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Summary

Internet services such as voice over Internet protocol Fyoand audio/video
streaming (e.g. video on demand and video conferencinghb@teming more and
more popular with the recent spread of broadband networkeesd kind of “real-
time” services often demand low delay, high bandwidth and packet-loss rates
in order to deliver tolerable quality for the end users. Hesrethe heterogeneous
communication infrastructure of today’s packet-switcihetivorks does not provide
a guaranteed performance in terms of bandwidth or delay lagrefore the desired
quality of service is generally not achieved.

To achieve a certain degree of robustness on errorpron@elsaone can make use
of multiple-description (MD) coding, which is a disciplitieat recently has received a
lot of attention. The MD problem is basically a joint sou@annel coding problem.
It is about (lossy) encoding of information for transmissiover an unreliabléds-
channel communication system. The channels may break desuiting in erasures
and aloss of information at the receiving side. Which oftfie- 1 non-trivial subsets
of the K channels that are working is assumed known at the receiuilegsit not at
the encoder. The problem is then to design an MD scheme wiuichjven channel
rates (or a given sum rate), minimizes the distortions dueetonstruction of the
source using information from any subsets of the channels.

While this thesis focuses mainly on the information theorespects of MD
coding, we will also show how the proposed MD coding schenre lwa used to
construct a perceptually robust audio coder suitable fdicastreaming on packet-
switched networks.

We attack the MD problem from a source coding point of view andsider
the general case involving descriptions. We make extensive use of lattice vector
guantization (LVQ) theory, which turns out to be instrungnh the sense that the
proposed MD-LVQ scheme serves as a bridge between theorypeaatice. In
asymptotic cases of high resolution and large lattice vegt@antizer dimension,



we show that the best known information theoretic rateedigtn MD bounds can
be achieved, whereas in non-asymptotic cases of finitertiiapal lattice vector
quantizers (but still under high resolution assumptiong)oenstruct practical MD-
LVQ schemes, which are comparable and often superior tdimgyistate-of-the-art
schemes.

In the two-channel symmetric case it has previously beaabbshed that the side
descriptions of an MD-LVQ scheme admit side distortionsichi{at high resolution
conditions) are identical to that éf-dimensional quantizers having spherical Voronoi
cells. In this case we say that the side quantizers achievd.tbphere bound.
Such a result has not been established for the two-chanyminastric case before.
However, the proposed MD-LVQ scheme is able to achievelt#sphere bound for
two descriptions, at high resolution conditions, in both sgmmetric and asymmetric
cases.

The proposed MD-LVQ scheme appears to be among the first sshenthe
literature that achieves the largest known high-resafutiwee-channel MD region in
the quadratic Gaussian case. While optimality is only pndee X' < 3 descriptions
we conjecture it to be optimal for arfy descriptions.

We present closed-form expressions for the rate and dtoperformance for
general smooth stationary sources and squared errortéisteriterion and at high
resolution conditions (also for finite-dimensional lagticector quantizers). Itis shown
that the side distortions in the three-channel case is egpctethrough the dimension-
less normalized second moment oflaisphere independent of the type of lattice used
for the side quantizers. This is in line with previous restitir the two-description
case.

The rate loss when using finite-dimensional lattice vectoargizers is lattice
independent and given by the rate loss of Asphere and an additional term
describing the ratio of two dimensionless expansion factéFhe overall rate loss
is shown to be superior to existing three-channel schemes.
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Chapter

Introduction

1.1 Motivation

Internet services such as voice over Internet protocol RYoand audio/video
streaming (e.g. video on demand and video conferencingp@reming more and
more popular with the recent spread of broadband networkesd kinds of “real-
time” services often demand low delay, high bandwidth and packet-loss rates
in order to deliver tolerable quality for the end users. Hesvethe heterogeneous
communication infrastructure of today’s packet-switcihetivorks does not provide
a guaranteed performance in terms of bandwidth or delay leer@fore the desired
quality of service is (at least in the authors experiencapgaly not achieved.

Clearly, many consumers enjoy the Internet telephony sesvprovided for free
through e.g. Skyp@'. This trend seems to be steadily growing, and more and more
people are replacing their traditional landline phone©iwitlP compatible systems.
On the wireless side it is likely that cell phones soon aredadplaced by VolP
compatible wireless (mobile) phones. A driving impetus @ngsumer demand for
cheaper calls, which sometimes may compromise quality.

The structure of packet-switched networks makes it possibkexploit diversity
in order to achieve robustness towards delay and packetd@ssl thereby improve
the quality of existing VoIP services. For example, at th&t ©f increased bandwidth
(or bit rate), every packet may be duplicated and transthitesr two different paths
(or channels) throughout the network. If one of the chanfals, there will be no
reduction in quality at the receiving side. Thus, we haveeapdegree of robustness.
On the other hand, if none of the channels fail so that botkgtaare received, there
will be no improvementin quality over that of using a singéeget. Hence, robustness
via diversity comes with a price.

However, if we can tolerate a small quality degradation arepgion of a single

1



2 (Chapter 1) Introduction

packet, we can reduce the bit rates of the individual packétde still maintaining
the good quality on reception of both packets by making shia¢ the two packets
improve upon each other. This idea of trading off bit rateguslity between a number
of packets (or descriptions) is usually referred to as thétipierdescription (MD)
problem and is the topic of this thesis.

While this thesis focuses mainly on the information theorespects of MD
coding, we will also show how the proposed MD coding schenre lwa used to
construct a perceptually robust audio coder suitable fdicastreaming on packet-
switched networks. To the best of the author’'s knowledgeuieeof MD coding in
current state-of-the-art VoIP systems or audio streampmdj@ations is virtually non-
existent. We expect, however, that future schemes will eynpID coding to achieve
a certain degree of robustness towards packet losses. $barch presented in this
thesis is a step in that direction.

1.2 Introduction to MD Lattice Vector Quantization

The MD problem is basically a joint source-channel codingbpem. It is about

(lossy) encoding of information for transmission over analiable K -channel com-

munication system. The channels may break down resultiregasures and a loss
of information at the receiving side. Which of tB& — 1 non-trivial subsets of the
K channels that are working is assumed known at the receivglegkait not at the

encoder. The problem is then to design an MD scheme whichgif@n channel

rates (or a given sum rate), minimizes the distortions onréoeiver side due to
reconstruction of the source using information from anysstb of the channels.

1.2.1 Two Descriptions

The traditional case involves two descriptions as showrign E1. The total bit rate
R, also known as the sum rate, is split between the two dermipti.e. Ry =
Ry + Ry, and the distortion observed at the receiver depends orhva@scriptions
arrive. If both descriptions are received, the resultirgiattion(D.) is smaller than
if only a single description is received§ or D,). It may be noticed from Fig. 1.1
that Decoder 0 and Decoder 1 are located on the sides of Decadd it is therefore
customary to refer to Decoder 0 and Decoder 1 as the side dexcadd Decoder
as the central decoder. In a similar manner we often refdpta = 0,1, as the
side distortions and, as the central distortion. The situation whépg = D; and
Ry = R; is called symmetric MD coding and is a special case of asymien&tD
coding, where we allow unequal side rates and unequal sitiertions.

One of the fundamental problems of MD coding is that if twoatiggions both
represent the source well, then, intuitively, they must dxy gimilar to the source and
therefore also similar to each other. Thus, their joint deson is not much better
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Figure 1.1: The traditional two-channel MD system.

than a single one of them. Informally, we may therefore say the MD problem
is about how good one can make the simultaneous represerstati the individual
descriptions as well as their joint description.

The two-description MD problem was formalized and presgrig Wyner,
Witsenhausen, Wolf and Ziv at an information theory workshin September
1979 [50]¢ Formally, the traditional two-description MD problem askBat is the
largest possible set of distortiof®,, D1, D..) given the bit rate constraintsy, R;)
or alternatively the largest set of bit ratéB,, R;) given the distortion constraints
(Do, D1, D..)? Both these questions were partially answered by El GanthCawer
who presented an achievable rate-distortion region [4B]clwOzarow [107] proved
was tight in the case of a memoryless Gaussian source anguheesl error distortion
measure. Currently, this is the only case where the solutiche MD problem is
completely known.

1.2.2 Many Descriptions

Recently, the information theoretic aspects of the gercarse of’ > 2 descriptions
have received a lot of attention [111, 114,141,142, 146]is Tase is the natural
extension of the two-description case. Given the rate t(flg. .., Rx_1), we seek
the largest set of simultaneously achievable distortimes all subsets of descriptions.
The generaK -channel MD problem will be treated in greater detail in Cleagd.

With this thesis we show that, at least for the case of audaasting for lossy
packet-switched networks, there seems to be a lot to be dj@yneising more than
two descriptions. It is likely that this result carries oveNolP and video streaming
applications.

1At that time the problem was already known to several peapbtuiing Gersho, Ozarow, Jayant,
Miller, and Boyle who all made contributions towards itsugiin, see [50] for more information.



4 (Chapter 1) Introduction

1.2.3 Scalar vs. Vector Quantization

In the single-description (SD) case it is known that the acedte loss (i.e. the bit
rate increase due to using a scalar quantizer instead oftamadjinfinite-dimensional

vector quantizer) is approximately2546 bit/dim. [47]. For many applications this
rate loss is discouraging small and it is tempting to quofieRtez?

“The problem of vector quantization is that scalar quantiaa works so well”

However, in the MD case, the sum (or accumulative) rate luss many descrip-
tions can be severe. For example, in the two-descriptioa, dass known that the
scalar rate loss is about twice that of the SD scalar rate[38y. Therefore, when
constructing MD schemes for many descriptions, it is imparthat the rate loss is
kept small. To achieve this, we show in this thesis, that are for example, use
lattice vector quantizers combined with an index-assigntrakgorithm.

