
Complexity Scalable
MPEG Encoding

Stephan Mietens

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Mietens, Stephan O.

Complexity scalable MPEG encoding / by Stephan O. Mietens. - Eindhoven :
Technische Universiteit Eindhoven, 2004.
Proefschrift. - ISBN 90-386-2040-3
NUR 992
Trefw.: complexiteit van berekening / beeldcodering / codering.
Subject headings: computational complexity / video coding / encoding.
Schlagwörter: Skalierbarkeit / MPEG / Videokompression / Encoding.

c� Copyright 2004 Stephan Mietens
All rights are reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission from the copyright owner.

Complexity Scalable
MPEG Encoding

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen op
woensdag 18 februari 2004 om 16.00 uur

door

Stephan Oliver Mietens

geboren te Frankfurt am Main, Duitsland

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. P.H.N. de With
en
prof.dr.ir. R.L. Lagendijk

Copromotor:
Prof. Dr.-Ing. habil. C. Hentschel

ISBN 90-386-2040-3

to my family

Contents

1 Introduction 1
1.1 Problem statement . 1

1.1.1 Context . 1
1.1.2 Terms and system requirements 3
1.1.3 Approaches towards MPEG complexity scalability . . 5
1.1.4 Structure of the conducted research 6

1.2 Programmable hardware . 8
1.2.1 Emerging flexible architectures 8
1.2.2 Signal flow-graph programming 10
1.2.3 Dynamic multi-window TV 12

1.3 Scalable system design . 13
1.3.1 Motivation for embedded applications 13
1.3.2 Scalable systems using scalable video algorithms . . . 15
1.3.3 Overall system architecture with scalability 16

1.4 MPEG-2 video compression standard 19
1.4.1 Basics of MPEG video coding 21
1.4.2 Processing of MPEG video coding 22
1.4.3 MPEG Scalability 28

1.5 Outline of the thesis . 30
1.6 Background of the chapters 33

2 Discrete cosine transformation 37
2.1 Introduction . 37
2.2 Mathematical background 38

2.2.1 Forward Transformation 38
2.2.2 Inverse Transformation 39
2.2.3 Periodic properties of the cosine function 40

i

ii Contents

2.3 Examples of DCT algorithms 40
2.3.1 Lee-Huang recursive algorithm 41
2.3.2 Cho-Lee 2-D algorithm 41
2.3.3 Arai-Agui-Nakajima 1-D algorithm 42
2.3.4 Alternative DCT algorithms 43

2.4 Complexity comparison of DCT algorithms 44
2.5 Accuracy-reduced DCT . 47

2.5.1 Merhav-Vasudev multiplication-free algorithm 47
2.5.2 Pao-Sun adaptive DCT modeling 48
2.5.3 Lengwehasatit-Ortega var.-complexity algorithm . . . 48

2.6 Discussion . 49

3 Complexity scalable DCT computation 51
3.1 Introduction . 51
3.2 DCT-algorithm analysis . 53

3.2.1 Concept for the new technique 53
3.2.2 Trade-off criterion for computations and quality 54
3.2.3 Priority weighting 54

3.3 Implementation aspects of a fast-DCT algorithm analysis . . . 55
3.3.1 Database construction 55
3.3.2 Construction of a database for analysis results 57
3.3.3 Algorithmic example 59

3.4 Enhancements using priority weighting 60
3.5 Experimental results . 61

3.5.1 Computational results of the experiments 61
3.5.2 Pictorial results of the experiments 63

3.6 Discussions and conclusions 66

4 Motion estimation 71
4.1 Introduction . 71
4.2 Block-matching criteria . 72
4.3 Fast ME algorithms . 74

4.3.1 Full Search (2DFS) 74
4.3.2 One Dimensional Full Search (1DFS) 74
4.3.3 Block-Based Gradient Descent Search (BBGDS) . . . 76
4.3.4 Diamond Search . 76
4.3.5 Three Step Search (TSS) 77
4.3.6 New Three Step Search (NTSS) 77
4.3.7 Simple Recursive Motion Estimation (simple RME) . 77

4.4 Motion-vector refinement . 80

Contents iii

4.5 Comparison of ME algorithms 81
4.5.1 Picture quality of motion-compensated frames 81
4.5.2 Computational complexity comparison 83
4.5.3 Complexity vs. picture quality 84

4.6 Conclusion . 85

5 Scalable motion estimation 87
5.1 Introduction . 87

5.1.1 A view on the ME process 87
5.1.2 State-of-the-art ME 88
5.1.3 Contribution of this chapter to scalable ME 90

5.2 Notations . 91
5.3 SMART, a structural-level technique 92

5.3.1 Algorithm . 92
5.3.2 Modifications in the MPEG encoder architecture . . . 94
5.3.3 Scalability aspects 96
5.3.4 Experimental verification 99

5.4 Block classification supporting the DCT and ME 103
5.4.1 Algorithm . 104
5.4.2 Experimental verification 105

5.5 CARES, a vector-selection level technique 106
5.5.1 A concept for content-dependent ME 106
5.5.2 Algorithm . 108
5.5.3 Experimental verification 109

5.6 Discussion and conclusions 111

6 System experiments and enhancements 113
6.1 Experimental environment 113
6.2 Inserting scalable DCT and related optimizations 115

6.2.1 Effect of proposed scalable DCT 115
6.2.2 Selective DCT computation based on block classifica-

tion . 118
6.2.3 Cyclical DCT for interframe coding 120

6.3 Combining SMART and CARES into one scalable ME system 123
6.4 Combined effect of scalable DCT and scalable ME 128

6.4.1 Open-loop MPEG encoder 129
6.4.2 Closed-loop MPEG encoder 131
6.4.3 MPEG encoder with variable GOP and bit rate 132

6.5 Discussion on further optimization of the scalable encoder . . 135
6.6 Conclusions . 137

iv Contents

7 Conclusions 139
7.1 Conclusions of the thesis chapters 139
7.2 Memory-resource usage . 143
7.3 Future work on MPEG scalability 143

7.3.1 System optimization 143
7.3.2 Bit-based processing 144
7.3.3 Modifying the input signal 144
7.3.4 Differentiating scalable DCT for intra- and intercoding 145

7.4 Applicability to other video applications 145
7.4.1 MPEG-incompatible DCT coefficient coding 145
7.4.2 Segmentation (MPEG-4) 146
7.4.3 Multi-temporal ME (H.264) 146

References 149

A Derivation of computation order 159

B Computational complexity of ME algorithms 165
B.1 Number of block comparisons 166
B.2 Computational complexity of a single block comparison . . . 167
B.3 Vector Refinement . 167
B.4 Example configurations for motion estimation 168
B.5 Statistics of real computational effort 169

C Reduced processing resolution 171
C.1 Scalable DCT based on bit-slices 171

C.1.1 Overview . 171
C.1.2 Architecture . 172
C.1.3 Experimental results 175

C.2 Bit-based computation of ME 176
C.2.1 Simply reduced bit-resolution of input values 176
C.2.2 One-Bit Motion Estimation (1BME) 176

D Test sequences 181
D.1 “Girl” . 181
D.2 “Voit” . 182
D.3 “Teeny” . 182
D.4 “Renata” . 183
D.5 “Stefan” . 183
D.6 “Foreman” . 184

Contents v

D.7 “Table tennis” . 184

Summary 187

Samenvatting 189

Zusammenfassung 193

Acknowledgments 197

Biography 199

CHAPTER1
Introduction

�
his chapter forms an introduction to the research that aims
at realizing computational complexity scalability for MPEG
encoding. The chapter commences with the general problem

statement of scalable MPEG processing: i.e. a scalable range of pic-
ture quality with corresponding resource usage of the system. Re-
source usage is expressed in terms of computation power, memory and
communication bandwidth. Additional sections present an exemplary
flexible and programmable hardware architecture showing the con-
cept of scalable video processing, the principles of scalable system
design, and a brief description of the MPEG coding standard, in or-
der to deepen the insights of the problem statement. Furthermore, this
chapter summarizes the subsequent individual chapters and presents
their publication history.

1.1 Problem statement

1.1.1 Context

The current burgeoning market for consumer digital video applications has
lead to widely accepted consumer products based on MPEG coding, such as

2 Introduction

DVD players, set-top boxes and digital video cameras. This thesis adds one
extra dimension to MPEG coding, namely complexity scalable coding. Scal-
ability offers the advantage of video algorithms that can adapt their output
quality with the purpose of accordingly adapting their resource usage (like
computation power or memory) to the actually resources available for the ap-
plication.

One of the most popular existing applications of MPEG-2 coding is the stor-
age of movies in compressed form on the so-called Digital Versatile Disc
(DVD), which provides a real-time digital MPEG video playback system. The
MPEG encoding process for creating a DVD is not time-critical and can be
performed with highly complex algorithms for achieving high video quality.
Until today, research on MPEG-based video compression focused primarily
on maximizing the video quality for common applications such as broadcast-
ing digital TV and DVD with a data rate of 3-8 Mbit/s, and on finding efficient
implementations in hardware and software.

However, today’s digital video applications have an ever-increasing range of
quality requirements that exceed broadcasting digital TV and DVD. Figure 1.1
shows some examples of such extended applications operating on well-known
devices. In the figure, a multi-window TV set shows a high-quality video
output (decoding) from a DVD player, while simultaneously performing a
video-conferencing application with medium video quality (encoding and de-
coding). Furthermore, the TV set is connected via a wireless channel with
a mobile phone and a PDA that process video data at low quality. All these
applications satisfy different constraints such as real-time execution in a soft-
ware implementation, while the available system resources like computation
power or memory should be well balanced.

()()()

()()()

4

()()()

Figure 1.1: Multimedia devices that can execute video applications (e.g.
video conferencing) while sharing available resources.

1.1 Problem statement 3

Furthermore, future consumer terminals will combine in a flexible way high-
quality video and audio with applications from the multi-media PC domain
(e.g. web cameras and video editing), as found on PCs. The need for flexibil-
ity is not supported by many current products that use dedicated hardware and
are thus designed for a specific application at fixed quality. Due to their inflex-
ibility, they are for example not upgradeable for new services. To overcome
this limitation, flexible software solutions running on programmable architec-
tures are needed. In Section 1.2, an example of an emerging programmable
video-processing platform [1, 2, 3] is presented in more detail, along with
an outline about its programmability on the functional level and applications
demonstrating the flexibility of the architecture [4]. The disadvantage of pro-
grammable architectures is that they are more expensive in hardware cost, and
their power consumption is initially larger, as compared to dedicated hard-
ware. This thesis will however open-up new ways to control the cost and the
quality of SW-based algorithms.

Scalable video algorithms (SVAs) [5] that are embedded in a flexible frame-
work provide dynamic adaptation of the resource usage to the current needs [6].
With this property, costly system redesign after changing the target architec-
ture for a video application may become history. In addition, SVAs can opti-
mize the resource sharing in a multi-tasking environment. The benefit of SVAs
can be explained with Figure 1.1. For example, the TV set shows three dif-
ferent video applications, namely a DVD playback in the screen background,
a TV broadcast in the bottom-right and a video conferencing in the top-left
part of the screen. If the applications are based on SVAs, they may share the
available resources of the TV set, and they are able to adapt their quality and
resource usage according to the user focus, or they may adapt to a change in
the number of running applications. Bringing the situation to mind when the
user received the video call and the conference application was initiated as the
third application to be executed, one can see that when using SVAs, the other
applications can still be executed, albeit at lower quality. If no SVAs are used,
the TV set would need to be prepared for worst-case situations with high total
costs, or it could not provide this combined functionality. In Section 1.3, the
design of a scalable system is presented in more detail.

1.1.2 Terms and system requirements

The development of SVAs and the design of scalable systems using SVAs was
the goal of a project at Philips Research, The Netherlands. The research de-
scribed in this thesis is part of this project. The objective is to design a scalable

4 Introduction

MPEG encoding algorithm that features scalable video quality and resource
usage, as described above, with respect to the desired application. New al-
gorithms and/or techniques have been investigated to reduce the complexity
of MPEG coding, while still preserving high quality. The most important
requirement is that the scalable quality should match with the necessary com-
putational resources, such that a lower quality leads to less required resources
accordingly. In the following, this problem is addressed as scalability of the
computational complexity. Note that the computational complexity relates to
the amount of executed operations rather than to the simplicity of algorithms.

The development of the scalable algorithms presented in this thesis is driven
by the following desires. On the one hand, a large scalability range should be
provided. On the other hand, when having sufficient resources, the scalable
algorithms should achieve the same quality as of comparable state-of-the-art
algorithms that do not provide scalability. At the same time, any overhead in
resource usage should be minimized. For example, this overhead is the need
of additional memory to keep intermediate results for later reuse, in order to
prevent multiple recomputation of the same operation.

In addition to the computational power, memory aspects are also considered
in this thesis. Memory costs are another important factor for a system de-
sign. Aligned with the above-given definition of the computational complex-
ity, memory aspects like the amount of memory (memory requirements) or
the access to the memory (bandwidth requirements) can be seen as memory
complexity. Memory complexity scalability is only partially addressed in this
thesis.

In an example scalability research project [7] (see also Section 1.3), the target
architectures that are considered for a scalable system design are generalized
programmable architectures, for the purpose of flexibility. For this reason,
the computational complexity as addressed in this thesis, is measured with
e.g. the number of additions and multiplications that are required to perform
the core functionality of the (developed scalable) algorithms. For a conve-
nient comparison with existing algorithms, other implementation costs (like
e.g. memory accesses) are disregarded or seen as being constant. Of course,
when selecting (limiting to) a certain architecture, architecture-specific prop-
erties can be considered for the development and the implementation of (scal-
able) algorithms. Note that this is not the focus of this thesis. Furthermore,
scalability is not limited to generalized and programmable architectures. For

1.1 Problem statement 5

example, dedicated hardware may result in reduced chip size when using scal-
ability techniques. This aspect is partially considered in an appendix of this
thesis.

Another serious constraint for the research on scalability was to maintain bit-
stream compatibility with the MPEG coding standard. This may not be nec-
essarily obvious, because a specialized encoder-decoder pair may offer ad-
vanced scalability options. However, MPEG incompatibility would limit the
wide applicability of the scalable encoder, which is not desirable.

1.1.3 Approaches towards MPEG complexity scalability

At this point, we assume that the reader is familiar with the basics of MPEG
coding. Otherwise, the reader is referred to Section 1.4, where the MPEG
video compression standard is briefly described, such that the architecture and
the processing blocks are sufficiently known for understanding of this thesis.

There are several meanings of the term “scalability” in the MPEG video do-
main. The MPEG-2 scalability modes concentrate on the scalability of a video
stream for transmission and decoding. Complexity scalability as addressed
above is focused on the computational effort of the encoder. For this purpose,
the ability of the MPEG core functions to complexity scalability is exploited.
In MPEG encoding, computational complexity scalability can be applied at
the frame level by modifying the GOP structure, because the amount of mo-
tion estimation increases for I-, P- and B-frames. This approach can be basi-
cally applied to any MPEG encoding system, without the need to change the
system itself, and will therefore not be discussed further. In the sequel, the
focus is on the core processing modules at the macroblock level.

For the MPEG core modules, the primary interest is on complexity scalabil-
ity techniques for the algorithms that are represented by the modules. This is
advantageous because improvements can be applied to various types of hard-
ware architectures. Architecture-specific optimizations of the modules can be
made after selection of a target architecture. An example to exploit features
of a RISC processor for obtaining an efficient implementation of an MPEG
coder is given in [8]. In this thesis, the following scalability techniques are
developed for the MPEG core modules.

� Discrete Cosine Transformation (DCT)
Existing DCT algorithms can be analyzed to find a specific computation

6 Introduction

order of the DCT coefficients. The computation order maximizes the
number of coefficients that can be computed at a given limited amount
of computation resources.

� Quantization
Since the DCT computes a subset of all possible coefficients, the quan-
tization is scaled with the scalable DCT by preselecting coefficients for
processing. The intrinsic computational complexity of quantization is
not high.

� Inverse DCT and inverse quantization
Coefficients that are not computed by the DCT do not have to be pro-
cessed by the modules performing the inverse DCT (IDCT) and inverse
quantization. If these modules are implemented in this way, they are
scaled with the DCT. Note that both modules should have the same re-
sult as their unscaled pendants in order to be compliant with the MPEG
standard, and therefore avoid error drift at the receiver side. For this
reason, previous work on scalability of the IDCT at the receiver side [9]
cannot be directly applied to the computation of the IDCT in an encoder.

� Motion Estimation (ME)
It will be shown later that motion vector fields needed for MPEG cod-
ing can be generated by multi-vector-field approximations from high-
quality frame-to-frame ME. Furthermore, the accuracy of the approxi-
mations can be made scalable. Finally, the refinement may be omitted
or kept very simple.

� Variable Length Coding (VLC)
The computational effort is scalable with the number of non-zero coef-
ficients that are released by the quantizer.

1.1.4 Structure of the conducted research

The following chapters present the development of scalability techniques for
the DCT and the ME in detail, including partial literature overviews and pre-
liminary comparisons that have lead to a selection of algorithms that were used
for further research. The DCT and the ME have been chosen, because the
compression of video sequences provided by MPEG coding is significantly
based on these two core modules and they require substantial computational
effort. Additionally, the scalable DCT and ME are inserted into a scalable
MPEG encoder and the overall system behavior is investigated.

1.1 Problem statement 7

The potentials for optimizations towards complexity scalability for DCT and
ME are higher than for the other modules, which can be seen from the fol-
lowing. For example, the DCT is normally computing all 64 coefficients per
� � � picture block and subsequent quantization removes the major number
of DCT coefficients. Ideally, only those coefficients that remain after quan-
tization should be computed, because the computations that are spent for the
other coefficients are wasted. However, which coefficients will remain is of
course not known in advance. Some optimizations can be made though. Us-
ing a selection of DCT algorithms as presented in Chapter 2, a scalable DCT
computation technique is developed in Chapter 3 to optimize the number of
computed coefficients under computation power limitations. The technique
can include priority weighting of the coefficients to e.g. consider subsequent
quantization. Later in Chapter 6, among other experiments with the scalable
MPEG system, the scalable DCT technique is combined with block classi-
fication (see Section 5.4) such that the computations for the scalable DCT
can be further concentrated on coefficients that are likely to be required for
describing the picture block content.

The ME has a variety of possibilities in computing MV fields for the encoding
process. To name a few, the ME can consider a different number of candidate
MVs before selecting a best MV for a macroblock, or different strategies in
ordering the selection and evaluation of candidate MVs, or the reusing of pre-
viously generated MV fields. After comparing a number of ME algorithms
in Chapter 4 and selecting a basic ME algorithm for further research, two
scalable ME techniques are developed in Chapter 5. The first technique is de-
signed such that a simple frame-by-frame ME can be performed for then fast
approximating and optional refining MPEG MV fields. The second technique
exploits block classification (see Section 5.4) in order to concentrate compu-
tations for MV candidates that are more likely to result in a good description
of the motion than other candidates.

In contrast with the DCT and the ME, the quantization processes single coef-
ficients and consists of, roughly spoken, mainly one division and rounding. A
rather obvious and simple scaling of the quantization could be to simplify or
leaving out the rounding for scaling up the processing speed. Given the low
intrinsic complexity of quantization, this is not further worked out. The VLC
is a rather straightforward process that generates the bitstream using look-up
tables, which does not leave much space for applying computational complex-
ity scalability. Preliminary experiments for speeding up the processing of the
DCT coefficients did not lead to useful results. A part of VLC is rate control,

8 Introduction

of which the computational complexity depends the amount of quantized co-
efficients for obtaining a predefined bit rate. The control is usually executed
at much lower frequency than the sampling rate, yielding a low complexity.
Scaling the bitstream after VLC by making a trade-off between coded coeffi-
cients and coding efficiency at the expense of additional computational effort
is presented in [10, 11]. Such techniques, like bitstream scaling, are not con-
sidered, because they are out of the focus of this thesis.

The remainder of this chapter has two parts. In the first part, an exemplary
programmable hardware platform (see Section 1.2), the basics of scalable
system design (see Section 1.3) and the MPEG-2 video coding standard (see
Section 1.4) are briefly described. These sections provide more insight of
the problem statement and are optional for the interested readers. The final
part of this chapter summarizes the subsequent chapters of this thesis (see
Section 1.5) and describes the scientific background of the individual chapter
contents and their publication history (see Section 1.6).

1.2 Programmable hardware
In order to become familiar with the amount and varying complexity of video
processing tasks, the author contributed to the design of an experimental video-
processing platform. The contribution involved the programming of a dy-
namic multi-window application, in which at least one window displaying a
video signal is varied in size, position and shape. This multi-window TV
application requires resources that scale with the chosen window configura-
tion. Moreover, the platform should process several video streams in parallel,
thereby sharing the available resources. Because these experiments relate to
the scalability aspects discussed in this thesis, this section briefly describes
these preliminary studies.

1.2.1 Emerging flexible architectures

Several programmable hardware architectures for video processing have been
proposed in the past years. Earlier solutions are not cost-effective, because
they are more general than the TV application domain requirements [12], or
do not offer sufficient parallelism to cover all processing requirements [13]. A
recently developed experimental video display-processing platform (VDPP) is
presented in [1, 2, 3]. This platform is depicted in Figure 1.2 and contains the
following three subsystems.

1.2 Programmable hardware 9

…

…

…

…

Programmable Switch Matrix

RISC Core
Data
Interf.

Data
Interf.

Co-
Proc.

Co-
Proc.

Co-
Proc.

Co-
Proc. C

T
R

L
C

P
A

In 1
Proc.

In 2
Proc.

Data
Interface

Ext.
CPU

Out
Proc.

Juggler

SDRAM

Figure 1.2: Architecture of video processing platform (based on [1]).

� The control subsystem (CTRL) is responsible for control-oriented tasks
and contains a general-purpose RISC core and an optional number of
coprocessors for frequently used tasks.

� The signal-processing subsystem is responsible for real-time video pro-
cessing. It contains a coprocessor array (CPA) that provides a number of
flexible application-specific coprocessors for different video-processing
functions, like scaling, noise reduction, video mixing, graphics blend-
ing, etc. They are interconnected via a programmable switch matrix,
suited for making any data path between the coprocessors available.
This enables simple signal flow-graph designs that are applied for sev-
eral video streams to be processed in parallel.

� The memory subsystem (SDRAM) handles the memory requests from
the control and signal-processing subsystems.

In addition, a generic data interface is provided with the VDPP for connecting
external CPUs, and therefore allow future functionality extensions.

10 Introduction

1.2.2 Signal flow-graph programming

The programmable switch matrix of the signal-processing subsystem is an au-
tonomous communication network that is able to redirect video-data packets
between the coprocessors as required, without the need of bandwidth-costly
accessing of the external memory subsystem, if not required by a video func-
tion. Figure 1.3 portrays an example of how the VDPP is programmed on a
functional level for a special multi-window TV application. The solid arrows
in the figure indicate video data and dashed lines indicate control data (here
computing of window shapes). The depicted signal flow-graph represents a
special case where a part of the picture is selected by the consumer for zoom-
ing and is shown in the background, while the original picture is displayed as
a programmable Picture-in-Picture (PiP). An example for this TV application
is given in Figure 1.4.

IN

NR

HS2 VS1

VS2 HS1

Juggle Juggle

SE

blend
GFX

OUT

Compute
Shapes

Update
Juggler

GFXgen

MEM

MEM

MEM

MEM

MEM

CPA MEM CTRL

IN
OUT
NR
SE
MEM
HS
VS
GFXgen

= input processor
= output processor
= noise reduction
= sharpness enhancement
= memory allocation
= horizontal scaling
= vertical scaling
= graphics generation

Figure 1.3: Example of a two-window TV signal flow-graph (from [1]).

The flow-graph in Figure 1.3 shows that an input video stream (solid arrows)
is split into two streams, which are scaled horizontally (HS) and vertically

1.2 Programmable hardware 11

Picture in Picture (PiP)

Figure 1.4: Example of a PiP feature (based on [1]).

(VS) and processed differently (noise reduction (NR) is applied on only one
stream). Afterwards, the streams are combined in the mixing unit (called
juggler, see Figure 1.2), by skipping video data that is overlapped by another
video stream. Hence, an important advantage of the juggler is that only the
visible parts of the incoming video streams are selected prior to storage in
memory, so that the required memory-access bandwidth per frame is limited
to only one full-resolution frame of a video stream for reading and writing.

The juggler is re-programmable on video field frequency (50 Hz in Europe)
by the embedded RISC core inside the CTRL block, in order to obtain dy-
namic effects (see Section 1.2.3). Finally, the output stream is blended with
graphics (GFX) after sharpness enhancement (SE). The indicated memory ac-
cesses are primarily for video stream de-interlacing, for vertical scaling and
also intermediate and temporal buffering, because different data rates are gen-
erated by different scaling factors. A separate memory access, indicated with
dotted lines, stores the computed parameters for composing the video lines of
independent video streams. These values are addressed by the juggler. Other
forms of programming are not indicated.

The created applications are layered in three levels. At the system level, the
window shapes and signal inputs are computed at field rate for generating

12 Introduction

dynamic effects. At middle level, the signal flow-graph is programmed. At
the hardware level, local parameter and signal control is evaluated and pro-
grammed. This flexible way of processing video data is a novel feature that is
not available in conventional high-end TV systems.

1.2.3 Dynamic multi-window TV

A more complex application that has been successfully executed on the VDPP
demonstrates a high flexibility. Window position, size and shape of the input
video streams are interactively controlled by the consumer. For achieving suf-
ficient interactivity, the previous parameters should be modifiable from frame
to frame, in order to create dynamical effects.

In the first stage, the experimental application was produced by using a full
software-emulation of the RISC core and simulating the complete VDPP. In
the second stage, an experimental real-time video chip-set was successfully
programmed [14]. In the examples as shown below, the generation of the
multi-window features were identical in the simulation and when running on
the experimental chip. Note that the application can be further enhanced by
high-level programming of additional video functions to be performed on each
window, such as color enhancement or image warping.

Examples of multi-window TV features

� Moving windows
Figure 1.5 shows three different video streams, one in the background of
the screen and two elliptical windows. The windows move in different
directions and at different speeds and overlay each other, as indicated
by the (added) arrows. For visualization of the movements, the window
positions at the begin of the sequence have been marked with dashed
ellipses and at the end with solid ellipses. Note that the arrows and
ellipses could also be generated and displayed by the VDPP, using the
graphics blending coprocessor.

� Rotating coin
Figure 1.6 shows two video streams, where one stream is displayed in
the front window with dynamically changing position, shape and size,
such that a rotating coin is simulated. It is also possible to apply hori-
zontal and vertical scaling to the video stream to shrink each frame to
the current size of the coin for improving the rotating-coin effect.

1.3 Scalable system design 13

Figure 1.5: One frame of the “Moving windows” sequence.

The conclusion of the preliminary experiments in this section is that special
video applications such as multi-windowing, imply a variable amount of re-
sources for processing. The fixed assignment of hardware to individual tasks
becomes ineffective when these tasks are variable in size and change over
time. Moreover, the visibility of details depends on the available display area
size and for this reason, resources could also be adapted to the size of the dis-
play area. For cost-effectiveness of the system, the implemented video func-
tions should be able to share resources such as computing power and memory.

1.3 Scalable system design

1.3.1 Motivation for embedded applications

This section elaborates further on scalable resource usage as discussed in the
previous section. The VDPP applies scalability such that the size of the video
windows is programmable and depends on e.g. settings and applications. An-
other example of a scalable TV application using the VDPP platform is full-
quality TV watching while receiving a video conference call. Because the TV
application is using all available resources, the conference application cannot
start until the TV set frees shared system resources (CPU time, memory usage,
etc.) and thus executes both applications in parallel. A key aspect is a careful
control of the quality degradation that results from limiting the resources.

14 Introduction

1 2

3 4

5 6

Figure 1.6: Sequence of video frames taken from the “Rotating coin” se-
quence.

1.3 Scalable system design 15

In a generalized system concept using several video tasks in parallel, a scal-
able system design is understood from the following considerations. Firstly,
the number of video tasks is varying and differs for each application. Sec-
ondly, the amount of video processing involved for a single task can also be
rather different. As a result, it would become impractical to design optimized
MPEG encoders for all classes of applications. Instead, our effort is concen-
trating on designing one algorithm that scales with the desired application,
both in complexity and quality.

An application area where scalability is particularly interesting, is mobile
video communication. In the case of mobile devices, a full processing of
video signals such as found in TV sets is neither cost-effective nor even pos-
sible, since such devices have small displays and the observer cannot perceive
fine details on such displays. This example asks for video processing that is
scaled to the available resources and the display size that is used. We have
found that portable equipment provides interesting cases for applying scal-
able algorithms. Besides scalability for portable equipment, severe system
constraints have to be satisfied, such as power consumption, low system costs
and reduced video format resolution.

1.3.2 Scalable systems using scalable video algorithms

Traditional systems do not support flexible run-time control of the resource
usage in exchange for the resulting video quality (quality level) of an appli-
cation. Figure 1.7 shows a range of programmable hardware product-families
versus software-algorithm requirements. Programmable hardware equipped
with a different amount of available resources exists to serve different market
demands (see Figure 1.7(a)). Fixed software solutions for video applications
are designed for maximum quality. Fixed solutions require resources that are
available in high-end systems only, or that lead to limited functionality, de-
pending on the number of algorithms that can run in parallel on the target
architecture (Figure 1.7(b)).

A flexible system consists of software modules that contain scalable video
algorithms (SVAs) [5] as shown in Figure 1.7(c). The SVAs may consist of
a basic functionality at a minimum quality (dark areas) and scalable parts for
improved quality (light areas). In this way, scalable algorithms are reusable
for a variety of product-family members with different hardware resources.

Figure 1.8 shows an MPEG encoder using SVAs, where one module is en-
larged and depicts an exemplary structure of an SVA. In this example, the

16 Introduction

Hardware
Architectures

Low-
End

Mid-
Range

High-
End

Resources

Algorithm
1

Algorithm
1

Algorithm
3

Algorithm
3

Algorithm
2

Algorithm
2

Algorithm
4

Algorithm
4

Software
Modules

M
in M

a
x

a) b) c)

Figure 1.7: Programmable hardware product-families and software-algo-
rithm requirements (from [7]).

SVA consists of four functions, of which the parameters are chosen by a qual-
ity controller. Not every function is necessarily controllable by parameters
(Function 2 in this example). The resulting quality of the SVA depends on
the parameter combinations of the functions. The quality controller is respon-
sible for choosing the optimal parameter combination for highest achievable
quality under given resource restrictions.

1.3.3 Overall system architecture with scalability

To ensure cost-effectiveness and flexibility of the system, SVAs are embedded
in a framework containing resource and quality managers [15, 6] for dynamic
resource management and quality control depending on momentary execution
requirements. Figure 1.9 gives an overview of the system architecture of this
framework.

The core components of the system are presented below.

� A modular set of SVAs is provided to enable different functionality as
desired for a product (set-top box, multimedia PC, etc.).

� The strategy manager collects information about application require-
ments (e.g. the amount of resources needed) for all provided quality

1.3 Scalable system design 17

Input

Output

Control
Signal for
Quality Level

Video Algorithm

Function 1

Quality
Control

Function 2

Function 3 Function 4

define GOP
structure

DCT,
Quant

Coding

InvQuant,
IDCT

Video
Input

MPEG
Output

frame
difference

frame

reordered
frames

decoded
new frame

Motion
vectors

Frame
Memory

Frame
Memory

…

IPBB

I / P

IBBP

Motion
Estimation

Motion
Compensation

Figure 1.8: Exemplary structure of a scalable video algorithm (based
on [7]).

18 Introduction

SVA SVA

Strategy
Manager

Quality
Manager

User interface

Resource
Manager

Hardware Platform
and Operating System

Figure 1.9: Layered system architecture using scalable video algorithms
(from [7]).

levels and makes a strategy available to optimize the overall quality of
a combination of applications.

� The quality manager optimizes the system utilization based on the uti-
lization of the available applications, their importance and their esti-
mated resource usage.

� The resource manager controls the admission and scheduling of the
SVAs and their run-time resource needs.

The quality manager and the resource manager together constitute the Quality-
of-Service resource manager (QoS-RM), which takes the responsibility for
cost-effectiveness on the one hand and preservation of the overall system qual-
ity on the other hand. Let us briefly indicate the usefulness of a QoS-RM.

Figure 1.10 shows the tracking of the resource usage and the budget of two
exemplary applications. The system load of application 1 is drawn from top
to bottom, and vice-versa for application 2. It can be seen that application 2
exceeds its assigned budget three times. At occurrences 2A and 2B, the ex-
ceeding is granted by the QoS-RM, because the overall system utilization is
below ����. At occurrence 2C, the exceeding has to be rejected, because at
the same time, application 1 has a peak in CPU load (occurrence 1B). Here,
application 2 would be reset to a lower quality level to prevent system over-
load (the hatched area in Figure 1.10). The same figure can be used to give
an example of the resource assignments to the different functions contained
within a scalable MPEG encoder.

1.4 MPEG-2 video compression standard 19

Budget 1

Budget 2

CPU load 1

CPU load 2

Time

1A

1B

2A
2B

2C

Figure 1.10: Example of resource budgeting and changing CPU load of ap-
plications or functions (based on [7]).

1.4 MPEG-2 video compression standard

In this section, the essentials of the MPEG video compression standard are
briefly described, such that the architecture and the processing blocks are
sufficiently known for understanding of this thesis. The MPEG standard is
called hybrid video coding, because spatial and temporal decorrelation of
video frames is performed by using Discrete Cosine Transform coding and
motion-compensated prediction techniques, respectively. Compression is en-
abled by removing redundant information from the input signal.

A moving video sequence consisting of a series of frames, is actually a three-
dimensional signal having spatial and temporal correlation. The spatial corre-
lation can be removed by the decorrelating Discrete Cosine Transform (DCT),
whereas the temporal correlation can be exploited by employing motion-com-
pensated prediction. Both techniques are employed in the MPEG standard,
which is the mostly applied video compression system today.

� Spatial correlation is found when looking into individual video frames
(pictures) and considering areas of similar data structures (color, tex-
ture). Similar to still-picture coding standards such as JPEG, spatial
information is decorrelated by converting picture blocks to the trans-
form domain using the DCT. The result of the DCT is a block of trans-
form coefficients, which are related to the frequencies contained in the
input picture block. The meaning of the transform is that a block is
decomposed into basis patterns, and the transform coefficient indicate
the strength of those basis patterns. Figure 1.11 shows the basis pat-
terns that are used for the transformation. Note that the frequency of

20 Introduction

the patterns increases when going from left to right and top to bottom.
Each picture block is a linear combination of these basis patterns. Since

Figure 1.11: DCT block of basis patterns used for projection (encoding) and
reconstruction (decoding).

the patterns shown in the top left corner of the DCT block (the low-
frequency coefficients) are very common in video pictures, the DCT
transformation concentrates the signal in these coefficients (high co-
efficient values). For compression purpose, in the quantization stage,
coefficients are represented with fewer bits and less important coeffi-
cients are removed. Afterwards, the remaining coefficients are coded
efficiently with Variable Length Coding (VLC).

� Temporal correlation is found between successive frames of a video
sequence (see Figure 1.12) when considering that objects and back-
ground are on similar positions. The correlation is removed by pre-
dicting the contents and coding the frame differences instead of com-
plete frames. A high compression rate is achieved by predicting picture
contents using motion estimation (ME) and compensation (MC) tech-
niques. The motion is represented by motion vectors (MV), which are
computed for picture blocks, based on a simple translational model that
does not consider object deformation or rotation (see middle picture of
Figure 1.12). MVs are also coded efficiently with VLC.

1.4 MPEG-2 video compression standard 21

Frame k-1 Frame kMotion Vectors

Figure 1.12: Example of a moving object in a video sequence.

1.4.1 Basics of MPEG video coding

The MPEG coding standard defines three different types of frames, namely
intra (I) frames, predictive (P) frames and bi-directional (B) frames. I-Frames
are coded as completely independent frames, thus only intraframe DCT cod-
ing is applied. For P- and B- frames, ME and MC techniques are employed
in the temporal direction (interframe coding). P-frames are always predicted
from a single reference frame in the past, whereas B-frames are predicted
from a reference frame in the past and one in the (near) future.

Since I- and P-Frames serve as references for B- and other P-frames, they are
coded with more bits than for example B-frames. B-frames are coded with the
lowest amount of bits, because the prediction is most efficient and they do not
serve as reference for further frames.

The frames of a video sequence are grouped into so-called Groups-Of-Pictures
(GOPs), of which the structures are defined by two parameters �����. The
parameter � represents the total number of frames in a GOP. The distance
between two succeeding reference frames is represented by the parameter � .
Because B-frames are predicted from upcoming reference frames, they cannot
be encoded or decoded before this reference frame is processed and stored
by the coder. Therefore, the video frames are processed in a reordered way,
e.g. “IPBB” (transmit order) instead of “IBBP” (display order), as shown in
Figure 1.13. The transmit order is also used for conveying the compressed
stream to the decoder, in order to limit the required memory at the decoder
side to two frame memories.

22 Introduction

I0

I0

B1

B1

B4

B4

B2

B2

B5

B5

P3

P3

P6

P6

frame reordering

Figure 1.13: Frame dependencies (top) and reordered frame processing (bot-
tom) with the example of a ��� ��-GOP.

1.4.2 Processing of MPEG video coding

A. Coding architecture

The MPEG coding architecture is shown in Figure 1.14. The architecture in-
cludes a prediction loop that reconstructs the quantized DCT coefficients and
stores this in the frame memory at the bottom of the figure for further refer-
ence. These frame memories at the bottom contain the I- and P-frames. The
ME uses these frames for computing the MVs with the actual frame taken
from the input frame section at the left of the figure. The MVs are supplied to
the MC unit (dotted line) so that a motion-compensated prediction block can
be supplied to the subtractor at the top of the figure. Usually, the prediction
block closely resembles the actual input block, leading to a small frame differ-
ence signal. The complete encoder performs on a block-by-block basis. The
ME and MC are based on macroblocks (�����), whereas the DCT, Quantizer
and VLC are processing �� �-DCT blocks.

The connection from prediction to the adder at the right bottom of the figure
ensures that the block-prediction is based on quantized differences, in order
to ensure that encoder and decoder work with the same video data, thereby
preventing error drift in the video reconstruction at the decoder side. The
input video signal �� (� to be replaced by � , � or �) contains frames in
sequential (display) order. The parameter � chosen in the GOP structure
requires that the overall frame memory needed for the encoding process is �
frame memories. The memory located at the encoder input is for buffering the
intermediate B-frames and achieving reordered processing (transmit order).

1.4 MPEG-2 video compression standard 23

Video
Input

frame
difference

frame

reordered
frames

decoded
new frame

Frame
Memory

Frame
Memory

… IPBB

IBBP

Motion
Estimation

DCT VLC
MPEG
Output

Motion
Vectors

Rate Control

InvQuant

IDCT

I / P

Quant

Motion
Comp

Figure 1.14: Architecture of an MPEG encoder.

The input frames (starting with an I-frame) are then processed in transmit
order as follows.

1. Intra-frame encoding of the I-frame and after reconstruction, storage in
the reference frame memory as past reference.

2. Inter-frame encoding of the P-frame and after reconstruction, storage in
the reference frame memory as future reference.

3. Sequential inter-frame encoding of the B-frames, which are between the
two reference frames. The B-frames are not stored and directly supplied
to the output.

4. The future reference frame of Step 2 becomes the past reference frame,
and return to Step 2. If the GOP ends, restart with Step 1.

