ, Tp)
−T .

By inspection of (3.2) and (3.4), we conclude that

|∆|−1q(x, t) = p(x, t) +
∑

n∈Z3

∑

n∈Z

n6=0

pm(x + Λn, t+ Tpn),

where the last term of the right-hand side represents the time-domain aliasing con-

tribution introduced by sampling the temporal frequency ω. Although p(x, t) is not
time limited, for practical applications we will have that limt→∞ p(x, t) = 0, so that
by making Tp sufficiently large (i.e. making Ωs sufficiently small), we can make the

error due to time-domain aliasing arbitrarily small. Clearly, ignoring time-domain

aliasing effects, (3.4) can be used to compute the PAF in any position in the room.

However, the reconstruction of p(x, t) out of its Fourier coefficients involves an in-

finite summation. In addition, if we want to know the PAF for another location in

space, we have to recompute the complete inverse Fourier transform. Thus, in ap-

plications involving many microphones or situations where the microphone is being

moved through the room, this computational complexity is too high.
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In the remainder of this section we will show that, by approximating the PAF us-

ing the fast Fourier transform (FFT), we can significantly reduce the computational

complexity. To do so, we limit the summation of the inverse Fourier transform to

a finite number of elements and periodically extend this finite set over the (4-D)

spatio-temporal frequency space. Making the PAS periodic, however, implies a dis-

cretization of the PAF. That is, using this approach we can only compute the PAF

in a finite number of positions. As we will see below, we can make these sample

points in space arbitrarily dense at the expense of taking more Fourier coefficients

into account when reconstructing the PAF.

Let Σ be a sublattice of Ψ (Σ ⊆ Ψ is a subset of Ψ which itself is a lattice)

denoting the lattice for generating the 4-D periodic packing of the frequency space.

Moreover, let Γ denote the spatio-temporal sampling lattice imposed by making the

PAS periodic and assume ∆ ⊆ Γ. Clearly, we have Γ = 2πΣ−T . With this, the PAF

can be approximated by

p(Γn) ≈ 1

N(∆/Γ)

∑

k∈VΣ(0)

|Γ|−1Pm(Ψk)ej(k
T Ψ

T
Γn), (3.5)

where N(∆/Γ) denotes the number of lattice points of Γ that lie inside V∆(0), the
Voronoi region of ∆ around the origin. Obviously, the more frequency samples we

take into account (by making VΣ(0) larger), the finer we sample the PAF because of

the relation Γ = 2πΣ−T . Indeed, we have

N(∆/Γ) =
|∆|
|Γ| =

(2π)4|Ψ−T |
(2π)4|Σ−T |

=
|Σ|
|Ψ| = N(Σ/Ψ),

and we conclude that the number of spectral evaluation points N(Σ/Ψ), equals the
number of spatio-temporal samples N(∆/Γ) of the PAF. Since in this case the PAF is

periodic as well, we only need to evaluate it in V∆(0). The computational complex-

ity of this approach is given by the evaluation of (3.5) limited to {n ∈ Z
4 : Γn ∈

V∆(0)}. Moreover, we have that most of the energy of the PAS (3.3) is localized in

the region ‖φ‖ ≤ |ω/c| [4]. For a maximum temporal frequency ωb, this fact is used

to determine Σ and consequently N(Σ/Ψ), allowing us for a trade between speed

and accuracy of reconstruction. The evaluation of (3.5) will take O(N4 logN) oper-
ations, withN proportional to ωb for computing the PAF in N(∆/Γ) spatio-temporal

positions. SinceN(Σ/Ψ)=N(∆/Γ) the method is of complexityO(N logN) per re-
ceiver position (although all positions are calculated at once). The image method, on

the other hand, is of complexityO(N3) per receiver position, withN proportional to

the reverberation time. Therefore when large amounts of receiver positions are to be

simulated, the newly proposed method significantly outperforms the image method.
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Figure 3.2: (a) 4608 receivers (red dots) positioned in the (y, z) plane at x= 2.51.
The sound source is s0. (b) Comparison of both methods only for receiver ny = 44
of one line in the y direction at nz =16. (c) Experimental results for all receivers at

the same line, RIRs simulated with the proposed method. (d) RIRs simulated with

the image method [6].

3.4 Numerical Experiments

In this section we compare the RIRs generated by the standard image method (3.2)

to the ones generated by the newly proposed method (3.5). The presence of totally

reflective walls requires the PAF to satisfy a boundary condition which results in a

non-decaying sound field [1], [5]. Therefore, in order to present an illustrative exam-
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ple of the theory, we will set fully reflective walls in two dimensions and no walls

(or fully absorptive walls) in one dimension. To overcome the non-bandlimited rep-

resentation of the delta pulses in the image method, we follow Peterson’s approach

[11]. We replace each pulse by the impulse response of a Hanning-windowed ideal

low-pass filter of length 8 ms. For the experiment we will consider temporal signals

bandlimited to 2 kHz. The room dimensions are (Lx, Ly, Lz) = (4.78, 3.79, 2.83).
The temporal sampling-frequency is set to ωs = (4000)2π. We will consider a sim-

ulation time of Th = 1.024 s, which accounts for Nt = ⌊(Th)(ωs/2π)⌋= 4096 tem-

poral samples. Further, by choosing the temporal-frequency sampling interval to be

Ωs =ωs/4Nt, the spectral sampling matrix is given by Ψ=diag{ π
Ly
, π

Lz ,Ωs}, since
no reflections are considered in the x direction. The spectral periodicity matrix is cho-

sen to be Σ = (Ψ)(diag{144, 128, 4Nt}), which for the purpose of our experiment

gives a good compromise between spectral aliasing and speed of reconstruction. This

directly defines the sampling lattice Γ with matrix Γ = diag{0.052, 0.044, 0.00025}.
Since Γ is rectangular, the receiver positions (spatial samples of the PAF) are ar-

ranged in a plane orthogonal to the x direction. Its position is fixed at x=2.51. This
gives us a total of 4608 receiver positions in the room, with (72, 64), receivers in
the y and z directions. The source S is at position s0 =(3.98, 1.70, 0.63). Fig. 3.2a
shows a view of the scenario.

First we evaluate the sampled free-field PAS of the mother sources Pm(Ψk), us-
ing the parameters already given. Small damping constants are introduced in the

spatial frequencies close to the singularities of the PAS. This is justified since the

finiteness of the experiment forces the function to be bounded [1]. After FFT syn-

thesis, we obtain our approximation of the PAF at all microphone positions. For the

image method algorithm, we evaluate individually the RIRs from the source to each

microphone. We use a triplet of integers ny, nz , nt to index the PAF samples. The

colormap plots in 3.2c and 3.2d display a top view of the results only for one line of

microphones in the y direction at nz =16 and time samples 0≤nt≤143, for the pro-
posed method and the image method respectively. Additionally in 3.2b, a comparison

plot for microphone ny = 44 of the same line is given over the full time span of the

RIRs. It is important to note that the spatio-temporal “locations” of the reflections are

perfectly modeled by the proposed method. However, discrepancies between these

approaches can be observed. These are caused by temporal aliasing that can be made

arbitrarily small by decreasing the spectral sampling interval Ωs. The experiment

was implemented in a x86 PC system at 2.3 Ghz. with MATLAB R©, using C++ mex

functions for both methods. With this configuration, the image method took 15 hours

to complete, whereas the proposed method only took 18 seconds. Clearly showing

the huge saving in computational complexity.
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3.5 Conclusions

For a room with rigid walls, and a geometrical shape that allows the sound field to

be mathematically modeled in terms of a spatially periodic structure, a very pow-

erful representation is obtained via its Fourier series expansion. It was shown that

this expansion is obtained by spatial sampling of the plenacoustic spectrum of a set

of mother sources. By making the temporal-frequency space discrete, a very low

complexity algorithm for multi-channel RIRs computation was derived. It was also

shown how speed of reconstruction can be further decreased at the expense of inac-

curacies due to temporal aliasing. The theory and experiments were presented for

the case of rigid walls, efficient inclusion of wall reflection coefficients is the topic

of current research.

Appendix 3.A Proof of Proposition 3.1

Proof. Sampling the PAS of the mother sources at spectral sampling pointsΦk, k ∈
Z

3, yields

Pm(Φk, ω) =

∫∫

pm(x, t)e−j(kT Φ
T
x+ωt)dxdt

=

∫

∑

n∈Z3

∫

VΛ(n)
pm(x, t)e−j(kT Φ

T
x+ωt)dxdt, (3.6)

where VΛ(n) is called a Voronoi region of the lattice Λ and is defined by

VΛ(n) ,
{

x ∈ R
3 : ‖x−Λn‖ ≤ ‖x−Λn

′‖, ∀n′ ∈ Z
3
}

.

Making the substitution x→ x + Λn, (3.6) becomes

Pm(Φk, ω)

=

∫∫

VΛ(0)

∑

n∈Z3

pm(x + Λn, t)e−j(kT Φ
T (x+Λn)+ωt)dxdt

=

∫∫

VΛ(0)

∑

n∈Z3

pm(x + Λn, t)βe−j(kT Φ
T
x+wt)dxdt,
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where β = e−jkT Φ
T
Λn, and VΛ(0) is the Voronoi region around the origin. This is

the (spatial) Fourier series expansion of

|Λ|
∑

n∈Z3

pm(x + Λn, t)β.

The term β = e−jkT Φ
T
Λn = 1 for all k,n ∈ Z

3 if and only if Φ
T
Λ = 2πI, I the

identity matrix, or equivalently Φ = 2πΛ−T , which completes the proof.
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[2] A. Härmä, “Ambient telephony: scenarios and research challenges,” in Proc.

Interspeech, Antwerp, Belgium, August 2007, pp. 562–565.

[3] Y. Huang, J. Benesty, and J. Cheng, Acoustic MIMO Signal Processing. Berlin

Heidelberg New York: Springer-Verlag, 2006.

[4] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic function and its sam-

pling.” IEEE Trans Signal Process., vol. 54, no. 10, pp. 3790–3804, October

2006.

[5] P. Morse and K. Ingard, Theoretical Acoustics. New York: McGraw-Hill,

1968.

[6] J. Allen and D. Berkley, “Image method for efficiently simulating small room

acoustics,” J. Acoust. Soc. Am., vol. 65, pp. 943–950, April 1979.

[7] J. Conway and N. Sloane, Sphere Packings, Lattices and Groups. New York,

USA: Springer, 1993.

[8] S. G. McGovern, “Fast image method for impulse response calculations in box-

shaped rooms.” vol. 70, pp. 182–189, Jan. 2009.

81



Bibliography

[9] R. Duraiswami, D. N. Zotkin, and N. A. Gumerov, “Fast evaluation of the room

transfer function using multipole expansion.” IEEE Trans. Audio Speech Lang.

Process., vol. 15, no. 2, pp. 565–576, February 2007.

[10] F. Jabloun and B. Champagne, “A fast subband room response simulator,” in

Proceedings ICASSP’00. Washington, DC, USA: IEEE Computer Society,

June 2000, pp. II925–II928.

[11] P. Peterson, “Simulating the response of multiple microphones to a single acous-

tic source in a reverberant room,” J. Acoust. Soc. Am., vol. 80, pp. 1527–1529,

1986.

82



4
A generalized Poisson summation formula

and its application to fast linear convolution

Jorge Martı́nez, Richard Heusdens and Richard C. Hendriks

c©2011 IEEE. Personal use of this material is permitted. However, permission to use

this material for any other purposes must be obtained from the IEEE by sending a

request to pubs-permissions@ieee.org.

83



4. A generalized Poisson summation formula and its application to fast linear

convolution

Abstract

In this letter, a generalized Fourier transform is introduced and its corresponding gen-

eralized Poisson summation formula is derived. For discrete, Fourier based, signal

processing, this formula shows that a special form of control on the periodic repeti-

tions that occur due to sampling in the reciprocal domain is possible. The present

paper is focused on the derivation and analysis of a weighted circular convolution

theorem. We use this specific result to compute linear convolutions in the general-

ized Fourier domain, without the need of zero-padding. This results in faster, more

resource-efficient computations. Other techniques that achieve this have been intro-

duced in the past using different approaches. The newly proposed theory however,

constitutes a unifying framework to the methods previously published.

4.1 Introduction

The classical Poisson summation formula, expresses the fact that discretization in

one domain implies periodicity in the reciprocal domain [1]. This periodicity comes

in the form of a periodic summation of the signal values. In Fourier based digital

signal processing (DSP), we have to deal with the periodic repetitions that appear

due to the discrete nature of the domains where our signals are defined. In virtually

all applications, the effect of overlapped repetitions is an issue that must be avoided,

or at least controlled. In many cases the only way to achieve this is by increasing

the sampling rate in the reciprocal domain [1], a costly operation in terms of memory

and computational resources. In this letter we introduce a generalized Fourier domain

(GFD) and derive its generalized Poisson summation formula. The newly proposed

equation, relates the samples of the continuous generalized spectrum of a signal, with

a geometricallyweighted periodic extension of the signal. As it will be explained, this

formula shows that a parametric form of control on the periodic repetitions that occur

due to sampling in the GFD is possible, without the need to increase the sampling

rate. This result has in principle many potential applications, the work presented

here however, will be focused on the derivation and analysis of the weighted circular

convolution theorem for the generalized discrete Fourier transform (GDFT).

For finite discrete-time signals of length N ∈ Z, point-wise multiplication of

the discrete spectra of the signals corresponds to circular convolution [1]. In order

to perform a linear convolution (i.e. LTI filtering), the input signals are first zero-

padded to at least length 2N −1 and then transformed, increasing the number of

computations needed [1]. In this letter we show how the newly proposed theorem
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can be used to perform linear convolutions in the GFD without the need of zero-

padding, implementing the GDFT by means of the FFT. As we show, this results in

a more efficient computation in terms of memory locations and operations needed.

Although techniques to obtain a linear convolution without zero-padding have been

developed in different contexts e.g [2] and [3], we show that the proposed theory

constitutes a unifying framework to these approaches.

4.2 Poisson summation formula and circular

convolution

Consider the Fourier transform for a signal f(t) ∈ L2(R) given by,

F (Ω) =

∫ ∞

−∞
f(t)e−jΩt dt, (4.1)

where Ω ∈ R is the angular frequency variable, and t ∈ R represents time. If (4.1)

exists, then we call F the spectrum of the signal f . The inverse transformation is

given by [1]

f(t) =
1

2π

∫ ∞

−∞
F (Ω)ejΩt dΩ. (4.2)

The Poisson summation formula then links the signal f to the samples of its spectrum

F [1], i.e,
∑

p∈Z

f(t+ pTp) =
1

Tp

∑

k∈Z

F

(

2πk

Tp

)

e
j 2πkt

Tp . (4.3)

From this equation we see that the repetitions of the periodic summation at the right-

hand side will overlap if the length of the support of signal f is larger than Tp. Thus,

given a fixed signal with finite-length (compact) support, the only way to avoid over-

lapping using (4.3) is to increase the value of Tp. This means a smaller spectral

sampling interval 2πk/Tp, which implies increased spectral sampling rate, and con-

sequently, more memory and computational resources. This formula also allows us

to easily understand the effect that frequency discretization has on the convolution

product of two signals, say f(t) and h(t), when performed in the frequency-domain.

That is,

∑

p∈Z

(f ∗ h)(t+ pTp) =
1

Tp

∑

k∈Z

(FH)

(

2πk

Tp

)

e
j 2πkt

Tp , (4.4)
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where ∗ denotes the linear convolution operator, and where we have made use of the

convolution theorem [1]. The periodic repetitions that appear in the time domain will

overlap when the support of the convolution between f and h is larger than Tp, and

consequently, it will be impossible to obtain the linear convolution result using (4.4).

This is exactly how circular convolution is defined, as a periodic or cyclic version

of linear convolution [1]. We will show that, by introducing a generalized Poisson

summation formula, a special form of control on these repetitions can be obtained.