1.3 Contributions

The MD problem is a joint source-channel coding problem. By, in this work
we mainly attack the MD problem from a source coding point igfay where we
consider the general case involvihgdescriptions. We make extensive use of lattice
vector quantization (LVQ) theory, which turns out to be instental in the sense
that the proposed MD-LVQ scheme serves as a bridge betweenytand practice.
In asymptotic cases of high resolution and large latticedareguantizer dimension,
we show that the best known information theoretic rateedigtn MD bounds can
be achieved, whereas in non-asymptotic cases of finitestiiapal lattice vector
quantizers (but still under high resolution assumptions)agnstruct practical MD-
LVQ schemes, which are comparable and often superior tdimgyistate-of-the-art
schemes.

The main contributions of this thesis are the following:

1. L-sphere bound for two descriptions

In the two-channel symmetric case it has previously beesbéshed that the
side descriptions of an MD-LVQ scheme admit side distogjavhich (at high
resolution conditions) are identical to that bfdimensional quantizers having
spherical Voronoi cells [120, 139]. In this case we say thatdide quantizers
achieve thelL-sphere bound. Such a result has not been established for the
two-channel asymmetric case before. However, the propgd&etdvVQ scheme

is able to achieve thé-sphere bound for two descriptions, at high resolution
conditions, in both the symmetric and asymmetric cases.

2Said during a break at the International Symposium on Inétion Theory in Seattle, July 2006.
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2. MD high-resolution region for three descriptions

The proposed MD-LVQ scheme appears to be among the first sshienthe
literature that achieves the largest known high-resatutimee-channel MD
region in the quadratic Gaussian cds&Ve prove optimality fork < 3 de-

scriptions, but conjecture optimality for ary descriptions.

3. Exact rate-distortion results for L-dimensional LVQ

We present closed-form expressions for the rate and datopterformance
when usingL-dimensional lattice vector quantizers. These resultsvalie
for smooth stationary sources and squared-error distoctiterion and at high
resolution conditions.

4. Rate loss for finite-dimensional LVQ

The rate loss of the proposed MD-LVQ scheme when using faireensional
lattice vector quantizers is lattice independent and gherthe rate loss of
an L-sphere and an additional term describing the ratio of twoedisionless
expansion factors. The overall rate loss is shown to be gugerexisting three-
channel schemes, a result that appears to hold for any nushtescriptions.

5. K-channel asymmetric MD-LVQ

In the asymmetric two-description case it has previouslgnbehown that
by introducing weights, the distortion profile of the systean range from
successive refinement to complete symmetric MD coding [/, 2Ve show
a similar result for the general case &f descriptions. Furthermore, for any
set of weights, we find the optimal number of descriptions simalw that the
redundancy in the scheme is independent of the target miegesdistribution
and choice of lattices for the side quantizers. Finally, h@show to optimally
distribute a given bit budget among the descriptions, wigch topic that has
not been addressed in previous asymmetric designs.

6. Lattice construction using algebraic_# -modules

For the two-description case it has previously been shoahalyebraic tools
can be exploited to simplify the construction of MD-LVQ somes [27,28, 120,
139]. We extend these results &o-channel MD-LVQ and show that algebraic
_Z -modules provide simple solutions to the problem of cortsing the lattices
used in MD-LVQ.

3A conference version of the proposed symmeiticchannel MD-LVQ scheme appeared in [104] and
the full version in [105]. The asymmetrik-channel MD-LVQ scheme appeared in [99]. Independently,
Chen et al. [16-18] presented a different desigiethannel asymmetric MD coding.
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7. K-channel MD-LVQ based audio coding

We present a perceptually robust audio coder based on théiedodiscrete
cosine transform ané’-channel MD-LVQ. This appears to be the first scheme
to consider more than two descriptions for audio coding. tHarmore, we
show that using more than two descriptions is advantagequesaket-switched
network environments with excessive packet losses.

1.4 Structure of Thesis

The main contributions of this thesis are presented in Gliapb—-8 and the
corresponding appendices, i.e. Appendices E-K.
The general structure of the thesis is as follows:

Chapter 2 The theory of LVQ is a fundamental part of this thesis and is tihapter
we describe in detail the construction of lattices and show tiney can be used
as vector quantizers. A majority of the material in this dieais known, but
the use of #-modules for constructing product lattices based on mae two
sublattices is new.

Chapter 3 We consider the MD problem from a source-coding perspeatidan this
chapter we cover aspects of SD rate-distortion theory, whie also relevant
for the MD case.

Chapter 4 In this chapter we present and discuss the existing MD ristertion
results, which are needed in order to better understand f@rixk able to
compare to) the new MD results to be presented in the forthmpohapters.

Chapter 5 Here we present the proposed entropy-constraitiethannel symmetric
MD-LVQ scheme. We derive closed-form expressions for theaad distortion
performance of MD-LVQ at high resolution and find the optitadtice parame-
ters, which minimize the expected distortion given the jpadtiss probabilities.
We further show how to construct practical MD-LVQ schemed awaluate
their numerical performance. This work was presented ihipdf.04, 105].

Chapter 6 We extend the results of the previous chapter to the asyrmtse.
In addition we present closed-form expressions for theodisin due to
reconstructing using arbitrary subsets of descriptiong algo describe how
to distribute a fixed target bit rate across the descriptmmnthat the expected
distortion is minimized. This work was presented in partd8,[99].

Chapter 7 In this chapter we compare the rate-distortion performaotehe
proposed MD-LVQ scheme to that of existing state-of-thieMdDd schemes as
well as to known information theoretic high-resolutiéftrchannel MD rate-
distortion bounds. This work was presented in partin [92]10
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Chapter 8 In this chapter we propose to combine the modified discresamedrans-
form with MD-LVQ in order to construct a perceptually robasidio coder. Part
of the research presented in this chapter represents joirk with O. Niamut.
This work was presented in part in [106].

Chapter 9 A summary of results and future research directions arendiese.

Appendices The appendices contain supporting material including fsroblemmas,
propositions, and theorems.
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Chapter

Lattice Theory

In this chapter we introduce the concept of a lattice and sthawit can be used as
a vector quantizer. We form subsets (called sublatticef)isflattice, and show that
these sublattices can also be used as quantizers. In féateirchapters, we will use
a lattice as a central quantizer and the sublattices willde®las side quantizers for
MD-LVQ. We defer the discussion on rate-distortion projgarbf the lattice vector

guantizer to Chapters 3 and 4.

We begin by describing a lattice in simple terms and show hovamn be used
as a vector quantizer. This is done in Section 2.1 and mogglsiean be found in
Appendix C. Then in Section 2.2 we show that lattice theomtimately connected to
algebraand itis therefore possible to use existing algetwals to solve lattice related
problems. For example itis well known that lattices formupe under ordinary vector
addition and it is therefore possible to link fundamentalugr theory to lattices. In
Section 2.3 we then use these algebraic tools to constrticeand sublattices. It
might be a good idea here to consult Appendix A for the deéinitf Quaternions and
Appendix B for a brief introduction to module theory.

We would like to point out that Section 2.1 contains most & éssential lattice
theory needed to understand the concept of MD-LVQ. Sect2ohsnd 2.3 are sup-
plementary to Section 2.1. In these sections we constrttiida and sublattices in
an algebraic fashion by using the machinery of module theblnjs turns out to be a
very convenient approach, since it allows simple constwastof lattices. This theory
is therefore also very helpful for the practical implemeiota of MD-LVQ schemes.
In addition, we would like to emphasize that by use of modhkoty we are able
to prove the existence of lattices which admit the requinalolegtices and product
lattices. In Chapters 5-7 we will implicitly assume thatlattices, sublattices, and
product lattices are constructed as specified in this chapte

9
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2.1 Lattices

An L-dimensional lattice is a discrete set of equidistantlycepapoints in thel-
dimensional Euclidean vector spaRé&. For example, the set of integefsforms a
lattice inR and the Cartesian produgtx Z forms a lattice inR2. More formally, we
have the following definition.

Definition 2.1.1 ([22]). A lattice A c R” consists of all possible integral linear
combinations of a set of basis vectors, that is

L
A_{)\ERL:/\_Z&Q, vgiez}, (2.1)
=1

where(; € R are the basis vectors also known as generator vectors aittiez|

The generator vectos,i = 1,..., L, (or more correctly their transposes) form
the rows of the generator matri¥. Usually there exists several generator matrices
which all lead to the same lattice. In Appendix D we presentepossible generator
matrices for the lattices considered in this thesis.

Definition 2.1.2. Given a discrete set of poin C R”, the nearest neighbor region
of s € S is called a Voronoi cell, Voronoi region or Dirichlet regicamnd is defined by

V(s)2{zeRE: ||z —s||? < ||z — &> Vs €S}, (2.2)
where||z|| denotes the usual norm&*, i.e.||z||?> = 2T 2.

As an example, Fig. 2.1(a) shows a finite region of the lattice Z2 consisting
of all pairs of integers. For this lattice, the Voronoi cali$)\), A € A, form squares
in the two-dimensional plane. This lattice is also referi@ads theZ? lattice or the
square lattice, cf. Appendix D.2. A lattick and its Voronoi cellsV'(\), VA € A,
actually form a vector quantizer. Whehis used as a vector quantizer, a poinis
mapped (or quantized) th € A if z € V()\). An example of a non-lattice vector
guantizer is shown in Fig. 2.1(b). Here we have randomly guick set of elements
of R2. Notice that the Voronoi cells are not identical but stileithunion cover the
space. On the other hand, in Fig. 2.1(a), it may be noticedtieaVoronoi cells ofA
are all identical, and we say that each one of them describesdamental region. A
fundamental region of a lattice is a closed region which aimsta single lattice point
and tessellates the underlying space.