Further details of the intraframe and interframe coding are discussed in the
following.

B. Intraframe coding

Intraframe coding is based on three coding steps: DCT, Quantization and
VLC. The MPEG encoder also contains a prediction loop that performs a
local decoding, thus Inverse DCT (IDCT) and inverse quantization to create
the reference frames in the sample domain.

24 Introduction

DCT/IDCT

With the DCT, a picture block of ��� pixels, represented as a two-dimensional
(2-D) data matrix � with elements ���� 	� for � � �� 	 � 	, are converted to a
2-D DCT matrix
 of coefficients with elements ����� for � � �� � 	 in
the transform domain according to

�����
 �
�����������
���

��
��� ���� 	� ���

���������
�	 � ��� ����������	 ��

(1.1)

where ����
 � for � � � and ����
 ��
�
�. At sufficient accuracy, the

transformation is lossless and the reconstructed picture block data-matrix �� ,
with elements ����� 	� for � � �� 	 � 	, can be perfectly reconstructed from the
DCT coefficient matrix
 with the IDCT given by

����� 	�
 �
�

��
���

��
��� ��������

����� ��� ����������	 � ��� ����������	 ��
(1.2)

Note that both equations indicate that the transform is based on processing real
numbers and fast DCT algorithms similar to the Fast Fourier Transformation
are possible. More details will be discussed in Section 2.2.

Quantization/Inverse Quantization

The quantization stage in MPEG is based on various elements: coefficient-
dependent weighting, uniform block quantization and normalization. The
weighting function is based on the human perception of spatial frequencies
in pictures. It is known that high-frequency details can be observed, albeit
at a much lower sensitivity than lower frequencies. This enables that high
frequencies are represented by fewer bits than low frequencies. This intro-
duces lossy compression. The weighting matrix � is shown in Figure 1.15.
The weighting elements ����� increase for higher values of ��, leading
to more suppression of the according DCT coefficients.

Due to the high sensitivity of the human eye for lower frequencies, the DC
coefficient (zero frequency, the top-left coefficient of the DCT matrix), the
quantization of DC coefficients is fixed.

Another element in the quantization is the uniform block quantization, which
is implemented by the so-called ������ parameter. This ������ parameter is
actually related to the step size of the uniform quantizer and influences the

1.4 MPEG-2 video compression standard 25

�������������

�� �� �� �� �� �	 �� ��
�� �� �� �� �	 �� �� �	
�� �� �� �	 �� �� �� ��
�� �� �� �	 �� �� �	 ��
�� �� �	 �� �� �� �� ��
�� �	 �� �� �� �� �� ��
�� �	 �� �� �� �� �� ��
�	 �� �� �� �� �� �� ��

�������������

Figure 1.15: Weighting matrix � of intraframe DCT coefficients.

quantized output amplitude of the remaining (AC) coefficients. The overall
quantization of DCT coefficients ������ with � � �� � 	 are specified
by

������

����� � � � ������� � �����

� � ������� � �����
� (1.3)

where �
 sign������� for intraframe coding and �
 � for interframe
coding (see the next pages on interframe coding). In Equation (1.3), the pa-
rameter ������� is used, which is related to the ������ parameter. The usual
case is �������
 � � ������ for the uniform quantization (so-called type 0).
Another possibility is using a non-uniform quantization (so-called type 1),
in which ������� is non-linearly related to ������. In this case, the param-
eter �������
 �� �� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� with
������
 �� �� �����.

The inverse quantization restores the quantized coefficient values to the regu-
lar amplitude range prior to computing the IDCT. The inverse quantization is
computed by

������

�������� � ��� � ����� � �������

��
� (1.4)

where ��
 sign�������� for intraframe coding and �
 � for interframe
coding.

Variable Length Coding (VLC)

The next step after quantization is VLC, where the quantized coefficients are
processed into serial strings of numbers, which are subsequently mapped into

26 Introduction

bit strings. Additionally, also MVs and other system parameters are converted
into bit strings of variable length.

First, the quantized DCT coefficients are reordered into a sequential string
of number that starts with the most important coefficients (low frequency)
and for clustering of zero values at the end of the block. Due to the energy
compaction in the low-frequency DCT coefficients and the quantization, high-
frequency coefficients are likely to be zero. For this reason, the coefficients
are commonly scanned in zigzag scan order (see left side of Figure 1.16).
MPEG-2 also offers an alternative scan order (see right side of Figure 1.16)
for special coding modes that are beyond the scope of this thesis.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0

1

2
3

4
5

6

7

0

1

2
3

4
5

6

7

Figure 1.16: Zigzag scan order (left) and alternative scan order (right).

After scanning, an algorithm is applied that counts the number of occurring
zeros prior to a non-zero coefficient. The combination of both numbers is
mapped onto a code word using a VLC coding table. The number of zeros is
also known as the run-length (or simply run) and the procedure is therefore
referred to as run-length coding. The non-zero value of the quantized DCT co-
efficient is often called the level of the coefficient. The algorithm is described
in a step-by-step approach below.

1. Load next coefficient if available. If the last coefficient has already been
processed, code the end-of-block (EOB) codeword and exit.

2. Test the coefficient for zero value. If the coefficient has a zero value,
increment the run counter and proceed with Step 1. If the coefficient is
non-zero, proceed with Step 3.

3. Take the run-level combination and map this combination into a code-
word, reset the run counter and proceed with Step 1.

1.4 MPEG-2 video compression standard 27

The DC coefficients are treated differently and are differentially coded, which
means that only the difference between DC coefficients of the actual and the
previous DCT block is coded. In VLC, the coding table is organized in such
a way that codewords are short if they occur more often and long if they are
rarely needed (Huffman coding). In this way, the bit rate is minimized.

C. Interframe coding

In interframe coding, the motion is described by motion vectors, which in-
dicate that a picture block of the actual frame that is going to be interframe
coded, is similar to a picture block taken from a reference frame. The motion
compensation reads the required picture block at the correct position in the ref-
erence frame using the MVs. This block represents the motion-compensated
prediction, which is subtracted from the picture block taken from the actual
frame. The result is a difference signal depending on the reference frame(s)
and the actual frame, which explains the term “interframe coding”. The dif-
ference signal is then DCT coded in a similar way as intraframe coding. The
computation of the MVs is called motion estimation and their usage for pre-
diction is called motion compensation. Both steps are further outlined below.

� Motion estimation (ME)
The ME processes picture blocks of �� � �� pixels (macroblocks) and
computes motion vectors (MVs). Since reference frames may be in the
past or in the future, ME can be split into forward, backward ME, or a
combination of both. The terms “forward” and “backward” indicate the
usage of a past or upcoming reference frame, respectively, for the ME
computation. An example of forward and backward ME is shown in the
left side of Figure 1.17. The right side of the figure depicts an example
of a MV for one block of the currently processed frame (light gray) and

Time

forward ME

backward ME

Figure 1.17: Forward and backward motion estimation.

28 Introduction

the positions of the MV-referred blocks taken from the reference frames
projected in the block grid of the actual frame.

The computation of a MV is usually performed by evaluating a number
of MV candidates and measuring their accuracy. This will be further
elaborated in Chapter 4 and 5.

� Motion Compensation
The MVs resulting from the ME are used to compute a prediction of
the current frame. The prediction of each macroblock may use forward
prediction (P- and B-frames), backward prediction (B-frames) or both
(B-frames). In addition, a fallback mode is allowed, using intraframe
coding, in the case of excessive motion, inaccurate prediction or high
bit-costs.

1.4.3 MPEG Scalability

There are several meanings of the term “scalability” in the MPEG video do-
main. Since this thesis addresses complexity scalability, the so-called MPEG
scalability is briefly explained, which is mostly concentrating on distinguish-
ing the essential part of the coded information for improving the system ro-
bustness.

A compressed video that is transmitted via a network may be corrupted at the
receiver side due to channel errors and data package loss. Decoding a cor-
rupted video stream may lead to more or less visible artifacts, or in extreme
cases to temporally undecodable video. This is especially critical for stream-
ing video, which forecloses the resubmission of lost or corrupted video data.

To increase the robustness of video streaming over networks against data loss,
a two-layered coding is proposed in [16] and is also used in the recent MPEG-
4 standard [17]. This coding method uses a base layer that is supposed to con-
tain independently decodable video data providing a certain base video qual-
ity. The error-free transmission of the base layer is guaranteed by the network
protocol and/or by adding special error protection. In addition, an enhance-
ment layer is supposed to contain further video data that enhances the video
quality of the base layer to full quality. The enhancement layer is transmitted
with lower priority, and the receiver side, the decoder is able to enhance the
video quality with each additional data package from the enhancement layer
that is received.

1.4 MPEG-2 video compression standard 29

When finalizing the draft of the MPEG-2 standard, the technique of the above-
given two-layered coding is known as scalability. The MPEG-2 standard de-
fines four different variations to achieve scalability (scalability modes), namely
data partitioning (also known as frequency scalability), SNR scalability, spa-
tial scalability and temporal scalability. These forms of scalability will be
briefly described below for the sake of completeness.

� Data partitioning separates the block of quantized DCT coefficients
such that low-frequency coefficients and motion vectors are coded in
the base layer and high-frequency coefficients are coded in the enhance-
ment layer (see Figure 1.18).

Input frame
Motion Vectors

DCT Coefficients

DCT+Quant.

ME

Base
Layer

Enhancement
Layer

Figure 1.18: Principle of data partitioning.

� SNR scalability provides different video quality levels, where the layers
have the same spatial (frame size) and temporal (frame rate) resolution.
The DCT coefficients are coded with high quantization step size for the
base layer, and an update for the coefficients for higher video quality
achieved with finer quantization is integrated in the enhancement layer
(see Figure 1.19).

Input frame

DCT

Base
Layer

Enhancement
Layer

DCT coefficients

High

Quant.

Low
Quant.

Figure 1.19: Principle of SNR scalability.

30 Introduction

� Spatial scalability uses different spatial resolutions, where the layers
have the same temporal resolution. The input frames are scaled down to
lower resolution for the base layer, and the enhancement layer contains
the update for achieving full resolution (see Figure 1.20).

Input frame Scale
down

Scale
up

Base
Layer

Enhancement
Layer

Figure 1.20: Principle of spatial scalability.

� Temporal scalability provides different frame rates. The base layer con-
tains the frames for a certain frame rate, and the enhancement layer
contains the frames that are needed to increase the frame rate. Both two
layers use the same spatial resolution. The predictions of frames in the
enhancement layer may use frames from both layers (see Figure 1.21).

Base Layer
Input Frames

Enhancement
Layer

0 1 2 3 4 5 6 7 8

0 3 6

1 2 4 5 7 8

Figure 1.21: Principle of temporal scalability.

In MPEG-4, the scalability modes are further extended and for example forms
of the above scalability options were combined into the so-called Fine-Grain
Scalability (FGS) option [18], which can serve as an advanced aid in obtaining
higher robustness when communicating over poor channels.

1.5 Outline of the thesis

This thesis provides complexity scalability for MPEG-2 video encoding. The
MPEG coding standard leads to several functions that are considered for ap-

1.5 Outline of the thesis 31

proaching scalability. Key functions of MPEG coding are the Discrete Cosine
Transformation (DCT) and the Motion Estimation (ME), both requiring a sig-
nificant amount of computing power. Algorithms for these functions are eval-
uated and exploited for scalability in the following chapters. Here, we struc-
tured this thesis by first concentrating on single modules (functions), without
their possible interaction with other modules. Afterwards, the further results
when looking to more than one module at once are exploited.

Chapter 2 discusses, the mathematical background of the DCT and compares
current state-of-the-art algorithms to compute the DCT. The DCT transforms
picture blocks to the transform domain to obtain a powerful compression.
In conjunction with an inverse DCT, a perfect reconstruction of the picture
blocks is achieved, while spending fewer bits for coding the blocks than not
using the transformation. So-called fast DCT algorithms exploit the periodic
property of the cosine function and find efficient implementations for full DCT
computation with respect to the number of operations (additions, multiplica-
tions, etc.). Besides full DCT computation, algorithms exist that accept a
reduced accuracy of the computation, for the purpose of lower the computa-
tional complexity. A complexity comparison of the algorithms providing a
full DCT computation is made to decide which algorithms are taken as case
studies for developing complexity scalable DCT.

Chapter 3 presents a new scalable DCT computation technique, where a DCT
algorithm is analyzed for finding its shared computation nodes. The analy-
sis results in a database that provides information about the required com-
putational effort for computing DCT coefficients. The specifics of the target
hardware/execution architecture can be taken into account with the analysis.
Intermediate results that are available from already computed coefficients are
considered for reusing during the computation of other coefficients. With the
collected information, a DCT computation order can be found, such that the
amount of computed coefficients is optimized for a constrained number of
computing cycles. If certain DCT coefficients should be preferably computed
(e.g. coefficients that represent horizontal or vertical lines in the sample do-
main), the generation of the computation order can include weighting of these
coefficients.

Chapter 4 addresses the essentials of ME. The ME computes motion vector
fields to indicate block displacements between frames in a video sequence.
A picture block (macroblock) is then coded with reference to a block in a
previous decoded frame (the prediction) and the difference to this prediction.

32 Introduction

The displacement of macroblocks is found by evaluating their content simi-
larity with a block-matching criterion. State-of-the-art ME algorithms aim at
providing smart search strategies for efficiently finding motion vectors with
pixel accuracy. The computed vectors can optionally be refined to half-pixel
accuracy. Several ME algorithms are compared by their worst-case compu-
tational effort and their actual performance when processing different video
sequences.

Chapter 5 presents two new techniques for complexity scalability of the ME
process. The first technique processes motion vector fields (MVFs) in three
stages. The first stage performs initial ME with the video frames at the en-
trance of the encoder and processes them in display order, rather than in the
usual reordered way. The second stage efficiently derives the MVFs that are
required for the final MPEG encoding process by multi-vector-field approx-
imations, based on the MVFs computed in the first stage. Furthermore, the
quality of full-search ME can be obtained with an optional refinement stage.

The second technique provides a scalable ME through block classification
based on edge detection. Prior to estimating the motion between two frames,
the frame contents are classified into picture areas that e.g. have horizontal
or vertical lines. The classification is exploited to minimize the number of
motion vector evaluations per macroblock by for example preferring vector
candidates that are located across a detected line. A novelty in the algorithm
is a distribution of reliable motion vectors to other macroblocks, which is
opposite to other known techniques that query MVs from other blocks.

Up to this point, each function was individually investigated. In the follow-
ing, the scalable functions are integrated into a complete encoder, in order
to evaluate the results when combining several scalable modules (functions).
The performance of the scalable encoding system is evaluated in Chapter 6.
The scalable DCT has impacts on functions of the MPEG coding system that
processes DCT coefficients. These functions can be scaled accordingly to the
DCT by exploiting the reduced number of computed coefficients. The scal-
able ME affects the number of MV candidates that are evaluated, but not the
motion compensation or the VLC coding of motion vectors. The resulting
MPEG encoder offers a wide range of complexity scalability, video quality
and compression rates.

Chapter 7 concludes that the obtained complexity scalability results in new
coding algorithms, which differ from conventional MPEG encoding design.

1.6 Background of the chapters 33

The resulting scalable MPEG encoder offers a wide range of complexity scal-
ability of about a factor of three, whereas a non-scalable parameterized MPEG
encoder has a factor of about 1-1.5. The developed scalability techniques can
be readily applied in portable MPEG coding systems and may well be used in
new coding standards such as MPEG-4 and H.264.

1.6 Background of the chapters

Most parts of the chapters in this thesis have been published in conference
proceedings and scientific journals. In this section, the origin of the chapters
and their publication history is presented.

The initial work of this thesis started with the involvement in the Television
Processor (TVP) project of Philips Research, The Netherlands. The TVP
project was initiated by amongst others the promoter of this thesis. The project
aimed at designing a multi-processor system suitable for executing a multitude
of video functions in parallel. The description of the programmable video
processing platform and its signal-flow programming in Section 1.2.3 were
adopted from [1, 2]. The platform was a good framework to study scalabil-
ity aspects and flexible processing as shown in the examples in Section 1.2.
The scalability results were presented at the ���� International Symposium on
Information Theory in the Benelux in 2001 in the paper titled "Implementa-
tion of a Dynamical Multi-Window TV System" [4], which formed the basis
of parts of the introduction in Chapter 1. This paper, as well as all follow-
ing papers that are published by the author of this thesis, were co-authored
by the promoter and the copromoter of this thesis. In Section 1.3, several
parts from [5, 7] about scalable video algorithms and quality-of-service were
included. The latter formed the basis for the main focus of this thesis after
joining a larger project within Philips about scalability.

The following chapters concentrate on the achievements that have been made
during the research phase towards complexity scalability, starting with a com-
parison of algorithms for the Discrete Cosine Transformation (DCT) in Chap-
ter 2. The chapter originates from a technical report that has been written in
2000 for Philips, which was titled “On Scalable DCT Processing Algorithms
for MPEG Encoding” [19].

The work on developing a scalable DCT resulted in a patent application [20]
and subsequently in the following three papers, which have been merged into

34 Introduction

Chapter 3. The first paper was presented at the IEEE Workshop on Signal Pro-
cessing Systems (SIPS) in 2001 and was titled "New Scalable DCT Compu-
tation for Resource-Constrained Systems" [21]. In the same year, the second
paper was presented at the IEEE International Conference on Image Process-
ing (ICIP 2001) and was titled "New DCT Computation Algorithm for Video
Quality Scaling" [22]. An extension of the first paper has been published 2003
in a special issue of the Kluwer Academic Publishers Journal of VLSI Signal
Processing Systems for Signal, Image, and Video Technology and was titled
"New DCT Computation Technique based on Scalable Resources" [23].

The research on motion estimation (ME) to achieve complexity scalability is
presented in a similar way. Firstly, Chapter 4 starts with a comparison of algo-
rithms for the ME. The chapter originates from a technical report from 2000
that was titled “On Scalable Motion Estimation for MPEG Encoding” [24].

Secondly, Chapter 5 has been merged from several papers that published the
results of two developed scalable ME techniques. The first technique is based
on approximations of multiple motion-vector fields. The approximation tech-
nique results from a co-operation with Gerben Hekstra from Philips Research
and lead to a patent application [25]. The chapter finds its roots in two papers
about the first scalable ME technique that have been presented in 2002 at the
IEEE International Conference on Consumer Electronics (ICCE 2002) under
the title "Flexible Frame-Reordering and Multi-Temporal Motion Estimation
for Scalable MPEG Encoding in Mobile Consumer Equipment" [26] and at
the IEEE International Conference on Image Processing (ICIP 2002) under the
title "New Flexible Motion Estimation Technique for Scalable MPEG Encod-
ing using Display Frame Order and Multi-Temporal References" [27]. Some
more aspects and details of the developed ME technique are described in two
papers that have been presented in the same year at the ���� International
Symposium on Information and Communication Theory in the Benelux un-
der the title "Frame-Reordered Multi-Temporal Motion Estimation for Scal-
able MPEG" [28] and at the IEEE International Conference on Multimedia
and Expo (ICME 2002) under the title "New Scalable Three-Stage Motion
Estimation Technique for Mobile MPEG Encoding" [29]. Finally, the second
scalable ME technique was published 2004 in a paper for the IEEE Trans-
actions on Consumer Electronics under the title “Computational Complexity
Scalable Motion Estimation for Mobile MPEG Encoding” [30].

Chapter 6 has its roots in three papers that indicate the performance of a
complete scalable MPEG encoding system using the presented scalable al-

1.6 Background of the chapters 35

gorithms. The first paper has been published at the ���� International Sym-
posium on Information Theory in the Benelux in 2003 and was titled "A
SW-based Complexity Scalable MPEG Encoder for Mobile Consumer Equip-
ment" [31]. The second paper is more detailed and has been published in
a special issue on multimedia of the EURASIP Journal of Applied Signal
Processing in 2004 and was titled “New Complexity Scalable MPEG Encod-
ing Techniques for Mobile Applications” [32]. A further expansion has been
made for the third paper “Resource-Aware Complexity Scalability for Mo-
bile MPEG Encoding”, which was invited for presentation in a special session
of the SPIE Visual Communication and Image Processing Conference (VCIP
2004) [33].

36 Introduction

CHAPTER2
Discrete cosine transformation

�
ince the introduction of the Discrete Cosine Transformation
(DCT), numerous publications have appeared about efficient
computations and implementations of the DCT. The purpose

of this chapter is to analyze a few DCT algorithms that are potentially
suited for integration into scalable systems. The analyzed algorithms
efficiently compute the DCT and have attractive properties for soft-
and hardware implementations. Subsequently, two DCT algorithms
are selected for building a scalable DCT subsystem that will be dis-
cussed in the next chapter.

2.1 Introduction

Since the development of the Discrete Cosine Transformation (DCT) and its
usage in multiple compression standards, a large number of algorithms were
proposed over the past decades for computing the DCT. This chapter describes
the basic principles of some DCT algorithms, thereby serving as a partial liter-
ature overview. A simple comparison is provided between a selected number
of algorithms in order to determine which algorithms are applied for further
research on scalability.

38 Discrete cosine transformation

For compression purpose, the luminance and chrominance values of small
square blocks of an image are transformed with the DCT to the transform
domain, where the representation of the blocks with the DCT coefficients in
the transform domain is more efficient than with the pixel values in the sample
domain. The back-transformation is performed with the inverse DCT (IDCT),
where both transformations are lossless, when compared to the errors that are
introduced by quantization of DCT coefficients and rounding.

The chapter is divided as follows. Section 2.2 briefly describes the mathemat-
ical formulas for the transformations. Section 2.3 presents a number of DCT
algorithms that have been found in literature. These algorithms are compared
by their computational effort in Section 2.4. Section 2.5 presents a number
of algorithms that are designed to compute the DCT with a limited accuracy,
thereby reducing the output quality. These algorithms are not further consid-
ered in particular, since it has been stated in the problem statement in Sec-
tion 1.1 that the desired scalability range of a future scalable algorithm should
include full quality processing. Section 2.6 concludes the chapter.

2.2 Mathematical background

2.2.1 Forward Transformation

For a given � � � picture-block, represented as a two-dimensional (2-D)
data matrix � with elements ���� 	� for �� 	
 �� �� ���� � � �, the 2-D DCT
matrix
 of coefficients with elements ����� for ��
 �� �� ���� � � �, is
computed by

�����
 �
	 ���������	��
���

�	��
��� ���� 	� ��� ����������	 � ��� ����������	 ��

(2.1)

where

����

�
��
�

if �
 ��

� otherwise�

Equation (2.1) can be simplified by ignoring the constant factors for conve-
nience and by defining an � �� cosine matrix �

	
with elements

�� � ��
 ���
�� � ��� � !

��
�� (2.2)

2.2 Mathematical background 39

so that Equation (2.1) can be simplified to

 �	
� �� ��	 � (2.3)

Equation (2.3) shows that the 2-D DCT as specified by Equation (2.1) is based
on two orthogonal 1-D DCTs, where ��

	
�� transforms the columns of the

picture block � , and � � �
	

transforms the rows (known as row-column
method). The 1-D DCT transformation of an input vector � with elements ����
(a single row or column of the picture block) for � � � � � � �, into a 1-D
DCT vector � with elements ��� for � � � � � �, is computed by

���

	
�

�
� ��� �

	��

���

���� ���
���� �� � !

��
�� (2.4)

Ignoring the constant factors for convenience and using the definition of the
cosine matrix �

	
, Equation (2.4) is simplified to

�
 �	
� � �� (2.5)

Since the computation of two 1-D DCTs is less expensive than one 2-D DCT,
state-of-the-art DCT algorithms normally refer to Equation (2.3) and concen-
trate on optimizing a 1-D DCT.

2.2.2 Inverse Transformation

To transform DCT coefficients back to the sample domain, the inverse DCT
(IDCT) is performed. The 1-D IDCT reconstructs the data vector �� with ele-
ments ����� for � � � � � � �, and is computed by

�����
 	 �

�
�
	��

���

��� � ��� � ���� �� (2.6)

and the 2-D IDCT reconstructs the data block �� with elements ����� 	� for � �
�� 	 � � � �, and is computed by

���� 	�
 �
	 ��	��
���

�	��
��� ������� � ����� � ������ � ��	� �� (2.7)

where the cosine terms are already replaced with the definition given in Equa-
tion (2.2).

40 Discrete cosine transformation

2.2.3 Periodic properties of the cosine function

An important optimization feature for the DCT computation concentrates on
reducing the rotational symmetry and periodicity of the cosine function. This
simplifies the matrix � as defined in Equation (2.2).

� The periodicity means that the cosine function of angle " repeats ev-
ery �! radians, thus

���"�
 ��� � �! � "�� #$� (2.8)

� Furthermore, the cosine function is anti-periodic over ! radians, so that

���"�
 ����� � ��� � ! � "�� #$� (2.9)

2.3 Examples of DCT algorithms

A large number of fast DCT algorithms have been presented in the past few
years, aiming at reducing the computational complexity of a full DCT com-
putation. For the reduction of the computational complexity, the following
algorithms arise from exploiting mathematical rules and the above-mentioned
periodic properties of the cosine function. The presented algorithmic exam-
ples indicate the variety of approaches that have been developed for the DCT
computation. The presented set of algorithms is not an exhaustive overview
of all published DCT algorithms in literature. More extensive overviews can
be found in specialized DCT handbooks.

Three DCT algorithms have been selected for their highly efficient usage of
operations, namely the Lee-Huang recursive algorithm [34], the Cho-Lee 2-D
algorithm [35] and the Arai-Agui-Nakajima 1-D algorithm [36]. These al-
gorithms provide an attractive mixture from 1-D or 2-D DCT computations,
implementation preferences in software or hardware, and popularity. For ex-
ample, the Lee-Huang algorithm was chosen, because it was known that it is
flexible for various block sizes. This property may be attractive for scalabil-
ity. The Cho-Lee algorithm has attractive properties for hardware minimiza-
tion, which may be exploited (partially) in scalable software implementations.
The Arai-Agui-Nakajima algorithm was studied because it is widely used in
JPEG [37, 38] applications and because this was a pure 1-D algorithm.

2.3 Examples of DCT algorithms 41

2.3.1 Lee-Huang recursive algorithm

The Lee-Huang recursive algorithm [34] reduces the computation of the co-
sine matrix �	 (see Equation (2.2)) to equivalent sub-problems of a lower
complexity by recursive mapping (�	
 ���	
��). An example is given in

Figure 2.1. The figure shows the cosine matrix �� for cosine arguments "

with � � �"� % !��. A subset of the matrix elements form the reduced ma-
trix ��. Similarly, ��-DCTs are reduced to ����-DCTs of lower complexity.

�
�
�
�
�

�

�

cos(0)

cos(0) cos(0)

cos(0)

cos(0)

cos(0)

8
3 �

8
1 �

8
1 ��

�
�
�
�
�

�

8
3 �

8
2 �

8
2 �

8
3 �

8
2 �

8
1 �

8
3 �

8
3 �

8
1 �

=

���
�

�
��
�

�
��
�

�
��
�

�
=>

4x4-DCT matrix
normalized by taking
advantage of symmetries
in the cosine function.

A part of the 4x4-DCT
matrix results in the
2x2 DCT matrix.

4x4-DCT matrix.

�
�
�
�
�

�

�

�
�
�
�
�

�

�

cos(0)

cos(0)

cos(0)

cos(0)

�8
7

8 �5

�8
3

�8
1cos()

cos()

cos()

cos()

cos()

8
2 �cos()

-cos()

-cos()

8
2 �-cos()

cos(0) cos(0)

4
1 �cos() 4

3 �cos()

cos()

cos()

cos()

-cos()

-cos()

�8
14

�8
10

�8
5

�8
2cos()

cos()

cos()

cos() �8
21

�8
15

�8
7

�8
3cos()

cos()

cos()

cos()

cos()

-cos()

cos()

-cos()

Figure 2.1: Decomposition of matrices for a ���DCT algorithm according
to the Lee-Huang 1-D recursive mapping rule.

The main advantage of this algorithm is that it provides a DCT computation
for arbitrary �� � ��-DCTs in either the row-column method using a 1-D
DCT or directly applied to a 2-D DCT. The algorithm can be implemented in
software as a single recursive function. This property may be of interest for
upcoming video coding standards like H.264 [39], since they do not use fixed
coding picture blocks of � � � pixels. Furthermore, the recursivity property
of this algorithm can also be exploited for advanced MPEG coding, where
the transformation of a subsampled block serves as an approximation of the
full-block transformation [40].

2.3.2 Cho-Lee 2-D algorithm

The 2-D algorithm by Cho-Lee [35] is based on data dependencies between
both cosine matrices �	 and �	

� of Equation (2.3). By exploiting the data

42 Discrete cosine transformation

dependencies, one of the matrices can be represented as a function of the
other, thus �	
 ���	

�� or vice versa, which reduces the 2-D transfor-
mation to 1-D transformations. The selection of the 1-D DCT algorithm is
free of choice. In [35] it is explained that the algorithm has the capability of
saving silicon area in a hardware implementation by reducing the number of
required hardware components for parallel processing. In this case, the algo-
rithm manages the DCT computation with ���� 1-D DCT function blocks,
which is half of the number of 1-D DCT function blocks that would be used
for a comparable implementation without this optimization. The basic idea of
the algorithm is depicted in Figure 2.2 for a �� �-DCT computation.

Pre-
Additions

Post-
Additions

2:1
MUX

2:1
MUX

1-D
DCT

1-D
DCT

X4
Y4

Figure 2.2: DCT block diagram of the Cho-Lee algorithm.

Although this thesis concentrates on software implementations of complex-
ity scalable algorithms, this algorithm was considered, because the above-
mentioned property does not foreclose its utilization for scalability in e.g.
saving hardware or faster software, or a combination of both.

2.3.3 Arai-Agui-Nakajima 1-D algorithm

The Arai-Agui-Nakajima 1-D algorithm [36] is deduced from a Discrete Fourier
Transformation. The computations are arranged such that several multiplica-
tions (8 of the 13 multiplications in the algorithm) can be integrated in a sub-
sequent fixed quantization stage, which is the main feature of the algorithm.
The signal flow-graph of an � � �-DCT is shown in Figure 2.3, where a bul-
let (�) denotes an addition and arrows stand for sign inversion. A box ()
represents a multiplication with the following factors.

1
 3
 ��
�
� ��	�	

2
 ����
 �� ������
 � � �����

4
 ����
 � � ������
 � � ����	

5
 ������
 � � �����

(2.10)

2.3 Examples of DCT algorithms 43

The scale factors are �� ������ for ���� and �� � ����������� for ���� with
� � � % �.

1

2

3

4

5

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

8 y[0]

16 y[1]

16 y[2]

16 y[3]

16 y[4]

16 y[5]

16 y[6]

16 y[7]

Figure 2.3: 1-D DCT signal-flow graph of the Arai-Agui-Nakajima algo-
rithm.

This algorithm was published in a book [38] about the JPEG still image com-
pression standard [37], where it was presented as an example of a highly ef-
ficient DCT algorithm. The computation of Figure 2.3 can be used in a 2-D
DCT algorithm using the row-column method (see Equation (2.3)), but also
in the Cho-Lee algorithm from the previous section.

2.3.4 Alternative DCT algorithms

A number of algorithms belong to the group of “scaled DCT algorithms” [41].
The term “scaled” should not be mixed up with the scalability (on the com-
putational complexity) that is proposed in this thesis. The purpose of scaled
DCTs is that the quantization is integrated into the DCT transform. For this
reason, scaled DCTs are implemented such that a number of multiplications
are combined with those of the quantization. However, in this case, the quan-
tization is basically fixed. The Arai-Agui-Nakajima algorithm presented in
Section 2.3.3 belongs to this group of algorithms, but even without exploiting
this feature, the algorithm is still efficient (see Section 2.4).

Moreover, DCT algorithms can be optimized by using combined multiply-
accumulate operations [42, 43], thereby fitting to modern processor designs.

44 Discrete cosine transformation

However, an optimization of the DCT computation based on such specialized
operations, limits the applicability of the algorithms for arbitrary hardware
architectures, where these operations are not necessarily available.

2.4 Complexity comparison of DCT algorithms

The comparison of the computational effort of DCT algorithms is usually per-
formed based on the number of additions and multiplications (e.g. [34, 43, 44,
45, 46, 47]), rarely including shift operations (e.g. [48]). The tables in the
following consider all three operations and indicate hardware and software
implementation differences for the presented algorithms. Furthermore, dif-
ferent architectures for a software implementation of the DCT algorithms are
considered by weighting the computation costs of the operations, leading to a
proposal for a favorable DCT algorithm.

The computational effort required to compute the DCT algorithm examples
that were presented in Section 2.3 is shown in Table 2.1, where the constant
normalization factors of Equation (2.1) are ignored. The 1-D DCT algorithms
are combined with the conventional row-column approach to achieve a 2-D
DCT. The symbol “�” denotes a multiplication and “	” denotes a shift. The
symbol “�” represents an addition, and a subtraction is considered as a special
case of an addition.

Algorithm �� �-DCT �� �-DCT
� 	 � � 	 �

2-D direct implementation - - - 8192 0 3584
1-D direct implementation 64 0 56 1024 0 896
2-D Lee-Huang - - - 128 32 464
1-D Lee-Huang 12 5 29 192 80 464
1-D Arai-Agui-Nakajima (AAN) 13 0 29 208 0 464
2-D Cho-Lee using 1-D Lee-Huang - - - 96 89 466
2-D Cho-Lee using 1-D AAN - - - 104 49 466

Table 2.1: Computational complexity of full-quality DCT algorithms.

When evaluating the table, hardware and software implementations of the al-
gorithms are distinguished. In a hardware implementation, shift operations are
realized by wiring if no rounding is involved. For such a hardware case, the

2.4 Complexity comparison of DCT algorithms 45

combination of the Cho-Lee 2-D algorithm and the 1-D version of the Lee-
Huang recursive algorithm is a highly efficient algorithm. In addition, this
combination leads to savings of costly silicon area when exploiting the prop-
erty of the Cho-Lee algorithm for parallel implementation (see Section 2.3.2).

In a software implementation, shift operations require computation cycles,
which makes the Lee-Huang algorithm less attractive. Besides this, its re-
cursive structure may lead to costly stack-operations. In the following, the
computation complexity is expressed as a number of operations, in order to
gain an efficiency indicator for the algorithms. For this purpose, multiplica-
tions are weighted against additions and shifts. While additions and shifts
are each counted as one operation, the complexity of a multiplication is gen-
erally higher (1-3 operations) and may also involve rounding. Rounding is
performed with one addition and one shift.

Table 2.2 shows the computational complexity of the algorithms expressed in
number of operations, in which various weighting factors for multiplications
are used. The minimum operations count of each table column is printed in
bold. It can be seen that the Cho-Lee algorithm with integrated Arai-Agui-
Nakajima 1-D algorithm is the best choice. When applying the row-column
approach using 1-D algorithms, the Arai-Agui-Nakajima algorithm should be
adopted.

Algorithm Weighting of “�“
used for an �� � DCT 1 2 3 4 5
2-D Lee-Huang 624 752 880 1008 1136
2-D Cho-Lee + 1-D Lee-Huang 651 747 843 939 1035
2-D Cho-Lee + 1-D AAN 619 723 827 931 1035
1-D Lee-Huang 736 928 1120 1312 1504
1-D Arai-Agui-Nakajima 672 880 1088 1296 1504

Table 2.2: Computational complexity of an �� �-DCT computation using
different algorithms.

Given the importance and cost of multiplications, the remainder of this section
provides some further detail on the estimation of multiplications and summa-
rizes an example DCT algorithm with minimum amount of multiplications. It
was found in [49] that the theoretical lower bound for the number of multipli-
cations of a ��-point 1-D DCT computation (see Equation (2.5)) is

46 Discrete cosine transformation

�������	
� ��
 ���� � � �� (2.11)

with ��
 � . For an 8-point 1-D DCT, the equation results in the number of
required multiplications of �������

� ��
 ���� � �� �
 ��.

Example

A fast 1-D DCT algorithm requiring precisely only these 11 multiplications,
29 additions and no shifts has been presented in [46] by Loeffler and Ligten-
berg. The algorithm contains among others a rotation part (see Equation (2.12)),
which has been exploited for reducing the number of multiplications by 1. In
the end, this leads to the optimum of 11 multiplications. The exploited equiv-
alence is given below, requiring 3 multiplications and 3 additions instead of
4 multiplications and 2 additions, because the rotators � and & are known in
advance. The equivalence is given by

���� ��
 ��� � &��
��
 �&�� � ���

����
 ���� ��
 �&� ���� � ���� � ���
��
 ���� &��� � ���� � ���

���� � (2.12)

where the equation rotates a vector ���� ���� by an angle " into vector ���� ����.
The rotators � and & are ���"� and ���"�, respectively.

End example

In [50], the theoretical lower bound for the number of multiplications of a
��-point 2-D DCT computation (see Equation (2.3)) is found as

�������	
� �� ��	 �
 �� � ����� � � ��� (2.13)

For an 8-point 2-D DCT, �������

� �� ��
�
 �� � ������ �� ��
 ��.

It has been commented in [45] that when minimizing the number of multi-
plications, the optimal � � �-DCT computation is found by integrating the
1-D DCT algorithm that requires only 11 multiplications [46] into the Cho-
Lee 2-D DCT algorithm (see Section 2.3.2). Since the Cho-Lee algorithm
is based on eight 1-D DCTs, the number of required multiplications reaches
the lower bound of Equation (2.13). The aforementioned proposal of Loeffler
and Ligtenberg was found during writing of this thesis, which saves one mul-
tiplication for an 8-point DCT compared to the Lee-Huang algorithm. This
optimization step was not further exploited in the performed studies.

2.5 Accuracy-reduced DCT 47

2.5 Accuracy-reduced DCT

Up to this point, this chapter has discussed DCT algorithms giving full pic-
ture quality without losses. For the sake of completeness, this section presents
alternative DCT computations, where a certain loss in picture quality is intro-
duced. The proposed algorithms aim at simplifying the DCT computation in
order to improve the processing speed. The simplification leads to a reduced
accuracy of the DCT and at the same time, to potentially reduced computa-
tional complexity.

The presented list of algorithms is not an exhaustive overview of DCT algo-
rithms with reduced accuracy. Three algorithms were selected for discussion,
namely the Merhav-Vasudev multiplication-free algorithm [51], the Pao-Sun
adaptive DCT modeling [44] and the Lengwehasatit-Ortega variable complex-
ity algorithm [48]. These algorithms are based on techniques such as replacing
multiplications with simpler shift operations, providing DCT computations
for different coefficient subsets, and performing classifications for detecting
and preventing unnecessary computations that would be spent on coefficients
that are zero after quantization.

Except for the above three proposals, alternatives for accuracy-reduced DCT
algorithms exist, which are not a real DCT but an approximation [47, 52, 53].
The approximation is realized by replacing a part of the DCT computation by
e.g. a Haar transform [54], which can be computed with a lower computational
effort.

2.5.1 Merhav-Vasudev multiplication-free algorithm

The Merhav-Vasudev multiplication-free algorithm [51] was primary devel-
oped for the computation of the inverse DCT (IDCT). The same approach can
be adopted for the computation of the DCT. The main idea is to separate the
mathematical definition of the (I)DCT into several matrices, containing values
that are basically binary fractions '
 ��������

� ���
� ���

 � ��� only. The
advantage is that a multiplication with these values leads to simple shift op-
erations. After the matrix separation process, two matrices are left (called �
and () that contain non-trivial multiplications. For further complexity re-
duction, these multiplications can be replaced with the closest element of ' ,
which introduces an overall computation error.

