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Preface

The research presented in this thesis was conducted within the projects SiCAS and
ARDOR.

SiCAS (Sinusoidal Coding of Audio and Speech) was an STW funded project that
started in 1999 and ended in 2001. The objective was to develop a generic audio
coding system that could compete with application-optimized systems and that could
adapt to the input signal, user and other time-varying constraints. In this project the
following parties participated: Philips Research Laboratories, the Royal Institute of
Technology (KTH) in Stockholm and Delft University of Technology. SiCAS was
supported by Philips Research Laboratories and the Technology Foundation STW,
applied science division of NWO and the technology programme of the ministry of
Economics Affairs.

ARDOR (Adaptive Rate-Distortion Optimized sound codeR) was an European
Union funded project within the fifth framework that started in 2002 and ended in
2005. The objective was to meet the need for a universal codec as created by the emer-
gence of time-varying heterogeneous networks and by the convergence of traditional
consumer electronics with mobile communications. In this project the following par-
ties participated: Philips Research Laboratories, France Telecom R&D, Aalborg Uni-
versity (CPK), University of Hannover (TNT), Royal Institute of Technology (KTH)
and Delft University of Technology. ARDOR was supported by the E.U. grant no.
IST-2001-34095.

Within the SiCAS and ARDOR project, Delft University of Technology investi-
gated and developed rate-distortion optimal time-frequency decomposition algorithms
for transform coding. The results of this work are presented in this thesis.

O.A. Niamut, Delft, October 2006.





Summary

Perceptual audio coding has emerged as the de facto solution to cope with efficient
storage and transmission of digital audio. Standardized solutions are offered to con-
sumers worldwide, that perform satisfactory if properly employed. However, the re-
cent convergence of consumer electronics and mobile communication, and the emer-
gence of ubiquitous heterogeneous network environments with time-varying band-
width and delay constraints, put severe demands on the capabilities of the existing
solutions and on the user that has to select from a broad range of solutions. This
can easily lead to situations of application mismatch where an audio coding system is
employed outside the intended application range. New schemes are required that can
adapt to the conditions and constraints as imposed by the user and the network.

In this thesis we study several techniques and combinations thereof, that we consider
as suitable candidates for incorporation into new audio coding schemes. Rather than
to undertake the development of a complete audio coding scheme, we concentrate on
the signal processing aspects and interaction of these techniques, instead. In the first
part of the thesis, an overview is given of two techniques that can already be encoun-
tered in various digital signal coding schemes. These techniques serve as ingredients
for the algorithms that are presented in the second part.

First, we look at operational rate-distortion (RD) optimization. With operational RD
optimization, we seek to obtain the best achievable performance for coding an au-
dio signal, given the choice of compression framework or coding environment. In
this thesis we review the material on operational RD optimization, formulate the rate-
constrained bit allocation problem and study solutions for this problem. Here, we are
mostly interested in the interaction of such an RD optimization framework with the
time-frequency decomposition of the signal. This leads to a study of best basis search
algorithms and their combination with RD optimization.

In most audio coding schemes, the time-frequency decomposition is obtained using
the modified discrete cosine transform, or MDCT. Thus, we investigate various prop-
erties of the MDCT, such as the conditions for perfect reconstruction, window design
and fast algorithms. Moreover, we look at three distinct adaptive techniques that are
available for the MDCT in order to obtain nonuniform time-frequency decomposi-
tions.



iv

The main objective of the work presented in this thesis is to study the combina-
tion of an operational RD optimization framework with adaptive MDCT-based time-
frequency decomposition techniques. In the second part, new algorithms and experi-
mental results are presented for the three decomposition techniques, in the format of
scientific papers.

We start with an investigation of adaptive frequency decomposition. Subband merging
is employed to construct a nonuniform MDCT and dynamic programming is applied
for fast best basis searching. We show that the proposed algorithm can lead to gains
in SNR and subjective listening test. However, we observe that lossless coding of the
side information associated to the obtained decompositions leads to a high side infor-
mation rate and we conclude that this particular frequency domain approach does not
provide a performance increase that can justify the increase in complexity.

Next, we continue with adaptive time segmentation, where dynamic programming is
employed for best basis search and block switching for MDCT-based time segmenta-
tion. Three variations of the basic algorithm are constructed that cover a large range of
complexity trade-offs. The effects of varying window overlap are thoroughly studied
and we show that an optimal solution can be obtained in polynomial time. Further-
more, we directly compare a new audio coding system that incorporates our time seg-
mentation algorithm with MPEG-4 standardized coding systems and obtain equally
good or better listening test results for a large range of bit rates. A low-complexity
variant of this audio coding scheme shows a negligible performance loss.

We then turn back to frequency decomposition and study temporal noise shaping,
which employs linear prediction in the frequency domain. We combine temporal
noise shaping with RD optimization to control the order of the prediction filter and
the selection of quantizers. This leads to an efficient algorithm that outperforms an
existing method to control temporal noise shaping. Although the algorithm interferes
with the initial purpose of temporal noise shaping, the performance gain in terms of
rate-distortion behavior is significant.
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Chapter 1

Introduction

With the advent of the Compact Disc [50], the benefits of digital audio became avail-
able for the mass consumer. Audio in a digital format provides various advantages
over its analog counterpart, like the vinyl record [47] or magnetic tape [17], such as
improved audio quality, noise and error robustness, reproducibility and suitability for
post-processing operations. However, these advantages come at a price, since digital-
ization of audio signals inevitably incurres high data rates. While a CD can hold a fair
amount of data, recently arisen transport channels such as the Internet and portable
and fixed storage media strongly exposed the need for data reduction mechanisms.
Digital audio coding or compression techniques have risen to meet this need for lower
data rates. Indeed, digital coding of multimedia signals such as speech, music, im-
ages and video brought together the previously separate fields of information theory,
digital signal processing and psychology into a mix that resulted in arguably the most
successful practical applications known to these fields. Examples such as MP3, the
Sony MiniDisc and Dolby Digital are known and used all over the world.

When it comes to coding digital signals in general, Shannon’s seminal work on source
coding and rate-distortion (RD) theory [48] sets the initial framework for further study.
The theorems in his work provide us with general bounds on the minimum bit rate with
which to represent a signal at a certain fidelity. A perfect representation of a signal at
a lower rate can be achieved by lossless or entropy coding. Lossless coding applied
to audio signals in isolation does not deliver the compression rates that are necessary
for improved storage and transport, but it is often employed as part of an audio coding
framework. Of much more interest is the case of lossy coding, where the reproduction
fidelity or coding distortion can be traded for bit rate. Hence, we say that an audio
coding scheme tries to represent an audio signal at minimum or no distortion, given a
certain amount of bits.

While Shannon’s theorems hold for coding of digital signals in general, audio cod-
ing constitutes a rather special case. In order to achieve perceptual transparency
or minimum perceptual distortion, the incurred distortions should be compensated
for, or measured according to the human auditory system. This is where the psy-
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Figure 1.1: The generic perceptual audio encoder block scheme.

chologist steps in, since the field of psycho-acoustics, as documented thoroughly by
Zwicker [57] and Moore [33], studies auditory phenomena such as simultaneous and
temporal masking, critical bands and masking thresholds. The incorporation of this
knowledge into a digital audio coding scheme is generally considered a cornerstone
of the success of recent perceptual audio coding schemes.

The remaining parts necessary to implement an audio coding scheme come from the
field of digital signal processing, where techniques such as linear prediction, filter
banks, signal transformations and parametric descriptions are part of the audio coding
tool set [28]. Armed with such techniques we can formulate the generic audio coding
scheme depicted in Fig. 1.1. While the design of each block can have a profound
impact on the resulting coding performance, arguably the most important part in an
audio coder is the time-frequency analysis. It can be implemented in various manners
and a proper choice is critical for the performance of the audio coding scheme under
design. Most often, we encounter a multi-rate filter bank or discrete signal transform
here. In a recent overview on perceptual audio coding by Painter and Spanias [40],
several desirable filter bank characteristics 1 are enumerated as follows.

• The filter bank should provide a signal adaptive time-frequency tiling. In par-
ticular, it should be possible to employ a high-frequency resolution mode for
stationary signals and a low-frequency resolution critical band mode for tran-
sient signals [43]. Moreover, it should be possible to efficiently switch between
these and possibly other resolutions.

• The subband filters should posses strong stopband attenuation and provide good
channel separation. Additionally, the filters should have high time-domain over-
lap to ensure minimum blocking artifacts.

• In the absence of quantization, perfect reconstruction of the input signal should
be possible. The filter bank should be critically sampled to avoid an increase of
data samples. Fast algorithms for implementation of the filter bank should be
available.

1An equivalent list can be created in case of a signal transform.



1.1. Problem statement 3

A wealth of filter banks and signal transforms [31, 53, 56, 30] is made available to the
designer of an audio coding scheme, whereas only a few exhibit the desired properties
from the list above. While linear phase and pseudo-quadrature mirror filter banks [53]
are applicable in certain situations and where the short time Fourier, discrete cosine,
wavelet packet and local cosine transforms [30] each have their merits, we observe
and recognize that the cosine-modulated filter bank [29], and more specifically, the
modified discrete cosine transform [44, 31] (MDCT) has emerged as the most domi-
nant signal transform in current audio coding schemes.

This dominance of the MDCT can for instance be observed from the audio coding
schemes as standardized by the Motion Picture Expert Group (MPEG) of the Inter-
national Standardization Organization (ISO), such as MPEG-1 layer 3 [34] (”MP3”)
and MPEG-2/4 AAC [12, 35, 37] formats, and from Dolby AC-3 [1] (”Dolby Digi-
tal”) as standardized by the Advanced Television Systems Committee (ATSC). These
standards document today’s most popular and often applied audio coding schemes and
while the encoder implementation details typically vary heavily among the schemes,
they all rely on the MDCT for time-frequency analysis.

1.1 Problem statement

The existing audio coding schemes provide a seemingly adequate performance and
are widely employed. However, the ongoing change in storage media and transmis-
sion channels demands ever increasing performance and new behavior of audio coding
systems. With the work presented in this thesis, the author hopes to make a contribu-
tion towards solving two specific issues that can be encountered on the road towards
new and improved audio coding schemes.

Firstly, we realize that Shannon’s source coding theorems provide us with perfor-
mance bounds but not the means to achieve those bounds. Furthermore, the incor-
poration of psychoacoustics into audio coders complicates the original source coding
problem since a valid and robust perceptual distortion measure is generally hard to
obtain. Hence, we observe that, while theoretically the solution to the audio coding
problem can be found in Shannon’s work, other more heuristic approaches are often
taken in practice. While this can still result, and clearly has resulted, in some highly
efficient coding schemes, it becomes increasingly difficult to evaluate and compare
the various schemes amongst each other. Thus far, new source coding results from
information theory and novel heuristic approaches taken in perceptual audio coding
have been proposed side by side. A crucial development in combining these two
worlds is observed in the article on best wavelet packet bases by Vetterli and Ram-
chandran [45]. There, the application of operational RD optimization for transform
coding of multimedia signals is presented. The use of operational RD optimization
provides achievable and optimal results for a given coding environment. As such, we
arrive at a situation were we indeed solve the original problem of minimizing a per-
ceptually relevant distortion measure given a certain target rate.
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Secondly, many existing coding schemes have been developed with a particular ap-
plication area and range in mind. An example is the audio part of the MPEG-4 stan-
dard [37], in which a bouquet of audio coding schemes is defined for a variety of
signals and bit rates. This requires an explicit user selection of the appropriate codec
for a particular situation. While excellent results can be obtained if a scheme is applied
in the proper situation, a performance penalty can be observed in case of a mismatch
between the application and the coding scheme. Such a mismatch can occur under
multiple circumstances, for example, with changing signal characteristics or varying
network conditions. In light of the recent convergence of consumer electronics and
mobile communication, and the emergence of ubiquitous heterogeneous network en-
vironments with time-varying bandwidth and delay constraints, the ability of a codec
to adapt to time-varying signal and network characteristics becomes a critical factor.

We can come up with the following set of requirements for new coding schemes that
are to be employed in future ambient intelligent landscapes.

• Transparent to the user such that no manual codec selection is required.

• Adaptive to time-varying input signals.

• Adaptive to time-varying network constraints such as bit rate and delay.

• Adaptive to time-varying networks conditions such as packet losses.

• Flexible with respect to computational complexity and power resources.

A coding scheme that adheres to these requirements is denoted by the term universal
audio coding. It seems unlikely that a single signal processing tool can cope with this
monumental task and indeed, we see that multiple coding strategies are employed in
recent universal audio coding schemes [46, 11]. Again, operational RD optimization
can be a valuable tool here, for the individual coding strategies [14] as well as the
combined overall scheme [51, 20, 55, 26]. It allows for adaptive coding techniques
where a coding scheme can adapt to signal and network characteristics such as rate
and latency constraints.

The importance and relevance of operational RD optimization has been recognized by
researchers from the video coding world [39], for increasing coding performance [49]
as well as for benchmarking [21] purposes. Efficient implementations of the new
H.264/MPEG-4 Advanced Video Coding standard [25, 36] often incorporate some
form of RD control. It is interesting to note that even with relatively simple distor-
tion measures, significantly increased performance can be obtained. The audio coding
world has yet to embrace operational RD optimization as a trusted coding or bench-
mark tool and we see incorporation only in newer audio coding schemes such as the
wavelet packet schemes in [19, 18] and the parametric schemes in [14, 20].
This thesis describes efforts to combine the technique of operational RD optimiza-

tion with the MDCT as a time-frequency analysis tool, with a specific focus on adap-
tive time-frequency decomposition. The practical issues and difficulties are discussed
and various possibilities for trade-offs are explored. In other words, we extend the
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Figure 1.2: The generic perceptual audio encoder block scheme extended with a rate-
distortion control block.

generic audio coding scheme with an RD optimization module as depicted in Fig.
1.2. As such, several new algorithms are constructed for RD optimal MDCT-based
time-frequency decompositions.

1.2 Scope

The combination of an operational RD optimization framework with an MDCT-based
audio coding system can take various forms. From Fig. 1.2, we can observe numer-
ous relevant aspects of the coding system at hand that can be optimized by using the
RD control block. In this thesis, we focus on the signal processing aspects of the RD
control mechanism, the various techniques that exist for MDCT-based adaptive time-
frequency decomposition and the interaction between the two. Therefore, in most
cases our approach in developing new algorithms and evaluating their performance
shall be based on simple and basic coding schemes, in which elementary forms of
quantization and psychoacoustic modules will be employed, rather than the advanced
versions as encountered in state-of-the-art audio coding schemes. As such, several
aspects are treated superficially, or not at all. These aspects are now shortly discussed
and we point to relevant articles for the interested reader to pursuit.

The first aspect under discussion is quantization. Quantization of the input data is a
necessary processing step in any audio coding scheme. We ensure that data compres-
sion takes place through quantization, thus obtaining values for bit rate and distortion.
In our algorithms, we explicitly incorporate selection of the optimal quantizer from
predefined sets of quantizers. However, these quantizers are designed to be fairly sim-
ple, e.g. uniform and scalar, and we do not optimize their design, neither within or
outside the algorithms. As a result, the quantizers we use deviate from the designs
encountered in typical audio coding standards [34, 35]. Such designs, typically loga-
rithmic or power-law scalar quantizers [22], are employed in audio coding to provide
a more consistent signal-to-noise ratio over the range of quantizer values. Apart from
scalar quantization, we also encounter vector quantization of the transform compo-
nents in existing schemes, such as MPEG-4 Twin VQ [27, 37], Vorbis [23] and more
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recently in [32]. Closely related to quantization is the actual encoding of the resulting
quantization indices. A variety of methods can be found, such as exponent/mantissa
representation of blocks of time-frequency transform coefficients [1] or the use of
scale factor bands [35, 37].

Several of these quantizer designs and encoding mechanisms can be incorporated in
our RD optimization framework and in the algorithms presented in this thesis. All
the scalar quantizer designs, where, apart from gain factors, the quantization levels
are determined beforehand, can be employed in a straightforward manner. The more
complex methods that represent blocks of transform coefficients as a single quanti-
zation index can be incorporated in our schemes as long as they operate on similar
grids as the time-frequency decompositions employed in the scheme and as long as
they allow rate computation for the smallest grid in the decomposition. For example,
the MPEG-2/4 AAC scale factor band approach or Vorbis vector quantization can be
readily employed in our time segmentation algorithms, but not directly in some of our
frequency-domain methods.

While the incorporation of these more advanced quantizers and encoding mechanisms
usually can lead to improved results, at the price of increased design and implemen-
tation time, it does not contribute to a significant further understanding of our prob-
lems at hand. That is, investigation of the interaction between the RD optimization
framework and the time-frequency decomposition methods available for the MDCT is
not clarified by incorporating advanced quantizer designs. Nevertheless, in literature
several interesting examples of incorporating quantization and encoding in a RD opti-
mization framework can be found that would combine well with our methods. In the
work by Aggarwal [2, 3, 5] and in the paper by Bauer and Vinton [8], the MPEG-2/4
AAC quantization and encoding procedures are investigated and various RD optimal
solutions are proposed. Their algorithms apply an RD optimization framework in
which both a Lagrangian multiplier based approach as well as dynamic programming
can play a role. Relating their and our work to the generic audio coding block scheme
in Fig. 1.2, we observe that RD optimal solutions are indeed available for most of the
constituent processing blocks. Their work provides techniques for quantization and
encoding, whereas our work proposes algorithms for time-frequency decompositions,
all of which are controlled by an RD optimization framework.

With respect to quantization, we would like to point to a new and promising approach
as taken by Vafin in [51, 52] and Korten [41]. In their work, high-rate quantization is
employed to derive analytical formulae for quantizer designs, for a given target rate.
This technique allows us to directly compute the optimal quantizers for the given tar-
get rate, including the resulting rates and distortions. As such, a significant decrease
of computational complexity can be obtained since it is no longer necessary to apply
all possible quantizer and encoding possibilities. As it stands, the combination of this
technique within an operational RD framework has been explored only for parametric
audio coding schemes.
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The second aspect we discuss here is the notion of perceptual distortion. In audio
coding, we are naturally interested in the incurred perceptual distortion, that is, the
disturbance from the original as perceived by a human listener. The study of percep-
tually relevant distortion measures is an important but monumental task, one that we
can not hope to accomplish simultaneously with our main goals. Instead, we adopt a
practical view where we either neglect perceptual aspects or we apply relatively sim-
ple perceptual models and suboptimal perceptual distortion measures. Inevitably, this
limits the possibilities to compare the results as presented in this thesis, with existing
commercial systems which do employ sophisticated methods to take into account au-
ditory masking. Nevertheless, we argue that our approach is a logical choice and has
its merits.

First of all, the perceptual model [54] that we employ in some of our work captures
important basic aspects of auditory masking. Furthermore, it extends upon the existing
ISO MPEG perceptual models by considering spectral integration. It has been applied
with favorable results and has shown good correlation with subjective listening test,
as is seen in e.g., [55, 14, 54]. Additionally, it allows for computation of the masking
threshold independent of the segment length. This feature makes the model highly
suitable for incorporation into a coding scheme in which flexible time segmentation is
employed.

Secondly, the algorithms presented in this thesis support any perceptual distortion
measure that can be expressed as an additive weighted mean square error (MSE) mea-
sure. That is, we assume that the perceptual distortion is computed as the difference
between the original set of transform coefficients and the quantized set, weighted by a
perceptually motivated weighting function. The masking threshold can serve as a basis
for such a weighting function. The additivity constraint on the measure depends on the
particular algorithm, i.e. whether the algorithm operates on time domain segments of
frequency domain blocks. In most modern audio coding schemes, the noise-to-mask
ratio (NMR) [10] is employed as a measure of perceptual audio quality. While two
types of NMR are encountered, namely maximum NMR and average NMR (ANMR),
we only claim support for the ANMR measure, under the aforementioned constraints.
Again, we see that in [5, 8] the ANMR is also applied. The use of an ANMR-
like measure allows us to update the perceptual model based on ongoing research in
psychoacoustics, for example, such as encountered in the work of Dau [16, 15] and
Baumgarte [9]. The details of such sophisticated and highly nonlinear psychoacous-
tic models can be caught in a sensitivity matrix, as proposed by Plasberg [42], which
allows us to linearize the models and incorporate them in a weighted MSE measure.
The relation between various forms of perceptual distortion measures is further stud-
ied in [13].

Concluding, while the use of a perceptual distortion measure will have an impact on
the coding environment, e.g. for the computation of lossless codebooks, and on the
performance of an audio coding system, it does not severely influence the RD op-
timization mechanism. In fact, an audio coding system based on RD optimization
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becomes relatively future proof and incorporation of new perceptual models and dis-
tortion measures, while highly relevant for the performance of the system, becomes a
minor issue for the operation of the system.

As a final remark, we shortly consider scalable audio coding. RD optimization within
an audio coding system enables dynamic system adaptation to the network and ter-
minal characteristics and user requirements. In the case of bandwidth or bit rate con-
straints, RD optimization can be seen as a rate-control within the encoder. A different
approach to cope with time-varying constraints on bit rate is taken with scalable cod-
ing. Scalable coding tries to decouple the processes of encoding, rate control and
decoding. Here, multiple layers of coded audio data are created and a variety of user
conditions can be handled by storing or receiving one, some or all layers. While
this approach can be beneficial in various scenarios, invoking scalable tools is usually
penalized by a decrease in compression performance, which is in particular true for
so-called fine-granular scalable approaches and for scalability over broad ranges of
bandwidths. Moreover, the combination of scalability with RD optimization can be-
come quite complex. Scalable audio coding was studied in [24] and is defined within
the MPEG-4 standard. More recently, Aggarwal investigated scalable audio coding
for MPEG-2/4 AAC in [7, 6, 4].

1.3 Organization

The main body of this thesis consists of two complementary parts. First, a part with
background information on the applied techniques and secondly, a part consisting of
articles in which several new algorithms are proposed. The author hopes sincerely that
this combination makes the thesis more readable as a whole and that the background
chapters can serve as reference for further study and development of new audio cod-
ing algorithms, independent of the articles. Clearly, a drawback of this setup is the
repeated occurrence of several essential parts throughout this thesis. However, the
benefits of having both background and new work available may still outweigh this
slightly redundant representation and the author apologizes for not having compressed
this thesis to its entropy.

Part I - Background

Operational RD optimization and best basis search

In this chapter, the operational rate-distortion optimization framework is investigated.
We start with formulating the audio coding problem as a rate-constrained allocation
problem and then proceed to provide a step-by-step derivation of the generic opera-
tional solution. Furthermore, we look at best basis search techniques and describe two
often employed fast search algorithms. Finally, we combine the two into our generic
operational solution to the rate-constrained allocation problem.
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The modified discrete cosine transform

The dominant signal transformation in existing audio coding schemes is the modified
discrete cosine transform (MDCT). In the articles that constitute the main body of
this thesis, the MDCT plays a prominent role. Therefore, a chapter devoted to the
MDCT is included in this thesis to serve three purposes. First, as a whole this chapter
provides background information on the MDCT and lists references to literature for
further study. Second, some of the basic underlying properties of the MDCT are
highlighted, such as MDCT window design and fast implementations of the transform.
Finally, three techniques for obtaining adaptive time-frequency signal decompositions
with the MDCT are discussed. These techniques, window switching, temporal noise
shaping and subband merging, are used extensively in the articles in the second part
of the thesis.

Part II - Articles

Paper I

In this paper, we develop the first of our RD optimal time-frequency decomposition al-
gorithms. That is, a new flexible frequency decomposition algorithm is presented that
jointly optimizes the MDCT structure and the bit allocation over the transform coeffi-
cients. We make use of the subband merging method, published by the author in [38],
that allows for fast and efficient design of nonuniform filter banks. The new algorithm
shows improvements in comparison to fixed uniform frequency decompositions, but
we note that special care has to be taken to reduce the size of the decomposition over-
head.

Paper II

We modify and extend the work in paper I in several ways. First, we employ a simple
perceptual weighting method to obtain perceptually relevant results. Next, we simplify
the bit allocation such that a single quantizer is used for a complete set of transform
coefficients. Furthermore, we perform listening tests to compare the new algorithm
with the situation where an MDCT is applied that leads to a uniform frequency de-
composition.

Paper III

This paper presents the second of our RD optimal time-frequency decomposition al-
gorithms. A flexible time segmentation algorithm is constructed that jointly optimizes
the MDCT block lengths and the bit allocation over the individual signal segments.
The combination of time-domain optimization and the MDCT windowing operation
leads to certain dependency problems. We study an audio coding scheme in which an
initial approach is employed where these dependencies are ignored. We then compare
the behavior of the new algorithm with an existing one based on a binary tree search,
for entropy and RD cost measures.



10 1. Introduction

Paper IV

The flexible time segmentation algorithm outlined in paper III is suboptimal, in the
sense that certain dependencies, that arise when individual signal segments are win-
dowed and overlap-add is applied between adjacent signal segments, are ignored. In
this paper, we extend the algorithm from paper III such that these dependencies are in-
corporated and we show that an optimal solution can be obtained in polynomial time.
This algorithm gives an upper bound to the achievable performance of the existing
MDCT-based time segmentation algorithms.

Paper V

Both time segmentation algorithms as presented in papers III and IV lead to a high
computational complexity. In this paper it is investigated whether upfront time seg-
mentation can reduce computational complexity without a significant decrease in per-
formance. Upfront time segmentation can be accomplished by replacing the rate-
distortion cost functional with a low-complexity cost measure that is independent of
bit rate and perceptual distortion. We investigate the perceptual entropy measure and
show that it can be a viable and low-complexity alternative to the rate-distortion opti-
mal time segmentation algorithms presented earlier.

Paper VI

In this paper we study a third technique for MDCT-based adaptive time-frequency de-
composition, called temporal noise shaping, which is a technique for reshaping the
quantization noise in the time domain through open-loop linear predictive coding of
frequency domain coefficients. We investigate its combination within a rate-distortion
optimization framework, where a jointly optimal selection of the prediction filter or-
der and the quantizer for coding the transform coefficients can be made, such that
a perceptual distortion is minimized for a given target rate. A comparison is made
with a scheme where temporal noise shaping is employed similar to its operation in
MPEG-2/4 AAC [35, 37].
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[16] T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the effective sig-
nal processing in the auditory system. i. model structure. Journal of the Acousti-
cal Society of America, 99(6):3615–3622, June 1996.

[17] F.K. Engel. Magnetic tape – from the early days to the present. Journal of the
Audio Engineering Society, 36:7606–7616, July 1988.

[18] M. Erne and G. Moschytz. Audio coding based on rate-distortion and perceptual
optimization techniques. In Proceedings of the AES 17th International Confer-
ence: High-Quality Audio Coding, pages 220–225, Florence, Italy, September
1999.

[19] M. Erne, G. Moschytz, and C. Faller. Best wavelet-packet bases for audio cod-
ing using perceptual and rate-distortion criteria. In Proceedings of the 1999
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP’99), pages 909–912, Phoenix, USA, March 1999.

[20] Heusdens et al. Bit-rate scalable intraframe sinusoidal audio coding based
on rate-distortion optimization. Journal of the Audio Engineering Society,
54(3):167–188, March 2006.

[21] T. Wiegand et al. Rate-constrained coder control and comparison of video coding
standards. IEEE Transactions on Circuits and Systems for Video Technology,
13(7):688–703, July 2003.

[22] A.J.S. Ferreira. Optimum quantization of flattened MDCT coefficients. In Pro-
ceedings of the 115th AES Convention, New York, USA, October 2003.

[23] Xiph.Org Foundation. Ogg vorbis. http://www.vorbis.com/, 1994.

[24] J. Herre, E. Allamanche, K. Brandenburg, M. Dietz, B. Teichmann, B.Grill,
A. Jin, T. Moriya, N. Iwakami, T. Norimatsu, M. Tsushima, and T.Ishikawa.
The integrated filterbank based scalable MPEG-4 audio coder. In 105th AES
Convention, Preprint 4810, San Francisco, USA, September 1998.



Bibliography 13

[25] Telecommuncation Sector H.264 International Telecommunications Union. Ad-
vanced video coding for generic audiovisual services, 2005.

[26] IST-2001-34095. ARDOR:adaptive rate-distortion optimised sound coder.
http://www.extra.research.philips.com/euprojects/ardor/, 2001.

[27] N. Iwakami and T. Moriya. Transform domain weighted interleave vector quan-
tization (twin VQ). In Proceedings of the 101st AES Convention, Los Angeles,
USA, November 1996.

[28] N. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall, Englewood
Cliffs, NJ, 1984.

[29] R.D. Koilpillai and P.P. Vaidyanathan. Cosine-modulated FIR filter banks
satisfying perfect reconstruction. IEEE Transactions On Signal Processing,
40(4):770–783, April 1992.

[30] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, New York,
1998.

[31] H.S. Malvar. Signal Processing with Lapped Transforms. Artech House, Boston,
MA, 1992.

[32] N. Meine and B. Edler. Improved quantization and lossless coding for subband
audio coding. In Proceedings of the 118th AES Convention, Barcelona, Spain,
May 2005.

[33] B.C.J. Moore. An Introduction to the Pscychology of Hearing. Academic Press,
Berlin, Germany, 1997.

[34] International Standard ISO/IEC 11172-3 (MPEG). Information technology -
coding of moving pictures and associated audio for digital storage media at up
to about 1.5 mbit/s. part 3: Audio, 1993.

[35] International Standard ISO/IEC 13818-7 (MPEG). Information technology -
generic coding of moving pictures and associated audio, part 7: Advanced audio
coding, 1997.

[36] International Standard ISO/IEC 14496-10 (MPEG). Information technology -
coding of audio visual objects, part 10: Advanced video coding, 2005.

[37] International Standard ISO/IEC 14496-3 (MPEG). Information technology -
coding of audio visual objects, part 3: Audio, 1999.

[38] O.A. Niamut and R. Heusdens. Subband merging in cosine-modulated filter
banks. IEEE Signal Processing Letters, 10(4):111–114, April 2003.

[39] A. Ortega and K. Ramchandran. Rate-distortion methods for image and video
compression. IEEE Signal Processing Magazine, 15(6):23–50, November 1998.



14 1. Introduction

[40] T. Painter and A. Spanias. Perceptual coding of digital audio. 88(5):451–515,
April 2000.

[41] J. Jensen P.E.L. Korten and R. Heusdens. High-resolution spherical quantization
of sinusoidal parameters. to appear in IEEE Transactions on Audio, Speech and
Language Processing, 2007.

[42] Jan H. Plasberg and W. Bastiaan Kleijn. The sensitivity matrix: Using advanced
auditory models in speech and audio processing. to appear in IEEE Transactions
on Audio, Speech and Language Processing, January 2007.

[43] J. Princen and J.D. Johnston. Audio coding with signal adaptive filter banks. In
Proceedings of the 1995 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP’95), pages 3071–3074, Detroit, USA, May
1995.

[44] J.P. Princen, A.W. Johnson, and A.B. Bradley. Subband/transform coding using
filter bank designs based on time domain aliasing cancellation. In Proceedings
of the 1987 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’87), pages 2161–2164, Dallas, USA, April 1987.

[45] K. Ramchandran and M. Vetterli. Best wavelet packet bases in a rate-distortion
sense. IEEE Transactions on Image Processing, 2(2):160–175, April 1993.

[46] S.A. Ramprashad. The multimode transform predictive coding paradigm. IEEE
Transactions on Speech and Audio Processing, 11(2):117–129, March 2003.

[47] O. Read and W.L. Welch. From Tin Foil to Stereo: Evolution of the Phonograph.
H.W. Sams and Co, Indianapolis, USA, 1977.

[48] C.E. Shannon. A mathematical theory of communication. Bell Systems Technical
Journal, 27:379–423.