Lemma 2.1.1([22]). All fundamental regions have the same volume

Lemma 2.1.2( [22]). The fundamental volume of A is given byrv = +/det(A4),
whereA = M M7 is called the Gram matrix. We sometimes write the volume as
v = det(A).
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(@ A =22 (b) Random point set

Figure 2.1: (a) finite region of the lattice\ = Z2. (b) randomly selected points Bf. The
solid lines describe the boundaries of the Voronoi cell$efgoints.

Let us define/, £ V(0), i.e. the Voronoi cell around the lattice point located at
the origin. This region is called a fundamental region of ldiéce since it specifies
the complete lattice through translations. We then havéalt@ving definition.

Definition 2.1.3 ( [22]). The dimensionless normalized second moment of inertia
G(A) of a latticeA is defined by

1
G(A) = W/v ]| d, (2.3)

wherev is the volume ofl;.

Applying any scaling or orthogonal transform, e.g. rotaiio reflection om\ will
not chang&~(A), which makes it a good figure of merit when comparing différen
lattices (quantizers). Furthermoi&(A) depends only upon the shapelgf, and in
general, the more sphere-like shape, the smaller norndazeond moment [22].

2.1.1 Sublattices

If A is a lattice then a sublattic®’ C A is a subset of the elements &fthat is itself

a lattice. For example il = Z then the set of all even integers is a sublatticé\ of
Geometrically speaking, a sublattidéé C A is obtained by scaling and rotating (and
possibly reflecting) the lattica so that all points ofA’ coincide with points of\. A
sublatticeA’ C A obtained in this manner is referred to as a geometricathjlat
sublattice ofA. Fig. 2.2 shows an example of a lattidlec R? and a geometrically-
similar sublattice\’ C A. In this case\ is the hexagonal lattice which is described in
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Appendix D.3. It may be noticed from Fig. 2.2 that all Vorowells of the sublattice
A’ contain exactly seven points af In general we would like to design a sublattice so
that each of its Voronoi cells contains exadiypoints ofA. We call NV the index value

of the sublattice and usually write it & = |A/A’|. Normalizing N by dimension,
i.e. N’ = N/ gives what is known as the nesting ratio. We call a subtatticc A

Figure 2.2: The hexagonal latticé (small dots) and a sublatticA’ c A (circles) of index
N = 7. The solid lines illustrate the boundaries of the Vorondiscef A’.

clean if no points ofA lies on the boundaries of the Voronoi cells/df For example,
the sublattice of Fig. 2.2 is clean. ' C A is a clean sublattice we call the index
N = |A/A’| an admissible index value. In this work we are mainly intexésn
clean sublattices and we will further discuss the issue dfissible index values in
Section 2.3.1.

2.2 _¢#-Lattice

We showed in the previous section that, geometrically spgakan L-dimensional
lattice A C R” is a discrete set of regularly spaced point®ih. From Appendix B

it can be deduced that, algebraically speakingLagtimensional lattice\ c R’ is

a free (torsion-free) discreteZ -module of rankZ with compact quotienR” /A. In
this section we will consider the latter definition of a leg¢tiand construct lattices and
sublattices by use of the theory of modules.

A lattice A ¢ R as defined in (2.1) forms an additive grogp, +) under
ordinary vector addition with the zero-vector being theniity element. If the group
further admits left or right multiplication by the ringZ then we callA a _#-module.
In other words,A is a _#-module if it is closed under addition and subtraction of
members of the group and closed under scalar multiplicétyomembers of the ring,
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see Appendix B for details. Sinckis also a lattice we sometimes prefer the name
J -lattice over_#-module.

Let(;,i = 1,..., L be aset of linearly independent vector&h and let # C R
be aring. Then a leftZ -lattice A generated by;,7 = 1, ..., L consists of all linear
combinations

&G+ -+, (2.4)

where§; € 7,i =1,...,L[22]. Aright ¢-lattice is defined similarly with the
multiplication of(; on the right by¢; instead.

We have so far assumed that the underlying field is the Cartgsioduct of the
reals, i.eRY. However, there are other fields which when combined with sefined
rings of integers will lead to7 -lattices that are good for quantization. Let the field be
the complex fieldC and let the ring of integers be the Gaussian inte@ershere [22]

G ={& +i&: 6,6 €LY, i=+—1. (2.5)

Then we may form a one-dimensional complex lattice (to wiliere always exists
an isomorphism that will bring it t®?) by choosing any non-zero element (a basis)
¢1 € Candinsertin (2.4), cf. Fig. 2.3(a) where we have made thitrary choice of

(1 = 11.2 — 2.3i. The lattice described by the set of Gaussian integers sagphic

to the square lattic&? = Z2. The operatior#(; then simply rotate and scale the
Z* lattice. To better illustrate the shape of the-lattice we have in Fig. 2.3(a) also
shown the boundaries (solid lines) of the nearest neigtdmpons (also called Voronoi
cells) between the lattice points. Fig. 2.3(b) shows an gtamhere the basi§ =
11.2 — 2.3¢ has been multiplied by the Eisenstein integ&rsvhere [22]

E={6+w&k &6 €LY, w=ero (2.6)
The ring of algebraic integer® is defined by [22]

2={& +twi:&,& €L}, (2.7)

wherew; is, for example, one of

14+ V=T —1+/—11
V2,5, vVl T :

> > (2.8)

Figs. 2.3(c) and 2.3(d) show examples whefeis the ring of algebraic integers and
wherew; = /-5 andw; = (—1++/-7)/2, respectively. In both cases we have used
the basig; = 11.2 — 2.3i.

2.2.1 _7-Sublattice

If A”is a submodule of g7 -moduleA thenA’ is simply a sublattice of the lattick.
More formally we have the following lemma.
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©) A= 2,01 =v=5 (d) A=2¢,w1 =(-14+V-7)/2

Figure 2.3: One-dimensional compley -lattices constructed from different rings of integers
by use of the basi§; = 11.2 — 2.3i. The solid lines illustrate the boundaries of the nearest
neighbor regions (Voronoi cells) between lattice points.

Lemma 2.2.1([1]). Let # be aring. IfAis #-module and\’ C A, A’ # 0, then
A'is a_g-submodule ofA if and only if &) + &5 € A’ for all A}, Ay € A’ and

&,6€ 7.

Let A be a_¢-module. Then we may form the left submodulé = ¢{A and
the right submodule\” = A¢ by left (or right) multiplication ofA by £ € 7.
For example let\ be the ¢ -module given by the Eisenstein integers, le= &.
This lattice can be regarded as a two-dimensional reatéatti R? in which case
it is usually referred to asl,. Then let us form the submodul¥ = £A where
¢ = =3 — 2w andw = ¢>™/3, see Fig. 2.4. When the modules in question are lattices
we will usually callA a ¢ -lattice andA’ a _# -sublattice. Sometimes when the ring
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J is clear from the context or irrelevant we will use the singlrms lattice and
sublattice forA andA’, respectively.

Figure 2.4: The Eisenstein lattica is here shown with dots and the circles illustrate points of
the sublattice\’ = €A, & = —3 — 2w,w = ¢**/3. The solid lines describe the boundaries
between neighboring Voronoi cells of the sublattice poihtgtice that there are 7 dots in each
Voronoi cell. The points marked with squares are the seveataepresentatives of the quotient
A/N.

2.2.2 Quotient Modules

In this section we consider quotient modules and the nexiosers concerned with
group actions on these quotient modules. Although perhagplear at this point, we
show later that these concepts are important in order tdifglear associate a set of
sublattice points with a given lattice point. This identtfiion process, which we call
either the labeling problem or the problem of constructingralex assignment map,
focuses on labeling the coset representatived ot’, i.e. the quotient module. It
then turns out, as first observed in [120, 139], that we algtaally need to label the
representatives of the orbits 4f A’ /T',,, instead of all coset representatives\gfA’.
Further details about quotient modules and group actiomgisen in Appendix B.

Definition 2.2.1. Let A be a_#-module andA’ a _#-submodule ofA. ThenA’
induces a partitiorh /A’ of A into equivalence classes (or cosets) modulowe call
such a partition the quotient module.
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The order or indexA /A’| of the quotient moduld /A’ is finite and each element
of A/A’ is a representative for an infinite set called a coset. ForaayA the coset
of A’ in A determined by is the set\ + A’ = {A+ X : X € A’}. In this work
we always let the group operation be ordinary vector addlitthich is a commutative
operation so that the left and right cosets coincide. As sluele is no ambiguity with
respect to left and right cosets when referring to the casetA’. We will use the
notation[A] when referring to the coset+ A’ and we call\ the coset representative.
It should be clear that any member of the cogétcan be the coset representative.
To be consistent we will always let the coset representékivene uniquévector of
[A] which is in the Voronoi cell of the zero-vector &f. For example ifA andA’ are
defined as in Fig. 2.4 then the indpX/A’| = 7 and there is therefore seven distinct
cosets in the quotient module/A’. The seven cosets representatives are indicated
with squares in Fig. 2.4.