Merhav and Vasudev found a better strategy for replacing the non-trivial mul-
tiplications. The authors considered that a loss-less DCT followed by a loss-

48 Discrete cosine transformation

less IDCT leads to the identity matrix. Subsequently, they assumed that be-
tween the DCT and the IDCT a quantization/de-quantization stage is intro-
duced, in which matrix (can be integrated. Afterwards, the elements of the
remaining matrix � are quantized to values from ' , such that the introduced
overall error is preferably compensated by matrix (. The total processing
chain, i.e. DCT�quantization�de-quantization�IDCT, is then close to the
identity matrix.

2.5.2 Pao-Sun adaptive DCT modeling

This approach [44] is based on a statistical analysis of differently encoded
video sequences with the video coding standard H.263. With this analy-
sis, variances of the DCT coefficients are represented as a function of the
Minimum Mean Absolute Error (MMAE), which is computed after motion-
compensated prediction. Depending on this function and the quantization pa-
rameter used in H.263, picture blocks are processed in various ways. The
following possibilities are exploited: the DCT is computed for all 64 coeffi-
cients, or for the �� � low-frequency coefficients, or the DC coefficient only,
or the DCT is not performed at all.

2.5.3 Lengwehasatit-Ortega var.-complexity algorithm

An input-dependent DCT computation is proposed in [48], where a classifica-
tion of the input block is used to decide whether a selected subset of input val-
ues (data samples) become zero-valued coefficients after quantization, or not.
The DCT coefficients that are quantized to zero belong to a so-called “dead
zone”1. Since the DCT is an orthogonal transformation, the corresponding
input values also belong to the “dead zone”. If the classification indicates that
coefficients to be computed belong to the “dead zone”, the computation for
these coefficients is stopped.

At several stages during the computation of the DCT, this classification is
performed for different sets of input values as follows. For an � � �-DCT,
all eight input values are first evaluated whether they all belong to the “dead
zone” or not. If they are outside the “dead zone”, the computation continues
and the input values are split into two sets of four input values, which are then
evaluated separately. The computation continues for those sets, for which

1This should not be confused with the dead zone in a quantizer: the area in which small
input values are quantized to zero. Therefore, the alternative meaning of the word “dead zone”
in this paragraph is marked with “”.

2.6 Discussion 49

it was indicated that at least one input value leads to a non-zero coefficient.
These sets are then split once more into sets of two input values each, and the
classification is repeated.

The input-dependent DCT computation is proposed for an exact DCT and
for a DCT approximation technique that is based on mapping multiplications
to simple shift operations. In both cases, the reduction of the computational
complexity is well below �� and can only be gained with high quantization.

2.6 Discussion

Although the accuracy-reduced algorithms presented in Section 2.5 contain
useful starting points for low-cost solutions, the computations do not provide
scalability in computational complexity. Furthermore, high-quality video ap-
plications require a DCT computation with full accuracy, which is provided
by the algorithms from Section 2.3. It is beyond doubt that an algorithm pro-
viding complexity scalability up to full-quality processing on the one hand,
and without overhead on the other hand, is favorable.

In literature, one proposal was found that features scalability properties up to
full computational resolution. This briefly discussed here and show that it still
has limitations for our purpose. The scalable DCT concept found is the data-
pruning algorithm by Peng [55]. Although this approach has been proposed
for the computation of an IDCT, it can directly be applied to the computation
of a DCT, and it can react on the CPU-resource usage. The algorithm restricts
the decoding of DCT coefficients that are found in an � �� matrix to those
that are located in an �� submatrix with � � �� � ���. The submatrix
is located in the upper left corner of the original matrix to cover at least the DC
coefficient. The only overhead that is needed comes from a system resource
manager that is used to select the values for � and . However, a disadvantage
of the algorithm is that the selection of the submatrix has no relation with
the butterfly diagram computation, so that the really involved computation
complexity is not considered explicitly. This makes the proposal not suitable
for our purpose, because we are pursuing a DCT computation with constrained
computational resources. This motivates the research in the next chapter.

In Chapter 3, a new scalable DCT computation technique is presented that
can be applied to any DCT algorithm. Using the Cho-Lee algorithm (see
Section 2.3.2) and the Arai-Agui-Nakajima algorithm (see Section 2.3.3), it

50 Discrete cosine transformation

will be shown that it is advantageous to analyze the butterfly structure of
DCT algorithms in order to maximize the number of computed coefficients
at constrained computing resources. The selection of the computed coeffi-
cients depends on the applied DCT butterfly computation and on a coefficient
weighting for e.g. considering subsequent quantization.

CHAPTER3
Complexity scalable DCT

computation

�
n this chapter, a complexity scalable DCT computation tech-
nique is presented that can be applied to any DCT algorithm
that has been developed in the past, such that the amount of

computed coefficients is optimized for a constrained number of com-
puting cycles. This optimization leads to improved picture quality
for video applications that have a limited computation power. For
halved computing resources, about 2-4 dB PSNR improvement was
obtained when compared to a diagonally oriented computation of co-
efficients, matching with the conventional MPEG scanning. Also the
visual improvement in sharpness and readability can be clearly seen.
It found that the applicability of this technique is only useful for well-
constrained systems.

3.1 Introduction

The Discrete Cosine Transformation (DCT) is one of the two principal com-
putations functions of MPEG coding. This chapter concentrates on finding

52 Complexity scalable DCT computation

a technique to provide complexity scalability and being computationally ef-
ficient at the same time. Preferably, when computing resources are limited,
the algorithm should not only scale down in complexity, but also the quality
should smoothly scale with the computational effort. At the end of the previ-
ous chapter, the DCT algorithms from Section 2.5 ([44, 48, 51, 55]) already
accept a loss of video quality for saving computations. However, these pro-
posals do not scale in quality and they only offer fixed points of operation.
Furthermore, the approaches do not optimize the butterfly DCT computation
with respect to scalability. In this chapter, a new technique to compute the
DCT is introduced, which exploits the butterfly structure of a DCT algorithm,
in order to trade-off the saved computations and remaining video quality.

The DCT algorithms, as presented in Chapter 2, can be computationally op-
timized by analyzing the signal-flow graphs that are defined by the butterfly
algorithms. Note that the technique developed in this chapter can be imple-
mented for 1-D DCT and 2-D DCT computation. Our objective is to perform
a scalable � � � 2-D DCT, since this is part of the MPEG encoding standard.
At limited computing power, a DCT algorithm should be modified by elim-
inating several computations and thus coefficients. Consequently, the output
of the algorithm will have less quality, but the computing effort of the algo-
rithms is reduced to fit within the given limitation in computing power. The
key issue is to identify the computation steps that can be omitted to maxi-
mize the number of coefficients for the best possible video quality. However,
also the visual relevance of the computed coefficients will be considered by
introducing priority weighting.

The approach for maximizing the number of coefficients under constraints is
driven by the following idea. If the computation of a coefficient (��) cannot be
completed due to a given computation limit, it is attractive that instead other
coefficients (��, ��) having lower computational complexity are considered for
computation. Although coefficient �� may have a greater impact on the picture
quality than coefficients �� and ��, the computation of coefficient �� is useless
if it cannot be completed. When assuming that the computation of the coeffi-
cients �� and �� can be completed within the given limit, the picture quality is
improved, because more coefficient data have been computed.

The realization of the above-given idea is presented in Section 3.2. Section 3.3
describes some implementation aspects. In Section 3.3.3 and as an example,
the new DCT computation is applied to the selected algorithms of Chapter 2.
Section 3.4 presents an extension to the algorithm analysis using a priority

3.2 DCT-algorithm analysis 53

weighting of the DCT coefficients. The gain of quality that results from the
new computation technique is shown in Section 3.5. Section 3.6 concludes
this chapter.

3.2 DCT-algorithm analysis

3.2.1 Concept for the new technique

Prior to developing the algorithm analysis, some notations are introduced in
the following using Figure 3.1. The figure shows a part of a butterfly diagram,
where the bullet (�) and the small rectangle () are operation nodes of the but-
terfly, when going from the input pixel values to the output DCT coefficients.

Pixel
Values

DCT
Coefficients

R
1

l
2

l
1

R
2

s

Figure 3.1: Notations for DCT butterfly analysis.

Let �� be the coefficients of a sorted list) and ����� be a function that gives
a set *� of all the required operation nodes for a coefficient �� (Figure 3.1
includes an example for �����
 *�). For convenience, let ����� be a func-
tion that gives a subset *

� of *� (*
� � *�) containing the operation nodes

that have already been computed during the processing of the previous coef-
ficients �� with % �. For example, in Figure 3.1, ������
 *

�. Thus, in
general, the function ����� is formed by defining the subsets *

� for various
values of � and � such that

�����

������� �
���
���

�����

����� � (3.1)

Since the different operation nodes involve different costs (computational ef-
fort), the following cost functions are defined. Let � �*�� be a function that
returns the number of operations involved for a given set *� of operation
nodes. Furthermore, let �� ���� be a cost function that returns the remaining
number of operations that are required to complete the coefficient ��, given

54 Complexity scalable DCT computation

the fact that the coefficients �� with % � and their intermediate results are
available. The cost function �� ���� is defined as

�� ����
 � �*��� � �*
��� (3.2)

Equation (3.2) means that the computational complexity for the next coeffi-
cient �� equals the overall complexity for the involved nodes, minus the num-
ber of operations for already processed nodes that are located in the computa-
tion path of the considered coefficient ��.

3.2.2 Trade-off criterion for computations and quality

The computation path of the complete scalable algorithm is based on an over-
all criterion that is based on the previous equations. Prior to each computation
step, a list of remaining coefficients is sorted such that in the next step, the
coefficient having the lowest computational complexity is computed. More
formally, the sorted list)
 ���� ��� � � � � �	� of coefficients taken from an
� �� DCT satisfies the criterion

��� �) � �� ����
 ������ ������ � �� (3.3)

The underlying idea is that some of the intermediate results can be shared.
Thus Equation (3.3) defines the minimum computational effort that is needed
to obtain the next coefficient. The practical usage of this formal description
including an exemplary analysis can be found in Section 3.3.

If a computation limit is given, it is preferable to compute coefficients that
share computation steps. In this case, the order defined for the elements of)
gives an algorithm-dependent computation order, which maximizes the num-
ber of coefficients that are computed within the computation limit. Note that
using such a computation order does not change the results of a complete
computation that is achieved without a computation order.

3.2.3 Priority weighting

It is known that the visual weight of DCT coefficients is not equal, because
a.o. the transform concentrates energy in the low-frequency coefficients and
the human visual system is frequency dependent. This is exploited in the
MPEG video coding standard, where quantization and coding is performed in
a zigzag scanning order of DCT coefficients. This know-how can be inserted
into the design of a scalable DCT computation algorithm.

3.3 Implementation aspects of a fast-DCT algorithm analysis 55

The computation order) can be perceptually optimized with priority weight-
ing (see Section 3.4). For example, the weighting of the subsequent quanti-
zation stage can be incorporated, which emphasizes the use of low-frequency
coefficients in the upper-left corner of the DCT coefficient matrix. The cost
function �� ���� can be combined with a priority weighting function to prefer
those coefficients over high-frequency coefficients. Alternatively, coefficients
can be preferred that describe special block contents, like horizontal or verti-
cal edges (see Section 6.2.2).

The priority weighting does not exclude the choice for a coefficient having a
low priority, if its computation can be completed within e.g. a single operation.
Note that the computation order) is determined by the adopted DCT butterfly
algorithm and the optionally applied priority weighting, and can be found in
advance. For this reason, no computational overhead is required for actually
computing the scalable DCT.

Within the MPEG standard, the zigzag scan is mostly used when coding DCT
coefficients, to start with the most important low-frequency coefficients. If
this scanning is adopted as computation order, many time-consuming compu-
tations have to be performed at the start of the complete DCT computation, in
order to obtain the first coefficients. The reason is that these coefficients de-
pend on different inputs and intermediate results cannot be reused. Hence, for
reduced computation power, the zigzag order would result in less coefficients
to be used afterwards.

It will be shown that at the start of the DCT decomposition, the computation
of sufficient number of coefficients is important for obtaining a reasonable
quality. Therefore, finding the best computation order is useful.

3.3 Implementation aspects of a fast-DCT algorithm
analysis

3.3.1 Database construction

To identify the required number of operations for specific DCT coefficients,
data dependencies between operation nodes within the algorithm should be
explored first. Using this information, a database can be constructed contain-
ing every computation step, when going from the input values to the trans-
formed coefficients at the output. The database is used to track all compu-
tations involved for a specific coefficient, and when combined with the cost

56 Complexity scalable DCT computation

function given in Equation (3.2), it additionally provides an overview about
the computations that are still required to complete the calculation of the re-
maining coefficients.

Afterwards, the database can be used to efficiently implement either a dyna-
mically-scalable or a dedicated-scaled version of the adopted fast DCT algo-
rithm.

� Dynamically-scalable DCT computation
A dynamically-scalable version of the DCT algorithm allows adapta-
tion of the computational complexity as a function of the current CPU
usage in multi-tasking systems. For this reason, a dynamically-scalable
video application is able to uphold real-time execution, albeit at a lower
quality, despite the parallel execution of other tasks.

This feature needs additional memory for keeping intermediate results
of the computations for potential reuse. This extra memory is negligi-
ble compared to the memory needed for intermediate storage of video
frames. It was found by experiments that up to 94 intermediate results
are stored during computation of an �� � DCT, thus ��� times the data
amount of a DCT block.

Additional bandwidth (to external memory) is not required for these
intermediate results, provided that a local cache is available for the al-
gorithm. Dedicated and/or programmable hardware can easily imple-
ment such a cache. General-purpose processors that may not provide
control over their cache require at most a cache size of 2 kB for the
temporary values to prevent cache misses (and thus expensive access
to external memory). Since only a small cache capacity is needed, the
implementation will not be a problem and bandwidth is reduced with
each coefficient that is not computed.

� Dedicated-scaled DCT computation
If a fixed number of operations is selected prior to implementation, a
dedicated-scaled version of the algorithm is chosen. In this case, the
algorithm is optimized for a certain set of coefficients given by the
database. The implementation of a dedicated-scaled algorithm auto-
matically uses less computation power, resources and I/O (bandwidth),
because less coefficients and intermediate results are computed, stored
in memory or transferred from or to memory, compared to a full DCT
implementation.

3.3 Implementation aspects of a fast-DCT algorithm analysis 57

The remainder of this section gives an example for the structure of the above-
mentioned database and construction details.

3.3.2 Construction of a database for analysis results

The construction of the database is a key for the scalable DCT computation
introduced in Section 3.2. The structure and maintenance of the database is
explained with an example portrayed by a typical part of a butterfly diagram
in Figure 3.2. This example shows a computation with six operation nodes,
where three nodes are intermediate results (���, ��� and ���). The arrows in
the diagram stand for sign inversion, and the box represents a multiplication
with the constant �� indicated inside the box.

ir1

ir2

ir3

x[2]

x[1]

y[2]

y[1]

x[3] y[3]

ir

ir

ir

1

2

3

=x[1]+x[2]

=x[3]+x[2]

=x[3]-x[2]

y[1]=ir *c

y[2]=ir -ir

y[3]=ir *c

1 1

2 1

3 2

c1

c2

Figure 3.2: Computation of output vector � based on input vector �.

The computational complexity for coefficients ����, ���� and ���� are deter-
mined by counting all signal-processing operations required for computing
each of the coefficients, starting from the input vector �. From Figure 3.2 it
can be seen that

����
 ��� � ��
 ����� � ����� � ��
����
 ��� � ���
 ����� � ������ ����� � �����
����
 ��� � ��
 ����� � ����� � ���

(3.4)

In this example, the computation of e.g. coefficient ���� requires the result
of node ���. The computation then consists of one addition (within ���) and
one multiplication (��). Such computing information is stored in a database
as given in Table 3.1. At the left side of the table, the operands indicate the
inputs required for an intermediate result, and at the right side of the table,
which intermediate results are needed to generate an output component.

This approach can be adapted in a flexible way to specific processor architec-
tures as indicated below.

58 Complexity scalable DCT computation

Operation ��� ��� ��� ���� ���� ����
Additions 1 1 1 0 1 0
Multiplic’s 0 0 0 1 0 1
Operands ����� ���� ����, ���� ����, ���� ��� ���, ��� ���

Table 3.1: Database of computing information.

� Definition of operations
Besides additions and multiplications, the database of computational
complexity can also contain more complex operations, if a specific pro-
cessor architecture is considered that supports such operations1. In ad-
dition, memory bandwidth aspects can be considered by defining me-
mory-access operations if necessary. For the example in Figure 3.2, this
would mean that a processor architecture is defined, such that sufficient
local cache is available that can be accessed without cost. Note that
the additional memory needed for the intermediate results is negligi-
ble compared to the memory needed for intermediate storage of video
frames.

� Definition of operation complexity
The complexity of the operations that are used in the database have to be
defined. In the following, the computational complexity of one multi-
plication is assumed to be equivalent to three additions, thereby relating
to simple processors or delay times of hardware components in VLSI
designs. Note that this can be modified according to any desired proces-
sor architecture and its characteristics, which is not further elaborated
(when using this assumption in experiments, its influence on the results
will be considered).

In this example, the computational complexity of the coefficients shown in
Figure 3.2 is computed as follows.

� ������
 � ����� � � � �
 � � � � �
 ��
� ������
 � ����� � � ����� � �
 � � � � �
 ��
� ������
 � ����� � � � �
 � � � � �
 ��

(3.5)

1In the Philips TriMedia processor, an example of a special multi-media operation is the
������� operation, which averages four pairs of samples in one instruction cycle. The pro-
cessor contains a list of various types of special multi-media processing operations.

3.3 Implementation aspects of a fast-DCT algorithm analysis 59

With Equation (3.5) it is found that the sorted coefficient ��
 ���� will be
computed in the first step, because it requires the least number of operations.
The remaining coefficients ���� and ���� have the same computational com-
plexity, so that at first glance no difference can be seen with respect to their
computation order. However, from Figure 3.2 it can be noticed that coeffi-
cients ���� and ���� share node ���. According to the notations from Sec-
tion 3.2.1, this leads to the following definitions

*������
 �����
*������
 ����� ����
*������
 �����

(3.6)

In the second step, the cost function �� ��� indicates less remaining computa-
tional complexity for ���� than for ����, because

�� ������
 � ������ � � �*������ �*�������

 � ������ � � ������

 �� �
 ��

�� ������
 � ������ � � �*������ � ��*������ �*�������

 � ������ � � ����� � ����� ����

 � ������ � � ���

 �� �
 ��

(3.7)

As a conclusion, it is preferable to compute the given coefficients in the or-
der)�
 ������ ����� ����, which satisfies the condition from Equation (3.3).
If the computation power would be reduced to six operations for this example,
the first two coefficients ���� and ���� can be computed. With a computation
order of)�
 ������ ����� ����, only ���� could be computed, because in this
case the first two coefficients ���� and ���� together need seven operations.
Therefore, it is obvious that order)� leads to a higher picture quality than
order)� .

3.3.3 Algorithmic example

The computation technique from Sections 3.2 and 3.3 has been used to find
an scalability-optimized computation order for a dynamically-scalable ver-
sion of the 2-D DCT algorithm by Cho and Lee (ChoLee, see Section 2.3.2),
when inserting the 1-D DCT algorithm by Arai, Agui and Nakajima (AAN,
see Section 2.3.3). Both algorithms were adopted, because their combination
provides a highly efficient DCT computation (see Section 2.4). The derivation

60 Complexity scalable DCT computation

of the computation order is presented in Appendix A, in order to avoid lengthy
discussions. This derivation includes a weighting of coefficients for enhancing
the obtained computation order, which is presented in the next section.

3.4 Enhancements using priority weighting

The computation order can be improved, if the coefficient weighting of the
quantization stage after the computation of the DCT is considered. The quan-
tizer weighting emphasizes the use of low-frequency coefficients in the upper-
left corner of the coefficient matrix. Therefore, a priority weighting is incor-
porated into the computation technique to favor those coefficients. In Fig-
ure 3.3(a), the scalability-optimized computation order is shown that is found
with the algorithm analysis that was presented in Section 3.2, based on the as-
sumptions that are made in Section 3.3.3 and its corresponding Appendix A.
Figure 3.3(b) is a modified computation order with an additional priority for
the upper-left corner of the coefficient matrix. This modified computation or-

a) b)0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
1 49 9 53 3 58 11 50

17 33 22 41 27 47 31 39

10 54 5 61 15 56 7 64

21 45 29 37 19 35 25 44

4 59 12 51 2 52 13 60

26 43 24 36 20 38 30 46

14 63 8 57 16 62 6 55

18 40 32 48 28 42 23 34

1 33 9 41 5 44 14 36

17 49 21 57 29 63 31 55

10 37 3 42 11 39 7 48

25 61 26 53 18 51 24 60

6 45 15 34 2 35 16 46

28 59 23 52 19 54 27 62

12 47 8 40 13 43 4 38

20 56 32 64 30 58 22 50

Figure 3.3: Scalability-optimized computation orders of coefficients in a
DCT matrix using priority function (b) or not (a).

der was found by multiplying the cost function given in Equation (3.2) with a
priority weighting as given by

 ��� 	�
 ���� 	� � ��� 	�� �� (3.8)

The arguments � and 	 denote the position of the coefficient in the DCT block,
and are specified for � � �� 	 � � ��. Note that this function results in lower
numbers for coefficients that are weighted with higher priority. The priority
function ��� 	� was found experimentally and considered suitable for a first
implementation.

Table 3.2 shows the effect of the proposed priority weighting. The resulting
computation order is shown in Figure 3.3(b). Once more, the computational

3.5 Experimental results 61

complexity of one multiplication is assumed to be equivalent with three addi-
tions. Let us suppose that the first two coefficients ���� �� and ���� �� and their
intermediate results are already available. It is clear that the next coefficient
to be computed is ���� �� without using priority weighting, and ���� �� when
using priority weighting with function ��� 	�.

���� �� ���� ��
Additions left to compute coefficient 7 9
Multiplications left to compute the coefficient 4 4
Operations count - without priority weighting 19 22
Priority function ��� 	� 13 9
Operations count - scaled with priority weighting 247 189

Table 3.2: Example for the decision of the next coefficient to be computed.

3.5 Experimental results

3.5.1 Computational results of the experiments

The 2-D DCT algorithmic example of the previous section has been used to
illustrate the effect of the analysis for finding a computation order. Note that
the results in this section concentrate on the scalability of the DCT alone, and
not about its influence in a full MPEG encoder. The latter aspects will be
discussed in Chapter 6.

Figure 3.4 shows the result of the analysis under different conditions. The two
matrices on the left side no not apply priority weighting, while the two ma-
trices on the right side are found with using priority weighting, by assigning
a higher priority to the coefficients in the top-left corner (see Equation (3.8)).
The variable ������� in the figure indicates the computational complexity of a
multiplication relative to an addition. The parameter �������
 � was chosen
for high-end CPUs and ������� � � for low-cost systems. The matrices have
been shaded with different gray levels to mark the first and the second half of
coefficients in the sorted list. It can be noticed that the proposed computation
order is optimized for the chosen processor architecture. Note that for e.g.
�������
 �, the column-based structure of Figure 3.4(a) and (d) is similar,
but the order of the coefficients is slightly different.

The experiments show that the computation order in Figure 3.4(c) uniformly
selects the coefficients from the matrix. Therefore, this order can be used

62 Complexity scalable DCT computation

a)

c) d)

b)

with priority weightingwithout priority weighting
ra

ti
o

=
8

m
a

ra
ti
o

=
3

o
r

8
m

a

ra
ti
o

=
1

o
r

3
m

a

ra
ti
o

=
1

m
a

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
1 49 9 53 3 58 11 50

17 33 22 41 27 47 31 39

10 54 5 61 15 56 7 64

21 45 29 37 19 35 25 44

4 59 12 51 2 52 13 60

26 43 24 36 20 38 30 46

14 63 8 57 16 62 6 55

18 40 32 48 28 42 23 34

1 33 9 37 3 42 11 34

49 17 54 25 59 29 61 21

10 38 5 45 15 40 7 47

53 31 63 23 51 19 56 27

4 43 12 35 2 36 13 44

58 28 57 20 52 24 64 32

14 48 8 41 16 46 6 39

50 22 62 30 60 26 55 18

1 33 9 39 5 44 11 36

17 49 21 57 29 61 31 55

10 37 3 42 15 40 7 48

23 59 26 53 18 51 25 64

6 45 12 34 2 35 13 46

28 63 24 52 19 54 27 60

14 47 8 41 16 43 4 38

20 56 32 62 30 58 22 50

1 33 9 41 5 44 14 36

17 49 21 57 29 63 31 55

10 37 3 42 11 39 7 48

25 61 26 53 18 51 24 60

6 45 15 34 2 35 16 46

28 59 23 52 19 54 27 62

12 47 8 40 13 43 4 38

20 56 32 64 30 58 22 50

Figure 3.4: Different computation orders of coefficients.

for blocks that have no clear structure. The computation order shown in Fig-
ure 3.4(a,b,d) clearly favors vertical detail. It is emphasized here that the
order (b) and (d) were found using a priority weighting by assigning a higher
priority to the coefficients in the top-left corner. This can be verified for the
�������
 � case, because the number of coefficients in the top-left corner
of the DCT matrix using computation order (b) is equal or higher than us-
ing order (a) that is build without priority weighting. Note that if a zigzag
order would be preferred right from the start, another DCT algorithm would
be selected for optimization of the computation and may yield better results
(low-cost operations have been used as a primary requirement in the previous
section).

The operations count for a given number of coefficients using the MPEG-
zigzag order has been compared with the scalability-optimized order given
in Figure 3.4(b). For comparison, lets us assume that one addition counts
for one operation (� �����
 �) and a multiplication counts for three oper-
ations �� �����
 ��. The resulting number of coefficients of the compar-
ison are given in Figure 3.5. It can be noticed that the proposed scalability-
optimized order leads to significantly more computed coefficients, resulting in
an improved picture quality. It has been verified that the main characteristic of
the curves does not change with other addition-to-multiplication complexity
ratios (e.g. �������
 �), although the computation order varies.

3.5 Experimental results 63

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800

operation count per processed 8x8-DCT block

n
u

m
b

e
r

o
f

c
o

e
ff

ic
ie

n
ts

c
o

m
p

u
te

d

scalability-optimized

zigzag

Figure 3.5: Zigzag-ordered computation vs. scalability-optimized-ordered
computation.

3.5.2 Pictorial results of the experiments

The Peak-Signal-to-Noise Ratio (PSNR) improves between 1-5 dB, depen-
ding on the amount of available operations. This is for example shown for
the first frame of the “Voit” sequence in Figure 3.6. Figure 3.7 shows the
improvements in PSNR difference (PSNR gain) using a scalability-optimized
order instead of the zigzag order. This is shown using a frame of the sequence
“Voit" and the sequence “Renata". The lowest "Renata" curve in the figure
is caused by including a standard MPEG quantization stage. Note that for
computing the PSNR values, a perfect IDCT was used, but its computational
effort is not included in the figures.

It can be seen in Figure 3.6 that the PSNR values increase slowly in the be-
ginning of the computation and augment faster at the end. However, the
perceptual quality increases inversely, because at the start, every additional
coefficient contributes to a much higher quality. As no quantization was
used, the PSNR grows significantly at the end of the computation, although
the perceived video quality hardly improves. A standard quantization stage
that employs the default MPEG quantizer-weighting matrix for intracoded
frames [56] would limit the PSNR of the images to �� dB for the standard-
definition images (�� � �	� pixels) used in the experiments. However, the
shape of the curves shown in Figure 3.7 does not change, although the PSNR

64 Complexity scalable DCT computation

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800

operation count per processed 8x8-DCT block

P
S

N
R

[d
B

]
o

f
a

c
o

m
p

le
te

fr
a
m

e

scalability optimized

zigzag

Figure 3.6: PSNR obtained as a function of the available number of opera-
tions (��� frame of the “Voit” sequence).

differences are reduced when quantization is added. As an example, Fig-
ure 3.7 contains two curves from the “Renata” sequence, where the (bottom)
light gray curve is caused by a standard MPEG quantization.

-6

-4

-2

0

2

4

6

0 100 200 300 400 500 600 700 800

operations count per processed 8x8-DCT block

P
S

N
R

d
if

fe
re

n
c
e

[d
B

]

"Voit"

"Renata""Renata" + quant.

Figure 3.7: Improvement expressed in PSNR difference.

3.5 Experimental results 65

Figure 3.8 shows two image pairs (based on zigzag and scalability-optimized
order) sampled during different stages of the computation (representing low-
cost and medium-cost applications). The index ���� in the bottom-right
corner of each image indicates that � operations are spent for the compu-
tation of � coefficients. Perceptive evaluations of the experiments have re-
vealed that the quality improvement of the scalable DCT computation tech-
nique is the largest between 200 and 600 operations per block. In this area,
the amount of coefficients is still relatively small, so that the benefit of having
much more coefficients computed as compared to the zigzag order, is fully ex-
ploited. Although the zigzag order yields perceptually important coefficients
from the beginning, the computed number is simply too low to show relevant
details. For example, for the well-known “Stefan” sequence (tennis scene)

optimal calculation order zigzag calculation order

297 (3)

521 (8)

300 (20)

513 (33)

Figure 3.8: Visual results from the scalable DCT using the “Renata” se-
quence.

and the “Foreman” sequence (construction site), the zigzag-ordered compu-
tation blurs all details like persons, trees and text, whereas the scalable DCT
presented in this chapter preserves significant details. This can be seen in Fig-
ure 3.9, which shows the visual results of an experiment using the previously

66 Complexity scalable DCT computation

mentioned two sequences. A quantization factor of ������
 � was used in
this experiment.

At more than 600 operations per block, the perceptual quality becomes com-
parable. In this case, the designer can trade-off blurring of data (occurring in
the zigzag computation) against high-frequency blockiness (the scalable pro-
posal). The technique presented in this chapter is particularly attractive for
use with small displays, because a good sharpness impression is achieved at
an early stage.

optimal calculation order zigzag calculation order

297 (3)300 (20)

297 (3)300 (20)

Figure 3.9: Visual results from the scalable DCT using the “Foreman” se-
quence (top) and the “Stefan” sequence (bottom).

3.6 Discussions and conclusions

In this chapter, a new scalable DCT computation technique has been devel-
oped for optimizing the number of coefficients that can be computed when

3.6 Discussions and conclusions 67

computation resources are constrained. The main idea behind the develop-
ment of the new technique is that computations should be spent on coefficients
that can be fastly computed and provide additional picture quality in terms of
PSNR. Other coefficients may have a greater impact on the quality, but would
need computation resources that may not be available. Priority weighting of
the coefficients is possible to consider e.g. subsequent quantization. The re-
sults that are presented in this chapter can be generalized for other algorithms,
like the Inverse Discrete Cosine Transformation (IDCT).

Section 3.3 has provided the construction of a database of computing infor-
mation that includes the involved operations and data dependencies for each
operation node and DCT coefficient. The type of involved operations can
be adapted to the target architecture. Based on the database, a dynamically-
scalable or dedicated-scaled version of a basic DCT algorithm can be im-
plemented. The dynamically-scalable version allows adaptation of the com-
putational complexity, since its execution allows interruption or stopping of
computations at any time. The achieved number of computed coefficients
depends on the available execution time. The dedicated-scalable version is
optimized for a preselected number of coefficients, thereby minimizing for
example memory requirements.

The dynamically-scalable version of the DCT computation technique should
be used in cases where the amount of the computing power is not known in
advance or can vary over time. If the limitation in computing power is prede-
termined, then the dedicated-scaled version can lead to better results, provided
that the database is properly used to trade-off the predefined available compu-
tations with the selection of DCT coefficients that would be achievable.

The experimental results show that the scalability-optimized computation or-
der leads to significantly more computed coefficients compared to a computa-
tion order based on the zigzag scan that is used in MPEG. At the same time,
the picture quality is improved by 1-5 dB PSNR, depending on the available
amount of computations. Visual results show an improved sharpness impres-
sion of the scalability-optimized ordered computation, which is particularly
attractive when using small displays. This is shown in Figure 3.10, where
the first frame of the “Renata” sequence has been coded and displayed at dif-
ferent sizes and using both computation orders. The DCT computation for
this experiment was limited to 300 operations, thereby representing low-cost
applications. The frames in the middle are coded at full broadcast TV resolu-
tion. When going to the top in the figure, the display size is reduced for these

68 Complexity scalable DCT computation

frames. It can be seen that the enhanced sharpness impression is maintained
when reaching the top of the figure, where the display size is QCIF, thereby
representing e.g. a GSM-phone display size. When going to the bottom, the
frame was directly coded at lower resolution. More artefacts can be seen here,
where the scalability-optimized computation order shows more coded details
than using the zigzag order.

Scalability-optimized
computation order

S
D

/S
D

C
IF

/C
IF

Q
C

IF
/Q

C
IF

S
D

/C
IF

S
D

/Q
C

IF

Zigzag
computation order

Figure 3.10: Compare of coding and displaying a “Renata” frame in differ-
ent sizes, which is indicated at the left side of the figure (encod-
ing size/displaying size).

3.6 Discussions and conclusions 69

When looking back to the design of the proposed scalable DCT technique in
this chapter, the major criterion for computational complexity scalability was
sharing of operations in the computation of two or more coefficients, so that
the decision criterion strongly emphasizes the number of DCT coefficients
computed after transformation. In hindsight, an alternative criterion for selec-
tion of coefficients could have been chosen. For example, a desirable criterion
with respect to picture quality could be to select the coefficients that contribute
mostly to the PSNR. This is clearly a generalization of the research results of
this chapter that is worthwhile to consider in future research. With respect to
power consumption, a criterion could be chosen that minimizes the number
of memory accesses, because they contribute most to the power usage of a
system.

The technique presented in this chapter can also be extended in the dimension
of content-adaptive scalable DCT computation. This means that incoming
pixel blocks are classified with respect to their contents and a specialized DCT
that is optimized for the type of content contained, is chosen. This concept
will be further elaborated in Section 6.2.2. This enhancement increases the
probability that the scalable DCT selects coefficients that are important for
describing the block content.

The proposed DCT computation in this chapter is an overall management
technique for controlling the amount of operations, in which existing fast
DCT-butterfly diagrams are inserted. With the aid of our proposal, these dia-
gram computations are optimized with respect to the amount of operations, if
the computation power is limited. Usage of alternative fast DCT algorithms
will give similar, but different results. Thus the selected combination of DCT
butterfly algorithms is efficient and attractive, but there may be another com-
bination that yields a (slightly) better quality at the same condition.

It should be noted that the proposed technique is fully compliant with the
MPEG standard. The computation order for computing the DCT coefficients
should not be confused with the scan order for coding the coefficients. During
the scalable DCT transformation, the meaning of the intermediate results, i.e.
computing a coefficient matrix, is not different from performing conventional
DCTs. However, the selection of coefficients for computation leads to differ-
ent coefficient patterns for quantization and VLC coding, so that there is an
influence on the coding efficiency. At this stage, we still do not have a com-
plete scalable system, thus the influence on the coding efficiency is discussed
later in this thesis.

70 Complexity scalable DCT computation

CHAPTER4
Motion estimation

�
n the past decades, numerous publications have appeared
about Motion Estimation (ME). The purpose of this chapter
is to analyze a few popular ME algorithms and evaluate their

efficiency. ME algorithms require a criterion for selecting the best mo-
tion vector from a set of vector candidates. The analysis in this chapter
includes three commonly used criteria. At the end of this chapter, an
algorithm and criterion having a high efficiency are selected to design
a scalable ME subsystem that will be discussed in the next chapter.

4.1 Introduction

Motion Estimation (ME) is the most computationally intensive function of
MPEG encoding. This chapter describes briefly the basic principles of sev-
eral ME algorithms, thereby serving as a partial literature overview. A simple
comparison of their quality and computational complexity is provided for the
algorithms. The two metrics, quality and complexity, are merged into an effi-
ciency indicator in order to make a choice which algorithm should serve as a
basis for further research. The chosen algorithm efficiently performs the ME,
while giving near-optimal quality.

72 Motion estimation

ME in an MPEG encoder is used for finding a block in a reference frame
that closely resembles the actual block that has to be coded. A close resem-
blance can be expressed by subtracting two blocks (the reference and the ac-
tual block) on a pixel-by-pixel basis. This process is called block matching.
The computation of block differences can be seen as an error measure. Two
blocks having the lowest error measure are then considered as the best match.
Besides evaluating all block combinations in a predefined search area in the
reference frame, in the past few years, fast algorithms have been proposed to
decrease the number of block evaluations significantly.

This chapter presents some error measures that are used as criteria for finding
block matches in Section 4.2. Section 4.3 presents a number of fast ME al-
gorithms, in which a small number of vector candidates is used to come to a
best match. For comparison, full search is also discussed. The algorithms lead
to motion vectors that refer to the best block matches based on the full-pixel
grid. The accuracy of the vectors can be enhanced by refining the vectors
to the half-pixel grid as presented in Section 4.4. A comparison of the ME
algorithms is given in Section 4.5. It should be noted that the comparison
of algorithms is not exhaustive, but based on a few popular proposals from
literature.

4.2 Block-matching criteria

The ME process in MPEG systems divides each frame into rectangular mac-
roblocks (����� pixels each) and computes motion vectors (MVs) per block.
As shown in Figure 4.1, a MV �+�,�� ,�� signifies the displacement of a
block &���� ��� in the x-y pixel plane with respect to a reference frame. The
coordinates �� and �� refer to the top-left most pixel of the block. The pur-
pose of this block-matching process is to find a block &���� � ,�� �� � ,�� in
the reference frame that fits best for the current block &.

The error measure that is computed for each MV candidate involves various
ways of pixel difference computations. The Mean-Square-Error and Sum-
of-Absolute-Differences are commonly used in video coding and therefore
discussed. As an alternative for low complexity, the Minimum Maximum
Error [57] has been added. These three measures are briefly presented below.

� The Mean-Square-Error (MSE) is computed similar to the PSNR and
is based on the sum of squared pixel differences. For this reason, the

4.2 Block-matching criteria 73

y0
(x ,y)0 0

(0,0)

(x +dx,y +dy)0 0

b(x,y)

m
v(

dx,
dy)

Frame

b (x,y)

d
y

dx
x0

*

Figure 4.1: Block matching of the ME process.

MSE can result in a higher PSNR of the predicted frames as compared
to other measures when using the same MV candidate set.

�-.�&� &��
 �
�	�
���

���

���
���

�&��� ��� � � ���� &���� �� � ,�� � � �� � ,���� �
(4.1)

� The Sum-of-Absolute-Differences (SAD) is the mostly used measure,
because it is simple to compute and comparable in performance to MSE.

-/(�&� &��
 �
�	�
���

���

���
���

�&��� ��� � � ���� &���� �� � ,�� � � �� � ,��� �
(4.2)

� The Minimized Maximum Error (MiniMax) [57] is the most simple
criterion of the three presented, because it only involves comparisons.

�������&� &��
 �����������
�&��� ��� � � ���� &���� �� � ,�� � � �� � ,��� �

(4.3)

The computational complexity of one error measure can be reduced by lim-
iting the processing to a subset of all block pixels. In [58] it was found that
the quality of the error measure hardly suffers from sub-sampling. Block sub-
sampling has been applied for example in [59] for complexity scalable ME.
Another technique that is presented in [60] predicts the result of a complete
error measure computation from intermediate results that are based on block
sub-sampling. Appendix C.2 shows that the computational complexity of the

74 Motion estimation

error measure can be lowered by reducing the bit representation of pixels.
This is best exploited in hardware solutions, which is not in the scope of this
thesis and therefore not further considered.