[49] G.J. Sullivan and T. Wiegand. Rate-distortion optimization for video compres-
sion. IEEE Signal Processing Magazine, 15(6):74–90, November 1998.

[50] Compact Disc Digital Audio System. (IEC/ANSI) CEI-IEC-908, 1987.

[51] R. Vafin and W.B. Kleijn. Entropy-constrained polar quantization and its appli-
cation to audio coding. IEEE Transactions on Speech and Audio Processing,
13(2):220–232, March 2005.

[52] R. Vafin and W.B. Kleijn. Rate-distortion optimized quantization in multistage
audio coding. IEEE Transactions on Audio, Speech and Language Processing,
14(1):311–320, January 2006.

[53] P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall, Engle-
wood Cliffs, NJ, 1993.



Bibliography 15

[54] S. van de Par, A. Kohlrausch, G. Charestan, and R. Heusdens. A new psychoa-
coustical masking model for audio coding applications. In Proceedings of the
2002 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP’02), pages 1805–1808, Orlando, USA, May 2002.

[55] N.H. van Schijndel and S. van de Par. Rate-distortion optimized hybrid sound
coding. In Proceedings of the 2005 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA’05), pages 235–238, New York,
USA, October 2005.
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Part I

Background

Operational R-D can serve as the middle ground
between irrelevant theory and ad-hoc tweaking.

Ortega and Ramchandran, Signal Processing Magazine, 1998

The ease of window design and the ability to adapt
the filterbank resolution by altering a single parameter have made
the MDCT the transform of choice for most existing audio coders.

Bosi and Goldberg, Introduction to Digital Audio Coding and Standards





Chapter 2

Operational RD Optimization
and Best Basis Search

This chapter contains a short overview of relevant aspects of the fields of operational
rate-distortion optimization and best basis search methods and investigates some re-
cent algorithms that combine the two. We start with an introduction and literature
overview in Section 2.1. Next, in Section 2.2 the rate-constrained allocation problem
is formulated and tools to solve this problem are studied. Then, in Section 2.3 on best
basis search methods, we introduce the notion of time-frequency tilings and review
two important best basis search algorithms. We also investigate the inclusion of best
basis search methods in a rate-distortion optimization framework. Finally, we draw
some conclusions in Section 2.4.

2.1 Introduction

Emerging from the field of source coding or compression, rate-distortion (RD) the-
ory aims at the optimal approximation of a source signal under a modelling budget
constraint. While an approximation can be obtained in various manners, we are con-
sidering those approximations that results from quantization of the source signal at
hand. Quantization [37, 24] is the process of projecting the amplitudes of single or
multiple samples of the source signal on a discrete set of codewords or quantization
points. The quantization process inevitably leads to an approximation distortion and
the modelling cost is typically expressed in bits. In the particular case of a digital au-
dio source, we want to find the quantized representation of the audio signal that leads
to the minimum perceptual distortion, at a given target bit rate.

Within an optimization framework, the search for such a representation can be for-
mulated as a rate-constrained allocation problem. In this thesis, the RD optimization
problem is considered in the operational sense, i.e. we seek to obtain the best achiev-
able performance for a particular input audio signal, given the choice of compression
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framework or coding environment. Such a coding environment can consist of a par-
ticular signal transform, a set of quantizers and corresponding codebooks. We can
expect that the a priori selection of a coding environment will limit the achievable
performance, but we assume that such a specific coding environment can efficiently
capture the relevant statistical dependencies associated with the source beforehand,
while satisfying practical system requirements and constraints related to coding com-
plexity, delay and memory usage. This operational approach searches for the best
operating points for that specific system by constructing a so-called operational rate-
distortion curve, where every point of the curve can be directly achieved by the given
coding system. An operating point is represented as an (R,D)-pair, i.e. a combination
of the bit rate R and quantization or coding distortion D values for a particular setting
of the coding framework.

In contrast, the conventional classical RD theory, as laid out by Shannon in his semi-
nal paper [59], is mainly focussed on the derivation of performance bounds for certain
limited statistical source classes, using an unconstrained coding system. That is, the
coding system assumes no constraints on the coding delay, available memory and the
number of required computations. Although the computation of such bounds allows
an insightful determination of achievable and non-achievable performance regions,
these bounds are not always tight for situations of practical relevance, nor are they
constructive. The derivation of the bounds relies heavily on a correct characterization
of the source, whereas complex non-stationary sources such as audio are generally
hard to model. Moreover, they are only valid for a limited set of distortion measures,
which does not include advanced psycho-acoustically motivated distortion measures
as used in modern audio coding systems.

Where the performance bounds provided by classical RD theory are typically reached
when the dimensionality of the input vectors approaches infinity, high-resolution the-
ory as pioneered by Bennett [3] can be applied for finite-length input signals. The
assumption of high resolution source quantization leads to a staircase model of the
probability density function of the source, such that it is constant over each quanti-
zation interval. Furthermore, quantization overload distortion is ignored. It is then
possible to derive an analytic relation between the quantizer point density 1 and the
resulting distortion. In most practical cases, the high resolution assumption is valid
if the available rate is high and as such, the constraint on the rate generally prohibits
low bit rate transform audio coding. The reader is referred to [4, 13, 44, 24] for more
elaborate details and extensions of classical RD and high-resolution theory.

The initial work on operational RD optimization was done by Shoham and Gersho
in their paper on efficient bit allocation [60], where they employ a specific form of
Everett’s Lagrange multiplier method [19]. There, the problem of rate-constrained
bit allocation is formulated as an unconstrained optimization problem using a La-
grangian cost function of both bit rate and distortion. A similar approach is taken by

1In the case of scalar quantization, the quantizer point density reduces to the inverse of the quantizer
stepsize.
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Chou, Lookabaugh and Gray in their work on entropy-constrained vector quantiza-
tion and tree-structured source coding [8, 9], where they apply the Blahut algorithm
from [6]. The aforementioned papers consider independent rate-constrained bit allo-
cation problems, in which a target rate or number of bits is set as an input parameter
to the coding system and some assumptions on the independency of the rates and dis-
tortions are made. More recently, the field of operational RD optimization has been
extended by Ortega, Ramchandran and Vetterli, to buffer or delay-constrained opti-
mization [46, 56] and to algorithms for dependent quantization [54, 55]. An extensive
overview of the field of operational RD optimization is provided by Ortega and Ram-
chandran in [45]. Although their work is mainly oriented towards image and video
coding applications, most of the underlying principles and methods are generally ap-
plicable to audio coding.

Whereas quantization and RD optimization prove to be essential parts of an audio cod-
ing system, an equally significant part consists of the signal transform and its adaptiv-
ity to input signals. We concentrate on a particular class of signal transforms, given
by linear expansions, that decompose a signal into elementary building blocks. Tra-
ditional linear expansions such as obtained by Fourier [47, 7], discrete cosine [58]
or wavelet transforms [41, 14], are not flexible enough for representing signals with
components whose localizations vary widely in time and frequency. For instance,
the Fourier transform is not particularly suited for representing time-localized signals,
whereas the wavelet transform is ineffective for resolving high frequency components.
For signals constructed from a mixture of these components, the rigidity of linear ex-
pansions can results in highly suboptimal coding performance. Such signals require
expansions into waveforms that can be adapted to the local signal structure. These
waveforms are called time-frequency atoms and it is the construction of and search
through dictionaries containing time-frequency atoms that lead to the best basis search
problem. In this thesis, we do not treat overcomplete dictionaries that are searched by
matching pursuit [42], nor do we look at dictionaries of parametric signal models,
such as sinusoidal analysis [23].

We are again interested in those solutions that can be employed in practical audio cod-
ing systems and hence we require fast algorithms. We can choose from a selection
of best basis search methods that are closely related to adaptive signal transforms and
find their application in signal approximation problems such as estimation [48, 43],
denoising [38] and compression. Coifman, Meyer and Wickerhauser formalized the
concept of best bases in [12, 10, 11] where they studied tree-structured time-frequency
decompositions resulting from adaptive signal transforms such as the wavelet packet
and local cosine transforms [11, 40]. Recently, best basis algorithms for local cosines
have been explored by Villemoes [63] and Huang et al. [36, 35]. The general aim of
best basis search algorithms is to adaptively select, from a given dictionary or library
of bases, the basis which minimizes a predefined cost measure for a given input sig-
nal. For audio coding purposes, these algorithms allow the construction of so-called
time-frequency tilings, which describe the coverage of the signal by a certain basis in
both time and frequency domains.
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The combination of best basis search methods and operational RD optimization was
first proposed by Ramchandran and Vetterli [57] who studied image compression with
wavelet packets and DCT bases. Their research led to a surge of interest in algorithms
that combined operational RD and best basis search methods. In [27, 29, 28, 30, 31,
32] numerous algorithms were developed for adaptive time-frequency decomposition
with wavelet packet and DCT bases. Specifically in [28], the MDCT was employed
for time segmentation. An important step was taken in [30] in which a dynamic pro-
gramming based algorithm was proposed instead of the binary tree algorithms that
were used earlier on. The work presented in Part II of this thesis relies heavily on
the concepts and techniques as developed in these papers. Subsequent extensions to
coding techniques such as linear prediction and sinusoidal coding and to the incor-
poration of side information were taken by Prandoni and Vetterli [50, 51, 49, 52].
Examples of audio coding systems that incorporate some of these algorithms can be
found in, e.g., [53] for a frequency-varying MDCT, in [18, 17] for wavelet packets and
in [34, 33] for sinusoidal coding.

2.2 Operational RD optimization

In this section, we formulate the problem of rate-constrained bit allocation and inves-
tigate a popular technique for solving the problem.

2.2.1 problem formulation

In most of the compression applications encountered, the bit rate is restricted to a
maximum number of bits that can be used. In audio coding, this situation occurs
when the coded data has to be stored on a medium with a limited storage capacity
or transmitted through a channel with a limited (time-varying) bandwidth. The total
number of available bits, called the target rate and denoted RT , has to be allocated
to the coded signal in such a way that an overall distortion metric is minimized. In a
practical coding system it is necessary to determine at which levels of granularity the
encoder is optimized by selecting an appropriate coding unit. For example, in audio
coding, the basic coding unit could be a sample (time-domain or frequency-domain),
a single analysis frame or a segment consisting of multiple frames.

Let an input signal be divided into N coding units. For each coding unit, a finite set
of Q admissible quantizers or coding templates is available. The application of the
jth quantizer for the ith coding unit is denoted qi,j and leads to a rate-distortion pair
where the rate is denoted as ri(qi,j) and the distortion as di(qi,j). The overall selec-
tion of coding templates for each and every coding unit is represented by a quantizer
allocation vector q ∈ Q, where the set of allocation vectors Q consists of all possible
ways of allocating the quantizers over the coding units, hence |Q| = QN . Further-
more, R denotes the total number of bits that is allocated to the coding units and D is
the resulting total distortion. Every combination of the total rate and distortion result-
ing from a particular rate allocation q leads to an (R,D)-pair and the application of
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all |Q| gives rise to the set or cloud of
(
R(q),D(q)

)
-pairs for the particular coding

framework and input signal.

Formulation 1. Rate-Constrained Bit Allocation Problem
Given the rate constraint RT , find the optimal bit allocation q∗ ∈ Q as

min
q∈Q

D(q) subject to R(q) ≤ RT . (2.1)

The problem of Formulation 1 can be generalized to the case where additional con-
straints exist. For example, in the case of audio streaming across a network, the rate-
constrained allocation formulation does not suffice. The coding units are subject to a
delay constraint, i.e. they have to be available at the decoder at a certain time in order
to be played back. The characteristics of the transmission channel become important
for the complexity of the allocation. It must be known whether the channel provides
a constant bit rate or a variable bit rate, whether the channel delay is constant and the
channel is reliable. We do not treat the delay-constrained allocation problem in this
thesis, however, in Section 2.3 we refer to some studies on the influence of system
delay on coding performance. Formal descriptions of delay-constrained allocation
problems can be found in [56, 45].

In practise, the rate-constrained allocation problem of Formulation 1 involves bit al-
location over multiple coding units. If dependencies exist between the coding units,
the efficient search for a solution to the coding problem becomes a difficult process.
Hence, we often assume that the constrained allocation problem is independent. That
is, we assume that the choice and selection of a quantizer, or more general, a coding
template, for a particular coding unit can be done independent of other coding units
and does not affect the selection of quantizers in other coding units. If this assumption
holds, we can independently quantize the coding units, which in turn leads to additive
rates and distortions, given an appropriate additive distortion measure. As such, the
independence property is attractive from a computational point of view, since it can
lead to fast algorithms for solving the constrained allocation problem.

In many scenarios, the assumption that a selection of a coding template for a cer-
tain coding unit does not affect other units is invalid, i.e. the allocation problem is
not independent. In general, two types of dependency scenarios can be identified.
Trellis-based dependencies occur in the case where the memory of the system and the
number of possible dependent cases are finite. Coding choices for a single unit de-
pend only on a finite set of previous coding units. In that case, a Trellis diagram can
be used to represent the choices and a technique such as dynamic programming can
be used to minimize the overall cost function. These type of dependencies are studied
in, e.g., [55, 45] and in [49]. In contrast, tree-based dependency denotes the situation
where all possible combinations generated by successive coding template choices can
be represented as a tree with the number of branches growing exponentially with the
number of levels of dependency. The exponential growth in the number of combina-
tions makes an exact solution very complex. To simplify the search for the optimal
solution, good heuristics or greedy approaches can be applied, or models of the de-
pendent operational RD curves can be employed.
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2.2.2 solution to the rate-constrained problem

Obviously, the solution for the problem of Formulation 1 can be obtained by a brute-
force exhaustive search through the entire set of (R,D)-pairs. Since the associated
complexity of such a search is prohibitive for all practical purposes, we require more
advanced techniques to obtain the solution, or an approximate solution, at a reduced
complexity. A particular technique of interest is based on the discrete version of La-
grangian optimization, as proposed by Everett [19]. The first application in source
coding, based on this framework, can be found in [60]. The technique can be de-
scribed as follows.

A real-valued Lagrange multiplier λ ≥ 0 is introduced and a Lagrangian cost function
of both bit rate and distortion is defined as

J(λ,q) = D(q) + λR(q). (2.2)

We can now formulate a new unconstrained problem as follows.

Formulation 2. Unconstrained Bit Allocation Problem
Find the optimal bit allocation q∗ ∈ Q as

min
q∈Q

J(λ,q). (2.3)

The following theorem relates the constrained problem in (2.1) to the unconstrained
problem in (2.3) through the inclusion of the target rate.

Theorem 1. (rate-constrained bit allocation) [60] For any λ ≥ 0, the solution q∗ to
the unconstrained problem in (2.3), given by

q∗ = arg min
q∈Q

J(λ,q),

is also to the solution to the constrained problem in (2.1) with constraint RT = R(q∗).

Proof: For any solution q∗ to the unconstrained problem in (2.3) we have that

D(q∗) + λR(q∗) ≤ D(q) + λR(q) ∀ q ∈ Q,

or, equivalently,

D(q∗) − D(q) ≤ λ
(
R(q) − R(q∗)

)
∀ q ∈ Q. (2.4)

Eq.(2.4) holds for all q ∈ Q, so it holds in particular for the subset Q∗ ⊂ Q given by

Q∗ =
{
q : R(q) ≤ R(q∗)

}
. (2.5)
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Since λ ≥ 0,
D(q∗) − D(q) ≤ 0 ∀ q ∈ Q∗. (2.6)

and thus q∗ is the solution to (2.1) for RT = R(q∗). �

In words, (2.5) states that Q∗ is the set of all allocations q that result in a rate R(q)
lower than or equal to R(q∗). Hence, we have that R(q) − R(q∗) ≤ 0 for all alloca-
tions q ∈ Q∗ .

Using the fact that λ ≥ 0, (2.6) then shows that all allocations q ∈ Q∗ lead to a dis-
tortion D(q) that is higher than or equal to D(q∗). Let us assume that RT = R(q∗).
We then have that for all allocations q ∈ Q that lead to a rate R(q) ≤ RT , the alloca-
tion q∗ leads to the lowest distortion D(q∗) and hence, q∗ is the solution to (2.1) for
RT = R(q∗).

Note that Theorem 1 does not guarantee the existence of a solution to (2.1). Only if
R(q∗) = RT , i.e., when the optimal bit allocation vector q∗ gives rise to a rate that
is equal to the target rate, q∗ is the solution to (2.1). The problem is now reduced to
finding the optimal value of λ, say λ∗, such that the target rate is met. Let W (λ) be
defined as

W (λ) = min
q∈Q

[
D(q) + λ

(
R(q) − RT

)]
. (2.7)

The function W is called the dual function corresponding to the optimization problem
in (2.1) and it can be shown that W is concave in λ, see e.g. [57]. The dual problem
corresponding to (2.1) is then defined as

max
λ≥0

min
q∈Q

[
D(q) + λ

(
R(q) − RT

)]
, (2.8)

that is, λ∗ is obtained by maximization of W over all possible values of λ ≥ 0.

The relation between the two solutions obtained from the two optimization prob-
lems in (2.1) and (2.8) is expressed through the Lagrangian duality theorems, see
e.g., [25]. It turns out that the solution to the dual problem (2.8) lies on the convex
hull of the set of (R,D)-pairs. This hull defines the boundary between achievable
and non-achievable performance regions. Since we are working with a discrete set of
coding units and templates, and a positive rate constraint, we only have weak duality
between the problems in (2.1) and (2.8). That is, some solutions to (2.1) reside inside
the convex hull and are hence infeasible solutions to (2.8). The difference between the
solutions to the original problem of (2.1) and the dual problem in (2.8) is called the
duality gap.

An example of the occurrence of the duality gap is displayed in Fig. 2.1. A randomly
generated time-domain signal is divided into four segments which can be seen as cod-
ing units. Furthermore, 16 stepsizes for a normalized uniform quantizer are available
as coding templates. Fig. 2.1 shows the set of RD pairs and its convex hull. The large
crosses denote solutions to the dual problem for a range of target rates. In particular,
the thick vertical line indicates a target rate of 18 bits. The two circles denote solutions
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Figure 2.1: Lagrange optimization for a random signal divided into 4 segments and
quantized with 16 coding templates. The resulting set of RD pairs is shown along with
its convex hull. Note that the optimal solution at the target rate of 18 bits can not be
obtained, since the corresponding RD pair lies inside the convex hull.

to the dual problem that lie around the target rate. The solution to the original problem
is indicated by a square. The magnitude of the duality gap can be observed from the
zoomed plot.

Since the Lagrange optimization technique searches only along the convex hull of the
set of (R,D)-pairs rather than the entire set, the computational complexity is reduced
significantly, compared to an exhaustive search procedure. We can further reduce the
complexity of the optimization procedure by taking advantage of the assumptions of
additivity and independence of the rates and distortions over the coding units. This
allows us to simplify (2.3) as

min
q∈Q

D(q) + λR(q) = (additivity)

min
q∈Q

N∑
i=1

(
di(qi,j) + λri(qi,j)

)
= (independence)

N∑
i=1

(
min

j
di(qi,j) + λri(qi,j)

)
,

and the final operational RD problem is formulated as follows.
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Formulation 3. Operational Rate-Distortion Problem
Given the constraint RT , find λ∗ as

λ∗ = arg max
λ≥0

( N∑
i=1

(
min

j
di(qi,j) + λri(qi,j)

)− λRT

)
. (2.9)

Since for every λ the solution to (2.7) lies on the convex hull of the set of RD-pairs,
the solution to the outer maximization in (2.9) can be obtained in an iterative way
using the bisection algorithm as is done in [57]. The bisection algorithm finds the
optimal λ∗, which gives rise to the zero crossing of the derivative of W (λ). Given an
uncertainty interval spanned by two initial or earlier approximate solutions, in which
the solution is known to exist, the bisection method evaluates W at the midpoint of this
interval and compares its sign to the existing two values [22]. The bisection algorithm
can be formulated in the following manner.

Algorithm 1. Bisection

[1] Determine λmin and λmax such that R∗(λmax) ≤ RT ≤ R∗(λmin).

[2] Select a starting value λmin ≤ λ ≤ λmax.

[3] Compute R∗(λ).

[4] If R∗(λ) = RT , the optimum is found and the algorithm terminates.
Else if R∗(λ) > RT , set λmax ← λ.
Else λmin ← λ.

[5] Determine the new value of λ:

λ = |D∗(λmin) − D∗(λmax)|/|R∗(λmax) − R∗(λmin)|

and goto step 3.

A conservative choice for the minimum and maximum values of λ in step 1 of Algo-
rithm 1 is λmin = 0 and λmax = ∞. However, the number of iterations -and thus
the algorithmic complexity- required for obtaining the optimal λ can be reduced with
good initial values.

In general, the duality gap can be reduced by generating a dense set of RD pairs, which
ensures that the convex hull is densely populated. If the convex hull of the RD curve
consists of a few discrete operating points only, the solution found with the Lagrange
method can be highly suboptimal. In such situation, a more appropriate technique
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for solving the rate-constrained allocation problem of (2.1) is to formulate a corre-
sponding deterministic dynamic programming (DP) problem which can be seen as a
multi-stage decision process. A Trellis diagram associated to the problem is created
that represents all possible solutions, where the stages of the Trellis correspond to the
coding units and the states represent accumulative rate and distortion. The DP algo-
rithm traverses the trellis and prunes suboptimal branches. At the heart of the algo-
rithm lies the Principle of Optimality introduced by Bellman [2], which roughly states
that any subpath of an optimal path is also optimal. Various well-known algorithms
rely on this principle, such as the Viterbi algorithm [20] and Dijkstra’s shortest-path
algorithm [15].

In contrast to Lagrange optimization, the DP approach considers all possible RD pairs,
hence its solution will corresponds to that of (2.1). Hence, the complexity of DP
grows quadratically with the number of coding units. Therefore, in most situations
the usage of the Lagrangian method is desired and justified since the convex hull is
densely populated. The DP approach can also be employed to solve (partly) dependent
allocation problems, as is done in [54, 55, 49]. An interesting hybrid technique that
combines the two methods is presented in [65]. We will not use the DP approach to
solve the rate-allocation problem directly, but we come back to it in the next section
when studying fast algorithms for best basis search.

2.3 Best basis search methods

In this section we study best basis search algorithms and their application in an op-
erational RD optimization framework. We first introduce linear expansions and the
notion of time-frequency tilings. Next, we investigate two popular fast search algo-
rithms, that have been employed in many of the articles constituting the second part
of this thesis. We conclude the section with studying the inclusion of these algorithms
in the operational RD problem as formulated in (2).

2.3.1 linear expansions and best bases

Best basis search algorithms were pioneered by Coifman, Meyer and Wickerhauser
in [12, 10], where they constructed bases from local cosine and wavelet packet trans-
forms. As mentioned in Section 2.1, such transforms can be seen in the framework
of linear signal expansions. When making a linear expansion of a signal x ∈ �2(Z)
where �2(Z) is the set of square-summable sequences, we want to find a set of basis
functions Φ = {ϕk}k∈Z, ϕk ∈ �2(Z), called a basis, such that we can uniquely write
x as

x(n) =
∑

k

X(k)ϕk(n). (2.10)

The set Φ is complete for the space �2(Z), i.e. all signals x ∈ �2(Z) can be expanded
according to (2.10) and therefore, also a dual set {ϕ̃k} exists such that we can compute
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the basis expansion or signal transform coefficients X as an inner product. That is,

X(k) = 〈x, ϕ̃k〉,

where 〈·, ·〉 denotes the inner product for �2(Z). For two real-valued sequences x, y ∈
�2(Z),

〈x, y〉 =
∑

n

x(n)y(n).

Hence, if the basis functions are real-valued and the set of basis functions Φ is or-
thonormal, then ϕ̃k = ϕk and

〈ϕk, ϕl〉 = δ(k − l).

The general aim of best basis search algorithms is to select, from a dictionary or
library of orthonormal bases, the basis which minimizes a predefined cost measure for
a given input signal. More formally stated, let D =

⋃
p∈P Φp denote a dictionary of

orthonormal bases for �2(Z), where each basis is given as Φp = {ϕp
k}k∈Z and P is a

finite index set. Furthermore, let the additive cost function J (x,Φp) for representing
the input signal x in Φp be defined as

J (x,Φp) =
∑
k∈Z

J
(
|〈x, ϕ̃p

k〉|2
)

=
∑
k∈Z

J
(
|Xp(k)|2

)
,

where J is an application-dependent cost, for example, the Lagrangian combination
of rate and distortion. Any Φp ∈ D that achieves the minimum cost J over all bases
in the dictionary is called the best basis.

2.3.2 time-frequency tilings

A best basis search is only worthwhile when each basis in the given dictionary leads
to a different cost for representing the input signal. That is, we assume that each basis
in the dictionary D contains basis functions that differ from those in another basis
with regard to their time and frequency responses. This difference can then be ex-
pressed in terms of the time and frequency localization of the basis functions and in
terms of the resulting time-frequency decomposition. From the viewpoint of audio
coding, we require adaptive signal transforms that give rise to variable time-frequency
decompositions of the signal, hence we are interested in the time and frequency lo-
calization parameters of the basis functions. These parameters can be computed as
follows [62, 40].

Given an orthonormal basis Φ = {ϕk}k∈Z, the basis functions ϕk satisfy

‖ϕk‖2 =
N−1∑
n=0

|ϕk(n)|2 = 1, k = 0, 1, . . . ,M−1,
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Figure 2.2: A time-frequency tile depicts the time-frequency localization of a particu-
lar basis function. The relevant time-frequency parameters are shown.

where N is the length of the basis functions. For any ϕk, say ϕ, we can interpret |ϕ|2
as a probability mass function centered in time at

μt =
N−1∑
n=0

n|ϕ(n)|2.

The time localization is given as the spread around μt, i.e. the variance

σ2
t =

N−1∑
n=0

(n − μt)2|ϕ(n)|2.

By using the Parseval relation, we can equivalently define the frequency domain center
μf and variance σ2

f of the Fourier transform of ϕ, say ϕ̂(ω) =
∑N−1

n=0 ϕ(n)e−jωn.
That is2,

μf =
1
2π

∫ 2π

0

ω|ϕ̂(ω)|2dω,

and

σ2
f =

1
2π

∫ 2π

0

(ω − μf )|ϕ̂(ω)|2dω.

The time-frequency product of the time and frequency variances, denoted ν = σ2
t σ2

f ,
defines a so-called Heisenberg box. Computation of the set of time-frequency param-
eters for a variety of practical signal transforms and filter banks can be done by the
methods proposed by Taswell in [61].

2It is not straightforward to uniquely describe the frequency parameters for all basis functions. We often
have to use distinct formulations for the basis functions near the frequencies 0 and π.
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Figure 2.3: Examples of time-frequency tilings. (a) DCT or DFT tiling. (b) Wavelet
tiling. (c) Wavelet packet tiling.

The Heisenberg box for a particular basis function can be represented by a two-
dimensional time-frequency tile. This can be seen in Fig. 2.2 where for a given basis
function, the corresponding tile and the relevant time-frequency parameters are shown.
If we plot the time-frequency tiles for all basis function in a particular basis, we can
create for each basis a time-frequency tiling diagram. Such a tiling diagram is an ele-
gant visualization tool for linear expansions and signal transforms, as it depicts a de-
composition of a signal both in the time and frequency domain. Tiling diagrams were
first used by Gabor [21] in his original paper on time-frequency analysis. Figure 2.3
shows examples of time-frequency tilings resulting from common signal transforms.

A lower bound is imposed upon the product of time and frequency variances by
Heisenberg’s uncertainty principle [26, 47] as

ν ≥ 1
2
. (2.11)

Eq. (2.11) implies that there are no basis functions that are arbitrarily well localized
both in time and frequency. However, we can first create a dictionary of bases in
which each basis contains basis functions having good time or frequency localization
and then employ best basis algorithms to find the basis having the optimal combination
of localized basis functions for the given signal. Thus, best basis search algorithms
seek to construct the time-frequency tiling that is optimal for the signal x with respect
to the cost measure J .

2.3.3 time segmentation and frequency decomposition

Signal transforms are often employed on a segment-by-segment basis. That is, the
time domain signals undergoing transformation are pre-segmented into consecutive
signal segment. The signal transform then is separately performed on these segments,
which might vary in length and might contain overlapping and windowed signal por-
tions. Furthermore, in many situations it is convenient to regard the transform coeffi-
cients corresponding to the signal segments as a frequency domain representation of
the signal portion supported within the segment. Thus, we observe that the practical
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Figure 2.4: Examples of a) time segmentation and b) frequency decomposition.

application of signal transforms results in a segment-by-segment frequency decompo-
sition of the underlying time domain signal. From a best basis perspective, we want
to find the sequence of bases that leads to the lowest cost for representing the signal.
If we expand the notion of a dictionary to the case where it can contain sequences of
bases, we have the situation that both time segmentation and frequency decomposi-
tion algorithms can be described within the best basis search framework. In the case
of time segmentation only, a linear expansion of a particular segment can only differ
in the number basis functions compared to expansions of other segments. An exam-
ple is shown in Fig. 2.4a where a time domain signal is segmented into nonuniform
segments. In this example, the segment boundaries are aligned with transitions in the
signal statistics. On each of the segments we can perform a frequency decomposition.
Such a decomposition can lead, for example, to a basis whose basis functions have
magnitude responses as depicted in Fig. 2.4b.

Both the time segmentation of a signal into segments and the subsequent frequency
decomposition of the segments can be varied, which leads us to adaptive algorithms
for time segmentation and frequency decomposition. While the basic concepts of
these algorithms are similar, several domain-specific aspects can influence the design
of the algorithms in various ways. However, the best basis search procedures em-
ployed in such algorithms are often equivalent in both domains and can therefore be
combined such that jointly optimal time-frequency decomposition algorithms can be
constructed.
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In the following, we investigate two often used best basis search algorithms, based
on tree pruning and dynamic programming, respectively. We use the term frame to
denote the smallest interval in a dictionary. From the above discussion it follows that
such an interval can either denote the time domain support of a basis function, or the
bandwidth of the frequency response of a basis function. A segment is a combination
of adjacent frames.

2.3.4 binary tree best basis search

The first best basis search algorithms were developed with the wavelet packet trans-
form in mind [10]. This transform is a natural extension of the wavelet transform [41,
14] and provides a large dictionary of bases that are particularly useful for image
coding. The wavelet packet transform can be efficiently implemented using tree-
structured filter banks [41, 62]. Hence, any wavelet packet basis allows an organi-
zation of its basis functions on a binary tree. While the wavelet packet transform can
be seen as a frequency decomposition, a tree-structured dictionary can also be con-
structed for time segmentation. Moreover, as mentioned in the previous section, it is
possible to combine both tree-structured frequency decompositions and time segmen-
tations and derive a fast best basis search method for joint time-frequency optimiza-
tion.

A binary tree is organized as follows. The first node resides at either the top or the
bottom and is called the root. From the root, two branches lead to lower level nodes
known as children. Each child node can also function as a parent to two additional
children. If a node has no children, it is considered a leaf. In the case of wavelet
packets, only strongly binary trees [64] are relevant, that is, rooted trees for which the
root has either zero or two branches, and all non-root branches are adjacent to either
one or three branches. The vertical positions of a node relative to the root is denoted
as the level or depth i of the node, whereas the horizontal position is indicated by j.

The level or depth of the node on which a wavelet packet basis function resides, cor-
responds to the time-frequency localization of that basis function, whereas the hori-
zontal position of the node is an indication of its center frequency. Assuming that the
root of the tree is at the bottom and has maximum depth, it is readily seen that for
wavelet packets, basis functions further up the tree have better frequency localization
and reduced time localization. A particular wavelet packet basis then corresponds to
a particular dyadic frequency decomposition of the signal under analysis. Similarly,
dyadic time segmentations can be obtained by applying a local cosine transformation,
which can be organized on similar tree-structures3, such that nodes further up the tree
correspond to smaller time intervals and each local cosine basis represents a dyadic
time segmentation of the signal.