4.3 A Generalized Poisson summation formula

We now define a generalized Fourier transform for f ∈ L2(R), and α ∈ C\{0} as
follows,

Fα(Ω) =

∫ ∞

−∞
f(t)eβte−jΩt dt, (4.5)

where β = log(α)/Tp. This is equivalent to the ordinary Fourier transform (if it

can be defined) of the modulated signal f(t)eβt. Note that (4.5) can be seen as a

particular case of the Laplace transform, therefore for |ℜ{β}| > 0, with ℜ{β} the
real part of β, we have that (4.5) would not be defined on all L2(R), but only on

the dense subset of all causal and anticausal (single-sided) functions [4]. Hence, for

finite-length signals, operation (4.5) can always be defined, since these signals are

special cases of single-sided functions. The inverse transformation follows as,

f(t) =
e−βt

2π

∫ ∞

−∞
Fα(Ω)ejΩt dΩ. (4.6)

Evaluating Fα in (4.3), we obtain a generalization of the Poisson summation formula,

∑

p∈Z

eβ(t+pTp)f(t+ pTp) =
1

Tp

∑

k∈Z

Fα

(

2πk

Tp

)

e
j 2πkt

Tp

so that,
∑

p∈Z

eβpTpf(t+ pTp) =
e−βt

Tp

∑

k∈Z

Fα

(

2πk

Tp

)

e
j 2πkt

Tp

or,
∑

p∈Z

αpf(t+ pTp) =
e−βt

Tp

∑

k∈Z

Fα

(

2πk

Tp

)

e
j 2πkt

Tp (4.7)
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since α = eβTp . This equation, relates the samples of the continuous generalized

spectrum of a signal, with a geometrically weighted periodic extension of the signal.

Therefore, an extra form of control can be obtained over the repetitions via the pa-

rameter α. In analogy, let us now define the generalized discrete Fourier transform

(GDFT) for finite length signals x(n), n = {0, . . . , N − 1}, k = {0, . . . , N − 1}, as
follows,

Xα(k) =
N−1
∑

n=0

x(n)eβne−j 2π
N

kn (4.8)

where, β=log(α)/N . The inverse GDFT is given by,

x(n) =
e−βn

N

N−1
∑

k=0

Xα(k)ej 2π
N

kn. (4.9)

In this case the generalized Poisson summation formula takes the following form,

∑

p∈Z

αpx(n+ pN) =
e−βn

N

N−1
∑

k=0

Xα(k)ej 2πkn
N , (4.10)

since α=eβN . Taking Zα(k)= (XαYα)(k) in (4.10), and applying the convolution

theorem we obtain,

z(n) =
∑

p∈Z

αp(x ∗ y)(n+ pN). (4.11)

For α = 1, this corresponds to the standard Fourier case as already shown for

the continuous time case in (4.4). From (4.11) we see how circular convolution is

related to linear convolution. Although the original sequences x and y are of length

N , its convolution product is however of length 2N−1. Then it follows that z(n)
for n = {0, . . . , N − 1}, represents the linear convolution of x and y plus the last

N−1 terms of one overlapped repetition. The classical approach of zero-padding

avoids this situation by making N large enough, so that the periodic repetitions in

(4.11) are sufficiently appart to avoid overlapping. In the next section we will derive

the weighted circular convolution theorem for the GDFT pair (4.8) and (4.9). This

theorem will be used to perform linear convolutions in the GFD without the need

of zero padding, taking advantage of the weighting effect that factor αp has on the

repetitions of the signal as expressed by the generalized Poisson summation formula

(4.10).
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4.4 Weighted circular convolution theorem

We have the following result.

Property 4.1. Let x(m), m ∈ {0, . . . , N − 1} and y(l), l ∈ {0, . . . , N − 1} be the
signals to be convolved. For n ∈ {0, . . . , N − 1}, we have,

e−βn

N

N−1
∑

k=0

Xα(k)Yα(k)ej 2π
N

nk = (4.12)

n
∑

m=0

x(m)y(n−m) + α
N−1
∑

m=n+1

x(m)y(N + n−m), (4.13)

where the left hand summation in (4.13) represents the contribution of N linear con-

volution terms, and the right hand summation the contribution of N circular convo-

lution terms (which are in fact the last terms of the linear convolution). The factor α
effectively weights the amount of circular convolution that is obtained. Thus, given

two discrete-time, finite length signals, x(n) and y(n), point-wise multiplication of

their generalized discrete spectra, Xα(k) and Yα(k), corresponds to a weighted cir-

cular convolution in the time-domain. The proof is given in appendix 4.A.

4.5 Linear convolution using the GDFT

To compute the weighted circular convolution operation given by (4.12), the general-

ized spectrum of the signals to be convolved is obtained using the GDFT (4.8). Note

that this operation can be implemented, by taking the FFT of the modulated signal,

x(n)eβn with β = log(α)/N . The inverse transform (4.9) can be obtained by mul-

tiplying the IFFT of the generalized spectrum with the inverse function e−βn. For

finite energy signals, the theory of Laplace integrals [4], ensures the existence of the

GDFT for any value of α∈C\{0}, as previously mentioned in Sec. 4.3. Let us now

analyze a special case of the weighted convolution theorem, setting α = j, with j
the imaginary unit. For real signals x and y, the resulting signal obtained after ap-

plying (4.12) becomes complex (its spectrum not being Hermitian symmetric). By

a careful inspection of (4.13), it is noted that as a result, the first N values of the

linear convolution are stored in the real part of the signal, and the remaining N−1
terms are perfectly preserved in its imaginary part. Hence, concatenating the real

and imaginary parts, a 2N−1 point, error-free convolution can be obtained in the

GFD without the need of zero-padding. If x and y are complex, then two transforms
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are necessary to obtain a linear convolution, i.e. for α=±j. Two show this, let us

denote by zj the result of (4.12) setting α= j, and by z−j the result setting α=−j.
Further denoting by zℜ and zℑ the real and imaginary parts respectively, of the linear

convolution between x and y, then by (4.13) we obtain,

zj(n) = zℜ(n) + jzℑ(n) + j(zℜ(N + n) + jzℑ(N + n)),

z−j(n) = zℜ(n) + jzℑ(n)− j(zℜ(N + n) + jzℑ(N + n)).

Clearly, the first N samples of the linear convolution can be obtained by (zj(n) +
z−j(n))/2, and the remaining samples by (zj(n)− z−j(n))/(2j).

If one takes α∈R, with 0 < α << 1 in (4.12), then not an exact, but an approxi-

mation of linear convolution is obtained. In fact, only the first N values of the linear

convolution are approximated, since the circular convolution terms in (4.13) are atten-

uated by a very small factor. The approximation can be made as accurate as possible

(making α as small as possible), up to the limits imposed by finite word-length arith-

metic. This holds for both complex or real inputs. In this case for real time-domain

signals, Hermitian symmetry still holds. Therefore, the point-wise multiplication of

the spectra can be performed over the first N/2 + 1 DFT coefficients if N is even,

and (N − 1)/2 + 1 coefficients if N is odd.

Two techniques to obtain a linear convolution without the need of zero-padding

have been previously introduced in [2] and [3], following different approaches. By

setting α=j we directly obtain what the authors in [2] call the right-angle circular

convolution (RCC), and for α=−j the left-angle circular convolution (LCC). Further
in [3], the authors propose to multiply the input sequences by a scaling factor sn ∈ R.

This is equivalent to use GDFTs with parameter α= sN in our proposed derivation.

Hence, these techniques can be seen as particular cases of the weighted circular con-

volution theorem. The newly proposed theory constitutes therefore a generalization

that not only provides a unifying framework for previous methods, but also allows for

a deeper insight into the problem. This leads to the formulation of new applications,

such as the approximation here proposed setting 0 < α << 1.

4.6 Computational complexity analysis and

experiments

In real applications, one would like to use the convolution theorem together with the

FFT in order to perform linear convolutions in the frequency-domain with reduced

complexity [1]. In some of these applications, the goal is to convolve two finite
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length signals without worrying about causality or delay (like in the multiplication

of two long polynomials). In many real-time DSP problems however, the goal is to

filter a long signal, using a finite length (in general much shorter) LTI filter. This

is achieved in a block-by-block basis, performing shorter convolutions at each step

using well known approaches [1]. In all cases, the operation at hand can be seen

as the linear convolution of a length-N signal, say x(n) with a length-M filter, say

h(n), where without loss of generality the assumptionM ≤ N is made. The result

of the convolution is therefore of size N +M − 1.
An exact complexity analysis is a lengthy and complex task. State-of-the-art FFT

algorithms deliver quite inhomogeneous (although asymptotically “equivalent”) per-

formance [5]. In each specific case, advantageous conditions can be exploited by the

algorithms. The complexity then, becomes a function of the FFT length, the signals

class, symmetries present in the input and output signals, hardware architecture, etc

[5]. Let us now analyze the total number of multiplications needed as a reasonable ba-

sis for comparing the computational complexity. For simplicity, real-valued signals

are considered. Thus, given x(n) and h(n), the classical frequency-domain approach

requires to pad both signals to at least a size of N +M − 1. Moreover, we have that

1<M ≤N , hence the complexity can be expressed as a function of N and the ratio,

λ=(M − 1)/N , where 1/N≤λ<1. Then, we have that three (I)FFTs are needed to
transform the signals to the frequency-domain and back to the time-domain. For each

of these, the FFT (or IFFT) requires approximatelyN(λ+1) log2(N(λ+1)) real mul-

tiplications [5]. The point-wise multiplication of the spectra requires 2N(λ+ 1) + 1
multiplications, since Hermitian symmetry can be exploited [1]. Hence, the total

number of multiplications performed is 3N(λ+1) log2(N(λ+1))+2N(λ+1)+1.
For the GFD method setting α=j, only the filter, h(n) must be zero-padded to a

sizeN . To implement a GFFT or IGFFT as proposed in Sec. 4.5, the (de)modulation

of the signals require 2N multiplications each. The FFTs require approximately

N log2(N) multiplications each. The point-wise multiplication of the generalized

spectra requires 8N multiplications. The total number of multiplications needed

is thus 3N log2(N) + 14N . From here, it is clear that the complexity ratio for

the GDFT based convolution to the frequency-domain based convolution is approx-

imately, (1/(1 + λ))(log2(N) + 14/3)/(log2(N(1 + λ)) + 2/3). For example set-

ting N = 256, in the limiting case λ = 1/N , which implies M = 2, the frequency-

domain implementation shows to be about 1.4 times faster than the GDFT approach.

This is caused by the very short length of the filter. The overhead produced by

the extra multiplications needed in the GDFT method is not compensated. On the

other hand, for M = N , we have that the complexity ratio can be expressed as

(1/2)(log2(N)+14/3)/(log2(N)+5/3). In this case the GDFT based convolution is
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Figure 4.1: LTI filtering of a speech signal frame x(n) and a low-pass filter h(n),
performed in the spectral domain for N = 256. The standard frequency-domain

approach using zero-padding to 2N samples and the novel GDFT method are com-

pared.

about 1.5 times faster than the classical frequency-domain approach. For the GDFT

method setting α<<1, the complexity ratio is approximately (1/(1 + λ))(log2(N)+
2)/(log2(N(1 + λ)) + 2/3), since Hermitian symmetry can be exploited and the

(de)modulation of the signals require a total of 3N multiplications. In this case, for

N=256 the limiting case λ=1/N shows that the GDFT method is still slightly more

complex than the frequency-domain algorithm. For M =N on the other hand, the

GDFT method is about 2 times faster. From these results we see that for the GDFT

approach, the most efficient choice for the filter size is M = N . This avoids triv-

ial operations on the zeros added to the filter to be computed, giving the maximum

performance increase with respect to the standard frequency-domain method, since

the signal and the filter do not need to be zero-padded. In this case, it is also easy

to see that the new approach can be implemented using roughly half the amount of

memory that it is needed for the standard frequency-domain based convolution. In

Fig. 4.1 an example of LTI filtering of a speech signal frame x(n), using a low-pass
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filter h(n) for N = 256 is given. Both the classical frequency-domain approach us-

ing zero-padding to 2N samples and the novel GDFT approach (4.12) for α= j and
α= 10−7 are compared. After repeating the experiment 106 times, the classical ap-

proach took 62.7s to complete. The GDFT approach took 45.4s to complete for the

case α = j, and 32.2s for the case α = 10−7, showing the advantage of the GDFT

method in agreement with the analysis conducted above. For the case α= 10−7 the

result is not exact, and only the first N values of the operation can be compared. A

plot in dB of the square error between both approaches shows that a very accurate

approximation of LTI filtering is obtained. All tests were performed using double

floating-point precision in MATLAB R©on a standard desktop PC.

4.7 Conclusions

In this work a generalized Poisson summation formula has been proposed. It con-

ceptually allows us to obtain a special form of control on the periodic repetitions that

occur due to sampling in the reciprocal domain. Using this result, a weighted circular

convolution theorem for the GDFT is derived, which is used to perform efficient, non

zero-padded linear convolutions. Altogether, these results have applications which

range from simple multiplication of long polynomials, to Wiener filtering, adaptive

filtering, near-field beamforming, and many more.

Appendix 4.A Proof of Property 4.1

Proof. Let

z(n) =
e−βn

N

N−1
∑

k=0

Xα(k)Yα(k)ej 2π
N

nk .

=
e−βn

N

N−1
∑

k=0

(

N−1
∑

m=0

x(m)eβme−j 2π
N

mk

)

×
(

N−1
∑

l=0

y(l)eβle−j 2π
N

lk

)

ej 2π
N

nk
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z(n) =
e−βn

N

N−1
∑

m=0

x(m)eβm
N−1
∑

l=0

y(l)eβl

×
(N−1
∑

k=0

ej( 2π
N )k(n−m−l)

)

.

For p ∈ Z we have [1],

N−1
∑

k=0

ej( 2π
N )k(n−m−l) =

{

N, l = n−m+ pN
0, otherwise.

(4.14)

Therefore we have that l=(n−m+ pN)∈{0, . . . , N − 1}, and p=−⌊(n−m)/N⌋,
where ⌊x⌋ is the nearest integer ≤ x. Further using (4.14) we obtain

z(n) =
N−1
∑

m=0

x(m)y(n−m+ pN)eβmeβ(n−m+pN)e−βn

=
N−1
∑

m=0

x(m)y(n−m+ pN)eβpN

=
N−1
∑

m=0

x(m)αpy(n−m+ pN). (4.15)

Since the output signal is of lengthN , we have that (n−m)∈{−N + 1, . . . , N − 1},
and thus p∈{0, 1}, so that (4.15) can be rewritten as

z(n) =

n
∑

m=0

x(m)y(n−m) + α

N−1
∑

m=n+1

x(m)y(N + n−m)
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5. A generalized Fourier domain: signal processing framework and applications.

Abstract

In this paper, a signal processing framework in a generalized Fourier domain (GFD)

is introduced. In this newly proposed domain, a special form of control on the peri-

odic repetitions that occur due to sampling in the reciprocal domain is possible, with-

out the need to increase the sampling rate. Important properties of the generalized

discrete Fourier transform (GDFT), such as a weighted circular correlation property

and Parseval’s relation are derived. A non-zero padded overlap-add algorithm for

linear filtering of long signals is derived, both for stationary and non-stationary filter

conditions. The novel framework opens possibilities for signal processing applica-

tions. Examples of these applications are given and discussed.

5.1 Introduction

In this paper we introduce a framework for signal processing in a generalized Fourier

domain (GFD). In this domain a special form of control on the periodic repetitions

that occur due to sampling in the reciprocal domain is possible, without the need

to increase the sampling rate. First in Sec. 5.2 we review the definition of the gen-

eralized discrete Fourier transform (GDFT) and its associated generalized Poisson

summation formula (GPSF), both previously introduced in [1]. Analogous to the pe-

riodic extension of a finite-length signal that occurs in standard Fourier theory [2, 3],

here we introduce the concept of “weighted periodic signal extension” that naturally

occurs when working in the GFD. Next we study the connections of the presented

theory to spectral sampling, analyticity and the z-transform. This analysis also serves

as a discussion of the generalized Fourier transform and its relationship to the stan-

dard Fourier transform. In Sec. 5.3 important properties of the GDFT are derived

such as the weighted circular correlation property and Parseval’s energy relation for

the GFD that, together with the previously introduced weighted circular convolution

theorem for the GDFT, are fundamental to build a general-purpose GFD-based sig-

nal processing framework. To finalize our discussion in Sec. 5.4 we show how the

novel framework can be used in spatial-audio applications such as the simulation of

multichannel room impulse responses for auralization purposes in e.g. virtual reality

and telegaming systems.
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5.2 A generalized Fourier domain

Let us define the generalized discrete Fourier transform for finite-length signals x(n),
n = {0, . . . , N−1}, with parameter α ∈ C\{0} as,

Gα {x(n)} , Xα(k) =
N−1
∑

n=0

x(n)eβne−j 2π
N

kn, (5.1)

for k={0, . . . , N−1}, where β=log(α)/N . The inverse GDFT is given by [1],

G −1
α {Xα(k)} , x(n) =

e−βn

N

N−1
∑

k=0

Xα(k)ej 2π
N

kn. (5.2)

The GDFT (5.1) is equivalent to the ordinary discrete Fourier transform of the modu-

lated signal x(n)eβn. The finite-length signal eβn for n = {0, . . . , N−1}, is of finite
energy for all α ∈ C\{0}, therefore for x(n) a signal of finite energy, the GDFT can

be properly defined [1, 2]. Note that when α= 1, the transform pair correspond to

the standard DFT pair.