2.2.3 Group Actions on Quotient Modules

LetT,, C Aut(A) be a group of ordem of automorphisms oA. We then denote the
set of orbits under the action &%,, on the quotient moduld /A’ by A/A’/T,,,. For
example lef"y = {I>, —I>} be a group (closed under matrix multiplication) of order
2, wherel, is the two-dimensional identity matrix. Let th¢-moduleA be identical
to Z?2 and letA’ be a submodule of of index N = 81. In other words, there ar&’
coset representatives in the quotient modulé” whereas the set of orbits/A’ /T’y
has cardinality A/A’/Ts| = 41. This is illustrated in Fig. 2.5(a) where the coset
representatives ok /A’ are illustrated with dots and representatives of the odfits
A/N’ /Ty are marked with circles.

Next consider the group given by

T, = {112, + ((1) _é) } 2.9)

which has order 4 and includels; as a subgroup. Fig. 2.5(b) shows coset
representatives fof /A’ and representatives for the set of orbigA’/T"'y. Notice
that|A/A'/T4| = 21.

2.3 Construction of Lattices

We now show how to construct the lattices and sublatticeslder will be used as
guantizers in MD-LVQ.

4We will later require that\’ is a clean sublattice ok from which the uniqueness property is evident.
If A’ is not clean then we make an arbitrary choice amongst theédatedepresentatives.



Section 2.3 Construction of Lattices 17

4r @ ® ® ® ° 4+ e °

3@ ©@ ©® © o . . . . 3t @ o . . . . . . .
2r ® ® ® ° 2r ® °
1 © ® ® ® ° 1 © O] ® °
or ® ® ® ® ® . or ® ® ® ® ® °
-1r © @ [©] O] [©] ° -1r © @ [©] O] °
-2r © O] ® ® ® ° -2r © @® ® °
-3r ® ® ® ® ® . -3r ® ® °
4 ® ©® ©® ©® ©® o . o 4t ® e . o . .

-4 -2 0 2 4 -4 -2 0 2 4

(a) A/A"/T (b) A/A’/Ts

Figure 2.5: The 81 coset representatives fof A" are here shown as dots and representatives
for the orbits of (a)A/A’ /T2 and (b)A/A’ /T4 are shown as circles.

2.3.1 Admissible Index Values

For any geometrically-similar sublattic€ of A, a number of lattice points of will

be located within each Voronoi cell of’ and perhaps on the boundaries between
neighboring Voronoi cells. In the latter case ties must lwkén in order to have well
defined Voronoi cells. To avoid tie breaking it is requiredtth’ has no lattice points
on the boundary of its Voronoi cells. In this cadé,is said to be clean. As previously
mentioned, we call an index value of a clean sublattice anisgilpe index value.

In [21] partial answers are given to whdéncontains a sublatticA’ of index N that

is geometrically-similar ta\, and necessary and sufficient conditions are given for
any lattice in two dimensions to contain a geometricallpikir and clean sublattice
of index N. These results are extended in [28] to geometrically-simaind clean
sublattices in four dimensions for ti#* and D, lattice. In addition, results are given
for any Z” lattice whereL. = 4k, k > 1. Table 2.1 briefly summarizes admissible
index values for the known cases. In genefdl has a geometrically-similar and
clean sublattice if and only iV is odd and

a) L odd andN an L*" power, or
b) L =2 andN of the forma? + b2, or
c) L =4k, k > 1 andN of the formmX/2 for some integemn,

see [28] for details.
It can be shown that squaring an admissible index value yiattbther admis-
sible index value for all lattices considered in this worke dan generalize this even



18 (Chapter 2) Lattice Theory

Lattice | Dim. | Admissible index values

Z 1 1,3,5,7,9,...

Z? 2 1,5,9,13,17,25,29,37,41,45,49,. ..
As 2 1,7,13,19,31,37,43,49,. ...

Dy 4 1,25,49,169,289,625,...

zZ4 4 1,25,49,81,121,169,225,289,361,...

Table 2.1: Admissible index values for geometrically-similar andadlesublattices in one, two
and four dimensions. See Appendix D for more informatioruatieese sets of index values.

further and show that the product of any number of admissitalex values leads to
an admissible index value.

Lemma 2.3.1. For the latticesd,, D, and ZX whereL = 1,2 or L = 4k, where
k > 1, the product of two or more admissible index values yieldstlagr admissible
index value.

Proof. See Appendix E. O

As noted in [21] it is always possible by e.g. exhaustive cledm see if a lattice
A contains a sublattica’ with an index value ofV = ¢%/2 ¢ € R*. Let the Gram
matrix of A be A. Then search through to see if it contains a set of generator
vectors with Gram matrixA. In large lattice dimensions this approach easily becomes
infeasible. However, for known lattices the admissiblesixglalues can be found off-
line and then tabulated for later use.

If two lattices A ¢ RL and A’ ¢ R are concatenated (i.e. their Cartesian
product is formed) then the resulting lattie is of dimensionL” = L + L', cf.
Definition C.1.7. The set of admissible index valuesAdf (when normalized by
dimension) might be different than that &for A’. For example leh = Z' where the
admissible index values are the odd integers. Then notatétta four-dimensiona*
lattice is simply a cascade of fodr' lattices. However, the admissible index values
(normalized per dimension) ¢f* are given by (see Appendix D.4)

N’ ={1,2.24,2.65,3,3.32,3.61,3.87,4.12,4.36,4.58,4.8,5,...},  (2.10)

where we have shown the index valuesZdfin boldface. Thus, by forming a higher
dimensional lattice by cascading smaller dimensionaktietit is possible to achieve
more (or at least different) index values.

A different strategy is to change the underlying ring as shown in Fig. 2.3
which results in a different lattice of the same dimensiat thight lead to new index
values. In this thesis, however, we will be using the knowmizdible index values of
Table 2.1.
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2.3.2 Sublattices

In this section we construct sublattices and primarily focuin a special type of
sublattices called product lattices. In [28] the followitefinition of a product lattice
was presented.

Definition 2.3.1( [28]). Let # be an arbitrary ring, leh = _# and form the two
sublattices\y = A andA; = A&y, & € A,i = 0,1. Then the lattice\;, = A&
is called a product lattice and it satisfids C A;,7 =0, 1.

In this work, however, we will make use of a more general motiba product lattice
which includes Definition 2.3.1 as a special case.

Definition 2.3.2. A product latticeA, is any sublattice satisfying. C A; where
A; :fiAOI’Ai :Agi,z’:O,...,K— 1.

The construction of product lattices based on two subkstias described in
Definition 2.3.1 was treated in detail in [28]. In this seatiwe extend the existing
results of [28] and construct product lattices based on rtiae two sublattices for
L = 1,2 and4 dimensions for the root latticeg!, Z2, A5, Z* and D4, which are
described in Appendix D. Along the same lines as in [28] westatt sublattices
and product lattices by use of the ordinary rational inteeas well as the Gaussian
integers?, Eisenstein integei$, Lipschitz integral Quaternion#g and the Hurwitz
integral Quaternions#;, where¥ and& are given by (2.5) and (2.6), respectively,
and [22]

H ={& +ilo + j&s + kéa : §1, 82,83, 84 € L}, (2.11)
0 ={& +ile +JE3 + k&2 61,6, 63, & alinZorallinZ +1/2},  (2.12)

wherei, j andk are unit Quaternions, see Appendix A for more informatiolor F
example a sublatticA; of A = Z is easily constructed, simply by multiplying all
pointsA € A by & where¢ € Z\{0}.5 This gives a geometrically-similar sublattice
Ay = €7 of index|¢|. This way of constructing sublattices may be generalized by
considering different rings of integers. For example, fug square lattich = ¢
whose points lie in the complex plane, a geometrically-sinsublattice of index 2
may be obtained by multiplying all elements®by the Gaussian integér= 1 + i.

Sublattices and product lattices ofZ', Z2 and A,

The construction of product lattices based on the subdsttit!, Z2 and 4, is a
straight forward generalization of the approach taken BJ.[2 et the latticeA be
any one ofZ! = 7, 72 = ¢ or A, = & and let the geometrically-similar sublattices
A; be given by&; A whereg; is an element of the rational integéefs the Gaussian
integers? or the Eisenstein integets, respectively.

5Since A is a torsion free #-module the submoduld’ = £A is a non-trivial cyclic submodule
whenevel0 # £ € A.
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Lemma 2.3.2. A, = &1 ---€x—1 A is a product lattice.
Proof. See Appendix E. O

Also, as remarked in [28], since the three rings consideredique factorization
rings, the notion of least common multiple (Icm) is well defii Let us defing, =
lem(&, ..., x—1) sothat;|¢q, i.e.&; dividesén. This leads to the following lemma.

Lemma 2.3.3. A/, = {nAis a product lattice.
Proof. See Appendix E. O

The relations betweef, A;, A/, andA, as addressed by Lemmas 2.3.2 and 2.3.3
are shown in Fig. 2.6. For example, let= ¢ (= Z?) and letNy = 45 andN; = 81.
Then we have that Icfd5,81) = 405 and45 - 81 = 3645. We may choos€, =
3+6i,& = 9andén = 9 + 18i, so that|ép|?> = 45, &> = 81 and ¢4 |? = 405.
Notice thato|¢n andé [¢n, ie.$2 = 3 € ¥ and® = 14 2i € ¢. Since botht,
and¢; dividesén, the latticeAn = ¢4 A will be a sublattice of\q = £y A as well as
A1 =& A, see Fig. 2.7.

Ao = A

Ar =881 Ex1A

Figure 2.6: The intersection (meet) éf arbitrary sublattices form a product lattice fdf*, Z>
and As.