A dictionary containing wavelet packet or local cosine bases can be represented as the
full tree of basis function choices. An efficient algorithm for searching the dictionary

3The local cosine transform is, however, not restricted to tree-structured bases.
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Figure 2.5: The single tree decomposition algorithm employs tree pruning to eliminate
suboptimal decompositions. At each node, the split-merge decision is made according
to (2.12).

is presented in [10]. The algorithm, denoted as the single tree (ST) algorithm in [57],
involves pruning of suboptimal branches of the tree that constitutes the dictionary.
The ST algorithm operates as follows. We start with a uniform division of the input
signal into N frames4 of M samples, in either the time or frequency domain. These
frames are represented by the leaf nodes of the full tree. The tree associated with the
dictionary is then pruned in the direction of the root by comparing the costs of each
node with the accumulated costs of its two children.

Consider the example depicted in Fig. 2.5, in which a (time or frequency domain)
signal is initially divided into four frames of length M , i.e. N = 4. Let Ji/j be the
cost for representing the jth segment of 2i−1M samples with the jth basis function at
tree level i, where the root of the tree has maximum depth d = log2(N)+1. Then, at
each iteration i = 1, . . . , d, we evaluate the split-merge condition

J∗
i/j = min(Ji/j , J

∗
i−1/2j−1 + J∗

i−1/2j), (2.12)

to obtain the minimum cost, denoted J∗
i/j , for the jth segment at tree level i. This

minimum cost gives rise to the best decomposition or basis, denoted Φ∗
i/j , of the jth

segment, where j = 1, . . . , N/2i−1. After the dth iteration we obtain the minimum
cost Jd/1 whereas the corresponding basis can be obtained by backtracking the se-
quence of split-merge decisions upwards through the tree.

For a given maximum tree depth d, the number of bases |Dd
ST| in the dictionary Dd

ST
that the ST algorithm constitutes is the total number of strongly binary trees of depth
at most d, which can be computed by the doubly exponential expression [1]

|Dd
ST| = �c2d,

4N is assumed to be a power of 2.
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Figure 2.6: Initial decomposition of a signal into N segments of M samples.

where c ≈ 1.503. The complexity of the ST decomposition algorithm for searching
through the dictionary bases is O(Nd), that is, it depends on the initial division and
the maximum tree depth that is allowed. In [29, 28], Herley et al. extended the
ST algorithm to the double tree method, where binary tree searching algorithms in
both time and frequency domains are employed and a jointly optimal time-frequency
decomposition is obtained.

2.3.5 dynamic programming best basis search

The restriction of the ST algorithm to binary time segmentations and frequency de-
compositions was removed by Herley et al. in [30]. This algorithm was initially
developed for time segmentation only and is often referred to as the flexible time
segmentation algorithm. We derive the algorithm here for a single optimal basis or
frequency decomposition, but the reader should note that an equivalent derivation can
be made for a sequence of basis, corresponding to time segmentation.

The flexible decomposition algorithm employs dynamic programming [2, 5] to search
for the optimal basis. It permits decomposition of resolution M , i.e. for an input
signal x, there are N frames of M samples numbered from 0 to N − 1 and we seek to
find the optimal decomposition or basis, denoted Φ∗

k, for the subsignals [0, kM − 1]
recursively for k ∈ {1, 2, . . . , N}. The associated library DDP is much larger than
that of the ST algorithm, since |DDP| = 2N−1.

Consider a signal, represented in the time or frequency domain, that is initially divided
into N frames of M samples, as depicted in Fig. 2.6. Let Jk,l denote the cost for the
interval sk,l = [kM, lM − 1], i.e. the segment that consists of frames k to l. Then, at
each iteration i = 1, . . . , N , the best basis Φ∗

i of the interval [0, iM − 1] is found by
solving

J∗
i = min

0≤k<i
(J∗

k + Jk,i), (2.13)

where J∗
i is the minimum cost for the interval [0, iM − 1]. The minimizing argument

of (2.13), say k∗
i , given by

k∗
i = arg min

0≤k≤i
(J∗

k + Jk,i), (2.14)

is recorded as a split position and determines the optimal basis Φ∗
i . The algorithm

terminates once J∗
N has been found and the optimal basis Φ∗

N can easily be determined
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Figure 2.7: The flexible decomposition algorithm employs dynamic programming to
build up the optimal decomposition. At each iteration, the new split position is calcu-
lated according to (2.14).

by backtracking the optimal split positions. An example of this procedure is shown in
Fig. 2.7 for N = 3.

2.3.6 best bases and operational RD optimization

The operational RD problem as formulated in (2.9) can now be extended in a straight-
forward manner by including best basis search algorithms such as the single tree and
dynamic programming based methods from the Sections 2.3.4 and 2.3.5 into the opti-
mization process. This leads to RD optimal bases, i.e. for the given input signal or sig-
nal block, both the basis and the coding templates that minimize the Lagrangian cost
defined in (2.2) are obtained. Let D =

⋃
p∈P Φp denote a dictionary of orthonormal

bases for �2(Z), where the pth basis is given as Φp = {ϕp
k}k∈Z. Then we reformulate

the operational RD problem from (2.9) as follows.

Formulation 4. Operational Rate-Distortion Problem Including Best Basis Search
Given the constraint RT , find λ∗ as

λ∗ = arg max
λ≥0

[(
min
Φ∈D

∑
k∈Z

(
min

j
dk(qk,j) + λrk(qk,j)

))− λRT

]
. (2.15)

The solution to (2.15) can be found with the following step-wise procedure.
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Algorithm 2. Operational RD Optimization

Initialization

[1] Generate (R,D)-pairs for each possible bit allocation and for coding unit, i.e.
each possible segment, transform coefficient or set of coefficients.

Optimization for a given slope λ

[2] For the given slope λ, find the minimum Lagrangian costs for each coding unit
by minimizing over all coding templates.

[3] Use a best basis search algorithm to find the optimal time segmentation, fre-
quency decomposition or joint time-frequency decomposition.

Computation of the optimal slope λ∗

[4] To find the optimal slope λ∗ that corresponds to the target rate RT , run the
bisection algorithm.

Backtracking

[5] Obtain the optimal time-frequency decomposition Φ∗, the optimal allocation
vector q∗ and the corresponding coded parameters. The optimal rate R∗ and
distortion D∗ are available or can be recomputed.

The complexity of the encoding system determines the practicality of an RD optimiza-
tion technique. Three main sources of complexity can be identified.

• For obtaining the set of (R,D)-pairs from the audio source, i.e. the rate and
distortion for each coding unit, several encode/decode operations have to be
performed. We shall indicate this process as the Initialization phase. In [16, 39]
examples of allocation methods that use models instead of the actual RD data
can be found, to reduce the complexity. Moreover, intermediate low-complexity
cost measures can be employed in certain parts of the overall RD optimization
framework to reduce the complexity of the initialization phase.

• After the RD data has been found or modelled, the search for the optimal value
of λ has to be performed. This part is denoted as the Optimization phase. The
complexity depends on the delay in computing the optimal solution and the
storage required by the search algorithm.

• In many situations a Backtracking phase is required to obtained the desired re-
sults from the output of the optimization phase. The complexity of this back-
tracking procedure is usually much lower that that of the previous two phases
and is ignored in the rest of this thesis.
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2.4 Conclusion

In this chapter we studied the theory of operational rate-distortion optimization and
best basis search algorithms. We proposed several formulations of the rate-constrained
allocation problem as encountered in audio coding and investigated some popular
methods for solving the problem. Furthermore, we looked at two efficient best basis
search algorithms which are candidates for our audio coding system. The combination
of the two fields leads to interesting algorithms for audio coding purposes. However,
we have not yet chosen a particular signal transform. In the introduction, we remarked
that the modified discrete cosine transform is the preferred choice in many of the ex-
isting audio coders. Therefore, in the next chapter we study this signal transform in
detail and investigate its possibilities for adaptive time-frequency decomposition.
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[27] C. Herley, J. Kovačević, K. Ramchandran, and M. Vetterli. Arbitrary orthogo-
nal tilings of the time-frequency plane. In Proc. IEEE-SP Conference on Time-
Frequency and Time-Scale Analysis, pages 11–14, Victoria, Canada, October
1992.
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Chapter 3

The Modified Discrete Cosine
Transform

In this chapter we review the modified discrete cosine transform. After a short intro-
duction in section 3.1, we study important properties of the transform in section 3.2.
We then investigate three techniques for obtaining adaptive time-frequency signal de-
compositions with the MDCT in section 3.3 and conclude the chapter in section 3.4.

3.1 Introduction

The modified discrete cosine transform (MDCT) was first encountered in the work by
Princen, Johnson and Bradley [47] as the oddly stacked filter bank based on time do-
main aliasing cancellation 1 (TDAC) [46]. The MDCT is a so-called lapped transform,
i.e. a transform where samples from consecutive overlapping segments are windowed
and transformed. In the case of the MDCT the overlap is 50%, that is, only adjacent
blocks are considered for overlap. These lapped transforms, also known as lapped or-
thogonal transforms (LOTs), were extensively investigated by Malvar [31, 35] and can
be seen as both [29] a signal transform and a multirate filter bank. Malvar proposed
a specific variant of the MDCT, known as the modulated lapped transform (MLT),
in [31]. As an overlapped block transform, the MDCT significantly reduces so-called
blocking artifacts. These artifacts are typical for signal coding schemes that employ
nonoverlapping block transformations such as the DFT [45, 3] or DCT [49]. On the
other hand, the MDCT can be seen as a particular instance from the family of cosine-
modulated filter banks (CMFB) [32, 23, 24, 57] and as such, it is critically sampled
and possesses the perfect reconstruction property. In this chapter we mostly adhere to
a signal transform viewpoint of the MDCT. Hence, time-domain descriptions rather
than frequency or Z-domain descriptions will be employed in most of the derivations
and examples.

1These terms, oddly-stacked and TDAC, are explained later in the chapter.
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Figure 3.1: (a) Analysis mapping Ta and (b) synthesis mapping Ts.

3.2 Properties of the MDCT

In this section we discuss the MDCT and its underlying properties. We first consider
the general framework of lapped transforms and then move on to the intricacies of
time-domain aliasing and perfect reconstruction. Next, some popular MDCT window
designs are discussed, as well as a fast implementation algorithm. Then, some ex-
amples of the MDCT behavior are provided. The section ends with an overview of
relevant transforms related to the MDCT.

3.2.1 lapped orthogonal transforms

In transform coding with lapped orthogonal transforms (LOTs), a time-domain input
signal x is transformed to an output set of transform coefficients X by the analysis
mapping Ta, as X = Tax. The analysis mapping has an upper-triangular block-
banded Toeplitz structure, as depicted in Fig. 3.1a. The synthesis mapping corre-
sponding to the inverse transform x̂ = TsX , denoted by Ts, is given in Fig. 3.1b.

Let the square submatrices S� ∈ RM×M and A� ∈ RM×M , � ∈ {0, 1}, contain M
samples of a set of length-2M synthesis and time-reversed analysis filters, fk and hk,
respectively. That is,

A�(k, n) = hk(2M−1−n−�M), (3.1)

S�(k, n) = fk(n+�M). (3.2)

The synthesis filters fk constitute the basis functions of the LOT. The index of the
basis functions, or equivalently, a specific filter bank subband channel, is denoted
k = 0, 1, . . . ,M−1, whereas the index n = 0, 1, . . . , 2M−1 denotes the filter coeffi-
cients.

In the absence of quantization of the transform coefficients X , perfect reconstruction
(PR) of x, i.e. x̂ = x, is obtained if TsTa = I, or, equivalently, Ts = T−1

a . Often,
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the more strict requirement Ts = T∗
a is applied, which leads to the analysis filters

being the time-reversed synthesis filters, i.e. hk(n) = fk(2M−1−n). However, as is
done in [46, 47] we do not assume this relation a priori in the following derivations.
Using (3.1) and (3.2), the LOT PR condition Ts = T−1

a then reduces to the following
set of conditions,

S0
T A0 + S1

T A1 = I, (3.3)

S0
T A1 = S1

T A0 = 0. (3.4)

The MDCT is a lapped orthogonal transform where all basis functions are derived
from cosine modulation of a lowpass synthesis FIR prototype filter f . It is customary
to indicate f as the MDCT synthesis window. The M MDCT basis functions ϕk are
then given as

ϕk(n) = fk(n) = γf(n) cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
, k = 0, 1, . . . ,M−1,

where n0 is a time shift and γ is a normalization factor, for which various choices
are encountered throughout the MDCT and LOT literature. We will use γ =

√
2/M .

Note that in general, even if the synthesis window f has linear phase, the MDCT basis
functions do not have linear phase. Therefore, the MDCT is less suitable for image
and video coding applications.

If we regard the MDCT basis functions as a set of bandpass filters, the center frequen-
cies ωk of these filters and the corresponding subband channels are given as

ωk =
π

M

(
k+

1
2

)
, k = 0, 1, . . . , M−1.

The MDCT subband channels are offset by half a frequency bin in comparison to the
DFT. Hence, an MDCT analysis splits the frequency axis between 0 and 2π into M
equally spaced subband channels, each of width 2π/M . This type of channel stacking
in the MDCT is commonly referred to as odd stacking and the MDCT is an oddly
stacked filter bank.

Let the ith time-domain input signal block xi of length M be given as xi(n) =
x(n + iM), n = 0, 1, . . . ,M−1, and let the ith time-domain input signal block yi

of length 2M be given as yi(n) = x(n + iM), n = 0, 1, . . . , 2M−1. The M trans-
form coefficients Xi are obtained by windowing yi with analysis window h and by
pre-multiplication with the cosine modulation matrix C ∈ RM×2M , where

C(k, n) =

√
2
M

cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
,

k = 0, 1, . . . ,M−1 and n = 0, 1, . . . , 2M−1. Figure 3.2 shows the forward MDCT.

Furthermore, let the ith reconstructed time-domain output signal block x̂i be given as
x̂i = x̂(n + iM), n = 0, 1, . . . ,M−1 and, similarly, let the output signal block ŷi =
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Figure 3.2: Forward MDCT operation. The transposed input blocks are windowed
with analysis window h and pre-multiplied with cosine modulation matrix C.

x̂(n + iM), n = 0, 1, . . . , 2M−1. Fig. 3.3 visualizes the inverse MDCT operation.
Pre-multiplication with matrix CT is applied to the transform coefficients Xi, leading
to the reconstructed block ŷi. The ith signal block x̂i is reconstructed after windowing
with synthesis window f and overlap-add of the blocks ŷi−1 and ŷi as

x̂i(n) = f(n+M)ŷi−1(n+M) + f(n)ŷi(n). (3.5)

In terms of the basis expansion theory discussed in the previous chapter, section 2.3.1,
an expansion of the signal block ŷi is given by

ŷi(n) =
M−1∑
k=0

Xi(k)ϕk(n).

The M transform coefficients Xi are computed as

Xi(k) =
2M−1∑
n=0

yi(n)ϕ̃k(2M−1−n),

with

ϕ̃k(n) = hk(n) =

√
2
M

h(n) cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
,

and h a lowpass analysis FIR prototype filter, indicated as the MDCT analysis window.
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ŷ1

ŷ2
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Figure 3.3: Inverse MDCT operation. The MDCT coefficients are pre-multiplied with
cosine modulation matrix CT and subsequently windowed with synthesis window f .

3.2.2 TDAC and perfect reconstruction

Paradoxically, the MDCT has the property that, in general, ŷi �= yi, even in the ab-
sence of quantization. Hence, considered on a block basis the MDCT is a nonorthog-
onal transform. Only after overlap with the preceding reconstructed signal block ŷi−1

the MDCT can satisfy conditions (3.3) and (3.4) such that x̂i = xi ∀i ∈ N. Per-
fect reconstruction of the signal x depends on the design of the analysis and synthesis
windows h and f , and on the choice for the time shift n0. We follow the method
in [46, 47] in order to derive the appropriate window designs and the time shift.

Theorem 2. (perfect reconstruction property of the MDCT) For the ith input signal
block yi and MDCT analysis window h, let the 2M MDCT analysis signals Xi be
defined as

Xi(k) =

√
2
M

2M−1∑
n=0

h(2M−1−n)yi(n) cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
.

Furthermore, let ŷi be obtained from Xi as

ŷi(n) =

√
2
M

M−1∑
k=0

Xi(k) cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
,

and let f be the MDCT synthesis window.
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The ith signal block x̂i can be perfectly reconstructed if

f(n) = h(n), n = 0, . . . , 2M−1, (3.6)

h(n) = h(2M−1−n), n = 0, . . . ,M−1, (3.7)

h2(n) + h2(n+M) = 1, n = 0, . . . ,M−1, (3.8)

and 2n0 = M+1.

Proof: The 2M MDCT coefficients are not independent but satisfy

X(k) = −X(2M−k−1), k = 0, 1, . . . ,M−1.

Therefore, only M MDCT coefficients are required for reconstruction. The ith signal
block x̂i is reconstructed as (3.5)

x̂i(n) = f(n+M)ŷi−1(n+M) + f(n)ŷi(n).

In Appendix A we show that for 2n0 = M+1, (3.5) is equivalent to

x̂i(n) = xi(n)
(
f(n+M)h(M−1−n) + f(n)h(2M−1−n)

)
+ xi−1(2M−1−n)

(
f(n+M)h(n) − f(n)h(n+M)

)
. (3.9)

Hence, x̂i = xi ∀i ∈ N if (3.6)-(3.8) are satisfied. �

We can interpret (3.9) as follows. The first term in (3.9) is the desired signal xi, while
the second term is a time alias originating from the previous signal block xi−1. In or-
der to achieve PR, this time alias has to be removed from the output. The most popular
choice to achieve time domain aliasing cancellation (TDAC) is choosing f = h, i.e.,
setting the synthesis window equal to the analysis window according to (3.6). Once
the aliased term is removed, it is clear that PR is obtained by designing the MDCT
analysis window h such that (3.7) and (3.8) are satisfied. Note that other choices for
f and h are also possible, as shortly discussed in section 3.2.3.

We now return to the LOT PR conditions (3.3) and (3.4) to see that the derived condi-
tions on the analysis and synthesis windows lead to overall PR. Let H� ∈ RM×M and
C� ∈ RM×M be defined as

H� = diag{h(n+�M)},
and

C�(k, n) =

√
2
M

cos
[ π

M

(
k+

1
2

)(
n+�M+

M + 1
2

)]
,

respectively, for k, n = 0, 1, . . . ,M−1. By filling in the choices for h, f and n0 in
the original conditions (3.3) and (3.4) we obtain

H0C0
T C0H0 + H1C1

T C1H1 = I,

H0C0
T C1H1 = H1C1

T C0H0 = 0.
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Since it can be derived that

C0
T C0 = I − J,

C1
T C1 = I + J,

C0
T C1 = C1

T C0 = 0,

we have the single PR condition H0
2 +H1

2 = I which is clearly satisfied if h2(n) +
h2(n+M) = 1. Note that J ∈ NM×M denotes the matrix with 1’s along the main
anti-diagonal and 0’s elsewhere.

Given the conditions (3.6)-(3.8) for h, f and n0 the definition of the MDCT is

Xi(k) =

√
2
M

2M−1∑
n=0

h(n)xi(n) cos
[ π

M

(
k +

1
2

)(
n+

M + 1
2

)]
. (3.10)

The inverse MDCT is then given by

yi(n) =

√
2
M

M−1∑
k=0

Xi(k) cos
[ π

M

(
k+

1
2

)(
n+

M + 1
2

)]
, (3.11)

and the overlap-add operation as

x̂i(n) = h(n+M)ŷi−1(n+M) + h(n)ŷi(n).

3.2.3 window design

In the previous section we derived the constraints (3.6)-(3.8) that have to be taken into
account when designing MDCT windows. This set of constraints is also known as the
Princen-Bradley conditions. According to (3.6) only the analysis window h has to be
designed. Constraint (3.7) can be easily satisfied by considering symmetric analysis
windows only, whereas constraint (3.8) states that the window tails or halves of the
MDCT analysis window must be power complementary. Additional constraints on
the window design come into play when considering the MDCT in a transform coding
framework. The most relevant of these constraints are:

[1] Frequency selectivity: The main lobe or passband of the magnitude response
of the window should be as narrow as possible and stopband leakage must be
minimized.

[2] Monotony: The envelope of the stopband attenuation should be monotonically
decreasing (or at least be equiripple) to limit the spread of quantization noise
over frequency regions outside the passband.

[3] Time selectivity: In some cases, e.g., when coding transient signals, it is desir-
able to constrain the quantization noise in time rather than in frequency. This
requires windows having a small overlap. Another reason to reduce the overlap
is to minimize the time aliasing that is introduced. This is especially beneficial
when using adaptive time-frequency techniques such as temporal noise shaping,
see section 3.3.2.



52 3. The MDCT

100 200 300 400 500
0

0.5

1

0 0.01 0.02 0.03

−60

−40

−20

0

100 200 300 400 500
0

0.5

1

0 0.01 0.02 0.03

−60

−40

−20

0

100 200 300 400 500
0

0.5

1

0 0.01 0.02 0.03

−60

−40

−20

0

a)a)

b)b)

c)c)

Impulse response Magnitude response

Figure 3.4: Impulse and magnitude responses of a) trapezoidal window, b) sine win-
dow and c) KBD window.

A variety of MDCT window designs have been explored in literature, where a trade-
off is offered between the time and frequency behavior of the windows, depending on
the constraints imposed by the coding framework in which the MDCT operates.

Trapezoidal windows

The trapezoidal window hT corresponds to the minimum overlap window defined as

hT (n) =

⎧⎨
⎩

0, 0 ≤ n ≤ M
2 −1,

1, M
2 ≤ n ≤ 3M

2 −1,
0, 3M

2 ≤ n ≤ 2M−1.
(3.12)

This window turns the MDCT into an nonoverlapping block transform, i.e. the DCT-
IV. From Figure 3.4a we observe that the trapezoidal window has high time selectivity,
but very poor frequency selectivity.

Sine window

Good frequency domain behavior can be obtained with a simple design based on the
sine function. This window hS is given as

hS(n) = sin
[(

n +
1
2

)( π

2M

)]
, n = 0, . . . , 2M−1.

It offers good pass-band selectivity (see Figure 3.4b), i.e., a narrow mainlobe, for se-
lection and discrimination of tonal components spaced close to one another. Moreover,
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the sine window satisfies the polyphase normalization condition,

M−1∑
k=1

pk(n) = 0 n = 0, 1, . . . ,M−1,

such that the energy of a DC (constant) signal is concentrated into the first basis func-
tion. Malvar proposed the MLT [35] as a particular instance of the MDCT, namely the
MDCT where the sine window is applied. On the other hand, the time selectivity is
rather low.

Kaiser-Bessel derived window

A general method to construct a suitable MDCT window h of length 2M from any
symmetric window w of length M + 1 is the following:

h(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√∑n
l=0 w(l)∑M
l=0 w(l)

, 0 ≤ n ≤ M−1,

√√√√∑M
l=n−M+1 w(l)∑M

l=0 w(l)
, M ≤ n ≤ 2M−1.

(3.13)

An example of this method is the Kaiser-Bessel derived (KBD) [65] window hK ,
which leads to a good trade-off between the requirements in both the time and fre-
quency domains. Employing (3.13), it is derived from the M + 1-point Kaiser-Bessel
window [21] wK , computed as

wK(n) =
I0(πα

√
1−(2n/2M−1)2)
I0(πα)

,

where I0(·) is the 0th order modified Bessel function of the first kind [64], given as
the series

I0(n) =
∞∑

l=0

(
(x/2)k

k!

)2

.

The parameter α ∈ R determines the shape of the window, where larger values of α
lead to a more narrow window. In the frequency domain, increasing values of α lead
to a broader main lobe and increased stopband reduction. In Figure 3.4c the impulse
and magnitude responses of a KBD window designed with α = 4 are shown. This
KBD window has high stopband attenuation and therefore compacts more energy into
a single spectral component than the sine window. This is beneficial for signals with
a few strong spectral components, spaced relatively far form each other. Furthermore,
the window overlap is rather low, so it has good time selectivity. However, the main
lobe is broader and the magnitude of the first sidelobe is higher than the sine window.
Therefore, the sine window is a better choice for coding signals which contain closely-
space harmonics that need to be resolved.
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Other window designs

An extensive overview of MDCT window design is given by Ferreira in [14]. Addi-
tionally, an optimization method for MDCT window design is presented where, sim-
ilarly to the KBD window, a tradeoff between the reduction of time aliasing and the
stopband reduction can be made. In [53] Ferreira and Sinha provide a detailed com-
parison of some popular MDCT window designs. Moreover, in some cases, it can be
advantageous to have different analysis and synthesis windows, i.e., to relax constraint
(3.6). The analysis windows can then be optimized for an increase in stopband reduc-
tion, whereas the synthesis windows might be designed to be more smooth, in order to
further reduce blocking artifacts. Perfect reconstruction and time-domain aliasing can
still be achieved by making the MDCT a biorthogonal transform. The resulting gen-
eralized Prince-Bradley conditions are derived in [54, 6], examples of biorthogonal
window designs can be found in, e.g., [40, 36].

3.2.4 fast MDCT implementation

When implemented according to (3.10), the complexity of the MDCT is O(M2).
One of the earliest fast implementations of the MDCT is presented by Duhamel et
al in [11], where they show that the MDCT can be dissected as follows. Let g = hx
denote the windowed input block and let z ∈ CM/2 be given as

z(n) =
(
g(2n)−g(M−1−2n)

)
+j
(
g(2M−1−n)+g(M+2n)

)
, 0 ≤ n ≤ M/2−1.

We can now compute Z ∈ CM/2 for k = 0, . . . ,M−1, as

Z(k) = ejπ(4Mk+4k+3M)/4M

M/2−1∑
n=0

[
z(n)ejπ(4n+1)/4M

]
ej4πkn/M ,

= Zpost(k)
M/2−1∑
n=0

[
zpre(n)z(n)

]
ej4πkn/M , (3.14)

where

Zpost(k) = ejπ(4Mk+4k+3M)/4M ,

zpre(n) = ejπ(4n+1)/4M .

Disregarding normalization issues, the M MDCT coefficients X can be obtained from
Z as follows.

X(2k) = Im {Z(k)},
X(2k+1) = −Re {Z(

M

2
−k−1)}.

Eq.(3.14) can be interpreted as follows. First, the complex time domain samples z are
multiplied by the pre-twiddle factor zpre, such that z′ = zprez. Then, an M/2-points
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complex-valued IDFT operation is applied to z′. The resulting frequency domain coef-
ficients Z ′ are multiplied with the post-twiddle factor Zpost, resulting in Z = ZpostZ

′.

The pre -and post-twiddle operations have a complexity O(M), whereas the IDFT
can be computed with an IFFT of complexity O(M log M), see [7]. A similar deriva-
tion can be made for the inverse MDCT as defined in (3.11), which can be com-
puted with an M/2-points complex-valued FFT. The computational complexity of the
MDCT in this implementation is therefore dominated by that of an M/2-points FFT
as O(M/2 log[M/2]).

It is this implementation of the MDCT that has been employed throughout all the
experiments presented in Part II. Additional reductions in the number of required ad-
ditions and multiplications and/or the number of memory locations can be obtained
by merging the windowing operation into the pre-twiddle operation, e.g. [11, 51] or
by considering efficient structures for the type-IV DCT as in [25, 38]. For a spe-
cific choice of M , as is the case for the MDCT employed in the MPEG1-layer3 stan-
dard [41], further optimizations can be made [4].

3.2.5 MDCT examples

We have seen that the MDCT leads to perfect reconstruction of the input signal after
overlap-add. However, it was also observed that, in general, a single input signal block
cannot be reconstructed perfectly. In a transform coding scheme where the MDCT is
employed, quantization and coding decisions are typically made on block-by-block
basis. This also holds for most of the algorithms presented in Part II of this thesis,
where we assume independent coding of the coding units. Therefore, it is desirable to
obtain further insights on the behavior of the MDCT on a block level.
Consider the example given in Fig. 3.5a, where a sinusoidal input signal divided into
four overlapping block of 64 samples is shown. Each windowed input block is trans-
formed with the MDCT, resulting in the four MDCT spectra in Fig. 3.5b. The recon-
structed signal is given in Fig. 3.5c. This example emphasizes the time-varying nature
of the MDCT spectrum, i.e. the MDCT spectrum is sensitive to phase shifts of the
input signal.

Psycho-acoustically motivated masking curves often rely on DFT-based computation.
As a result, when the MDCT is applied in combination with DFT-based psychoacous-
tic models, a mismatch between the DFT and MDCT spectra occurs, which can lead
to coding artifacts such as time-varying bandwidth limitation artifacts. In the work by
Daudet and Sandler [8, 9], a detailed analysis of this phenomenon for sinusoidal input
is made and a spectrum regularization technique is proposed.

In Fig. 3.6, the four individual windowed input blocks are plotted, along with the
reconstructed windowed output blocks. Note the varying amounts of time-aliasing
between the first and second block, or between the third and fourth block, which lead
to time-varying energy content in the reconstructed signal block. This can also be ob-
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Figure 3.5: Example of the overlap-add MDCT operation and the corresponding
MDCT spectra. a) The input signal along with the windows (dashed lines). b) The
resulting MDCT spectra c) The reconstructed time domain signal after overlap-add.

served from the MDCT spectra in Fig. 3.5b. A more extensive study of MDCT spectra,
reconstructed output signals can be found in the work of Wang and Vilermo [63, 60].

3.2.6 related transforms

The MDCT is closely related to a number of other signal transforms. In some coding
applications, these transforms can provide increased coding performance compared
to the MDCT. Moreover, in other signal processing fields such as audio and speech
enhancement, such transforms can serve as a replacement for the DFT. Therefore,
these transforms are briefly discussed, where we concentrate on recent transforms
that can be seen as an extension of the MDCT. The relation with block transforms
such as the DFT and the DCT, is explored in the articles by Yang, Yaroslavsky and
Vilermo [62, 61], by making use of the shifted Fourier transforms (SDFT) [66].

Extended Lapped Transform

In some applications, a larger overlap region and thus longer windows can be de-
sirable. The Extended Lapped Transform (ELT) [33, 35, 34] is an extension of the
MDCT for which the direct ELT operation is defined as in (3.10). However, the ELT
allows for larger overlapping blocks of length 2mM , with m ∈ N the overlapping
factor. As such it is a particular instance of the general class of perfect reconstruct-
ing cosine modulated filter banks [23, 24]. Given equivalent symmetric analysis and
synthesis windows, the condition on the ELT analysis window h to achieve perfect
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before overlap-add.

reconstruction is

2m−2s−l∑
l=0

h(n+lM)h(n+lM+2sM) = δ(s),

for s = 0, . . . ,m−1 and n = 0, . . . , M/2−1. For m = 1, this condition reduces to
(3.8) such that we can employ the MDCT windows from section 3.2.3. For m > 2, no
simple parametrization of analysis windows exists and we have to rely on numerical
optimization techniques in order to design appropriate windows.