4.3 Fast ME algorithms

In this section, algorithms are presented that have been frequently referred
to in literature. These algorithms are the one-dimensional full search, block-
based gradient descent search, diamond search, three-step search, new three-
step search and simple recursive ME. For reference, the discussion starts with
the full-search ME, which considers all possible candidates in the search area.
A popular ME algorithm that is not found in the list is the 3-D recursive
search (3DRS) block matcher [61, 62]. The 3DRS is mainly developed for
frame rate up-conversion, where true-motion estimation is required for inter-
polating frames from each pair of successive frames of the video sequence.
True-motion estimation is not required for video coding, where coding effi-
ciency is more important. However, a simplified version of 3DRS is used for
evaluations.

4.3.1 Full Search (2DFS)

The simplest way to find the optimal MV for a given search area is to compute
the error measures for all possible block comparisons. The search area is
bounded by a maximum allowed block displacement of�,���� in horizontal
direction and�,���� in vertical direction. The corresponding MV candidates
that are evaluated range from �+
 ��� �� to �+
 ��,������,�����
(see Figure 4.2). Commonly, � � � search areas are implemented with

 � � ,���� � � and ,����
 ,����, exploiting less MVs for positive-
integer displacement. The MV that leads to the minimum error is adopted as
best match. The drawback of this search strategy is the high computational
effort.

4.3.2 One Dimensional Full Search (1DFS)

This search strategy [63] is similar to the 2DFS, except that it exploits only
one dimension at a time and performs two steps (see Figure 4.3(a)). In the first
step, the error measures for all motion vectors �+
 �,�� ,�� with ,�
 � are
computed. This will result in a vector �+��, pointing to the position �� of the
best-matching block in the horizontal bar. Afterwards, the error measures of

4.3 Fast ME algorithms 75

reference
frame

search area
current
frame

search area

y

dy

dx

x

Figure 4.2: Principle of full-search motion estimation.

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

y

x

Search area

1

1

11 1

11

1 1a

2 2 2

2

2a

3a

3

4 4 4

4

4

3

a) b)

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

y

x

Search area

1a

1b

1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

2 2 2 2 2

2

2

2

2

2

1

1

1

1

1

1

1

1

1 1 1 1

2a

2b

Figure 4.3: Example of 1DFS motion estimation (left) and block-based gra-
dient descent search (right).

76 Motion estimation

all motion vectors �+
 �+�� � �,�� ,�� with ,�
 � are computed, which
results in a vector �+��. This is repeated in a second step with halved horizon-
tal and vertical dimensions leading to the final MV �+��. In the Figure 4.3(a),
�+��
 ������ is the result of the 1DFS.

4.3.3 Block-Based Gradient Descent Search (BBGDS)

This algorithm [64] starts with computing the error measures for all motion
vectors �+��
 �,�� ,�� with ,�� ,� � ���� ����, thereby defining
a ��� mini-search-area. The algorithm performs several steps, where in each
step �, the algorithm computes the best vector �+� of such a ��� mini-search-
area, which is centered on the position that is referred by �+���. Thus the vec-
tors �+
 �+�����+�� are evaluated for finding �+�. Figure 4.3(b) shows
an example of the search process, where four possible steps are visualized.
The vectors �+� refer to the positions � that are marked with a subsequent “a”
. The algorithm terminates when the position of the best-matching block is
found in the center of the mini-search-area, which means that �+�
 �+���
(referring to position �� in the example given in Figure 4.3(b)).

4.3.4 Diamond Search

The diamond search [65] is similar to the BBGDS algorithm (see Section 4.3.3),
as both algorithms evaluate nine MVs in each step and center their correspond-

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

y

x

Search area

11

1

1

1

1a

1

1

1

2

2

2

2a

2

3

3

3

4

4

4

4a

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

y

x

Search area

1a

1 1 1

1

111

1

2 2 2

2

22

2

2a

3a

3

333

3

3 3

a) b)

Figure 4.4: Example of diamond (left) and three-step (right) search.

4.3 Fast ME algorithms 77

ing mini-search-area on the position that is referred to by the best MV of the
previous step. The difference between the algorithms is the shape of the mini-
search-areas, which is for the diamond search equal to a diamond shape (see
start positions 1 in Figure 4.4(a)). A further but smaller difference in finding
the best MV is that in case of identical MVs for two succeeding steps, the
MVs referring to positions of the inner diamond shape (see end positions 4 in
Figure 4.4(a)) are evaluated in addition.

4.3.5 Three Step Search (TSS)

The TSS algorithm [66] is closely resembling the BBGDS algorithm (see Sec-
tion 4.3.3), because in each step, nine MVs are evaluated, and the covered
search area is centered around the position of the best candidate of the previ-
ous step. Two main differences are that TSS performs three fixed search steps
and the distance between the evaluated MVs decreases with a factor of two in
each step. In each step � � ������, the best vector �+� is found by evaluating
the vectors �+
 �+��� ��+�,�� ,�� with ,�� ,� � ������� �� ���� and
�+�
 ��� ��. An example is portrayed by Figure 4.4(b).

4.3.6 New Three Step Search (NTSS)

NTSS is globally equal to TSS, except for the first step, where additional eight
MVs with �+
 �,�� ,�� with ,�� ,�
 �� surrounding the zero vector are
evaluated. In case that the best MV of the first step is close to the zero vector,
one additional step is performed for refinement, where eight vectors around
the best MV of the first step are evaluated. Otherwise, the algorithm continues
like the TSS algorithm (see Section 4.3.5). An example of this algorithm is
given in Figure 4.5, where the first minimum error measure was found near
the zero vector.

4.3.7 Simple Recursive Motion Estimation (simple RME)

This algorithm is described in somewhat more detail, because it forms the ba-
sis of the new algorithms explained in the next chapter. Based on the work
of [67], the simple RME was developed for coding high-quality television
signals [68]. The algorithm is based on the fact that motion in a video se-
quence is in most cases either caused by camera movement or moving objects
in the video scene. Both types of motion generate a fluent (coherent) field of
motion vectors over the image. The result is that the motion vectors of neigh-
boring blocks are (almost) identical. For this reason, the probability is high

78 Motion estimation

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

y

x

Search area

1

1

11 1

111

1 1 1

1

111

1 1a

2

2

2

2

2a

Figure 4.5: Example of new three step search.

that a vector is similar to one of the neighboring vectors, and therefore, vector
candidates are predicted form previously processed blocks.

The prediction is visible in the first phase of the simple RME algorithm, where
the MVs of the previous and upper three neighboring blocks are evaluated.
Thus, the candidate vectors are equal to the adopted MVs of the blocks &����
�� ���, &��� � �� �� � ��, &���� �� � �� and &��� � �� �� � ��. The blocks are
processed in a block-by-block and line-by-line order (see Figure 4.6). The
variables �� and �� indicate the block coordinates of the currently processed
block. In addition to these blocks, the zero MV is evaluated, since many
blocks have a small motion component only. The best vector of the first phase
that comes with the minimum error measure is labeled as �+��.

In the second phase, the MV prediction is enhanced by evaluating all MVs that
refer to the positions of the ��� mini-search-area centered on the position that
is referred to by the best candidate �+�� of the first phase. In addition, four
vectors referring to larger distances than vector �+�� are evaluated for con-
sidering the case of sudden motion change. A sudden motion change occurs
for example at the edge of objects that move differently from the background.
The vectors “look around” in alternating directions, in order to detect a motion
change as soon as possible. These additional four vectors are

�+
 �+�� ��+�,�� ,�� with

4.3 Fast ME algorithms 79

Block already
processed

Block not yet
processed

Block actually
processed

Motion vector

Processing orderyb

xb

Frame

…

Figure 4.6: Processing of macroblocks in simple recursive motion estima-
tion.

�,�� ,��

�
����� � ��

�

��
�
�

�
����� � ��

��
��

������� � ��
�

��
�
�

�
������� � ��

��
�

where is the horizontal block index. Suitable values for the constants ��
and �� are ��
 �, and for SDTV scenes, ��
 �. The best vector of the
evaluated vectors in phase two is labeled �+��.

The first two phases of this algorithm are visualized in Figure 4.7, where the
indicated MVs are taken from the surrounding blocks that are already pro-
cessed, and the MV that points to position �� marks the vector that is taken
from the same block in the previous frame (temporal candidate).

The last phase performs a vector refinement based on half-pixel accuracy,
where �+
 �+�� � �+�����������. Vector refinement is an additional
step that is suitable for all ME algorithms (see Section 4.4).

Finally, the simple RME algorithm includes a quantized SAD as block-matching
criterion as given in Equation (4.4).

-/(���

-/(

��
(4.4)

80 Motion estimation

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

y

x

Search area

1a

11
1

1

2a 2 2
2

22

2

2
2

2
1r

Figure 4.7: The first two phases of simple recursive motion estimation.

Typical values for the exponent � are � � �	� �� �. The -/(��� ensures
that only motion vectors leading to a substantially lower SAD error measuring
then the current one are considered as an alternative, thereby improving the
consistency of the motion-vector field.

4.4 Motion-vector refinement

The motion vectors that are computed by the ME algorithms have full-pixel
accuracy and their referred search positions are located on the full-pixel grid.
This accuracy may not be sufficient for describing the actual motion in a video
sequence. Higher accuracy can be reached when the pixel grid is refined by a
factor of two in each direction. In this case, search positions that are located
on a half-pixel grid can be considered in addition. ME with half-pixel accu-
racy requires that pixel values on the half-pixel grid have to be additionally
computed by using linear interpolation (see Figure 4.8).

Due to the additionally required computational complexity, the MV refine-
ment is performed after finding the best motion vectors �+����� �� with full-
pixel accuracy. Subsequently, the best candidate vector is refined by evaluat-
ing the vectors �+��
 �+�� ��+�����������.

4.5 Comparison of ME algorithms 81

Full-pixel grid

Half-pixel grid

Position on full-pixel grid.

Position on half-pixel grid.

Pfp

Php4

Php2

Php

Position on half-pixel grid;
build by average of two
full-pixel positions.

Position on half-pixel grid
build by average of four
full-pixel positions.

Figure 4.8: Motion vector refinement full-pixel to half-pixel accuracy.

4.5 Comparison of ME algorithms

Section 4.5.1 compares the previously presented ME algorithms with respect
to their frame-prediction quality. A detailed breakdown of the computational
complexity of the individual steps of ME is presented in Appendix B, in or-
der to avoid lengthy discussions. Section 4.5.2 summarizes the results. Sec-
tion 4.5.3 presents a final comparison using an algorithm-efficiency indicator,
based on both complexity and picture quality.

4.5.1 Picture quality of motion-compensated frames

In this section, an experiment measures the picture quality, expressed in PSNR,
of the previously discussed ME algorithms using the video sequences “Voit”,
“Girl” and “Teeny”. A search area of �� � �� pixels is used, thereby allow-
ing a maximal block displacement of 16 pixels in each direction for finding a
suitable MV. In the experiment, the PSNR between the motion-compensated
prediction and the corresponding original input frame is used as performance
measure, based on frame-by-frame processing. To exclude effects from DCT
and quantization, a perfect difference signal is used, such that the frame re-
construction is identical to the original frame. Although this condition is not
satisfied in MPEG coding, it is required that a suitable algorithm should give
a high quality in order to be applicable in regular MPEG compression condi-
tions.

The algorithms are evaluated both on full- and half-pixel accuracy. Figure 4.9
shows the achieved PSNR of the frame predictions when processing the “Voit”
sequence. The MSE is used as block-matching criterion. The value of this
figure is that it shows clearly the quality improvement of the frame predic-
tions when refining MVs to half-pixel accuracy, which is almost constant

82 Motion estimation

about 1 dB PSNR (except for the BBGDS algorithm). For a fair comparison,
the simple RME algorithm was tested without a quantization of the block-
matching criterion. Figure 4.9 also shows that the difference in performance
between the algorithms is much larger than the improvement from using half-
pixel accuracy. For this reason, algorithms with high quality in full-pixel ac-
curacy are required.

21

22

23

24

25

26

27

28

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

frame number

P
S

N
R

[d
B

]

2DFS fullpel

2DFS halfpel

1DFS fullpel

1DFS halfpel

TSS fullpel

TSS halfpel

NTSS fullpel

NTSS halfpel

BBGDS fullpel

BBGDS halfpel

RME halfpel

Figure 4.9: Evaluation of ME algorithms using the “Voit” sequence as input
and MSE as block-matching criterion.

Figure 4.10 portraits a more detailed ME comparison, where the average
PSNR of the frame predictions is compared for different block-matching cri-
teria and video sequences. The measured PSNRs are plotted with respect to
the PSNR obtained without ME (PSNR gain).

MSE and SAD criterion show a comparable performance and clearly outper-
form the MiniMax criterion. Since the SAD computation is less complex than
the MSE, the SAD is mostly used in state-of-the-art ME. The MiniMax cri-
terion is too simple, because only one pixel difference is used. Figure 4.10
also shows that the algorithm performance is strongly dependent on the video
content of the sequences. The little motion in sequence “Girl” leads to good
prediction quality even without ME, thus only small enhancements of the pre-
diction quality can be gained with ME. The “Voit” sequence has more motion.

4.5 Comparison of ME algorithms 83

-

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

MSE SAD MiniMax MSE SAD MiniMax MSE SAD MiniMax

Voit Voit Voit Girl Girl Girl Teeny Teeny Teeny

P
S

N
R

g
a
in

[d
B

]

2DFS fullpel

2DFS halfpel

1DFS fullpel

1DFS halfpel

TSS fullpel

TSS halfpel

NTSS fullpel

NTSS halfpel

BBGDS fullpel

BBGDS halfpel

RME halfpel

Figure 4.10: PSNR gain of various ME algorithms using block-matching cri-
teria MSE, SAD and MiniMax for sequences “Voit”, “Girl” and
“Teeny”.

Due to edges in the image content, almost all algorithms can find suitable mo-
tion vectors for this sequence. The high motion in the “Teeny” sequence has
the consequence that the achieved PSNR-gain mainly depends on the number
of evaluated search positions.

4.5.2 Computational complexity comparison

A detailed breakdown of the computational complexity of the individual steps
of ME is presented in Appendix B. In this subsection, we summarize the
results of this analysis below.

� The algorithmic comparison shows that the complexity of 2DFS grows
quadratically with the number of block comparisons and 1DFS grows
linearly. All fast algorithms have a constant number of motion-vector
evaluations, except for the BBGDS.

� The complexity of all three block-matching criteria grows linearly with
the number of pixels in the block.

� The complexity of interpolating pixels on half-pixel accuracy grows lin-
early with the number of pixels.

� Using television signals on CCIR-601 resolution, the worst-case com-
plexity of performing ME for one frame varies between 40M operations

84 Motion estimation

for a fast algorithm and 2.14G operations for 2DFS.

� Experiments reveal that for regular video sequences, the average amount
of operations is a factor 3-4 lower than in the worst-case condition. This
is obtained when the computation of error measures is aborted as early
as possible and motion vectors around the zero vector are favored over
large motion vectors.

4.5.3 Complexity vs. picture quality

In this section, the picture quality and the computational complexity are com-
bined into a criterion in an attempt to express a so-called algorithm-efficiency
parameter. This parameter is measured with the average number of operations
required for each dB of PSNR gain (see Section 4.5.1).

Figure 4.11 shows a detailed overview of the algorithm efficiency for all con-
sidered ME algorithms when processing the “Voit”, “Girl” and “Teeny” se-
quence. Small values indicate a high efficiency for achieving an average rel-
ative quality improvement of 1dB. The figure portrays that the TSS, NTSS,
BBGDS and RME algorithm are much more efficient in achieving quality im-
provements than the other algorithms for a low number of operations. How-
ever, in order to make a final choice, it is required to look at Figure 4.10 for
the absolute values of the obtained picture quality.

1,000

10,000

100,000

MSE SAD MiniMax MSE SAD MiniMax MSE SAD MiniMax

Voit Voit Voit Girl Girl Girl Teeny Teeny Teeny

a
v

e
ra

g
e

n
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

p
e

r
a

v
e

ra
g

e
d

B
P

S
N

R
g

a
in

2DFS fullpel

2DFS halfpel

1DFS fullpel

1DFS halfpel

TSS fullpel

TSS halfpel

NTSS fullpel

NTSS halfpel

BBGDS fullpel

BBGDS halfpel

RME halfpel

Figure 4.11: ME algorithm efficiency indication based on number of opera-
tions required per average dB PSNR gain.

4.6 Conclusion 85

4.6 Conclusion

From Figure 4.10, it follows that 2DFS gives the best picture quality (every
possible MV in the given search area is evaluated). The picture quality of the
simple RME is slightly less than the 2DFS, but at the same time, it can be
seen from Figure 4.11 that the algorithm efficiency in achieving the picture
quality is much higher than 2DFS. Although the BBGDS is of high efficiency
(Figure 4.11), it yields significantly less picture quality (Figure 4.10), and
therefore it should not be adopted.

It was found that the selected block-matching criterion has a minor effect on
the obtained picture quality. The SAD results in slightly lower PSNRs than
the MSE, whereas the MiniMax shows a considerable decrease in quality com-
pared to the SAD and MSE.

MV refinement to half-pixel accuracy results in a clear picture quality en-
hancement. However, the refinement is useless, if it is performed in com-
bination with an ME algorithm that results in inaccurate predictions on the
full-pixel grid. For this reason, it should be considered as a last refinement
step towards high-quality prediction.

The final conclusion is that the simple RME algorithm forms a good basis for
starting investigations on scalable ME algorithms, due to its high efficiency
and picture quality. In Chapter 5, a new scalable ME technique will be pre-
sented that changes the way of computing MV fields compared to common
MPEG MV field processing. The new technique can basically be applied to
any ME algorithm. Therefore, the development of the new technique in Chap-
ter 5 and the performed experiments will be based on simple RME using the
SAD matching criterion.

86 Motion estimation

CHAPTER5
Scalable motion estimation

�
n accordance with the scalable DCT technique that was pre-
sented earlier in this thesis, a computational complexity scal-
able ME technique is presented in this chapter that can be ap-

plied to any conventional ME algorithm. This technique is based on
frame-oriented processing and performs the ME on a frame-by-frame
basis to approximate MPEG MV fields and optionally refine them af-
terwards. Complexity scalability is obtained by varying the number
of MV fields that are processed. Furthermore, a new scalable ME
algorithm is presented aiming at optimizing the number of MV candi-
dates by using block-content classification. Changing the classifica-
tion strength varies the number of processed MV candidates, thereby
leading to complexity scalability.

5.1 Introduction

5.1.1 A view on the ME process

The Motion Estimation (ME) is one of the time-consuming functions and a
key element of MPEG coding [8]. In this preliminary section, we motivate

88 Scalable motion estimation

the research on scalable ME by taking different viewpoints on the same pro-
cessing task. These viewpoints are primarily intended to classify existing al-
gorithms and to explain why we have designed our new techniques for com-
plexity scalability. These viewpoints emerge by recognizing that the signal
processing is performed in several levels. These levels will now be introduced
below.

The levels used for analyzing the ME processing consider the processing of in-
put video frames, the processing of MV candidates, and the metric for measur-
ing block similarities, respectively. A new technique based on frame-oriented
processing is presented that performs ME on a frame-by-frame basis to ap-
proximate MPEG MV fields and refine them afterwards. Another new tech-
nique that is presented aims at optimizing the number of MV candidates by
using block-content classification.

We consider ME as a signal-processing task applying the following three lev-
els, where each level can contribute to enhance ME with scalability.

� Accuracy level: the accuracies of (candidate) motion vectors (MVs) are
evaluated in order to decide whether the vectors are suitable to describe
picture block displacements.

� Vector-selection level: an algorithm provides the selection of MVs for
evaluation, in order to estimate the motion between two frames.

� Structural level: the structure of the Group-Of-Pictures (GOP) defines
which MV fields (MVFs) are needed for the MPEG encoding process.
The computation of according MVFs is initiated at this level.

5.1.2 State-of-the-art ME

In the past, a large number of algorithms have been proposed for enhancing
the vector selection, thereby reducing the computational effort of a full-search
ME. In Chapter 4, ME algorithms have been presented that make a trade-off
between complexity and the quality of the computed vector fields. However,
the accuracy of the MVs that is achieved by using popular algorithms like New
Three Step Search [69] and Center-Biased Diamond Search [65], is limited for
fast motion in the video sequence.

It was found in Chapter 4 that high quality and high efficiency of ME are ob-
tained by using Recursive ME (RME, already discussed in [61, 62, 68], and

5.1 Introduction 89

now included in MPEG-4), that derives candidate MVs from previously com-
puted MVs in both the current MVF ("spatial" candidates) and the previous
MVF ("temporal" candidates). Up to now, the RME algorithms have been
used on GOP structures of fixed size and B-frames were not considered for
long-term tracking of the motion.

A more sophisticated approach for ME on the structure level employing RME
is presented in [70], featuring a two-step estimation process and enhanced
vector-field prediction. The first step of this approach is a coarse RME to
pre-estimate the forward vector-fields. The second step uses the vector fields
computed in the first step as prediction and performs an additional RME. Vec-
tor fields that are used as prediction are scaled to the appropriate temporal
distance that is actually needed.

Computational complexity scalability has been introduced for the ME process
by providing an algorithm that operates on the vector-selection level and on
the accuracy level [60]. The algorithm approximates the result of a full SAD
computation based on partial SAD computations for pixel subsets of a block.
The number of pixel subsets that is used for the approximation is the first
degree of scalability. The second degree results from varying the number of
MV candidates that are taken for evaluation from a predefined vector set.

The drawback of conventional ME algorithms is that they process each picture
block in the same content-independent way, thereby spending many computa-
tions on computing MVs for e.g. relatively flat blocks. Unfortunately, despite
the effort, the ME process then yields MVs of poor quality. Block classifica-
tion is a known technique for concentrating the ME on blocks that may lead
to accurate motion vectors [71].

In a further step, the number of blocks that are evaluated is controlled via
block classification, thereby leading to complexity scalability. A recent pub-
lication on scalable ME using block classification was presented in [72]. The
classification that is used in the algorithm presented in [72] is performed for
distinguishing textured and less textured blocks and making a binary choice
between the two. It does not use the content of the blocks for providing the
ME algorithm with the information whether it is more likely to find a good
MV in up-down or left-right search directions, as compared to the block-
classification algorithm that is presented in this thesis (see Section 5.4). The
algorithm in [72] provides scalability on the vector-selection level by varying
the number of MV candidates that are taken from predefined candidate sets,
depending on the classification and by adapting the classification thresholds.

90 Scalable motion estimation

5.1.3 Contribution of this chapter to scalable ME

The problem of the aforementioned ME algorithms is that a larger GOP size
increases the prediction depth, implying a larger frame distance between refer-
ence frames. This dependence hampers accurate ME. Furthermore, although
state-of-the-art RME has a high efficiency, still unnecessary MV evaluations
are performed. For example, MVs are re-evaluated if candidate vectors that
are taken from previously processed macroblocks are equal. This phenomenon
occurs if the currently processed block is a part of a larger area (e.g. the image
background) that has a nearly equal MVF everywhere.

To overcome these inefficiencies, two new complexity scalable ME techniques
are presented in this chapter. The first technique operates on the structural
level and processes MVFs in three stages. The first stage performs initial
ME with the input video frames in display order (“IBBP”) and is indepen-
dent of GOP structures. The second stage efficiently derives MPEG MVFs
by approximations based on multiple vector fields that are computed in the
first stage. Furthermore, the quality of full-search ME can be obtained with
an optional third refinement stage. The aforementioned stages form the new
Scalable MVF Approximation and Refinement Technique (SMART). Since
the second stage of SMART is the important stage for ensuring the availabil-
ity of the MVFs that are required for MPEG encoding, the first and the third
stage are used for varying the computation of MVFs, thereby leading to com-
plexity scalability.

In addition, SMART ME algorithm works not only for the typical (pre-deter-
mined and fixed) MPEG-GOP structures, but also for more general cases. This
feature enables on-the-fly selection of GOP structures depending on the video
content (e.g. detected scene changes, significant changes of motion, etc.).

The second ME technique operates on the vector-selection level and provides
Content-Adaptive REcursive Scalable ME (CARES) through block classifi-
cation based on edge detection. Prior to estimating the motion between two
frames, the macroblocks inside a frame are classified into areas having hor-
izontal, vertical edges or no edges. The classification is exploited to mini-
mize the number of MV evaluations for each macroblock by e.g. concentrat-
ing vector evaluations along the detected edge (across the line that is upright
to the edge). A novelty in the technique is a distribution of good motion
vectors to other macroblocks, even already processed ones, that differs from
other known recursive ME techniques reusing MVs from previously processed

5.2 Notations 91

blocks. Varying the block-classification strength and thereby the number of
evaluated MV candidates, results in complexity scalability.

The sequel of this chapter is organized as follows. Section 5.2 introduces
some notations for ease of discussion. Section 5.3 presents the SMART tech-
nique. Section 5.4 presents a block classification based on edge detection,
which is used in a following ME algorithm. The CARES technique employ-
ing the previously mentioned block classification, is presented in Section 5.5.
Section 5.6 concludes this chapter.

5.2 Notations

For ease of discussion, Sub-Groups-Of-Pictures (SGOP) are formed that have
the form ���� ����������� � within an MPEG GOP. For simplicity, pictures
are addressed as frames, although interlaced pictures have two fields. The
following explanation refers to Figure 5.1.

I0 B1 B6 B7B2 B5B3 P4 P8 …

…

…

Subgroup 1 Subgroup 2

1 2

f
1
1

f
1
2

f
3
1

f
3
2

(B B)1 3	 (P B)4 5

f
1
3

M M

f
1
4

b
1
1

b1
2

b
1
3

f
2
1

f
2
2

f
2
3

f
2
4

b
2
1

b
2
2

b
2
3

Figure 5.1: Example of vector fields used for motion estimation in MPEG
encoding after defining a GOP structure. In this example, a
GOP with a constant � � � was chosen.

The prediction depth of a subgroup � is denoted by �� for �#��, in accor-
dance with the prediction depth � of a GOP, and can vary from SGOP to
SGOP. The MPEG forward vector-field, which is used in the prediction of
the ��� frame, is denoted by ��

�
. The MPEG backward vector-field is denoted

by &�� . Arbitrary MVFs are denoted by ��� � ��� for the forward case

92 Scalable motion estimation

and ��� � ��� for the backward case, indicating motion between frame ��

and �� with � �. If the frame type is known, the arbitrary frame type �
can be replaced by � , � , or �. The given subscript parameters (�� ����)
may be left out where they are not needed.

5.3 SMART, a structural-level technique

5.3.1 Algorithm

Temporal candidate MVs play a key role within this scalable technique for
ME. For this reason, we have adopted Recursive ME (RME), which is based
on block matching. RME algorithms employ temporal candidates and provide
a consistent ME in video sequences, while using a small number of candidate
vector evaluations.

Obviously, the prediction quality of an ME algorithm improves with a smaller
temporal distance (, where the parameter (denotes the difference between
the frame numbers of the considered frames. Therefore, we commence with
estimating the motion using the minimum temporal distance �(�
 �, which
results in an accurate ME that can be performed at low computational effort,
mainly due to smaller search areas that need to be considered (see Figure 5.2).

= search area

time

I0

B1

B2

P3

prediction

Figure 5.2: Search area versus prediction depth. Higher prediction depth
leads to larger search areas and therefore increased computa-
tion effort.

Since a common MPEG-GOP structure has � � � and thus some of the
required vector fields must have � � (� �, this is considered as a first

5.3 SMART, a structural-level technique 93

stage to derive a prediction of vector fields. In a second stage, these predicted
vector fields are used to compute the required vector fields according to the
MPEG standard (using larger (). In the third stage, the vector fields can be
refined by using an additional –although simple– ME process. This stage is
optional and only required if the highest quality has to be obtained (e.g. a
conventional MPEG ME algorithm). Summarizing, the new concept results
in a three-stage process, which is described more formally below.

� Stage 1. Prior to defining a GOP structure, we perform a simple RME
for every consecutive frame �� and compute the forward vector field
����� � ��� and then the backward field ����� � ���. For exam-
ple, in Figure 5.1 this means computing vector fields like ��

�
and &��, but

then for every pair of sequential frames (see the left side of Figure 5.3).

� Stage 2. After defining a GOP structure, all the vector fields ' � ��� &
required for MPEG encoding (right side of Figure 5.3) are approxi-
mated by appropriately accessing multiple available vector fields '�
and '� and combining them using the linear relation

'
 " � '� � 0 � '�� (5.1)

The scaling factors " and 0 depend on the processed fields and are cho-
sen according to the required temporal distance for computing ' . For
example, �

�

 ��� � ��� � ��� � ��� (see middle of Figure 5.3),

thus having "
 0
 �. Note that " and 0 will have different values
if the frame distances changes, or when complexity scaling is applied
(see below).

� Stage 3. Optionally, a second iteration of RME is performed for refin-
ing the computed approximated MPEG vector fields from Stage 2. For
example, the approximated vector fields from Stage 2 serve as temporal
candidates in the final refining RME process at this last stage.

Note that the GOP structure is chosen after performing Stage 1, which enables
that GOP structures can be chosen dynamically, based on e.g. an analysis of
the computed MVs (see next section). In this way, the GOP structure is mod-
ified according to the measured motion in Stage 1. An example of this ap-
proach is visualized in Figure 5.3, in which a MVF ��� � ��� is computed
but not used afterwards for approximation, because the adopted GOP struc-
ture does not require approximations from it. This situation depends on the
approximation process, and in the given example, the approximation of the

94 Scalable motion estimation

MPEG vector fields is considered sufficient. With predefined GOP structures,
the computation of vector field ��� � ��� is not necessary.

I0 B1 B2 P3 X4X0 X1 X2 X3 X4

} } }

}
}

Vector field
memory

Vector field
memory

}

+

+

+

f1
f2
f3
b1

b2

(X0
X)1 (X1
X)2 (X2
X)3 (X3
X)4

(X0	X)1 (X1	X)2 (X2	X)3 (X3	X)4

b2b1

(X3
X)4

f1 f2 f3

(X3	X)4

(X0
X)1

(X0	X)1

(X1
X)2

(X1	X)2

(X2
X)3

(X2	X)3

(X3
X)4 (X3
X)4

(X3	X)4 (X3	X)4

Figure 5.3: Overview of the SMART ME process.

Rovati et al. [70] have proposed an approach that at first glance looks similar
to the algorithm presented here. However, there are a number of important
differences. Firstly, they initially estimate the MPEG vector fields and then
process these fields for a second time, while keeping restricted to the MPEG
GOP structure. This means that they have to deal with an increasing temporal
distance to derive the vector fields already in the first step. This limits the
accuracy of the computed first-step predictions. The processing of pictures
in MPEG order is a second difference. Thirdly, the proposed ME does not
provide scalability. The possibility of scaling vector fields, which are also
used for the above-mentioned multiple predictions, is mentioned in [70], but
not further exploited. SMART ME makes explicit use of this feature, which
is a fourth difference. In the sequel, the important system aspects of SMART
are explained.

5.3.2 Modifications in the MPEG encoder architecture

The SMART ME technique processes video frames both in the input signal
order and the MPEG processing order. It is therefore relevant to consider
the architectural changes and the complexity when using the SMART ME
technique. Figure 5.4 shows the architecture of the SMART ME technique
embedded in an MPEG encoder. In the figure, the markers 1 , 2 and 3
as indicated in the modules refer to the stages in the SMART ME technique.

5.3 SMART, a structural-level technique 95

Note that the amount of memory needed for the new architecture is the same
as used for the architecture as shown in Figure 1.14, except for the relatively
small additional MV memory. The frame memory costs are equal, because
the entrance frame memory for Stage 1 can be integrated with the memory for
the reordering process. The additional memory required to store a vector field
is negligible compared to the memory requirement of a video frame (a vector
needs only 2 bytes vs. a luminance macroblock using 256 bytes). The three
stages are decoupled from the actual coding process and are connected with
each other via the central MV memory. This concept based on a central MV
memory enables the three SMART stages for ME to be implemented as indi-
vidual communicating processes. This property is attractive for heterogeneous
systems.

3

Xn

DCT,
Quant

Coding

InvQuant,
IDCT

Video
Input

MPEG
Output

frame

decoded
new frame

Motion
vectors

Frame
Memory

Frame
Memory

… IPBB

I / P

IBBP

Estimation
Motion1

Estimation
Motion

Motion
Comp.

MV

2Generate

MPEG MV

Figure 5.4: Architecture of an MPEG encoder with the SMART ME tech-
nique.

Several architectural aspects of the individual stages of SMART are discussed
below.

� The initial ME process in Stage 1 is performed on succeeding frames,
thus (�(�
 �). Furthermore, Stage 1 uses original frames, without
quantization errors from the actual coding process. For these reasons,
the RME yields a high-quality prediction with accurate MVFs.

� Stage 2 can enhance the choice of a GOP structure by e.g. analyzing
the computed MVFs. For example, if motion occurs in a sequence, the
first frame that initiates a group of frames having (almost) zero motion
in-between, can be defined as a reference frame. On a sequence level,
flexible scene-change detection can be added.

96 Scalable motion estimation

� With Equation (5.1), Stage 2 introduces a new concept called multi-field
ME. Multi-field ME is an abbreviation of multi-MVF ME1, indicating
that a plurality of vector fields is used for creating the desired vector
field. The term “multi-field ME” refers to two aspects. Firstly, the com-
putation of Equation (5.1) means that one vector field is constructed
from two other vector fields. Secondly, the total prediction of a vector
field can be based on various vector fields (more temporal references).

The second aspect can be used for high-quality applications to approxi-
mate different real-life motions like video-object velocity, acceleration,
zoom, rotation, etc. To give an example of multi-field ME for a video
object with constant motion speed, we predict a MVF �� by specifying
the motion model “most recent velocity” as

�
��
�

����������
� � ��

��� � ��
��� if �� � � � �

� � ��
�

if �
 �

�&�������
if �
 �� ���� � �

����
�

if �
 �� ����
 ��

(5.2)

where the term “most recent” refers to the previously processed frames
in display order.2

5.3.3 Scalability aspects

The main advantage of the proposed SMART architecture is that it enables a
broad scalability range of resource usage and achievable picture quality in the
MPEG encoding process. This is illustrated by the following statements.

� Stage 1 and 3 can omit the computation of vector fields (e.g. the back-
ward vector fields) or compute only significant parts of a vector field to
reduce the computational effort and memory.

� If the refinement in Stage 3 is omitted completely, the new technique
can be executed at a further reduced computational effort, because the

1This should not be confused with an alternative concept, called multi-temporal, which is
used in H.264 coding, where the prediction of a frame is based on multiple (up to five) reference
frames.

2Note that besides our framework, any state-of-the-art ME algorithm can be improved by
using multiple vector-field predictions. This implies that more than one prediction is generated
for the computation of one vector field.

5.3 SMART, a structural-level technique 97

processing of vector fields in Stage 1 and 2 is much simpler than with
regular ME, where the desired MPEG GOP leads to large temporal
frame distances for the regular ME process.

� Note that bi-directional ME (usage of B-frames) can be realized at the
same cost of single-directional ME (usage of P-frames only) when prop-
erly scaling the computational complexity, which makes it affordable
for mobile devices that up to now rarely make use of B-frames.

In this thesis, the complexity scalability of the SMART ME is realized by
varying the number of MV fields that are computed in Stage 1 and 3 for
one GOP. In the following, an example is given for the approximation of an
MPEG vector field in Stage 2 of SMART when scalability is applied. For the
example, the situation shown in Figure 5.5 is considered, where two vector
fields from Stage 1 are simply skipped, i.e. not computed. These two fields
are ��� � ��� and ��� � ���, denoted by the dotted gray arrows in the
figure. The computations of the fields ��� � ��� and ��� � ��� ,thus
denoted by the solid gray arrows, are replaced by the computations of the
fields ��� � ��� and ��� � ���, indicated by the dashed arrows. Besides
the reduced computation, this required less memory bandwidth compared to
the full processing of Stage 1. In the special situation shown in the figure,
frame �� is not accessed at all in the first two stages.

X0 X1 X2 X3 X4

X X

X X

Figure 5.5: Example for SMART complexity and memory scalability.

Figure 5.6 depicts two approximation alternatives for the MPEG MVFs. The
left side of the figure shows the situation after defining an SGOP for the first
four frames. Vector field ��� � ��� cannot be directly approximated from
the available vector fields. The approximation requires scaling of vector fields.
The alternative shown at the top right of the figure approximates field ��� �
��� by ��� � ��� � ��� � �����, and the alternative shown at the bottom
right approximates the field by ��� � ��� � �.

98 Scalable motion estimation

I0 B1 B2 P3 X4

I0 B1 B2 P3 X4

x2

I0 B1 B2 P3 X4

+
x

2
1

Figure 5.6: Exemplary alternatives for MVF approximation.

Note that other alternatives for approximating vector fields are possible. An
optimal strategy for selecting the MVFs that should be computed when scaling
the computational complexity, or for choosing how MPEG MVFs are approx-
imated, cannot be derived easily. The reason for this results from the fact that
each decision for computing a particular vector field and the way for approx-
imating the MPEG MFVs, influences other vector fields and thus the predic-
tion quality of the motion-compensated frames, also beyond (post-defined)
(S)GOP structures. Optimization techniques based on e.g. the Lagrangian
multiplier or other multi-dimensional search algorithms that can find an sub-
optimal path through a decision tree as outlined above, could be applicable for
solving this problem, but this has not been elaborated.

Note that optimizing the strategy for selecting the MVFs is more challenging
than for selecting the coefficients in the DCT, because for the DCT, at least
the computation costs of the coefficients was known in advance and did not
change with the processed video content. In ME, the computation costs of
MVFs is not constant or known, even not for fixed ME algorithms that do not
vary the number of evaluated MV candidates (e.g. when smartly implemented,
the computation of the block-matching criteria is stopped if the accumulated
error measure exceeds a certain value). It is expected that finding the opti-
mal computation order of MVFs would be impractical during coding time. A
more practical approach would be to make assumptions about the computa-
tion costs and the obtainable quality of the MVFs, based on different contents
of the video, and then perform some preliminary experiments with selected
sequences. This approach can lead to some basic decision rules, which should
be applied during the encoding process. In the following subsection, we de-
fine a simple priority of vector fields by considering the different importance

5.3 SMART, a structural-level technique 99

of MVF properties, such as their temporal distance or their direction of pre-
diction.

5.3.4 Experimental verification

The scalability performance of the new technique is shown with an initial
experiment using the “Stefan” (tennis) sequence. The sequence is encoded
based on a GOP size of �
 �� and �
 � (thus “IBBBP” structure).
The RME taken from [68] (limited to pixel-search) is used in Stage 1 and 3.
Note that the RME in Stage 1 used for this initial experiment could have been
simplified, because of the minimum temporal distance at this stage. A scalable
version of RME that performs equally to [68] but at much lower computational
complexity is presented in Section 5.5.

In this experiment with �
 �, the number of vector fields (forward and
backward motion) that are considered in an SGOP in Stage 1 is � ��
 �
and in Stage 3, � � �� � ��
 	. To realize scalability, the amount of
vector field computations in Stage 1 and 3 is gradually decreased. To select
vector fields for computation, we define a simple priority of the vector fields
(similar to the earlier introduced computation order of DCT coefficients) with
the following rules.