Sublattices and product lattices ofZ*

As was done in [28] we will use the Quaternions [71, 150] far tonstruction of
sublattices and product lattices #Bf. The Quaternions form a non-commutative ring
and it is therefore necessary to distinguish between leftragiht multiplication [71,
150]. For the case of two sublattices we adopt the approaf@8ptind construct the
sublatticeAy by multiplying A on the left, i.eAg = £ A and A, is obtained by right
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Figure 2.7: The latticeA = ¢ is here shown as dots. The two latticks = (3 + 6i)A
(squares) and\1 = 9A (circles) are sublattices ok and the latticeAn = (9 + 18¢)A (stars)

is a sublattice of all the latticed o, A1 and A. The solid lines describe the boundary of the
Voronoi cellV, of the product lattice point located at the origin.

multiplicationA; = A&y, see Fig. 2.8. More than two descriptions was not considered
in [28]. Let the K sublattices be of inde®, ..., Nx_; respectively. Then we may
form Ay = {A andA; = A& as above. However, by lettinl, = A& we run into
trouble when creating the product lattice. For example gfdefineA, = £y A& & it

is clear thatA, C Ag andA, C A,. The problem is that in general, ¢ A; since
&1& # &6 and we therefore have to restrict the set of admissible indkies.

Lemma 2.3.4. Let Ny andN; be admissible index values fé?. ThenNg and N?
(which are admissible index values fBt), can be associated with a pair of Lipschitz

integers(&y, &1) that commute, i.€50&1 = &1 &o.

Proof. See Appendix E. O

From Lemma 2.3.4 it follows that there exist an infinite numbgpairs of ad-
missible index value$Ny, N1) where Ny # N; such that the Lipschitz integers
& and¢&; commute. For example, 16V, = 72, N, = 132, N, = 52 and define
Ay = §0A7A1 = A§1 andAg = A§2 Where§0 = —2—i—j—k,§1 = —2—i+0j+0/€
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Ag = &A A=A

Ar = GA&

Figure 2.8: Two arbitrary sublattices form a product lattice.

andéy = —3 — 2i+ 05 + 0k. For this example we hav@é: # &€& and&péa # 280
but& & = €&, Letting A, = & A&1&; makes sure thak, C A; fori = 0,1, 2,
sinceA, = (£oA&1)& = (§oA&2)61- Ingeneral it is possible to construct the product
lattice A, such thatA, C A; fori = 0,...,K — 1 as long as anyx' — 1 of
the K ¢;'s commute, see Fig. 2.9, whetg = Icm(&y, ..., x—1). If all the pairs
(&:,€5),4,5 €10,..., K — 1} commute the procedure shown in Fig. 2.6 is also valid.

Ao = §A A1 = Ak

A% = SAL

Ar =E&A& - Er1

Figure 2.9: The intersection (meet) &t arbitrary sublattices form a product lattice fdg?.
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Sublattices and product lattices ofD,

For D, we use the ring of Hurwitzian integers, i&. € 7. For the case of two
sublattices we design the sublattices and product latéses [28] and shown in
Fig. 2.8. For more than two sublattices we have to make aictstr on the set
of allowable admissible index values. The Quaternionsiteptb admissible index
values forD, obtained in [28] are of the forfrt; = £(1+14)+ % (j+ k) € 74, where
a andb are odd positive integers. Quaternions of this form do gahemot commute
since boths andb are nonzero. In fact two Quaternions commute if and onlyéfrth
vector parts are proportional [6], i.e. linearly-depertdesich rarely happens for the
Quaternions of the forn§; = (1 + i) + 2(j + k) € 4. For example we did an
exhaustive search based on all admissible index valueskeat®5 and 177241 and
found only five pairs (up to permutations) of Quaterniong tteanmute. These are
shown in Table 2.2.

NO N1 50 51

25 15625 S +gi+3jtik  FH i+ Pi+ 7k
169 105625 1+ 1i+3j+ 3k 2454854 Bk
625 28561 b2t 2ji3) L yl3; 135, Ty
625 83521 5+ 3itojok ATy Irpy 1Ty iny
28561 83521 L 4 13;4 13 Lg 1T 1y 1T 11y

Table 2.2: Each row shows two Quaterniogs and&; which commute, i.&€0&1 = &1€o-

We therefore restrict the set of admissible index value®dtoc {a, b} for i =
0,..., K —1wherea andb are any two admissible index values. With this the product
lattice, for K’ > 2 sublattices, is based on only two integers €;cand¢; as shown in
Fig. 2.8 and the index of the product lattice is th€n = ab. With this approach it is
possible to obtaim\, C A; fori =0,..., K — 1.

Swith two exceptions being; = 2 + 1i+ 1j + 2kand¢; = 3 + 3i+ 25 + 2k both leading to
an index value ofV = 49.






Chapter

Single-Description Rate-Distortion
Theory

Source coding with a fidelity criterion, also called ratstdition theory (or lossy
source coding), was introduced by Shannon in his two lanknpapers from

1948 [121] and 1959 [122] and has ever since received a lotteftion. For an

introduction to rate-distortion theory we refer the reattetthe survey papers by
Kieffer [74] and Berger and Gibson [9] and the text books bygee [8], Ciszar and

Kdrner [26] and Cover and Thomas [24].

3.1 Rate-Distortion Function

A fundamental problem of rate-distortion theory is that efsdribing the rateR
required to encode a sourcé at a prescribed distortion (fidelity) leveD. Let

Xt = {X;},i = 1,...,L be a sequence of random variables (or letters) of a
stationary random process{. Let X be the reproduction off and letz and z

be realizations ofX and X, respectively. The alphabet8” and 2" of X and

X, respectively, can be continuous or discrete and in therlatise we distinguish
between discrete alphabets of finite or countably infinitelicality. When it is clear
from context we will often ignore the superscriptwvhich indicates the dimension of
the variable or alphabet so thatc 2" ¢ R” denotes arL-dimensional vector or
element of the alphabe?” which is a subset dR”.

Definition 3.1.1. A fidelity criterion for the sourceX is a family p(") (X, X), L €
N of distortion measures of which®) computes the distortion when representing

“Throughout this work we will assume all stochastic procegsebe discrete-time zero-mean weak-
sense stationary processes (unless otherwise stated).

25
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X by X. If p(X,X) 2 L5 p(X;, X;) thenp is said to be a single-letter
fidelity criterion and we will then use the notatigX, X). Distortion measures of
the formp(X — X) are called difference distortion measures. For example X) =
%||X—)A(||2 is a difference distortion measure (usually referred tthastjuared-error
distortion measure).

In this work we will be mainly interested in the squared-egiagle-letter fidelity
criterion which is defined by

L
p(X, %) 2 137 (X, - %02, (3.)
=1

il

With this, formally stated, Shannon’s rate-distortiondtion R(D) (expressed in
bit/dim.) for stationary sources with memory and singlieelefidelity criterion,p, is
defined as [8]

R(D) £ lim Rp(D), (3.2)

where theL*" order rate-distortion function is given by
Ry(D) = inf{1(X; X) : Ep(X, X) < D}, (3.3)

where(X; X) denotes the mutual informatibibetweenX and X, E denotes the
statistical expectation operator and the infimum is ovecaiiditional distributions
fX|X(5c|a:) for which the joint distributionsf ¢ (z,2) = fX(I)fX\X('ﬂx) satisfy
the expected distortion constraint given by

/ / fX(a:)fX‘X(ﬂ:c)p(:c,:E)d:Eda: <D. (3.4)
X JIX

The L' order rate-distortion functior;, (D) can be seen as the rate-distortion
function of an L-dimensional i.i.d. vector sourc& producing vectors with the
distribution of X [82].

Let A(X) denote the differential entropy (or continuous entropy)Xofvhich is
given by [24]

h(X) = — /x f(@) logy (Fy () da

and let the differential entropy rafe(X) be defined byh(X) £ lim/ .o £h(X)
where for independently and identically distributed ¢i). scalar processég X) =

8The mutual information between to continuous-alphabetcamX and X with a joint pdff, ¢ and
marginalsf . and f ¢, respectively, is defined as [24]

Loy X . fX,j((xvi‘) .
I(X;X) = [7 /% fX’X(x,:c) logy <7fx @7y (:%)) dxdz.
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+h(X). With a slight abuse of notation we will also use the notatidiX) to
indicate the dimension normalized differential entropyaafi.i.d. vector source. If
p is a difference distortion measure, then (3.2) and (3.3)ealower bounded by the
Shannon lower bound [8]. Specifically,ifp is the mean squared error (MSE) fidelity
criterion, then [8, 82]

R(D) > h(X) — %1Og2(27T€D), (3.5)

where equality holds at almost all distortion levdlsfor a (stationary) Gaussian
source [8]? In addition it has been shown that (3.5) becomes asympligtitght
at high resolution, i.e. a® — 0, for sources with finite differential entropies and
finite second moments for general difference distortionsuess, cf. [82].

Recall that the differential entropy of a jointly Gaussiattor is given by [24]

h(X) = 3 logy((2me) @), (3.6)

where|®| is the determinant o = EX X7, i.e. the covariance matrix ok. It
follows from (3.5) that the rate-distortion function of a meryless scalar Gaussian
process of variance?; is given by

R(D) = %mgQ (%) , (3.7)

wheneverD < ¢% andR(D) = 0 for D > o% sinceR(D) is everywhere non-
negative.

The inverse ofR(D) is called the distortion-rate functioR(R) and it basically
says that if a source sequence is encoded at aitdle distortion is at leasb(R).
From (3.7) we see that the distortion-rate function of thetoeyless Gaussian process
is given by

D(R) = 0%27%F, (3.8)
which is shown in Fig. 3.1 for the case #f, = 1.
Remark3.1.1 From (3.8) and also from Fig. 3.1 it may be seen that each bxtra
reduces the distortion by a factor of four — a phenomena oftéerred to as the “6

dB per bit rule” [60]. In fact, the “6 dB per bit rule” is approwately true not just for
the Gaussian source but for arbitrary sources.