Let us denote the periodic extension of Xα(k) by X̃α(k) for k ∈Z. Clearly we

have that X̃α(k)=Xα((k))N , where Xα((k))N , Xα(k mod N), i.e. the circu-

lar shift of the sequence is represented as the index modulo N . On the other hand

(5.1) and (5.2) imply a geometrically weighted periodic extension of the signal x(n)
when evaluated outside {0, . . . , N−1}. This is stated by the generalized Poisson

summation formula (GPSF) associated with the transform [1],

x̃α(n) ,
∑

p∈Z

αpx((n))N =
e−βn

N

N−1
∑

k=0

Xα(k)ej 2π
N

kn, (5.3)

where n ∈ Z, p = −⌊n/N⌋ and ((n))N = n + pN . We can regard x̃α(n) as a

superposition of infinitely many translated and geometrically weighted “replicas” of

x(n). The replicas outside the support of x(n) are weighted by αp and x̃α(n)=x(n)
for n = {0, . . . , N−1}. This is illustrated in Fig. 5.1, where a finite signal and (a

part of) its geometrically weighted extension are depicted for α= 0.5 and N = 10.
Therefore to work in the generalized Fourier domain implies a manipulation of the

signals involved via their geometrically weighted extensions. This is an important

fact as we will see through the rest of the paper.

Signals of the form x̃α(n) although infinitely long and not being of finite energy

can be decomposed into its generalized Fourier transform components by means of

(5.1), evaluating the transform over a signal interval (“period”) of length N . This
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Original signal x(n)

Geometrically weighted extension x̃α(n)

n ∈ {0, . . . , 9}

n ∈ Z

α1 = 0.5 α−1 = 2

0
0

0
0

0.5

1

1

2

−10 −5 5

5 9

10 15

Figure 5.1: Geometrically weighted extension of a finite length signal when evalu-

ated outside its original domain, for α = 0.5 and N = 10.

fact follows directly from the generalized Poisson summation formula (5.3) which

shows, that the inverse transform
(

exp(−βn)/N
)
∑N−1

k=0 Xα(k) exp
(

j(2π/N)kn
)

is of the form x̃α(n) when evaluated over n=Z.

5.2.1 Connection to sampling, analyticity and the z-transform

The summation formula (5.3) has an important relationship to spectral sampling. The

connection of the (discrete-time) generalized Fourier transform to analyticity and to

the z-transform follows as part of the analysis. These relationships are used in a

practical application of the theory in Sec. 5.4.

Let us begin with the connection to analyticity. Define the standard spectrum of

a discrete-time signal by S(ω), where ω ∈ R represents angular frequency and let

S(ω) ∈ L2[−π, π] . Since the original signal s(n), n ∈ Z, is defined for discrete-

time it is clear that S(ω) is a periodic function of ω with period equal to 2π. The

signal s(n) could represent the samples of a continuous-time signal, but without the

sampling interval that information is lost and no particular analog representation is to

be inferred. Let us assume for a moment that S(ω) can be analytically continued into
the complex angular-frequency plane. This is S(ω) → S(ωz), where ωz ∈ C is the

complex-valued angular frequency. Let ωr and ωi denote the real and imaginary parts

respectively of ωz . Then from the definition of the discrete-time Fourier transform
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we have,

S(ωz) =
∞
∑

n=−∞

s(n)e−jωzn, (5.4)

S(ωr + jωi) =
∞
∑

n=−∞

s(n)e−j(ωr+jωi)n,

S(ωr + jωi) =
∞
∑

n=−∞

s(n)eωine−jωrn.

From here we see that if s(n) is a causal sequence and the analytic continuation of

S(ω) is done on the lower half of the complex plane then ωi < 0,

S(ωr + jωi) =
∞
∑

n=0

s(n)eωine−jωrn,

and the extra factor eωin can only improve the convergence rate of the series. Now,

lim
ωi→−0

S(ωr + jωi) = lim
ωi→−0

∞
∑

n=0

s(n)e−jωrn+ωin,

=
∞
∑

n=0

lim
ωi→−0

s(n)e−jωrn+ωin,

= S(ω).

On the other hand we have that
∫ π

−π
|S(ωr + jωi)|2dωr =

∫ π

−π
S(ωr + jωi)S

∗(ωr + jωi)dωr,

=

∫ π

−π

(

∞
∑

n=0

s(n)e−jωrn+ωin
∞
∑

m=0

s∗(m)ejωrm+ωim

)

dωr,

=
∞
∑

n=0

(

s(n)eωin
∞
∑

m=0

s∗(m)eωim

∫ π

−π
ejωr(m−n)dωr

)

,

= 2π
∞
∑

n=0

s(n)eωins∗(n)eωin,

= 2π
∞
∑

n=0

|s(n)|2e2ωin < 2π
∞
∑

n=0

|s(n)|2,
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where ∗ denotes complex conjugation. Recalling Parseval’s relation and noting that

S(ω) ∈ L2[−π, π] implies s(n) ∈ l2(Z) [2, 3], then for a positive constant C,

∫ π

−π
|S(ωr + jωi)|2dωr < C.

So that S(ωr + jωi) is the analytic continuation from the real line into the lower

half of the complex plane of the spectrum of the causal signal s(n). By the same

arguments if s(n) = 0 for n > 0 (i.e. is an anticausal signal), then its spectrum

admits analytic continuation into the upper half of the complex angular-frequency

plane.

Define now a discrete-time generalized Fourier transform as,

Sα(ω) =
∞
∑

n=−∞

s(n)eβne−jωn, (5.5)

with inverse transformation,

s(n) =
e−βn

2π
=

∫ π

−π
Sα(ω)ejωndω, (5.6)

where, as in (5.1), β = log(α)/N and α ∈ C\{0}. By our previous discussion we

can write

Sα(ω) = S(ω + jβ) = S(ω − βi + jβr),

where βr and βi are the real and imaginary parts respectively of parameter β. Clearly
if βr < 0 (or equivalently |α| < 1) the transform is well defined for causal signals.

In the same way if βr > 0 (i.e. |α|> 1) the transform is well defined for anticausal

signals. In both cases the generalized spectrum can be obtained via analytic contin-

uation (into the proper half of the complex plane) of the standard Fourier spectrum.

Also note that βi implies a frequency shift. If the principal value of log(α) is to be

taken this shift is limited from −π/N to π/N .

Recall now the definition of the z-transform,

S(z) =
∞
∑

n=−∞

s(n)z−n

Since parameter α is constant, we find the transform (5.5) to be a particular case of

the z-transform, with z=e−βr−j(βi−ω). This implies |z| = |α|−1/N , with the real

positiveN th-root being the only root satisfying the equation. The discrete-time GFT
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can be viewed as the z-transform of the signal evaluated on a circle of radius |α|−1/N .

When |α|= 1 the evaluation is done on the unit circle and the GFT is equivalent to

the standard Fourier transform shifted in frequency this is, Sα(ω) = S(ω − θ/N),
with α = ejθ. We can now extend the definition of the GFT to signals other than

single-sided (causal or anticausal). If the z-transform of the signal has a region of

convergence that includes the circle of radius |α|−1/N , then the GFT exists. Note that

finite-length signals have as region of convergence the whole z-plane with exception
of the points z = 0 and/or z = ∞. Since α ∈ C\{0} the GFD always exists for

finite-length signals of finite energy.

The relationship of (5.3) to spectral sampling is now explored. Since Sα(ω) is a
periodic function of ω the integral in (5.6) can be taken over any interval of length

2π. To make the derivation simpler let

s(n) =
e−βn

2π
=

∫ 2π

0
Sα(ω)ejωndω.

The integral can be approximated using a rectangular quadrature rule, dividing the

integration interval uniformly into N subintervals and using the samples of the inte-

grand at the subinterval points. Let 2π/N be the sampling interval, then

∫ 2π

0
Sα(ω)ejωndω ≈ 2π

N

N−1
∑

k=0

Sα

(

2π

N
k

)

ej 2π
N

nk.

An approximation of s(n), call it s̃α(n), is thus obtained as

s̃α(n) =
e−βn

N

N−1
∑

k=0

Sα

(

2π

N
k

)

ej 2π
N

nk.

Substituting (5.5) into this last expression reveals the connection of s̃α(n) to the

original signal s(n),

s̃α(n) =
e−βn

N

N−1
∑

k=0

(

∞
∑

m=−∞

s(m)eβme−j 2π
N

km

)

ej 2π
N

kn

=
e−βn

N

∞
∑

m=−∞

s(m)eβm

(

N−1
∑

k=0

ej 2π
N

k(n−m)

)

.

For p ∈ Z, p=−⌊n/N⌋ we have [3],
N−1
∑

k=0

ej 2π
N

k(n−m) =

{

N, m = n+ pN
0, otherwise.
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Then

s̃α(n) = e−βn
∞
∑

p=−∞

s(n+ pN)eβ(n+pN)

=
∞
∑

p=−∞

s(n+ pN)eβpN =
∞
∑

p=−∞

αps(n+ pN).

So that

s̃α(n) =

∞
∑

p=−∞

αps(n+ pN) =
e−βn

N

N−1
∑

k=0

Sα

(

2π

N
k

)

ej 2π
N

nk.

We have arrived to the generalized Poisson summation formula (5.3), which states

that uniform spectral sampling of the generalized Fourier spectrum Sα(ω) implies a

geometrically weighted periodic summation of the original discrete-time signal s(n).
This property is used in a spatial-audio application in Sec. 5.4, but first we analyze

some properties of the GDFT.

5.3 Properties of the GDFT

In this section we present some important properties of the GDFT, these are a fun-

damental part in any GFD-based signal processing framework. In the following let

x(n) and y(n) for n = {0, . . . , N−1} be two finite-duration and in general complex

signals of length N , and Xα(k) and Yα(k) for k = {0, . . . , N−1} their respective
GDFTs.

Proposition 5.1. Weighted circular convolution. Point-wise multiplication of Xα(k)
and Yα(k) in the GFD corresponds to the weighted circular convolution of x(n) and
y(n) in the time domain, i.e.

G −1
α {Xα(k)Yα(k)} =

e−βn

N

N−1
∑

k=0

Xα(k)Yα(k)ej 2π
N

nk

=
N−1
∑

m=0

x(m)ỹα(n−m),
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G −1
α {Xα(k)Yα(k)} =

N−1
∑

m=0

x(m)αpy(n−m+ pN)

=
N−1
∑

m=0

x(m)αpy((n−m))N , (5.7)

or

(x ∗ ỹα)(n)
Gα←−−→ Xα(k)Yα(k),

where ∗ is the linear convolution operator. The operation can thus be seen as the linear
convolution of one of the signals e.g. x(n), with the respective signal extension of

the other, ỹα(n). Note that for n = {0, . . . , N−1} we have that,

(n−m)∈{−N + 1, . . . , N − 1},

and thus p∈{0, 1}, so that (5.7) can be rewritten as
n
∑

m=0

x(m)y(n−m) + α
N−1
∑

m=n+1

x(m)y(N + n−m), (5.8)

where the left hand summation represents the contribution of N linear convolution

terms, and the right hand summation the contribution ofN circular convolution terms

(which are in fact the last terms of the linear convolution). The factor α effectively

weights the amount of circular convolution that is obtained. The proof is given in [1].

Property 5.1 can be exploited to compute linear convolutions in the GFD without the

need of zero-padding, using GDFTs with e.g. parameter α=±j or α << 1 ∈ R,

[1].

Next we present the shifting properties for the GDFT, the first accounts for a shift

in the time-domain the second for a shift in the GFD.

Proposition 5.2. Time-domain shift.

For n0 ∈ Z,

x̃α(n− n0)
Gα←−−→ eβn0e−j 2π

N
kn0Xα(k).

The GDFT with parameter α of the shifted signal x̃α(n− n0) is equal to the modu-

lated generalized spectrum of the original signal x(n). The proof is given in 5.A.

Proposition 5.3. GFD shift.

For k0 ∈ Z,

x(n)ej 2π
N

k0n Gα←−−→ X̃α(k − k0) = Xα((k − k0))N .
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To circularly shift the generalized spectrum Xα(k) of a signal is equivalent in the

time-domain to modulate the signal with the function ej 2π
N

k0n. The proof is given in

5.B.

Proposition 5.4. Time reversal.

x̃α(−n)
G

α−1←−−→ X̃α(−k).

The GDFT with parameter α−1 of the time-reversed extension of x with parameter α,
x̃α(−n), is thus equivalent to reversing (modulo N ) the GDFT of x(n) with param-

eter α. This result is a direct consequence of the reciprocal-symmetric structure of

the signal extension x̃α(n) with respect to α. Notice that if the extension is time re-

versed the geometrically weighted “replicas” outside the support of x(−n) no longer
correspond to a weight αp but to α−p. Therefore to obtain property 5.4 a GDFT with

parameter α−1 has to be applied to the time reversed extension, x̃α(−n). The proof
is given in 5.C.

Proposition 5.5. Time domain complex-conjugate.

x∗(n)
Gα∗←−−→ X̃∗

α(−k).

To take the inverse GDFT with parameter α∗ of X̃∗
α(−k) is equivalent to take the

complex conjugate of the time domain signal x∗(n). The proof is given in 5.D.
Consider that the real part of a complex signal is given byℜ{x(n)}=(1/2)(x(n)+

x∗(n)), and its imaginary part is given by ℑ{x(n)}= (1/2j)(x(n) − x∗(n)). The
last property (making α→α∗) can then be used to derive the following results,

ℜ{x(n)} Gα←−−→ 1

2

(

Xα + X̃∗
α∗(−k)

)

.

The real part of a complex signal x(n) can be obtained by taking the inverse GDFT

with parameter α of a linear combination of the GDFT of x(n) with parameter α,
and the GDFT of x(n) with parameter α∗ conjugated and reversed (moduloN ). Cor-

respondingly we also have that,

ℑ{x(n)} Gα←−−→ 1

2j

(

Xα − X̃∗
α∗(−k)

)

.

Proposition 5.6. GFD complex-conjugate.

x̃∗α(−n)
G

α−∗←−−→ X∗
α(k),
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where α−∗ = (α∗)−1. To take the complex conjugate of the spectrum, X∗
α(k) is

equivalent to take the GDFT with parameter α−∗ of x̃∗α(−n). The proof is given in

5.E.

Before we proceed with the next property let us define the weighted circular

correlation of two in general complex length N signals, x(n) and y(n) by the linear

(deterministic) correlation function of x(n) and ỹα−∗(n), i.e,

r̃α,xy(n) = x(n) ∗ ỹ∗α−∗(−n)

=
N−1
∑

m=0

x(m)ỹ∗α−∗(m− n)

=
N−1
∑

m=0

x(m)
(

α−py∗(m− n+ pN)
)

=
N−1
∑

m=0

x(m)
(

α−py∗((m− n))N

)

, (5.9)

where we have used the fact that linear correlation can be expressed in terms of

the linear convolution of the signals with one of them time-reversed and conjugated.

Note that for n = {0, . . . , N−1} we have,

r̃α,xy(n) =































N−1
∑

m=0
x(m)y∗(m), n = 0

α−1
n−1
∑

m=0
x(m)y∗(N +m− n)

+
N−1
∑

m=n
x(m)y∗(m− n), otherwise.

(5.10)

Let us now state the following property.

Proposition 5.7. Weighted circular correlation.

r̃α,xy(n)
Gα←−−→ Rα,xy(k) = Xα(k)Y ∗

α−∗(k),

where by definition Rα,xy(k) is the GDFT of r̃α,xy(n) = x(n) ∗ ỹ∗α−∗(−n). The

proof of this property follows directly from the complex-conjugate property (prop-

erty 5.6) with α→ α−∗, the weighted circular convolution property (property 5.1),

and Eq. (5.9).
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In analogy to the weighted circular convolution property a weighted circular cor-

relation can be obtained by point-wise multiplication of the spectra in the GFD. How-

ever in this case one of the two spectra corresponds to the complex conjugate of the

GDFT of the signal with parameter α−∗. Notice that when |α|=1 we have,

r̃α,xy(n)
Gα←−−→ Rα,xy(k) = Xα(k)Y ∗

α (k),

this includes the standard DFT correlation theorem (α=1).
The following property is a direct consequence of the weighted circular correla-

tion theorem.