Hierarchical Lapped Transform

The transforms as encountered thus far, for example the DFT, DCT and MDCT, re-
sult in a uniform time-frequency decomposition of the input signal. That is, given a
choice for M , all the basis functions have the same length and time localization and
their frequency responses have the same bandwidth. In some cases, a multiresolution
approach can deliver better performance, specifically for nonstationary and transient
signals. The Hierarchical Lapped Transform (HLT) [30, 35] employs the MDCT in a
hierarchical or pyramidal structure. At each pyramid level, a given number of MDCT
coefficients, typically corresponding to low frequency bands, are taken as input for a
subsequent MDCT transform at the next level. As such, a nonuniform time-frequency
decomposition (e.g., an octave band splitting) of the input signal can be obtained. The
HLT is connected to wavelet packet and local cosine transforms. In practical applica-
tions, the HLT allows for progressive transmission and can increase the time resolution
to prevent ringing artifacts. The concept of a nonuniform MDCT is further explored
in section 3.3.
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Modulated Complex Lapped Transform

It was already noted that the MDCT does not lead to perfect reconstruction of a single
input block. If the critical sampling property of the MDCT is relaxed, an oversampled
transform known as the modulated complex lapped transform (MCLT) [39] can be
constructed, with an oversampling factor of two. The MCLT does not rely on time
domain aliasing cancellation and therefore the reconstruction formula

ŷi(n) =
M−1∑
k=0

X(k)ϕk(n),

leads to perfect reconstruction of the block yi, in the absence of quantization. The
basis functions p of the MCLT are a combination of the MDCT from (3.10) and the
modified discrete sine transform (MDST), i.e.

ϕk(n) = ϕc
k(n) − jϕs

k(n),

ϕc
k(n) =

√
2
M

h(n) cos
[ π

M

(
k+

1
2

)(
n+

M + 1
2

)]
,

ϕs
k(n) =

√
2
M

h(n) sin
[ π

M

(
k+

1
2

)(
n+

M + 1
2

)]
.

The MCLT is a good candidate to replace the DFT for applications such as noise sup-
pression and acoustic echo cancellation. Furthermore, it can be employed for equal-
ization tasks such as in the recent spectral bandwidth replication technique [10, 13].

Due to the oversampling, the MCLT is less suitable for (audio) coding purposes, al-
though in [50, 5] results for a nonuniform MCLT in an audio coding application are
presented with some favorable results. An attractive feature of the MCLT is the fact
that both the MDCT and MDST coefficients can be obtained directly from the com-
plex coefficients, which allows joint coding/enhancement operations.

3.3 Adaptive time-frequency decomposition

The increased length of the MDCT offers substantial advantages over nonoverlapping
block transforms such as the DCT. Most noticeably, a reduction of blocking artifacts
is obtained. On the other hand, the larger support of the MDCT basis functions results
in an increase of ringing artifacts, e.g., pre-echo and reverberation artifacts. An adap-
tive time-frequency decomposition can reduce these artifacts. The various window
designs presented in section 3.2.3 allow for a limited time-frequency trade-off in the
MDCT behavior. Since further adaptation of the time-frequency resolution than the
MDCT offers is desired, more advanced techniques are required.

In this section three techniques for obtaining MDCT-based adaptive time-frequency
signal decompositions are considered. These techniques will be used extensively in
the rate-distortion optimization algorithms in Part II. First, we study the block switch-
ing approach, which will allow us to vary the MDCT window length and thus the
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number of basis functions. Secondly, we look at temporal noise shaping, which em-
ploys frequency domain linear prediction and an open-loop quantization scheme. The
combination of a uniform filter bank with frequency domain linear prediction leads
to nonuniform filter banks. Thirdly, subband merging is investigated. This method
allows for flexible nonuniform filter bank designs where the subband filters have spe-
cific properties.

Various other methods for adaptive time-frequency decompositions exist that are not
discussed in this thesis. For adaptive time segmentation, Bosi and Davidson [2]
propose a phase shift in the MDCT kernel to allow shortened transition windows.
The gain modification techniques presented in [58, 27] are preprocessing operations
that adjusts the temporal envelope of the input signal prior to the MDCT transform.
Nonuniform frequency decompositions can be obtained with the frequency-varying
MDCT based on a dual-stage MDCT recombination method in [48]. Although some
of these techniques have found their way into existing audio coding standards such
as Dolby AC-3 [55] and MPEG-2/4 AAC [42, 43], they remain less popular than the
techniques described in this section.

3.3.1 window and block switching

An effective approach for counteracting temporal unmasking artifacts is to constrain
the support of the basis functions and thus the support of the introduced quantization
error. Furthermore, since transient phenomena typically require a high(er) bit rate,
from a compression perspective it is beneficial to constrain these high rates to short
time intervals. This requires an adaptation of the window length, typically referred to
as block switching. Adaptation of the window length essentially results in a nonuni-
form time segmentation of the input signal under consideration.

An important question that arises when changing the length of an MDCT window, is
whether the perfect reconstruction property of the MDCT in the case of overlapping
windows can be retained. Furthermore, it is desirable that the switch to a different
window length can be made instantaneous. In order to derive these PR conditions for
the time-varying MDCT we first study the situation where we vary the window shape
on a block basis, a procedure called window switching. A first solution to this prob-
lem for overlapping transforms was presented by Edler [12] and later by Vetterli and
Kovacevic in [26]. Here the method by Edler is discussed.

Consider the situation as depicted in Fig. 3.7a where two nonidentically shaped anal-
ysis windows of length 2M are employed, denoted by hi−1 and hi respectively, on
adjacent signal blocks xi−1 and xi. Assuming equivalent analysis and synthesis win-
dows, the reconstructed signal block in the overlapping region n = 0, 1, . . . ,M−1
can be derived using (3.9) as

x̂i(n) = hi−1(n+M)2xi(n) + hi−1(n+M)hi−1(2M−1−n)xi−1(2M−1−n)
+ hi(n)2xi(n) − hi(n)hi(M−1−n)xi−1(2M−1−n).
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Figure 3.7: a) Switching between two nonidentical windows of the same length. b)
Switching between two nonidentical windows of different lengths 2M1 and 2M2 with
mutual overlap L.

Using the fact that xi−1(2M−1−n) = xi(M−1−n), n = 0, 1, . . . , M−1, leads to

x̂i(n) = hi−1(n+M)2xi(n) + hi−1(n+M)hi−1(2M−1−n)xi(M−1−n)
+ hi(n)2xi(n) − hi(n)hi(M−1−n)xi(M−1−n).

Hence, the conditions for perfect reconstruction in case of varying window shapes can
be written as

hi−1(n+M)hi−1(2M−1−n) = hi(n)hi(M−1−n), (3.15)

hi−1(n+M)2 + hi(n)2 = 1. (3.16)

We see that the conditions (3.15) and (3.16) only involve the second half or right tail
of the window hi−1 and the first half or left tail of the window hi. Hence, the window
hi used in block xi can have independently designed window tails as long as these
tails satisfy (3.15) and (3.16) in relation with the windows used for adjacent blocks,
hi−1 and hi+1, respectively.

This property can be used not only to change the shape, but also the length of the
applied MDCT windows from block to block. This is displayed in Fig. 3.7b where a
transition from a window w of length 2M1 to a window v of length 2M2,M1 < M2

occurs. If the mutual overlap between the two windows is L ≤ M1 samples, then the
right tail of w is given as

w(n + M1) =

⎧⎨
⎩

1, n = 0, . . . , M1−L
2 − 1,

wL(n − M1−L
2 +L), n = M1−L

2 , . . . , M1+L
2 −1,

0, n = M1+L
2 , . . . ,M1−1,

and the left tail of v as
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v(n) =

⎧⎨
⎩

0, n = 0, . . . , M2−L
2 −1,

vL(n − M2−L
2 +L), n = M2−L

2 , . . . , M2+L
2 −1,

1, n = M2+L
2 , . . . ,M2−1,

where wL and vL are windows of length 2L that satisfy the conditions (3.15) and
(3.16) over the mutual overlap range n = 0, . . . , L−1.

In general, window or block switching leads to asymmetric transition windows. Sim-
ilar design constraints as listed in section 3.2.3 are relevant here. That is, a maximum
overlap is required in case a high frequency resolution and maximum reduction of
blocking artifacts is desired. On the other hand, a low overlap ensures that quantiza-
tion noise is constrained to a limited region. Moreover, the use of the time-varying
MDCT leads to a nonuniform time segmentation of the input segment. An example
is provided in Fig. 3.8a, where the window sequence corresponding to a switch from
a 32-channel MDCT to a 64-channel MDCT is shown. We can discern three window
types, that is, short, transition and long windows. Magnitude responses of four basis
functions for each of the window types are shown in Fig. 3.8b-d. Note the decrease
in stopband reduction when the transition window is employed, as seen from Fig. 3.8c.
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Although the window and block switching techniques provide us with enhanced time-
frequency resolution adaptation, they have several limitations. For instance, the result-
ing frequency decompositions remain uniform, whereas in some cases a nonuniform
decomposition might be desired. Furthermore, since windows having maximum over-
lap are often desired, asymmetric transition windows are required when switching
between blocks of different length. The frequency domain properties of such win-
dows are severely compromised [52]. That is, the transition windows have subopti-
mal magnitude responses compared to their symmetric counterparts, which can lead
to reduced coding performance. Therefore, frequent switching between the different
window lengths is not advisable. In [59] minimum mean-square error window de-
signs are proposed to improve the properties of transition windows. Specifically when
coding certain relatively non-stationary signals, e.g. speech, block switching either
leads to frequent switching between the available window lengths and hence, reduced
coding efficiency, or in usage of long windows only, such that temporal artifacts occur.

In most of the current audio coding standards that employ block switching, only two
different window lengths are possible, denoted by long block mode and short block
mode, respectively. The usage of these long and short block modes is then controlled
by, for example, transient detection mechanisms based on time-domain energy mea-
sures [12, 22] or perceptual entropy [20]. These mechanisms are not necessarily opti-
mal. In Part II of this thesis, we develop RD optimized block switching techniques that
circumvent some of the aforementioned problems by allowing a larger set of window
lengths and a fast searching algorithm to obtain proper time segmentations.

3.3.2 temporal noise shaping

Temporal noise shaping (TNS), proposed by Herre and Johnston in [17, 18, 16], is
a form of envelope-adapted processing [19] that provides acces to the temporal fine
structure of a signal within a transform window. TNS allows for reshaping the quan-
tization noise in the time domain through open-loop linear predictive coding (LPC)
of frequency domain coefficients. This results in the temporal quantization noise fol-
lowing the signal more closely such that most of the quantization noise will reside in
signal regions with significant energy in the time domain, thereby avoiding temporal
unmasking problems in coding transient and speech signals.

Consider the open-loop linear prediction scheme depicted in Fig. 3.9. For a time-
domain input signal x, let X(k) denote its DFT and X(z) its Z-transform. In the
encoder, a pth order prediction of X(k) is made with the linear prediction FIR filter
h, whose Z-transform is denoted A(z) =

∑p
i=1 aiz

−i. The prediction results in a
frequency domain prediction error signal R, given as

R(z) =
(
1 − A(z)

)
X(z).

The prediction error is quantized to U , i.e. U(k) = Q{R(k)} = R(k) + q(k), where
q is an additive quantization error. In the decoder, the signal is reconstructed from
the received signal V to X̂ . The final resulting coding error is E = X − X̂ . In the
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Figure 3.9: Open-loop frequency domain linear prediction scheme.

following, we assume V = U .

It turns out that E is a temporally shaped version of the quantization error q, that is,

E(z) = Q(z)/
(
A(z) − 1

)
. This can be derived as follows.

E(z) = X(z) − X̂(z)
= X(z) − U(z) − A(z)X̂(z)

= X(z) −
(
1 − A(z)

)
X(z) − Q(z) − A(z)X̂(z)

= A(z)X(z) − Q(z) − A(z)X̂(z)
= A(z)E(z) − Q(z)

=
Q(z)

A(z) − 1
. (3.17)

We observe that the overall coding error is shaped by an IIR filter a′, whose Z-

transform is A′(z) = 1/
(
A(z) − 1

)
. Due tot the existence of a duality between

the squared Hilbert envelope of a signal and its spectral autocorrelation sequence, this
inverse or synthesis IIR filter is a pth order estimate of the Hilbert envelope of the
time-domain signal x. In Appendix B we provide further details on the duality be-
tween the squared Hilbert envelope and the spectral autocorrelation sequence, as well
as on frequency domain linear prediction.

TNS is part of the MPEG-2/4 AAC standard [42, 43] where it is applied to MDCT
coefficients. In [17] the authors propose a detection scheme based on prediction gain
to control TNS usage, where the prediction gain is computed as the ratio between the
signal energy and the error signal energy. The filter order is determined by a thresh-
olding operation. Moreover, TNS can be applied to selected frequency regions and
both forward and backward prediction schemes can be employed. The TNS operation
performs an in-place filtering operation on the MDCT coefficients and instead of the
MDCT coefficients, the prediction residual along with the coded prediction filter co-
efficients are stored in the bitstream.
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Figure 3.10: The combination of a filterbank and frequency domain linear prediction
leads to a trade-off between time localization and frequency bandwidth. (a) and (b)
show the impulse and magnitude responses of 4 filters of a 64-channel uniform MDCT,
(c) and (d) show the impulse and magnitude responses after prediction. A KBD win-
dow was applied.

The use of the MDCT, rather than the DFT, introduces time domain aliasing effects in
the temporally shaped noise. That is, the shaped quantization noise appears mirrored
in both the left and right window half. Since the final reconstructed output is obtained
after application of an MDCT synthesis window and overlap-add, the aliased noise
components can be attenuated by selecting an MDCT window with low overlap. This
is done in the MPEG-4 Low Delay audio coding scheme [1], which exclusively uses
TNS as a method for pre-echo control. However, such a low overlap window leads to
a reduction of frequency selectivity.

The combination of the MDCT and frequency domain prediction can be interpreted
as a continuously signal adaptive filter bank [18]. In contrast to the block switching
approach of section 3.3.1, an adaptation to the input signal characteristics within an
MDCT window is provided, leading to nonuniform filter banks. An example is given
in Fig. 3.10, where it is shown that frequency domain prediction in the MDCT trades
time resolution for frequency bandwidth. The upper plots (Fig. 3.10a and b) show
four MDCT basis functions and their magnitude responses before prediction. In the
lower plots (Fig. 3.10c and d) basis functions and corresponding magnitude responses
are shown after prediction with an 20th order filter has been performed. From the
lower plots it can be observed that the basis functions obtained after filtering have in-
creased time localization, centered at the same position, and an increased bandwidth.
In general, for signals that display high correlation between adjacent spectral com-
ponents, frequency resolution is traded for increased temporal resolution, represented
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filtering. e) Quantization noise without TNS. f) Quantization noise with TNS.

by a set of basis functions having similar time localization and increased frequency
bandwidths. Moreover, multiple filters can be applied to selected frequency ranges
and thus highly flexible nonuniform filter banks can be obtained. However, the struc-
ture of the resulting filter banks and the frequency decomposition they give rise to are
not directly transparent from the TNS filter coefficients.

A practical example of the TNS operation on real data is displayed in Fig. 3.11. A sin-
gle analysis block of 1024 samples, obtained from a castanet input signal, is shown in
Fig. 3.11a. The dotted lines denote the KBD window that is employed for windowing.
Since the signal content is highly localized, with an attack starting in the middle of
the block, pre-echos are to be expected if no additional provisions are taken to prevent
temporal unmasking. If we apply TNS, we obtain the TNS reconstruction filter with
the temporal envelope shown in Fig. 3.11b, which clearly resembles the envelope of
the windowed analysis block. In Figs. 3.11c and d, the MDCT spectra before and after
TNS filtering are displayed. The resulting quantization noise signals with and without
TNS are presented in Figs. 3.11e and f, respectively. Clearly, the application of TNS
leads to a temporally shaped noise signal, such that the majority of the quantization
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noise energy coincides with the signal energy and thus pre-echos are eliminated.
The TNS algorithm combined with a selection method based on prediction gain

does not always lead to desired coding result. Apart from artifacts introduced by time-
domain aliasing, some additional artifacts are described in [28]. There, the authors
propose a selection method in which the perceptual entropy measure [20] is employed.
In Part II of this thesis, we apply TNS within an RD optimization framework for
efficient selection of the TNS usage and filter order.

3.3.3 subband merging

A simple and elegant method to construct a nonuniform MDCT is Malvar’s subband
merging algorithm [36, 37]. By taking linear combinations of the constituent basis
functions of a uniform MDCT, the time resolution can be increased locally at the ex-
pense of a larger bandwidth, resulting in a nonuniform MDCT. Unlike most methods
to design signal transforms that give rise to nonuniform frequency decompositions, the
number of basis functions is not reduced. The subband merging algorithm is devised
such that the operation of merging the basis functions is invertible, thereby retaining
the PR property of the underlying uniform MDCT. Furthermore, the proposed method
allows for an efficient implementation of a time-varying MDCT without the need for
transition filters. It was shown that subband merging can be used beneficially for re-
ducing ringing artifacts in audio and speech coding [37].

The design method proposed in [36, 37] was restricted to combinations of two or four
basis functions only, and no systematic design procedure was given. An extension
to the subband merging approach is proposed by Niamut and Heusdens [44]. The
more general case of combining an arbitrary integer number, say p ≤ M , of adjacent
filters in an arbitrary uniform cosine-modulated filter banks (CMFB) is investigated.
Necessary and sufficient conditions are derived on the underlying uniform CMFB and
the way to combine the constituent filters such that resulting combined filters pos-
sess good frequency selective properties and flat passband response. A short overview
of the method is given below. Since subband merging is best understood from a fil-
ter bank viewpoint [57], a Z-domain notation is adopted to facilitate the necessary
derivations.

Let a closed-form expression of the impulse response hk of the kth analysis filter of
an M -channel maximally decimated CMFB be given by [15]

hk(n) = 2p0(n) cos
[ π

M

(
k +

1
2
)(

n − α

2
)]

, n = 0, . . . , N − 1, (3.18)

where α ∈ Z is called the modulation phase and p0 is the CMFB prototype filter
(e.g. an MDCT window). Perfect reconstruction of the CMFB can be obtained with
suitable choices for α and p0. Furthermore, let Hp,k(z) be a linear combination of p
adjacent filters starting from the kth filter in the CMFB, i.e.

Hp,k(z) =
p−1∑
i=0

bk+iHk+i(z), (3.19)
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with bk = ejϕk the combinatorial coefficients of magnitude 1. The index of the first
filter can be k = 0, . . . , M − p.

If |Hp,k(z)|2 is equal to
∑p−1

i=0 |Hk+i(z)|2, then Hp,k(z) has flat passband response
and a transition bandwidth similar to those of the underlying uniformly spaced sub-
band filters. The following theorem gives necessary and sufficient conditions on the
modulation phase and the combinatorial coefficients such that the resulting combined
filters indeed exhibit the required frequency behavior.

Theorem 3. (subband merging) Let p0 denote a real-coefficient linear-phase low-
pass prototype filter of length N for an M -channel PR uniform CMFB, satisfying

|P0(ejω)| = 0 for |ω| ≥ π

2M
+ ε, ε <

π

2M
, (3.20)

and let bk = ejϕk , k = 0, . . . , M−1. Furthermore, let the analysis filters hk of the
CMFB be defined as in (3.18).

Then ∣∣∣p−1∑
i=0

bk+iHk+i(z)
∣∣∣2 =

p−1∑
i=0

∣∣∣Hk+i(z)
∣∣∣2,

for 1 ≤ p ≤ M and 0 ≤ k ≤ M −p, if and only if α = (N−1)−M(2m+1), m ∈ Z,
and |ϕk− ϕk+1| = nπ, n ∈ N.

Proof: The proof is provided in Appendix C.

Eq.(3.20) sets a condition on the prototype filter p0 that can never be satisfied in prac-
tical applications since it requires infinite length filters. Hence, overlapping terms in
the frequency domain of non-adjacent filters do exist and will result in ripples in the
passband of the combined filters. By keeping the stopband attenuation of the proto-
type filter high, these ripples are kept to a minimum. The condition on α is satisfied
by many of the existing CMFB designs, including the MDCT. Furthermore, subband
merging can be implemented using integer matrices as a post-processing operation
on the CMFB subband channel signals. This significantly reduces the computational
complexity of the algorithm, since only one analysis operation is required to obtain
multiple frequency decompositions.

An example of the subband merging method is given in Fig. 3.12, where it is shown
that subband merging trades frequency bandwidth for time resolution. From the lower
plots (Fig. 3.12c and d), it can be observed that the merged filters have increased
bandwidths, centered around the same center frequency and increased time localiza-
tion, centered at different positions. We can express the time localization of the filters
using their time means μt as defined in chapter 2.3.2. The difference in time local-
ization between the merged filters can be exactly calculated using the equivalence
relation displayed in Fig. 3.13. That is, the kth filter bank channel, represented by the
filter Hk(z) and decimation with a factor M , can be replaced by two channels that
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Figure 3.12: Subband merging trades frequency bandwidth for time resolution. (a)
and (b) show the impulse and magnitude responses of 4 filters of a 64-channel uniform
CMFB, (c) and (d) show the impulse and magnitude responses after subband merging.

apply the same filter Hk(z) and decimation factor M/2, where one of the channels is
delayed by M/2 samples. Extending this relation to p filters leads to a difference of
M/p samples between the time means of merged filters.

The time-frequency resolution trade-off of the subband merging algorithm is not op-
timal, in the sense that the Heisenberg product of the time and frequency variances of
the filters increases with the number of merged filters. We analyze this behavior in
the following experiment, where we compare two sets of filter banks. The CMFBs in
the first set employ filters of different lengths, resulting in 1024 to 32 distinct chan-
nels. This can be seen as a direct design method. The second set is created from
a uniform CMFB having 1024 channels. Subband merging is employed to combine
adjacent filters such that new CMFBs are obtained with reduced frequency resolu-
tion and increased time localization, but a constant number of filters. If we merge
the appropriate number of filters, we can thus create filter banks that have 1024 to 32
channels, but 1024 filters. For all CMFBs, average time and frequency variances as
defined in chapter 2.3.2 and denoted σ2

t and σ2
f , respectively, are computed according

to [56]. Similarly, values for the time-frequency localization ν are obtained.

The results are shown in Figure 3.14. Figure 3.14a shows the time variance and it is
seen that employing the direct design method, the time localization increases much
faster than when subband merging is applied. The increase in time variance can
be expected, since we optimized subband merging for frequency domain behavior
without constraints on the resulting impulse responses. On the other hand, from the
frequency variances displayed in Figure 3.14b it is observed that subband merging
leads to a slightly increased frequency localization compared to a direct design. The
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Figure 3.13: Equivalence relation between a channel with decimation by M and 2
channels with decimation by 2M .

time-frequency localization is shown in Figure 3.14c, from which we see that the di-
rect design method results in a constant time-frequency localization when varying the
number of channels. In contrast, subband merging leads to an increase of the time-
frequency uncertainty when a large number of filters is merged. Therefore, from this
experiment it is concluded that an upperbound should be set on the number of adjacent
channels that are merged, since the time-frequency localization of filters obtained by
merging a large number of subbands is suboptimal. In Part II of this thesis, we con-
sider an operational RD optimization framework that employs subband merging for
nonuniform filter bank design and MDCT-based audio coding.

3.4 Conclusion

In this chapter, we studied the modified discrete cosine transform in detail. We derived
the conditions for perfect reconstruction and time domain aliasing cancellation. Fur-
thermore, we investigated several window designs and a fast implementation. More-
over, we analyzed three methods for adaptive time-frequency decompositions. In
Part II of this thesis we combine these methods with the RD optimization and best
basis search techniques from the previous chapter.
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Abstract

We investigate the use of nonuniform cosine-modulated filter banks for audio coding.
A rate-distortion framework is employed, similar to the work in [1], to select the filter
bank structure from a large library of possible frequency decompositions. A new flex-
ible frequency decomposition algorithm is proposed that jointly optimizes the filter
bank structure and the bit allocation over the subband channels. Experimental results
for both synthetic and real audio signals are provided. The new algorithm shows sig-
nificant improvements in comparison with fixed uniform frequency decompositions,
but special care has to be taken to reduce the size of the decomposition overhead.

4.1 Introduction

In most of the current audio coding standards a cosine-modulated filter bank (CMFB)
is employed [2], using either a polyphase or lapped transform implementation. These
filter banks provide a uniform frequency decomposition, i.e. a decomposition where
all the subband channels are uniformly spaced in frequency. However, for more ef-
ficient coding of audio and speech signals, a larger library of filter bank structures
is required in order to adapt the time-frequency resolution of the filter bank to the
signal’s changing characteristics [3].

A large library of filter bank structures is for instance provided by wavelet pack-
ets [4]. Various algorithms have been proposed that choose the optimal wavelet packet
basis and corresponding quantizers per time segment, where optimality is defined in a
rate-distortion (R-D) sense [5]. The resulting frequency decompositions are no longer
restricted to uniform band divisions. On the other hand, for CMFBs only few al-
gorithms exist to obtain time-varying nonuniform frequency decompositions [6, 7].
However, when compared to wavelet packets, CMFBs possess interesting properties
for audio coding such as good frequency selectivity and simple design of transition
filters.

In this paper, we propose a new algorithm to obtain a rate-distortion optimal fre-
quency decomposition of an audio signal using CMFBs. By combining techniques
for the design of nonuniform filter banks and dynamic programming-based R-D op-
timization, we construct the flexible frequency decomposition algorithm. The orga-
nization of this paper is as follows. In Section 4.2 some previous methods to obtain
time-varying frequency decompositions are discussed. Section 4.3 describes the new
algorithm in detail. In Section 4.4 some examples are provided and a comparison
with fixed uniform decompositions is made. Section 4.5 contains the conclusions and
recommendations for future work.

4.2 Previous work

For audio coding, several methods for adapting the time-frequency resolution of the
analysis system have been proposed. In [8], the window-switching algorithm is pre-
sented. The time-frequency resolution is adapted by switching the analysis block
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Figure 4.1: Time-frequency tilings as obtained by decomposition algorithms.
(a)Window-switching tiling (b)Single Tree tiling (c)Flexible Frequency Decomposi-
tion tiling.

length, typically between a long-duration/high-frequency resolution mode and a short-
duration/low-frequency resolution mode. The short window applied to a frame con-
taining a transient will tend to minimize the temporal spread of quantization noise
(which results in a reduction of pre-echos). Furthermore, it is desirable to constrain
the high bit rates associated with transients to the shortest possible temporal regions
only.

Although implemented in most of the current audio coding standards, the window-
switching technique has some drawbacks. For instance, special transition windows
have to be employed when switching between resolutions. This introduces extra coder
delay and the spectral properties of these windows are poor compared to those of the
original windows [9]. Moreover, the resulting frequency decompositions are still uni-
form and therefore limited in their ability to model non-stationary fragments correctly.
See Figure 4.1a for an example of the time-frequency tilings that can be obtained using
window-switching.

A frequency-varying decomposition method based on wavelet packets (WP) is
disclosed in [10], where the Single Tree algorithm jointly finds the WP basis and bit
allocation that are optimal in a rate-distortion sense. A Lagrange optimization tech-
nique is employed that searches along the convex hull of the R-D curve to determine
the jointly optimal WP basis and corresponding quantizer choices. However, the use
of wavelet packets in the Single Tree algorithm has several drawbacks. First of all,
the frequency decompositions are limited to dyadic intervals (i.e. binary decompo-
sitions) only. Figure 4.1b shows an example of a tiling that can be obtained, while
Figure 4.1c shows a tiling that cannot be achieved with the Single Tree algorithm.
Secondly, carefully designed filters are needed at the segment boundaries [11] when
the Single Tree is combined with time-segmentation algorithms. Moreover, the sub-
band filters have poor frequency responses due to the cascaded implementation of the
WP filter bank. Some work on a frequency-varying CMFB has been reported in [12].
However, this algorithm starts from a decomposition that resembles the critical band
structure. Within each critical band, only binary decompositions are possible.
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4.3 Flexible frequency decomposition

Given an M -channel uniform CMFB, we want to minimize the total distortion over
all possible frequency decompositions and all possible ways of quantizing the corre-
sponding subband signals such that the total required bit rate does not exceed a certain
target rate Rt. If we limit ourselves to the case where every possible decomposition
consists of subband channels having a bandwidth that is an integer multiple of a prede-
fined minimum bandwidth (i.e. the bandwidth of the filters of the underlying uniform
CMFB), this problem becomes the frequency equivalent of the flexible time segmen-
tation algorithm proposed in [1]. To state the problem more formally we introduce
some notation.

Let S = {S1, . . . , S2M−1} be the set of all possible frequency decompositions,
where Sk = {s1, . . . , sp} is a collection of adjacent (nonuniform) frequency intervals.
Figure 4.2 shows an example of such a decomposition. Furthermore, assume that we
are given a set of quantizers {qn} to quantize the subband samples in a decomposition
and let Q = {Ql, . . . , QN} denote the set of all possible ways of quantizing the
different decompositions Sk, where Ql = {q1(s1), . . . , qp(sp)}. The problem that we
want to solve can then be expressed as

min
S

min
Q

D(Sk, Ql) (4.1)

subject to R(Sk, Ql) ≤ Rt.

Clearly, Eq. 4.1 can be solved by introducing a Lagrange multiplier λ ≥ 0 and solving
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Figure 4.3: Dynamic Programming is employed to search iteratively for the optimal
decomposition.

the unconstrained minimization problem

min
S

min
Q

J(λ) = min
S

min
Q

p∑
i=1

Ji(λ, si, qi(si)), (4.2)

where we assume that rate and distortion are additive over the subband channels.
Solving Eq. 4.2 directly would require an exhaustive search of computational com-

plexity O(2M ). However, if we can assume that the different subband channels are
mutually uncorrelated, the search for the optimal quantizer strategy given a particular
decomposition can be done on a channel-by-channel basis, that is,

min
Q

p∑
i=1

Ji(λ, si, qi(si)) =
p∑

i=1

min
qi(si)

Ji(λ, si, qi(si)). (4.3)

This assumption is the key step in reducing the search complexity since we now can
solve Eq. 4.2 using the dynamic programming technique [13], which results in a com-
putational complexity of O(M2).

The optimal frequency decomposition is now found recursively. Let Jk,l denote
the Lagrangian cost for encoding the frequency range sk,l = [ π

M k, π
M l). Then, at

each iteration i, the best frequency decomposition of the interval [0, π
M i) is found by

solving
J∗

0,i = min
0≤k≤i

(J∗
0,k + Jk,i), i = 1, . . . ,M, (4.4)

where J∗
0,i is the minimum cost for coding the interval [0, π

M i). Figure 4.3 illumi-
nates this procedure. After having found J∗

0,M we can easily determine the optimal
frequency decomposition by backtracking all the optimal split positions.
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Figure 4.4: Resolution switching for 2 filters with subband merging. (a)Magnitude
response of unmerged filters, (b)magnitude response of merged filters, (c)time local-
ization of unmerged filters and (d)time localization of merged filters.

Obviously, if we do not know the right λ in advance, we have to repeat the aforemen-
tioned procedure for different values of λ in order to determine the optimal λ (i.e. the
one that gives rise to R = Rt). Since the rate is a convex function of the distortion,
efficient algorithms exist to find the optimal λ in a few iterations, e.g. the bisection
method [10]. The computation of the Lagrangian costs for solving Eq. 4.4 can be-
come very complex. In general, if we replace two adjacent subband channels by two
double-bandwidth channels, the perfect reconstruction property is lost so that the other
channel filters have to be modified as well and thus the subband signals. A complete
signal transformation is then necessary for each and every possible decomposition,
2M−1 in total, which is unacceptable in most applications.

If the subband merging technique presented in [7] is employed, we can reduce the
number of required signal transformations to only one, since the other decompositions
can be derived by a simple post-processing of the subband signals of the underlying
uniform CMFB. This is the main reason for applying this technique to the design of
nonuniform frequency decompositions.