� Rule A: from the construction of the SMART ME technique it follows
that Stage 1 is more important than Stage 3.

� Rule B: forward motion is considered as more important than backward
motion, because P-frame predictions do not use backward motion.

� Rule C: MPEG vector fields in Stage 3 (or their equivalents in Stage 1)
with high temporal distance are considered less important than the ones
with lower temporal distance (just for the sake of this experiment).

These rules leads to MVF priorities �/�1� as given in Figure 5.7. In the
figure, the dashed arrows indicate vector fields in Stage 1, solid arrows are the
MPEG vector fields in Stage 3, and the number below the vectors the prior-
ity weight. Small numbers (reading �/�1� as integer values) indicate high
priority. The MVF priorities are used for selecting vector fields for computa-
tion, and does not change the computation order of vector fields as defined in
Section 5.3.1. Vector fields such as ��� � ��� are not computed in this exper-
iment, because they are not required for computing the MPEG vector fields.
Note that in order to realize scalability and still keep track of the motion in

100 Scalable motion estimation

Stage 1, the computation of vector fields is proceeding such that a new vector
field starts where a previous field has ended (there are no “holes”).

I0 B1 B2 B3 P4

(111)

(211) (212)

(223)

(213)

(222)

(214)

(221)

(124)

(112)

(123)

(113)

(122)

(114)

(121)

Figure 5.7: Visualization of the priority order for motion-vector fields (num-
bers below the arrows). Small numbers indicate a high priority.

The result of this scalability experiment is shown in Figure 5.8, where P-
frames are not shown for the sake of clarity (�
 ��, �
 �). The area with
the white background is the quality range that results from scaling the com-
putation complexity by varying the amount of computed MVFs as described
above.

For comparison, the computation effort of the simple RME used by a standard
MPEG encoder (which computes four forward vector fields and three back-
ward vector fields per SGOP) is defined as ����, which is used as reference.
Each vector field then requires ��� of the reference computational effort. The
percentage as shown at the right side of Figure 5.8 results from omitting the
computation of vector fields in Stage 1, or from performing additional refine-
ment in Stage 3. If all vector fields of Stage 1 are computed and the refinement
Stage 3 is performed completely, the computational effort is ���� (not opti-
mized). Figure 5.8 shows that a large quality range is covered, matching with
the large differences in computational effort.

The average PSNRs of the motion-compensated P- and B-frames (taken af-
ter motion compensation and prior to computing the frame-difference signal)
of this experiment are shown in Figure 5.9. Again, the percentages show the
different computational efforts that result from omitting the computation of
vector fields in Stage 1 or performing additional refinement in Stage 3. For
a full-quality comparison (����), we consider full-search block-matching

5.3 SMART, a structural-level technique 101

15

17

19

21

23

25

27

29

31

1 25 49 73 97 121 145 169 193 217 241 265 289

frame number

P
S

N
R

[d
B

]

200%

100%

57%

29%

14%

0%

A B Exemplary regions with slow (A) or fast (B) motion.

"Stefan" sequence

Figure 5.8: PSNR of motion-compensated B-frames of the “Stefan” se-
quence for different computational efforts. The percentages
show the different computational efforts, resulting from omitting
the computation of vector fields in Stage 1 or performing addi-
tional refinement in Stage 3. In this example, computing one
vector field requires ��� of the reference computational effort.

with a search window of �� � �� pixels. The new ME technique slightly
outperforms this full search by ���� dB PSNR measured from the motion-
compensated P- and B-frames of this experiment (on the average, ����� dB
instead of ����� dB).

Further comparisons are made with the scalable SMART ME running at full
and “normal” quality. Table 5.1 shows the average PSNR of the motion-
compensated P- and B-frames for three different video sequences and ME
algorithms with the same conditions as described above (same � , � , etc.).
The first data column (Evals./MB) shows the average number of vector eval-
uations performed per macroblock in the “Stefan” sequence. Note that MV
evaluations pointing outside the picture are not performed, which results in
numbers that are lower than the nominal values (e.g. ����� instead of ����
for ��� �� FS). The simple RME algorithm results in the lowest quality here,
because only three vector-field computations out of � � �� � ��
 �� can
use temporal vector candidates as prediction. However, our new SMART ME
algorithm based on simple RME performs comparable to full-search ME at
���� complexity. At ���� complexity, it is comparable to the other fast ME
algorithms.

102 Scalable motion estimation

17

18

19

20

21

22

23

24

25

26

27
0

%

1
4

%

2
9

%

4
3

%

5
7

%

7
1

%

8
6

%

1
0

0
%

1
1

4
%

1
2

9
%

1
4

3
%

1
5

7
%

1
7

1
%

1
8

6
%

2
0

0
%

complexity of motion estimation process

P
S

N
R

[d
B

]

Figure 5.9: Average PSNR of motion-compensated P- and B-frames of the
“Stefan” sequence at different computational efforts for the
SMART ME technique.

Algorithm Evals./MB (A) (B) (C)

2DFS (��� ��) 926.2 24.80 29.62 26.78
NTSS [69] 25.2 22.55 27.41 24.22
Diamond [65] 21.9 22.46 27.34 26.10
Simple RME [68] 16.0 21.46 27.08 23.89
SMART ME 200% (incl. [68]) 37.1 25.16 29.24 26.92
SMART ME 100% (incl. [68]) 20.1 23.52 27.45 24.74

Table 5.1: Average luminance PSNRs of the motion-compensated P-
and B-frames for sequences “Stefan” (A), “Renata” (B) and
“Teeny” (C) with different ME algorithms. The second column
(Evals./MB) shows the average number of SAD-based vector
evaluations per MB (based on the “Stefan” sequence).

5.4 Block classification supporting the DCT and ME 103

5.4 Block classification supporting the DCT and ME

The conventional MPEG encoding system processes each picture block in
the same content-independent way. In this section, a simple block classifi-
cation algorithm is presented for optimizing the coding process by content-
dependent video processing. This algorithm forms the basis of the CARES
ME algorithm that will be presented in Section 5.5. This algorithm also im-
proves the scalable DCT (see Section 3) on the system level by applying dif-
ferently scalable DCTs to different block classes, which will be presented in
Section 6.2.2.

Classification of picture blocks with respect to their video data content is a
frequently-used technique for content-dependent processing.

� Block classification is used for quantization to distinguish between flat,
textured and mixed blocks [73] and then apply different quantization
factors for these blocks for optimizing the picture quality at given bit-
rate limitations. For example, quantization errors in textured blocks
have a small impact on the perceived image quality. Blocks containing
both flat and textured parts (mixed blocks) are usually blocks that con-
tain an edge, where the disturbing ringing effect3 deteriorates with high
quantization factors.

� ME can benefit from classifying blocks with respect to their contents.
The drawback of conventional ME algorithms is that they spend many
computations on computing MVs for e.g. relatively flat blocks. Un-
fortunately, despite the effort, the ME process then yields MVs of poor
quality, because flat blocks do not have strong discriminating data prop-
erties. When employing block classification, computations can be con-
centrated on blocks that lead to reliable MVs [71, 72]. In this context,
reliable MVs means that the MVs have small error metric and are com-
puted for a block with a structured content (e.g. texture, lines).

Of course, in order to be useful, the costs to perform block classification
should be less than the saved computations. Given the above considerations,
in the following, we will adopt content-dependent adaptivity for coding and
motion processing. The next subsection explains the content adaptivity in
more detail.

3Ringing is sometimes visible at edges in the video signal. This is caused by inappropriate
filtering or by coarse quantization of the video data in a video compression system.

104 Scalable motion estimation

5.4.1 Algorithm

The proposed simple block classification is based on detecting horizontal and
vertical transitions (edges) in the block content for two reasons.

� The ME can be provided with the information whether it is more likely
to find a good MV in up-down or left-right search directions. Since
ME will find equally good MVs for every position along the line that
is upright to such an edge (where a displacement in this direction does
not introduce large displacement errors), searching of motion vectors
across this line will rapidly lead to finding the minimum displacement
error and thus it results into a reliable MV. Horizontal and vertical edges
can be detected by significant changes of pixel values in horizontal and
vertical direction, respectively.

� From the scalable DCT, computation orders are available that prefer co-
efficients representing horizontal or vertical edges (see Figure 3.4). In
combination with a classification, the computation order that fits best
for the block content can be chosen. As a result, the amount of coef-
ficients computed is optimized for a given computation constraint and
block content.

Known edge-enhancing/detecting algorithms like the Sobel or Roberts-Cross
operator or the Canny algorithm are found to be too computationally expen-
sive for our purpose and therefore have not been considered. The finally ap-
plied edge-detecting algorithm is in principle based on continuously summing
up pixel differences along rows or columns and subsequently counting how
often the sum exceeds a certain threshold.

Let � with �
 �� �� ��� ��, denote the pixel values in a row or column of a
macroblock (size �� � ��). We then define a range where pixel divergence
(expressed as ,�) is considered as noise if �,�� is below a threshold �. The
pixel divergence is defined by Table 5.2.

The area preceding the edge yields a level in the interval ���� ���. The middle
of this interval is at ,
 �, which is modified by adding �� for the case
that �,� exceeds the interval around zero (start of the edge). The term � � �
 ���� updating the pixel divergence , is the relative change in pixel values
when processing a row or column. This mechanism will follow the edges and
prevent noise from being counted as edges. Figure 5.10 shows an example of
this algorithm. The value of the pixel divergence during the first four samples

5.4 Block classification supporting the DCT and ME 105

Condition Pixel divergence ,�
�
 � 0
�
 ����� � �,���� � � ,��� � � � � ����
�
 ����� � �,���� � � ,��� � � � � ����� �2�,���� � �

Table 5.2: Definition of pixel divergence �, where the divergence is consid-
ered as noise if it is below a certain threshold.

{t

pixel
value

…

…

sample nr.

0 1 2 3 4 5 6 7 8 9 10

Figure 5.10: Example of the edge-detecting algorithm. The area between
the dashed lines portrays the pixel divergence range that has to
be exceeded before considering a pixel divergence a sufficiently
relevant.

remains within the allowed interval. At sample 4, the start of an edge leads
to a distinct pixel divergence. The area between the dashed lines indicate the
allowed pixel divergence. A counter � indicates how often the actual interval
is exceeded, which is defined by

�

��

���

�
� if �,�� � ��
� if �,�� � ��

(5.3)

The decision of finding an edge is defined by the value of � in Equation (5.3).
The above edge-detection algorithm is made scalable by carefully selecting
the threshold �, varying the number of rows and columns that are considered
for the classification, and choosing a typical decision value for �. Experimen-
tal evidence has shown that in spite of the complexity scalability of this clas-
sification algorithm, the evaluation of a single row and column in the middle
of a picture block provides sufficient quality for the full 2-D classification.

5.4.2 Experimental verification

Figure 5.11 shows the result of an experiment to classify image blocks of
size �� � �� pixels (macroblock size). For this experiment, a threshold �

106 Scalable motion estimation

�� was used. We considered a block to be classified as “horizontal edge”
if � � � holds for the central row computation and class “vertical edge”
if � � � holds for the central column computation. Note that with a hori-
zontal/vertical edge, a line is visible that stretches in the vertical/horizontal
direction (see Figure 5.11). Finally, we define two extra classes, called “flat”
for all blocks that do not belong to “horizontal edge” and “vertical edge”, and
“diagonal/structured” for blocks that belong simultaneously to both classes
“horizontal edge” and “vertical edge”. In the figure, the left (right) picture
shows blocks where vertical (horizontal) edges are detected. Blocks that are
visible in both pictures belong to the class “diagonal/structured”, while blocks
that are black in both pictures are considered as “flat”.

The visual results of Figure 5.11 are just an example of a more elaborate
set of test sequences for conducting experiments. The results showed clearly
that the algorithm is sufficiently capable of classifying the blocks for further
content-adaptive processing.

Figure 5.11: Block classification of vertical (left) and horizontal edges (right)
using a picture of the “Table tennis” sequence.

5.5 CARES, a vector-selection level technique

5.5.1 A concept for content-dependent ME

In this section, a new vector-selection level concept for a scalable RME is pre-
sented, that can be integrated into SMART (see Section 5.3), the three-stage
ME technique on the structural level (see Section 5.1.1), as a more advanced

5.5 CARES, a vector-selection level technique 107

replacement for the simple RME that is used in Stage 1 and 3 of SMART.
The block-classification algorithm that is presented in the previous section is
designed to support content-adaptive processing, and it will be used in this
section to create a new ME algorithm with high scalability. The block classi-
fication is used to concentrate the ME on structured blocks with content that
normally leads to reliable MVs (with small error metric), whereas the remain-
ing “flat” blocks become an MV assigned without any further MV evaluation.
When changing the strength of the block classification, the number of pro-
cessed blocks varies, thereby leading to complexity scalability. This idea was
implemented in a similar form in [72], but a later comparison revealed two
differences. First, we analyze the line structure of the blocks (see Section 5.4)
to come to detailed decisions. Second, in our algorithm, good vector candi-
dates are proposed to “future” blocks such as the neighboring blocks at the
right and just below the actual block (see below). Therefore, our algorithm
is more suited for software-oriented implementations. Further system aspects
are discussed at the end of this chapter.

Besides content-adaptivity, a second key feature of the new concept is a more
advanced MV prediction, as compared to conventional RME. In state-of-the-
art RME, the set of candidate MVs evaluated to find the displacement of a
certain macroblock, contains a few vector candidates that are adopted from
already processed macroblocks (the vectors are queried from a MVF memory
that stores the finally selected MVs for the already processed blocks). This
prediction mechanism leads to re-evaluation of the same MV for a block, if
for example the block is a part of a larger equally moving area (e.g. the picture
background). Instead, in the new concept, certain MVs of high reliability are
distributed from actually processed blocks to surrounding blocks, which are
then triggered to evaluate the distributed vector candidates. This may lead
to a series of vector evaluations, but in practice the total amount of evaluated
vectors is scalable and lower than with conventional RME. The MVs that yield
less reliability for ME are not distributed.

Summarizing, the basic approaches of the new concept are

� distinguish blocks which are suitable for reliable ME, and

� distribution of reliable MVs to surrounding blocks and immediately
trigger the evaluation of these MVs for the surrounding blocks.

108 Scalable motion estimation

5.5.2 Algorithm

The new proposed ME algorithm is called CARES (Content-Adaptive REcur-
sive Scalable) ME. The algorithmic steps are as follows.

1. Using the block classification presented in Section 5.4, two lists)�
and)� are created containing macroblocks that are classified as having
horizontal or vertical edges ()�) or being flat ()�).

2. All macroblocks �&� �)�, are initialized with an approximated mo-
tion vector (temporal candidate) if available, or with the zero vector
otherwise.

3. Based on the best motion vector �+� found so far for the current mac-
roblock �&� �)�, the following MV candidates �+�
 �,�� ,�� are
evaluated:

� �+�
 ������ and �+�
 ������
for macroblocks having a horizontal edge�

� �+�
 ���� �� and �+�
 ���� ��
for macroblocks having a vertical edge�

If a new best motion vector �+�� is found for the current macroblock,
this motion vector is proposed to other macroblocks by inserting the
eight surrounding macroblocks of the current macroblock into a tempo-
rary list)��. The macroblocks that are inserted to this list are restricted
to be from list)�, thus)�� �)�. The macroblock of list)�� are then
processed in the following Step 4.

4. If)�� is not empty, all macroblocks �&�� �)�� evaluate the vector �+��
of Step 3 as candidate vector. Each macroblock �&�� �)�� further
distributes vector �+�� by inserting its adjacent macroblocks into)��,
provided that they belong to list)� and if �+�� is a better motion vector
than the current best motion vector of �&��. Afterwards, the actually
processed block is removed from the list)��. This Step 4 is repeated
until)�� is empty.

5. If)� is not empty, the next macroblock �&� in list)� is processed
with Step 3.

6. Finally, all macroblocks �&� �)�copy the MV of one of its neigh-
bors �&�, if �&� �)�, or the zero vector as default. In both cases, the
vector is not further evaluated.

5.5 CARES, a vector-selection level technique 109

5.5.3 Experimental verification

An experiment has been set up to compare the CARES ME of this section
with the simple RME [68] that was used within the SMART technique in Sec-
tion 5.3. A GOP size of �
 �� and �
 �, thus “IPPPP” structure, is used
for this experiment in order to examine if CARES can serve as a replacement
for the simple RME. This GOP structure was chosen, because in the first stage
of SMART, frame-by-frame ME is performed. The measured PSNRs of the
motion-compensated frames of the “Stefan” sequence when using the simple
RME or the CARES ME, are compared. The block-classification algorithm
(see Section 5.4) was used with different thresholds �. Figure 5.12 shows the
results of this experiment.

14

16

18

20

22

24

26

28

30

200 211 222 233 244 255 266 277 287 298

frame number

P
S

N
R

[d
B

]

simple RME

threshold 0

threshold 25

threshold 50

threshold 70

threshold 90

threshold 100

zero

"Stefan" sequence

Figure 5.12: Comparison of simple RME and CARES ME for various clas-
sification thresholds �. The fat black areas close to the upper
curve indicate the small quality gap between simple RME and
CARES ME. The white area is the complexity scalability range
of CARES ME.

In the figure, the frame-number interval refers to a part of the “Stefan” se-
quence. In this interval, the PSNR differences are well visible. The fat black
areas close to the upper curve indicate the small quality gap between simple
RME and CARES ME. The white area is the complexity scalability range
of CARES ME. The figure shows a large scalability range between 16 dB

110 Scalable motion estimation

and 24 dB PSNR, which results from just varying the threshold �. By de-
creasing the classification threshold � to a lower number, the quality comes
arbitrary close to simple RME. A typical setting of �
 �� results in a PSNR
that is rather close to the simple RME.

The average PSNR and the average number of MV evaluations per mac-
roblock for different sequences are shown in Figure 5.13. In the figure, the
top curves show the average PSNR for three different video sequences, and
the bars show the average number of vector evaluations per macroblock. The
ultimate left part of the figure refers to simple RME, and the ultimate right
part of the figure refers to performing no ME. The rest of the figure refers to
CARES ME. It can be seen that for the typical threshold setting of �
 ��,
the obtained PSNR is within 1 dB from the simple RME algorithm. How-
ever, the simple RME uses ����� vector evaluations on the average, whereas
CARES requires only between ��� and ��� vector evaluations, depending on
the sequence. In the worst-case situation using a threshold of �
 � (all mac-
roblocks are processed), virtually the same quality as with simple RME is

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

32,00

s
im

p
le

R
M

E

t=
0

t=
5

t=
1

0

t=
1

5

t=
2

0

t=
2

5

t=
3

0

t=
3

5

t=
4

0

t=
4

5

t=
5

0

t=
5

5

t=
6

0

t=
6

5

t=
7

0

t=
7

5

t=
8

0

t=
8

5

t=
9

0

t=
9

5

t=
1

0
0

n
o

M
E

P
S

N
R

[d
B

]

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

16,00

a
v
e
ra

g
e

n
u

m
b

e
r

o
f

v
e
c
to

r
e
v
a
lu

a
ti

o
n

s

Stefan

Foreman

Table tennis

Stefan

Foreman

Table tennis

18,35 vector evaluations

CARES ME

Figure 5.13: Comparison of simple RME and CARES ME. The top curves
show the average PSNR for three different video sequences, and
the bars show the required average number of vector evalua-
tions per macroblock.

5.6 Discussion and conclusions 111

obtained. For example, even for the worst-case “Stefan” sequence, the com-
putational complexity is reduced by at least ���, resulting in an average of
	�	� MV evaluations per macroblock. The “Tennis table” sequence, which
has less motion, needs less than one vector evaluation per macroblock, lead-
ing to medium quality. The complexity is smoothly scalable until zero-vector
fields are reached.

5.6 Discussion and conclusions

In this chapter, two new techniques have been developed for obtaining com-
putational complexity scalable ME. The scalability is obtained by scaling the
number of processed MVFs (SMART ME) and the number of vector evalu-
ations (CARES ME). The first term relates to the GOP structure in MPEG,
whereas a second term relates to the intelligent selection of MVs for compu-
tation.

Experiments with the SMART ME technique have shown that the picture qual-
ity of SMART is comparable to high-quality ����� full-search ME, while ob-
taining a complexity comparable to fast state-of-the-art ME algorithms. The
advantage of SMART is that it offers a large range of scalability in saving
computations. In the experiments, the computational complexity is scaled by
a factor of 14, e.g. resulting in an average PSNR ranging from �	��� dB to
����� dB for the motion-compensated P- and B-frames of the “Stefan” se-
quence, where the visual quality aligns with the measured PSNRs. Another
advantage is that the first stage of SMART performs the estimation process on
original frames, which results in reliable MVFs. Although the MPEG MVF
approximations resulting from Stage 1 and 2 of the algorithm are not opti-
mized for high PSNR numbers, the above-mentioned experiments show that
both the quality and the required computing resources of fast ME algorithms
are already outperformed. This means further that the optional refinement
stage should be used for high-quality requirements and if the additional re-
sources for computation and memory access are available.

To fully exploit the frame-by-frame ME of Stage 1 of the SMART ME algo-
rithm, a second technique called CARES was developed. Experiments have
shown that CARES leads to a reduced set of MV candidates that are eval-
uated in comparison with the simple RME that was used for SMART. The
CARES algorithm is an improved RME that can be inserted into the SMART

112 Scalable motion estimation

algorithm, leading to an improved SMART algorithm. The disadvantage of
CARES ME is that a significant cache memory is required, so that the algo-
rithm is more suited for a software-oriented implementation. This can be seen
from the fact that in the CARES ME, we first concentrate on blocks with a
structured detail giving reliable vector candidates, and we simply assign vec-
tors to the remaining blocks. Second, we provide reliable vector candidates
to all surrounding blocks, also at the right of and below the current block
position. For this reason, the acceptation process for a reliable vector can dis-
tribute itself within the frame in all directions. In order to implement this, the
required worst-case cache memory is one video frame. However, given the
usual size of objects in most cases, a much smaller cache can be used without
sacrificing too much quality.

The algorithms in this chapter are based on a software-oriented approach, be-
cause the scalability range was implemented in the direction of portable de-
vices having constrained computational resources. The architecture of such
devices is usually based on the combination of a DSP processor with a pro-
grammable RISC core, so that multi-media applications are implemented in
software in any case.

With the development of SMART and the CARES ME, a flexible modular
framework for creating scalable ME is presented in this chapter. Both al-
gorithms address scalability in ME at different levels: number of processed
MVFs in the GOP structure (structural level) and number of vector evaluations
per MVF (vector-selection level). The algorithms can be used individually
to introduce scalability, but the combination (discussed in the next chapter)
provides an even more powerful proposal for highly scalable ME implemen-
tations. This flexibility is important, because ME is the most expensive step
in MPEG encoding.

CHAPTER6
System experiments and

enhancements

�
p to this point, the scalability of single MPEG modules have
been evaluated. In this chapter, the system behavior of a scal-
able MPEG-encoder system is evaluated, which incorporates

the complexity-scalability techniques developed earlier in this thesis.
First, first-step effects on the encoder system when scaling the DCT
or ME, are investigated. For optimization of the system, the empha-
sis is on reusing important input/output parameters or control data
in related signal-processing modules (e.g. the results from the block
classification is reused in the DCT and ME module). Second, all mod-
ules are scaled such that nearly all possible parameters and means
for scalable control are used, in order to evaluate the overall system
performance (the design space) for different test sequences, bit rates
and GOP structures.

6.1 Experimental environment

In this chapter, experiments are conducted with an MPEG-encoder frame-
work, in which the scalable DCT and ME modules are integrated. In addition,

114 System experiments and enhancements

the remaining modules for the IDCT, (de-)quantization and VLC were adapted
towards scalability, such that the scaling of these modules is controlled by
the scalable DCT (this is the topic of the next section). The architecture of
the applied encoder framework originates from MPEG software-based encod-
ing experiments [73], and was reused for inserting our scalability techniques.
The framework will also be used later for comparing the results of the ob-
tained scalable computational complexity and the corresponding picture qual-
ity. In order to visualize the obtained scalability of the computations, the
scalable modules are executed at various parameter settings, leading to effec-
tively varying key parameters such as the number of DCT coefficients and
the number of evaluated MV candidates. When evaluating the overall system
complexity, these two key parameters are considered jointly.

The experiments in this chapter were conducted on a Pentium-III Linux sys-
tem running at 733 MHz. A parameter used for comparisons is the execution
time, which will be motivated below. In order to be able to measure the exe-
cution time of single functions being part of the complete encoder execution,
it was necessary to compile the C++ program of the encoder without compiler
optimizations. Additionally, it should be noted that the experimental C++
code was not optimized for fast execution or usage of architecture-specific
instructions (e.g. MMX). For these reasons, the encoder and its measured ex-
ecution times cannot be compared with existing already optimized software-
based MPEG encoders. However, in our case, it was ensured that the measured
change in execution time results from the scalability of the modules, while
programming style, code structures or common coding parameters were kept
identical.

It can be argued whether the elapsed execution time of the encoder is a good
basis for comparisons. One one hand, this time parameter highly depends on
the underlying execution architecture, the programming and the applied op-
erating system. However, on the other hand, it should be considered that the
high amount of operations involved in processing and encoding of video se-
quences decreases the relative importance of the platform architecture. From
the system view-point, the parameters that scale the computational complexity
of the encoder modules and thus of the whole encoder system, basically vary
the number of DCT coefficients computed and processed and the number of
performed MV evaluations. Both the processing of the DCT coefficients and
the evaluation of MVs need processing cycles on any architecture, where the
processing cycles relate to execution time. Of course, the number of process-
ing cycles required to process coefficients of MVs depend on the architecture.

6.2 Inserting scalable DCT and related optimizations 115

For example, MMX instructions significantly speed up the operations for DCT
computation and MV evaluation. This means that the part of the execution
time required for such operations changes relatively to the overall execution
time, but the scalable techniques still scales the number of operations and thus
the execution time of the system. We therefore conclude that it is valid to use
the elapsed execution time as a basis for comparisons.

6.2 Inserting scalable DCT and related optimizations

6.2.1 Effect of proposed scalable DCT

The scalable DCT technique that was presented in Chapter 3 computes only
a subset - of all possible 64 DCT coefficients 1 . This feature can be used
for the optimization of other modules as follows. The subset - is known
prior to the processing inside quantization, dequantization, VLC and the IDCT
module. Evidently, coefficients that are not computed are set to zero, and
therefore they do not have to be processed further in any of these modules.
Since the subset - is known in advance, no additional detection of these zero
coefficients is required. The applied scaling of the processing modules of the
MPEG encoder is described below.

� The quantization and dequantization requires a fixed amount of oper-
ations per processed intraframe or interframe coefficient. For this rea-
son, each coefficient � � 1 � - (each produced zero coefficient) is not
processed and therefore saves ���� of the total complexity of the quan-
tization and dequantization module.

� The VLC processes the DCT coefficients in zigzag or alternate order
and generates runlength-amplitude pairs for coefficients that are un-
equal to zero, where “runlength” indicates the number of zero-coeffi-
cients that are skipped before reaching a non-zero coefficient and “am-
plitude” is the actual value of this succeeding non-zero coefficient. The
usage of the scalable DCT instead of a full DCT increases the probabil-
ity that zero-coefficients occur, for which no computations are spent.

� The IDCT can be simplified when knowing in advance which coeffi-
cients are zero. It is obvious that e.g. each multiplication and addition
with zero input-values can be skipped.

The execution times of the modules when coding the “Stefan” sequence and
scaling the modules that process coefficients, are visualized in Figures 6.1

116 System experiments and enhancements

and 6.2. Figure 6.1 shows the results from an experiment, where the sequence
was coded with I-frames only. In Figure 6.2, similar results are observed from
another experiment, for which P- and B-frames are included using a (��� ��-
GOP structure.

0

5

10

15

20

25

30

64 56 48 40 32 24 16 8

number of computed coefficients

e
x
e
c
u

ti
o

n
ti

m
e

[s
e
c
]

Other

VLC

Quant

DCT

Figure 6.1: Visualization of the relative computational complexity of DCT
coding modules, resulting from integrating the scalable DCT
into an I-frame MPEG encoder.

In both figures, the category “other” is used for functions that are not exclu-
sively used by the scalable modules. When the encoder performs full pro-
cessing (the results at the left side computing 64 coefficients), the fractions of
the elapsed time of the complete encoder (100%) consumed by the individ-
ual modules are ��� (DCT), ��� (quant), ��� (VLC) and �	� (other) in
Figure 6.1, and �� (DCT/IDCT), �� (quant/dequant), ��� (VLC) and ���
(other) in Figure 6.2. The fraction of the elapsed time for the motion estima-
tion and compensation resulting from the experiment in Figure 6.2 is ��� at
full processing. The corresponding curve is not shown for convenience, be-
cause motion estimation and compensation are not affected by processing a
different number of DCT coefficients.

To remove the effect of quantization, the experiments were performed with
������
 �. In this way, the figures show results that are less dependent
on the coded video content. The measured PSNRs of the scalable encoder

6.2 Inserting scalable DCT and related optimizations 117

0

5

10

15

20

25

30

64 56 48 40 32 24 16 8

number of computed coefficients

e
x
e
c
u

ti
o

n
ti

m
e

[s
e
c
]

Other

VLC

(De)Quant

(I)DCT

Figure 6.2: Visualization of the relative computational complexity of DCT
coding modules, resulting from integrating the scalable DCT
into an MPEG encoder using ��	� ��-GOPs.

running at full quality is ���� dB for Figure 6.1 and ����� dB for Figure 6.2.
When the number of computed coefficients is gradually reduced from 64 to 8,
the PSNRs drops gradually to ���� dB (Figure 6.1) and ����� dB (Figure 6.2),
respectively. In both figures, the visual quality gradually reduces from “no
noticeable differences” down to “severe blockiness”.

The experiments show that the scalable DCT and its computational efficiency
provide a scalability behavior that is comparable to the other DCT coding
modules. It can even be seen that due to the algorithmic optimization, the rela-
tive importance of the DCT was decreased and the VLC becomes a significant
part of the computational complexity. Note that the (de-)quantization, IDCT
and VLC were adapted to the outcome of the scalable DCT. In a refinement,
the VLC algorithm could be studied for further scalability. The key parame-
ter that is reused in the quantization and coding is the number of coefficients.
Because the remaining steps were modified to scale with this key parameter,
the overall range of scalability of the complete encoder is enhanced. This can
be seen from the steepness of the top curves upperbounding the black area of
the DCT in Figures 6.1 and 6.2. In the following subsection we will show that
the applicability of the scalable DCT technique is further improved by reusing
data from the block classification that was introduced earlier in this thesis in
Section 5.4.

118 System experiments and enhancements

6.2.2 Selective DCT computation based on block classification

When reducing the number of DCT coefficients that are computed, it is ob-
viously preferable to concentrate on those coefficients that correspond with
the block content in the sample domain. Generally, the most important co-
efficients describing the the block contents are found in the upper left corner
of the DCT coefficient matrix after transformation. These coefficients repre-
sent a mixture of low frequencies that correspond with horizontal and vertical
edges in the sample domain. However, this general case is not optimal for
picture blocks that are containing for example horizontal or vertical edges
only. For this reason, it is beneficial to perform a simple test on the blocks to
detect edges. With limited computing power, the computations should be con-
centrated on coefficients corresponding with the edges as found by the block
classification. In order to find different computation orders that concentrate
on the relevant coefficients, the priority weighting presented in Section 3.4 is
used.

In order to introduce content-adaptive scalable DCT computations at system
level, we propose to combine the scalable DCT module with block classifi-
cation as introduced in Section 5.4. This classification provides simple edge
detection that already has been used for scalable ME (see Section 5.5). De-
pending on the classification, the output quality of the scalable DCT is en-
hanced by using different computation orders, which are specifically designed
for blocks in different classes (see Figure 6.3).

Scalable DCT suitable for flat blocks

Scalable DCT suitable for blocks having horizontal lines

Scalable DCT suitable for blocks having vertical lines

Scalable DCT suitable for blocks having diagonal lines

Input
block

Classification Algorithm choice

Figure 6.3: Example of input block leading to vertical edge classification
and corresponding scalable DCT computation.

As a first step, in adopting the previously mentioned concept, the following
simple experiment indicates the benefit in quality improvement. In the ex-
periment, the average of the DCT-coefficient magnitudes are computed when

6.2 Inserting scalable DCT and related optimizations 119

coding the “Table tennis” sequence with I-frames only. The DCT blocks are
not quantized (������
 �). Figure 6.4 shows the statistics of blocks that
are classified as having a vertical (left graph) or horizontal (right graph) edge
only. It can be seen that the classification leads to a frequency concentration
in the DCT coefficient matrix in the first column and row, respectively.

v0
v1

v2
v3

v4
v5

v6
v7

h0
h1

h2
h3

h4
h5

h6
h7

0

20

40

60

80

100

120

140

v0
v1

v2
v3

v4
v5

v6
v7

h0
h1

h2
h3

h4
h5

h6
h7

0

20

40

60

80

100

120

140

v

0

7
7

h

class “horizontal” class “vertical”

Figure 6.4: Statistics of the “Table tennis” sequence of the average DCT-
coefficient magnitudes with no quantization (��	
�� � �).

As a second step, we have evaluated which fast DCT algorithm fits best with
a certain preferred orientation in the block data. We have found that the DCT
algorithm of Arai, Agui and Nakajima (AAN, see Section 2.3.3) can be used
best for blocks with horizontal or vertical edges, while flat blocks have a bet-
ter quality impression when using the algorithm of Cho and Lee (CheLee,
see Section 2.3.2). The difference in perceptual quality can be easily noticed
when a limitation in the computation power is applied. Figure 6.5 portrays
the results of an experiment, using the two selected DCT algorithms under
the constraint of 256 operations, showing clear performance differences be-
tween the table edges (AAN is better) and the background (ChoLee is better).
The computation orders of both algorithms are designed such that good visual
horizontal lines should be obtained. The computation limit was set to ��� op-
erations, leading to � computed coefficients for AAN and �� for ChoLee. The
computed coefficients are encircled in the corresponding matrix of DCT basis
images. It can be seen that AAN covers all coefficients with mainly vertical
energy, while ChoLee covers a mixture from coefficients with both high and
low, vertical and horizontal energy. The resulting overall PSNR values are
����� dB and ����� dB, respectively.

Figure 6.6 shows the visual result of selective DCT computation based on full
block classification. Almost all of the background blocks were classified as

120 System experiments and enhancements

Arai-Agui-Nakajima Cho-Lee

Figure 6.5: Example of visual results with scalable AAN-DCT (left, with bet-
ter results for vertical edges) and ChoLee-DCT (right, with bet-
ter results for the background) with a computing constraint of
256 operations.

flat blocks and therefore the ChoLee algorithm was chosen for transforming
these blocks, while blocks that e.g. contain the table edges are processed by
the AAN algorithm. For convenience, both algorithms were set to compute
�� coefficients. Blocks having both horizontal and vertical detected edges at
the same time were treated as blocks with vertical edges only, because an op-
timized computation order for blocks with such complex structures was not
readily available and could not be designed in the desired time frame. Treat-
ing such blocks as blocks with vertical edges were visually more attractive
than treating them as blocks with horizontal edges. The resulting PSNR is
����� dB.

Figure 6.6: Visual result from a full selective DCT transform where flat
blocks were processed with the ChoLee-DCT and blocks with
detected edges using the AAN-DCT.

6.2.3 Cyclical DCT for interframe coding

With interframe coding, the DCT will be performed on interframe-coded pic-
tures and intraframe-coded pictures, where interframe coding refers to frame

6.2 Inserting scalable DCT and related optimizations 121

differences. For applying a selective scalable DCT in an encoder system,
we therefore distinguish between original frames and difference frames. The
DCT computation on frame differences occurs more often than for original
frames (� � � times for ����� GOPs). For this reason, a more closer look
to interframe DCT coding is required, were a special phenomenon was dis-
covered from using the scalable DCT.

It was found that the DCT-coded frame differences show temporal fluctuations
in frequency content. The temporal fluctuation is caused by the motion in the
video content combined with the special selection function of the coefficients
computed in our scalable DCT. Due to the motion, the energy in coefficients
shifts over the selection pattern, so that the quality gradually increases over
time. Figure 6.7 shows this effect from an experiment when coding the “Ste-
fan” sequence with “IPP” frames (���� ��-GOPs are used), while limiting the
computation to �� coefficients. The camera movement in the shown sequence
is panning to the right. It can be seen that for example the artifacts around the
background text decrease over time.

I0 P1 P2

Figure 6.7: Gradual reduction of coding artifacts in time for interframe cod-
ing using a scalable DCT.

The aforementioned phenomenon was mainly found in sequences containing
modest motion. The described effect leads to the idea of temporal data par-
titioning using a cyclical sequence of several scalable DCTs with different
coefficient selection functions. The complete cycle would compute each coef-
ficient at least once. Temporal data partitioning means that the computational
complexity of the DCT computation is spread over time, thereby reducing the
average complexity of the DCT computation (per block) at the expense of a
delay in build-up of visual quality. Using this technique, picture blocks hav-
ing a static content (blocks having zero motion like non-moving background)
and which do not show temporal fluctuations in their frequency content, will
obtain the same result as a non-partitioned DCT computation after full com-
putation of the partitionized DCT.

122 System experiments and enhancements

Based on the concept of temporal data partitioning, � subsets �� (with �

�� �� ���� � � �) of coefficients are defined such that

	���
���

��
 -� (6.1)

where the set - contains all �� DCT coefficients. The subsets �� are used to
build up functions �� that compute a scalable DCT for the coefficients in ��.
The functions �� are applied to blocks with static contents in a cyclical se-
quence (one per intercoded frame). After � intercoded frames, each coeffi-
cient of these blocks is computed at least once.

In order to measure the effect of the cyclical DCT during interframe coding,
we have conducted an experiment using the “Table tennis” sequence as fol-
lows. The computation of the DCT (for intraframe coding and interframe
coding) is limited to 32 coefficients. The coefficient subsets that are used are
shown in Figure 6.8.

Figure 6.8: Example of coefficient subsets (marked gray) used for cyclical
DCT computation in an interframe coding environment with a
limitation of 32 coefficients per subset.

Figure 6.9 shows the improvement in PSNR that is obtained with this concept.
Three curves are shown in this figure, plotting the obtained PSNR of the coded
frames. The medium gray curve results from coding all frames as I-frames,
which is taken as reference in this experiment. The other two curves result
from applying a GOP structure with �
 �� and �
 �. First, all blocks are
processed with a fixed DCT (light gray curve) computing only the coefficients
as shown in the left subset of Figure 6.8. It can be seen that when the content
of the sequence changes due to movement, the PSNR raises. Second, cyclical
DCT transformation during interframe coding, based on temporal data parti-
tioning as described above, is applied to the coding process, which results in
the dark gray curve. The dark gray curve shows an improvement to the light
gray curve in case of no motion. The comb-like structure of the curve results

6.3 Combining SMART and CARES into one scalable ME system 123

20

22

24

26

28

30

32

34

36

38

40

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

frame number

S
N

R
[d

B
]

dynamic

horizontal

I-frames

Figure 6.9: PSNR measures for the coded “Table tennis” sequence, where
the performance of a cyclical scalable DCT computation is com-
pared with other forms using only 32 coefficients.

from the periodic I-frame occurrence that restarts the quality build-up. The
low periodicity of the quality drop gives a visually annoying effect that can be
solved by computing more coefficients for the I-frames. Although this seems
interesting, this was not further pursued because of limited time.