Proposition 5.8. Parseval’s energy relation.

N−1
∑

n=0

x(n)y∗(n) =
1

N

N−1
∑

k=0

Xα(k)Y ∗
α−∗(k). (5.11)

This equality represents Parseval’s theorem for the GDFT. It follows by evaluating

G −1
α {Rα,xy}= r̃α,xy(n) at n=0. For the case y(n)=x(n) we further have,

N−1
∑

n=0

|x(n)|2 =
1

N

N−1
∑

k=0

Xα(k)X∗
α−∗(k). (5.12)

The energy in the finite duration signal x(n) is expressed in terms of the frequency

components {Xα(k)X∗
α−∗(k)}N−1

k=0 . From here we see that if |α|= 1 the energy in

x(n) equals 1/N times the energy in Xα(k) i.e.,

N−1
∑

n=0

|x(n)|2 =
1

N

N−1
∑

k=0

|Xα(k)|2, for all α : |α| = 1. (5.13)

5.4 A spatial-audio signal processing application

In this section we consider the simulation of room impulse responses as an applica-

tion for the GFD-framework just presented. Let us start with the sound field inside

a box-shaped room which always contains reverberation (at least in the vast majority

of real-life cases). If the source of sound is perfectly omnidirectional (a monopole)

and produces a perfect delta pulse at a certain time, then the resulting sound field

measured at a single point in space is called the room impulse response (RIR) [4, 5].

Current approaches to model the sound field in a room although accurate are compu-

tationally complex [4, 6–9]. In the context of spatial-audio applications like virtual
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reality systems, real-time or interactive simulation of RIRs at all positions in a room

becomes a challenging problem.

Consider now a room with fully reflective walls. In this case, the sound field in-

side the room is given by a periodic summation of the sound field of the source [10].

Intuitively this summation represents the effect of reverberation, since the reflections

of the sound field produced by the source(s) on the walls can be modeled by spatial

copies of the sources outside the room. If a room could have fully reflective walls,

these copies would be perfect and the summation would be perfectly periodic. A

key observation to derive a fast algorithm to model the sound field in a room is then

the following, sampling of a function results in a periodic summation of its Fourier

transform. This relation is given by the Poisson summation formula [1, 2] and it is

a well known property in digital signal processing (see, e.g. [3]). If we carefully

sample the spatio-temporal spectrum of the sound field produced by the source and

apply an inverse Fourier transform on this sampled spectrum we can obtain the re-

quired periodic summation that constitutes the sound field in the whole room [10].

Using this method we dramatically reduce the complexity needed to compute indi-

vidual impulse responses from O(N3
t ) per recever position (with Nt proportional to

the desired reverberation time T60) of approaches related or based on the mirror im-

age source method [7], to O(Nω log(Nω)) (with Nω proportional to the maximum

desired temporal bandwidth say, ωb) taking advantage of the FFT. On the other hand

in virtually all real-life cases the walls in a room are at least partially absorptive, the

summation defining the sound field in a room is therefore never perfectly periodic.

Using standard Fourier theory is however impossible to obtain something different

than a periodicity-sampling relation in reciprocal domains. And therefore although

of theoretical importance, the method in [10] has no direct practical use.

If the walls are no longer fully reflective in [11] is shown that the sound field

in the room can be modeled by a weighted periodic summation, of the form given

by the generalized Poisson summation formula [1] (in this paper a discrete version

of the formula is given by (5.3)). Every time the sound field is reflected on a wall,

part of its energy is absorbed and its frequency components might experience a phase

change. Higher order reflections can then be seen as geometrically weighted copies

of the sound field of the source. A GFD based method for the simulation of RIRs is

then derived as follows. For every source in the room the first-order reflections on

orthogonal walls [10, 11] are considered first. To model these, another seven virtual

sources are added at positions outside the room. A total of eight mother sources are

then considered. The sound field of each mother source is then factored into waves

traveling only in the direction of each of the eight space octants. This gives rise to

a total of 2(3×2) spatio-temporal functions to be considered. Let plq(x, t) represent
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5. A generalized Fourier domain: signal processing framework and applications.

these functions where l= {0, . . . , 7} is the mother source index and q= {0, . . . , 7}
is an enumeration of the octants, x=[x, y, z]T is the space variable vector where the

superscript T denotes matrix transposition, and t ∈ R denotes time. The reverberated

sound field in the room is then modeled by [11],

p(x, t) =
7
∑

l=0

7
∑

q=0

̺lq

∑

n∈Z3

(

∏

i∈{x,y,z}

̺±ni

i

)

plq(x + Λn, t), (5.14)

whereΛ is the generator matrix of the periodicity lattice Λ (i.e. the multidimensional

signal “period”), ̺lq are constants required, n = [nx, ny, ny] is a triplet of integers,

̺i, for i ∈ {x, y, z} are the reflection factors of the walls, e.g. ̺x = ̺x0̺x1 where

̺x0 is the reflection factor of the wall perpendicular to the x direction at the origin

of coordinates and ̺x1 the reflection factor of the opposite wall. The sign of the

exponent in the product over i ∈ {x, y, z} depends on the particular octant in the

definition of the function ̺lq. The reader is referred to [11] for the details of this

derivation. The important result behind (5.14) is that the infinite summation over

n is a weighted periodic summation, of the form given by the generalized Poisson

summation formula, which for multidimensional signals takes the form,

∑

n∈Zν

(

ν−1
∏

i=0
αni

i

)

p(x + Λn) =
e−βT

x

|Λ|
∑

k∈Zν

Pα(Φk)ej(kT Φ
T
x), (5.15)

where ν ∈ N is the dimension of the space, |Λ| is the absolute value of the de-

terminant of Λ, Φ = 2πΛ−T is the generator matrix of the spectral sampling lat-

tice Φ (the (scaled) reciprocal lattice of the periodicity lattice Λ), β = Λ
−T log(α),

α∈C
ν : αi 6= 0 ∀i=0, . . . , ν − 1, is the parameter of the multidimensional general-

ized Fourier transform Pα, and log(α), [log(α0), . . . , log(αν−1)]
T .

The main result in [11] relates the sound field in a roomwith a sampling condition

on the generalized Fourier spectrum. This is, if Λ denotes the generator matrix of

the lattice specifying the spatial periodic packing of the sound fields plq(x, t), and
Φ denotes the generator matrix of the lattice specifying the sampling points of the

spatial-generalized spectra, then making Φ = 2πΛ−T , the functions Pαlq(Φk, ω),
k ∈ Z

3 are the generalized Fourier coefficients of

∑

n∈Z3

(

∏

i∈{x,y,z}

̺
ςq(i)ni

i

)

plq(x + Λn, t), (5.16)

with α = [̺
ςq(x)
x , ̺

ςq(y)
y , ̺

ςq(z)
z , 1]T , where ω is the temporal frequency variable and

ςq(·)=±1, depending on the coordinates defining the qth octant of the space.
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To apply the method on a computer, all frequency variables (not only the spatial-

frequency variable) must be sampled. Sampling the temporal-frequency variable ω
introduces temporal aliasing. Let Ψ be the matrix of the spectral sampling lattice

Ψ = diag(Φ,Ωs), Ωs is the temporal-frequency sampling interval. Define ∆ =
diag(Λ, Tp), so that Ψ = 2π∆−T = 2πdiag(Λ, Tp)

−T , where Tp = 2π/Ωs is the

interval of temporal periodicity. Then

p̃αlq(x, t) ,
∑

n∈Z3

∑

n∈Z

(

∏

i∈{x,y,z}

̺
ςq(i)ni

i

)

plq(x + Λn, t+ Tpn). (5.17)

The summation over n∈Z, n 6= 0, is the temporal aliasing. We can neglect it mak-

ing Ωs << 1, (Tp becomes large), this increases computational complexity since a

smaller sampling interval implies more samples needed in the reconstruction. Taking

advantage of the GFD framework, temporal aliasing can be further reduced using a

temporal component different than 1 in the α parameter of (5.16), without the need

to change the sampling rate. We derive this below, after the current discussion.

The sound field is therefore approximated,

p(x, t) ≈
7
∑

l=0

7
∑

q=0

e−βT
q x−βt

|∆|
∑

k∈Z4

̺lqPαlq(Ψk)ej(kT Ψ
T [xT ,t]T ), (5.18)

Further, the infinite summation over k in (5.18), must be limited to a finite number

of elements. Extending periodically this finite set of spectral coefficients, we impose

a discretization of the space-time function, so that a sampled (in both space and

time) sound field is approximated (which can then be handled on a computer). The

spectral set must be big enough to cover the support of the spectrum if corruption

due to aliasing is to be avoided.

Let Σ⊆Ψ, be the spectral periodicity lattice, and Γ the spatio-temporal sampling

lattice, assume ∆ ⊆ Γ. Then Γ=2πΣ−T , so that,

p̃αlq(Γn) =
e−βT

Γn

N(∆/Γ)

∑

k∈VΣ(0)

|Γ|−1Pαlq(Ψk)ej(kT Ψ
T
Γn), (5.19)

where VΣ(0) is the (central) Voronoi region around the origin of lattice Σ, N(∆/Γ)
is the number of lattice points of Γ that lie in V∆(0) (the central Voronoi region of

lattice ∆). Making VΣ(0) larger implies a finer sampling of p̃αlq. Further we have

that,

N(∆/Γ) =
|∆|
|Γ| =

(2π)4|Ψ−T |
(2π)4|Σ−T |

=
|Σ|
|Ψ| = N(Σ/Ψ).
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Figure 5.2: Simulated Room impulse responses.

The sampled sound field is thus obtained by,

p(Γn) ≈
7
∑

l=0

7
∑

q=0

̺lqp̃αlq(Γn), for Γn ∈ V∆(0). (5.20)

Considering that the spectrum energy is concentrated in ||φ|| ≤ |ω/c| [12] we can

evaluate up to a given ωb. Note that (5.19) has the form of a generalized Poisson sum-

mation formula (the multidimensional extension of 5.3), the right hand term is thus

a multidimensional GDFT and the inner summation over k corresponds to a DFT

(this comes from the fact that the GDFT is equivalent to the DFT of the modulated

input signal). Using the FFT, the operation will take only O(N4
ω logNω) operations

for computing N(∆/Γ) spatio-temporal positions, withNω proportional to ωb. Since

N(∆/Γ) = N(Σ/Ψ), the method is of complexity O(Nω logNω) per receiver posi-
tion. Again the reader is referred to [11] for detailed experimental results.

Returning to Eq. (5.17), we see that temporal aliasing is introduced due to spec-

tral sampling of ω. Clearly, by making the spectral sampling period Ωs smaller, the

aliasing components in the time dimension appear further apart from each other, re-

ducing the error. In time the RIR does not have compact support, but it is a causal
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(a) αt =0.5
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Figure 5.3: Comparison of RIRs simulated with the GFD method setting parame-

ter αt to different values, and the same RIR simulated with the MISM depicted in

Fig. 5.2.

(single sided) function, having a starting point in time and an exponential decay after-

wards (see e.g. [5] for a parametric characterization of this decay). A simulated exam-

ple RIR using the Mirror Image Source Method (MISM) [7], is depicted in Fig. 5.2,

together with a RIR simulated using the GFD approach described above and in [11],

the error power between both signals is plotted in dB. The bandwidth frequency is
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5. A generalized Fourier domain: signal processing framework and applications.

ωb =2π(2kHz), so that the temporal sampling frequency is fs =4kHz. The length of
the RIR is Th =1.02s or 4096 taps. The GFD method RIR shown in Fig. 5.2 is ob-

tained according to (5.19) and (5.20) using a parameter α=[̺
ςq(x)
x , ̺

ςq(y)
y , ̺

ςq(z)
z , 1]T ,

so that the spatial part of the α parameter applied in the generalized Fourier synthesis

gives the required spatial weighted periodicity, and in time a standard Fourier synthe-

sis is applied. The RIR is thus one spatial sample of the set p(Γn). The spectral

sampling period is set to Ωs =2π/(2Th), so that the interval of temporal periodicity

(and thus temporal aliasing) Tp is 2 times the reverberation time.

Using a temporal component αt 6= 1 in the α parameter, we can further reduce

the temporal aliasing. This is, since the RIR is a causal function of time, the repeated

terms to the right of the temporal support of the RIR (for n<0), do not contribute to
the time-domain aliasing. Therefore we can rewrite (5.17) as,

p̃αlq(x, t) =
∑

n∈Z3

(

∏

i∈{x,y,z}

̺
ςq(i)ni

i

)

plq(x + Λn, t)

+

∞
∑

n=1

∑

n∈Z3

(αn
t )

(

∏

i∈{x,y,z}

̺
ςq(i)ni

i

)

plq(x + Λn, t+ Tpn). (5.21)

In principle by making e.g. αt<<1 we can further reduce the temporal aliasing with-

out the need to increase the spectral sampling period Ωs. In practice however, the ac-

curacy of the computations is limited by the arithmetic precision used, moreover the

causality of the RIR in time is only strictly valid in non-bandlimited scenarios. This

is, by limiting the summation over k in (5.18) to a finite number of elements, we are

effectively multiplying the discrete spatio-temporal spectrum by a multidimensional

rectangular window. In space-time this has the effect of a convolution with a multidi-

mensional sinc function, making the resulting band-limited RIR non-causal. In this

case (5.17) for n 6= 0 defines the aliasing terms, but still the terms for n < 0 have

less corruptive influence. Despite these practical issues it is still possible to reduce

the temporal aliasing using a temporal component e.g. αt << 1 in the generalized

Fourier synthesis (5.19). In Fig. 5.4a, Fig. 5.4b, Fig. 5.4c and Fig. 5.4d results of

the generalized Fourier synthesis are given setting αt = 0.5, αt = 10−2, αt = 10−3

and αt = 10−4 respectively. Indeed aliasing corruption decreases for the first two

cases, but for αt =10−3 and αt =10−4 the repeated terms to the right of the temporal

support of the RIR become too large, having a negative impact in the reconstruction.

Clearly the corruption is more pronounced to the right of the support of the RIR. In

this case setting the parameter αt =10−2 gives a good reconstruction, specially when

compared with the result obtained setting αt =1 depicted in Fig. 5.2. Working in the
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GFD on the temporal dimension allows a non neglectable gain in accuracy.

The method for multichannel simulation of RIRs has an important application

in immersive virtual gaming (using for example stereo headphones). In this case

many RIRs for different (virtual) room conditions need to be computed and later fast

convolved with a given audio signal (i.e. auralization) to give the users an audio

experience such that they have the impression of being in the game field. For ex-

ample, at one moment the users could be at an open location such as a park, and at

another moment they could be inside a room. To create a satisfactory experience, the

system have to reproduce the acoustic characteristics of different scenarios for mov-

ing sources/receivers. The computation of all the necessary RIRs can be done with

low-complexity using the GFD method presented in [11]. A GDFT in the temporal

dimension can be applied to reduce aliasing corruption as explained above. The novel

GFD framework presented in this paper can then be used to perform fast convolution

for auralization or other signal processing tasks in the GFD.

5.5 Concluding remarks

In this work, a generalized Fourier domain (GFD) signal processing framework is in-

troduced. The proposed framework allows a special form of control on the periodic

repetitions that occur due to sampling in the reciprocal domain. We show that this

property can be expressed in terms of a weighted periodic extension of a signal. We

demonstrate that the (discrete-time) generalized Fourier transform can be seen as a

special case of the z-transform, and relate the analytic continuation of the standard

Fourier spectrum to the generalized Fourier spectrum. Core properties of the gener-

alized discrete Fourier transform (GDFT) are given. These allow to concisely work

in the GFD. The close relationship of the GDFT to the DFT allows a generalized fast

Fourier transform (GFFT) to be directly obtained via the FFT.

The novel framework opens possibilities for signal processing applications where

working on the GFD results in a computational or analytical advantage. As an exam-

ple, we review a method for low-complexity simulation of room impulse responses

(RIR) [10, 11] based on the GFD. The framework presented in this paper can then be

used to perform e.g. auralization, adaptive filtering or other acoustic signal process-

ing operations in the GFD.

MATLAB R© code to implement the GDFT is available on-line for educational

and non-profit purposes at the webpage of TuDelft SIPLAB (http://siplab.tudelft.nl).
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Appendix 5.A Proof of property 5.2

Proof. Time-domain shift property.