It is important to note that the merging operation does not reduce the number of
channels by itself. For example, merging 2 adjacent channels results in 2 double-
bandwidth channels, each having a different time localization. See Figure 4.4 for
an example. As a result, in order to find the optimal bit allocation for a particular
frequency interval sk,l we need different quantizers for the subband channels that
constitute the interval under consideration.
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Summarizing, the flexible frequency decomposition algorithm can be implemented as
follows:

[1] For k ∈ {1, 2, . . . ,M}, compute every possible decomposition Sk of the fre-
quency interval [0, π

M k).

[2] For every decomposition Sk, compute all possible ways Ql of quantizing the i
subband samples, where Ql = {q1(s1), . . . , qp(sp)}, and record the resulting
distortions and bit rates.

[3] For an initial value λ, find the optimal decomposition S∗
0,i of the frequency

interval [0, π
M k), resulting in the minimum cost J∗

0,i for i = 1, . . . , M , where
J∗

0,0 = 0.

[4] Find the optimal value of λ, that corresponds to the target rate Rt, using the
bisection algorithm [11].

4.3.1 reduction of algorithmic complexity

Several steps can be undertaken to reduce the complexity of the algorithm. For in-
stance, instead of considering every possible combination of subband filters, we can
limit the number of adjacent channels merged to powers of 2. As shown in [7], this
restriction results in orthonormal nonuniform CMFBs, assuming that the underlying
uniform CMFB is also orthonormal. Orthonormal filter banks are desirable, since in
the quantization distortion can then be evaluated in the frequency domain only, so that
the inverse filter bank operation is not needed at the encoder.

A second reduction in complexity is obtained by setting an upperbound on the
number of adjacent channels that are merged. However, this restriction does not nec-
essarily lead to a severe degradation of performance, because the time-frequency lo-
calization of filters obtained by merging a large number of subbands is suboptimal.

4.3.2 coding of side information

The decoder has to be informed about the selected filter bank structure. This structure
can be represented as a binary sequence of length M − 1, where a one denotes a split
between adjacent subband filters and a run of m zeros denotes that m + 1 adjacent
subband filters are merged. As shown in [14], the information rate for such sequences
is close to 1 bit/sample, even if we restrict the maximum number of channels to be
merged significantly. Such a decomposition overhead is clearly unacceptable. How-
ever, initial coding experiments showed that using simple Huffman coding of the run-
lengths of ones and zeros already reduces the overhead by a factor 5, resulting in an
overhead rate of 0.2 bit/sample.
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Figure 4.5: A comparison between fixed uniform and variable nonuniform decompo-
sition. (a)Original (solid) and reconstructed (dashed) signal for uniform decompo-
sition, (b)uniform filter bank and signal magnitude response, (c)original (solid) and
reconstructed (dashed) signal for nonuniform decomposition and (d)nonuniform filter
bank and signal magnitude response.

4.4 Experimental results

The flexible frequency decomposition algorithm was implemented in a generic CMFB-
based audio codec. The M subband samples were scaled by a single scale factor (the
largest absolute sample value). A normalized quantizer was employed, where the
quantizer resolution for quantizing the subband signals was varied according to the
allocated number of bits.

Figure 4.5 demonstrates the algorithm performance for a 1st-order AR signal with
ρ = 0.9. The subband samples from a 16-channel filter bank are coded at a target
rate Rt of 24 bits using 8 different quantizer resolutions. Clearly, the use of a variable
frequency decomposition results in a better modelling of the signal and a higher SNR.
In the example given, pre-echos are reduced significantly.

Several audio fragments taken from the SQAM [15] reference disc were coded us-
ing the aforementioned coding scheme and compared for both fixed uniform and vari-
able nonuniform decompositions. The filter bank used to obtain the uniform frequency
decomposition and applied in the subband merging algorithm was a 512-channel uni-
form CMFB. The target rate was set to 1.5 bit/sample for both cases, resulting in a
decomposition overhead of 0.2 bit/sample.
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Table 4.1: A comparison between fixed uniform decomposition and variable nonuni-
form decomposition. Average segmental SNRs are presented. The first column shows
the results for a fixed uniform decomposition coded at 1.5 bit/sample. The second
contains the SNRs for variable decompositions coded at 1.5 bit/sample, while the last
column presents the result for a fixed uniform decomposition coded at 1.7 bit/sample.

Fragment Fixed (1.5) Variable (1.5) Fixed (1.7)
Castanets 11.7 17.7 13.3

Suzan Vega 19.4 22.8 21.6
German Male 24.8 27.7 27.6

Table 4.1 shows the resulting average segmental SNRs for three cases. The second
column shows the SNR for the uniform decomposition case, while the third column
presents the SNR for the nonuniform decomposition, where we did not include the
overhead rate.

Clearly, a significant improvement in SNR is obtained for all fragments. To com-
pare these result to the case where we could spent an extra 0.2 bit/sample for the
fixed uniform decomposition, the last column shows the SNRs. It is clear that for
some fragments (e.g. German Male Speech) a further reduction of the overhead rate
is necessary.

4.5 Concluding remarks

A new algorithm for rate-distortion optimal frequency decompositions using cosine-
modulated filter banks was proposed. The flexible frequency decomposition algorithm
jointly optimizes the filter bank structure and the bit allocation over the subband chan-
nels. The decomposition overhead was reduced by a simple entropy coder. Experi-
mental results for both synthetic and real audio signals showed that the new algorithm
outperforms a fixed uniform frequency decomposition.

The new algorithm is currently being compared to the existing algorithms. Further
reduction of the decomposition overhead is necessary to ensure an increase of SNR
for all audio signals. Moreover, the incorporation of a perceptual distortion metric that
considers both frequency and temporal masking is planned to employ the algorithm
in a perceptual audio coder. The flexible frequency decomposition algorithm can then
easily be combined with the window-switching technique to increase the adaptive
nature of the time-frequency analysis.
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Abstract

In this paper, we present a perceptual audio coder based on a signal adaptive MDCT.
A rate-distortion optimization framework is employed to obtain a frequency-varying
nonuniform MDCT. The applied algorithms for subband merging and flexible fre-
quency decomposition are explained and several examples are given. Listening tests
show that the use of an optimized nonuniform MDCT can outperform the standard
uniform MDCT.

5.1 Introduction

Perceptual audio coding has emerged as the standard solution to meet the demand for
high-quality digital audio delivery at low bitrates. In recent years, a multitude of audio
codecs have seen the light in both scientific and commercial applications. However,
the field of perceptual audio coding still offers many scientific challenges.

A key element of all perceptual audio coder is the time-frequency analysis. In
many current audio coding standards, a filterbank or signal transformation is used to
perform this operation. The filterbank function is threefold [1]. First, the filterbank
generates a set of parameters that is amenable to quantization in accordance with a
perceptual distortion metric. Furthermore, it provides information about the distri-
bution of the signal and masking power over the time-frequency plane in order to
identify perceptual irrelevancies. Additionally, a filterbank is used to reduce statistical
redundancies.

It has been recognized by various researchers [2, 3] that the ideal audio coder
should make adaptive decisions regarding the optimal time-frequency decomposition.
Therefore, the analysis filterbank should have time-varying resolutions both in time
and frequency domains. In [1], a number of filterbank characteristics that are highly
desirable for audio coding is listed:

• signal adaptive time-frequency tiling
• high-frequency resolution mode
• low-frequency resolution critical band mode
• efficient resolution switching
• minimum blocking artifacts
• good channel separation
• strong stopband attenuation
• perfect reconstruction
• critical sampling
• availability of fast algorithms

Several solutions have been proposed to meet these requirements. The work in [2]
explains the need for adaptive resolution filterbanks in more detail and proposes a hy-
brid filterbank solution. An interesting approach is taken in [3], where tree-structured
filterbanks are designed by optimizing a cost function that is a combination of both
coding distortion and bit rate.
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The rate-distortion optimization framework is a promising one, but tree-structured
filterbanks are not used frequently in audio coding. In most of the current audio coding
standards [4], the modified discrete cosine transform (MDCT) is employed. It satisfies
many of the desired filterbank requirements and several techniques for adjusting the
time-frequency resolution already exist.

In this paper, we propose a perceptual audio coding application where the MDCT
is employed in a rate-distortion optimization framework to obtain frequency-varying
filterbanks. We start in Section 5.2 with introducing the MDCT and describe its prop-
erties. Next, in Section 5.3, the subband merging method is explained. In Section 5.4
we show that the combination of subband merging and rate-distortion optimization
leads to the flexible frequency decomposition algorithm. Experimental results are
given in Section 5.5 and we draw some conclusions in Section 5.6.

5.2 The MDCT

The modified discrete cosine transform (MDCT) [5] stems from the family of per-
fect reconstructing cosine-modulated filterbanks (CMFB) and is an overlapped block
transform, i.e. samples from consecutive blocks are windowed and transformed. In the
case of the MDCT, the support of the analysis window spans 2 blocks. This greatly
reduces blocking artifacts, which are heard as periodic clicks in audio coding. The
direct MDCT is defined as

X(k) =
2M−1∑
n=0

x(n)pn,k, k = 0, 1, . . . ,M−1,

where

pn,k = h(n)

√
2
M

cos
[ (2n + M + 1)(2k + 1)π

4M

]
(5.1)

are the MDCT basis functions and h is the MDCT window (the transform window
is equal to the time-reversed impulse response of the prototype filter of a CMFB).
To reconstruct the signal, the inverse transform results of both the current and the
previous block are used in an overlap-add procedure, i.e.

x(n) =
M−1∑
n=0

[X(k)pn,k + XP (k)pn+M,k],

where XP denotes the transform of the previous block.
In the absence of quantization, the perfect reconstruction (PR) of x depends on h

satisfying the linear phase and Nyquist constraints, that is,

h(2M − 1 − n) = h(n),

and
h2(n) + h2(n + M) = 1,
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for n = 0, 1, . . . ,M − 1. The window design is a trade-off between satisfying the
PR requirements and achieving a good coding performance when the transform coef-
ficients are quantized. An often used window is the sine window, defined as

h(n) = sin
[
(n +

1
2
)(

π

2M
)
]
,

but other windows are also available, such as the Kaiser-Bessel derived window.
The MDCT can be used as a time-varying filterbank by employing the window-

switching technique. A simple approach would be to use boundary windows (asym-
metric windows with a rectangular tail) to start and stop a particular MDCT sequence.
When using a fixed window overlap, the transition to a different resolution can be
made instantaneously. Although these methods ensure the PR property of the MDCT,
they effectively remove the advantage of using 50% overlapping windows. A better
solution is to use special transition windows. In the MDCT case, it turns out that these
transition windows can be easily derived from the standard MDCT windows [6]. The
MDCT can be implemented by fast FFT-based algorithms, some of which incorporate
the windowing operation.

Although window-switching can be employed to change the time resolution (and
inherently, the frequency resolution), the frequency decomposition remains uniform.
A flexible method to achieve adaptive frequency decompositions is provided by the
subband merging algorithm.

5.3 Subband merging

Subband merging as described in [7] is a post-processing method to obtain frequency-
varying CMFBs. By taking linear combinations of the constituent subband filters of a
uniform CMFB with high frequency resolution, the time resolution can be increased
locally at the expense of a larger bandwidth. This results in a nonuniform filter bank,
i.e. a filterbank where the subband filters have different bandwidths. The subband
merging algorithm is devised such that the operation of merging filters is invertible,
thereby retaining the PR property of the underlying uniform CMFB. Furthermore, it
has been investigated in what manner the filters have to be merged such that the com-
bined filters have a flat passband response. If the individual subband filters provide
high stopband reduction and the underlying uniform CMFB satisfies some design con-
straints, subband merging results in nonuniform filterbanks with suitable frequency
responses. Unlike other methods to design nonuniform filterbanks, the number of fil-
terbank channels is not reduced. In Fig. 5.1 it is shown how subband merging trades
time resolution for frequency bandwidth. From the lower plots (Fig. 5.1c and d), it
can be observed that the merged filters have increased time localization, centered at
different positions, and an increased bandwidth, centered around the same center fre-
quency.

The subband merging algorithm can be implemented efficiently as a matrix post-
multiplication, where the multiplication matrix is a real-coefficient block-diagonal
unitary matrix. Consider the example where we want to combine 2 MDCT basis
functions starting from an arbitrary basis function index k. Let M denote the number
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Figure 5.1: Subband merging trades frequency bandwidth for time resolution. (a) and
(b) show the impulse and magnitude responses of 4 filters of a 64-channel uniform
MDCT, (c) and (d) show the impulse and magnitude responses after subband merging.

MDCT basis functions (or filterbank channels) and P denote the M × 2M matrix
consisting of the coefficients pn,k in Eq. 5.1. Then we can create a new matrix P′ by
the matrix multiplication P′ = SP, where

S =
1
2

√
2

⎛
⎜⎜⎜⎜⎜⎝

1
. . . ∅

1 1
1 −1

∅
. . .

1

⎞
⎟⎟⎟⎟⎟⎠ ∈ CM×M .

Since the matrix multiplication is a post-processing operation on the impulse re-
sponses of the underlying uniform CMFB, subband merging decouples the design of
the uniform CMFB and the adaptation to the signal characteristics. This property
will greatly reduce complexity when subband merging is applied in an audio coding
situation.

5.4 Flexible frequency decomposition

Subband merging provides a large library of frequency decompositions. To select the
best filterbank structure from this library in an audio coding environment, we apply the
flexible frequency decomposition (FFD) algorithm [8]. Similar to the work in [3, 9] a
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rate-distortion optimization framework is employed where the quantization distortion
is minimized subject to some target coding entropy, i.e.

min
Q

min
S

D(S(M)
n , Qn) (5.2)

subject to H(S(M)
n , Qn) ≤ Ht.

In Eq. 5.2, S = {S(M)
1 , . . . , S

(M)

2M−1} denotes the set of all possible frequency de-

compositions, where S
(M)
n = {s1, . . . , sp} is a collection of adjacent (nonuniform)

frequency intervals, as shown in Fig. 5.2. Furthermore, by Q = {Q1, . . . , QN} we
denote a set of coding templates, i.e. the set of all possible ways of quantizing the
transform coefficients in a particular decomposition S

(M)
n .

If we define a Lagrangian cost function as J(λ) = D + λH with Lagrange mul-
tiplier λ ≥ 0, the constrained optimization problem becomes an unconstrained opti-
mization problem, expressed as

max
λ≥0

(
min
Q

min
S

( p∑
i=1

min Ji[λ, si, Qn(si)]
)
− λHt

)
. (5.3)

Dynamic programming techniques can be applied to reduce computational complexity
and avoid an exhaustive search. Further reductions of the computational complexity
can be obtained by restricting the maximum number of merged filters.

The solution to Eq. 5.3 is obtained in a 3-step procedure. Although this procedure
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Figure 5.3: Example of an optimized nonuniform MDCT and its representation by a
binary sequence. (a) shows the magnitude response of 32 channels of a 64-channel
MDCT, and (b) shows the filterbank structure expressed as a binary sequence. The
white parts denote splits and the black parts denote merged filters.

is described for a single set of M transform coefficients, it can be easily extended to
the case where a target entropy is specified for coding multiple blocks.

[1] Initialization Start by computing, for k ∈ {1, 2, . . . ,M}, every possible de-
composition S

(k)
n of the frequency interval [0, π

M k), and for every decomposi-

tion S
(M)
n , code all M transform coefficients with all possible coding templates

from the set Q and record the resulting distortions and coding entropies.

[2] Phase I For an initial value of λ and the first coding template Q1, find the
optimal decomposition S

(i)
∗ of the interval [0, π

M i), resulting in the minimum

cost J
(i)
∗ , for i = 1, . . . ,M , where J

(0)
∗ = 0. Repeat for all other coding

templates and find the coding template Q∗ and corresponding decomposition
S

(M)
∗ that result in the minimal Lagrangian cost J

(M)
∗ .

[3] Phase II Repeat Phase I until the optimal value of λ, that is, the one that corre-
sponds to the target coding entropy Ht, is found.

Since the decoder has to be informed about the selected filterbank structure, side
information that describes a particular frequency decomposition has to be sent to-
gether with the encoded transform coefficients. For an M -channel MDCT, a binary
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Figure 5.4: Blockscheme of the proposed perceptual audio coding system.

sequence of length M − 1 describes this structure accurately, where a one denotes a
split between adjacent subband filters and a run of m zeros denotes that m + 1 adja-
cent subband filters are merged. Fig. 5.3 shows an example of a nonuniform MDCT-
structure, obtained by the FFD algorithm and its representation by a binary sequence.
To minimize the side information rate for sending these sequences, they can be coded
using a combination of runlength and Huffman coding.

5.5 Experimental results

We have implemented the FFD algorithm in a perceptual audio coding system. Fig. 5.4
shows a schematic representation of this coding system. The analysis of the audio
signal starts with an MDCT operation on overlapping signal blocks. The perceptual
model described in [10] is taken to compute masking thresholds for each of the analy-
sis blocks. To incorporate this psycho-acoustic model in the system, for each analysis
block the transform coefficients are divided by the masking thresholds. Perceptually
weighted distortions are then computed when the coefficients are quantized.

In the following block the FFD algorithm is applied on the perceptually weighted
transform coefficients. First, all possible frequency decompositions are computed us-
ing subband merging. The resulting weighted and merged coefficients are coded with
a scalar uniform quantizer, where the stepsize of the quantizer can be seen as a coding
template. The quantized coefficients are replaced by codewords from pre-computed
Huffman codebooks and the codeword lengths are taken as the coding entropies. The
optimal frequency decompositions and corresponding coding templates are then com-
puted. The bitstream holds the codewords for the quantized coefficients and informa-
tion describing the masking thresholds, optimal decompositions and coding templates.

Several monophonic audio fragments (16 bits PCM, sampled at 48 kHz), were en-
coded at a target entropy of 55 kbps with the FFD-based coding system. The same
set of fragments was coded at 60 kbps, without subband merging but optimal coding
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Table 5.1: Results of the listening test. Method A denotes uniform MDCT, method B
denotes the optimized nonuniform MDCT. The general preference is for method B

fragment preference A (in %) preference B (in %)
castanets 6.7 93.3

jazz 16.7 83.3
bass guitar 30 70

pop 16.7 83.3

templates were selected. The difference of 5 kbps can be used to encode the decom-
position sequences in the case of the FFD algorithm. An informal listening test was
performed where the listeners had to choose between the 2 encoded versions of each
fragment. The results can be found in Table 5.1. It can be seen the the general pref-
erence of the listeners was for method B, i.e. the coding system that employs the
subband merging and FFD algorithms.

5.6 Concluding remarks

A perceptual audio coding system has been presented that operates in a rate-distortion
optimization framework. The standard MDCT is combined with algorithms for sub-
band merging and flexible frequency decomposition to obtain a signal-adaptive and
frequency-varying MDCT. Subband merging can be employed to adapt the filterbank
structure to the input signal characteristics. Flexible frequency decomposition applies
subband merging and rate-distortion optimization to obtain a nonuniform MDCT that
is optimal for coding applications. Listening tests show that the new coding system
can outperform a non-optimized uniform MDCT.

Further research will concentrate on efficient coding methods for the side informa-
tion, i.e. the binary decomposition sequences and the masking thresholds. Suboptimal,
greedy solutions that reduce computational complexity are currently investigated.

5.7 Acknowledgement

The authors would like to thank Huib Lincklaen Arriëns for his assistance with the
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Abstract

In this paper, several time segmentation algorithms for the time-varying MDCT are
discussed and compared. A time-varying MDCT is employed in an audio coding
system. Time segmentation optimization procedures based on fast tree pruning and
dynamic programming are investigated. MDCT windows having fixed and variable
overlapping tails are considered and both entropy and rate-distortion based cost func-
tions are applied. Experimental results in the form of SNR curves are presented. The
obtained results show a clear trade-off between performance and computational com-
plexity over a large range of bit rates, with a performance gap of 3 dB between low
and high-complexity systems.

6.1 Introduction

One of the fundamental operations of an audio coding system is the time-frequency
analysis, for which typically a filterbank or linear signal transformation is applied.
Ideally, a signal transform that has time-varying resolutions both in time and frequency
domains is required, such that it can be applied to construct arbitrary time-frequency
tilings to cover the signal energy in an optimal manner.

A related problem is the construction of a time segmentation of an input signal that
is optimal with respect to a specified cost measure. Although an exhaustive search
procedure can provide the desired results, the computational complexity associated
with the solution grows exponentially with the signal length.

A variety of time segmentation algorithms exists to solve the problem in poly-
nomial time [1, 2, 3, 4, 5]. However, most of these algorithms were developed for
wavelet packets, whereas in many audio coding applications an MDCT [6] is applied.
The MDCT has desirable properties, such as good channel separation, strong stop-
band attenuation, minimum blocking artifacts, efficient resolution switching and the
availability of fast algorithms.

In this paper, several time segmentation algorithms for the time-varying MDCT,
similar to those for wavelet packets, are discussed and compared. In Section 6.2 the
time-varying MDCT and transition window designs are described. In Section 6.3,
time segmentation optimization algorithms based on fast tree pruning and dynamic
programming are investigated and both entropy and rate-distortion based cost func-
tions are introduced. Experimental results for encoding single and multiple audio
fragments with an MDCT-based audio coding application are given in Section 6.4.

6.2 The time-varying MDCT

The modified discrete cosine transform (MDCT) [6], stemming from the family of
cosine-modulated filter banks, is an overlapped block transform, i.e. a transform
where samples from consecutive overlapping blocks are windowed and transformed.
The support of the analysis window is two blocks. From a segment of length 2M ,
a set of M transform coefficients X(k) is computed by applying the direct MDCT,
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a)

b)

c)

Figure 6.1: Window-switching schemes with a) boundary windows, b) fixed overlap
windows and c) variable overlap windows.

which is defined as

X(k) =
2M−1∑
n=0

x(n)pn,k, k = 0, 1, . . . ,M−1, (6.1)

where

pn,k = h(n)

√
2
M

cos
[ (2n + M + 1)(2k + 1)π

4M

]
,

are the M basis functions and h is a prototype window.
The MDCT can be applied as a time-varying transform when window-switching is

employed [7, 8]. In this case, the length of the window or, equivalently, the number of
transform coefficients, is varied over time to account for nonstationarity of the signal
and to prevent pre-echos. In order to retain the perfect reconstruction (PR) property of
the MDCT, special transition windows are required at transition boundaries. Fig. 6.1
displays 3 time segmentation possibilities incorporating transition windows, whereas
Fig. 6.2 shows time- and frequency-domain properties of the corresponding transi-
tion windows. It can be seen that, in general, variable overlap windows have better
frequency domain properties, e.g. stopband reduction, than fixed overlap windows.

6.3 Time segmentation algorithms

Given a signal x that is divided into N non-overlapping frames of F samples, a
time segmentation of this signal is a collection of p adjacent time intervals or seg-
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Figure 6.2: a) Impulse and b) magnitude responses for an MDCT sine window, and
some derived transition windows such as the boundary window, the fixed overlap win-
dow and the variable overlap window. The stopband reduction of the first sidelobe is
indicated by an arrow.

ments, where each segment is constructed by combining an integer number of adjacent
frames. Therefore, the minimal segment length is equal to the framesize F , whereas
a maximum segment length of NF is considered, i.e. a segment that comprises the
complete signal x.

Let TN denote such a time segmentation, where TN is taken from a library of pos-
sible time segmentations, say T. The problem at hand is to minimize a cost measure
J over all possible segmentations in T, i.e.

min
TN∈T

J. (6.2)

If it is assumed that the cost measure is additive over p the segments, the problem can
be simplified as

min
TN∈T

p∑
n=1

Jn, (6.3)

that is, the costs can be minimized on a segment-per-segment basis. Note that in
practice, segmental costs are computed on a time interval that can be larger than the
segment under consideration to account for an overlap-add procedure. Such a time
interval is then windowed by a window that overlaps with adjacent segments. In gen-
eral, segments of the same length can be used with different window shapes. Fig. 6.1c
shows an example of such a situation.
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a)

b)

segment length N1

segment length N3segment length N2

segment length N2

k

Figure 6.3: An example where the window tails have to be adapted depending on the
optimal choice for the length of the added segment.

In order to apply the fast algorithms from e.g. [3], the segmental costs may not change
during the optimization. More specifically, once the optimal segmentation T ∗

k of the
signal up to the kth frame and its corresponding minimum cost J∗

k have been found,
they may not be influenced by the addition of new segments. In overlap-add systems
that employ windows having variable overlap, this constraint is not satisfied, since the
mutual overlap of the windows corresponding to two adjacent segments depends of
the length of both segments. Hence, a-priori computation of the costs is therefore not
possible. Fig. 6.3 shows two possibilities that occur at transitions between windows
with variable tail shapes. It is clear that the windows used when switching from a
segment length N2 to N1 < N2 (Fig. 6.3a) or N3 > N2 (Fig. 6.3b) are different, so
that there is a clear dependency between J∗

k and J∗
k+1.

An existing approach to this dependency problem [2, 5] was implemented in the
experiments. The dependency between costs due to window overlap was neglected
and an overlap was selected that only depends on the length of the segment under
consideration. However, in the subsequent coding stage the segmented signal has to
undergo additional windowing operations, such that windows with the correct overlap
are applied. An exact solution to this dependency problem has been derived by the
authors, but will not be discussed here.

6.3.1 single tree time segmentation

The single tree (ST) algorithm [2, 9] can be employed to search through a library
of dyadic time segmentations TST , i.e. segmentations that result from binary tree
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Figure 6.4: The single tree time segmentation algorithm employs tree pruning to elim-
inate suboptimal segmentations.

structures. Each segment can be seen as a node in a binary tree. Starting from a
uniform segmentation into N frames, this tree is pruned in the direction of the root, as
depicted in Fig. 6.4 for N = 4.

Let Ji/j be the cost for the jth segment of length 2i−1 at tree level i, where the
root of the tree has the maximum depth log2(N)+1. Then, at each iteration i =
1, . . . , log2(N)+1, the best time segmentation T ∗

i/j is found by solving

J∗
i/j = min(Ji/j , J

∗
i−1/2j−1 + J∗

i−1/2j),

where J∗
i/j denotes the minimum cost for the jth segment at tree level i. A limita-

tion of the ST algorithm is its restriction to dyadic segmentations. This can result in
segmentations that are inefficient for the given statistics of the signal.

6.3.2 flexible time segmentation

The flexible time segmentation (FT) algorithm [3, 4] searches through a much larger
library of possible segmentations TFT . Eq. 6.3 defines a minimization over an additive
sum of independent terms, which suggests to use the standard approach of dynamic
programming [10], as shown in Fig. 6.5 for N = 3.

Let Jk,l denote the cost for the time interval tk,l = [kF, lF − 1], i.e. the segment
that consists of frames k to l. Then, at each iteration i = 1, . . . , N , the best time
segmentation T ∗

i of the interval [0, iF − 1] is found by solving

J∗
i = min

0≤k<i
(J∗

k + Jk,i), (6.4)

where J∗
i is the minimum cost for the interval [0, iF − 1]. The minimizing argument

of Eq. 6.4, say k∗
i , given by

k∗
i = arg min

0≤k≤i
(J∗

k + Jk,i),
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Figure 6.5: The flexible time segmentation algorithm employs dynamic programming
to construct the optimal segmentation.

is recorded as a split position and determines the optimal segmentation T ∗
i . The algo-

rithm terminates once J∗
N has been found and the optimal time segmentation T ∗

N can
easily be determined by backtracking the optimal split positions.

6.3.3 cost functions

Comparisons were made for two additive cost measures. First, the cost measure
from [1], the Coifman-Wickerhauser entropy, was used, which is defined as

JE(x) = −
∑

n

x[n]2 log(x[n]2),

where x denotes the M MDCT coefficients corresponding to a segment. Since the cost
function is computed directly on the data samples (in our case, the MDCT transform
coefficients), no coding steps are involved to obtain a time segmentation. However,
the relation to coding constraints, such as bit rate and distortion, is not straightforward.

Secondly, a rate-distortion (RD) cost measure [9] was taken. It is particularly
suited for coding applications since it minimizes distortion for a target bit rate. The
coding rate R and quantization distortion D are combined through a Lagrange multi-
plier λ ≥ 0, i.e.

JRD(x, λ) = D(x) + λR(x).

An additional iterative loop over λ has to be performed to satisfy the rate constraint,
see [9] for details. The distortion D must be an additive measure, e.g. squared error
distortion. Perceptual aspects can be included by proper perceptual weighting of the
individual coefficient distortions. The complexity of the overall algorithm increases,
since all transform coefficients have to be quantized, possibly with multiple coding
templates (e.g. quantizer stepsizes).
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6.4 Experimental results

Both ST and FT algorithms were implemented and combined with a time-varying
MDCT. A frame size of 128 time samples was used and at most 8 frames could
be combined, i.e. the ST algorithm could choose between windows having lengths
256, 512, 1024 or 2048, whereas the FT algorithm could select any window length
that is a multiple of 256, up to 2048. The segments were transformed by applying
Eq. 6.1 to obtain transform coefficients. For quantization of the transform coeffi-
cients, a uniform quantizer was taken. The set of coding templates consisted of 9
quantizer stepsizes. Efficient coding of long runs of zero-valued high frequency coef-
ficients was employed. Side information for sending the selected coding template and
the segmentation pattern was included.

For the experiments where the entropy-based cost JE was minimized, an addi-
tional RD optimization procedure was performed, where, given the time segmentation
that minimized JE , optimal coding templates were selected for all segments, such that
the total distortion was minimized, subject to a target rate. In the experiment where
JRD was taken as a cost measure, the selection of optimal coding templates was per-
formed concurrently with the computation of the optimal time segmentation.

Experiments were performed on a total of 9 audio fragments representing various
musical genres. The fragments (16 bits, mono, sampling frequency of 48 kHz), repre-
senting various musical genres (e.g. jazz, pop, single instruments and speech), were
coded at bit rates ranging from 0.5 to 2 bits/sample, for both fixed overlap and variable
overlap window types. Additionally, the fragments were coded using a uniform time
segmentation with segments of length 1024.

Fig. 6.6 displays the results for minimization of the entropy cost measure, by ap-
plying the flexible time segmentation algorithm and windows with variable overlap,
for a castanet signal. The upper plot shows the segmentation of the input signal.
Clearly, small segments are selected for the signal regions with strong energy varia-
tions of a short timespan. The middle plot shows the bit allocation over the segments.
As expected, the majority of the available bits goes to short segments containing tran-
sients. The lower plot displays the entropy per segment, for the various segment
lengths. From this plot, the choice for short segments at the transient positions can
be readily explained.

Fig. 6.7 shows composite SNR curves for the various time segmentation algo-
rithms. The upper plot presents the results for fixed overlap windows, whereas the
lower plot shows the curves that were obtained with variable overlap windows. As a
first observation, the gap between minimization of the entropy cost and the RD cost
can be as much as 1.5 dB. However, the increased performance of the RD optimal al-
gorithms comes at a significant increase in complexity. Moreover, the results obtained
with variable overlap windows, are on average slightly higher than those obtained with
fixed overlap windows.

Furthermore, the difference between single tree and flexible time segmentation
appears to be small. For windows with a fixed overlap, a small improvement can be
observed when applying flexible time segmentation to minimize the RD cost. This
can be explained by inspection of the spectral properties of fixed overlap windows.
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Figure 6.6: Results for minimum entropy flexible time segmentation of a castanet sig-
nal.
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Figure 6.7: SNR curves for the various time segmentation algorithms, for both fixed
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The magnitude of the first side lobe increases with increasing segment lengths, which
results in suboptimal frequency localization for long segments and, therefore, a pref-
erence for short segments. The single tree algorithm is particularly inefficient when
selecting short segments, since the remaining choices for segment lengths are then
severely restricted. The flexible time segmentation does not suffer from this problem.
For windows with a variable overlap, the differences between the two algorithms are
quite small, for both cost measures.