6.3 Combining SMART and CARES into one scalable
ME system

In Sections 5.3 and 5.5, we presented the novel ME techniques SMART (lo-
cated at the structural level) with frame processing in display order and the
CARES ME algorithm (located at the vector-selection level), based on block
classification. Both techniques have been combined and integrated in the
MPEG encoder framework for evaluating their combined scalability perfor-
mance. We experimented with different video sequences and we scaled the
computational complexity with two scalability parameters.

The first scalability parameter (labeled “priority level”) controls the SMART
ME technique and defines the number of motion-vector fields that are com-
puted per SGOP (we employ a GOP size of �
 �� and �
 �, thus an
“IBBBP” structure). The priority order of vector fields was identical to the

124 System experiments and enhancements

evaluation of the SMART technique in Section 5.3.4. Summarizing, vector
fields from Stage 1 have higher priority than vector fields from Stage 3, for-
ward motion has higher priority than backward motion and fields with shorter
temporal distances have higher priority than fields with larger temporal dis-
tances. The priority order of MPEG vector fields to be refined in Stage 3 is
again ��, ��, ��, ��, &�, &�, &� . The priority order of the vector fields in Stage 1
is defined such that the concatenated chain of vector fields covers the total pre-
diction depth of a SGOP �, starting from frame ���� ���� to ���� ��������
for the � forward fields (with �#��) and then vice-versa for the � backward
fields. The second parameter (labeled “threshold”) for achieving scalability
varies the classification threshold � of the block classification (with �#��) used
in the CARES ME algorithm.

Let us now consider the scalable performance of the combination of SMART
and CARES ME. We have evaluated the number of vector evaluations and the
resulting PSNR of the motion-compensated frames (without DCT, quantiza-
tion and coding) as a function of the two scalability parameters. Figure 6.10
results from an experiment using the “Stefan” sequence, where both scalabil-
ity parameters are varied over a broad range. The figure shows the average
number of vector candidates that were evaluated for each macroblock of the
computed MPEG motion-vector fields. The priority level refers to the num-
ber of computed vector fields as given by the priority order used for SMART,
and the indicated threshold in the horizontal direction is the same as used in
CARES. The figure shows that the MV evaluations scale smoothly with the
threshold and the number of computed vector fields. The impact of both pa-
rameters on the scalability is roughly equal. Experiments with other sequences
revealed that the threshold parameter becomes more important for sequences
having less flat blocks, whereas the priority-level parameter dominates for se-
quences with more motion. Note that the choice of a small non-zero threshold
already leads to a significant reduction of the average number of vector eval-
uations.

The obtained average PSNR of the predicted P- and B-frames (taken after
motion compensation and prior to computing the frame-difference signal) is
shown in Figure 6.11. In the figure, the bold black line on the surface follows
the path of the highest PSNR. For a full-quality comparison, we have con-
sidered full-search block matching with a search window of �� � �� pixels.
The new combined ME technique slightly outperforms full search by up to
���� dB PSNR measured from the motion-compensated P- and B-frames of
this experiment (����� dB instead of ����� dB). From the two Figures 6.10

6.3 Combining SMART and CARES into one scalable ME system 125

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

4

8

12

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00
a
v
e
ra

g
e

n
u

m
b

e
r

o
f

v
e
c
to

r
e
v
a
lu

a
ti

o
n

s

threshold

priority level

16,00-18,00

14,00-16,00

12,00-14,00

10,00-12,00

8,00-10,00

6,00-8,00

4,00-6,00

2,00-4,00

0,00-2,00

15

3

6

9

Figure 6.10: Average number of MV evaluations performed per macroblock
for the “Stefan” sequence as a function of two scalability pa-
rameters.

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

3

6

9

12

15

17,00

18,00

19,00

20,00

21,00

22,00

23,00

24,00

25,00

26,00

P
S

N
R

[d
B

]

threshold

priority level

25,00-26,00

24,00-25,00

23,00-24,00

22,00-23,00

21,00-22,00

20,00-21,00

19,00-20,00

18,00-19,00

17,00-18,00

Figure 6.11: Average PSNR of the motion-compensated P- and B-frames for
the “Stefan” sequence as a function of the scalability parame-
ters.

126 System experiments and enhancements

and 6.11, we have concluded that for further system evaluation, we can easily
exclude operating points with a zero classification threshold in CARES (giv-
ing the drop of the maximum number of MV evaluations), because the PSNR
grows only marginally at very small threshold values.

Table 6.1 gives a more detailed insight in the results of the “Stefan” sequence,
which contains complex motion. The first data column (Evals. per MB) shows
the average number of vector evaluations that were performed per macroblock
by the listed ME algorithms, and the second column (“PSNR”) shows their ob-
tained quality. For comparison with our scalable ME system, the row below
each ME algorithm entry is named “scalable ME” and contains the average
number of vector evaluations required for our system (at optimal configu-
ration for this experiment) to reach the same quality as the compared (fast)
ME algorithms listed in the table. Note that MV evaluations pointing outside
the picture are not performed, which results in numbers that are lower than
the nominal values (e.g. ������ instead of ���� for ��� �� full-search (FS)).
From the experiment, it can be seen that our scalable ME system requires only
a fraction of MV evaluations compared to the other ME algorithms (even the
two fast ones), while obtaining the same quality as the other ME algorithms.

Algorithm Evals/MB PSNR

2DFS (��� ��) 923.52 24.92
Scalable ME 9.42 24.92
NTSS[69] 25.13 22.63
Scalable ME 2.69 22.64
Diamond[65] 21.77 22.53
Scalable ME 2.31 22.55

Table 6.1: Average PSNR of the motion-compensated P- and B-frames us-
ing the “Stefan” sequence for different ME algorithms (MB is
macroblock).

A PSNR comparison as a function of the number of vector evaluations for a set
of video sequences is shown in Figure 6.12, where we used the sequence “Ste-
fan” with high motion, and “Renata” and “Table Tennis” having less motion.
In the figure, the difference in gray levels indicate the different sequences.
The dots show all possible configurations of the scalable ME system and the
curve of connected points follows the optimum. For this PSNR comparison,
the sequences were also processed using a diamond search (diamond-shaped

6.3 Combining SMART and CARES into one scalable ME system 127

symbols in the figure) and NTSS (square-shaped symbols in the figure). The
horizontal dotted lines indicate the PSNR obtained with a �� � �� FS.

20,00

22,00

24,00

26,00

28,00

30,00

32,00

34,00

0 2 4 6 8 10 12 14 16 18 20 22 24 26

average number of vector evaluations

P
S

N
R

[d
B

]

Diamond

Diamond

Diamond NTSS

NTSS

NTSS

“Stefan”

“Renata”

“Table tennis”

FS

FS

FS

Figure 6.12: PSNR comparison as a function of the number of vector eval-
uations for the scalable ME system (dots = all configurations,
solid line = optimum) with diamond search (diamond) and NTSS
(square), using the “Stefan” (black), “Renata” (medium gray)
and “Table tennis” sequence (light gray). The dotted horizontal
lines indicate the PSNR obtained for a �	� �	 FS.

The curves in Figure 6.12 show a waterfall effect, which means that a fast
quality build-up is realized at the beginning of the scalability range, and that
finally, the quality generally approaches full-search quality. The bending point
of the waterfall is between 3 and 5 vector evaluations per block. It can also
be seen that for more complex scenes, the scalable ME system obtains the
quality of FS at about 10-16 vector evaluations per block. For the “Table
tennis” sequence, it seems that the provided scalability range does not reach
the full-search level. However, because the absolute quality level is already
much higher than for more critical scenes, this was not explored further.

As discussed at the beginning of this chapter, the execution time will be used
as basis for system comparisons. In this section, the scalable ME techniques
SMART and CARES are combined into one scalable ME system and up-to-
now experiments for this ME system are performed based on the number of

128 System experiments and enhancements

MV evaluations. To show the relation between the number of MV evalua-
tions and execution time, the scalable ME system has been integrated into our
MPEG encoder framework. In Figure 6.13, the execution times of the MPEG
modules when encoding the “Stefan” sequence is shown, while scaling the
computational complexity of the scalable ME system as a function of MV
evaluations per macroblock. It can be seen that the curve for the ME block

0

10

20

30

40

50

60

70

12,53 11,11 10,06 8,61 7,78 6,99 5,49 4,38 2,94 1,48 0,91 0,42

average number of MV evaluations per macroblock

e
x
e
c
u

ti
o

n
ti

m
e

[s
e
c
]

Other

VLC

(De)Quant

(I)DCT

MC

ME

Figure 6.13: Example of ME scalability inside a complete encoder when us-
ing a ��	� ��-GOP (“IBBBP” structure) for coding.

scales roughly linearly with the number of MV evaluations, whereas the other
processing blocks remain constant. To remove the effect of quantization, the
experiments were performed with ������
 �. In this way, the figure shows
results that are relatively independent from the coded video content. More
specifically, the comparison of execution times of the MPEG encoding mod-
ules should be compared of the ultimate left side of the Figure 6.13, where it
shows that the scalable ME consumes roughly half of the execution time of
the complete encoder (compare this with approximately 62% for the Diamond
search, see Section 6.2). At this point, the integration of all scalable modules
in the MPEG encoder framework has been finalized and enables experiments
with a full scalable MPEG encoder (see next section).

6.4 Combined effect of scalable DCT and scalable ME

In this section, the complete scalable ME (SMART and CARES) and DCT
techniques are combined in the MPEG encoder and the scalability rules for

6.4 Combined effect of scalable DCT and scalable ME 129

(de-)quantization, IDCT and VLC are applied as described in Section 6.2.1.
A large design space is obtained when all MPEG modules are scalable at the
same time. In the following experiments, the resulting performance of the
scalable encoder is usually presented in the form of obtained quality (PSNR)
or bit rate, for a predetermined value of the execution time (computational
complexity). The execution time can be controlled as a function of our two
key scalability parameters as discussed in the previous two sections, i.e. MV
evaluations and computed DCT coefficients. By varying these parameters, the
scalability and complexity can be manipulated over a large range (the design
space).

6.4.1 Open-loop MPEG encoder

Figure 6.14 portrays the obtained average PSNR of the coded “Stefan” se-
quence (CIF resolution) and Figure 6.15 shows the obtained bit rate corre-
sponding with Figure 6.14. The experiments are performed with a ���� ��-
GOP and ������
 �. Both figures indicate the large design space that is
available with the scalable encoder without quantization and open-loop con-
trol. The horizontally-oriented curves refer to a fixed number of DCT co-
efficients (e.g. 8, 16, 24, 32, ..., 64 coefficients), whereas vertically-oriented
curves refer to a fixed number of MV evaluations. A normal coder would
compute all 64 coefficients and would therefore operate on the top horizontal
curve of the graph. The figures should be jointly evaluated. Under the above-
mentioned measurement conditions, the potential benefit of the scalable ME
is only visible in the reduction of the bit rate (see Figure 6.15), since an im-
proved ME leads to less DCT coefficients for coding the difference signal after
motion compensation in the MPEG loop.

In Figure 6.15, it can be seen that the bit rate decreases when computing more
MV candidates (going to the right). The reduction is only visible when the
bit rate is high enough. For comparison, the markers “A”, “B” and “C” re-
fer to three points within the design space. With these markers, the obtained
bit rate of the scalable encoder is compared with the encoder using alterna-
tive ME algorithms. Marker “A” refers to the configuration of the encoder
using the scalable ME system, where the same bit rate and video quality (not
the computational complexity) is achieved compared to diamond search. As
mentioned earlier, the diamond search performs ���		 MV candidates on the
average per macroblock. Our scalable coder, operating under the same qual-
ity and bit rate combination as the diamond search in marker “A”, results in
����� average MV candidates, thus ����� less than diamond search. Mark-

130 System experiments and enhancements

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

30,0 35,0 40,0 45,0 50,0 55,0 60,0 65,0 70,0 75,0

execution time [sec]

a
v
e
ra

g
e

P
S

N
R

[d
B

]
o

f
fr

a
m

e
s

ME

more MV candidates

DCT

more coefficients

Figure 6.14: Design space of obtained execution times and PSNRs of a scal-
able full MPEG encoder, which scales as function of computed
DCT coefficients and MV evaluations.

0,00

0,50

1,00

1,50

2,00

2,50

30,0 35,0 40,0 45,0 50,0 55,0 60,0 65,0 70,0 75,0

execution time [sec]

b
it

ra
te

[M
b

it
/s

e
c
]

ME

more MV candidates

DCT

more coefficients
A

B C

Figure 6.15: Design space of obtained execution times and bit rates of a scal-
able full MPEG encoder, which scales as function of computed
DCT coefficients and MV evaluations.

6.4 Combined effect of scalable DCT and scalable ME 131

ers ”B” and ”C” result from using full-search ME with a ��� �� and ��� ��
search area, respectively, requiring substantially more MV evaluations (1024
and 4096, respectively).

6.4.2 Closed-loop MPEG encoder

Figure 6.14 and 6.15 both present a large design space, but in practice this is
limited due to the quantization and bit-rate control. Figure 6.16 shows the in-
fluence of the processed video sequences on the obtained design space. For the
experiment, we used three different sequences having CIF resolution, which
are coded at a target bit-rate of ���� �& �. The sequences are “Stefan” (solid
curve, fast motion), “Foreman” (dashed curve, medium motion) and “Table
tennis” (dotted curve, slow motion). With the target bit-rate of ���� �& �, for
all sequences and at any time during the encoding process, the rate controller
was active (closed-loop coding) and able to select a valid ������ value for
accurately realizing the chosen bit rate.

The curves shown in Figure 6.16 are constructed in the same way as the re-
sults from Figure 6.14, but in Figure 6.16, the presentation of the curves is
simplified for clarity by drawing the boundary curves only. The resulting ex-
ecution times were normalized for comparing sequences of different lengths.

15,00

20,00

25,00

30,00

35,00

40,00

10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0

execution time [sec]

a
v
e
ra

g
e

P
S

N
R

[d
B

]
o

f
fr

a
m

e
s

ME

more MV candidates

DCT

more coefficients

“Stefan”

“Foreman”

“Tennis table”

Figure 6.16: Obtained PSNRs for different sequences with CIF-resolution,
which were coded using ��	� ��-GOPs and bit-rate control to
target �
�� ���.

132 System experiments and enhancements

When comparing the curves from Figure 6.16 with Figure 6.14, the quanti-
zation forces the design-space area to a lower PSNR interval. Furthermore,
less computation time is required leading to a shift to the left, since a lower
number of DCT coefficients is computed. When going upwards in the graph,
the number of computed DCT coefficients increases, and when going to the
right, the number of evaluated MV candidates increases. It can be seen that
the obtained design space is larger for sequences having less motion. Since
the bit rate is fixed for this experiment and therefore we do not have to find
a good balance between PSNR and bit rate, only the top part of the curves
are of interest. It can be seen that under these conditions, it is preferable to
first up-scale the DCT prior to improving the ME, because it adds more to the
PSNR1.

6.4.3 MPEG encoder with variable GOP and bit rate

In this section, the same encoder of the previous section is used, but now we
investigate the influence of using various GOP structures and bit rates. For
the conducted experiments, we have used the “Stefan”, “Foreman” and “Ta-
ble tennis” sequence for showing the obtained improvements when using a
scalable MPEG encoder with respect to a non-scalable encoder. We varied the
bit rates and GOP structures, because both are primary coding parameters in
the MPEG coding standard, having influence on both the execution time and
quality of an encoder2. Figure 6.17 is an extended and more detailed view
on the most interesting area of Figure 6.16. The depicted graphs are located
on the top curve of the design space as shown in Figure 6.16, resulting from
the scalable encoder under variable GOP/bit-rate/sequence conditions. For
comparison, the graphs include the performance of the same encoder frame-
work when using non-scalable algorithms (full fast DCT computation and the
popular and efficient “Diamond” ME [65]). The non-scalable performance
curves are shown at the right side of each graph. The left three figures in the
array of pictures (when rotating the page 90 degrees clockwise) are based on a

1It is estimated that the DCT and the ME are scaled simultaneously for optimal performance
when configuring the scalable MPEG encoder such that the scalability algorithm for the DCT
computation is different for intracoded frames and intercoded frames (as already mentioned in
Section 6.2.3). Although this seems interesting, this was not further pursued because of time
limitations.

2Note that we consider an encoder that does not modify the sampling standard of the input
video-signal. This means that the full spatial and temporal resolution of the input signal is
processed. We do not consider a system that reduces the spatial and/or temporal resolution
for reducing the processing speed and re-interpolate the original resolutions afterwards at the
decoder, because the encoder in such a system is not directly affected.

6.4 Combined effect of scalable DCT and scalable ME 133

fixed target bit-rate of ���� �& � and various GOP structures. The right three
figures of the array have a fixed ���� ��-GOP structure and vary the bit rate.

A first major result is that in all cases, the scalable encoder outperforms the
non-scalable encoder in both quality and execution time. Apparently, the spe-
cial attention given to the individual processing steps and the limited amount
of extra memory has been worthwhile to obtain a substantial performance im-
provement. A second result deals with the obtained scalability range. The
control of parameters (bit rate and GOP structure) of a non-scalable MPEG
encoder does offer some form of scalability. This scalability reduces the exe-
cution time with about 20%-30%. The scalable encoder shows a much larger
scalability range of about 50%-60%, which provides more fine-grained com-
plexity scalability and over a larger range. With respect to the absolute quality
level of the encoded sequences, the scalable encoder obtains higher PSNR val-
ues than the non-scalable encoder with increased motion in the sequence. It
can be concluded that the presented scalable MPEG encoding system enables
high-quality processing for high-end devices at lower computing power than
coders using non-scalable algorithms. However, it should be noted that we
have taken advantage of a larger freedom in a software-based implementation
that employs a slightly increased memory usage.

A final experiment has been performed to make a challenging quality compari-
son between the scalable and non-scalable MPEG encoder. In this experiment,
the non-scalable encoder uses a ��� �� full-search ME. As for earlier experi-
ments, the three sequences “Stefan”, “Foreman” and “Table tennis” have been
coded using ���� ��-GOPs and a target bit-rate of ���� �& �. In Table 6.2, the
(highest obtained) PSNR numbers that result from our scalable encoder and
the non-scalable encoder are compared. In addition, the table shows the aver-
age ������ value that the bit-rate controller adopted for achieving the required
bit rate (of course a lower ������ relates to higher PSNR numbers). It can
be seen from the table that our scalable encoder performs better for the “Ste-
fan” sequence that has high motion (���� dB higher PSNR), and equal for the
“Foreman” sequence that has medium motion (���� dB higher PSNR). For the
“Table tennis” sequence, a ���� dB lower PSNR is observed when using our
scalable encoder, where the required average ������ values are low and almost
equal. Note that PSNR differences are less noticeable in perceptual quality at
high PSNR number ranges (as obtained for the “Table tennis” sequence) than
at lower PSNR number ranges (as obtained for the “Stefan” sequence).

134 System experiments and enhancements

2
0
,0

0

2
2
,0

0

2
4
,0

0

2
6
,0

0

2
8
,0

0

3
0
,0

0

3
2
,0

0

3
4
,0

0

3
6
,0

0

3
8
,0

0

4
0
,0

0 1
0
,0

2
0
,0

3
0
,0

4
0
,0

5
0
,0

6
0
,0

7
0
,0

8
0
,0

9
0
,0

1
0
0
,0

1
1
0
,0

e
x

e
c
u

ti
o

n
ti

m
e

[s
e

c
]

averagePSNR[dB]offrames

1
2
-4

-G
O

P

1
2
-2

-G
O

P

6
-1

-G
O

P

2
0
,0

0

2
2
,0

0

2
4
,0

0

2
6
,0

0

2
8
,0

0

3
0
,0

0

3
2
,0

0

3
4
,0

0

3
6
,0

0

3
8
,0

0

4
0
,0

0 1
0
,0

2
0
,0

3
0
,0

4
0
,0

5
0
,0

6
0
,0

7
0
,0

8
0
,0

9
0
,0

1
0
0
,0

1
1
0
,0

e
x

e
c
u

ti
o

n
ti

m
e

[s
e

c
]

averagePSNR[dB]offrames

1
2
-4

-G
O

P

1
2
-2

-G
O

P

6
-1

-G
O

P

2
0
,0

0

2
2
,0

0

2
4
,0

0

2
6
,0

0

2
8
,0

0

3
0
,0

0

3
2
,0

0

3
4
,0

0

3
6
,0

0

3
8
,0

0

4
0
,0

0 1
0
,0

2
0
,0

3
0
,0

4
0
,0

5
0
,0

6
0
,0

7
0
,0

8
0
,0

9
0
,0

1
0
0
,0

1
1
0
,0

e
x

e
c
u

ti
o

n
ti

m
e

[s
e

c
]

averagePSNR[dB]offrames

1
5
0
0
k

7
5
0
k

5
1
2
k

“Stefan”
1
5
0
0
k

b
it

ra
te

(1
2
,4

)-
G

O
P

n
o
n
-s

c
a
la

b
le

c
o
d
in

g

s
c
a
la

b
le

c
o
d
in

g

“Foreman” “Table tennis”

2
0
,0

0

2
2
,0

0

2
4
,0

0

2
6
,0

0

2
8
,0

0

3
0
,0

0

3
2
,0

0

3
4
,0

0

3
6
,0

0

3
8
,0

0

4
0
,0

0 1
0
,0

2
0
,0

3
0
,0

4
0
,0

5
0
,0

6
0
,0

7
0
,0

8
0
,0

9
0
,0

1
0
0
,0

1
1
0
,0

e
x

e
c
u

ti
o

n
ti

m
e

[s
e

c
]

averagePSNR[dB]offrames

1
5
0
0
k

7
5
0
k

5
1
2
k

2
0
,0

0

2
2
,0

0

2
4
,0

0

2
6
,0

0

2
8
,0

0

3
0
,0

0

3
2
,0

0

3
4
,0

0

3
6
,0

0

3
8
,0

0

4
0
,0

0 1
0
,0

2
0
,0

3
0
,0

4
0
,0

5
0
,0

6
0
,0

7
0
,0

8
0
,0

9
0
,0

1
0
0
,0

1
1
0
,0

e
x

e
c
u

ti
o

n
ti

m
e

[s
e

c
]

averagePSNR[dB]offrames

1
2
-4

-G
O

P

1
2
-2

-G
O

P

6
-1

-G
O

P

2
0
,0

0

2
2
,0

0

2
4
,0

0

2
6
,0

0

2
8
,0

0

3
0
,0

0

3
2
,0

0

3
4
,0

0

3
6
,0

0

3
8
,0

0

4
0
,0

0 1
0
,0

2
0
,0

3
0
,0

4
0
,0

5
0
,0

6
0
,0

7
0
,0

8
0
,0

9
0
,0

1
0
0
,0

1
1
0
,0

e
x

e
c
u

ti
o

n
ti

m
e

[s
e

c
]

averagePSNR[dB]offrames

1
5
0
0
k

7
5
0
k

5
1
2
k

s
c
a
la

b
le

c
o
d
in

g

n
o
n
-s

c
a
la

b
le

c
o
d
in

g

s
c
a
la

b
le

c
o
d
in

g

n
o
n
-s

c
a
la

b
le

c
o
d
in

g

s
c
a
la

b
le

c
o
d
in

g

s
c
a
la

b
le

c
o
d
in

g

s
c
a
la

b
le

c
o
d
in

g

n
o
n
-s

c
a
la

b
le

c
o
d
in

g

n
o
n
-s

c
a
la

b
le

c
o
d
in

g

n
o
n
-s

c
a
la

b
le

c
o
d
in

g

Figure 6.17: PSNR vs. execution times of the scalable encoder for various bit
rates, GOP structures and sequences. The left graphs are coded
with fixed target bit-rate of �
�� ���, and the right graphs are
coded with a fixed ��	� ��-GOP structure. The graphs include
operations points of the encoder using non-scalable algorithms.

6.5 Discussion on further optimization of the scalable encoder 135

non-scalable coder scalable coder

Sequence PSNR average ������ PSNR average ������

“Stefan“ 31.33 13.4 32.61 11.0
“Foreman“ 36.82 5.7 36.87 5.8
“Table tennis“ 39.26 4.5 38.83 5.0

Table 6.2: Comparison of PSNRs and average ��	
�� numbers achieved
by MPEG encoders using quality-optimized non-scalable algo-
rithms or our scalable algorithms.

6.5 Discussion on further optimization of the scalable
encoder

The complexity vs. PSNR results that are obtained with the scalable MPEG
encoder presented in this thesis, are based on a number of experiments for
evaluating the scalability of encoder modules and assumptions on good set-
tings for the evaluated modules. As can be seen from the previous section,
the obtained results show faster and scalable processing than the reference
encoder design from which we started, and higher quality of the video out-
put has been achieved. Unfortunately, despite the good results, it cannot be
judged how close the proposed configurations are to the theoretically optimal
system. The reason for this is found in the high amount of configurations
for the scalable encoder modules and their dependencies on the actual video-
input signals. Let us first discuss the dependencies below, in order to show the
complexity of the complete optimization problem.

The computational complexity of the scalable (I)DCT and (de-)quantization
are independent from the video-input signal, so that the complexities of these
modules are known in advance. Whereas the scalable IDCT and (de-)quanti-
zation are designed such that their output is equivalent with full processing,
their computational complexity depends on the scalable DCT (the number of
computed coefficients) and the actually processed video signal. The DCT
output-quality is somewhat predictable, because DCT coefficients occur with
different probabilities, which can be measured. The contribution of a coef-
ficient to the resulting output quality is more accurately predictable when a
classification of a the block contents is made in advance.

The VLC is designed not to take decisions on the output quality (considering
bit-rate control as a separate step) and codes the quantized DCT coefficients

136 System experiments and enhancements

according to the MPEG-2 standard. The computational complexity of the
VLC is somewhat predictable and varies mainly with the measurable number
of non-zero DCT coefficients that are coded.

The scalable ME in our system consists of two techniques, namely SMART
ME with integrated CARES ME. The computational complexity and output
quality of the CARES ME highly depends on the processed video sequence.
In order to predict the computational complexity of the scalable ME, a model
of the complexity should be defined based on the number of non-flat blocks
per frame, the amount of motion and the computational complexity resulting
from coding different types of video sequences. Similarly, it should be possi-
ble to model the quality of the coded sequences resulting from scalable ME.
However, modeling the quality will be difficult, because SMART ME works
independently of GOP structures and the accuracy of a MV field has an im-
pact on the accuracy of other (later computed) vector fields that do not belong
to the same GOP. This may finally result in an optimization of the complete
video sequence as a whole.

The aforementioned different considerations with respect to computational
complexity and quality, yield a pluriform multi-dimensional design space for
which the definition of an optimal configuration of a scalable MPEG encoder
is currently unknown. Such optimization problems may be formulated with
e.g. the use of Lagrangian multipliers incorporating each dimension, or other
techniques. In the past, video compression coders were optimized using such
approaches and aiming at the best quality for a given bit rate, or vice versa
(e.g. see [74]). In our case, such an optimization should be extended with the
parameter “scalability”. This parameter has not been fully modeled yet. In
order to continue this discussion, let us assume that we would take our two
scalability parameters (MV evaluations and computed DCT coefficients). For
these extended dimensions, the encoder should be theoretically optimized. As
already stated, this would still lead to an optimum for one encoder configu-
ration, whereas we have many possibilities. Furthermore, the parameter MV
evaluations has to be spread over two scalable ME techniques, which is an
optimalization problem of itself. Finally, we already indicated that the mo-
tion vectors do have a recursive influence outside the GOP boundaries and
the content-dependent behavior of ME. This discussion clearly points out that
finding the theoretical optimum configuration is a scientific problem that is
worth a study on itself.

6.6 Conclusions 137

6.6 Conclusions

In this chapter, the scalable DCT and ME techniques are integrated into a
complete scalable MPEG encoding system for performance evaluations and
showing the design space that is obtained with the scalability techniques. It
has been shown that the computational complexity of the IDCT, quantization,
dequantization and VLC processing blocks scale with the number of DCT co-
efficients that are computed by the scalable DCT. Therefore, this number has
been selected as a primary parameter for scalability in the complete MPEG
encoder framework. Another second result of our experiments is that the scal-
able DCT has an integrated coefficient selection function, which may enable
a quality increase during interframe coding. This phenomenon can lead to an
MPEG encoder with a number of special DCTs with different selection func-
tions, and this option should be considered for future work. This should also
include different scaling of the DCT for intra- and interframe coding of video
pictures.

For the ME block in the scalable MPEG encoder, we have found that the
combination of the SMART and CARES ME technique leads to a highly scal-
able and efficient motion estimator in terms of computational complexity and
resulting PSNR quality. With respect to quality, experiments with the new
scalable combined ME show that a full processing of the scalable ME com-
pares well with a ����� full-search ME (or even outperform it). With respect
to computational complexity, a comparison with existing fast ME algorithms
published for MPEG reveals that our scalable ME requires roughly ��� to
��� less MV evaluations for different sequences. The complexity scalabil-
ity of the complete scalable ME proposal is between roughly 1 and 15 vector
evaluations per macroblock on the average, leading to a global PSNR varia-
tion of 	�� to 	�� dB PSNR of the motion-compensated frames. For scalable
ME, future work should examine the scalability/efficiency potentials of using
various fixed and dynamic GOP structures, and on concentrating or limiting
the ME to frame parts of which the content (could) have the current viewer
focus (region-of-interest coding).

The scalability of the complete scalable MPEG encoder, expressed in execu-
tion time, can be gradually reduced to roughly ��� of its original execution
time, while as the same time providing a wide range of video quality lev-
els (roughly from 20 dB to 48 dB PSNR in average) and compression ratios
(from ���� to ���� Mbit/s, CIF resolution). The introduced new techniques
for scalability show a large range of obtained computational complexity. Per-

138 System experiments and enhancements

formance evaluations have been carried out to show the design space of the
scalable MPEG encoder system when scaling all system modules at the same
time. Experiments have been conducted with various bit rates, GOP struc-
tures and sequences. It has been shown that our scalable MPEG encoder
clearly outperforms a non-scalable encoder in all measured cases (compu-
tational complexity and PSNR quality). The obtained scalability range of our
scalable encoder in terms of computational complexity is about a factor of
three, whereas a non-scalable parameterized MPEG encoder has a factor of
about 1-1.5. This improvement offers fine-grain complexity scalability. At the
same time, our scalable MPEG encoder provides a wide range of video quality
levels of roughly between ���� dB and ���� dB. The obtained computational-
complexity scalability is seen sufficient for a large range of stationary and
portable MPEG coding applications.

It has been debated that the actual scalable MPEG encoder represents a single
point in a large pluriform multi-dimensional design space. Presently, it cannot
be judged how close the proposed scalable encoder configurations are to the
theoretically optimal system. In order to do so, it would be required to define
a scientifically exact definition of complexity scalability, which has not been
studied. Instead, we have found at least two important scalability parameters
for the computational complexity of an MPEG encoder. Due to the recursion
in the scalable ME and the aforementioned remarks, the formulation of the
optimization problem is rather complicated and requires a follow-up study.

CHAPTER7
Conclusions

�
he preceding chapters have resulted in a number of complexity
scalable processing modules for MPEG encoding. The scal-
able modules have been integrated into an MPEG encoding

framework, for evaluation of the obtained scalability on the system
level. This chapter discusses the applicability of the results of this the-
sis for various possible video systems and alternative encoding stan-
dards, such as H.264.

7.1 Conclusions of the thesis chapters

In this thesis, the scalability for MPEG encoding was studied and various
results in terms of algorithms and system design have been presented. The
described research was part of a larger cooperation framework, in which en-
coder and decoder systems were studied separately. The research focus of this
cooperation was unique of its kind. This also holds for the contents of this
thesis. As far to the knowledge of the author, this thesis presents the first com-
prehensive approach for obtaining the computational complexity scalability of
a complete MPEG-2 encoding system, where both the individual processing
blocks and their interaction was examined. This section aims at summarizing

140 Conclusions

the research results. In the remainder of the chapter, we will discuss possible
future work and applicability in alternative applications or coding standards.

The introductory Chapter 1 has discussed the need for flexible solutions of
video encoding algorithms for usage in multiple devices and in certain ap-
plications, such as e.g. high-end TV. We have found that the large variety of
mobile devices show various resource limitations that motivate the design of
complexity scalable systems. Complexity scalability offer a more efficient
reusage of algorithms and encoding systems for a set of devices and architec-
tures. The MPEG-2 coding standard was briefly presented. The scalability
concept of the MPEG-2 standard does not provide efficient solutions for the
outlined application range, because the control of coding parameters is the
only way to implement scalability and its range is too limited.

Two key functions of MPEG encoding have been examined in detail, namely
DCT and motion estimation (ME), because they require the largest computa-
tional effort (in original form). In Chapter 2, several fast DCT computation
algorithms were studies in detail, in order to explore possibilities for scala-
bility. This study did not lead to new fast algorithms, but it provided direct
insight in different computing approaches and it lead to a new computation
technique that is suited for scalability and can be applied to any fast DCT
algorithm.

In Chapter 3, it was found that the DCT computation can be enhanced with a
scalability feature by analyzing the data-flow of the fast DCT algorithm. The
purpose of the algorithm analysis is to find shared computation nodes that can
be reused during the computation of different DCT coefficients, thereby pre-
venting costly recomputation of these nodes. The analysis leads to a com-
putation order that maximizes the number of computed coefficients under
computing power limitations, where the properties of the underlying com-
puting architecture, like special operations for computation or the costs for
accessing memory, are taken into account. The computation order can be en-
hanced by priority weighting of the coefficients. Experiments have shown
that the scalability-optimized computation order computes significantly more
coefficients under computing power limitations, than when using the well-
known zigzag order. With considerable computing limitations, the difference
in coefficients is so significant that a considerable quality increase (PSNR
and perceptual) is obtained. When computing power is less constrained, the
scalability-optimized computation order still outperforms the zig-zag compu-
tation order in obtained PSNR. However, the perceptual difference becomes

7.1 Conclusions of the thesis chapters 141

small and sometimes the choice is in favor of the conventional technique. The
implementation of a scalable DCT offers a large range in scalability and it con-
trols the scalability of subsequent encoding blocks (IDCT, (de-)quantization
and VLC) that process a the variable number of DCT coefficients.

Chapter 4 discusses a number of fast ME algorithms, which are typically used
in MPEG encoder systems. The focus of this exploration was on selecting
an algorithm that could be used for scalable ME concepts. It was found by
various comparisons (complexity and quality, and the combination of these
two) that algorithms based on recursive ME are attractive for the construction
of a scalable ME for MPEG encoding, since they already provide near full-
search quality at low cost. The algorithmic study revealed that the algorithm
complexity itself has a negligible importance, rather than the resulting number
of motion vector (MV) evaluations.

Chapter 5 presents two techniques for introducing scalability in MPEG ME.
The first scalability technique, called SMART, processes the MV fields in
three stages. Stage 1 precomputes MV fields for succeeding frames at the
entrance of the encoder. In Stage 2, MV fields are scaled and added or sub-
tracted (thus having multi-field references) to approximate the MV fields that
are required for MPEG coding. These computations are less complex than per-
forming advanced vector search. The computation of e.g. the backward ME
can be omitted to save computational effort and memory-bandwidth usage.
Stage 3 optionally refines the approximated MPEG MV fields for approach-
ing the quality of a conventional MPEG encoder employing a high-quality
ME. The second scalability technique for ME, called CARES, is a recursive
ME (RME) algorithm that is based on block classification, depending on the
picture content. The applied block classification provides (in addition to other
classifiers) the information whether it is more likely to find a good MV in
up-down or left-right search directions. This feature leads to a reduced set of
MV candidates that are evaluated, in comparison with state-of-the-art ME al-
gorithms for MPEG applications. The CARES ME algorithm proposes good
MVs to surrounding blocks for further evaluation. This extension prevents the
re-evaluation of identical MVs for a block, which regularly occurs in state-
of-the-art RME. The disadvantage is that a significant cache memory will be
required. It seems that the CARES algorithm is most attractive for a software-
based implementation.

The presented scalable ME algorithms are flexible with respect to the chosen
GOP structure, which preserves freedom in the application domain. When

142 Conclusions

more closely observed, it can be noticed that SMART and CARES can be
combined into one scalable ME system, because they operate on different
levels of processing (structural and vector-selection level). This combination
was explored in a following chapter. We have found that a reduction of the
overall computational effort of the ME can be reduced by content-adaptivity
of the processing. In the CARES ME algorithm, a simple block classification
based on edge detection was already sufficient to provide this adaptivity.

In Chapter 6, the above-mentioned scalability techniques were integrated in a
complete MPEG encoding system. However, a full scalable MPEG encoder
did not exist, so that all remaining blocks of the MPEG encoder had to be re-
designed for scalability and cooperation with the included new scalable DCT
and ME. The effect of the scalable techniques on the computational complex-
ity of the encoding process and their mutual dependencies were evaluated. It
was shown that when exploiting the scalable DCT inside an encoder system,
the encoder performance is further enhanced by taking the variable number
of coefficients of the scalable DCT into account. The enhancement leads to
scalable modules for the IDCT, (de-)quantization and VLC, such that they
process only the coefficients computed by the scalable DCT module. With
respect to ME, the combination of the two scalable ME techniques SMART
and CARES leads to an efficient and scalable ME system, providing a wide
range of frame-prediction quality and outperforming state-of-the-art fast ME
algorithms in quality and/or computational complexity.

The complete complexity scalable MPEG encoder smoothly reduces the qual-
ity as a function of limited resources. We have found two key parameters of
scalability, namely the number of processed DCT coefficients and the number
of evaluated MV candidates, resulting in a large design space for complexity
scalability and resulting video quality. For evaluation of the complete sys-
tem, we combined those two scalability parameters into one joint measurable
parameter, namely the execution time of the encoder. It was found that the
overall execution time of the scalable encoder can be gradually reduced to
roughly ��� of its original execution time, resulting in a quality-level range
from roughly ���� dB to ���� dB for different video sequences coded at var-
ious bit rates and using several GOP structures. Since the optimization of
the scalability parameters was found to be a study of its own, only limited
optimizations have been made and appropriate parameter settings were used.
Fortunately, despite a lack of optimization, the obtained results already out-
perform a non-scalable encoder in execution time and picture quality (PSNR).

7.2 Memory-resource usage 143

The obtained computational complexity scalability offers a large range of sta-
tionary and portable scalable MPEG coding applications. Scalability was
mainly developed to scale down the computational complexity, starting from a
defined reference processing effort (full DCT computation and state-of-the-art
ME). For this reason, resource-aware applications can exploit the flexibility of
the proposed scalable encoder for achieving e.g. low-power processing. For
applications running in e.g. stationary high-end devices, the obtained flexibil-
ity of the scalable MPEG encoder embedded in a scalable system environment
enables flexibility in scheduling real-time encoding tasks executed in parallel.
With respect to research, the develop scalable MPEG encoder presented in
this thesis is the first fully complexity scalable framework, which can form
a basis for further research on complexity scalability and extensions to other
video coding standards.

7.2 Memory-resource usage

In this thesis, the main focus was to obtain scalability for the computational
complexity of the MPEG encoding process. A secondary effect of the pre-
sented techniques is the scalability of memory accesses. The scalable MPEG
functions that process DCT coefficients ((I)DCT, (de-)quantization and VLC)
reduce the number of memory accesses with each coefficient that does not be-
long to the set of computed coefficients that is defined by the scalable DCT.
The scalable ME functions reduce the number of memory accesses with each
discarded MV evaluation.