For n0 ∈ Z, we have that

x̃α(n− n0) = αpx((n− n0))N = αpx(n− n0 + pN),

where p=−⌊(n− n0)/N⌋. Then,

Gα {x̃α(n− n0)} =
N−1
∑

n=0

x̃α(n− n0)e
βne−j 2π

N
kn

=

N−1
∑

n=0

αpx(n− n0 + pN)eβne−j 2π
N

kn,

makem=n− n0 + pN , then

Gα {x̃α(n− n0)} =
N−1
∑

m=0

αpx(m)eβ(m+n0−pN)e−j 2π
N

k(m+n0−pN)

= eβn0e−j 2π
N

kn0

N−1
∑

m=0

x(m)eβme−j 2π
N

km

= eβn0e−j 2π
N

kn0Xα(k).

Appendix 5.B Proof of property 5.3

Proof. GFD shift property.
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Proof of property 5.4

For k0 ∈ Z,

Gα

{

x(n)ej 2π
N

k0n
}

=
N−1
∑

n=0

x(n)ej 2π
N

k0neβne−j( 2π
N

kn)

=
N−1
∑

n=0

x(n)eβne−j( 2π
N

n(k−k0))

=
N−1
∑

n=0

x(n)eβne−j( 2π
N

n((k−k0))N)

= Xα((k − k0))N = X̃α (k − k0) .

Appendix 5.C Proof of property 5.4

Proof. Time reversal.

For

x̃α(−n) =

{

x(n) for n=0
αx(N − n) for n={1, · · · , N − 1},

we have that,

Gα−1 {x̃α(−n)} = x(0) +
N−1
∑

n=1

αx(N − n)e−βne−j 2π
N

kn,

setm = N − n, then,

Gα−1 {x̃α(−n)} = x(0) +

N−1
∑

m=1

αx(m)e−β(N−m)e−j 2π
N

k(N−m)

= x(0) +
N−1
∑

m=1

x(m)eβme−j 2π
N

(N−k)m

=
N−1
∑

m=0

x(m)eβme−j 2π
N

(N−k)m

= Xα(N − k) = X̃α(−k).

since β=log(α)/N .

115



5. A generalized Fourier domain: signal processing framework and applications.

Appendix 5.D Proof of property 5.5

Proof. Time domain complex-conjugate.

Gα∗ {x∗(n)} =
N−1
∑

n=0

x∗(n)eβ∗ne−j 2π
N

kn

=

(

N−1
∑

n=0

x(n)eβnej 2π
N

kn

)∗

=

(

N−1
∑

n=0

x(n)eβne−j 2π
N

(N−k)n

)∗

= X̃∗
α(−k).

Appendix 5.E Proof of property 5.6

Proof. GFD complex-conjugate.

G −1
(α∗)−1 {X∗

α(k)} =
eβ∗n

N

N−1
∑

k=0

X∗
α(k)ej 2π

N
kn

=
eβ∗n

N

(

N−1
∑

k=0

Xα(k)e−j 2π
N

kn

)∗

=

{

x∗(0) , n = 0

eβ∗nx∗(N − n)eβ∗(N−n) , otherwise

=

{

x∗(0) , n = 0
(

αx(N − n)
)∗

, otherwise

= x̃∗α(−n).

since β=log(α)/N .
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6. Fast modeling of multichannel room impulse responses

Abstract

In this paper a fast method to model multichannel room impulse responses (RIRs)

is presented. The method exploits a spectral sampling condition in a generalized

Fourier domain (GFD). The Poisson summation formula associated with the general-

ized Fourier transform relates a geometrically weighted summation of a signal over a

lattice to the samples of its generalized spectrum over the reciprocal lattice. For box-

shaped rooms with constant wall absorption coefficients we show that the spatial

aliasing introduced by spectral sampling in the GFD represents the wall reflections.

The approach is proven to be very fast, of order O(N logN) on the reverberation

time N per receiver position, when a close form expression for the generalized spec-

trum is known.

6.1 Introduction

The room impulse response (RIR) plays an important role, directly or indirectly, on

the design and implementation of human telecommunication technologies. In several

acoustic and speech signal processing applications an estimation, approximation or

consideration of the RIR is necessary, examples of these are acoustic echo cancella-

tion (AEC), derreverberation, blind source separation and microphone beamforming

[1–3]. Moreover, with the advent of 3-D sound field control technologies like wave

field synthesis (WFS) [4], higher order ambisonics (HOA) [5], and more recently

sound field reconstruction (SFR) [6], a consideration of the RIRs between massive

amounts of transmitters and receivers is needed to allow full-duplex telecommunica-

tion using these technologies.

State-of-the-art RIR modeling methods provide efficient multichannel solutions

[7–11]. However, the total algorithmic complexity of RIR modeling methods is

still an issue, specially when considering real-time systems, large-scale (MMIMO)

microphone-loudspeaker networks, or in applications that call for full-bandwidth 3-D

sound field modeling.

In this work we propose an efficient method to compute the sound field in a room

(i.e. the spatio-temporal RIR). To present our approach we have organized the paper

as follows. In Sec. 6.2 and Sec. 6.3 we introduce preliminary concepts behind the

basic idea of our method. These concepts have been presented in our previous work

[12] and are outlined next. We note that the construction of virtual sources in the the

mirror image source model (MISM) [13] for box-shaped rooms has spatial periodic-

ity. Assume a room could have perfectly reflective walls (i.e. no absorption), then
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Preliminaries

the sound field generated by all the virtual sources can be represented by a periodic

summation. We then recall the key fact that “sampling of a function results in a peri-

odic summation of its Fourier transform” and construct a continuous spectral kernel

function using the spatio-temporal Fourier representation of the free-field Green’s

function. We carefully sample this spectral kernel function to induce the desired

spatial periodicity in the reciprocal domain. Fourier synthesis of the coefficients ob-

tained by sampling is implemented using the FFT resulting in a very efficient method

to compute the full sound field in a room.

In practice, however, a room never has perfectly reflective (rigid) walls. In

Sec. 6.4 we show that when absorptive boundaries are included in the model, the

sound field can be expressed as a geometrically weighted periodic summation. In

Sec. 6.5 we present a generalized Fourier domain (GFD), first introduced in our pre-

vious work [14]. We show that in this domain “sampling of a function results in

a geometrically weighted periodic summation of its generalized Fourier transform

(GFT)”. Besides the standard Fourier conditions, an extra sufficient condition for the

GFT of a function to exist is that the function to be “single-sided” (causal or anti-

causal), or when the domain is extended to Euclidean space to be “single-orthant”,

therefore we cannot directly apply the same scheme as in the case of rigid walls to

extend the method. In Sec. 6.6 the main contribution of the paper is given. The al-

gorithm is outlined as follows. First, we factor the free-field Green’s function into

its spatial “single-orthant” parts, and calculate the continuous spatio-temporal GFD

representation of each part. Next, by sampling these continuous kernel functions

we induce a geometrically weighted periodic summation in the reciprocal domain,

equivalent to the reverberation effect in a room with absorptive walls. Finally, after

generalized Fourier synthesis of the coefficients obtained by sampling, a representa-

tion of each of the single-orthant parts of the reverberated sound field is obtained. The

full sound-field in the room is recovered by summing the parts. A fast discrete im-

plementation of the GFT is obtained via the FFT [14], so that the generalized Fourier

synthesis required is efficiently computed. In Sec. 6.7 the results of our experiments

are given. We compare our method with the MISM in terms of performance and

accuracy. Finally in Sec. 6.8 conclusions are given.

6.2 Preliminaries

A spatio-temporal characterization of the sound field is given by the plenacoustic

function (PAF) [15]. Let an omni-directional point source (monopole) S, be placed
in space at s ∈ R

3 and emit a signal s(t). The PAF in this case is the sound field as
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6. Fast modeling of multichannel room impulse responses

it is registered at position x = [x, y, z]T , and at time t, and it is given by p(x, t) =
(hs ∗ s)(x, t), where ∗ represents the (temporal) convolution operator. The function

hs(x, t) is the spatio-temporal room impulse response (RIR) from point s to point

x, and therefore, it satisfies the inhomogeneous wave equation with given boundary

conditions. Under this linear model, multiple sound sources are considered as a

superposition of single sources. Assume now that the monopole at position s is in

free-field, emitting a Dirac pulse at t = 0. The PAF becomes the RIR in this case,

equivalent to the free-field Green’s function given by [16],

p(x, t) =
δ
(

t− r
c

)

4πr
(6.1)

where δ is Dirac’s delta function, r = ‖x − s‖, is the distance from measurement

point x to the source position s, and c represents the velocity of sound propagation.

The spatio-temporal (4-D) Fourier representation of the free-field Green’s function,

i.e. P (φ, ω)=F {p(x, t)}, is given by [15],

P (φ, ω) =
ejφT

s

‖φ‖2 −
(

ω
c

)2 (6.2)

where φ∈R
3 is the spatial frequency variable and ω denotes the temporal frequency

variable. Conceptually the free-field Green’s function (6.1) represents the impulsive

spherical sound wave produced by the point source S, that propagates and decays

forever. Inside a room with at least partially reflecting walls however, the sound field

produced by the same point source is far more complicated. We analyze next the case

of box-shaped rooms with perfectly reflective (rigid) walls [12].

6.3 RIR modeling for an enclosure with rigid walls

We analyze the sound field in box-shaped rooms with rigid walls using the mirror

image source method (MISM), introduced by Allen and Berkey [13], as a starting

theoretical framework. The MISM models the sound field inside the room by the cre-

ation of virtual free-field sources (outside the room), which represent the reflections

introduced by the walls.

A 2-D example of such a constellation of virtual sources is shown in Fig. 6.1.

The solid-line rectangle represents the actual room with dimensions Lx and Ly. The

source S0 denotes the direct-path contribution of S. The rest of the labeled sources

Sl, l=1, . . . , 3, denote the contributions due to reflections on two orthogonal walls.
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Lx

S0

S2

S1

S3

Ly

Figure 6.1: Example of a 2-D constellation of virtual sources created by the MISM

[13].

A careful examination reveals that the full set of virtual sources is obtained by a

periodic repetition of these fundamental sources. This set of fundamental sources is

referred to as the set of mother sources [15]. In general there are 2ν mother sources

in the ν-D case [12].

The set of virtual sources is thus obtained by a ν-D periodic packing of the mother

sources over a lattice [12], sayΛ, defined asΛ , {λ ∈ R
ν : λ=Λn,n ∈ Z

ν}, where
Λ is a non-singular matrix called the generator matrix of Λ. The columns of Λ are

the basis vectors of the lattice. In a box-shaped room with dimensions Lx, Ly, Lz ,

with all of its walls being at least partially reflective, the periodic packing is 3-D and

Λ takes the form [12],

Λ = diag(2Lx, 2Ly, 2Lz). (6.3)

The sound field at any position x is thus given by a periodic summation [12],

p(x, t) =
∑

n∈Z3

pm(x + Λn, t) (6.4)

where pm is the sound field generated by the set of mother sources Sl, l = 0, . . . , 7,
i.e.,

pm(x, t) =
7
∑

l=0

pl(x, t) =
7
∑

l=0

δ
(

t− rl

c

)

4πrl
(6.5)

with rl = ‖x− sl‖, where sl ∈ R
3 is the position in space of source Sl.

Using this model, a direct computation of the reverberated sound field involves

the contribution of infinite many virtual sources. In practice, a finite number, say N ,
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RIR modeling for an enclosure with rigid walls

of repetitions per dimension is taken into account. This number is proportional to the

desired reverberation time [13, 17]. Therefore, an algorithm to compute the sound

field using (6.4) directly is of complexity O(N3) [12, 13, 17].
To derive a more efficient algorithm a key observation is given [12], i.e. Sam-

pling of a function results in a periodic summation of its Fourier transform. The

relation between the samples of the continuous Fourier transform of a function and

its periodic summation is given by Poisson’s summation formula [18–20]. In 1-D the

formula takes the following form,

∑

n∈Z

p(t+ Tpn) =
1

Tp

∑

k∈Z

P

(

2π

Tp
k

)

ej(2π/Tp)kt

where P (ω) is the (continuous) Fourier transform of p(t), Tp is the periodicity inter-

val in the time-domain, and 2π/Tp is the sampling interval in the frequency domain.

Clearly we have that P (2πk/Tp)=Tpck, where ck are the Fourier series coefficients

of the periodic function
∑

n∈Z
p(t+ Tpn). This construction is depicted in Fig. 6.2.

Consider now the Fourier representation of the sound field generated by the set

of mother sources Pm(φ, ω), which follows directly from (6.2) and (6.5),

Pm(φ, ω) =
7
∑

l=0

ejφT
sl

‖φ‖2 −
(

ω
c

)2 . (6.6)

Using the Poisson summation formula, the main result in [12] states that the sound

field in the room, given by the periodic summation in (6.4), can be obtained by the

Fourier synthesis of the (spatial) samples of the spectrum given by (6.6), this is,

p(x, t) = (2π|Λ|)−1
∑

k∈Z3

∫

R

Pm(Φk, ω)ej(kT Φ
T
x+ωt)dω (6.7)

where Φ=2πΛ−T , is the generator matrix of the spectral sampling lattice Φ and |Λ|
is the absolute value of the determinant of Λ. The calculus of the sound field (6.7)

involves an integral and an infinite summation. Discretizing all quantities, and using

the FFT to perform the Fourier synthesis, an efficient method to compute the sound

field is obtained. In the next sections we extend this model to rooms with constant

wall reflection coefficients.
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6. Fast modeling of multichannel room impulse responses

6.4 The MISM for walls with constant reflection

coefficients

If walls with constant reflection coefficients are allowed, the sound field p(x, t) no
longer shows a periodic structure as in (6.4) since the absorption induced by the walls

modifies the contribution of each virtual source (reflection) following a geometric

law [13]. In this section we show that the sound field inside the enclosure can be

expressed as a geometrically weighted periodic summation. Each of the walls that

enclose the room space is allowed to have its own particular reflection coefficient.

For the walls perpendicular to the ith coordinate, i ∈ {x, y, z}, let us denote by

̺i0∈C, |̺i0|≤1, the reflection coefficient of the wall adjacent to the origin, by ̺i1∈
C, |̺i1| ≤ 1, the reflection coefficient of the opposing wall, and make ̺i =̺i0̺i1.

The sound field produced by a particular mother source Sl is given by pl(x, t) (as

defined in (6.5)).

To simplify the discussion we first analyze the MISM in 1-D. Let the walls per-
pendicular to the y and z axis be totally absorptive or equivalently nonexistent. The

sound field is then measured on a line in the x direction. The reverberated sound field
on the line can be written as a weighted periodic summation of waves generated by

the mother sources, this is

p(x, t) =
∞
∑

nx=0

̺nx
x

(

p0(x+(2Lx)nx, t) + ̺x0 p1(x+(2Lx)nx, t)
)

+
−1
∑

nx=−∞

̺−nx
x

(

p0(x+(2Lx)nx, t) + ̺−1
x0 p1(x+(2Lx)nx, t)

)

. (6.8)

The sound field p0(x, t) of the real mother source S0, is periodically extended and

damped. The repetitions to the left of the room (for nx≥0) get an attenuation equal

to ̺nx
x , and the ones to the right (for nx < 0) an attenuation equal to ̺−nx

x . For the

mother source S1 the repetitions to the left of the room (for nx≥0) get an attenuation
equal to ̺x0̺

nx
x and the repetitions to the right (for nx < 0) an attenuation equal to

̺−1
x0 ̺

−nx
x . We call to ̺x0 and ̺−1

x0 , the “alignment factors”. An example of this

construction is given in Fig. 6.3, where sxl
are the x components of the position sl,

of the mother sources.

In 1-D the sound field is factored into two summations involving weighted rep-

etitions of the mother sources to the left and to the right of the room. Generalizing

to 3-D, the sound field is factored into summations that involve weighted repetitions

in the direction of a given octant of the space. In order to proceed, we introduce the
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̺−1
x0

(

̺x0̺x1

)

̺x1 ̺x0 ̺x1̺x0̺x1̺x0̺x1

x0

Lx

sx1
sx0

̺x0

(

̺x0̺x1

)

̺x0̺x1 ̺x0̺x1

Figure 6.3: Example of the damped repetitions of the sound field created by the

MISM in 1-D, to construct the reverberated sound field.

following definitions. Let Oq, q = 0, . . . , 7, denote the qth octant of the 3-D space,

and use a binary ordering scheme based on the signs of the coordinates to enumerate

the octants. This is, if (z≥0, y≥0, x≥0), or equivalently if the signs of the coordi-

nates are (+,+,+), then q=0. If (z≥0, y≥0, x<0) or (+,+,−), then q=1, and
so on. For example O3 ,{x ∈ R

3 : z ≥ 0, y < 0, x < 0}. Define ςq(x)=sign(x),
ςq(y)=sign(y), and ςq(z)=sign(z) for (x, y, z) ∈ Oq. Then for i ∈ {x, y, z} each
ςq(i) = ±1, depending on the signs of the coordinates defining the octant Oq. The

sound field is obtained by extending (6.8) to 3-D space, this is,

p(x, t) =
7
∑

q=0

7
∑

l=0

∑

n∈Z3:Λn∈Oq

̺lq

(

∏

i
̺

ςq(i)ni

i

)

pl(x + Λn, t) (6.9)

where the product runs over i∈{x, y, z}, ni represent the components of n, the inner

summation runs over those n∈Z
3 such that Λn∈Oq, and ̺lq are the corresponding

alignment factors for each mother source Sl and each space octant Oq. These can be

derived extending the 1-D analysis given above. In Table 6.1 a means to calculate the

alignment factors is given.