In the case of variable window overlap, an ad-hoc solution to the dependency
problem, as noted in Section 6.3, was implemented. An exact solution, that incorpo-
rates the window overlap during optimization and runs in polynomial time, is how-
ever possible. Experimental results that were obtained for this new algorithm are also
presented in the lower plot. An additional average improvement of 0.5 dB can be
observed.

The SNR curves from Fig. 6.7 show the complete trade-off between performance
and complexity of the experimental MDCT -based audio coding system. On the lower
end, a low complexity uniform time segmentation can be applied. On the upper end,
a highly complex optimization procedure can be employed, that results in an average
SNR improvement of almost 3 dB.
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Abstract

In this paper we propose a new best basis search algorithm for computing the optimal
time segmentation of a signal, given a predefined cost measure. The new algorithm
solves a problem that arises when the individual signal segments are windowed and
overlap-add is applied between adjacent signal segments. When windows having a
variable tail shape are employed, the minimization of a cost measure is faced with
dependencies between segmental costs due to varying window overlap. A dynamic
programming based algorithm is presented that takes into account these dependencies.
It computes both the optimal split positions and the optimal amount of window overlap
at these split positions in polynomial time. The proposed algorithm gives an upper
bound to the achievable performance of existing algorithms. Experimental results for
an MDCT-based processing system are presented, both for entropy and rate-distortion
cost measures. These results show a performance gain over existing schemes at the
cost of an increased computational complexity.

7.1 Introduction

Best basis search algorithms have received quite some attention over the years [1, 2].
A subclass of these algorithms deals with the problem of obtaining a time segmen-
tation of an input signal that is optimal with respect to a specific cost measure. Al-
though a solution based on an exhaustive search solves the problem, its computational
complexity grows exponentially with the signal length. Under the assumptions of ad-
ditivity of the cost measure and independency of the costs over segments, dynamic
programming [3] can be employed to solve the segmentation problem in polynomial
time. Such conditions are met in e.g. orthogonal transform coding where a rate-
distortion cost is minimized [2], if segments are coded independently. Furthermore,
in sinusoidal and linear prediction systems [4, 5], that do not strictly conform to these
conditions, good results have been reported using dynamic programming based mini-
mization of a rate-distortion cost function.

The segmentation of a signal into non-overlapping segments can result in discon-
tinuity artifacts at the segment edges. To reduce these artifacts, overlap-add tech-
niques can be applied, where overlapping time intervals are multiplied with power-
complementary windows in order to retain perfect reconstruction (PR) in the absence
of further processing. There are various possibilities for the amount of overlap, e.g.
a fixed number of samples (fixed overlap) or an overlap that varies with the segment
length (variable overlap), see Figure 7.1. Windows allowing for variable amount of
overlap often provide better spectral resolution. This can be beneficial, e.g. in an audio
coding applications a higher coding efficiency is obtained. In overlap-add procedures
where fixed overlap windows are employed, costs for each segment can be computed
prior to the optimization procedure. However, in the case of variable window overlap,
a-priori computation of the costs is not possible, as will be discussed in Section 7.2.2.

In this paper, a new dynamic programming algorithm is described that takes into
account the amount of overlap, or equivalently, the window tail shape, during the
optimization. Experimental results for an audio processing system based on the mod-
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a)

b)

Figure 7.1: Examples of time segmentation with (a) fixed and (b) variable overlap
windows.

ified discrete cosine transform (MDCT) [6, 7] are presented. Two experiments are
performed, one for an entropy cost measure and one for a rate-distortion functional.

7.2 Problem statement

We are given a signal x that is divided into N non-overlapping frames of F samples.
A time segmentation of this signal is a collection of adjacent segments that completely
spans the signal, where each segment is constructed by an integer number of adjacent
frames. Therefore, the minimal segment length is equal to the framesize F , whereas
a maximum segment length of NF is considered, i.e. a segment that comprises the
complete signal.

Let TN denote such a time segmentation of the signal, where TN is taken from a
dictionary of possible time segmentations, say T. The problem at hand is to minimize
a cost measure J over all possible segmentations in T, i.e.

min
TN∈T

J(T ).

If it is assumed that the cost measure is additive over the segments and that the costs
are computed independently over segments, then the problem can be described as
a minimization over an additive sum of independent terms, which suggests to use
the standard approach of dynamic programming. This is done by the flexible time
segmentation algorithm in [8, 2], which we will briefly discuss.

7.2.1 existing approach

Let Jk,l denote a segmental cost for the time interval tk,l = [kF, lF − 1], i.e. the seg-
ment that consists of frames k to l. Furthermore, let J∗

k be the minimum or optimized
cost for the interval [0, kF − 1]. Then, at each iteration i = 1, . . . , N , the best time
segmentation T ∗

i of the interval [0, iF − 1] is found by solving

J∗
i = min

0≤k<i
(J∗

k + Jk,i), (7.1)
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a)

b)
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Figure 7.2: An example where the window tails have to be adapted to retain PR when
switching to different segment lengths.

with J∗
0 = 0. The minimizing argument of Eq. 7.1, say k∗

i , given by

k∗
i = arg min

0≤k≤i
(J∗

k + Jk,i),

is referred to as the split position and determines the optimal segmentation T ∗
i at

iteration i. The algorithm terminates once J∗
N has been found, and the optimal time

segmentation T ∗
N can easily be determined by backtracking the optimal split positions

k∗
i .

7.2.2 suboptimality of the existing approach

When the flexible time segmentation algorithm is applied in combination with win-
dowing and overlap-add, the segmental cost Jk,i is computed on a time interval that
can be larger than the segment tk,i under consideration. Such a time interval is then
windowed by a window that overlaps with adjacent segments. If the window over-
lap between adjacent segments is given, e.g. by having a fixed window overlap, the
existing algorithm from Section 7.2.1 still provides the optimal solution.

However, in general, segments of the same length can be used with different win-
dow shapes, since the mutual overlap of the windows corresponding to two adjacent
segments depends of the length of both segments. Hence, independent computation of
costs for the individual segments is no longer possible. Figure 7.2 shows an example
of such a situation. It is clear that the windows used for segment tj,k when switching
to segment tk,i′′ (Figure 7.2a) or tk,i′ (Figure 7.2b) are different, so that there is a clear
dependency between Jj,k and Jk,i. Therefore, one cannot compute the optimal split
position k, without knowing the split position i and the optimization problem becomes
dependent, as was mentioned in [9].

An existing approach to solve this problem is to neglect the dependency between
costs and window overlap and to select an overlap during optimization that only de-
pends on the length of the segment under consideration [9, 10]. However, the cost thus
obtained is, in general, not equal to the minimum cost that can be achieved if the over-
lap is taken into account during optimization. Moreover, the selection of a window
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overlap that only depends on the length of the segment under consideration results in
a non-PR overlap-add system. As a result, in any subsequent processing stage (e.g.
coding) the segmented signal has to undergo additional windowing operations, such
that windows with the correct overlap are applied.

7.3 Flexible time segmentation for a varying window
overlap

A new flexible time segmentation algorithm is proposed that takes into account the
dependency between costs for adjacent segments due to varying window overlap. The
length of the segment under investigation, and therefore the window length, deter-
mines the number of overlap possibilities. For a segment that spans i frames, i+1
possible window overlap situations for each of the window tails are considered, i.e.
the amount of overlap ranges from 0 to iF/2 samples. Clearly, the number of possible
window tails is equal to the possible amounts of window overlap.

7.3.1 derivation of the proposed algorithm

From Eq. 7.1 it can be seen that the optimal time segmentation T ∗
N of the signal is ob-

tained by iteratively computing the minimum costs J∗
i , where i denotes the end of the

ith frame. Therefore, at iteration i, only a single minimum cost Ji has to be computed
with standard dynamic programming. Since we allow i+1 overlap possibilities be-
tween adjacent segments, i+1 minimum costs have to be computed with the proposed
algorithm, one for every possible window overlap at the end or right side of a time
segmentation. This right window overlap at iteration i is denoted by m = 0, . . . , i and
the minimum costs and corresponding time segmentations up to the ith frame for the
i+1 possible window tails are denoted J∗

i/m and T ∗
i/m, respectively.

In Eq. 7.1, a minimization over the split position k is performed to determine
the optimal time segmentation. A segmented part of the signal, described by time
segmentation T ∗

k , is combined with the segment tk,i, for all possible values of k. In
the proposed algorithm, in addition to the minimization over k, it is also necessary to
perform a minimization over the mutual overlap, denoted by n, between the segmented
signal up to position k and the added segment tk,i at split position k. There are n0

possible overlap situations, where n0 depends on the length i−k of the added segment
tk,i and the length k of the previously segmented signal. It follows that n = 0, . . . , n0

and n0 = min(i−k, k), i.e., the minimum of the length of the added segment and
the length of the segmented signal part, now described by T ∗

k/n. The window that is
used at segment tk,i has a left overlap n and right overlap m. The corresponding cost
is denoted Jk,i/n,m. Figure 7.3 displays the relation between window overlap, time
segmentations and the costs they give rise to.

The problem at hand can now be formulated as solving

J∗
i/m = min

0≤k≤i−m
min

0≤n≤n0
(J∗

k/n + Jk,i/n,m), (7.2)

for m = 0, . . . , i and i = 1, . . . , N , where J∗
0/0 = 0. To compute the optimal
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Figure 7.3: A schematic overview of the various overlap possibilities that are consid-
ered during optimization. For segment tk,i, both the left overlap n at position k and
right overlap m at position i have to be selected.

cost J∗
i/m, i.e. the cost for a time segmentation up to the ith frame that ends with a

window overlap m, Eq. 7.2 is solved in 2 sequential steps. First, for each split position
0 ≤ k ≤ i−m, the optimal overlap between the previously segmented signal up to the
kth frame, described by T ∗

k/n, and the segment tk,i is selected. These overlap values,
say n∗

imk, are found by solving

n∗
imk = arg min

0≤n≤n0

(J∗
k/n + Jk,i/n,m), (7.3)

and are stored temporarily. Next, the optimal split position, say k∗
im, is obtained by

solving

k∗
im = arg min

0≤k≤i−m
(J∗

k/n∗
imk

+ Jk,i/n∗
imk,m). (7.4)

The optimal split position k∗
im that is thus obtained also determines which of the i−

m+1 overlap values n∗
imk that were computed in Eq. 7.3 is kept for backtracking

purposes. This overlap value is denoted n∗
im.

From Eq. 7.2– 7.4 we can derive the matrix structure that is maintained in mem-
ory to store all the values needed during optimization and for backtracking. As an
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example, the matrix of optimal costs J∗ ∈ RN+1×N holds all the values J∗
i/m.

J∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

J∗
1/0 J∗

2/0 · · · J∗
N/0

J∗
1/1 J∗

2/1 · · · J∗
N/1

J∗
2/2 · · · J∗

N/2

. . .
...

J∗
N/N

⎞
⎟⎟⎟⎟⎟⎟⎠ . (7.5)

Similarly, the optimal split positions k∗
im are stored in a matrix K∗ and the optimal

overlap values n∗
im are stored in N∗. Both these matrices have a structure similar to

Eq. 7.5.
The algorithm terminates once the minimum costs J∗

N/m have been obtained, i.e.
the costs for segmenting the complete signal, ending with all possible amounts of
overlap. A final minimization over the N th column of J∗ provides the best window
overlap m∗

N at the end of the segmentation, i.e.

m∗
N = arg min

0≤m≤N
(J∗

N/m).

The optimal time segmentation T ∗
N can now be backtracked from the matrices K∗ and

N∗.

7.3.2 complexity analysis

The new algorithm searches through a larger dictionary than the standard flexible time
segmentation algorithm. This flexibility comes at the cost of an increased complexity,
which is analyzed for two separate stages of the algorithm. First we consider the
initialization stage, where all costs are computed. Since i+1 possible overlap situations
are considered for each of the window tails of a window that corresponds to a segment
of i frames, we can construct (i+1)2 different windows. There are N − i+1 such
segments in a signal of length N . Hence, the total number of computations CI(N) is
given by

CI(N) =
N∑

i=1

(i +1)2(N−i+1) =
N(N + 1)(N2 + 7N + 16)

12
.

Therefore, the complexity for generating the costs for all segments is O(N4), as com-
pared to O(N2) for the standard algorithm as described in [2]. If we assume that,
for a segment of length i, a signal transform with complexity i log2 i is applied and
that the computation of a segmental cost has a complexity i, the complexity for the
initialization stage increases to O(N5 log2 N).

The complexity of the optimization stage is derived from Eq. 7.2. The constraint
on n is relaxed such that n0 = i− k. This will results in a small overestimation of the
complexity. The number of computations CO(N) to be performed is now given by

CO(N) =
N∑

i=1

i∑
m=0

i−m∑
k=0

(i−k+1) =
N(N + 4)(N2 + 4N + 7)

12
,
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Figure 7.4: Comparison of the various time segmentation algorithms for the entropy
cost measure.

and the complexity is therefore O(N4). Note that the standard dynamic programming
algorithm has a complexity O(N2), see e.g. [2].

7.4 Experimental results and discussion

Time segmentation algorithms based on both the existing and the new approach were
evaluated in an MDCT-based audio processing system. For additional comparisons, an
experiment with fixed overlap windows was also performed. A frame size of 128 was
used and at most 8 frames could be combined, i.e. the algorithms could select window
lengths as an integer multiple of 256 up to 2048. Experiments were performed on a
total of 6 audio fragments (16 bits, mono, sampling frequency of 48 kHz) representing
various musical genres (e.g. jazz, pop, single instruments and speech). Comparisons
were made for two additive cost measures.

First, we used the Coifman-Wickerhauser entropy [1]. Figure 7.4 displays results
from an experiment where this entropy cost measure was minimized. It can be ob-
served that the new algorithm always performs better than the existing methods. It
gives an average improvement of 12% over the suboptimal variable overlap case and
an average improvement of 4% over the fixed overlap case.

Secondly, a rate-distortion (RD) cost measure [11] was used. The MDCT coeffi-
cients were quantized by a uniform quantizer with 9 possible quantizer stepsizes. The
resulting distortions were summed over all coefficients in a segment. For all quan-
tizer stepsizes, Huffman codebooks were computed. Coding of side information was
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Figure 7.5: Comparison of the various time segmentation algorithms for the rate-
distortion cost measure.

restricted to the selected stepsizes and, in the case of the new algorithm, the amount
of overlap between segments. All fragments were coded at bit rates ranging from 0.6
to 2.0 bits/sample and composite SNR curves were constructed. From Figure 7.5 it is
observed that an average gain in SNR of 0.5 dB can be obtained with the new method.

In both experiments, the new algorithm outperforms the existing one. However,
the performance gain comes at the cost of increased computational complexity. There-
fore, one of the contributions of the proposed algorithm is that it allows us to evaluate
the exact loss in performance that occurs when either a fixed overlap is chosen, or
when the overlap is neglected in the case of variable overlap windows, without per-
forming an exhaustive search.
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Abstract

We study a transform coder that employs a dynamic programming based rate-distortion
optimization framework for time segmentation. Although this coder exhibits a high
performance, its computational complexity makes it unfeasible for many practical ap-
plications. It is investigated whether upfront time segmentation can reduce compu-
tational complexity without a significant decrease in performance. Upfront time seg-
mentation can be accomplished by replacing the rate-distortion cost functional with
low-complexity cost measures that are independent of bit rate and perceptual distor-
tion. Through both quantitative and qualitative evaluation it is shown that dynamic
programming based upfront time segmentation for minimization of perceptual entropy
can be a viable alternative to rate-distortion optimal time segmentation.

8.1 Introduction

Within most perceptual audio coders a time-frequency analysis is performed. Typi-
cally, a filterbank or signal transformation is used to perform this operation. We can
discern three functions of this signal transform. First, the signal transform generates
a set of parameters that is amenable to quantization in accordance with a perceptual
distortion metric. Furthermore, it provides information about the distribution of the
signal and masking power over the time-frequency plane in order to identify percep-
tual irrelevancies. Additionally, a signal transformation is used to reduce statistical
redundancies.

The dominant signal transform in audio coding systems is the modified discrete
cosine transform (MDCT) [1, 2]. It is an overlapped block transform, i.e. an opera-
tion is performed where overlapping samples from consecutive blocks are windowed
and transformed. In the case of the MDCT, the support of the analysis and synthesis
windows is twice the number of basis functions, resulting in a 50% overlapping trans-
form. The overlapping windows greatly reduce blocking artifacts, which are heard
as periodic clicks in audio coding. Moreover, the MDCT can be seen as a particular
instance from the family of cosine-modulated filterbanks (CMFB) and as such, it is
critically sampled and possesses the perfect reconstructing property. The MDCT win-
dow is equal to the time-reversed impulse response of the prototype filter of a CMFB
and several window design methods exist to achieve high stopband reduction and good
frequency selectivity. It is applied in most of the current audio coding standards, such
as MP3 [3] and AAC [4].

The MDCT can be used as a time-varying signal transform by changing the anal-
ysis window length on a block-by-block basis (window switching). Essentially, this
will result in a nonuniform time segmentation of the signal under analysis. At tran-
sitional positions between segments of different lengths, special care has to be taken
with respect to the jointly overlapping window tails, to retain the perfect reconstruc-
tion property of the transform. For most signal transforms, this amounts to a com-
plicated design procedure for transition or boundary windows. In the MDCT case, it
turns out that these transition windows can be easily derived from the standard MDCT
windows [5, 6].
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Figure 8.1: The MPEG-2 AAC block switching process. a) Window sequence during
steady state conditions. b) Window sequence during transient conditions.

In the AAC codec, this solution is implemented to handle transient conditions as fol-
lows [7]. During steady state conditions, e.g. for harmonic signals, the MDCT in AAC
operates in a so-called long block mode. A long transform window of 2048 samples
is applied with the maximum amount of overlap. If a transient is detected, the MDCT
switches to a short block mode where a sequence of eight 256 sample windows is
applied. As dictated by the window switching paradigm, both the window preceding
this short window sequence and the window directly after it need to be adapted to
ensure perfect reconstruction. Figure 8.1 displays the two window sequences. In Fig-
ure 8.1a an example of the long block mode is displayed, whereas Figure 8.1b shows
an example of switching between long and short block modes.

The detection of a transient region can be done in various manners. In typical
AAC implementations perceptual entropy [8] is monitored on long signal blocks. If
for a given long block the perceptual entropy rises above a predefined threshold, the
switch to short block mode is performed within that long block. Monitoring of energy
variations [5, 9] can also be applied. Both the windowing sequence and the transient
detection in AAC are rather limited. The window switching scheme allows for a larger
variety of window sizes to be employed. Furthermore, the transient detection method
based on perceptual entropies from long blocks only can be inaccurate. Setting a
threshold on the detection algorithm requires extensive tuning, especially if bit rate
scalability is an issue.

An alternative approach is to employ operational rate-distortion (RD) optimization
techniques [10], where a Lagrangian cost function of both the (perceptual) distortion
between the original and the coded fragment and the bit rate demand is minimized,
for a given coding environment. This allows for flexible adaptation to signal charac-
teristics and bit rate scalability. Rate adaptivity of an audio coding system becomes
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particularly important when considering the emergence of time-varying heterogeneous
networks and the convergence of traditional consumer electronics with mobile com-
munications. Additionally, efficient best basis search algorithms can be applied to ob-
tain time-frequency decompositions that correspond well to the signal characteristics.
A drawback of these methods is the increased computational complexity. However,
once a practical bound on the RD performance has been found, low complexity tech-
niques can be benchmarked against this bound, thereby providing system designers a
clear trade-off.

An example of an audio coding environment that includes an operational RD opti-
mization framework is the transform coding system presented in [11, 12]. Within this
framework, an optimal time segmentation of the signal under consideration is found
by employing the dynamic programming based method in [13], such that the percep-
tual distortion is minimized subject to a bit rate constraint. In this article, we study the
time segmentation algorithm in more detail. Moreover, we investigate the use of low
complexity cost measures to replace the Lagrangian RD cost measure.

This article is organized as follows. First, in Section 8.2, operational RD opti-
mization and the dynamic programming based best basis search are discussed. Next,
in Section 8.3, we describe the transform coding system that implements an RD opti-
mal time segmentation algorithm. A set of audio fragments is coded with this system
and results from a MUSHRA test are presented. Then, in Section 8.4 we discuss a
modification of this scheme by performing upfront time segmentation. We present ex-
perimental results using the modified system and we draw conclusions in Section 8.5.

8.2 RD optimization

In this section, we give a formal description of the operational RD optimization algo-
rithm for adaptive time segmentation, that uses a Lagrangian combination of coding
distortion and bit rate as a cost function together with dynamic programming. Given
a signal x, we impose a grid of time resolution N on the signal. That is, the complete
signal is divided into N non-overlapping frames of M samples. A segmentation of
the signal is a collection of p adjacent segments, where each segment is constructed
by combining an integer number of adjacent frames. Therefore, the minimal segment
length is equal to the framesize M , whereas a maximum segment length of NM is
considered, i.e. a segment that comprises the complete signal.

Furthermore, let S denote a dictionary of possible time segmentations of the sig-
nal, provided by the window switching method [5, 6]. Given a particular segmentation
s ∈ S we can define a coding template c ∈ C, that describes how the data in each of
the segments is quantized and coded. Let the perceptual distortion and bit rate result-
ing from coding the segmentation s with coding template c be denoted as Dπ(s, c)
and R(s, c), respectively, and assume that we are given a target rate RT . Formally
stated, the constrained problem that we want to solve is given as

min
s∈S

min
c∈C

Dπ(s, c)

subject to R(s, c) ≤ RT . (8.1)
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We can convert the constrained problem of Eq. 8.1 into the following unconstrained
problem,

min
s∈S

min
c∈C

J(s, c, λ) =

min
s∈S

min
c∈C

(Dπ(s, c) + λR(s, c)) , (8.2)

using a Lagrangian multiplier λ ≥ 0.
Assume that a decomposition s provides us with ps segments. If the rates and dis-

tortions are additive over these segments and if the segments are coded independently,
Eq. 8.2 can be simplified as

min
s∈S

min
c∈C

J(s, c, λ) = (8.3)

min
s∈S

ps∑
k=1

min
ck

(Dπ(sk, ck) + λR(sk, ck)) .

In this case, the selection of the optimal coding template turns out to be a simple
minimization operation independently performed for each segment.

Note that the problem stated in Eq. 8.3 is solved for a particular value of λ. The
resulting bit rate R(s, c) does not necessarily correspond to the desired target rate
RT . An additional operation is required to obtain the value of λ such that the bit rate
satisfies R(s, c) ≤ RT . However, since this is a convex problem in λ, fast algorithms
exist to solve the problem, like the bisection algorithm in [10].

The complete problem is now stated by Eq. 8.4 as

max
λ≥0

[(
min
s∈S

ps∑
k=1

min
ck∈Ck

J(λ, sk, ck)
)
− λRT

]
, (8.4)

and we apply a step-wise procedure to solve this problem as follows:

Algorithm 8.2.1.

Initialization

[1] Generate (R,Dπ) pairs for each coding template and for each possible segment.

Optimization for a given slope λ

[2] For the given slope λ, find the minimum Lagrangian costs for each segment by
minimizing over all coding templates.

[3] Use a best basis search algorithm to find the optimal time segmentation.

Computation of the optimal slope λ∗
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[4] To find the optimal slope λ∗ that corresponds to the target rate RT , run the
bisection algorithm from [10].

Backtracking

[5] Obtain the optimal segmentation s∗, the optimal coding template c∗ and the
corresponding coded parameters. The optimal rate R∗ and distortion D∗

π can
then be computed.

We now focus ourselves on a particular best basis search algorithm for finding the
optimal time segmentation, given λ. In general, the best basis search problem can
be formulated as finding the orthonormal basis from a given dictionary to represent
the signal x such that a particular cost function J is minimized. In the MDCT case,
the dictionary is constructed by combining the window-switching technique with the
MDCT. We will discuss an often employed search technique based on dynamic pro-
gramming. An optimal basis for a pre-defined cost J can be obtained with the follow-
ing method.

8.2.1 dynamic programming best basis search

Eq. 8.3 defines a minimization over an additive sum of independent terms, which
suggests to use the standard approach of dynamic programming [14]. The flexible time
segmentation algorithm from [15] employs dynamic programming to search through
a dictionary of time segmentations.

Let Jk,l denote the cost for the segment sk,l = [kM, lM −1], i.e. the segment that
consists of frames k to l. Then, at each iteration i = 1, . . . , N , the best segmentation
s∗i of the time interval [0, iM − 1] is found by solving

J∗
i = min

0≤k<i
(J∗

k + Jk,i), (8.5)

where J∗
i is the minimum cost for the interval [0, iM − 1]. The minimizing argument

of Eq. 8.5, say k∗
i , given by

k∗
i = arg min

0≤k≤i
(J∗

k + Jk,i),

is recorded as a split position and determines the optimal decomposition s∗i . The
algorithm terminates once J∗

N has been found and the optimal decomposition s∗N can
easily be determined by backtracking the optimal split positions. In Figure 8.2 the
iterative process of building up the time segmentation is depicted for N = 3.

The selection of the flexible time segmentation algorithm to perform the best basis
search has several implications on the computational complexity of algorithm 1. The
complexity of the search procedure (step 3 of algorithm 1) is O(N2). Furthermore, the
dictionary that is searched with dynamic programming also determines the complexity
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Figure 8.2: The flexible time segmentation algorithm employs dynamic programming
to construct the optimal time segmentation.

of the initialization part where the (R,Dπ) pairs are computed (step 1 in algorithm 1).
In general, for a signal consisting of N frames, the costs for N − i +1 segments
of i frames are to be generated, for i = 1, . . . , N . Assume that for a segment of i
frames and length Mi, a signal transform with complexity Mi log2(Mi) is required.
Moreover, assume that we have |C| coding templates available and the computation
of the cost for a segment has complexity Mi. The complexity of step 1 is then lim-
ited to O(MN3(log2 MN + |C|)). Moreover, in step 2 of algorithm 1, the minimal
Lagrangian costs are obtained for every possible segment. A useful memory structure
for storing these costs is the matrix J, given as

J =

⎛
⎜⎜⎜⎝

J0,1 J1,2 · · · JN−1,N

∞ J0,2 · · · JN−2,N

∞ ∞ . . .
...

∞ ∞ · · · J0,N

⎞
⎟⎟⎟⎠ ,

where the rows of J represent increasing segment lengths and the columns indicate
the end position of a segment. This structure allows for an efficient vectorized imple-
mentation of Eq. 8.5, where J∗

i is computed as

J∗
i = min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

J∗
i−1

J∗
i−2
...

J∗
1

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

Ji−1,i

Ji−2,i

...
J1,i

J0,i

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (8.6)

Note that the first vector in Eq. 8.6 contains costs corresponding to optimal segmenta-
tions of the signal up to frame i−1. The second vector in Eq. 8.6 is the ith column in
J.
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a)

b)

Figure 8.3: a) Symmetric MDCT windows with maximum overlap are employed during
optimization. b) Adapted transition windows are employed during coding to ensure
perfect reconstruction.

8.2.2 suboptimality of the existing approach

When the flexible time segmentation algorithm from Section 8.2.1 is applied in com-
bination with windowing and overlap-add, a segmental cost Jk,l is computed on a
windowed time interval that can be larger than the segment sk,l under consideration.
In the case of a fixed window overlap the aforementioned algorithm still provides the
optimal solution [6]. However, in general, segments of the same length can be used
with different window shapes, since the mutual overlap of the windows corresponding
to two adjacent segments depends of the length of both segments. Hence, indepen-
dent computation of costs for the individual segments is no longer possible. An exact
solution to this dependency problem, when using the flexible time segmentation algo-
rithm from Section 8.2.1, has been derived by the authors [16]. However, this solution
increases the computational complexity of the flexible time segmentation algorithm
significantly, without providing an equally significant cost reduction and is therefore
not applied in the transform coder discussed in Section 8.3.

Instead, the dependency between costs and window overlap is neglected and dur-
ing optimization a window overlap is selected that only depends on the length of the
segment under consideration [13]. However, the cost thus obtained is, in general, not
equal to the minimum cost achieved by the method in [16]. Moreover, the selection of
a window overlap that only depends on the length of the segment under consideration
results in a non-PR overlap-add system. As a result, in the subsequent coding stage all
segments within the selected segmentation undergo an additional sequence of MDCT
transformation, quantization and coding, where windows with the correct overlap are
applied. This difference in window shape for the separate optimization and coding
operations is depicted in Figure 8.3. Note that this particular solution to the depen-
dency problem leads to time segmentations that can be suboptimal. We come back to
this point when comparing the existing algorithm with time segmentations obtained
by upfront segmentation in Section 8.4.
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Figure 8.4: Scheme of the proposed transform coder.

8.3 The transform coder framework

In this section we discuss a transform audio coder that implements the flexible time
segmentation algorithm from Section 8.2.1. Figure 8.4 presents a block scheme of
the encoder part of the transform coder. First, the audio input signal is partitioned in
large time intervals, called supersegments. Such a supersegment is initially divided
into of a number of frames. The RD optimization block applies the flexible time seg-
mentation on individual supersegments, to determine the optimal number and lengths
of segments within a supersegment. As a results of this, the target rate constraint is
satisfied on a per-supersegment basis.

Within the scope of this article, a framesize of 128 samples is considered. A
supersegment consists of 144 frames and we allow segment lengths of 1, 2, 4 and 8
frames, leading to windows of 256, 512, 1024 and 2048 samples, respectively. At
a sampling frequency of 48 kHz for the input signal, this corresponds to windows
of 5.33, 10.67, 21.33 and 42.67 ms, respectively, and a supersegment of 384 ms.
The overlap at supersegment boundaries is currently fixed to 64 samples, that is, the
overlap corresponding to the smallest possible window length.

The idea behind the initial division of a signal in supersegments is to provide a
trade-off between coding performance on one hand and complexity and coding delay
on the other hand. Employing supersegments that consist of many frames results in
high coding performance at the costs of increased complexity and a significant delay,
since optimization is performed and bitstream information is returned every superseg-
ment. Low complexity and delay values are obtained when using a small number of
frames within a supersegment, which will result in a lower quality at similar rates.
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However, several studies [17, 18] indicate that even for very short supersegments,
flexible time segmentation can increase coding performance compared to a uniform
segmentation within the supersegment.

To calculate the (R,Dπ) pairs necessary for optimization, the signal data in each
of the segments is transformed with an MDCT. Additionally, excitation patterns are
calculated for all segments based on the model in [19] and according to the method
in [12]. From such an excitation pattern a masking curve is derived, that is subse-
quently used for scaling the MDCT coefficients. The scaling can be seen as a percep-
tual whitening operation by substraction of the masking threshold from the MDCT
spectrum in the sound pressure level domain. Next, the scaled MDCT coefficients are
quantized with a D4-lattice vector quantizer (VQ) [20]. The resulting VQ codebook
indices are mapped to Huffman codewords which are stored in a bitstream later on.
The bit rate for each segment is then calculated as the sum of the Huffman codeword
lengths. Additional tools to further reduce the bit rate are applied, such as a lowpass
filter and separate codewords to indicate long runs of zero-valued high frequency co-
efficients. The total bit rate per segment also includes all side information such as the
segment length and the masking curve offset factor, as explained later.

For a particular segment, the perceptual distortion Dπ is defined as∫ 1

0

â(f)|ε̂(f)|2df,

where â(f) is the inverse of the masking curve and ε̂(f) denotes the Fourier transform
of the time-domain reconstruction error ε(n). Since the MDCT is not perfect recon-
structing on a block basis, this error ε(n) is computed as the difference between a
segment (including overlap) synthesized from unquantized parameters and a segment
that is reconstructed after quantization.