With the scalability of both the computational complexity and the memory
access, the power consumption of a scalable encoding system is scaled ac-
cordingly, because the amount of computations and memory accesses are of
primary importance for power consumption. This aspect was not further elab-
orated.

7.3 Future work on MPEG scalability

7.3.1 System optimization

The developed scalable MPEG encoder can be optimized on the basis of vari-
ous criteria. One way of doing this is the introduction of cost functions. When
investigating the DCT, we defined a cost function for certain DSP operations,
in order to define and optimize the computational complexity. Similarly, cost

144 Conclusions

functions for memory accesses and power consumption can be defined and
integrated into our analysis approach for obtaining a scalable DCT. Further-
more, these cost functions can be adapted to different hardware architectures.

Such a simple way of changing the optimization parameter, as used with the
scalable DCT, has not been worked out for the scalable ME techniques. The
reason for this is as follows. It has been debated at the end of the previous
chapter that the actual scalable MPEG encoder represents a single point in a
large pluriform multi-dimensional design space. Presently, it cannot be judged
how close the proposed scalable encoder configurations are to the theoretically
optimal system. In order to do so, it would be required to define a scientif-
ically exact definition of complexity scalability, which is a challenging topic
for further research. Similarly, it can be studied how to optimize memory ac-
cesses and power consumption of a scalable ME algorithm by e.g. ordering
the evaluation of the vector candidates, such that for each vector evaluation, a
maximum of video data in a potentially available cache memory is reused.

7.3.2 Bit-based processing

The work of this thesis concentrates on algorithmic optimization for a scal-
able MPEG encoder, which may be implemented in software only. During the
research work, we have considered possible hardware implementations for
achieving scalability. In Appendix C it is indicated that bit-based processing
of video data seems promising for achieving complexity scalability. The ad-
vantage of bit-based processing is that intermediate results of good quality are
fastly obtained. Furthermore, the processing can be better adapted to the re-
quirements of an application. For example, it is known that displays of mobile
devices have low contrast, especially in outdoor light-conditions. Therefore,
mobile video conferencing should be scalable for low-power processing by
reducing the video color-depth. Unfortunately, new hardware should be de-
signed supporting bit-based processing, because this is not available in com-
monly used programmable hardware devices.

7.3.3 Modifying the input signal

In this thesis, we consider an encoder that does not modify the spatial and/or
temporal resolution of the input video signal. The consequence of this would
be that an interpolation to the original resolution after MPEG decoding would
be required. Such a concept is certainly feasible for exploring complexity

7.4 Applicability to other video applications 145

scalability, but the computational complexity of the additional pre- and post-
processing steps cannot be neglected. Although our techniques can be inserted
into an MPEG-4 encoder, the development of a full complexity scalable lay-
ered MPEG-4 encoder was not finished.

7.3.4 Differentiating scalable DCT for intra- and intercoding

In the previous section, the experiments with the scalable DCT integrated in
an MPEG encoder framework revealed temporal fluctuations in the frequency
content during intercoding of the frame differences, which lead to a quality
build-up over time. The quality augmentation is periodical and reset by the
occurence of an I-frame, leading to a comb-like structure within the PSNR
curves. This phenomenon leads to the idea of using various scalable DCTs
employing different coefficients-selection functions. The complete sequence
of scalable DCTs should compute each DCT coefficient at least once, and
apply these scalable DCTs to the picture blocks in a cyclical sequence (one per
intercoded frame). The result is that the computational complexity of the DCT
computation is spread over time, thereby reducing the average complexity of
the DCT computation (per block), at the expense of a delay in the build-up
of visual quality. The fluctuating visually annoying effect can be solved by
computing more coefficients for the I-frames, which makes it a promising
approach for future research on complexity scalability.

7.4 Applicability to other video applications

7.4.1 MPEG-incompatible DCT coefficient coding

The scalable DCT presented in this thesis introduces a DCT-coefficient selec-
tion-function, which results from a special computation order of coefficients.
Even when using a scalable DCT, the encoder is fully compatible with a non-
scalable encoder. However, the VLC coding efficiency is reduced, because
the scalable DCT may introduce zero coefficients at unusual locations in the
coefficient matrix. Consequently, the scalable DCT changes the statistics of
the generated runlength-amplitude codewords. A higher coding efficiency is
achievable when using a scalable DCT, by measuring the modified statistics
and adapting the scanning pattern and VLC coding tables to it. However, this
solution is not compatible with the MPEG coding standard, but could be of
interest for dedicated applications.

146 Conclusions

7.4.2 Segmentation (MPEG-4)

MPEG-4 is the successor of MPEG-2 and aims at the coding of individual
objects inside a video scene. The main area of application was seen in video
communication over the Internet. In computer-based systems, the use and
display of both natural and synthetic objects is attractive and the MPEG-4
standard offers a flexible framework for object-based coding. Besides this, the
set of coding techniques was enhanced in order to achieve higher compression
factors than with MPEG-2.

Recently, a high number of publications have shown up proposing algorithms
to retrieve objects from video, which is called segmentation. It has become
clear that segmentation processing is a complex task, and the computational
requirements for accurate segmentation clearly exceeds the computational
complexity of motion estimation. For this reason, scalable segmentation is
a key topic for scalable MPEG-4 encoding. One approach to apply scalabil-
ity to the segmentation process is to e.g. start with a segmentation based on
����� pixel blocks and successively refine the segmentation up to pixel accu-
racy. In such an approach, the scalability parameter is obviously the processed
block size, and the computational complexity will be a function of this scala-
bility parameter. In the segmentation process, reusable data from the encoding
process from previous frames are for example motion vectors (coherent vec-
tor field per object) and detected edges (objects are bordered by edges). The
system optimization of a scalable MPEG-4 encoder will be even more so-
phisticated than for a scalable MPEG-2 encoder, because the segmentation in
MPEG-4 has impact on the object-based coding modules, the video quality
and compression/coding efficiency.

7.4.3 Multi-temporal ME (H.264)

In the H.264 video coding standard, the motion estimation and compensation
is allowed to have multiple (up to five) reference frames from which picture
blocks are taken for predicting the actual frame. Furthermore, the block sizes
used for motion estimation are variable. Since the number of reference frames
and the different block sizes are relatively high, the computational require-
ments for accurate motion estimation in H.264 coding are substantially higher
than for MPEG-2 having at maximum two reference frames. Scalability is
applicable to the ME in H.264 coding in the same way as it is proposed for
MPEG-2 in this thesis. Optimizing a scalable H.264 encoder will be more so-
phisticated than for a scalable MPEG-2 encoder due to the additional freedom

7.4 Applicability to other video applications 147

in (among others) the ME process in H.264, as indicated above. An opportu-
nity for significantly reduced computational complexity is seen when apply-
ing the SMART ME technique presented in this thesis to the ME in H.264.
Because SMART performs frame-by-frame ME, it can be used for multiple
frame prediction. For example, the vector fields can be concatenated for each
individually processed block in order to find the appropriate reference frame
for this block, without the need of a full vector search for each reference-frame
alternative. After the appropriate reference frame for a block was found, it can
be chosen to split the block to obtain a better prediction quality, as defined in
the H.264 standard.

References

[1] E.G.T. Jaspers, P.H.N. de With and J.G.W.M. Janssen, “A Flexible Het-
erogeneous Video Processor System for Television Applications,” IEEE
Transactions on Consumer Electronics, vol. 45, no. 1, pp. 1–11, Feb.
1999.

[2] P.H.N. de With, E.G.T. Jaspers, J.L. van Meerbergen, A.H. Timmer and
M. Strik, “A Video Display Processing Platform for Future TV Con-
cepts,” IEEE Transactions on Consumer Electronics, vol. 45, no. 4, Nov.
1999.

[3] E.G.T. Jaspers and P.H.N. de With, “Chip-Set for Video Display of Mul-
timedia Information,” IEEE Transactions on Consumer Electronics, vol.
45, no. 3, Aug. 1999.

[4] S. Mietens, P.H.N. de With and C. Hentschel, “Implementation of a Dy-
namical Multi-Window TV System,” Proceedings of ���� International
Symposium on Information Theory in the Benelux, pp. 139–146, May
2001.

[5] C. Hentschel, M. Gabrani, K. van Zon, R.J. Bril and L. Steffens, “Scal-
able Video Algorithms and Quality-of-Service Resource Management
for Consumer Terminals,” IEEE International Conference on Consumer
Electronics (ICCE), Digest of Technical Papers, pp. 338–339, June 2001.

[6] R.J. Bril, C. Hentschel, E.F. M. Steffens, M. Gabrani, G. van Loo, J.H.A.
Gelissen, “Multimedia QoS in Consumer Terminals,” Proceedings of
IEEE International Workshop on Signal Processing Systems (SIPS), pp.
332–343, Sept. 2001.

149

150 References

[7] C. Hentschel, R.J. Bril and Yingwei Chen, “Invited: Video Quality-of-
Service for Multimedia Consumer Terminals - An Open and Flexible
System Approach,” Proceedings of IEEE International Conference on
Communication Theory and Systems and West Sino Expositions, vol. 1,
pp. 659–663, June 2002.

[8] R.S.V. Prasad and K. Ramkishor, “Efficient Implementation of MPEG-
4 Video Encoder on RISC Core,” IEEE International Conference on
Consumer Electronics (ICCE), Digest of Technical Papers, pp. 278–279,
2002.

[9] Yingwei Chen, Zhun Zhong, Tse-Hua Lan, S. Peng, K. van Zon, “Regu-
lated Complexity Scalable MPEG-2 Video Decoding for Media Proces-
sors,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 12, no. 8, pp. 678–687, Aug. 2002.

[10] D. Farin, M. Käsemann, P.H.N. de With and W. Effelsberg, “Rate-
Distortion Optimal Adaptive Quantization and Coefficient Thresholding
for MPEG Coding,” Proceedings of ���� Symposium on Information
Theory in the Benelux, pp. 131–138, May 2002.

[11] K. Ramchandran and M. Vetterli, “Rate-Distortion Optimal Fast Thresh-
olding with Complete JPEG/MPEG Decoder Compatibility,” IEEE
Transactions on Image Processing, vol. 3, no. 5, pp. 700–704, Sept.
1994.

[12] R.J. Gove, “The Multimedia Video Processor (MVP): An Architec-
ture for Advanced DSP Applications,” in Proceedings of 5th Interna-
tional Conference on Signal Processing, Application and Technology,
Oct. 1994, vol. 1, pp. 854–859.

[13] V.M.Jr. Bove and J.A. Watlington, “Chepos: A Reconfigurable Dataflow
System for Video Processing,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 5, pp. 140–149, Apr. 1995.

[14] M. Strik and E.G.T. Jaspers, “Integrating Dynamic Multi-Window TV
Feature in Software Stack,” Philips Research Labs. Eindhoven, The
Netherlands, personal communication, 2000.

[15] R.J. Bril, M. Gabrani, C. Hentschel, G. van Loo, E.F.M. Steffens, “QoS
for Consumer Terminals and its Support for Product Families,” Interna-
tional Conference on Media Futures (ICMF), pp. 299–302, May 2001.

References 151

[16] M. Ghanbari, “Two-layer coding of video signals for VBR networks,”
IEEE Selected Area Communications, vol. 7, no. 5, pp. 771–781, June
1989.

[17] ISO/IEC, "Coding of Moving Pictures and Audio: MPEG-4 Overview",
N4668 edition, Mar. 2002.

[18] M. van der Schaar-Mitrea, System and network constrained scalable
video compression, Ph.D. thesis, University of Technology Eindhoven,
The Netherlands, Dec. 2001.

[19] S. Mietens and P.H.N. de With, “On Scalable DCT Processing Algo-
rithms for MPEG Encoding,” Tech. Rep. 2000-VDP-003, Dept. Cir-
cuitry and Simulation, University of Mannheim, Germany, D-68131
Mannheim, Feb. 2000.

[20] S. Mietens, P.H.N. de With and C. Hentschel, “Coding: New DCT
computation algorithm for video quality scaling,” patent application
WO02056250/US2002173952, 2002.

[21] S. Mietens, P.H.N. de With and C. Hentschel, “New Scalable DCT Com-
putation for Resource-Constrained Systems,” Proceedings of IEEE In-
ternational Workshop on Signal Processing Systems (SIPS), pp. 285–
296, 2001.

[22] S. Mietens, P.H.N. de With and C. Hentschel, “New DCT Computation
Algorithm for Video Quality Scaling,” Proceedings of IEEE Interna-
tional Conference on Image Processing (ICIP), vol. 3, pp. 462–465, Oct.
2001.

[23] S. Mietens, P.H.N. de With and C. Hentschel, “New DCT Computation
Technique based on Scalable Resources,” Kluwer Academic Publishers
Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, Special Issue on IEEE Workshop on Signal Processing Sys-
tems (SIPS 2001), vol. 34, no. 3, pp. 189–201, July 2003.

[24] S. Mietens and P.H.N. de With, “On Scalable Motion Estimation for
MPEG Encoding,” Tech. Rep. 2000-VDP-004, Dept. Circuitry and Sim-
ulation, University of Mannheim, Germany, D-68131 Mannheim, Feb.
2000.

152 References

[25] G. Hekstra, S. Mietens and P.H.N. de With, “Motion estimation with 3D-
RS candidates from multiple temporal vector fields,” patent application
PHNL020034.

[26] S. Mietens, G. Hekstra, P.H.N. de With and C. Hentschel, “Flexible
Frame-Reordering and Multi-Temporal Motion Estimation for Scalable
MPEG Encoding in Mobile Consumer Equipment,” IEEE International
Conference on Consumumer Electronics (ICCE), Digest of Technical Pa-
pers, pp. 342–343, June 2002.

[27] S. Mietens, G. Hekstra, P.H.N. de With and C. Hentschel, “New Flex-
ible Motion Estimation Technique for Scalable MPEG Encoding using
Display Frame Order and Multi-Temporal References,” Proceedings of
IEEE International Conference on Image Processing (ICIP), pp. 701–
704, Sept. 2002.

[28] S. Mietens, P.H.N. de With and C. Hentschel, “Frame-Reordered Multi-
Temporal Motion Estimation for Scalable MPEG,” Proceedings of ����

International Symposium on Information Theory in the Benelux, 2002.

[29] S. Mietens, P.H.N. de With and C. Hentschel, “New Scalable Three-
Stage Motion Estimation Technique for Mobile MPEG Encoding,” Pro-
ceedings of IEEE International Conference on Multimedia and Expo
(ICME), pp. 685–688, Aug. 2002.

[30] S. Mietens, P.H.N. de With and C. Hentschel, “Computational Com-
plexity Scalable Motion Estimation for Mobile MPEG Encoding,” IEEE
Transactions on Consumer Electronics, Feb. 2004.

[31] S. Mietens, P.H.N. de With and C. Hentschel, “A SW-based Complex-
ity Scalable MPEG Encoder for Mobile Consumer Equipement,” Pro-
ceedings of ���� International Symposium on Information Theory in the
Benelux, 2003.

[32] S. Mietens, P.H.N. de With and C. Hentschel, “New Complexity Scal-
able MPEG Encoding Techniques for Mobile Applications,” Eurasip
Journal on Applied Signal Processing, Special Issue on Multimedia over
Wireless Networks, vol. 2, 2004.

[33] S. Mietens, P.H.N. de With and C. Hentschel, “Invited: Resource-aware
Complexity Scalability for Mobile MPEG Encoding,” Proceedings of
SPIE International Conference on Visual Communications and Image
Processing (VCIP), 2004.

References 153

[34] PeiZong Lee and Fang-Yu Huang, “Restructured Recursive DCT and
DST Algorithms,” IEEE Transactions Signal Processing, vol. 42, no. 7,
pp. 1600–1609, July 1994.

[35] Nam Ik Cho and San Uk Lee, “Fast Algorithm and Implementation of 2-
D Discrete Cosine Transform,” IEEE Transactions Circuits and Systems,
vol. 38, no. 3, pp. 297–305, Mar. 1991.

[36] Y. Arai, T. Agui and M. Nakajima, “A Fast DCT-SQ Scheme for Im-
ages,” Transactions of the IEICE, vol. 71, no. 11, pp. 1095, Nov. 1988.

[37] ISO/IEC, "Digital Compression and Coding of Continuous-Tone Still
Images", 10918-1 edition, 1997.

[38] William B. Penneberger and Joan L. Mitchell, JPEG: Still Image Data
Compression Standard, Van Nostrand Reinhold, 1993.

[39] ISO/IEC, "ITU-T Rec. H.264, Advanced Video Coding, Final Committee
Draft, Document JVT-F100", 11496-10 edition, Dec. 2002.

[40] R.L. de Queiroz, “Reduced DCT Approximations for Low Bit Rate Cod-
ing,” Proceedings of IEEE International Conference of Image Process-
ing (ICIP), vol. 1, pp. 233–236, Sept. 2002.

[41] V. Bhaskaran and K. Konstantinides, Image and Video Compression
Standards, chapter 3.5.2, Kluwer Academic Publishers, 1995.

[42] V. Bhaskaran and K. Konstantinides, Image and Video Compression
Standards, chapter 3.5.3, Kluwer Academic Publishers, 1995.

[43] E. Linzer and E. Feig, “New Scaled DCT Algorithms for Fused Mul-
tiply/Add Architectures,” Proceedings of International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, pp. 2201–
2204, Apr. 1991.

[44] I-Ming Pao and ing-Ting Sun, “Modeling DCT Coefficients for Fast
Video Encoding,” IEEE Transactions Circuits and Systems for Video
Technology, vol. 9, no. 4, pp. 608–616, June 1999.

[45] Hong Ren Wu and Zhihong Man, “Comments on "Fast Algorithms and
Implementation of 2-D Discrete Cosine Transform",” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 8, no. 2, pp. 128–129,
Apr. 1998.

154 References

[46] C. Loeffer, A. Ligtenberg and G.S. Moschytz, “Practical fast 1-D DCT
Algorithms with 11 Multiplications,” Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), vol.
2, pp. 988–991, May 1989.

[47] Sung-Hwan Jung, S.K. Mitra and D. Mukherjee, “Subband DCT: Defi-
nition, Analysis and Applications,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 6, pp. 273–286, June 1996.

[48] K. Lengwehasatit and A. Ortega, “DCT Computation based on Variable
Complexity Fast Approximations,” Proceedings of IEEE International
Conference of Image Processing (ICIP), vol. 3, pp. 95–99, Oct. 1998.

[49] P. Duhamel and H. H’Mida, “New �� DCT Algorithms suitable for VLSI
Implementation,” Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 12, pp. 1805–
1808, Apr. 1987.

[50] E. Feig and S. Winograd, “On the Multiplicative Complexity of Discrete
Cosine Transforms,” IEEE Transactions on Information Theory, vol. 38,
pp. 1387–1391, July 1992.

[51] N. Merhav and B. Vasudev, “A Multiplication-Free Approximate Algo-
rithm for the Inverse Discrete Cosine Transform,” Proceedings of the
IEEE International Conference on Image Processing (ICIP), vol. 2, pp.
759–763, Oct. 1999.

[52] A. Hossen and U. Heute, “Fast Approximation DCT: Basic-Idea, Error
Analysis and Applications,” Proceedings of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp.
2005–2008, Apr. 1997.

[53] R.L. de Queiroz, “DCT Approximation for Low Bit Rate Coding using a
Conditional Transform,” Proceedings of IEEE International Conference
on Image Processing (ICIP), vol. 1, pp. 237–240, 2002.

[54] K.R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-
tages, Applications, Academic Press, 1990.

[55] S. Peng, “Complexity Scalable Video Decoding via IDCT Data Prun-
ing,” IEEE International Conference on Consumer Electronics (ICCE),
Digest of Technical Papers, pp. 74–75, June 2001.

References 155

[56] ISO/IEC, "Information Technology - Generic Coding of Moving Pictures
and Associated Audio Information: Video", 13818-2 edition, 2000.

[57] Mei-Juan Chen, Liang-Gee Chen, Tzi-Dar Chiueh and Yung-Pin Lee,
“A new Block-Matching Criterion for Motion Estimation and its Im-
plementation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 5, no. 3, pp. 231–236, June 1995.

[58] G. de Haan and H. Huijgen, “Motion Estimation for TV Pic-
ture Enhancement,” in Signal Processing of HDTV, H. Yasuda and
L. Chiariglione, Eds., vol. III, pp. 241–248. Elseviers Science Publishers
B.V., 1992.

[59] R. Braspenning and G. de Haan, “Efficient Motion Estimation with
Content-Adaptive Resolution,” Proceedings of International Symposium
on Consumer Electronics (ISCE), pp. E29–E34, Sept. 2002.

[60] K. Lengwehasatit, A. Ortega, A. Basso and A. Reibman, “A Novel Com-
putationally Scalable Algorithm for Motion Estimation,” Proceedings of
SPIE International Conference on Visual Communications and Image
Processing (VCIP), pp. 68–79, Jan. 1998.

[61] G. de Haan, P.W.A.C. Biezen, H. Huijgen and O.A. Ojo, “True-Motion
Estimation with 3-D Recursive Search Block Matching,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 3, no. 5, pp.
368–379, Oct. 1993.

[62] G. de Haan and P.W.A.C. Biezen, “Sub-pixel motion estimation with
3-D recursive search block-matching,” Signal Processing: Image Com-
munication, vol. 6, pp. 229–239, 1994.

[63] Mei-Juan Chen, Liang-Gee Chen and Tzi-Dar Chiueh, “One-Dimen-
sional Full Search Motion Estimation Algorithm for Video Coding,”
IEEE Transactions on Circuits and Systems for Video Technology, vol.
4, no. 5, pp. 504–509, Oct. 1994.

[64] Lumg-Kuo Liu and E. Feig, “A block-based Gradient Descent Search
Algorithm for Block Motion Estimation in Video Coding,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 6, no. 4, pp.
419–423, Aug. 1996.

156 References

[65] Jo Yew Tham, S. Ranganath, M. Ranganath and A.A. Kassim, “A Novel
Unrestricted Center-Biased Diamond Search Algorithm for Block Mo-
tion Estimation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 8, no. 4, pp. 369–377, Aug. 1998.

[66] T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro, “Motion-
Compensated Interframe Coding for Video Conferencing,” Proceedings
of the NTC, vol. 81, pp. C9.6.1–9.6.5, Nov. 1981.

[67] G. de Haan and H. Huijgen, “New Algorithm for Motion Estimation,”
Signal Processing of HDTV, vol. 73, no. 4, pp. 523–548, Apr. 1989.

[68] P.H.N. de With, “A Simple Recursive Motion Estimation Technique
for Compression of HDTV Signals,” Proceedings of IEE International
Conference on Image Processing and its Applications (IPA), pp. 417–
420, 1992.

[69] Reoxiang Li, Bing Zeng and M.L. Liou, “A new Three-Step Search
Algorithm for Block Motion Estimation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 4, no. 4, pp. 438–442, Aug. 1994.

[70] F.S. Rovati, D. Pau, E. Piccinelli, L. Pezzoni and J.-M. Bard, “An Inno-
vative, High Quality and Search Window Independent Motion Estima-
tion Algorithm and Architecture for MPEG-2 Encoding,” IEEE Transac-
tions on Consumer Electronics, vol. 46, no. 3, pp. 697–705, Aug. 2000.

[71] T. Kummerow and P. Mohr, “Method of Determining Motion Vectors
for the Transmission of Digital Picture Information,” EP 0 496 051, Nov.
1991, European Patent Application.

[72] R. Braspenning, G. de Haan and C. Hentschel, “Complexity Scalable
Motion Estimation,” Proceedings of SPIE International Conference on
Visual Communications and Image Processing (VCIP), vol. 4671(1/2),
pp. 442–453, 2002.

[73] D. Farin, N. Mache and P.H.N. de With, “A Software-Based High-Quali-
ty MPEG-2 Encoder Employing Scene Change Detection and Adaptive
Quantization,” IEEE Transactions on Consumer Electronics, vol. 48, no.
4, pp. 887–897, Nov. 2002.

[74] P.H. Westerink, Subband Coding of Images, Ph.D. thesis, TU Delft, The
Netherlands, Oct. 1989.

References 157

[75] M.-T. Sun, T.-C. Chen and A.M. Gottlieb, “VLSI Implementation of a
16x16 Discrete Cosine Transform,” IEEE Transactions on Circuits and
Systems, vol. 36, no. 4, pp. 610–617, Apr. 1989.

[76] O. Hauck, S.A. Huss, “Asynchronous Wave Pipelines for High Through-
put Datapaths,” Proceedings of IEEE International Conference on Elec-
tronics, Circuits and Systems, pp. 1283–1286, Sept. 1998.

[77] S. Mietens, “VLSI-Entwurf eines asynchronen SRT-Ringdividierers,”
M.S. thesis, Darmstadt University of Technology, Germany, Aug. 1998.

[78] O. Hauck, S. Mietens, S.A. Huss, “Giga-Hertz SRT-Division mit asyn-
chronen Wave-Pipelines,” Proceedings of 9. Workshop "Entwurf Inte-
grierter Schaltungen", Darmstadt/Germany, Sept. 1999.

[79] B. Natarajan, V. Bhaskaran and K. Konstantinides, “Low-Complexity
Block-Based Motion Estimation via One-Bit Transforms,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 7, no. 4, pp.
702–706, Aug. 1997.

158 References

APPENDIXA
Derivation of computation

order

In this appendix, the computation technique from Sections 3.2 and 3.3 has
been used to find an scalability-optimized computation order for a dynam-
ically-scalable version of the 2-D DCT algorithm by Cho and Lee (ChoLee,
see Section 2.3.2), when inserting the 1-D DCT algorithm by Arai, Agui and
Nakajima (AAN, see Section 2.3.3). Both algorithms were adopted for the
following derivation, because their combination provides a highly efficient
DCT computation (see Section 2.4).

In Figure 3.3(a), the scalability-optimized computation order is shown that
is found with the algorithm analysis that was presented in Section 3.2. The
corresponding Figure 3.3(b) is a modified computation order with an addi-
tional priority for the upper-left corner of the coefficient matrix. This priority
weighting was explained in the previous section. The remainder of this section
presents a detailed derivation of the coefficient computation order, including
this weighting.

The nominal computational complexity of the combination of ChoLee and
AAN for the � � �-DCT is 104 multiplications, 49 shifts and 466 additions.
The shift operations are located at the end of the butterfly diagram, and there-
fore can be integrated into the constant normalization factors that are used for

160 Derivation of computation order

completing the DCT computation (see the factors left to the double summation
in Equation (2.1)).

The first step of the analysis is the counting of the number of operations that
are performed to compute a single coefficient. The following matrices show
the number of multiplications (�

�
) and additions (�

�
) that are needed when

using the above-mentioned combined algorithm.

�
�

�������������

� �� � �� � �� � ��
�� �� �� �� �� �� �� ��
� �� � �� �� �� � ��

�� �� �� �� �� �� �� ��
� �� �� �� � �� �� ��

�� �� �� �� �� �� �� ��
� �� � �� �� �� � ��

�� �� �� �� �� �� �� ��

�������������
�

�
�

�������������

�� 	� �	 	� �� 	� �	 	�
	� 	� �� 	� �	 	� �� 	�
�	 �� �	 �� 	� �� �	 ��
	� 	� �� 	� �	 	� �� 	�
�� �	 	� �	 �� �	 	� �	
	� 	� �� 	� �	 	� �� 	�
�	 �� �	 �� 	� �� �	 ��
	� 	� �� 	� �	 	� �� 	�

�������������
�

The number of operations is determined by considering an addition as one
operation and a multiplication as three operations.

Let �
�

be the matrix containing the number of the resulting operations. The
derivation of matrix �

�
, given the aforementioned relation between additions

and multiplications is trivial.

�
�

 �

�
�� ��

�

�������������

	� ��	 �� ��	 	� ��	 �� ��	
��	 ��� ��	 ��� ��	 ��� ��	 ���
�� ��	 �� ��	 ��� ��	 �� ��	

��	 ��� ��	 ��� ��	 ��� ��	 ���
	� ��	 ��� ��	 	� ��	 ��� ��	

��	 ��� ��	 ��� ��	 ��� ��	 ���
�� ��	 �� ��	 ��� ��	 �� ��	

��	 ��� ��	 ��� ��	 ��� ��	 ���

�������������

161

In this example, the following priority weighting ��� 	� is used, which is rep-
resented with the matrix

 ��� 	�
 ���� 	�� ��� 	���

�������������

� � 	 �� �� �� �� ��
� � � �� �� �	 �� ��
	 � � �� �� �� �� ��

�� �� �� �� �� �� �� ��
�� �� �� �� �	 �� �� ��
�� �	 �� �� �� �� �� �	
�� �� �� �� �� �� �� ��
�� �� �� �� �� �	 �� ��

�������������
�

The decision about the first coefficient to be computed is made by finding the
lowest entry (marked with a circle) of matrix �

�
, which results from mul-

tiplying �
�

with the weighting function ��� 	�. The decision matrix �
�

contains all possible results of the cost function �� ���� as defined in Equa-
tion (3.3).

Æ�
��

�
�

 �

�
� ��� 	�

�������������

	� ��� ��	 ��	� �	� ���� �	�� �	��
��� ��� ���� ���� ���� ���� ���� ��	�
��	 ���� 	�� ���� ���� ���� �	�� ����

��	� ���� ���� ���� ���� ���� ��	� ����
�	� ���� ���� ���� ��	� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ����
�	�� ���� �	�� ��	� ���� ���� ���� ��	�
�	�� ��	� ���� ���� ���� ���� ��	� ����

�������������
�

The first sorted coefficient �� in the list) of coefficients that defines the com-
putation order is therefore the DC coefficient. In the following, the super-
script ��� indicates the actual iterations count of the analysis.

For the second iteration with �
 �, the matrices ����
�

and � ���
�

are updated
by considering that the intermediate results from the computation of �� are
available and can be reused during the computation of the next coefficient.
The updated matrices ����

�
and � ���

�
are given by

162 Derivation of computation order

� ���
�

�������������

� �� � �� � �� � ��
�� �� �� �� �� �� �� ��
� �� � �� �� �� � ��

�� �� �� �� �� �� �� ��
� �� �� �� � �� �� ��

�� �� �� �� �� �� �� ��
� �� � �� �� �� � ��

�� �� �� �� �� �� �� ��

�������������
�

� ���
�

�������������

� 	� �� 	� 	 	� �� 	�
�	 	� �� 	� �� 	� �� 	�
�� �� � �� �	 �� � ��
�	 	� �� 	� �� 	� �� 	�
	 �	 �	 �	 � �	 �	 �	

�	 	� �� 	� �� 	� �� 	�
�� �� � �� �	 �� � ��
�	 	� �� 	� �� 	� �� 	�

�������������
�

Repeating the matrix computations of iteration 1 leads to the decision ma-
trix �

���
� as given below, where already computed coefficients are marked

as “��”.

Æ�
��

�
���
�
 � ���

�
� ��� 	�

�������������

�� ��� ��� ��	� ��	 ���� ��	 �	��
��� ��� ���� ���� ���� ���� �	�� ��	�
��� ���� ��� ���� ��� ���� ��� ����
��� ���� ���� ���� ���� ���� ��	� ����
��	 ���� ��� ���� �	 ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ����
��	 ���� ��� ��	� ���� ���� ��� ��	�

���� ��	� ���� ���� ���� ���� �	�� ����

�������������

From �
���
� it results that �� is the coefficient at position ��� ��. From ����

�

and � ���
�

it can be seen, that in order to complete the computation of coeffi-
cient ��, a single addition needs to be performed.

163

The third step of the analysis shows the impact of the priority weighting on
the determination of the computation order. Let us focus on the coefficients
with the least number of operations found at positions ��� ��, ��� �� and at
position ��� ��. The first two need 4 multiplications and 7 additions to be
completely computed, while the last one needs 4 multiplications and 9 addi-
tions. Obviously, either the coefficient at position ��� �� or ��� �� is chosen as
next coefficient when no priority weighting is applied, because they require
2 additions less than the coefficient at position ��� ��. Instead, matrix �

���
�

clearly shows that with priority weighting, the coefficient at position ��� �� is
preferred, although requiring a little more computation than the other two at
this iteration.

��
��

�
���
�
 �

���
� � ��� 	�

�������������

�� ��� ��� ��	� ��	 ���� ��	 �	��
��� ��� ���� ���� ���� ���� �	�� ��	�
��� ���� ��� ���� ��� ���� ��� ����
��� ���� ���� ���� ���� ���� ��	� ����
��	 ���� ��� ���� �� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ����
��	 ���� ��� ��	� ���� ���� ��� ��	�

���� ��	� ���� ���� ���� ���� �	�� ����

�������������
�

In this way, the analysis is continued until all coefficients are sorted into list).

164 Derivation of computation order

APPENDIXB
Computational complexity of

ME algorithms

In this appendix, the ME algorithms are compared by their computational
complexity, which depends on the number of block comparisons, the block-
matching criterion, the block size, the optional subsequent vector refinement,
and the video material (for example size, motion and quality).

We have divided the algorithms into their basic steps and evaluated the worst-
case complexity of each of those steps. Memory traffic has been omitted for
simplicity, which means that we assume a large data cache is closely located
to the computation unit. The overall computation cost 1�� for the motion
estimation of a complete frame is defined by

1��
 � � ��� � ��� � ���� (B.1)

where � is the number of macroblocks that are processed per frame, �� is
the number of block comparisons that are made (on the average) per mac-
roblock, ��� is the cost for each block comparison and �� is the additional cost
for retrieving blocks from the half-pixel grid for vector refinement.

165

166 Computational complexity of ME algorithms

B.1 Number of block comparisons

The main parameter in Equation (B.1) for the computational complexity of
ME algorithms is the number of block compares ��. A favorable algorithm
should find a suitable MV with a low number of block comparisons. The
evaluated ME algorithms have different properties as indicated below.

� The computational complexity of the 2DFS and 1DFS algorithms mainly
depends on the size of the search area.

� The TSS, NTSS and the simple RME algorithms evaluate a predefined
number of MVs. The simple RME contains a vector-refinement step
that will be discussed separately, because every algorithm can make use
of this additional step.

� The BBGDS terminates if a local minimum of the error measure is
found. The number of block compares depends on the number of al-
gorithm steps that are performed to find this minimum.

Table B.1 gives an overview of the computational complexity for the different
algorithms. For convenience, the search area (SA) is expected to be square. It
can be seen from the table that the simple RME and the BBGDS require the
lowest number of block comparisons, where the BBGDS exceeds the number
of block comparisons from the simple RME with the second step. The 1DFS
is rather costly, considering that commonly used search areas have
 ��
or
 ��.

Algorithm Remark ��
2DFS � SA �
 �

1DFS � SA � �� �� � �
� � ��� � ��
 �� �

TSS fixed algorithm � � � � �
 ��
NTSS fixed algorithm � � � � � � �
 ��
RME fixed algorithm � � ��
 ��
BBGDS for � steps
 � � � � �

Table B.1: Number of block comparisons for some ME algorithms.

B.2 Computational complexity of a single block comparison 167

B.2 Computational complexity of a single block com-
parison

The computational complexity for comparing blocks with the block-matching
criteria presented in Section 4.2 depends on the size of the compared blocks.
Table B.2 gives an overview of the computational complexity of one block
comparison, given a block size of � pixels. Normalization factors of the
block-matching criteria are omitted (for equal block sizes).

Criteria Operation No. of operations
MSE mults �
 �

adds/subs � � � � �
 � � � � �
SAD abs. value �
 �

adds/subs � � � � �
 � � � � �
MiniMax abs. value �
 �

compares & � &� �
 � � �
adds/subs �
 �

Table B.2: Computational complexity for different block-matching criteria.

B.3 Vector Refinement

The refinement of a motion vector as described in Section 4.4 involves eight
additional block comparisons on a half-pixel grid. This is shown in Fig-
ure B.1, where positions � refer to pixels. The pixels ��� refer to the half-
pixel grid. The pixels ���� indicated by crosses are interpolated from the two

Full-pixel grid

Half-pixel grid

Position on full-pixel grid.

Position on half-pixel grid.

Pfp

Php4

Php2

Php

Position on half-pixel grid;
build by average of two
full-pixel positions.

Position on half-pixel grid
build by average of four
full-pixel positions.

Figure B.1: Vector refinement based on a half-pixel grid.

168 Computational complexity of ME algorithms

surrounding full-pixel values. The middle positions ���� can be computed
in two different ways. Either they are interpolated from the four surrounding
full-pixel values, or from the two surrounding horizontal or vertical crosses.
In the sequel, we will use the first option and average the four surrounding
full-pixel grid values to obtain the desired pixel valued on the ���� positions.

The computational complexity of a single vector refinement depends on the
block size. Table B.3 gives an overview of the computational complexity
for � sized blocks.

Description Amount
additional block compares �
retrieving additional blocks (��) �� � � adds � � � shifts
for blocks with pixels on ���� � � � � � �� adds � shifts
for block with pixels on ���� � � � � � �� adds � shifts

Table B.3: Computational complexity of vector refinement per block.

B.4 Example configurations for motion estimation

ME algorithms can be compared by combining the aforementioned options
(block-matching criteria and vector refinement) into one particular configura-
tion. For comparing different configurations, the numbers of operations are
computed for the worst case based on a frame size of 	�� � �	� pixels, the
commonly used block size of ����� pixels and a search area of ����� pixels.
The computation of an addition, subtraction and an absolute value is weighted
as one operation and a multiplication is weighted as three operations. Shifts
and compares are not counted since these operations are a fraction of a com-
plete ME software implementation.

By referring to Equation (B.1), the above-given basis leads to �
 �	�� �
�	������ � ���
 ���� macroblocks to be processed and the refinement
cost equals ��
 �� � ���
 ���� operations. Table B.4 is based on these
numbers and presents the computational complexity for some configurations
(representing high, medium and low complexity) for ME of one frame (values
are rounded). The abbreviation * in the table stands for refinement. It has
been ignored, that off-frame search positions do not need to be processed. It
can be noticed that the type of the algorithm is decisive.

B.5 Statistics of real computational effort 169

Algo Block * �� � � ��� �� � � 1��

matcher

2DFS MSE yes ���	 M ��	� ops ���� M ops ���� G ops
2DFS MSE - ���� M ��	� ops - ���� G ops
1DFS SAD yes ���	 M 	�	 ops ���� M ops ���� G ops
1DFS SAD - ���� M 	�	 ops - ���� G ops
NTSS MiniMax yes ���� M ��� ops ���� M ops ���� G ops

Table B.4: Worst-case computational complexity expressed in operations
(ops) of different configurations of ME algorithms.

B.5 Statistics of real computational effort

Table B.4 above shows worst-case computational complexity of the ME al-
gorithms. In reality, when testing the algorithms on real video material, the
average number of block comparisons is obviously lower than in the worst
case. Besides the transition from worst-case to average conditions, we have
applied a number of measures to further reduce the computational effort of the
ME algorithms. These measures are as follows.

� The computation of an error measure can be aborted when the sub-total
of the computed error exceeds a previously found minimum (only pos-
sible for positive addends). This measure was used for all algorithms.

� To increase the probability that the previous approach can be applied,
MVs referring to positions around the zero vector should be computed
first if possible, since these vectors represent commonly occurring mo-
tion in video sequences. This was also used for all algorithms, but
mainly full-search algorithms are affected by this approach.

Table B.5 shows the statistics of the amount of operations (measured in Mil-
lion Operations Per Frame (MOPF)) needed to perform ME for three different
sequences. A remarkable reduction of the computational effort compared to
the worst-case situation can be observed (factor 3-4 less in several cases).