The rate-distortion function of a memoryless scalar souwned squared-error
distortion measure may be upper and lower bounded by useeoértropy-power
inequality, that is [8]

1 O’2 1 PX
510g2 <3X> > R(D) = 510g2 (3) 3 (3.9)

9Eq. (3.5) is tight for allD < essinf Sx, whereS is the power spectrum of a stationary Gaussian
processX [8].
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Figure 3.1: D(R) for the unit-variance memoryless Gaussian source.

wherePy is the entropy powef? Similarly, the distortion-rate function is bounded as
Px272R < D(R) < 0%27 %1, (3.10)

with equalities all the way in both (3.9) and (3.10)4fis Gaussian.

Remark3.1.2 Inequalities (3.9) and (3.10) show that, of all sources,@agissian
source is the hardest to compress.

3.2 Quantization Theory

A guantizer() consists of a set of decision cell§ = {S; : i € .#} where.# C N
together with a set of reproduction valugs= {¢; : i € .#} [60]. The operation of
quantization is defined a@(x) £ ¢; if z € S;. We require that” cover the input
spaceZ” which implies that J,. , S; O 2 and often we need” to partition.2” so

that sets of7” are pairwise disjoint, i.eS; N S; = 0,7 # j sothat J,. , S; = 2.

Definition 3.2.1. The decision cells of a nearest neighbor quantizer areccetieonoi
cells, Voronoi regions or Dirichlet regions [22]. Given tité reproduction value;
the Voronoi cellV (¢;) is defined by

Vie) E{x € X :p(z,c;) < p(z,c), Vj € I}, (3.11)

10The entropy powePy £ (2me)~1222(X) of a sourceX is defined as the variance of a Gaussian
density that has the same differential entropyXafs].
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where ties (if any) can be arbitrarily brokéh.

It follows that the expected distortion of a quantizer isagivoy

Do = z)p(x, ;) dx. 3.12
o iezj/msif){( o(z,cx) (3.12)

Let us for the moment assume that = RE and¢ = 2 c RL. Then, for
the squared error distortion measure, the Voronoi cellsnof-aimensional nearest
neighbor quantizer (vector quantizer) are defined as

V(i) 2 {x e R s |z — &) < |lo — 4| Ve, € 2}, &€ 2, (3.13)

where|| - || denotes thé,-norm, i.e.|z|? = S5, 22.

Vector quantizers are often classified as either entromgttained quantizers or
resolution-constrained quantizers or as a mixed classemMoerexample the output
of a resolution-constrained quantizer is further entropger*> When designing an
entropy-constrained quantizer one seeks to form the VoregonsV (), &; € Z,
and the reproduction alphabét such that the distortiof is minimized subject to
an entropy constrairiR on the discrete entropy(X). Recall that the discrete entropy

of a random variable is given by [24]

H(X) == P(&:)logy(P(2:)), (3.14)
ics

where P denotes probability ané(z;) = P(x € V(&;)). On the other hand, in
resolution-constrained quantization the distortion isimized subject to a constraint
on the cardinality of the reproduction alphabet. In thisecd® elements of2” are
coded with a fixed rate oR = log,(|.2°|)/L. For large vector dimensions, i.e.
when L > 1, it is very likely that randomly chosen source vectors bglém a
typical sete (%) in which the elements are approximately uniformly disttéali[24].
As a consequence, in this situation there is not much differeébetween entropy-
constrained and resolution-constrained quantization.

There exists several iterative algorithms for designingtmequantizers. One
of the earliest such algorithms is the Lloyd algorithm whishused to construct
resolution-constrained scalar quantizers [87], see &8b [The Lloyd algorithm is
basically a cyclic minimizer that alternates between twas#s:

1. Given a codebook’ = £ find the optimal partition of the input space, i.e.
form the Voronoi celld/(#;),Vi; € 2.

11Two neighboringZL-dimensional Voronoi cells for continuous-alphabet searshare a commoh’-
dimensional face wher®’ < L — 1. For discrete-alphabet sources it is also possible thaird iseequally
spaced between two or more centroids of the codebook, inhdzise tie breaking is necessary in order to
make sure that the point is not assigned to more than one dbceil.

12Entropy-constrained quantizers (resp. resolution-caimstd quantizers) are also called variable-rate
quantizers (resp. fixed-rate quantizers).
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2. Given the partition, form an optimal codebook, i.e.dete 2" be the centroid
of the setr € V(;).

If an analytical description of the pdf is unavailable it igsgible to estimate the
pdf by use of empirical observations [45]. Furthermoreydie algorithm has been
extended to the vector case [45,81] but has not been ekpbsitended to the case of
entropy-constrained vector quantization. Towards thdt@nou et al. [19] presented
an iterative algorithm based on a Lagrangian formulaticchefptimization problem.
In general these empirically designed quantizers are aslly optimal and unless
some structure is enforced on the codebooks, the searchledtypasily becomes
overwhelming (the computational complexity of an uncaaisied quantizer increases
exponentially with dimension) [45]. There exists a greaaldsf different design
algorithms and we refer the reader to the text books [22,4bas well as the in-
depth article by Gray and Neuhoff [60] for more informatidvoat the theory and
practice of vector quantization.

3.3 Lattice Vector Quantization

In this work we will focus on structured vector quantizatenmd more specifically on
lattice vector quantization (LVQ) [22,46,57]. A family oighly structured quantizers
is the tesselating quantizers which includes lattice vegtantizers as a sub family.
In a tesselating quantizer all decision cells are trandlated possibly rotated and
reflected versions of a prototype cell, S@y In a lattice vector quantizer all Voronoi
cells are translations 6f, which is then taken to b, £ V/(0), i.e. the Voronoi cell of
the reproduction point located at the origin (the zero vdaothatl’ (z;) = Vo +;.13
In a high-resolution lattice vector quantizer the reprdmmalphabetff' is usually
given by anL-dimensional lattice\ ¢ R”, see Appendices C and D for more details
about lattices.

In order to describe the performance of a lattice vector tjpant is convenient to
make use of high resolution (or high rate) assumptions whick stationary source
can be summarized as follows [45, 57]:

1. The rate or entropy of the codebook is large, which meaatsttie variance of
the quantization error is small compared to the varianche$burce. Thus, the
pdf of the source can be considered constant within a Voreelbii.e. f . (z) ~
[ (&) if x € V(&;). Hence, the geometric centroids of the Voronoi cells are
approximately the midpoints of the cells

2. The quantization noise process tends to be uncorrelatedwehen the source
is correlated

L3Notice that not all tesselating quantizers are lattice tipers. For example, a tesselating quantizer
having triangular shaped decision cells is not a latticéoreguantizer.
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3. The quantization error is approximately uncorrelatetthwie source

Notice that 1) is always true if the source distribution isfarm. Furthermore, all
the above assumptions have been justified rigorously inithi¢ &s the variance of
the quantization error tends to zero for the case of smoaitces (i.e. continuous-
alphabet sources having finite differential entropies), [8%, 161]. If subtractive
dither is used, as is the case of entropy-constrained dith@attice) quantization
(ECDQ), the above assumptions are valid at any resolutiah farthermore the
guantization errors are independent of the source [159,188]. A nice property
of ECDQ is that the additive noise model is accurate at angluéen, so that
the quantization operation can be modeled as an additiserocess [160]. The
dither signal of an ECDQ is an i.i.d. randéhprocess which is uniformly distributed
over a Voronoi cell of the quantizer so that for a scalar gaanthe distribution of
the quantization errors is uniform. Asymptotically, as thimension of the ECDQ
grows unboundedly, any finite-dimensional marginal of tlése process becomes
jointly Gaussian distributed and the noise process bec@aessian distributed in
the divergenc® sense [161]. These properties of the noise process arealddor
entropy-constrained LVQ (without dither) under high resimin assumptions [161]. It
is interesting to see that at very low resolution, i.e. asvir@nce of the quantization
error tends to the variance of the source, the performanea ehtropy-constrained
scalar quantizer is asymptotically as good as any vectanttaea [91].

3.3.1 LVQ Rate-Distortion Theory

Let H denote the discrete entro;ﬁ/(ﬂf') of the codebook of an entropy-constrained
vector quantizer and let the dimension-normalized MSEodisin measureD;, be
defined as

Dy & %EHX - X2 (3.15)

Then by extending previous results of Bennett [7] for higlsotation scalar
guantization to the vector case it was shown by Zador [158]ithX” has a probability
density thei®

lim Dp22H/E = g, 22hX/ L (3.16)

H—oo
whereh(X) is the differential entropy oK anda;, is a constant that depends only on
L. Inthe scalar case whefe= 1 it was shown by Gish and Pierce [47] that= 1/12

14The dither signal is assumed known at the decoder so it ictrafpaseudo-random process.
15The information divergence (also called Kullback-Leibtéstance or relative entropy) between two
pdfs fx andgx is defined as [24]

D(fllg) = /Jy_ fx (@) logy(fx (z)/gy (z)) dax.

18 ater on the precise requirements on the source for (3.16% tealid was formalized by Linder and
Zeger [86].
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and that the quantizer that achieves this value is the urdezluniform scalar (lattice)
quantizer. For the case of < L < oo the value ofay, is unknown [86]'7 It was
conjectured by Gersho in 1979 [44] that if the source distidn is uniform over
a bounded convex set R’ then the optimal quantizer will have a partition whose
regions are all congruent to some polytope. Today, more Rapgears after, this
conjecture remains open. But if indeed it is true then, a h@solution, the optimal
entropy-constrained quantizer is a tessellating quantiependent of the source
distribution (as long as it is smooth).