A trade-off between the bit rate required for coding the scaled MDCT coefficients
and the resulting perceptual distortion can be achieved by shifting the global level of
the masking curve with a single offset prior to the scaling of the MDCT coefficients.
A positive offset, i.e. raising the masking threshold, will result in more MDCT co-
efficients falling below the masking threshold and, therefore, more coefficients being
quantized to zero. The resulting bit rate is lower but perceptual distortion has in-
creased. Likewise, a negative offset lowers the masking threshold, which results in a
lower perceptual distortion at a higher rate. The masking curve offset can be varied in
30 steps of 1 dB. In order to perform the inverse shifting of the spectral coefficients in
the decoder, the offset and a coded version of the excitation pattern are stored in the
bitstream for each segment. In [11] a method for coding the excitation patterns at bit
rates around 4 kbps is disclosed, which is applied here.

8.3.1 experimental results

The transform audio coder as described above has been compared in a MUSHRA
test [21] with state-of-the-art MPEG-2/4 [22] audio codecs such as AAC [4, 7] at 48
kbps and SSC [23] at 24 kbps. In this test, 8 fragments from various musical genres
were used, listed in Table 8.1, and 15 listeners participated in the test. The results are
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Table 8.1: The 8 test signals used in the MUSHRA test.

1 Basketball commentary
2 Classic music
3 Pop music (Fool’s Garden)
4 Pop music ( Eric Clapton)
5 Jazz music
6 Castanets
7 Harpsichord
8 German male speech

presented in Fig. 8.5 and show that the proposed transform coder, denoted as RDTC,
can compete with state-of-the-art codecs at multiple bit rates.

To investigate the effect of adaptive time segmentation, the same set of fragments
was coded with the transform coder having only fixed window sizes of 2048 and 256
samples, respectively. Comparison of distortions for each supersegment revealed that
the adaptive time segmentation algorithm made a dominant contribution to the reduc-
tion of the perceptual distortion.

8.4 Upfront time segmentation

Although the flexible time segmentation algorithm delivers a significant contribution
to the overall performance of the system presented in Section 8.3, its complexity re-
mains quite high. However, the main part of the complexity lies in the computation
of (R,Dπ) pairs as performed in the initialization phase, where MDCT transforms
are performed for each segment, as well as multiple psychoacoustic analysis opera-
tions. Furthermore, repeated quantization with each of the coding templates (e.g. the
30 masking curve offset values) has to be performed. Therefore, we investigate the
possibilities for a complexity reduction by applying upfront time segmentation.

Upfront time segmentation can be accomplished by separation of the optimization
procedure in a stage where the segmentation is obtained and a stage where the coding
templates are selected. For the stage where the segmentation is obtained, the RD
cost functional JRD(s, c, λ) = Dπ(s, c) + λR(s, c) is replaced with a cost measure
that is independent of distortion and rate. When switching to a cost function that is
independent of quantized values, complexity can be significantly lowered. Moreover,
only a single dynamic programming operation needs to be run, instead of one at every
iteration of the bisection algorithm. Assume we have such a cost functional, say JUP.
Then the problem as stated in Eq. 8.3 is replaced by a sequential procedure, where the
upfront segmentation results in a segmentation s∗ of the signal by solving

s∗ = arg min
s∈S

JUP(s),

and the subsequent search for the RD optimal coding templates, given s∗, is performed
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Figure 8.5: MUSHRA listening test results with the proposed transform coding system.
Mean scores and 95% confidence intervals over all listeners and signals are shown.

by solving
ps∗∑
k=1

min
ck

JRD(sk, ck, λ).

Given the predefined cost JUP, the upfront segmentation can be performed by applying
the flexible time segmentation algorithm from Section 8.2.1. This has the advantage
of retaining the dynamic programming based optimization procedure for obtaining a
time segmentation, which provides a large dictionary of time segmentations and a fast
search procedure. Given a segmentation of a supersegment, the subsequent search for
the optimal scale factors is still performed using the RD cost measure JRD, since this
is the final cost measure that we are interested in. A drawback of this approach is that
the resulting segmentation can not adapt to varying target rates.

8.4.1 cost measures for upfront segmentation

Several RD-independent cost measures known from literature can be used in a best
basis search algorithm. Specifically for (audio) coding, we first study the Coifman-
Wickerhauser entropy (CWE) cost measure [24]. This measure has been previously
applied for audio and speech signal in several best basis algorithms similar to [13] and
can be seen as an energy compaction measure. The CWE costs are typically computed
for DCT coefficients. Given a set of DCT coefficients X computed for a segment of
length M , the CWE cost JCWE is defined as

JCWE = −
M−1∑
k=0

X[k]2 log2(X[k]2),
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Clearly, the computation of the CWE costs does not require a psychoacoustic analysis
or any quantization operations.

Secondly, we investigate the use of the perceptual entropy (PE) cost measure [8].
Given a set of DFT coefficients Y computed for a segment of length M , the perceptual
entropy JPE is defined as

JPE =
M−1∑
k=0

log2

(
1 +
√

â[k]Y [k]2
)
,

where Y [k]2 represents the signal intensity and â[k] denotes the relative intensity of
the inverse of the masking threshold, both at frequency line k. It can be regarded as the
minimum number of bits needed to code a segment transparently. As indicated before,
this measure has been applied for time segmentation in various audio coding systems,
e.g. in AAC where the perceptual entropy measured on long blocks is monitored for
presence of transients. However, the combination with a dynamic programming based
framework has not been studied.

The notion of perceptual entropy is derived from an ideal transform coding frame-
work where quantization noise is injected at each frequency sample in the power spec-
trum Y2 up to the masking threshold. Separate quantizers are derived implicitly per
component from the masking threshold and the perceptual entropy is computed as the
information necessary to send reconstruction levels per component. No further side
info (e.g. for sending the masking curve) is assumed. Since we do separate encoding
of the masking threshold and, other than the quantized and coded spectral coefficients,
little other side information is required at the decoder, the presented transform coding
framework correlates well with the idea of perceptual entropy.

8.4.2 computational complexity

We can derive the complexity reduction from the complexity of the initialization
phase, given as O(MN3(log2 MN + |C|)) in Section 8.2.1. Note that since we do
not consider all possible window sizes, this is an upperbound to the actual complex-
ity. We have the number of frames within a supersegment as N = 144, the num-
ber of coding templates |C| = 30 and the number of samples in a frame, including
window overlap, as M = 256. With upfront segmentation, complexity is reduced
to O(MN3(log2 MN)). Since log2 MN ≈ 15, we see that upfront time segmen-
tation can reduce the computational complexity of the initialization phase by 66%.
Moreover, only a single dynamic programming operation needs to be run during the
optimization phase, instead of one at every iteration of the bisection algorithm. Since
typically 12 to 14 iterations are required to reach the target rate, this can result in
additional savings. However, after having found a time segmentation s∗, the ps∗ con-
stituent segments have to be coded with the |C| coding templates to generate a set of
(R,Dπ) pairs.

It remains difficult to determine the exact reduction in complexity that can be
obtained with these upfront segmentation methods in the proposed transform coding
framework. First of all, the existing framework has not been optimized for coding
speed. Also, in the case of the PE cost measure, many of the psycho-acoustic analysis
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Figure 8.6: Lagrangian costs obtained for each time segmentation method, for 4 audio
fragments. For each fragment and method, the Lagrangian costs JRD are shown per
supersegment. The label Uni4 denotes uniform time segmentation with segments of 4
frames.

results can be used later on during coding. This further reduction has not been imple-
mented during our experiments. Execution times resulting from both RD optimal and
upfront time segmentation algorithms were recorded for five fragments, showing an
average reduction of 47%.

8.4.3 experimental results

The upfront segmentation algorithm was implemented in the transform coding system
from Section 8.3. Both CWE and PE cost measures were employed and compar-
isons were made with the existing RD optimal segmentation method. Additionally,
the fragments were coded using a uniform time segmentation, where segments of 512
samples were employed (denoted by the label Uni4). Experimental results for 4 frag-
ments from Table 8.1 were generated in these experiments. Each signal was coded at
a total bit rate of 24 kbps. This rate included the bit rate for sending the excitation
patterns, around 4 kbps. The target rate for the optimization was therefore equal to 20
kbps.

Triplets of bit rate, perceptual distortion and λ were recorded for every superseg-
ment. From the (R,Dπ, λ) triplets, Lagrangian costs per supersegment were com-
puted. These results are displayed in Figure 8.6, from which we make the following
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observations. First, the need for a time-varying segmentation of the signal is empha-
sized, as the Lagrangian costs for signals coded with any of the variable time seg-
mentation methods are nearly always lower than those obtained with uniform time
segmentation. This is for instance clearly noticeable with the castanet signal.

Secondly, it is seen that the difference between RD segmentation and CWE based
upfront segmentation can be quite large for individual supersegments, as is the case in
the harpsichord fragment. This has also been asserted by the authors through exten-
sive prelistening. Surprisingly, failure of the CWE based method to select a correct
segmentation does not necessarily occur during critical signal parts, i.e. signal parts
where one can expect difficulties during coding, such as explicit transients. We there-
fore concluded that CWE based upfront time segmentation method was unpredictable
and as such, the method was not included in the listening test with multiple listen-
ers. On the other hand, the results obtained with PE based upfront segmentation are
fairly close to those obtained with RD optimal segmentation. Indeed, for several su-
persegments, upfront segmentation based on the PE cost measure resulted in a lower
Lagrangian cost than RD optimal segmentation. This comes from neglecting the de-
pendency between window overlap in the optimization phase as noted in Section 8.2.2,
which renders the existing algorithm suboptimal.

This effect can be seen more clearly in Figure 8.7, where a part of the harpsichord
signal has been encoded. The resulting RD costs are given above each plot. In the up-
per plot 8.7a, a uniform time segmentation in segments of 8 frames has been applied.
The next plot 8.7b shows results obtained with the RD optimized algorithm. Clearly, a
cost reduction can be obtained through appropriate segmentation of the signal. How-
ever, we can also observe a rather excessive usage of short segments in the stationary
part of the harpsichord fragment. Results with CWE based upfront segmentation, as
displayed in Figure 8.7c, are slightly worse, mainly due to increased usage of short
segments. PE based upfront segmentation provides the lowest cost, as seen above
Figure 8.7d.

The discrepancy between PE upfront and RD based time segmentation can be ex-
plained as follows. From Figure 8.3 in Section 8.2.2, we see that during optimization
the selection of a short segment size does not influence previously selected segment
sizes. When applying RD optimal segmentation, the RD cost measure is affected by
many aspects of the coding framework. Therefore, it can be easily the case that the
selection of a short segment between two large segments results in a small cost reduc-
tion, e.g. due to a better alignment of the MDCT basis functions with the segment to
be coded. In contrast, during coding of the signal, the windows for coding the large
segments are adapted such that the spectral properties of these windows are severely
compromised. As a result, coding efficiency is reduced. On the other hand, the PE
cost measure relies only on the signal and its corresponding masking capabilities.
Moreover, a DFT is applied for computation of the signal spectrum, which results in
shift invariance. Clearly, the PE cost measure exhibits a high discriminative power for
stationary signals.

To further investigate the PE based upfront segmentation method, an OAB prefer-
ence listening test with 10 participants was performed on 5 fragments from Table 8.1.
Listeners had to indicate their preference for either the existing RD based method,
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Figure 8.7: Time segmentation of harpsichord fragment with a) uniform segmentation
b) RD cost measure c) CWE cost measure and d) PE cost measure. The resulting RD
costs are given above each plot.

resulting in a score 1, and the new PE based method, corresponding to a score 0. Each
listener had to score every fragment four times. The resulting set of four scores was
transformed into new single scores of 0,25,50,75 or 100. This was done for each lis-
tener and fragment. The score distributions are displayed per fragment in Figure 8.8.
Additionally, the scores over all fragments are shown. Given the number of listeners,
fragments and test repetitions, we obtained a total of 200 scores for either the PE based
or the RD based method. Given these 200 scores, exactly 100 scores were for the RD
based method and 100 scores for the PE based method.

Furthermore, we assume that if listeners are not able to distinguish between the
two methods, the median of the score distribution lies at 50. This then indicates that
both time segmentation methods give coded fragments with a similar perceptual dis-
tortion. Therefore, a two-sided Wilcoxon signed-ranks test [25] was performed with
a null hypothesis that the score distributions came from a population with a median
of 50. Indicated above each plot in Figure 8.8 is the probability of observing the ob-
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Figure 8.8: OAB score distributions for the individual fragments and for all fragments.
Higher scores indicate preference for RD based segmentation.

tained score distribution by chance if the null hypothesis is true. Small values of the
probability cast doubt on the validity of the null hypothesis. At a significance level of
0.1, the null hypothesis can only be rejected for the classical music fragment, where
there is a significant preference for the PE based method.

8.5 Conclusions

In this contribution, we studied a transform coding framework that employs rate-
distortion optimal time segmentation. We discussed the dynamic programming based
times segmentation method and presented results from a MUSHRA test. Furthermore,
as a low-complexity alternative, we proposed an upfront time segmentation method
based on the perceptual entropy cost measure. Results of comparative test of these
two methods, both in the form of perceptual distortion-vs-rate plots and listening tests
showed that dynamic programming based upfront time segmentation for minimiza-
tion of a perceptual entropy cost measure can be a viable alterative to rate-distortion
optimal time segmentation. We showed that upfront time segmentation has a lower
computational complexity since the number of (R,Dπ) pairs to be computed is sig-
nificantly lower. Future work will concentrate on exploiting the redundancies between
the various psycho-acoustical analysis functions that are performed in the optimization
and coding phases.



140 8. Upfront time segmentation methods for transform coding of audio

8.6 Acknowledgments

The research was conducted within the ARDOR project, supported by the E.U. grant
no. IST-2001-34095. The authors would like to thank all members of the ARDOR
project for their contributions.

Bibliography

[1] J.P. Princen and A.B. Bradley. Analysis/synthesis filter bank design based on
time domain aliasing cancellation. IEEE Transactions On Acoustics, Speech,
And Signal Processing, 34(5):1153–1161, October 1986.

[2] H. S. Malvar. Signal Processing with Lapped Transforms. Artech House, Boston,
MA, 1992.

[3] International Standard ISO/IEC 11172-3 (MPEG). Information technology -
coding of moving pictures and associated audio for digital storage media at up
to about 1.5 mbit/s. part 3: Audio, 1993.

[4] International Standard ISO/IEC 13818-7 (MPEG). Information technology -
generic coding of moving pictures and associated audio, part 7: Advanced audio
coding, 1997.

[5] B. Edler. Codierung von audiosignalen mit uberlappender transformation und
adaptiven fensterfunktionen (in german). Frequenz, 43(9):252–256, 1989.
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Abstract

In this article we investigate rate-distortion optimal temporal noise shaping for trans-
form audio coding. Temporal noise shaping, or TNS, is a technique for reshaping the
quantization noise in the time domain through open-loop linear predictive coding of
frequency domain coefficients. Traditionally, a selection mechanism based on predic-
tion gain is employed to determine whether it is advantageous to apply TNS or not.
Although this method is effective for reducing coding artifacts in transient and speech
signals, critical adjustment of the prediction gain threshold is necessary to avoid ex-
cessive bit rate demands. We propose the use of TNS in a rate-distortion optimization
framework. Within this framework a jointly optimal selection of the prediction filter
order and the quantizer for coding the coefficients can be made, such that the per-
ceptual distortion is minimized for a given target rate. Experimental results for an
MDCT-based audio coding system are presented and it is shown that TNS within an
RD optimization framework outperforms the existing TNS method.

9.1 Introduction

In audio coding applications the goal is to minimize the perceptual distortion intro-
duced by the coding process whilst satisfying a bit rate constraint. This goal can be
achieved by the application of an operational rate-distortion (RD) optimization ap-
proach [1, 2] that reaches the solution to the audio coding problem for a given coding
environment and allows for optimal selection of the involved coding parameters.

Most audio coding schemes rely on a time-frequency analysis of the input signal
and typically, an MDCT [3] is applied for this purpose. The MDCT has desirable
properties, such as good channel separation, strong stopband attenuation, minimum
blocking artifacts and the availability of fast algorithms. Additionally, there are vari-
ous techniques available for efficient resolution switching to further enhance the per-
formance. Temporal noise shaping (TNS) [4, 5] is such a technique that allows for
block-continuous adaptation of the time-frequency resolution

In this paper, we propose an operational rate-distortion optimization framework
for TNS in an MDCT-based audio coder. The paper is organized as follows. In Sec-
tion 9.2 the traditional TNS technique is explained and some of its potential problems
are highlighted. Next, we propose an RD optimal temporal noise shaping algorithm in
Section 9.3. Finally, both quantitative and qualitative experimental results for encod-
ing several audio fragments with an MDCT-based audio coding scheme are presented
in Section 9.4.

9.2 Temporal noise shaping

TNS [4, 5] is a technique for reshaping and controlling the quantization noise in the
time domain through open-loop linear predictive coding (LPC) of frequency domain
coefficients. Given a block of signal samples that is transformed to the frequency do-
main, an LPC filter is applied to a (sub)set of transform coefficients and instead of
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direct quantization of the frequency domain coefficients, the filtered residual is quan-
tized along with the LPC filter coefficients. Upon reconstruction of the time domain
signal, the inverse LPC filter is applied to the quantized residual before the inverse
signal transform. This inverse LPC filter acts as a temporal envelope that shapes
the quantization noise according to the signal energy distribution over the segment,
thereby permitting a coder to exercise control over the temporal structure of quanti-
zation noise within a set of frequency coefficients. Thus, most of the quantization
noise will reside in signal regions with significant energy in the time domain, thereby
avoiding temporal masking problems in coding transient and speech signals, such as
pre-echos and reverberation.

TNS is part of the MPEG-2/4 AAC standard [6, 7] where it is applied on coeffi-
cients obtained from using a modified discrete cosine transform (MDCT) [3] on the
input signal. The MDCT is a so-called 50% overlapped block transform, i.e. a trans-
form where samples from consecutive 50% overlapping segments are windowed and
transformed. Given a signal x divided into overlapping segments of length 2M , a set
of M transform coefficients Xi is computed from the ith segment xi by applying the
direct MDCT, which is defined as [3]

Xi(k) =
2M−1∑
n=0

xi(n)w(n) cos
[ π

4M
(2n + M + 1)(2k + 1)

]
,

where k = 0, 1, . . . ,M−1 and w an appropriate analysis window.
Assume that Xi has variance σ2

Xi
. A pth order linear prediction X̃i of Xi is given

by

X̃i(k) =
p∑

j=1

ajXi(k − j).

The prediction error signal ΔXi(k) = Xi(k) − X̃i(k) with variance σ2
ΔXi

is then
computed (in the Z-transform domain) as

ΔXi(z) = Xi(z)A(z),

with A(z) = 1 −∑p
j=1 ajz

−j . We want to find the filter A(z) that minimizes σ2
ΔXi

and thus maximizes the prediction gain σ2
Xi

/σ2
ΔXi

. This can be done efficiently with
the well-known Levinson-Durbin recursion algorithm.

In many implementations of TNS in the AAC standard, the prediction gain is used
to determine whether TNS should be applied or not. First, for a block of MDCT co-
efficients a high order (e.g. 12 or 20) LPC filter is computed with the autocorrelation
method using the Levinson-Durbin algorithm. If the prediction gain is larger than a
certain threshold TPG, TNS is applied. The Levinson-Durbin algorithm generates a
set of reflection coefficients r, ordered in decreasing magnitude. The final LPC fil-
ter order p′ is determined by subsequently removing reflection coefficients having an
absolute value lower than a threshold Tr from the reflection coefficient array. This pro-
cedure lowers the side information for sending the filter coefficients. A block scheme
of a typical TNS implementation, which we shall refer to as TNS PG (prediction
gain), is shown in Fig. 9.1. We can distinguish two separate quantizer blocks since



146 9. RD optimal temporal noise shaping

Xi

Xi

LD
recursion

rp, Ap(z)

PG
PG > TPG

rp, Ap(z)

yes

no

Compute p′ and
Ap′(z) from
|rp| > Tr

Ap′(z)

filter Xi

with Ap′(z)
ΔXp′

iQQ
TNSNoTNS

ΔX̂p′
i

filter ΔX̂p′
i

with 1/Ap′(z)

X̂i X̂p′
i

p′

compute minqi
Ji(λ, qi)

Figure 9.1: Block scheme of a standard TNS implementation based on prediction gain.
The dashed block indicates the RD control block that is employed in the experiments.

it is generally efficient to have separate quantizers for unfiltered and filtered MDCT
coefficients.

It has been recently recognized that TNS can cause several undesirable coding ar-
tifacts [8]. For example, the quantization noise increases with the LPC filter order and
is amplified around attacks, which might result in unmasked quantization noise. More-
over, the prediction gain does not always accurately represent the coding performance
resulting from TNS usage. If TNS is applied, but the actual coding performance turns
out to be insignificant, a large portion of the available bit rate unnecessarily goes to the
filter coefficients. Clearly, the choice of the thresholds on prediction gain TPG and re-
flection coefficients Tr is a delicate one, since it determines both the side information
for sending the filter and the occurrence of undesired artifacts. Therefore, the thresh-
olds should be made dependent on the target bit rate, which requires a difficult tuning
process. The method in [8] proposes a perceptual entropy measure for determining
the usage of TNS. This is basically a one-sided bit rate cost measure, since perceptual
entropy can be seen as the minimal bit rate for transparent audio coding. We extend
this notion to a two-sided cost measure of both bit rate and perceptual distortion.

9.3 RD optimal TNS

In an operational RD optimization framework [1, 2], the distortion D is minimized
subject to a bit rate constraint RT for a given coding environment. In the TNS case
the coding environment consists of an MDCT-based audio coding system for coding a
signal consisting of, say N , overlapping segments. Given a set of LPC filter orders P

and a set of quantizer stepsizes Q for coding the MDCT coefficients, either directly or
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Figure 9.2: Block scheme of the proposed TNS implementation in an RD optimization
framework.

after LPC filtering, we want to select for the ith segment xi the LPC filter order pi ∈ P

and the quantizer stepsize qi ∈ Q that jointly minimize the perceptual distortion,
denoted by Dπ for a given target rate RT . Note that a zero-order LPC filter, i.e.
pi = 0, indicates direct coding of the MDCT coefficients. Fig. 9.2 shows a block
scheme of the RD-based TNS algorithm, referred to as TNS RD.

Let p be the N -dimensional vector consisting of the selected filter orders for all
N segments and let q denote the vector containing the N quantizer stepsizes. The
rate-constrained problem of minimizing Dπ subject to RT can then be written as

min
p

min
q

Dπ(p,q) s.t. R(p,q) ≤ RT ,

which can be converted into the unconstrained problem

min
p

min
q

J(λ,p,q), (9.1)

where J(λ,p,q) = Dπ(p,q)+λR(p,q) is a Lagrangian cost function of perceptual
distortion Dπ and bit rate R for coding the complete signal. The parameter λ ≥ 0 has
to be chosen such that the target rate is met, i.e. R(p,q) = RT . The bit rate can be
split up into contributions from the coded -and possibly filtered- MDCT coefficients
and side information, such as the LPC filter order, the quantizer stepsize and the coded
LPC filter coefficients. Under the assumptions of additivity of the cost measure and
independent coding over segments (or, equivalently, independence of the cost measure
over segments), the problem from Eq. (9.1) can be formulated as

min
p

min
q

N∑
i=1

Ji(λ, pi, qi) =
N∑

i=1

min
pi∈P

min
qi∈Q

Ji(λ, pi, qi), (9.2)
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where Ji(λ, pi, qi) = Dπ,i(pi, qi) + λRi(pi, qi) denotes the cost for segment xi. As
previously mentioned, λ has to be chosen such that the target rate is met. Hence, if
R(p,q) �= RT , we have to modify λ and solve Eq. (9.2) for the new λ. This is a
convex problem in λ and fast algorithms exist to solve the problem, e.g. the bisection
algorithm in [1].

Given that the MDCT coefficients obtained for segment xi are filtered with an LPC
filter of order p and quantized with stepsize q, the perceptual distortion Dπ,i(p, q) is
derived as a perceptually weighted squared sum of the difference between the original
MDCT coefficients Xi before TNS and the quantized coefficients X̂p

i after the inverse
TNS operation, that is,

Dπ,i(p, q) =
M−1∑
k=0

αi(k)
[
Xi(k) − X̂p

i (k)
]2

. (9.3)

The set of M perceptual weighting coefficients αi is taken as the inverse mask-
ing curve for segment xi evaluated at the MDCT center frequencies, i.e. αi(k) =
msk−1

i ( π
M (k + 1

2 )), k = 0, 1, . . . ,M−1. This has the desired effect that spectral
distortions in frequency regions with strong masking power are de-emphasized. Fur-
thermore, TNS and subsequent quantization is performed on the weighted set of coef-
ficients, which typically has a lower variance and flatter spectrum than the unweighted
set. This is similar to computation of a weighted MDCT spectrum in [7] where the
weighting coefficients are derived from inverse energy levels in scalefactor bands.

9.4 Experimental results

In our experiments, a simple implementation of TNS in an MDCT-based audio coding
system was considered. The LPC filters were applied on the complete set of MDCT
coefficients. Although the quantization of the LPC filter coefficients can be taken into
account, errors due to imperfect modelling of the LPC filter were neglected in this
study. As discussed in the previous section, for every segment of the input signal
both the LPC filter order and the coding template were selected that minimized the
perceptual distortion over all segments, subject to a target rate constraint for coding the
complete signal. We compared this implementation with both a system not employing
TNS and the existing TNS method, i.e. based on prediction gains. In all three systems
the selection of quantizers was performed in an RD optimal manner, as outlined in the
previous section.

A 1024-channel MDCT was used, similar to the AAC long block operation, along
with a 2048-sample Kaiser-Bessel derived window. Masking curves for each segment
were computed according to the perceptual model in [9]. Based on settings in [7], the
maximum LPC filter order was set to 20 and the prediction gain threshold TPG for
selection of TNS was set to 1.4 dB. The threshold for discarding high-order reflection
coefficients was set to Tr = 0.1. For both direct and TNS filtered coefficients, eight
quantizer stepsizes were available, including a stepsize for quantizing all coefficients
to zero, and corresponding Huffman codebooks were designed. Additionally, effi-
cient coding of long zero regions was applied. As a distortion measure, the perceptual
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distortion measure Dπ from Eq. (9.3) was taken and the Huffman codewords were
used to determine the bit rate. The side information consisted of the LPC filter order
(5 bits), the filter coefficients (4 bits per filter coefficient) and the quantizer stepsizes
(3 bits). The perceptual weighting coefficients, derived from the masking curve were
assumed to be coded at 4 kbps, in line with results from [10]. A set of four audio
fragments (48 kHz, 16-bit, mono) was used for evaluation of the three algorithms,
consisting of the castanet, German male speech, bass guitar and English female speech
signals.

9.4.1 results for single fragment

Fig. 9.3 presents coding results for 3 seconds of the German male speech fragment
(upper plot), coded at 32 kbps. In the 2nd plot, the reconstruction error signals are
displayed for the three algorithms. It can be seen that TNS localizes the quantization
noise around glottal pulses and that the RD-based algorithm leads to reconstruction
noise that is shaped similarly to the PG-based method. The 3rd plot shows the bit
allocation over segments. The standard TNS method lowers the peak bit rate demand
compared to the system without TNS, however, bit shortages still occur at several
positions in the signal, mainly during segments with low energy signal content. This
can be explained from the fact that at low bit rates, the existing schemes frequently
run out of bits in various segments. Since selection of the stepsize that quantizes
all coefficients to zero requires very few bits, this remains the only choice at these
segments, thereby creating gaps in the reconstructed signal.

Although this gap artifact can not be attributed to the TNS algorithm directly, it is a
clear example of inefficient use of the available bits when the TNS algorithm operates
outside the rate-distortion control in this coding framework, or when not using TNS.
In contrast, the RD-based method reduces the bit demand even further and facilitates
a more continuous bit rate distribution over various signal parts. This allows for a
more continuous signal modelling. The bit savings can be explained from the lower
plot, where it is seen that the RD-based algorithm selects high order LPC filters only
at critical signal parts. In contrast, the standard method uses a high order LPC filter
almost exclusively, which in some cases requires an unnecessary high amount of bits.

9.4.2 results for multiple fragments

For the four signals, objective perceptual distortions for different target bit rates rang-
ing from 18 to 64 kbps are presented in Fig. 9.4. It can be seen that the RD-based
method results in the lowest perceptual distortion at every bit rate for all fragments.
In order to subjectively evaluate our scheme, a MUSHRA [11] listening test was per-
formed for evaluating the four fragments at a bit rate of 36 kbps. At this bit rate, no
obvious time gap artifacts where present in the coded fragments where TNS was ap-
plied. A total of ten listeners participated (authors not included). The results averaged
over all listeners are displayed per fragment in Fig. 9.5. For three fragments, the RD-
based method significantly outperforms the PG-based method. Only for the German
male speech fragment no significant improvement is observed. This can be explained
as follows.
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Figure 9.3: Upper plot: 3s of German male speech signal. 2nd plot: Reconstruction
error signals for the 3 methods. 3rd plot: Bit allocation over segments for the 3
methods. Lower plot: LPC filter order for (1)PG-based method and (2)RD-based
method. Note that the upper two plots are displayed on a sample basis, while the
lower two plots shows segment-based results.
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Since a perceptual model is used that accounted for simultaneous masking only, the
RD-based method does not concentrate specifically on time domain coding artifacts
such as speech reverberation. The PG-based method determines TNS usage outside
the perceptual model, hence a larger reduction of these artifacts is obtained than with
the RD-based method. Therefore, we expect improved performance when a perceptual
model that incorporates temporal masking is applied. We conclude that the main
contribution of the proposed algorithm lies in increased bit rate reduction compared to
the existing method. This performance gain is obtained at a higher complexity, mostly
determined by the repeated inverse IIR filtering. Therefore, complexity reductions
will focus at estimating the perceptual distortion in the LPC filtered domain.
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Chapter 10

Results and Recommendations

The objective of the work presented in this thesis was to study the combination of an
operational RD optimization framework with adaptive MDCT-based time-frequency
decomposition techniques. The first part of this thesis has provided background ma-
terial of the relevant concepts of operational RD optimization and best basis search,
and on the properties of the MDCT and some available adaptive time-frequency com-
position techniques. In the second part, results have been presented for three distinct
adaptive time-frequency decomposition techniques. This chapter summarizes the re-
sults as presented in this thesis. Furthermore, we make some recommendations for
further research.

10.1 Summary of results

Firstly, we have investigated adaptive frequency decomposition and have developed
an algorithm for flexible frequency decomposition. This algorithm employed sub-
band merging to construct a nonuniform MDCT and dynamic programming for fast
searching, techniques that allow for fast and simple adaptation of the frequency de-
composition depending on the input signal. The algorithm was implemented in a basic
audio coding scheme and experimental results have shown that an SNR gain of up to
4 dB can be obtained for some fragments. Furthermore, it was shown that on average,
listeners have an 80% preference for a simple perceptual audio coding scheme that
incorporates the new algorithm. However, when incorporating the algorithm in this
perceptual audio coding scheme, we have observed that the description of the result-
ing decomposition puts severe demands on the lossless coding of the associated side
information and that it is not efficient in terms of bit rate when averaged over a large
set of audio fragments. Moreover, incorporation of the algorithm in a generic MDCT-
based audio coding scheme has led to a highly increased computational complexity.
We therefore conclude that this particular frequency domain approach in its current
form does not provide us with a performance increase that can justify the increase in
complexity. Further steps can be made by restricting the decomposition search space.
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Secondly, we have proposed an extension to existing time segmentation techniques in
the form of a flexible time segmentation algorithm. Again, dynamic programming has
been employed for best basis search through the dictionary of time segmentations. We
have devised three variations that can cover a large range of complexity trade-offs. Ini-
tially, a medium-complexity solution was constructed that neglected the dependencies
resulting from varying window overlap. This algorithm was shown to outperform an
existing time segmentation method, for the class of fixed overlap windows. We then
proceeded to quantify the loss incurred by neglecting the dependencies in the case of
varying window overlap. The average loss was determined to be 12% for the Coifman-
Wickerhauser entropy cost measure and 0.5 dB for a rate-distortion cost measure. Fur-
thermore, we showed that an optimal solution could be obtained in polynomial time.
Next, we implemented the medium-complexity algorithm in an audio coding system.
In a direct comparison with MPEG-4 standardized coding systems, this audio coding
system incorporating our time segmentation scheme performed equally good or better
over a large range of bit rates. In order to obtain a low-complexity algorithm, the RD
cost measure was replaced by a cost measure based on perceptual entropy. This third
scheme showed a negligible performance loss compared to the RD-based scheme, at
an average complexity reduction of 47%. We conclude that the low-complexity time
segmentation algorithm can be a viable alternative to the time segmentation methods
employed in existing audio coding schemes.