6.5 A generalized Fourier domain

Given a signal p(x)∈L2(Rν), the Poisson summation formula relates the signal to

the samples of its spectrum P (φ) [18, 19] as follows,

∑

n∈Zν

p(x + Λn) =
1

|Λ|
∑

k∈Zν

P (Φk)ej(kT Φ
T
x) (6.10)
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A generalized Fourier domain

where Λ is a generator matrix for the periodicity lattice Λ, and Φ = 2πΛ−T is the

generator matrix of the spectral sampling lattice Φ. As already mentioned in Sec. 6.3,

this equation asserts that periodicity in one domain implies discretization in the re-

ciprocal domain.

In [14] a generalized Poisson summation formula is introduced. The proposed

equation associates the samples of a generalized spectrum of a signal, with a geomet-

rically weighted periodic extension of the signal.

Let us define, for a signal p(x)∈L2(Rν), a generalized Fourier transform with

parameter α∈C
ν : αi 6= 0, for all i=0, . . . , ν − 1, as,

Gα {p(x)} , Pα(φ) =

∫

Rν

p(x)eβT
xe−j(φT

x)dx (6.11)

where β=Λ
−T log(α), Λ−T is the generator matrix of the reciprocal lattice of Λ, and

log(α), [log(α0), . . . , log(αν−1)]
T . The inverse transformation is given by,

G −1
α {Pα(φ)} , p(x) =

e−βT
x

(2π)ν

∫

Rν

Pα(φ)ej(xT φ)dφ. (6.12)

The transform given in (6.11) is equivalent to the ordinary ν-dimensional Fourier

transform (if it can be defined) of the modulated signal p(x)eβT
x.

Recall the definition of the ν-dimensional bilateral Laplace transform (BLT) [21],

PBLT(s) =

∫

Rν

p(x)e−sT xdx. (6.13)

where s∈C
ν . The region of convergence (ROC) of the BLT depends on p(x). Denote

the components of parameterα as αi = |αi|ej∠αi and compare (6.11) with (6.13). We

find the GFT to be a particular case of the BLT with

s=−βℜ + j(βℑ − φ),

where βℜ = Λ
−T [log(|α0|), . . . , log(|αν−1|)]T and βℑ = Λ

−T [∠α0, . . . ,∠αν−1]
T .

The GFT is equivalent to the BLT evaluated at a ν-dimensional linear manifold of the

s-space. Therefore if the BLT of the function has a ROC that includes the linear man-

ifold at −βℜ, then the GFT for that particular value of α exists. For p(x)∈L2(Rν)
a function with support on a single orthant of R

ν (i.e. a single-orthant function),

the ROC of the BLT is also given by a single orthant region in s-space and we can

select a α parameter such that the GFT is included in that region. Conversely we

have that for β : |ℜ{βi}| > 0, for a given i, the GFT is well defined on the subset
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6. Fast modeling of multichannel room impulse responses

of L2(Rν) functions single-sided on that particular i-dimension [21]. Consistently,

when α=[1, 1, . . . , 1]T , the transform pair (6.11) and (6.12) corresponds to the stan-

dard Fourier pair.

A generalized Poisson summation formula (GPSF) follows by evaluating (6.11)

in (6.10), i.e.,

∑

n∈Zν

eβT
Λnp(x + Λn) =

e−βT
x

|Λ|
∑

k∈Zν

Pα(Φk)ej(kT Φ
T
x). (6.14)

Now βT
Λn=log(α)T

Λ
−1

Λn=log(α)T
n=
∑ν−1

i=0 ni log(αi),

elog(α)T n = exp

(

ν−1
∑

i=0

ni log(αi)

)

=
ν−1
∏

i=0

αni

i ,

so that (6.14) can be rewritten as,

∑

n∈Zν

(ν−1
∏

i=0
αni

i

)

p(x + Λn) =
e−βT

x

|Λ|
∑

k∈Zν

Pα(Φk)ej(kT Φ
T
x). (6.15)

This equation relates a geometrically weighted periodic summation of a signal over

a lattice Λ to the samples of its generalized spectrum over the 2π-scaled reciprocal

lattice Φ.

Let us define p̃α(x) ,
∑

n∈Zν

(
∏ν−1

i=0 α
ni

i

)

p(x + Λn) as the geometrically

weighted periodic extension of p(x). We can regard p̃α(x) as a superposition of

infinitely many translated “replicas” of p(x) weighted by
(
∏ν−1

i=0 α
ni

i

)

.

In analogy to the Fourier series expansion of a periodic signal [18, 21, 22], the

definition of the generalized Fourier series expansion of a geometrically weighted

periodic signal of the form p̃α(x), follows. First we define a Voronoi region around

a point of lattice Λ as,

VΛ(n) , {x ∈ R
ν : ‖x−Λn‖ ≤ ‖x−Λn

′‖,∀n′ ∈ Z
ν}.

The Voronoi region around the origin VΛ(0), is called the central Voronoi region. If

the restriction p̃α(x) ∈ L2(VΛ(0)), is a square integrable function over the central

Voronoi region of lattice Λ, then p̃α(x) for x∈R
ν , can be represented by (6.16) as

follows,

p̃α(x) = e−βT
x
∑

k∈Zν

cα,kej(kT Φ
T
x). (6.16)
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The generalized Fourier series coefficients cα,k, are given by,

cα,k = |Λ|−1

∫

VΛ(0)
p̃α(x)eβT

xe−j(kT Φ
T
x)dx. (6.17)

Comparing (6.16) and (6.15) we have that Pα(Φk) = |Λ|cα,k. The existence of

both Pα(φ) and cα,k guarantees convergence “almost everywhere” at both sides of

(6.15).

6.6 Fast modeling of multichannel RIRs

6.6.1 Derivation

In this section we derive an efficient algorithm to compute the complete spatio-

temporal sound field in a room given a source. In order to proceed, we first establish

a relation between the samples of a function in the generalized Fourier domain, and

the sound field in a room given by (6.9). As before, we begin the analysis in 1-D.
The 1-D generalized Poisson summation formula, relates the samples of the gen-

eralized spectrum of a function with a weighted periodic summation of the function.

Thus, for α∈C\{0}, we have that
∑

n∈Z

αnp(t+ Tpn) =
1

Tp

∑

k∈Z

Pα

(

2π

Tp
k

)

ej(2π/Tp)kt

=
∑

k∈Z

cα,ke
j(2π/Tp)kt

with Pα(ω)=Tpcα,k. As it is seen from Fig. 6.4, depending on the absolute value of

α, the repetitions show an exponentially growing behavior to the left, or to the right

of the support of p(t). Consider sampling the generalized spectrum with parameter

α= ̺x = ̺x0̺x1 of p0(x, t), the sound field of mother source S0. The result of the

generalized Fourier synthesis is depicted in Fig. 6.5 (in blue) on top of the damped

effect as modeled by the MISM (in gray). In this case, the weighted repetitions do

not correspond to the desired effect at one side of the x direction.

In facts, for a parameter α : |α| 6= 1, the spatio-temporal generalized spectrum

of p0(x, t) cannot be defined since the the sound field expands in all directions as

a function of t, hence it is not single-orthant. The problem is solved if we factor

the sound field into its positive-side and negative-side parts and then process these

parts separately. This is, if we separate the waves generated by the mother sources
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̺x1 ̺x0 ̺x1̺x0̺x1̺x0̺x1

x0

Lx

sx0

Figure 6.5: Generalized Fourier synthesis (in blue) of the samples of the GFT with

parameter α=̺x, of the sound field of mother source S0. Damped repetitions of S0

as modeled by the MISM (in gray).

into waves traveling in positive and negative directions only. We thus define (in

this case for l = 0, 1), pl+(x, t)=pl(x, t)H(x− sxl
) as the positive-side part, and

pl−(x, t) = pl(x, t)H(−x + sxl
), as the negative-side part of the sound field of the

mother sources. Here H(x) is the 1-D Heaviside function (unit step function). The

subscripts + and− in the notation are used to denote the (only) traveling direction of

the resulting sound field. Then from (6.8), we have that the reverberated sound field

in the zone VΛ(0)={−Lx≤x≤Lx}, can be expressed as,

p(x, t) =
∞
∑

nx=0

̺nx
x

(

p0+
(x+(2Lx)nx, t)+̺x0 p1+

(x+(2Lx)nx, t)
)

+
0
∑

nx=−∞

̺−nx
x

(

p0−(x+(2Lx)nx, t)+̺
−1
x0 p1−(x+(2Lx)nx, t)

)

. (6.18)

Compare this equation with (6.8) and note that the second summation runs up to 0
(instead of up to −1). This is because at nx = 0, pl+(x, t)+pl−(x, t) = pl(x, t), per
definition of the Heaviside functions. Conceptually, we have that the repetitions to

the left of VΛ(0) are waves traveling to the right (positive direction) and the repe-

titions to the right are waves traveling to the left (negative direction). The correct

sound field inside VΛ(0) (an thus inside the room) is obtained for all t.
Define ̺0+

=̺0− =1, and ̺1+
=̺x0, ̺1− =̺−1

x0 . Then we can rewrite (6.18) as,

p(x, t) =
1
∑

l=0

∑

q∈{+,−}

∑

nx∈Z

̺(q)nx
x ̺lq plq(x+(2Lx)nx, t), x ∈ VΛ(0). (6.19)

Besides the change in notation, the difference between (6.19) and the previous equa-

tion (6.18), is that we allow the summations over nx to run over all integers. Con-

ceptually we are now allowing exponentially growing repetitions to appear outside
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6. Fast modeling of multichannel room impulse responses

VΛ(0) (like the example in Fig. 6.5), however these never form part of the sound

field in the room, since by construction they travel in a direction away from the

room. To prove (6.19), notice that in the zone |x − sxl
| ≤ 2Lx, or equivalently in

VΛ(0) = {|x| ≤ Lx}, we have that,

plq(x+ 2Lxnx, t)=pl(x+ 2Lxnx, t)H(x− sxl
+ 2Lxnx)=0 (6.20)

for nx ≤ 0 and q = +, and for nx > 0 and q = −, per definition of the Heaviside

functions. Therefore, (6.19) equals (6.18) and (6.8) for x ∈ VΛ(0). The reverberated
sound field is thus obtained by adding up the contributions of four geometrically

weighted periodic summations of the sound fields plq(x, t). In the ν-D spatial case,

22ν contributions are necessary.

Generalizing to 3-D space, we consider waves traveling exclusively in the direc-

tion of a given octant of the space. To proceed with the analysis letHq(x) denote the
3-D Heaviside function given by,

Hq(x) =

{

1, x ∈ Oq

0, otherwise
,

then we define,

plq(x, t) = pl(x, t)Hq(x− sl), (6.21)

this is, the single-octant parts of the sound field of the mother sources. For a particular

Sl, the functions plq(x, t) represent each of the eight parts of the sound field pl(x, t),
generated by the l-th mother source, traveling exclusively in the direction of a given

octant.

Recapitulating from Sec. 6.4 and given the analysis above the reverberated sound

field can be then expressed as,

p(x, t) =

7
∑

l=0

7
∑

q=0

̺lq

∑

n∈Z3

(

∏

i
̺

ςq(i)ni

i

)

plq(x+Λn, t), x∈VΛ(0) (6.22)

for i ∈ {x, y, z}. In this case the alignment factors ̺lq are, as in Sec. 6.4, obtained

from Table. 6.1. Referring to (6.20), we have that an equivalent situation occurs in

the y and z directions, so that (6.22) equals (6.9) for x ∈ VΛ(0) (which includes the

room space).

The following important result relates the samples of the 4-D generalized spectra

of the functions plq(x, t), to the geometrically weighted periodic summation required

to construct the sound field in a room.
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Proposition 6.1. Let Λ be the generator matrix of the lattice specifying the spatial

periodic packing of the sound fields plq(x, t), and let Φ be the matrix basis of the

lattice specifying the sampling points of the generalized spectra. Then the functions

Pαlq(Φk, ω), k ∈ Z
3, are the (spatial) generalized Fourier series expansions of

|Λ|
∑

n∈Z3

(

∏

i
̺

ςq(i)ni

i

)

plq(x + Λn, t) (6.23)

if and only if Φ=2πΛ−T , and α=[̺
ςq(x)
x , ̺

ςq(y)
y , ̺

ςq(z)
z , αt]

T , with αt∈C\{0}.

The proof is given in Appendix 6.A.

This result gives us a formula to reconstruct the full sound field in a room. Sample

the spatial-generalized spectra Pαlq(φ, ω) using the sampling lattice generated by

Φ=2πΛ−T , apply an inverse generalized Fourier transform with parameter αt over

the temporal frequency variable, and use the generalized Poisson summation formula

(6.15) on the coefficients just obtained to synthesize the functions,

∑

n∈Z3

(

∏

i
̺

ςq(i)ni

i

)

plq(x + Λn, t),

using these, the whole spatio-temporal sound field in the room is calculated as in

(6.22). For a box-shaped room with dimensions Lx, Ly and Lz , Λ is given by (6.3).

The generator matrix for the spectral sampling lattice is thus given by,

Φ = diag(π/Lx, π/Ly, π/Lz).