170 Computational complexity of ME algorithms

Algo * “Voit” “Girl” “Teeny”
a b c a b c a b c

2DFS - 585 535 105 297 306 74 1035 962 184
2DFS yes 600 545 110 311 315 78 1065 981 194
1DFS - 92 70 21 48 42 13 163 128 39
1DFS yes 106 80 26 61 51 18 193 147 48
TSS - 30 22 8 18 14 5 57 41 16
TSS yes 45 31 13 31 23 10 87 60 25
NTSS - 33 24 8 14 11 4 61 44 17
NTSS yes 47 34 13 27 20 9 91 63 26
BBGDS - 17 12 4 10 7 3 54 35 10
BBGDS yes 31 21 9 23 16 7 84 54 19
RME yes 38 26 11 34 23 11 40 27 12

Table B.5: Average statistics of the amount of Million Operations Per
Frame (MOPF) for different ME algorithms and video se-
quences (“a”, “b” and “c” stand for MSE, SAD and MiniMax,
respectively).

APPENDIXC
Reduced processing resolution

Current (programmable) video hardware architectures are based on a least 8-
bit data processing, which is exactly the commonly used resolution of one
sample per color component of the input video. The processing of single
bits is costly and not suitable for these architectures, because it would require
data rearrangement that is more costly than directly processing the original
resolution. However, if efficient single-bit processing is possible, it opens
another dimension for scaling the computational complexity of MPEG core
functions. This topic is briefly described in this appendix.

The data-rearrangement problem of bit-based processing in programmable ar-
chitectures can be solved with application-specific special memory interfaces
for bit-based access. Such memory interfaces may be based on serial-in-
parallel-out shift registers, but this is not further elaborated. In the following,
it is expected that solutions for the data-rearrangement problem of bit-based
processing exist and can be used. Based on this assumption, a complexity
scalable DCT and ME is presented in Section C.1 and C.2, respectively.

C.1 Scalable DCT based on bit-slices

C.1.1 Overview

In this section, a complexity scalable system is presented that computes the
DCT such that the video data is processed in bit slices. The system produces

172 Reduced processing resolution

meaninful intermediate results by first transforming the most significant bits
of a frame. These results are improved when more details of the remaining
bits become available. This is illustrated in the following.

In the definition of the 2-D DCT as given in Equation (2.1), the pixel val-
ues ���� 	� can be replaced by a summation of all ��� bits, from ���� 	����
(least significant bit) to ���� 	���������� (most significant bit), as shown below.

���� 	�

�������

���

���� 	���� � �� � ��� (C.1)

where the factor �� distinguishes between signed and unsigned values. This
factor is defined as follows.

��

�
���� if �
 ��� � � �, � is a signed value�
���� in all other cases�

Therefore, Equation (2.3) can be rewritten as

�������

���

�� � �� �
�
�	

� ����� ��	

�
� (C.2)

Equation (C.2) shows that the transformation of a picture block is processed
bit by bit, thus the DCT transforms 1-bit input values in each computation
step. For input resolutions of ��� bits, ��� computation steps are performed.
Each step processes a bit-slice of � �� bits for a 2-D DCT and bit-slices of
� bits for a 1-D DCT.

The bit-slice based computation is a technique that was used in [75] for the
implementation of a full �� � �� DCT computation. In this section, the ap-
proach is differently developed and is considered for complexity scalability.

C.1.2 Architecture

The concept of the bit-slice DCT leads to a simple hardware design that is pre-
sented in the following, using an �� � DCT as an example. The computation
of the �� � DCT is separated into two �� � DCTs by using the row-column
approach. In this case, each DCT has eight input samples, thereby limiting
the set of possible bit-slices to �

 ��� bit-slices. This means that the DCT
output of eight coefficients ���� depends on 256 different possible input values,

C.1 Scalable DCT based on bit-slices 173

8x1 block of
input samples

11010001

11001101

00001110

10011011

00011101

11100100

01001101

00010010

LUT

DCT
output

M
S

B

1
st

. . . 8
t h

Slices

adder
adder
adder
adder
adder
adder
adder
adder

2
5

6
x
8

p
re

-c
o

m
p

u
te

d
c
o

e
ff
ic

ie
n

ts

Input frame

Figure C.1: Bit-slice computation of an �� � DCT.

which can be stored in a look-up-table (LUT). When using the LUT, the com-
putation of the DCT reduces to a summation of LUT values, without requiring
multiplications. Figure C.1 depicts the LUT-based bit-slice DCT computation.
The architecture consists of three main parts, namely an interface for retriev-
ing bit-slices from memory, a LUT and an adder stage. The implementation
concept for these parts are outlined below.

Interface for retrieving bit-slices

This part can be more elegantly implemented with dedicated hardware, since
standard processors are usually not prepared for efficiently accessing several
values (in memory) and simultaneously retrieving single bits and subsequently
combining these bits to a bit-slice. As already mentioned, this problem can
be solved with parallel-in-serial-out shift registers. A more sophisticated so-
lution as used in [75] can replace immediately shifted-out data bits by new
input values, in order to obtain a continuous data flow and an optimal cache
utilization.

LUT

The LUT in this example has to generate eight output values for each bit-
slice (8-point DCT). The number of LUT entries is therefore �
 � �
 ����
entries. The bit-slices taken from the eight input samples are employed as the
address for accessing the values in the LUT. The size of the LUT is reduced
by exploiting the redundancy found in the LUT as follows. The outputs of the
LUT are the result of the 1-D DCT computation that is performed by a matrix
multiplication ������
 (see Equation (C.2)) for � � � � ���, where ���� is a

174 Reduced processing resolution

bit-slice of the input-data matrix. In this computation, a row of the matrix ����
is multiplied with a column of matrix �
. Because the matrix ���� contains
only zeros and ones, the multiplication is reduced to a summation. Due to
the periodicy of the cosine function, the arguments of the cosine matrix �
 as
defined in Equation (2.2), consist of eight different absolute values that occur
as positive and negative numbers in the matrix. Since the computation has
been reduced to a summation only, values regularly cancel each other, thereby
mapping different input data to the same output values. It has been found
that the possible mapping of input data reduced the number of required LUT
entries to 71 entries only. Further details are omitted here.

Adder stage

Evidently, this part can be implemented in software. However, since no in-
termediate results are necessary until the desired number of bit-slices is pro-
cessed, a more efficient solution can be implemented in hardware using back-
coupled carry-save-adders. Such adders provide extra registers for the carry
bits, thereby preventing immediate processing of these bits and thus minimiz-
ing the response time of the adder. The basic architecture of back-coupled
carry-save-adders is shown in Figure C.2.

SumSumData

Clock

CoutCin n

nn

n

Array
of

1-bit
adders Carry

Figure C.2: Basic architecture of back-coupled carry-save-adders.

Implementation with pipelining

For high throughput and continuous data flow, the aforementioned parts of the
bit-slice DCT computation can all be implemented with a pipelined hardware
architecture, thereby allowing multiple computations in parallel. A novel ar-
chitecture for high-throughput pipelining at low cost, which is applicable for

C.1 Scalable DCT based on bit-slices 175

bit-sliced DCT computation, is presented in [76]. As shown in [77, 78], this
architecture can also be used for ring structures, and it is therefore feasible
for the adder stage shown in Figure C.1 and C.2. In a performance-oriented
implementation with pipelining as suggested above, the � � � DCT output
depends on the number ��� of bit-slices processed. Eight output samples
would be available with a data rate of �������, where ��� is the latency of
one pipeline stage.

C.1.3 Experimental results

An experiment has been set-up by concatenating two 1-D DCTs to a 2-D DCT
using the row-column approach. In this configuration, the two 1-D DCTs
use a different bit-resolution for the input data. The first 1-D DCT uses an
8-bit unsigned integer and outputs a 12-bit signed integer format, which is
subsequently processed by the second 1-D DCT. In this experiment, a perfect
IDCT is used to reconstruct the picture.

Figure C.3 shows the PSNR of the reconstructed picture “Circle”, where a
different number of bits was processed in the first and the second 1-D DCT.
The marked path shows the maximum PSNR for a given number of compu-

12 11 10 9 8 7 6 5 4 3 2 1
1

4

7
0,00

10,00

20,00

30,00

40,00

50,00

60,00

P
S

N
R

[d
B

]

#bits 2nd 1-D DCT

#bits 1st

1-D DCT

50-60

40-50

30-40

20-30

10-20

0-10

3

6

8

5

2

Figure C.3: PSNR results of processing the “Circle” picture in bit-slices.

176 Reduced processing resolution

tation steps (equal to the number of processed bit-slices). It can be seen that
the number of computation steps available for a given complexity should be
evenly spread over both DCTs, however with an offset of 3-4 bits additional
resolution for the second 1-D DCT.

Figure C.4 shows some examples of the reconstructed pictures taken at certain
points in the computation path that is shown in Figure C.3. In the figure, the
index � � stands for � processed bit-slices in the first 1-D DCT and
processed slices in the second 1-D DCT. It can be seen that the content of
the picture can be identified using only a few computations, where details are
visible after roughly half of the overall DCT computation, when using this
approach.

C.2 Bit-based computation of ME

C.2.1 Simply reduced bit-resolution of input values

In this section, we study a reduced bit-resolution of the input samples for mo-
tion estimation, in order to decrease the computational complexity, leading to
e.g. faster processing or less power consumption. The following experiment
indicates the change in prediction quality of the ME process. In the experi-
ment, the 8-bit input values for the ME process are reduced in bit-resolution
by simply skipping a number of their least significant bits. Figure C.5 shows
the result when processing the “Voit” sequence with a 2DFS motion estima-
tor that includes motion-vector (MV) refinement to half-pixel accuracy. The
MSE was used as block-matching criterion. The bottom curve of the figure
results from processing zero values (all bits skipped), which represents the
absence of motion estimation. From the other curves in the figure, it can be
seen that no serious video quality decrease occurs up to roughly halved input
ME resolution. The dashed curve results from skipping 6 bits, thereby leaving
a two-bit resolution, which results in a stronger but still acceptable decrease
of the prediction quality in this experiment.

C.2.2 One-Bit Motion Estimation (1BME)

The 1BME presented in [79] is a preprocessing step for other ME algorithms.
The aim of 1BME is to transform input frames, using a convolution, into a
format that represents one sample with a single bit. The preprocessing is
outlined in Figure C.6.

C.2 Bit-based computation of ME 177

1-1 2-4

3-6 3-7

4-8 8-12

Figure C.4: Examples of reconstructed pictures using a bit-slice DCT com-
putation (first (second) number is the number of bit-slices in the
first (second) DCT).

178 Reduced processing resolution

19

20

21

22

23

24

25

26

27

28

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

frame number

P
S

N
R

[d
B

]

bitstoskip 0

bitstoskip 1

bitstoskip 2

bitstoskip 3

bitstoskip 4

bitstoskip 5

bitstoskip 6

bitstoskip 7

bitstoskip 8

Figure C.5: PSNR of the motion compensated frames of the “Voit” sequence
when reducing the processing bit-resolution.

One-Bit
Transform

One-Bit
Transform

M
o

ti
o

n
E

s
ti
m

a
ti
o

n

Figure C.6: Preprocessing step of the 1BME applied to motion estimation.

C.2 Bit-based computation of ME 179

To indicate the performance of 1BME, an experiment is set up in which the
ME is reduced to 1-bit processing, while the motion compensation is kept at
the original resolution. Two different ME algorithms are evaluated: 2DFS
and simple RME. The 2DFS is used with MSE as block-matching criterion
and a refinement to half-pixel accuracy, because this gives the best quality.
The search range is �� � �� pixels and the algorithm stops a vector evalu-
ation when its intermediate acummulated error exceeds a previously found
value. The simple RME uses SAD as block-matching criterion and half-pixel
accuracy, because this gives a good trade-off between achieved quality and
computational complexity. The computation complexity of the ME algorithm
(without preprocessing) is potentially reduced by a factor �, because �-bit
operations are replaced by �-bit operations. It was found that the 1BME tech-
nique increases the measured number of required vector evaluations by for ex-
ample ���, when using full search. A speed-up factor of roughly between 5
and 6 is thus more realistic.

Figure C.7 shows the result of the experiment when using the “Voit” sequence.
The reduction of prediction quality is acceptable in comparison to the reduced
factor 5-6 in computational complexity. However, the transformation to 1-bit
resolution should not involve more operations than the number of operations
that can be saved. In this example, we found that this transformation per block
is equally complex as approximately 9 SAD computations, which makes this
approach useless for algorithms that perform less than 10 block-comparisons
per macroblock.

180 Reduced processing resolution

18

19

20

21

22

23

24

25

26

27

28

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

frame number

P
S

N
R

[d
B

]

2DFS, MSE, halfp.

2DFS, MSE, halfp. 1BME

RME, SAD, halfp.

RME, SAD, halfp. 1BME

none; just difference

Figure C.7: Effect of 1BME preprocessing on the prediction quality of two
ME algorithms.

APPENDIXD
Test sequences

This appendix briefly describes the test sequences that have been used for the
experiments in this thesis.

D.1 “Girl”

Figure D.1: The “Girl” sequence.

The “Girl” sequence (see Figure D.1) has standard-definition (SD) resolution
and shows two girls clapping their hands and a round picture-in-picture show-
ing a playing girl. For motion-estimation (ME) experiments, the sequence
was chosen as an example of a static scene with some slight local motion
only. The background curtain moves half a pixel on the right side and the

182 Test sequences

girls’ bodies show little motion. The train and the clapping hands of the girls
are the only objects that move faster. For DCT experiments, the sequence was
not considered.

D.2 “Voit”

Figure D.2: The “Voit” sequence.

The “Voit” sequence (see Figure D.2) has SD resolution and shows a scene
with a car passing a gate that is closing behind it. For ME experiments, the
sequence was chosen as an example of medium motion. The car and the gate
in the background move in different directions. The main movement direction
of the gate is along the �-axis (from left to right), while the car moves along
the 3-axis (from back to front), while slightly turning to the right. For DCT
experiments, the sequence provides a mixture of high and low spatial activity
(grass and street) and clear edges with the gate and the car.

D.3 “Teeny”

Figure D.3: The “Teeny” sequence.

D.4 “Renata” 183

The “Teeny” sequence (see Figure D.3) has SD resolution and shows a teenaged
girl turning her head suddenly. For ME experiments, the sequence was cho-
sen as an example of high motion. The girl turns her head very fast around the
�-axis. The girl’s hair has a complex structure, which is smoothed by the fast
motion. This makes it almost impossible to find reliable motion vectors. For
DCT experiments, the sequence was not considered.

D.4 “Renata”

Figure D.4: The “Renata” sequence.

The “Renata” sequence (see Figure D.4, also SD resolution) portrays a woman
walking in front of a static background. For ME experiments, the sequence
provides mostly constant motion of the objects. DCT experiments were con-
ducted to evaluate the quality of the texture details in the calendar, the wall
carpet, the scarf and the woman’s face.

D.5 “Stefan”

Figure D.5: The “Stefan” sequence.

184 Test sequences

The “Stefan” sequence (see Figure D.5) has CIF resolution and shows a tennis
scene, where the camera tracks one player. For ME experiments, the sequence
was chosen as an example having a mixture of different types of motion. The
sequence contains mainly camera motion, including pan and zoom. At a cer-
tain point, the camera does not move, e.g. when the player is returning a ball
that came nearby. Some motion occurs when he is awaiting the next ball,
and fast motion occurs in a situation where the player has to catch a ball that
is further away. For DCT experiments, the sequence provides a mixture of
texture details (the player and text), high and low activity (tribune and court,
respectively), as well as clear edges (lines of the court).

D.6 “Foreman”

Figure D.6: The “Foreman” sequence.

The “Foreman” sequence (see Figure D.6) has CIF resolution and shows a
foreman on a construction site. For ME experiments, the sequence provides
some complex motion. The foreman has been recorded with a handheld cam-
era, causing permanent low motion in various directions. In addition, the
foreman is quickly turning his head, covering a main part of the display. At
the end, the sequence contains a fast pan from the foreman to the construction
site. For DCT experiments, the sequence provides some fine details (e.g. face
and trees) as well as some strong edges (building in the background).

D.7 “Table tennis”

The “Table tennis” sequence (see Figure D.6) has CIF resolution and shows
a scene from a table-tennis match. For ME experiments, the sequence pro-
vides a short zoom at the beginning and a scene change. Besides these two
situations, the camera is static and the active players cover only a part of the

D.7 “Table tennis” 185

Figure D.7: The “Table tennis” sequence.

display, overall resulting in slow motion, except for the ball and the arms. For
DCT experiments, the sequence mainly provides strong edges (lines on the
table) and flat areas (the table itself). The visibility of the fine details in the
background depends on the camera zoom-factor.

186 Test sequences

Summary

This thesis concentrates on designing a scalable MPEG encoding system, fea-
turing scalable video quality and a corresponding scalable resource usage.
This feature is called complexity scalability and enables MPEG encoding
either on platforms having limited capabilities (computing power, memory,
stand-by-time, etc.), and/or in parallel to various applications on the same
platform, as motivated in Chapter 1. State-of-the-art MPEG algorithms do
not provide scalability, thereby hampering e.g. low-cost solutions for portable
devices and varying coding applications in multi-tasking environments. The
MPEG coding standard employs two complex function blocks, i.e. the Dis-
crete Cosine Transformation (DCT) and the Motion Estimation (ME), which
were redesigned for scalability. The remaining blocks such as quantization
and coding were adapted in order to cooperate fluently within our scalability
concept.

The DCT transforms picture blocks into DCT-coefficient blocks in the trans-
form domain for an efficient picture representation. Chapter 2 discusses the
mathematical background of the DCT and compares a number of state-of-the-
art fast DCT algorithms that have attractive properties for soft- and hardware
implementations. Subsequently, two DCT algorithms are taken as case stud-
ies for developing complexity scalable DCT. Chapter 3 presents a scalable
DCT computation that determines a scalability-optimized computation order
for DCT coefficients, such that the amount of computed coefficients is opti-
mized for a constrained number of computing cycles. Experiments show a
clear visible improvement in picture quality (readability and sharpness) of the
scalable DCT when compared with a conventional DCT implementation, if
the computation effort is for example limited to half of the normal effort.

The purpose of ME is to compute motion vectors (MVs) for removing tempo-
ral redundancy via motion-compensated prediction. In Chapter 4, we study a
set of fast ME algorithms. Recursive ME, employing previously found MVs

188 Summary

for neighboring data as an estimate for new data, forms a particularly efficient
state-of-the-art solution and was therefore taken as a basis for further research.
In Chapter 5, we have explored two new techniques for complexity scalability
of the ME process. The first technique approximates the MPEG MV fields
based on an initial low-cost ME with the video frames at the entrance of the
encoder. Full-quality motion search is obtained with an optional refinement
of those vector fields. Scalability in this ME system, called SMART, is ob-
tained by varying the number of processed vector fields. SMART also applies
new concepts, like multi-vector-field estimation and advanced scaling of vec-
tor fields. The second ME technique is called CARES and is based on block
classification, which concentrates the computation effort to blocks contain-
ing edges that leads to accurate ME. Compared to state-of-the-art recursive
ME algorithms, CARES reduces the set of motion-vector candidates that are
evaluated by distributing good vectors for evaluation to other blocks, thereby
preventing re-evaluation of identical MVs. Scalability is obtained by varying
the classification strength, leading to a varying number of vector evaluations
that are performed per block. The described techniques for ME proved to offer
a large range of scalability of the ME computation process.

Finally, the developed techniques were integrated into a fully scalable MPEG
encoder framework, including quantization and MPEG-2 compatible coding.
The performance of the scalable encoding system is compared to regular state-
of-the-art MPEG-2 encoders in Chapter 6. The scalable DCT has impacts on
functions of the MPEG coding system that process DCT coefficients. These
functions can be scaled accordingly to the DCT by adapting to the reduced
number of computed coefficients. The scalable ME affects the number of eval-
uated MV candidates, but not the motion compensation or the VLC coding of
MVs. The key scalability parameters that we found are therefore the number
of computed DCT coefficients and the number of motion-vector evaluations.

Chapter 7 concludes that the obtained complexity scalability results in new
coding algorithms, which differ from conventional MPEG encoding design.
The memory usage and the processing load depend on the quality level of the
processing blocks. The resulting scalable MPEG encoder offers a wide range
of complexity scalability, video quality and compression rates. The obtained
scalability range of our scalable encoder in terms of computational complex-
ity is about a factor of three, whereas a non-scalable parameterized MPEG
encoder has a factor of about 1-1.5. The developed scalability techniques can
be readily applied in portable MPEG coding systems and may well be used in
new coding standards such as MPEG-4 and H.264.

Samenvatting

Dit proefschrift behandelt het ontwerpen van een schaalbaar MPEG code-
ringssysteem met een schaalbare beeldkwaliteit en een daarmee correspon-
derend schaalbaar gebruik van rekenkracht. Dit concept wordt schaalbare
complexiteit genoemd en maakt MPEG coderen mogelijk op zowel platfor-
men met beperkte rekencapaciteit (rekenkracht, geheugen, gebruikstijd, enz.),
als in combinatie met verschillende toepassingen op hetzelfde platform (zie
hoofdstuk 1). De huidige MPEG algoritmen zijn niet schaalbaar, waardoor
bijvoorbeeld goedkope oplossingen voor draagbare apparatuur of dynami-
sche coderingstoepassingen in omgevingen met veel parallelle taken, wor-
den belemmerd. De MPEG coderingsstandaard bevat twee complexe func-
tieblokken, namelijk de Discrete Cosinus Transformatie (DCT) en de Bewe-
gingsschatting (BS), welke beide voor schaalbaarheid opnieuw werden ont-
worpen. De resterende functies zoals die voor quantisatie en codering werden
aangepast, zodat ze goed met de schaalbaarheid konden omgaan.

De DCT transformeert blokken uit een beeld naar blokken met DCT coëf-
ficiënten in het transformatiedomein om een efficiënte representatie van het
beeld te krijgen. Hoofdstuk 2 bespreekt de wiskundige achtergrond van de
DCT en vergelijkt een aantal moderne snelle DCT algoritmen met aantrekke-
lijke eigenschappen voor soft- en hardwarerealisaties. Vervolgens worden
twee DCT algoritmen gekozen voor het ontwikkelen van een in complexi-
teit schaalbare DCT. Hoofdstuk 3 presenteert een schaalbare DCT berekening
gebaseered op een optimalisatie van de berekeningsvolgorde van DCT coëf-
ficiënten, hetgeen betekent dat de hoeveelheid berekende coëfficiënten voor
een gelimiteerd aantal berekeningscycli wordt geoptimaliseerd. Experimenten
met een schaalbare DCT geven een duidelijk zichtbare verbetering in beeld-
kwaliteit (leesbaarheid en duidelijkheid) vergeleken met een conventionele
DCT uitvoering; dit geldt wanneer de berekeningsinspanning tot bijvoorbeeld
de helft van de nominale (niet schaalbare) inspanning wordt beperkt.

190 Samenvatting

Het doel van bewegingsschatting (BS) is om bewegingsvectoren (BV) te be-
rekenen voor het verwijderen van redundantie in de tijdsrichting met bewe-
gingsgecompenseerde predictie. Hoofdstuk 4 bestudeert een aantal snelle BS
algoritmen. De recursieve vorm van BS, die eerder gevonden bewegings-
vectoren voor naburige datablokken als een schatting voor nieuwe datablokken
gebruikt, is een moderne efficiënte oplossing en werd daarom als basis voor
verder onderzoek genomen. In hoofdstuk 5 zijn twee nieuwe technieken on-
derzocht voor een in complexiteit schaalbare bewegingsschatting. De eerste
techniek benadert de MPEG BV velden, gebaseerd op een eerste goedkope be-
wegingsschatting die gebruik maakt van videobeelden aan de ingang van de
encoder. De volledige kwaliteit van de bewegingsschatting wordt verkregen
met een aanvullende facultatieve verbetering van die vectorvelden. Schaal-
baarheid in dit BS systeem, SMART genoemd, wordt door het variëren van
het aantal bewerkte vectorvelden bereikt. SMART past ook nieuwe begrip-
pen toe, zoals veelvoudige vectorveld schatting en verbeterde schaalbaarheid
van vectorvelden. De tweede BS techniek wordt CARES genoemd en is
gebaseerd op een blokrangschikking, die de berekeningsinspanning concen-
treert op blokken die sterke signaalovergangen bevatten, wat tot een nauw-
keurige BS leidt. In vergelijking met recente recursieve BS algoritmen ver-
mindert CARES het aantal bewerkte kandidaat bewegingsvectoren. Dit komt
door het verdelen van goede vectoren aan andere blokken voor bewerking, zo-
dat een herhaalde bewerking van identieke bewegingsvectoren wordt verme-
den. Schaalbaarheid wordt bereikt door de mate waarin blokken veranderlijk
worden gerangschikt; dit leidt tot een variabel aantal vectorbewerkingen die
per blok wordt verricht. De beschreven technieken voor BS hebben bewezen
dat een groot bereik in schaalbaarheid van het BS proces wordt verkregen.

Tenslotte worden de ontwikkelde nieuwe technieken in een compleet schaal-
baar MPEG coderingssysteem geïntegreerd, inclusief quantisatie en codering
die compatibel is met MPEG-2. De performance van het schaalbare code-
ringssysteem wordt in hoofdstuk 6 met recente MPEG-2 encoders vergeleken.
De schaalbare DCT heeft vooral invloed op de functies van het MPEG code-
ringssysteem die DCT coëfficiënten bewerken. Deze functies kunnen net als
de DCT aangepast worden aan het gereduceerde aantal berekende DCT coëffi-
ciënten. De schaalbare bewegingsschatting verandert het aantal bewerkte kan-
didaat bewegingsvectoren, maar niet de bewegingscompensatie of het VLC
coderen van bewegingsvectoren. De belangrijkste gevonden parameters voor
schaalbaarheid zijn daarom: het aantal berekende DCT coëfficiënten en het
aantal bewerkte bewegingsvectoren.

Samenvatting 191

Hoofdstuk 7 concludeert dat de bereikbare schaalbaarheid in complexiteit re-
sulteert in het ontwerpen van nieuwe coderingsalgoritmen, die van conven-
tionele ontwerpen voor MPEG codering verschillen. Het geheugengebruik en
de benodigde rekenkracht hangen af van de kwaliteitsinstelling van de sig-
naalbewerkende functies. De resulterende schaalbare MPEG codering biedt
een groot bereik van schaalbaarheid in complexiteit, beeldkwaliteit en com-
pressiefactoren aan. Het schaalbare bereik van het voorgestelde coderingssys-
teem uitgedrukt in rekencomplexiteit is meer dan een factor drie, terwijl een
niet-schaalbare MPEG codering met variabele parameterinstellingen een fac-
tor 1-1,5 heeft. De ontwikkelde technieken voor schaalbaarheid kunnen direct
in mobiele MPEG coderingssystemen worden toegepast. Daarnaast zijn ze
goed bruikbaar voor nieuwe coderingsstandaarden zoals MPEG-4 en H. 264.

192 Samenvatting

Zusammenfassung

Diese Arbeit befaßt sich mit der Entwicklung eines skalierbaren MPEG-Co-
dierungssystems, das sich durch skalierbare Bildqualität und einem entspre-
chenden skalierbaren Berechnungsaufwand auszeichnet. Dieses Konzept wird
skalierbare Komplexität genannt und ermöglicht die MPEG-Codierung auf
Plattformen mit begrenztem Leistungsvermögen (Rechenleistung, Speicher,
Bereitschaftszeit, usw.), und/oder in Kombination mit verschiedenen Anwen-
dungen, die auf der gleichen Plattform laufen (siehe Kapitel 1). Heutige
MPEG-Algorithmen sind nicht skalierbar und behindern dadurch z.B. die En-
twicklung preiswerter Lösungen für mobile Geräte oder für dynamische Co-
dierungsanwendungen in Systemen, die viele Aufgaben parallel ausführen.
Der MPEG-Codierungsstandard beinhaltet zwei komplexe Funktionsblöcke,
nämlich die Diskrete Cosinus Transformation (DCT) und die Bewegungs-
schätzung (BS), die beide zu Skalierungszwecken neu entworfen wurden. Die
restlichen Module, wie zum Beispiel die Quantisierung und die Codierung,
wurden angepaßt, damit sie gut in ein skalierbares System passen.

Die DCT transformiert Bildblöcke in Blöcke aus DCT-Koeffizienten, welche
eine effiziente Repräsentation eines Bildes ermöglichen. Kapitel 2 stellt den
mathematischen Hintergrund der DCT dar und vergleicht eine Auswahl mo-
derner Algorithmen zur schnellen DCT-Berechnung, die interessante Eigen-
schaften für Software- und Hardwarerealisierungen haben. Anschließend wer-
den zwei DCT-Algorithmen für die Entwicklung einer skalierbaren DCT aus-
gewählt. In Kapitel 3 wird eine skalierbare DCT-Berechnung präsentiert, die,
basierend auf der Anzahl von Operationen, eine optimierte Berechnungsrei-
henfolge für DCT-Koeffizienten ermittelt. Daraus folgt eine optimierte An-
zahl von berechneten Koeffizienten, die für eine eingeschränkte Anzahl von
Berechnungsschritten erreicht wird. Die skalierbare DCT zeigt in Experi-
menten im Vergleich mit einer konventionellen DCT-Berechnung eine deut-
lich sichtbare Verbesserung der Bildqualität (Leserlichkeit und Bildschärfe),

194 Zusammenfassung

wenn der nominale (nicht skalierbare) Berechnungsaufwand beispielsweise
halbiert wird.

Das Ziel der Bewegungsschätzung (BS) ist es Bewegungsvektoren (BV) zu
berechnen, mit deren Hilfe bewegungskompensierte Bildvorhersagen erstellt
werden, die zur Entfernung der in Videosequenzen enthaltenen zeitlichen Re-
dundanz dienen. In Kapitel 4 wird eine Auswahl von schnellen BS-Algo-
rithmen verglichen. Die rekursive Form der BS, welche bereits vorher ge-
fundene Bewegungsvektoren von angrenzenden Datenblöcken als eine Vek-
torschätzung für neue Datenblöcke verwendet, ist eine moderne und effiziente
Lösung und formte daher die Basis für weitere Untersuchungen. In Kapitel 5
werden zwei neue Verfahren zur skalierbaren Bewegungsschätzung erarbeitet.
Das erste Verfahren nähert die MPEG-BV-Felder basierend auf einer ersten
preiswerten Bewegungsschätzung an, welche die Videobilder am Encoderein-
gang verwendet. Die vollständige Qualität der Bewegungsschätzung wird mit
einer optionalen Verfeinerung der Vektorfelder erreicht. Die Skalierbarkeit in
diesem BS-System, genannt SMART, wird durch eine veränderliche Anzahl
der verarbeiteten Vektorfelder erreicht. SMART verwendet dabei auch neue
Verfahren, wie eine auf mehreren Feldern basierende Vektorfeldschätzung
und eine verbesserte Skalierung von Vektorfeldern. Das zweite Verfahren
zur skalierbaren Bewegungsschätzung wird CARES genannt und basiert auf
Blockklassifizierung, die den Berechnungsaufwand auf Blöcke mit starken
Signalübergängen konzentriert und damit zu einer genaueren Bewegungs-
schätzung führt. Verglichen mit modernen rekursiven BS-Algorithmen, ver-
ringert CARES die Anzahl der verarbeiteten Vektorkandidaten durch die Wei-
tergabe von guten Vektoren zur Verarbeitung an andere Blöcke, wodurch eine
wiederholte Verarbeitung von identischen Vektoren verhindert wird. Die Ska-
lierbarkeit wird durch die Änderung der Klassifizierungsstärke erreicht, was
zu einer variablen Anzahl von Vektorkandidaten führt, die pro Datenblock
verarbeitet werden. Es wurde gezeigt, daß die beschriebenen Verfahren zur
Bewegungsschätzung eine weitreichende Skalierung des BS-Prozesses ermög-
lichen.

Abschließend wurden die neu entwickelten Verfahren, inklusive der Quan-
tisierung und der MPEG-2 kompatiblen Codierung, in ein vollständig skalier-
bares MPEG-2-Codierungssystem integriert. Die Leistung des skalierbaren
Codierungssystems wird in Kapitel 6 mit modernen MPEG-2-Encodern ver-
glichen. Die skalierbare DCT zeigt vor allem Auswirkungen auf jene Funktio-
nen des MPEG-Codierungssystems, die DCT-Koeffizienten verarbeiten. Diese
Funktionen können ähnlich wie die DCT an eine verringerte Anzahl von be-

Zusammenfassung 195

rechneten Koeffizienten angepaßt werden. Die skalierbare Bewegungsschät-
zung verändert die Anzahl der verarbeiteten BV-Kandidaten, nicht aber die
Bewegungskompensierung oder die VLC-Codierung der Bewegungsvektoren.
Die wichtigsten gefundenen Parameter zur Skalierbarkeit sind daher: die An-
zahl der berechneten DCT Koeffizienten und die Anzahl der verarbeiteten BV-
Kandidaten.

In Kapitel 7 wird die Schlußfolgerung gezogen, daß die erreichte Skalier-
barkeit der Komplexität neue Codierungsalgorithmen hervorbringt, die vom
konventionellen Entwurf der MPEG-Codierung abweichen. Die Speicherver-
wendung und der notwendige Berechnungsaufwand hängen von den Quali-
tätseinstellungen der signal-verarbeitenden Module ab. Die entwickelte ska-
lierbare MPEG-Codierung ermöglicht eine weitreichende Skalierbarkeit in
punkto Komplexität, Bildqualität und Kompressionsraten. In Hinsicht auf
die Komplexität des Berechnungsaufwands erzielt der Skalierungsbereich des
vorgestellten skalierbaren Codierungssystems einen Faktor von ungefähr drei,
während eine nicht-skalierbare MPEG-Codierung mit variablen Parameter-
einstellungen einen Faktor von ungefähr 1-1,5 hat. Die entwickelten Ver-
fahren zur Skalierbarkeit können direkt in mobilen MPEG-Codierungssyste-
men verwendet werden. Weiterhin sind die Verfahren für neue Codierungs-
standards, wie beispielsweise MPEG-4 und H.264, geeignet.

Acknowledgments

This thesis is based on research that I performed first at the University of
Mannheim, Germany, and later at the Eindhoven University of Technology,
The Netherlands. The conducted research was part of a larger cooperation
framework with Philips Research Labs. in Eindhoven. Because of the good
connections between my promoter Peter de With and Philips, I had the oppor-
tunity to perform scientific research on industrially relevant topics. Thanks to
Peter for his endless support, encouragement and enthusiasm during all these
years.

The research project I was involved in at Philips was supervised by my copro-
moter Christian Hentschel, whom I owe thanks not only for showing confi-
dence in me by contributing to the major funding of my research, but also for
providing fruitful discussions on scalable systems and valuable recommenda-
tions on other topics. Thanks to the University of Mannheim and the Philips
Research management for their funding.

I thank my second promoter Inald Lagendijk for the new insights he gave me
about my work and for his attempt for speeding up the review process.

Special thanks to Dirk Farin, who joined the University of Mannheim shortly
after me, for all his help, input and regular fruitful discussions on video coding
issues. During the moving to Eindhoven, many of my colleagues and friends
in Mannheim and Eindhoven gave a hand that allowed a quick settle down.
I really appreciate their help that made things easier. Thank goes to my parents
who made my study at the Technical University of Darmstadt possible and
thereby enabled me to work in research as I’m doing now. Big hugs to my
family for their support and the missed hours I spent on working on this thesis
and could not share with them.

Biography

Stephan Mietens was born in Frankfurt/Main, Ger-
many, in 1972. He graduated in computer science
from the Technical University of Darmstadt, Ger-
many, in 1998 on the topic of "Asynchronous VLSI
design". Subsequently, he joined the University of
Mannheim, where he started his research on "Flexi-
ble Video Coding and Architectures" in cooperation
with Philips Research Laboratories in Eindhoven,
The Netherlands. He joined the Eindhoven Univer-
sity of Technology in Eindhoven, The Netherlands,
in 2000, where worked towards a Ph.D. degree on

"Scalable Video Systems". In 2003 he joined the Philips Research Laborato-
ries, where he is involved in projects developing new video coding techniques,
and in the same year, he became project leader of one of these projects.

STELLINGEN

behorende bij het proefschrift

Complexity Scalable
MPEG Encoding

door

Stephan Oliver Mietens

I
The number of computed DCT coefficients is a key parameter for
MPEG scalability, because it controls the computational complexity of
almost all coding functions in the prediction loop of an encoder.

Chapter 6 of this thesis.

II
The number of evaluated motion vectors is a key parameter for MPEG
scalability, because its number is varied at different abstraction levels of
motion estimation.

Chapter 5 of this thesis.

III
As opposed to the full DCT computation where the actually used al-
gorithm has a minor influence on the video quality, the underlying fast
DCT algorithm for scalable DCT computation should be carefully se-
lected for optimizing the obtained quality under computation limita-
tions.

Chapter 3 of this thesis.

IV
Despite the research effort in motion estimation during the last decades,
it was not found that approximations of motion-vector fields at the GOP-
structure level, as performed by SMART, enables a broad range for trad-
ing off motion-compensated frame prediction quality against the num-
ber of performed vector evaluations.

Chapter 5 of this thesis.

V
Whereas modern recursive motion-estimation algorithms base their pre-
diction on motion vectors of previously processed blocks, the CARES
algorithm discloses the selected motion vector of the actual block in the
opposite way to previously processed (and near future) blocks, which
leads to a further reduced number of vector evaluations.

Chapter 5 of this thesis.

VI
The reason why the MPEG scalability proposals as introduced with the
MPEG-2 specification have not been applied in practical systems, can
be found in the additional computational complexity required when per-
forming video coding according to these proposals.

VII
When taking the peak-signal-to-noise ratio (PSNR) as quality measure,
it should be considered that the relative visual improvement of the pic-
ture quality per unity dB of gain in PSNR is inversely proportional to
the absolute measured PSNR value. This means that a unity dB gain in
PSNR adds relatively more to the visual quality at the lower part of a
quality range than at its higher part.

Chapter 3 of this thesis.

VIII
The use of complexity scalable algorithms for streaming multimedia
data over networks will improve the quality for noisy channels and the
operation robustness, which leads to an improved uptime of the net-
work.

IX
Efficient video compression over time results from both adapting the
video coding standards to the video content and vice versa.

X
If a picture says more than a 1000 words, a film displaying at 24 pictures
per second says more than 24,000 words per second.

XI
Although dust and mechanical computer mouses are enemies, an optical
mouse is probably the only electronic device that benefits from dust on
the surface on which it is used.

XII
When comparing the research efforts of computer scientists in minimiz-
ing redundant memory accesses in algorithmic design and the required
high amount of redundant repetitions during the education of children,
it should not be concluded that education of children is an unsuitable
task for computer scientists.

XIII
With the widespread use of language translation programs, the work of
professional translators contains more verification than translation.

XIV
The basic MPEG-2 coding concept applying I-, P- and B-frames, can
be similarly applied to the initial learning of a foreign language.

	Contents
	1 Introduction
	2 Discrete cosine transformation
	3 Complexity scalable DCT computation
	4 Motion estimation
	5 Scalable motion estimation
	6 System experiments and enhancements
	7 Conclusions
	References
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	Summary
	Samenvatting
	Zusammenfassung
	Acknowledgments
	Biography
	STELLINGEN