Finally, we returned to frequency decomposition and concentrated on RD optimal
temporal noise shaping. We have developed an algorithm in which the linear predic-
tion filter order of the TNS method was optimized for a perceptual distortion measure.
Compared to an earlier method, which employed a thresholding scheme based on pre-
diction gain, the algorithm showed improved performance, both in terms of RD be-
havior, where on average a perceptually weighted SNR gain of 1 dB was obtained, and
subjective test results, where a 1.5 point MOS difference was observed. On the other
hand, the initial reduction of pre-echo and double speak artifacts that was obtained
with standard TNS was diminished. While this loss of artifact reduction can be partly
attributed to the relatively simple perceptual model that was employed, we believe that
the operation of the TNS technique outside RD optimization remains an efficient way
of reducing aforementioned artifacts. Nevertheless, the overall performance of RD
optimal TNS is substantial and we foresee a promising combination of this algorithm
with the flexible time segmentation method. Extensions of this method can be made
by using a dynamic programming approach to compute the optimal combination of
filters, filter orders and frequency ranges for every block of transform coefficients.

10.2 Recommendations

To conclude this chapter, we provide some recommendations for future research and
for the general application of operational RD optimization in audio coding. As stated
in section 1.2, we have mainly focussed on the signal processing aspects of the combi-
nation of an RD optimization framework with adaptive MDCT-based time-frequency
decomposition. Hence, the proposed algorithms have not been implemented in fully
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functional audio coding schemes, apart from the work presented in chapter 8. As
a first extension of our research, we recommend implementing the temporal noise
shaping scheme from chapter 9 in the audio coding system employed in 8. Addition-
ally, temporal masking can be incorporated by replacing the existing perceptual model
with a model derived from Dau [3, 2]. In the author’s opinion, these enhancements
can lead to an audio coding scheme that can compete with state-of-the-art audio cod-
ing schemes. Optimally, RD optimization will enable a comparison of audio coding
schemes similar to the benchmark test for video coding by Wiegand et al in [6].

We conclude this chapter with an outlook on new and ongoing research that will help
in making RD optimization a standard tool for audio coding. First, computational
complexity will be an issue for years to come. In the algorithms presented in this
work, we incorporated best basis search methods to significantly lower computational
complexity. However, in most cases the computation of the values for bit rate and
distortion dominate the complexity figures. To lower computational complexity in
this area, we can seek to employ high-rate quantization [9, 10] to analytically deter-
mine the RD costs or feature-based techniques [7, 4] to estimate the RD behavior.
Furthermore, new and improved perceptual distortion models have to be devised for
better modelling of the human auditory systems and more accurate computation of
perceptual distortions such as done in [1, 8]. Lastly, practical solutions have to be
provided for optimization over multiple coding strategies in a universal audio coding
scheme. Within such a scheme, an MDCT-based subcoding module can be envisioned
that employs the techniques described in this thesis. The challenge then lies in the
investigation and derivation of a jointly optimal RD optimization scheme. Initial steps
to this end have been made in the SiCAS [5] and ARDOR [11] projects.
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Appendix A

Perfect Reconstruction of the
MDCT

In this appendix we look at the perfect reconstruction property of the MDCT and de-
rive the proof for Theorem 2.

For the ith input signal block yi depicted in Fig. 3.2 and an MDCT analysis window
h, let the 2M MDCT analysis signals Xi be defined as

Xi(k) =

√
2
M

2M−1∑
n=0

h(2M−1−n)yi(n) cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
, (A.1)

for k = 0, 1, . . . ,M−1. Furthermore, let ŷi, i.e. the time-aliased reconstruction of yi,
be obtained from Xi as

ŷi(n) =

√
2
M

M−1∑
k=0

Xi(k) cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
, (A.2)

for n = 0, 1, . . . , 2M−1 and let f be an MDCT synthesis window. From Fig. 3.3 it is
seen that the ith signal block x̂i is reconstructed as

x̂i(n) = f(n+M)ŷi−1(n+M) + f(n)ŷi(n). (A.3)

Let h′(n) = h(2M−1−n) and let ϕk = π
M

(
k+ 1

2

)
. Then, by substituting (A.1) for
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Xi in (A.2), ŷi(n) can be written as

ŷi(n) =
1

2M

2M−1∑
k=0

Xi(k) cos
[
ϕk

(
n+ n0

)]

=
1

2M

2M−1∑
k=0

2M−1∑
m=0

xi(m)h′(m) cos
[
ϕk

(
m+ n0

)]
cos
[
ϕk

(
n+ n0

)]

=
1
2

2M−1∑
m=0

xi(m)h′(m)

(
1

2M

2M−1∑
k=0

cos
[
ϕk

(
m−n

)]
+

1
2M

2M−1∑
k=0

cos
[
ϕk

(
m+n+ 2n0

)])

=
1
2

2M−1∑
m=0

xi(m)h′(m)

(
cos
[

π(m−n)
2M

]
2M

2M−1∑
k=0

cos
[πk(m−n)

M

]
−

sin
[

π(m−n)
2M

]
2M

2M−1∑
k=0

sin
[πk(m−n)

M

]
+

cos
[

π(m+n+2n0)
2M

]
2M

2M−1∑
k=0

cos
[πk(m+n+ 2n0)

M

]
−

sin
[

π(m+n+2n0)
2M

]
2M

2M−1∑
k=0

sin
[πk(m+n+ 2n0)

M

])

=
1
2

2M−1∑
m=0

xi(m)h′(m)
∞∑

�=−∞
(−1)�

(
δ(m−n−2�M) + δ(m+n+2n0−2�M)

)

=
1
2

∞∑
�=−∞

(−1)�

(
xi(n+2�M)h(2M−1−n−2�M)+

xi(−n−2n0+2�M)h(2M−1+n+2n0−2�M)

)
.

(A.4)

for n = 0, 1, . . . , 2M−1.
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Combining the result from (A.4) with (A.3) and choosing 2n0 = M+1 leads to

x̂i(n) =
1
2
f(n+M)

∞∑
�=−∞

(−1)�xi−1(n+M+2�M)h(M−1−n−2�M)

+
1
2
f(n+M)

∞∑
�=−∞

(−1)�xi−1(−n−2M−1+2�M)h(4M+n−2�M)

+
1
2
f(n)

∞∑
�=−∞

(−1)�xi(n+2�M)h(2M−1−n−2�M)

+
1
2
f(n)

∞∑
�=−∞

(−1)�xi(−n−M−1+2�M)h(3M+n−2�M). (A.5)

Only a few terms in (A.5) contribute to the output over the range n = 0, 1, . . . ,M−1.
Using the fact that xi−1(n+M) = xi(n) for n = 0, 1, . . . ,M−1 leads to

x̂i(n) =
1
2
xi(n)

(
f(n+M)h(M−1−n) + f(n)h(2M−1−n)

)
+

1
2
xi−1(2M−1−n)

(
f(n+M)h(n) − f(n)h(n+M)

)
, (A.6)

and we see that (A.3) is equal to (A.6), that is,

x̂i(n) = f(n+M)ŷi−1(n+M) + f(n)ŷi(n)

=
1
2
xi(n)

(
f(n+M)h(M−1−n) + f(n)h(2M−1−n)

)
+

1
2
xi−1(2M−1−n)

(
f(n+M)h(n) − f(n)h(n+M)

)
.

Now we can prove Theorem 2, which we repeat below for completeness.

Theorem 2 (perfect reconstruction property of the MDCT) For the ith input signal
block yi and MDCT analysis window h, let the 2M MDCT analysis signals Xi be
defined as

Xi(k) =

√
2
M

2M−1∑
n=0

h(2M−1−n)yi(n) cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
.

Furthermore, let ŷi be obtained from Xi as

ŷi(n) =

√
2
M

M−1∑
k=0

Xi(k) cos
[ π

M

(
k+

1
2

)(
n+ n0

)]
,

and let f be the MDCT synthesis window.



162 A. Perfect reconstruction of the MDCT

The ith signal block x̂i can be perfectly reconstructed if

f(n) = h(n), n = 0, . . . , 2M−1, (A.7)

h(n) = h(2M−1−n), n = 0, . . . ,M−1, (A.8)

h2(n) + h2(n+M) = 1, n = 0, . . . ,M−1, (A.9)

and 2n0 = M+1.

Proof: The 2M MDCT coefficients are not independent but satisfy

X(k) = −X(2M−k−1), k = 0, 1, . . . ,M−1.

Therefore, only M MDCT coefficients are required for reconstruction. The ith signal
block x̂i is reconstructed as (A.3)

x̂i(n) = f(n+M)ŷi−1(n+M) + f(n)ŷi(n).

From (A.6) it follows that for 2n0 = M+1, (A.3) is equivalent to

x̂i(n) = xi(n)
(
f(n+M)h(M−1−n) + f(n)h(2M−1−n)

)
+ xi−1(2M−1−n)

(
f(n+M)h(n) − f(n)h(n+M)

)
.

Hence, x̂i = xi ∀i ∈ N if (A.7)-(A.9) are satisfied. �



Appendix B

Frequency Domain Linear
Prediction

In this appendix we study frequency domain linear prediction. We start with introduc-
ing the Hilbert transformer. Next, we study the relation between the squared Hilbert
envelope and the spectral autocorrelation function. We then proceed by employing the
results in frequency domain linear prediction.

B.1 The Hilbert transformer

Let x be a real-valued discrete time signal and let the complex-valued signal c be
defined as

c(n) = x(n) + jH{x(n)}, (B.1)

where H{�} denotes a Hilbert transformer [1]. Moreover, let ca(t) be an analytic
band-limited continuous time signal that satisfies

Ca(jω) =
{

C(ejω), 0 ≤ ω < π,
0, otherwise.

If ca(t)|t=n = c(n), we can say that c corresponds to an analytic signal.

The Hilbert transformer operation on x is given as

H{x(n)} =
∞∑

m=−∞
h(m)x(n − m),

with

h(n) =

{
2sin2(πn/2)

πn , n �= 0,
0, n = 0.
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and

H(ejω) =
{ −j, 0 ≤ ω < π,

j, −π ≤ ω < 0.

That is, the Hilbert transformer is a 90-degree phase shifter.

B.2 Relation Between Squared Hilbert Envelope And
Spectral Autocorrelation

The derivations presented here were originally published in [2]. Let X be the K-point
DFT of x, i.e.

X(k) = F{x} =
K−1∑
k=0

x(n)e−j2πkn/K , k = 0, . . . , K−1.

The DFT of the analytic signal c from (B.1) is given as

C(k) =
K−1∑
k=0

c(n)e−j2πkn/K =

⎧⎨
⎩

2X(k), 0 < k < K/2,
X(k), k = 0,

0, −K/2 ≤ k < 0.
(B.2)

Let e denote the squared envelope of c, that is,

e(n) = |c(n)|2 = c(n)c∗(n).

The signal e is called the squared Hilbert envelope of x. The DFT of e is

E(k) = C(k) ∗ C∗(k) =
K−1∑
�=0

C(�)C∗(k − �). (B.3)

Clearly, E is a spectral autocorrelation sequence. Taking the IDFT of E gives

e(n) = F−1
{K−1∑

�=0

C(�)C∗(k − �)
}

, (B.4)

and it is observed that the squared envelope e of c, or equivalently, the squared Hilbert
envelope of x, is the inverse Fourier transform of the spectral autocorrelation sequence
E. This relation is the dual of the Wiener-Khinchin Theorem [3], which relates the
power spectral density Sxx of a wide-sense stationary signal x to its autocorrelation
function Rxx as

Sxx(f) = F{Rxx(τ)} = F
{∫

τ

x(τ)x∗(τ − t)dτ
}

.
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B.3 Frequency Domain Linear Prediction

In the frequency domain, a pth order linear prediction X̃ of X is given by [4]

X̃(k) =
p∑

i=1

aiX(k − i).

In general, if p < K, the prediction leads to a prediction error R, i.e.

R(k) = X(k) − X̃(k) = X(k) −
p∑

i=1

aiX(k − i). (B.5)

The set of p prediction filter coefficients {ai} is obtained by minimizing the squared
prediction error as

{ai} = arg min
∣∣X(k) −

p∑
i=1

aiX(k − i)
∣∣2,

which can be done efficiently using standard methods, e.g. the Levinson-Durbin algo-
rithm [5, 6].

Linear prediction in the time domain results in a spectrally flat or white prediction
error [4]. Dual to this, frequency domain linear prediction leads to a flattening of the
temporal envelope of the prediction error r. This can be seen from (B.3) and (B.4).
Linear prediction leads to decorrelation of X and, according to (B.2), of C. If C is
maximally decorrelated, E = 0 for k �= 0 and e is constant, i.e. has a flat envelope.

From (B.5) and (B.2), the squared Hilbert envelope ep of the prediction error r is
obtained by taking the IDFT of R as

ep(n) = x(n)
(
1 −

p∑
i=1

aie
−j2πin/K

)
.

A pth order estimate of the envelope of x is now given as the (complex) inverse or
synthesis filter h,

h(n) =
x(n)
ep(n)

=
1

1 −∑p
i=1 aie−j2πin/K

.
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Appendix C

Subband Merging

In this appendix we provide the proof for Theorem 3, which we repeat below for com-
pleteness.

Theorem 3 (subband merging) Let p0 denote a real-coefficient linear-phase low-pass
prototype filter of length N for an M -channel PR uniform CMFB, satisfying

|P0(ejω)| = 0 for |ω| ≥ π

2M
+ ε, ε <

π

2M
, (C.1)

and let bk = ejϕk , k = 0, . . . , M−1. Furthermore, let the analysis filters hk of the
CMFB be defined as in (3.18).

Then ∣∣∣p−1∑
i=0

bk+iHk+i(z)
∣∣∣2 =

p−1∑
i=0

∣∣∣Hk+i(z)
∣∣∣2, (C.2)

for 1 ≤ p ≤ M and 0 ≤ k ≤ M −p, if and only if α = (N−1)−M(2m+1), m ∈ Z,
and |ϕk− ϕk+1| = nπ, n ∈ N.

Proof: We can write the Z-transform of hk from (3.18) as a sum of two filters Uk and
Vk,

Hk(z) = akUk(z) + a∗
kVk(z), (C.3)

with ⎧⎨
⎩

Uk(z) = P0(zW (k+ 1
2 )),

Vk(z) = P0(zW−(k+ 1
2 )),

ak = W (k+ 1
2 ) α

2 ,

(C.4)

and W = e−j2pi/M . Furthermore, for α = (N−1)−M(2m + 1), m ∈ Z,

p−1∑
i=0

∣∣∣Hk+i(z)
∣∣∣2 =

p−1∑
i=0

∣∣∣Uk+i(z)
∣∣∣2 +

∣∣∣Vk+i(z)
∣∣∣2. (C.5)
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Let Hp,k(z) be defined as in (3.19). From (C.3) and the linear-phase property of
P0(z), we can write |Hp,k(z)|2 as

|Hp,k(z)|2 =
p−1∑
i=0

p−1∑
�=0

zN−1

(
bk+ib

∗
k+�ak+iak+�c

∗2

k+�Uk+i(z)Vk+�(z)+

b∗k+ibk+�a
∗
k+ia

∗
k+�c

2
k+iUk+i(z)Vk+�(z)

)

+
p−1∑
i=0

p−1∑
�=0

zN−1

(
bk+ib

∗
k+�ak+ia

∗
k+�c

2
k+�Uk+i(z)Uk+�(z)+

b∗k+ibk+�a
∗
k+iak+�c

∗2

k+�Vk+i(z)Vk+�(z)

)
,

(C.6)

with ck = W (k+ 1
2 ) N−1

2 and bk = ejϕk . Eq.(C.6) can be divided into four parts as

|Hp,k(z)|2 =
p−1∑
i=0

(
|Uk+i(z)|2 + |Vk+i(z)|2

)
(C.7a)

+
p−2∑
i=0

zN−1

(
bk+ib

∗
k+i+1ak+ia

∗
k+i+1c

2
k+i+1Uk+i(z)Uk+i+1(z)+

b∗k+ibk+i+1a
∗
k+iak+i+1c

2
k+iUk+i(z)Uk+i+1(z)+

b∗k+ibk+i+1ak+ia
∗
k+i+1c

∗2

k+iVk+i(z)Vk+i+1(z)+

b∗k+ibk+i+1a
∗
k+iak+i+1c

∗2

k+iVk+i(z)Vk+i+1(z)

)
(C.7b)

+
p−1∑
i=0

p−1∑
�=0

zN−1

(
bk+ib

∗
k+�ak+iak+�c

∗2

k+�Uk+i(z)Vk+�(z)+

b∗k+ibk+�a
∗
k+ia

∗
k+�c

2
k+iUk+i(z)Vk+�(z)

)
(C.7c)

+
p−1∑
i=0

p−1∑
�=0

zN−1

(
bk+ib

∗
k+�ak+ia

∗
k+�c

2
k+�Uk+i(z)Uk+�(z)+

bk+ib
∗
k+�a

∗
k+iak+�c

∗2

k+�Vk+i(z)Vk+�(z)

)
, (C.7d)

where (C.7d) is only considered for |i − �| ≥ 2.
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In the remainder of this proof we show that the terms in (C.7b)-(C.7d) vanish if and
only if α = (N−1)−M(2m+1), m ∈ Z and |ϕk −ϕk+1| = nπ, n ∈ N. The proof
is by induction to p.

Let p = 2. Then H2,k(z) = bkHk(z) + bk+1Hk+1(z), hence

|H2,k(z)|2 = |bkHk(z) + bk+1Hk+1(z)|2

= |Uk(z)|2 + |Vk(z)|2 + |Uk+1(z)|2 + |Vk+1(z)|2

+zN−1
(
bkb∗k+1aka∗

k+1c
2
k+1 + b∗kbk+1a

∗
kak+1c

2
k

)
Uk(z)Uk+1(z)

+zN−1
(
b∗kbk+1aka∗

k+1c
∗2

k + bkb∗k+1a
∗
kak+1c

∗2

k

)
Vk(z)Vk+1(z)

+zN−1
(
a2

kc∗
2

k + a∗2

k c2
k

)
Uk(z)Vk(z)

+zN−1
(
bkb∗k+1akak+1c

∗2

k+1 + b∗kbk+1a
∗
ka∗

k+1c
2
k

)
Uk(z)Vk+1(z)

+zN−1
(
b∗kbk+1ak+1akc∗

2

k + bkb∗k+1a
∗
k+1a

∗
kc2

k+1

)
Uk+1(z)Vk(z)

+zN−1
(
a2

k+1c
∗2

k+1 + a∗2

k+1c
2
k+1

)
Uk+1(z)Vk+1(z).

Now (
bkb∗k+1aka∗

k+1c
2
k+1 + b∗kbk+1a

∗
kak+1c

2
k

)
= 0,

if

e2j(ϕk−ϕk+1)e−j π
M [−α

2 +(k+1)(N−1)] = e−jπ(2m+1)e−j π
M [ α

2 +k(N−1)], m ∈ Z,

which is the case if and only if α = (N−1)−M(2m+1)−(ϕk−ϕk+1)2M/π, m ∈
Z.

Similarly, (
b∗kbk+1aka∗

k+1c
∗2

k + bkb∗k+1a
∗
kak+1c

∗2

k

)
= 0,

if

e2j(ϕk+1−ϕk)e−j π
M [−α

2 −k(N−1)] = e−jπ(2m+1)e−j π
M [ α

2 −(k+1)(N−1)], m ∈ Z,

which occurs if and only if α = (N −1)−M(2m+1)−(ϕk+1−ϕk)2M/π, m ∈ Z.

Moreover, if P0(z) satisfies (C.1), Uk1(z)Vk2(z) = 0 ∀ k1, k2, except for two situa-
tions. If k1 = k2 = 0 then

(a2
0c

∗2

0 + a∗2

0 c2
0) = 0 for α = (N − 1) + M(2m + 1), m ∈ Z.

Let m = −(m′ + 1),m′ ∈ Z, then α = (N − 1) − M(2m′ + 1).
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If k1 = k2 = M − 1 then it follows that

(a2
M−1c

∗2

M−1 + a∗2

M−1c
2
M−1) = 0 for α = (N − 1) +

M(2m + 1)
2M − 1

, m ∈ Z.

Let m = (1 − 2M)m′′ − M,m′′ ∈ Z, then α = (N − 1) − M(2m′′ + 1).

The conditions that need to be satisfied such that

|H2,k(z)|2 = |Uk(z)|2 + |Vk(z)|2 + |Uk+1(z)|2 + |Vk+1(z)|2,

are

α = (N − 1) − M(2m + 1) − (ϕk − ϕk+1)2M/π, m ∈ Z (C.8a)

α = (N − 1) − M(2m + 1) − (ϕk+1 − ϕk)2M/π, m ∈ Z, (C.8b)

α = (N − 1) − M(2� + 1), � ∈ Z. (C.8c)

It is quickly derived that (C.8a)-(C.8c) are equal if

|ϕk − ϕk+1| = nπ, n ∈ N. (C.9)

From (C.5) it is given that if (C.8c) is satisfied,

|Hk(z)|2 + |Hk+1(z)|2 = |Uk(z)|2 + |Vk(z)|2 + |Uk+1(z)|2 + |Vk+1(z)|2.

Therefore,

|bkHk(z) + bk+1Hk+1(z)|2 = |Hk(z)|2 + |Hk+1(z)|2,

if and only if (C.1), (C.8c) and (C.9) are satisfied and hence the induction hypothesis
is true.
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Let p ≥ 2. Then Hp+1,k(z) =
∑p

i=0 bk+iHk+i(z), hence

|Hp+1,k(z)|2 =

(C.7a) + |Uk+p(z)|2 + |Vk+p(z)|2+ (C.10a)

(C.7b) + zN−1

(
bk+p−1b

∗
k+pak+p−1a

∗
k+pc

2
k+pUk+p−1(z)Uk+p(z)+

b∗k+p−1bk+pa
∗
k+p−1ak+pc

2
k+p−1Uk+p−1(z)Uk+p(z)+

b∗k+p−1bk+pak+p−1a
∗
k+pc

∗2

k+p−1Vk+p−1(z)Vk+p(z)+

bk+p−1b
∗
k+pa

∗
k+p−1ak+pc

∗2

k+pVk+p−1(z)Vk+p(z)

)
+ (C.10b)

(C.7c) +
p∑

�=0

zN−1

(
bk+pb

∗
k+�ak+pak+�c

∗2

k+�Uk+p(z)Vk+�(z)+

b∗k+pbk+�a
∗
k+pa

∗
k+�c

2
k+pUk+p(z)Vk+�(z)

)

+
p−1∑
i=0

zN−1

(
bk+ib

∗
k+pak+iak+pc

∗2

k+pUk+i(z)Vk+p(z)+

b∗k+ibk+pa
∗
k+ia

∗
k+pc

2
k+iUk+i(z)Vk+p(z)

)
+ (C.10c)

(C.7d) +
p−2∑
�=0

zN−1

(
bk+pb

∗
k+�ak+pa

∗
k+�c

2
k+�Uk+p(z)Uk+�(z)+

bk+pb
∗
k+�a

∗
k+pak+�c

∗2

k+�Vk+p(z)Vk+�(z)

)

+
p−2∑
i=0

zN−1

(
bk+ib

∗
k+pa

∗
k+iak+pc

2
k+pUk+i(z)Uk+p(z)+

bk+ib
∗
k+pa

∗
k+iak+pc

∗2

k+pVk+i(z)Vk+p(z)

)
. (C.10d)

By the induction hypothesis, the terms (C.7b)-(C.7d) reduce to zero if and only if
α = (N−1)−M(2m + 1), m ∈ Z and |ϕk − ϕk+1| = nπ, n ∈ N.
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First, consider (C.10b). Since(
bk+p−1b

∗
k+pak+p−1a

∗
k+pc

2
k+p + b∗k+p−1bk+pa

∗
k+p−1ak+pc

2
k+p−1

)
= 0,

if

e2j(ϕk+p−1−ϕk+p)e−j π
M [−α

2 +(k+p)(N−1)] = e−jπ(2m+1)e−j π
M [ α

2 +(k+p−1)(N−1)],

which holds if (C.8a) is true. Similarly,(
ak+p−1a

∗
k+pc

∗2

k+p−1 + a∗
k+p−1ak+pc

∗2

k+p

)
= 0,

if

e2j(ϕk+p−ϕk+p−1)e−j π
M [−α

2 −(k+p−1)(N−1)] = e−jπ(2z+1)e−j π
M [ α

2 −(k+p)(N−1)],

which is the case if (C.8b) is satisfied. Again, these conditions can be reduced to
(C.8c) and (C.9), respectively.

Next, consider (C.10c). If P0(z) satisfies (C.1) and (C.9) is true, Uk1(z)Vk2(z) =
0 ∀ k1, k2.

Finally, consider (C.10d). It is observed that Uk1(z)Uk2(z) = 0 and Vk1(z)Vk2(z) =
0 ∀ k1, k2 and |k1 − k2| ≥ 2 if (C.1) is satisfied.

This completes the proof. �



Samenvatting

Tegenwoordig is perceptuele audiocodering de de facto oplossing om met het efficiënt
opslaan en versturen van digitale audio om te gaan. Wereldwijd worden aan con-
sumenten gestandaardiseerde oplossingen aangeboden, die naar tevredenheid werken,
indien ze op de juiste manier worden toegepast. Echter, de recente convergentie
tussen consumentenelektronica en mobiele communicatie en het opkomen van alomte-
genwoordige heterogene netwerkomgevingen met tijdvariërende bandbreedte -en ver-
tragingsbeperkingen, leiden tot strenge eisen aan de mogelijkheden van de bestaande
oplossingen en aan de gebruiker die moet kiezen uit een breed scala aan oplossingen.
Dit kan gemakkelijk leiden tot situaties waarbij niet goed wordt aangesloten op de ap-
plicatie, zodat een audiocoderingssysteem buiten het bedoelde bereik wordt gebruikt.
Nieuwe systemen zijn daarom nodig, die zich kunnen aanpassen aan de voorwaarden
en beperkingen zoals die door de gebruiker en het netwerk worden opgelegd.

In dit proefschrift bestuderen we verscheidene technieken en combinaties daarvan,
die we beschouwen als geschikte kandidaten voor integratie in nieuwe audiocoder-
ingssystemen. In plaats van een volledig audiocoderingssysteem te ontwikkelen, con-
centreren we ons op de aspecten van de signaalverwerking en de interactie tussen deze
technieken. In het eerste deel van dit proefschrift wordt een overzicht gegeven van
twee technieken die we reeds aantreffen in verscheidene digitale signaalcoderingssys-
temen. Deze technieken dienen als ingrediënten voor de algoritmen die gepresenteerd
worden in het tweede deel.

Eerst kijken we naar operationele rate-distortion (RD) optimalisering. Met opera-
tionele RD optimalisering proberen we de best haalbare prestaties te bereiken voor
het coderen van een audiosignaal, gegeven de keuze voor het compressiekader of de
codeeromgeving. In dit proefschrift kijken we opnieuw naar de literatuur over opera-
tionele RD optimalisering, formuleren we het bit allocatie probleem onder beperking
van de bit rate en bestuderen we oplossingen voor dit probleem. We zijn daarbij voor-
namelijk geı̈nteresseerd in de interactie van een dergelijk RD optimaliseringskader
met de tijd-frequentie decompositie van het signaal. Dit leidt tot een studie van best
basis zoekalgoritmen en de combinatie daarvan met RD optimalisering.

In de meeste audiocoderingssystemen wordt de tijd-frequentie decompositie verkre-
gen door de modified discrete cosine transform, of MDCT, toe te passen. Daarom
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onderzoeken we diverse eigenschappen van de MDCT, zoals de voorwaarden voor
perfecte reconstructie, het ontwerp van vensters en snelle algoritmen. Voorts bekijken
we drie verschillende adaptatietechnieken die beschikbaar zijn voor de MDCT om
niet-uniforme tijd-frequentie decomposities te verkrijgen.

Het belangrijkste doel van het werk dat in dit proefschrift wordt gepresenteerd is
het bestuderen van de combinatie van een operationeel RD optimaliseringskader met
adaptieve MDCT-gebaseerde tijd-frequentie decompositie technieken. In het tweede
deel worden nieuwe algoritmes en experimentele resultaten gepresenteerd voor de drie
afzonderlijke decompositie technieken, in de vorm van wetenschappelijke artikelen.

We beginnen met een onderzoek naar adaptieve frequentie decompositie. Hierbij
wordt subband merging gebruikt om een niet-uniforme MDCT te construeren en dy-
namisch programmeren wordt toegepast voor het snel zoeken naar de best basis. We
tonen aan dat het ontworpen algoritme kan resulteren in een winst in SNR en tot
hogere subjectieve luistertestresultaten kan leiden. Echter, we bemerken dat het ver-
liesvrij coderen van de extra informatie gerelateerd aan de verkregen decomposities,
leidt tot een hoge bit rate voor deze extra informatie en we concluderen dat deze speci-
fieke frequentie domein benadering geen dusdanige prestatiewinst geeft die de stijging
in complexiteit kan rechtvaardigen.

Vervolgens gaan we verder met adaptieve tijdsegmentatie, waar dynamisch program-
meren wordt gebruikt voor de best basis zoektocht en block switching voor MDCT-
gebaseerde tijdsegmentatie. Drie variaties van het basisalgoritme worden ontworpen
die tezamen voorzien in een groot bereik aan uitruilmogelijkheden tussen complex-
iteit en prestatie. De gevolgen van een variërende vensteroverlap worden grondig
bestudeerd en we laten zien dat een optimale oplossing kan worden verkregen binnen
een polynomiale tijdsduur. Voorts maken we een rechtstreekse vergelijking tussen een
nieuw audiocoderingssysteem dat ons tijdsegmentatie bevat met codeersystemen die
zijn gestandaardiseerd binnen MPEG-4 en verkrijgen daarbij in een luistertest even
goede of betere resultaten voor een groot bereik aan bit rates. Een low complexity
variant van dit audiocoderingssysteem laat een verwaarloosbaar prestatieverlies zien.

Als laatste gaan we terug naar frequentiedecompositie en bestuderen we temporal
noise shaping, waarbij lineaire predictie wordt toegepast in het frequentiedomein. We
combineren temporal noise shaping met RD optimalisering om zo de orde van het
predictiefilter en de selectie van kwantisatoren te controleren. Dit leidt tot een efficiënt
algoritme dat beter presteert dan een bestaande methode om temporal noise shaping
te controleren. Hoewel het algoritme de oorspronkelijke werking van temporal noise
shaping deels teniet doet, is de prestatiewinst in termen van rate-distortion gedrag
aanzienlijk.
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