The continuous sound field given by (6.9), cannot be calculated on a digital com-

puter. To implement the proposed algorithm we sample the temporal frequency ω
as well. This will introduce undesired temporal aliasing, since p(x, t) is clearly not

time limited (it has infinite support). LetΨ denote the generator matrix for the lattice

specifying the sampling points of both the spatial and temporal frequency variables,

defined by, Ψ = diag(Φ,Ωs), where Ωs denotes the temporal frequency sampling

interval. The diagonal form of matrix Ψ implies an independent sampling of spatial

and temporal frequencies. Following the same arguments and the value of α as used

in Proposition 6.1, it follows that the sampled spectra Pαlq(Ψk), k ∈ Z
4 yields the

generalized Fourier series expansions of

|∆|
∑

n∈Z3

∑

n∈Z

(αn
t )

(

∏

i
̺

ςq(i)ni

i

)

plq(x + Λn, t+ Tpn)
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if and only if Ψ = 2π∆−T , where ∆ = diag(Λ, Tp), and Tp = 2π/Ωs is the inter-

val of temporal periodicity. It follows that the evaluation of Pαlq(Ψk) in the (4-D)
generalized Poisson summation formula (6.15) yields,

p̃αlq(x, t) =
∑

n∈Z3

∑

n∈Z

(αn
t )

(

∏

i
̺

ςq(i)ni

i

)

plq(x + Λn, t+ Tpn)

=
∑

n∈Z3

(

∏

i
̺

ςq(i)ni

i

)

plq(x + Λn, t)

+
∑

n∈Z

n6=0

∑

n∈Z3

(αn
t )

(

∏

i
̺

ςq(i)ni

i

)

plq(x + Λn, t+ Tpn)

where the last summation term represents the time-domain aliasing introduced by

sampling the temporal frequency ω. For each point in space x, the RIR is a causal

function of time, so that the repeated terms to the right of the temporal support

of the RIR (for n < 0), do not contribute to the time-domain aliasing. Although

the sound field p(x, t) given by (6.9) has infinite temporal support, we have that

limt→∞ p(x, t)= 0 for x ∈ VΛ(0). Moreover we are interested in obtaining a good

approximation of the sound field over the finite time span given by the reverberation

time T60. We have then two different ways to make the error due to time-domain

aliasing negligible. The first approach is to make Tp sufficiently large (i.e. making

Ωs sufficiently small). The second approach is to take advantage of the generalized

Poisson summation formula, making αt<<1 as small as possible (in practice this is

principally limited by the non-causality of the bandlimited sound-field [23]). Recall-

ing (6.9), the total sound field can thus be approximated as,

p(x, t) ≈
7
∑

l=0

7
∑

q=0

̺lqp̃αlq(x, t)

=
7
∑

l=0

7
∑

q=0

e−βT
q x−βtt

|∆|
∑

k∈Z4

̺lqPαlq(Ψk)ej(kT Ψ
T [xT ,t]T ) (6.24)

where βq =Λ
−T log

([

̺
ςq(x)
x , ̺

ςq(y)
y , ̺

ςq(z)
z

]T )
and βt =log(αt)/Tp. To be calculated

on a computer the continuous sound field p(x, t) is made discrete. This induces alias-

ing in the 4-D spatio-temporal frequency space that has to be taken into account. The

sampling points of the sound field can be made arbitrarily dense at the expense of tak-

ing more generalized Fourier coefficients Pαlq(Ψk) at reconstruction. We formalize
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the above discussion. Let Σ be a sublattice of Ψ, denoting the lattice for generating

the periodic packing of the frequency space. Next, let Γ denote the spatio-temporal

sampling lattice imposed by making the generalized spectra periodic and assume

∆ ⊆ Γ. Then clearly we have that Γ=2πΣ−T . Using these, the (sampled) functions

p̃αlq can be calculated by,

p̃αlq(Γn) =
e−βT

Γn

N(∆/Γ)

∑

k∈VΣ(0)

|Γ|−1Pαlq(Ψk)ej(kT Ψ
T
Γn) (6.25)

where β = ∆
−T log(α), and N(∆/Γ) is the number of lattice points of Γ that lie

inside V∆(0), the central Voronoi region of ∆. From here we see that by making

VΣ(0) larger (i.e. taking more frequency samples), the finer we sample the func-

tions p̃αlq (and consequently the sound field in the room), because of the relation

Γ=2πΣ−T . Further we have that N(∆/Γ) = N(Σ/Ψ) [12], this is, the number of

evaluation points, N(Σ/Ψ), of the generalized spectra equals the number of spatio-

temporal samples, N(Σ/Ψ), of the functions p̃αlq. Since the PAF is of a geometri-

cally weighted periodic form, we only need to evaluate it in V∆(0), this is

p(Γn) ≈
7
∑

l=0

7
∑

q=0

̺lqp̃αlq(Γn), for Γn ∈ V∆(0). (6.26)

The computational complexity of this approach is given by the evaluation of (6.25),

limited to {n ∈ Z
4 : Γn ∈ V∆(0)}. On the other hand, it is important to take into

account the support of Pαlq(φ, ω), so that the region VΣ(0) is made large enough

to not introduce (too much) undesired spectral aliasing. The support of Pαlq(φ, ω)
although not being of compact support it has much of its energy concentrated in

the region ‖φ‖ ≤ |ω/c|. We can then bound VΣ(0) and determine Σ and N(Σ/Ψ),
allowing us for a trade between speed and accuracy of reconstruction. A direct evalu-

ation of (6.25) (and consequently of (6.26)) is of orderO(N8
ω) (a 4-D summation per

spatio-temporal point), with Nω proportional to ωb. The summation over k in (6.25)

represents a discrete Fourier transform (DFT). If the fast Fourier transform (FFT) is

used instead, the operation takes onlyO(N4
ω logNω) operations for computing (6.25)

in N(∆/Γ) spatio-temporal positions. Since N(∆/Γ) = N(Σ/Ψ), the method is of

complexityO(Nω logNω) per receiver position (although all positions get calculated
at once). This is far more efficient than the MISM, which has complexityO(N3

t ) per
receiver position, with Nt proportional to the reverberation time T60.
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6.6.2 On the calculus of the generalized spectra

To implement the proposed method, the generalized Fourier coefficients Pαlq(Ψk)
are required. To obtain the generalized spectra one can compute the integral (6.11)

of the single-octant parts of the sound field (6.21). However, a direct computation of

these integrals is proven to be very difficult due to the absence of spherical symmetry

and a different approach is needed. The approach we take here is based on Titch-

marsh’s theorem [24, 25], which proves that all of the following statements hold.

Consider the 1-D case and let the spectrum of a single-sided function be denoted by

P (φ)∈L2(R). Then

1. P (φ) admits analytic continuation into one half of the complex plane. If the

function p(x) = 0 for x < 0 (is a right-sided function), then P (φℜ + jφℑ) is
analytic for φℑ<0, and if p(x)=0 for x>0 (is a left-sided function) then the

spectrum is analytic for φℑ> 0. In both cases we have that limφℑ→0 P (φℜ +
jφℑ)=P (φ).

2.
∫

R
|P (φℜ + jφℑ)|2dφℜ < ∞ for φℑ < 0 or φℑ > 0, if p(x) is right-sided or

left-sided respectively.

3. The real and imaginary parts of P (φ) form a Hilbert transform pair.

Coming back to the problem at hand, let p(x) represent a double-sided function

and P (φ) its Fourier spectrum. As proposed in Section 6.6.1, we factor the function

into its right-sided and left-sided parts p+(x)=p(x)H(x) and p−(x)=p(x)H(−x),
respectively. The spectra of these single-sided parts are given by [22, 25, 26],

P±(φ) = P (φ) ∗ 1

2

(

δ(φ)∓ j 1

φ

)

=
1

2
(P (φ)∓ jH{P} (φ)) ,

whereH{·} is the Hilbert transform operator, and it follows that statement 3 in Titch-

marsh’s theorem holds. As a consequence, P±(φ) admits an analytic continuation

into one half of the complex plane.

Next consider the GFT integral (6.11) of the right/left-sided part of p(x). We

have

P±α(φ) =

∫

R

p±(x)eβxe−jφxdx =

∫

R

p±(x)e−j(φ−βℑ+jβℜ)xdx

= P±(φ− βℑ + jβℜ),
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with β=log(α)/Tp and α∈C\{0}. Writing α= |α|ej∠α, then βℜ=log(|α|)/Tp and

βℑ=∠α/Tp are the real and imaginary parts of β, respectively. Hence, we conclude
that the GFT of p±(x) can be obtained by evaluating the analytic continuation of its

Fourier spectrum P±(φ), which exists by Titchmarsh’s theorem, and is given by a

linear combination of P (φ) and its Hilbert transform.

In order to generalize the 1-D results presented above, note that the Fourier trans-

form of the orthant-sided Heaviside functions F {Hq(x)} is given by the Cartesian

product of the unidimensional spectra. That is,

F {Hq(x)} =
1

2ν

ν−1
⊗

i=0

(

δ(φi)− ςq(i)j
1

φi

)

where
⊗

is the Cartesian product operator, φi are the components of the frequency

vector φ, and as before, ςq(i) denotes the sign of the coordinates of a given orthant

with q an enumeration of the orthants. Recalling plq(x, t) (6.21) as the single-octact
parts of the sound field of the mother sources, where l denotes the mother source

number and q the octant number, and defining
 as the multidimensional convolution

operator, we then write

Plq(φ, ω) = Pl(φ, ω) 
 1

8

(

⊗

i

(

δ(φi)− ςq(i)j
1

φi

)

)

,

where i∈{x, y, z}. This can be rewritten as,

Plq(φ, ω)=
1

8

(

Pl(φ, ω)− j
(

ςq(x)Hx{Pl} (φ, ω) + ςq(y)Hy{Pl} (φ, ω)

+ ςq(z)Hz{Pl} (φ, ω)
)

+
(

ςq(x)ςq(y)Hxy{Pl} (φ, ω) + ςq(x)ςq(z)Hxz{Pl} (φ, ω)

+ ςq(y)ςq(z)Hyz{Pl} (φ, ω)
)

− ςq(x)ςq(y)ςq(z)Hxyz{Pl} (φ, ω)
)

,

where the Hilbert transform operator is taken on the specified (sub-indexed) dimen-

sions. As it is seen, the Fourier spectrum of the single-octant sound field is given

by a linear combination of the spectrum Pl(φ, ω) and its partial and full multidimen-

sional Hilbert transforms. From Titchmarch’s theorem we conclude that the resulting

function is orthant-analytic in the 3-D complex space. The problem of finding the re-

quired GFT coefficients is thus reduced to computing the Hilbert transforms of the

sound field spectra.
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The spectrum of the sound field (centered at the origin of the coordinates) is given

by (6.2) where we can ignore the term exp(jφT
s) because of the shift-invariance

property of the Hilbert transform. The partial Hilbert transform of the spectrum over

one spatial variable is given by

Hx{P} (φ, ω) =
φx

(

φ2
y + φ2

z − (ω/c)2
)1/2

1

‖φ‖2 − (ω/c)2
, (6.27)

equivalent expressions are obtained for the y or z direction. The partial Hilbert trans-
form over two variables is given by

Hxy{P} (φ, ω) =
2

π

(

Hx{P} (φ, ω)

(

log
(

φy +
(

φ2
x + φ2

z − (ω/c)2
)1/2

)

− log
(

(

− (ω/c)2
)1/2

)

)

+Hy{P} (φ, ω)

(

log
(

φx +
(

φ2
y + φ2

z − (ω/c)2
)1/2

)

− log
(

(

− (ω/c)2
)1/2

)

)

)

,

(6.28)

with similar expressions for the xz or yz directions. See Appendix 6.B for the deriva-

tions. In a similar way, the Hilbert transform over the xyz-variables can be found.
With these results, we can validate the theory presented in this paper. Note that

knowledge of the partial Hilbert transform over one variable allows us to compute

the spectrum of a single-sided (over the specified dimension) sound field. Knowl-

edge of this transform and the partial transform over two variables allows us to obtain

the spectrum of a quadrant-sided sound field. Using this “quadrant-sided” spectrum

we can readily obtain (via analytic continuation) the GFT for general values of α

over two spatial dimensions, leaving the third dimension with a parameter equal to

α : |α| = 1. In other words, we can specify reflection coefficients with absorption on
four parallel walls in two dimensions leaving two parallel walls with reflection coeffi-

cients that only perform a phase shift but no absorption. The simulation experiments
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presented in Sec. 6.7 are thus based on the following expression,

Plq(φ, ω) =
exp(jφT

sl)

4

(

P (φ, ω)− j
(

ςq(x)Hx{P}(φ, ω) + ςq(y)Hy{P} (φ, ω)
)

+
(

ςq(x)ςq(y)Hxy{P} (φ, ω)
)

)

,

(6.29)

with equivalent expressions if absorption is to be modeled on parallel walls in the xz
or yz direction.

6.7 Experimental results

In this section we present simulation results. We compare the newly proposed method

against the MISM [13] for a box-shaped room with constant wall reflection coeffi-

cients. To avoid the non-banlimited representation of the delta pulses in the MISM,

we follow Peterson’s approach [27]. Each delta pulse is replaced by the impulse re-

sponse of a Hanning-windowed ideal low-pass filter with cut-off frequency set to the

Nyquist frequency. The high-pass filter, suggested as post-processing operation in the

original paper from Allen and Berkley [13] is disabled in the experiments to avoid

biased results. All the experiments are performed in MATLAB R©, on a PC computer

with 16 cores running at 2 Ghz. The newly proposed method is implemented as a

mixed m-file and C++ mex function. For the MISM implementation we modified the

efficient C++ mex-function algorithm by E. Habets [28] making it multithreaded, this

in order to take advantage of all the computational cores. The computed scenario is

displayed in Fig. 6.7a. The room dimensions are [Lx, Ly, Lz]
T =[2.6, 2.6, 2]T . The

wall reflection coefficients are ̺x0 = 1 and ̺x1 = −1, ̺y0 = 0.5 and ̺y1 = −0.6,
̺z0 = 0.7 and ̺x1 = −0.8. Notice that the wall perpendicular to the x direction

adjacent to the origin is rigid (i.e. fully reflective) and the opposite wall is soft

(i.e. fully reflective with a π phase shift). We consider temporal signals bandlim-

ited to 2Khz. The temporal sampling frequency is thus set to fs = 40000 Hz, or

in radians per second ωs = fs2π. The simulation length is Th = 1.024s, or equiv-
alently in samples, Nt = 4096. We choose the temporal frequency sampling inter-

val to be Ωs =ωs/2Nt, or equivalently Tp = 2Th. The spectral-sampling matrix

is thus given by Ψ = diag(π/Lx, π/Ly, π/Lz,Ωs). The spectral-periodicity ma-

trix is chosen to be Σ = 2Ψdiag(Nx, Ny, Nz, Nt), with Ny = 64, Ny = 64 and

Ny = 48. This directly defines a sound field sampling lattice Γ, with generator ma-

trix Γ = 2πΣ−T = diag(Lx/Nx, Ly/Ny, Lz/Nz, 2π/ωs). The diagonal form of Γ
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Experimental results

imposes a rectangular arrangement of the sound field measurement positions. This

can be seen in Fig. 6.7a, where the Nx = 65 Ny = 64 and Nz = 48 measurement

positions are arranged in a rectangular lattice, giving a total of 196608 spatial posi-

tions to be calculated. The source S0 is positioned at s0 =[1.71, 1.14, 1.02]T . We

set αt = 0.9, in this way we obtain a mild temporal aliasing suppression. The spa-

tial components of the GFT parameter per octant are set to ̺qi = (̺i0̺i1)
ςq(i) for

q = 0, . . . , 7 and i ∈ {x, y, z}. The GFT parameter per octant is thus given by

αq = [−1, ̺qy, ̺qz, αt]
T = [−1,−(0.3)ςq(y),−(0.56)ςq(z), 0.9]T . The generalized

Fourier spectrum is obtained evaluating (6.29) at the complex frequency variables

given by,

Pαlq(φ, ω) = Plq(φ− βℑ + jβqℜ, ω − βωℑ + jβωℜ)

withβqℜ=[0, ςq(y) log(0.3)/(2Ly), ςq(z) log(0.56)/(2Lz)]
T , βℑ=([±π/(2Li)]i)

T ,

βωℑ = 0 and βωℜ = log(0.9)/Tp. Next we evaluate generalized spectra at sampling

points given by Ψ to obtain the coefficients Pαlq(Ψk). To perform the generalized

Fourier synthesis given by (6.25), first a multidimensional inverse FFT is applied on

the coefficients, followed by a modulation by exp(−βT
q Γn), n∈R

3. The scaling fac-

tor (|∆|N(∆/Γ))−1 can be applied in any order. The final result is obtained by (6.26)

using the alignment factors given in Table 6.1. The synthesis gives us all the RIRs

inside the room. For the MISM we evaluate individually the RIRs from the source to

each measuring position. We use a triplet of integers ny, nz, nt, to index the sound

field samples. The colormap plots in Fig. 6.7b show the results only for a measure-

ment line in the y direction at nz =2, of plane nx =58 (dark plane in in Fig. 6.7b) and

time samples 0 ≤ nt ≤ 128. The measurement line is displayed in blue in Fig. 6.7a.

In Fig. 6.7c, a plot is given where we compare the RIRs only for measurement po-

sition ny = 23 of the same line (the green dot in Fig. 6.7a denotes this position) for

time samples 0≤nt≤680. Additionally in Fig. 6.7d a comparison of the full 1.024s
long RIRs is given. As it is seen, the spatio-temporal “locations” and amplitudes

of the reflections are perfectly modeled by the newly proposed method. However,

still small discrepancies are observed between both approaches, these are caused by

two factors. First, temporal aliasing is still present. This can be further made arbi-

trarily small by decreasing the spectral sampling interval Ωs. More importantly, the

(finite-length) Hanning-windowed low-pass filter used in the MISM produces a mis-

alignment between both methods. As the window length of the filter is increased the

error is accordingly decreased. For this particular experiment the window length is

set to 2s. The proposed algorithm took 4.61 hours to calculate the 196608 spatial

positions. The MISM took 591days or 1.61 years. We did not compute the MISM

on the whole set of 196608 positions. Instead we compute 3072 positions arranged
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6. Fast modeling of multichannel room impulse responses

on a plane (depicted by the dark plane in Fig. 6.7b) and extrapolate the result. This

experiment shows the drastic difference in computational complexity for the given

scenario.

6.8 Conclusions

A generalized Fourier domain framework to acoustic modeling in box-shaped rooms

is presented in this paper. For rooms with constant wall reflection coefficients, we

show that the sound field inside the enclosure can be expressed as a geometrically

weighted periodic summation. We relate the samples of the generalized spectrum

of the free-field sound field, to the weighted periodic summation that describes the

spatio-temporal sound field in the room. Discretizing all domains and periodically

extending the generalized Fourier series space over a lattice, we obtained the gener-

alized discrete Fourier transform (GDFT). The GDFT can be implemented using the

FFT, which allowed us to drastically reduce the complexity of the generalized Fourier

synthesis. Using these results, we derived a method to compute massive amounts of

RIRs over the full room space with very low complexity, of order O(N logN) per
measuring position, which significantly outperforms the O(N3) complexity of the

MISM [13].