The distortion at high resolution of an entropy-constrdilagtice vector quantizer
is given by [44,86]

Dp ~ G(A)?*'T, (3.17)

wherev (the volume of a fundamental region of the lattice) is givgn b

2/ L — 92(h(X)—H)/L (3.18)

Thus, if we assume that Gersho’s conjecture is true anddurtbre assume that a
lattice vector quantizer is optimal then (3.17) impliesttha = G(A). By inserting
(3.18) in (3.17) the discrete entropy (again at high resmt)ts found to be given by

H(Z) ~ h(X) - gmgQ (%) [bit]. (3.19)

The Shannon lower bound is the most widely used tool to réfeggoerformance
of lattice quantizers to the rate-distortion function ofcace. For example, at high
resolution, the Shannon lower bound is tight for all smoailwrses, thus

R(D) =~ h(X) — %10g2(27reD) [bit/dim.], (3.20)

so that the asymptotic rate-redundaiiyy of a lattice vector quantizer over the rate-
distortion function of a smooth source under the MSE diginnneasure i$

Rreq = %log2(27reG(A)) [bit/dim.] (3.21)

From (3.17) it may be noticed that the distortion of a latteetor quantizer is
source independent and in fact, for fixedthe distortion only depends up@i(A).
Furthermore(G(A) is scale and rotation invariant and depends only upon theesbia
the fundamental regiol, of the latticeA [22]. In general the more sphere-like shape
of V, the smallerG(A) [22]. It follows that G(A) is lower bounded by=(S.) the
dimensionless normalized second moment of.asphere where [22]

1 L

2/L

17For the case of resolution-constrained quantization betandas are known [58].
18R eqis in fact the divergence of the quantization noise from Gty in high resolution lattice vector
quantization.
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and wherel'(-) is the Gamma function. FoE — oo we haveG(S.,) = 1/2me.
The L-fold Cartesian product of the integers form Ardimensional lattice?” = Z*
which has a hypercubic fundamental region. It can easilydneputed thaG/(Z%) =
1/12 which is in fact the largest dimensionless normalized séaonment over all
admissible fundamental regions [22]. Thus,

1/12> G(A) > G(S1) > —, (3.23)
2me

where the first two inequalities become equalitieslfee 1 since in one dimension the
only possible lattice iz, the scalar uniform lattice, an@d(Z') = G(S;) = 1/12.
For1l < L < oo L-spheres do not pack the Euclidean space and are therefore no
admissible fundamental regions [22]. However, for~ oo and with a proper choice
of lattice it is known thatG(A) — G(Sx) [161]. Table 3.1 showé&/(A) for the best
known L-dimensional lattices with respect to quantization.

Lattice name Dimension Notation G(A) G(SL)
Scalar 1 z! 0.0833 0.0833

Hexagonal 2 As 0.0802 0.0796
BCC 3 A 0.0787  0.0770
Schlafli 4 Dy 0.0766  0.0750
— 5 Ds 0.0756 0.0735
— 6 FEy 0.0743  0.0723
— 7 FE; 0.0731 0.0713
Gosset 8 Fy 0.0717 0.0705
Coxeter-Todd 12 Ko 0.0701 0.0681
Barnes-Walls 16 BWig 0.0683 0.0666
Leech 24 Aoy 0.0658  0.0647
Poltyrev® 00 Ao 0.0585 0.0585

Table 3.1: The dimensionless normalized second moments of the |Atdoel theL-sphere are
denoted=(A) andG(SL), respectively. All figures are obtained from [22].

While all the lattices in Table 3.1 are the best known lattit@ quantization in
their dimensions it is in fact only!, A, A5 andA ., which are known to be optimal
among all lattices [22] and furthermore, onf§* and A, are known to be optimal
among all entropy-constrained vector quantizers.

It is interesting to compare the optimal performance of amogry-constrained
scalar quantizeZ' to that of an optimal entropy-constrained infinite-dimemnsil
lattice vector quantizeA.,. From Table 3.1 it can be seen that the rate 1Bsg;s

19The fact that there actually exist lattices in infinite dirsiems which are capable of achieving the
dimensionless normalized second moment of a sphere wasrpioy161], a proof which was contributed
by G. Poltyrev.
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(at high resolution or at any resolution for the uniform dgnsvhen usingZ' instead
of A is given by

1 G(z!
Rioss= 5 10g2 (G((Aoo))

or equivalently the increase in distortion (also known &ssgpace-filling loss or space-
filling gain when reversed) for using' instead ofA ., is given by

Zl

) — 0.2546 bit/dim. (3.24)

Fig. 3.2 illustrates the space-filling loss for the latticels Table 3.1. For
comparison we also show the space-filling los€ efimensional “quantizers” having
spherical Voronoi cells which is given b9 oss = 101og;(G(S1)/G(Ax))-

1.6¢

Dioss [d B]

1 1
2 4 6 8 10 12 14 16 18 20 22 24
Dimension ()

0.4 L L L L L

Figure 3.2: Space-filling loss for the lattices of Table 3.1. The soli ldescribes the space-
filling loss of L-spheres.

3.4 Entropy Coding

In the previous section we saw that for stationary sourcesamhieves space-filling
gains if vector quantizers are used instead of scalar queasti The space-filling gain
is independent of the statistical properties of the sourdceother words, whether
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the source is i.i.d. or has memory the space-filling gain resilne same. However,
for this to be true, we implicitly assume that any statidtrealundancy (correlation)
which might be present in the quantized signal is removed [ipssless) entropy
coder. Recall that the discrete entroﬁjﬁ&}) of the quantizer is given by (3.19) and
that P(z;) denotes the probability of the symblwherez; 2. Assume now that
a codeword (of the entropy coder) of lengdths assigned to the symbo}. Then the
average codeword lengthis given by

§=Y Pl (3.26)
ics
The idea of an entropy coder is to assign short codewordsygwvebable symbols
and long codewords to less probable symbols in order to diiee/ards its minimum.
Since we require the (entropy) code to be lossless it meatsith code should be a
uniquely decodable code. Due to a result of Shannon we cagr lbaunds by the
following theorem.

Theorem 3.4.1. [121] The average codeword lengtf a uniquely decodable binary
code satisfies

5> H(Z). (3.27)

In the same paper Shannon also gave an upper bouadiens < H(Z') + 1
and he furthermore showed that if a sequence of ssaymbols is jointly coded then
the average number of bits per symbol satisfy

. . 1

H(Z) <5< H(Z)+ -, (3.28)

which shows that the entrog¥ (.2") can be approximated arbitrarily closely by enco-
ding sufficiently long sequences [121].

In (3.26) we havé.# | = | 2| and we thereby implicitly restric®” to be a discrete
alphabet be it finite or countably finite, but we do in fact riatay's require thaltff| <
oo. For example itis known that an entropy-constrained vegutantizer (ECVQ) may
be recast in a Lagrangian sense [19, 59, 63] and that a Lagrangtimaf® ECVQ
always exists under general conditions on the source andriiii;m measure [63].
Furthermore, Gyorgy et al. [64] showed that, for the squarear distortion measure,
a Lagrangian-optimal ECVQ has only a finite number of codelsdf the tail of
the source distribution is lighter than the tail of the Gaasslistribution (of equal
variance), while if the tail is heavier than that of the Gaassdistribution the
Lagrangian-optimal ECVQ has an infinite number of codewdéd$. If the source
distribution is Gaussian then the finiteness of the codeldeplends upon the rate of

20The operational distortion-rate function is the infimumtw set of distortion-rate functions that can be
obtained by use of any vector quantizer which satisfies trengentropy constraints. A Lagrangian-optimal
ECVQ achieves points on the lower convex hull of the openafiaistortion-rate function and in general
any point can be achieved by use of time-sharing [63].
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the codebook. In addition they also showed that for soursteiliitions with bounded
support the Lagrangian-optimal ECVQ has a finite number deamrds?* 22

In this work we will not delve into the theory of entropy codibut merely assume
that there exist entropy coders which are complex enoughagdat least in theory)
the discrete entropies of the quantizers can be reachednéi@ information about
entropy coding we refer the reader to Chapter 9 of the texkbmoGersho and
Gray [45] as well as the references cited in this section.

21These quantizers are not unique. For example it was shownrély & al. [58] that for the uniform
density on the unit cube there exists Lagrangian-optima¥ @Ewith codebooks of infinite cardinality.
22In Chapter 7 we will show that, in certain important cases,drdinality of lattice codebooks is finite.



Chapter

Multiple-Description
Rate-Distortion Theory

The MD problem is concerned with lossy encoding of informatior transmission
over an unreliabléd-channel communication system. The channels may break down
resulting in erasures and a potential loss of informatidheateceiving side. Which of
the2X — 1 non-trivial subsets of th& channels that are working is assumed known
at the receiving side but not at the encoder. The problemeis th design an MD
system which, for given channel rates or a given sum rateinmies the distortions
due to reconstruction of the source using information fromsubsets of the channels.
The compound channel (or composite channel) containingitbabchannels is often
described as a packet-switched network where individucieta are either received
errorless or not at all. In such situations the entire sysgeigientified as a multiple-
description system haviny’ descriptions.

The classical case involves two descriptions as shown in4=ig The total rate
Ry, also known as the sum rate, is split between the two desmmigti.e. Ry =
Ry + R1, and the distortion observed at the receiver depends orhvagscriptions
arrive. If both descriptions are received, the distort{@.) is lower than if only
a single description is received{ or D). The generalK-channel MD problem
involves K descriptions and is depicted in Fig. 4.2.