Appendix 6.A Proof of Proposition 6.1

Proof. If φ = 2πΛ−T , Proposition 6.1 follows directly by evaluating Pαlq(Φk, ω),
k∈Z

3 on the generalized Poisson summation formula (6.15). The converse is proven

as follows. Given α = [̺
ςq(x)
x , ̺

ςq(y)
y , ̺

ςq(z)
z , αt]

T , let βt = log(αt)/Tp and βq =

Λ
−T log([̺

ςq(x)
x , ̺

ςq(y)
y , ̺

ςq(z)
z ]T ), then we have that,

Pαlq(Φk, ω)=

∫

R3

∫

R

plq(x, t)e
βT

q x+βtte−j(kT Φ
T
x+ωt)dtdx

=

∫

R

∑

n∈Z3

∫

VΛ(n)

plq(x, t)e
βT

q x+βtte−j(kT Φ
T
x+ωt)dxdt. (6.30)
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Hilbert transforms of the spectrum of the sound field

Making the substitution, x→ x + Λn, (6.30) becomes

Pαlq(Φk, ω)=

∫

R

∫

VΛ(0)

∑

n∈Z3

plq(x + Λn, t)eβT
q (x+Λn)eβtte−j(kT Φ

T (x+Λn)+ωt)dxdt.

(6.31)

Since

βT
q Λn = log([̺

ςq(x)
x , ̺

ςq(y)
y , ̺

ςq(z)
z ])Λ−1

Λn

= log([̺
ςq(x)
x , ̺

ςq(y)
y , ̺

ςq(z)
z ])T

n,

we then have that eβT
q Λn=

∏

i∈{x,y,z} ̺
ςq(i)
i , so that (6.31) can be rewritten as,

Pαlq(Φk, ω) =

∫

R

∫

VΛ(0)

∑

n∈Z3

(

∏

i
̺

ςq(i)ni

i

)

plq(x + Λn, t)e−jkT Φ
T
Λn

× eβT
q x+βtte−j(kT Φ

T
x+ωt)dxdt.

(6.32)

If ΦT
Λ=2πU, with U an integer matrix, the term e−jkT Φ

T
Λn=1 for all k,n ∈ Z

3,

and only if ΦT
Λ=2πI, with I the identity matrix, or equivalently Φ=2πΛ−T , then

the coefficient functions Pαlq(Φk, ω) correspond to the exact generalized Fourier

series expansions (defined by (6.17)) of

|Λ|
∑

n∈Z3

(

∏

i
̺

ςq(i)ni

i

)

plq(x + Λn, t)e−jkT Φ
T
Λn,

which completes the proof.

Appendix 6.B Hilbert transforms of the spectrum

of the sound field

The partial Hilbert transform of P (φ, ω) = (‖φ‖2 + (ω/c)2)−1 over one specified

spatial dimension is first derived. Let us take φx as the transform variable, we then

rewrite P (φ, ω) in terms of φx as, P (φ, ω)=(φ2
x+a2)−1, with a2 =φ2

y+φ2
z−(ω/c)2.

Combining equations (2.2), (2.3) and (2.4), pp. 459 in [29], we obtain,

Hx{P} (φ, ω) =
φx

a

1

φ2
x + a2

.
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6. Fast modeling of multichannel room impulse responses

Substituting for the value of a we get the result in (6.27). The partial Hilbert trans-

form of P (φ, ω) over two spatial variables is denoted as,

Hxy{P} (φ, ω) = Hy{Hx{P}} (φ, ω) = Hx{Hy{P}} (φ, ω).

From (6.27) we have,

Hx{Hy{P}} (φ, ω) = yHx

{

1
(

φ2
x + φ2

z − (ω/c)2
)1/2

1

‖φ‖2 − (ω/c)2

}

.

Applying Bedrosian’s theorem [25] pp. 184, we obtain

Hx

{

1
(

φ2
x + φ2

z − (ω/c)2
)1/2

1

‖φ‖2 − (ω/c)2

}

=

y

‖φ‖2 − (ω/c)2
Hx

{

1
(

φ2
x + φ2

z − (ω/c)2
)1/2

}

and respectively,

Hy{Hx{P}} (φ, ω) =
x

‖φ‖2 − (ω/c)2
Hy

{

1
(

φ2
y + φ2

z − (ω/c)2
)1/2

}

.

Following the procedure to obtain result (4.3.81) in [25] pp. 203, we obtain,

Hx

{

1
(

φ2
x + φ2

z − (ω/c)2
)1/2

}

=
2

π
×

log
(

φx + (φ2
y + φ2

z − (ω/c)2)1/2
)

− log
(

(−(ω/c)2)1/2
)

(

φ2
x + φ2

y − (ω/c)2
)1/2

with a similar expression for Hy

{

1/
(

φ2
y + φ2

z − (ω/c)2
)1/2

}

. Combining these re-

sults we arrive to (6.28).
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7
Concluding comments and future work

7.1 The channel identification problem

Simulation of room impulse responses is part of a bigger and richer problem in acous-

tic DSP, acoustic communication and, in general, in any wireless communication sys-

tem based on wave propagation. This is the modeling or estimation of the medium

channel. In physics the medium channel is given by the Green’s function, a concept

used in Part I of this thesis. In mathematics an abstraction of this concept is given by

the fundamental solution of a functional operator [1]. In room acoustics it is called

the RIR and in signal processing just impuse response [2]. It is then not surprising

to find that fundamental mathematical and conceptual relationships exist between

RIR simulation algorithms and the methods and solutions found in other branches of

science.

The RIR, i.e. the medium channel, plays a major role in many acoustical prob-

lems, e.g. multichannel acoustic echo cancellation [3], dereverberation and channel

equalization [3, 4], beamforming [5], sound field synthesis [6, 7], acoustic under-

water communication [8, 9]. The distinctive challenge is that in practice the RIR

is a wideband, slowly decaying, highly space-time-varying function. The RIR is a

function of the positions and directivities of sources and receivers, temperature, inho-

mogeneous medium density, moving objects in the enclosure and rapidly changing

boundary conditions, just to name a few. Complex statistical methods are then used

to address the levels of dynamism and complexity of the channel identification prob-

lem, but still solutions remain difficult to obtain in the most challenging scenarios.

The deterministic RIR models reviewed in Sec. 2 constitute a set of algorithms

that attempt to mimic (with different levels of accuracy) the underlying physics of

wave dynamics. Novel lines of research might be devoted to exploit the information

given by these physical models as a prior or constraint in the statistical process in
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7. Concluding comments and future work

order to ease the channel identification problem. Some early steps in this direction

have been taken in the context of field estimation and localization [10], showing the

potential of using physical deterministic models to address the channel identification

problem in the most challenging conditions. The spatio-temporal RIR model with

low-complexity presented in this thesis might then prove of valuable practical use for

applications beyond room acoustics simulation.

7.2 The generalized Fourier transform

The generalized Fourier transform (GFT), introduced in Chapters 4, 5 and 6, is orig-

inally derived to address an important restriction of the RIR simulation model pre-

sented in Chapter 3, namely that only perfectly reflective walls are simulated. In

practice that assumption is not valid, and an extension of the model was needed. The

method relays on the key property that sampling of a function results in a periodic

summation of its Fourier transform [2, 11, 12]. This property is formalized by the

Poisson summation formula [1, 13]. Using this idea, first the sound field in the room

is modeled by a periodic summation and then it is associated with a sampling condi-

tion in the Fourier domain. From the samples of the spectrum the reverberated sound

field is synthesized.

When sound absorption is allowed at the walls the sound field cannot anymore

be expressed by a periodic summation. Every reflection gets damped by a factor, re-

flections of reflections then decay at a geometric rate. These reflections can be seen

as geometrically damped periodic repetitions of the original sound field. The ques-

tion was then: “Does a Poisson summation-like formula exist that relates the samples

of a transformed function to a geometrically weighted summation of the function?”

The search concluded in the derivation of a generalized Poisson summation formula

(GPSF) that formalized this property. The associated transform is closely related to

the Fourier transform (FT). It can be seen as the FT of a function modulated by an

exponential window. The transform was then named generalized Fourier transform

(GFT). Just as the FT, the GFT is a special case of the bilateral Laplace transform

(BLT) [14], it can be seen as the BLT evaluated at a linear manifold in the s-space. If
that linear manifold is included in the region of converge (ROC) of the BLT, then the

GFT exists. What makes the GFT distinct from just a modulated FT or another spe-

cial case of the BLT is the generalized Poisson summation formula associated with

it.

The connections of the GFT with sampling, analyticity, the z-transform [2] and

the Hilbert transform [15–17] are briefly analysed in Chapters 5 and 6. This analysis
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is still far from being complete, and just as special properties like the weighted circu-

lar convolution theorem where derived, a signal processing framework based on the

GFT might still have some interesting and helpful properties to be discovered.
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Delft, November 2013.

157



Acknowledgements

158



Curriculum Vitae
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Acronyms

AEC Acoustic echo cancellation

ARD Adaptive rectangular decomposition

BEM Boundary element method

BT Beam tracing

DFT Discrete Fourier transform

DLRM Diffuse late-reverberation model

DSP Digital signal processing

DWM Digital waveguide mesh

FD Fourier domain

FDTD Finite-difference time-domain

FEM Finite element method

FFT Fast Fourier transform

FMM Fast multipole method

FT Fourier transform
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GDFT Generalized discrete Fourier transform

GFD Generalized Fourier domain

GFFT Generalized fast Fourier transform

GFT Generalized Fourier transform

GPSF Generalized Poisson summation formula

GPU Graphics processing unit

HOA Higher order ambisonics

IFFT Inverse fast Fourier transform

IGFFT Inverse generalized fast Fourier transform

LCC Left-angle circular covolution

LTI Linear time-invariant

MISM Mirror image source method

MMIMO Massive multiple-input multiple-output

PAF Plenacoustic function

PAS Plenacoustic spectrum

PC Personal computer

PML Perfectly matched layers

PSTD Pseudo-spectral time-domain

RCC Right-angle circular covolution

RIR Room impulse response

ROC Region of convergence
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SRF Sound field reconstruction

WDAF Wave-domain adaptive filtering

WFA Wave field analysis

WFS Wave field synthesis

WRW Wave propagation wave Reflection Wave propagation

WSN Wireless sensor network

Notation

R The set of real numbers

Z The set of integer numbers

C\{0} The set of complex numbers not including 0

C The set of complex numbers

R
ν The ν-dimensional real space

Z
ν The ν-dimensional integer lattice

j Imaginary number. j =
√
−1

C
ν The ν-dimensional complex space

(·)T Vector or matrix transposition

x ∈ R
ν Spatial position in ν dimensions. When ν = 3, then x ∈ [x, y, z]T

|| · || Euclidean norm.

· Dot product.

|x| Absolute value of scalar x

163



Glossary

|Λ| Absolute value of determinant of matrix Λ

c Speed of sound in meters per second

t ∈ R Time in seconds

ω ∈ R Temporal angular frequency. It denotes frequency in radians per sec-

ond. In Chap. 4 and Chap. 5, it denotes discrete-time frequency in

radians per sample

φ ∈ R
ν Spatial angular frequency vector. When ν = 3 thenφ = [φx, φy, φz]

T

Ω ∈ R Temporal angular frequency in radians per second (Chap. 4)

k Wave vector. k = [kx, ky, kz]
T

kx, ky, kz Trace wave numbers in the x, y and z directions respectively

k ∈ R Wave number. k = ||k|| = |ω|/c (Chap. 1)

k ∈ Z Discrete temporal-frequency index (Chap. 4 and Chap. 5)

n ∈ Z Discrete time index

n ∈ Z
ν ν-dimensional discrete index

k ∈ Z
ν ν-dimensional spectral discrete index

p(x, t) Scalar field (scalar function of several variables)

v(x, t) Vector field (vector function of several variables)

x(n) Discrete-time scalar function or signal

η ∈ R
3 Outward normal vector with respect to a surface

η(x) ∈ R
3 Outward normal vector function with respect to a surface

∇2 Laplacian operator

∇ Gradient operator (vector derivative of a scalar field)

0 ∈ R
ν Zero vector. 0 = [0, . . . , 0]T

ϑ Dip (elevation) angle
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ϕ Azimuth angle

̺ ∈ C Wall reflection coefficient

Z ∈ C Wall impedance

Z(x, ω) ∈ C Wall impedance as a function of wall surface and temporal-frequency

ξ ∈ C Specific wall admittance. ξ = ̺0c/Z

ρ0 Medium density in kg/m3

S Set of space points comprising a surface

V Set of space points comprising a volume

dn

dtn n-th order derivative of a function of t

∂n

∂xn n-th order partial derivative of a scalar field with respect to variable x

δ(·) Dirac’s delta generalized function

ψ(·) Basis function or eigen function

O(N) Complexity order as a function of parameter N

T60 Reverberation time in seconds. Time it takes for the reverberation

energy to decay 60dB below its initial value

Λ Generator matrix of lattice Λ

Λ Lattice Λ

Λ
−1 Inverse of matrix Λ

Λ
−T Inverse transpose of matrix Λ. Λ−T = (Λ−1)T = (ΛT )−1

V∆(x) Voronoi region of lattice ∆ around point x

N(∆/Γ) Number of lattice points of lattice Γ that lie inside V∆(0) the voronoi
region of lattice ∆ around the origin

I Identity matrix
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diag(x) Diagonal matrix with diagonal elements equal to the elements of vec-

tor x

L2(Rν) Lebesgue 2-norm function space over the ν-dimensional real space.

The space of (multidimensional) functions of finite energy

L2[−π, π] Lebesgue 2-norm function space on the interval [−π, π]. The space

of functions of finite energy defined on the interval [−π, π]

∗ Linear convolution operator
 Multidimensional linear convolution operator

ℜ{·} Real part operator

ℑ{·} Imaginary part operator

xℜ Real part of x

xℑ Imaginary part of x

(·)∗ Complex conjugate

Oq qth octact of the 3-D space R
3

H(x) Heaviside function (unit-step function)

Hq(x) 3-D Heaviside function. Hq(x) = 1 if x ∈ Oq, and 0 otherwise

⊗ Cartesian product operator

xmodN x modulo N

(·)N Modulo N operator

F {·} Fourier transform operator

F −1 {·} Inverse Fourier transform operator

Ft {·} Fourier transform operator over the specified subscripted dimension(s)

F −1
ω {·} Inverse Fourier transform operator over the specified subscripted di-

mension(s)
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P Fourier transform of p

F←→ Fourier transform relation

Fx←→ Fourier transform relation over the specified subscripted dimension(s)

P̆ Angular spectrum or wave-domain representation of scalar field p

Gα {·} Generalized Fourier transform operator with parameter α

G −1
α {·} Inverse generalized Fourier transform operator with parameter α

Pα Generalized Fourier transform with parameter α of p

Gα←−−→ Generalized Fourier transform relation

p̃α Geometrically weighted periodic extension of p

α ∈ C\{0} Parameter of the generalized Fourier transform

β ∈ C Parameter of the generalized Fourier trasform. For a specified peri-

odicity period Tp ∈ R, or N ∈ N for discrete-time signals, then

β = log(α)/Tp or β = log(α)/N

α ∈ C
ν Parameter of the generalized Fourier transform for multidimensional

functions. α = [α0, . . . , αν−1]
T with αi 6= 0 for all i

β ∈ C
ν Parameter of the generalized Fourier transform for multidimensional

functions. For a specified periodicity lattice Λ with generator matrix

Λ, then β = Λ
−T [log(α0), . . . , log(αν−1)]

T .

Hx{·} Hilbert transform operator over the specified subscripted dimension(s)
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Always keep Ithaca in your mind.

To arrive there is your ultimate goal.

But do not hurry the voyage at all.

It is better to let it last for many years;

and to anchor at the island when you are old,

rich with all you have gained on the way,

not expecting that Ithaca will offer you riches.

Ithaca has given you the beautiful voyage.

Without her you would never have set out on the road.

She has nothing more to give you.

And if you find her poor, Ithaca has not deceived you.

Wise as you have become, with so much experience,

you must already have understood what Ithaca means.

Fragment from “Ithaca”

CONSTANTINE CAVAFY (1863–1933)

translated by Rae Dalven.
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