4.1 Information Theoretic MD Bounds

From an information theoretic perspective the MD problemegly about describing
the achievable MD rate-distortion region and partly abagighing good practical
codes whose performance is (in some sense) near optimunoreBgfesenting the
known information theoretic bounds we need the followinfrdgons.

37
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R D
" »| Decoder Q—»"
Description 0
Ro
e D
Source [ Epcoder Decoder g—»"
—

Ry

Description 1 D
L »| Decoder ="
Ry

Figure 4.1: The traditional two-channel MD system.

Description 0
Description 1

Erasure

X —{ Encoder Decoder — X

Channel

N/

Figure 4.2: General K-channel MD system. Descriptions are encoded at an entrégy; o
i=0,...,K — 1. The erasure channel either transmits & description errorlessly or not
atall.

Definition 4.1.1. TheMD rate-distortion regiorgiven a source and a fidelity criterion
is the closure of the set of simultaneously achievable atdsdistortions.

Exampled4.1.1 In the two-channel case the MD rate-distortion region isdlosure
of the set of achievable quintupléBy, R1, D., Dy, D1).

Definition 4.1.2. An inner boundto the MD problem is a set of achievable rate-
distortion points for a specific source and fidelity criterio

Definition 4.1.3. An outer boundo the MD problem is a set of rate-distortion points,
for a specific source and fidelity criterion, for which it isdmn that no points outside
this bound can be reached.

Definition 4.1.4. If the inner and outer bounds coincide they are cdiigiat.

Exampled.1.2 An example of inner and outer bounds for the set of achievaliée
pairs(Ry, R1) given some fixed distortion tripleD., Dy, D;) is shown in Fig. 4.3.
In this example there exists a region where the inner and botends meet (coincide)
and the bounds are said to be tight within that region.

Remark4.1.1 The SD rate-distortion bounds form simple outer bounds ¢éoMD
problem. For exampld&?, > R(D;),i = 0,...,K — 1 and ZfiglRi > R(D.)
whereR(-) describes the SD rate-distortion function.
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Ry

Ro

Figure 4.3: The solid thin curve show an example of an outer bound and &lsbetl curve
illustrates an inner bound. In the region where the boundadide (thick line), the bounds are
tight.

Definition 4.1.5. The termno excess marginal ratesfers to the situation where, for
fixed side distortion®);, the side description rates of an MD system meet the SD rate-
distortion bounds, i.eR;, = R(D;). At the other extreme we have the situatiomof
excess sum rat@here for a given sum rate the the central distortignachieves its
minimum so thagfigl R; = R(D.).

An interesting subset of the MD rate-distortion region is fymmetric MD rate-
distortion regior?® The term symmetric relates to the situation where all chianne
rates (description rates) are equal and the distortionraispenly upon the number of
working channels (received descriptions) and as such neahich of the channels are
working. This is in contrast to the asymmetric case wherel#seription rates as well
as side distortions are allowed to be unequal.

Another important subset of the MD rate-distortion regisnhe high resolution
region which refers to an MD rate-distortion region thatdoees achievable asymp-
totically as the description rates of the system become leetative to the variance of
the source (or equivalently, asymptotically as the digiog tend to zero).

4.1.1 Two-Channel Rate-Distortion Results

El Gamal and Cover [42] obtained inner bounds to the two-obhMD problem
(known as the EGC region) and Ozarow [107] showed that thaser ibounds are

23The lower bound of this symmetric region is the symmetric Mierdistortion function of the source.
With a slight abuse of notation we sometimes call the MD dagéertion function a region.
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tight for the memoryless Gaussian source under the squaredfidelity criterion?*
Ahlswede [2] and Zhang and Berger [163] showed that the E@i©més also tight for
general sources and distortion measures in the no excessageicase. However, in
the excess sum rate case it was shown by Zhang and Bergettfis6&#e EGC region
is not always tight for the binary memoryless source undertthmming distortion
measure. Outer bounds for the binary symmetric source anthiilag distortion have
also been obtained by Wolf, Wyner and Ziv [153], Witsenhal§62] and Zhang and
Berger [164]. Zamir [157,158] obtained inner and outer s for smooth stationary
sources and the squared-error fidelity criterion and furiwed that the bounds
become tight at high resolution. High resolution bounds siarooth sources and
locally quadratic distortion measures have been obtaigddruer et al. [84]. Outer
bounds for arbitrary memoryless sources and squared-digtmrtion measure were
obtained by Feng and Effros [35] and Lastras-Maotand Castelli [79].

To summarize, the achievable MD rate-distortion regiomiy completely known
for the case of two channels, squared-error fidelity coterand the memoryless
Gaussian source [42,107]. This region consists of the cohwdl of the set of
achievable quintuple&Ro, R1, Do, D1, D..) where the rates satisfy [18, 107]

R >R(D)—310 x (4.1)

0= 0) =735 g2 Do :
R >R(D)—310 x (4.2)

1= V=3 g2 D, :

1
Ro+ Ry > R(Dc) =+ 5 1Og2 6(D0, Dy, Dc) (43)
1 o2 1

= §1Og2 (D_)i) + §1Og2 5(D07D17DC)7 (44)

wheres?3, denotes the source variance aifd is given by [18]

1, DC<D0+D1—U§(
ox De D. > L+L_L71
6(D07D11DC) = DogD;y ¢ Dg Dy U§( (45)
(0% =Dc)*

5, 0.W,,

(0% —De)?*~(/(6% —Do) (0% —D1)—/(Do—De) (D1 —Dv))

and the distortions satisfy [107]

Dy > 0327 2Fe (4.6)

Dy > o%272R (4.7)
2 272(R0+R1)

> X 5. (4.8)
- (V- VA)

24t is customary in the literature to refer to the case of a mgees Gaussian source and squared-error
fidelity criterion as the quadratic Gaussian case.
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wherell = (1 — Dy/o%)(1 — D1/c%) andA = (DoD;/c%) — 272(Fo+l) |
general it is only possible to simultaneously achieve atyuial two of the three rate
inequalities given by (4.1) — (4.3). However, in the highesitistortion case, i.e. when
d(-) = 1, itis in fact possible to have equality in all three [42].

Fig. 4.4 shows the central distortion (4.8) as a functiorhefdide distortion (4.6)
in a symmetric setup whei@, = D, andRy = R; = 1 bit/dim. for the unit-variance
Gaussian source. Notice that at one extreme we have optideldsstortion, i.e.
Dy = D(Ry) = —6.02 dB, which is on the single-channel rate-distortion functid
a unit-variance Gaussian source at 1 bit/dim. At the otheme we have optimal
central distortion, i.eD. = D(2Ry) = —12.04 dB, which is on the single-channel
rate-distortion function of the Gaussian source at 2 bit/diThus, in this example,
the single-channel rate-distortion bounds become effedtr the two-channel MD
problem only at two extreme points.

—-10F

-10.5-

Central distortion [dB]

—11F

-11.5-

_127 I I I I I I I}
-6 -5.5 -5 -4 -35 -3

-45
Side distortion [dB]

Figure 4.4: Central distortion(D.) as a function of side distortiofiDy, = D) in a symmetric
setup whereRo = R; = 1 bit/dim. for the unit-variance Gaussian source and MSE.

The rate region comprising the set of achievable rate p&iss R;) which satisfy
(4.1), (4.2) and (4.3) is illustrated in Fig. 4.5. In this exale we assume a unit-
variance Gaussian source and choose distortians= 3, D; = 1 andD. = 5.
Notice thatR, and R, are lower bounded b§.5 and1 bit/dim., respectively, and the
sum rate is lower bounded ¥ + R; > 2 bit/dim.

Ozarow’s Double-Branch Test Channel

Ozarow [107] showed that the double-branch test channétigeiin Fig. 4.6 achieves
the complete two-channel MD rate-distortion region in thkadyatic Gaussian case.
This channel has two additive noise branchgs= X + Ng andY; = X + Ny,
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Achievable(Ro, R1)

R(l:)o)

Figure 4.5: Achievable rate pairs(Ro, R1) for the distortion triplet (D., Do, D1) =

(335 5> 1) in the quadratic Gaussian case.

where all variables are Gaussian distributed and the nais€,, V1) is independent
of X but jointly Gaussian andegativelycorrelated (except from the case of no-
excess marginal rates, in which case the noises are indepgndn the symmetric
case and when the correlation betwdénand NV, is high, i.e. near-1, the central
distortion is close to optimum but the side distortions &entgenerally poor. On the
other hand, when the side distortions are optimal, the nmagebecomes independent
and the central distortion is not much better than eithehefdide distortions. The
post filters (Wiener filtersy; andb,;,i = 0,1 describe the scalar weights which
are required for minimum MSE (MMSE) estimation &f based on eithek, Y;

or both. At high resolution this test channel is particylasimple since the filters
degenerate. Specifically, in the symmetric case, wheredlse wariances are equal,
the side reconstruction§, and X; becomeX, = Y; andX; = Y3, while the central
reconstructionX, becomes a simple average, e, = (Xo + Xl)/z.

Rate-Redundancy Region

The redundancy rate-distortion function (RRD) introdugefP7] for the symmetric
case and further developed in [52, 149] describes how fassitte distortion decays
with increasing rate redundandgj,, when the central distortio®.. is fixed® Let
R. = R(D.) be the rate needed for an SD system to achieve the (cents&dytitin

25The rate redundancis.q is sometimes referred to as the excess sum rate.
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Ny

Figure 4.6: The MD optimum test channel of Ozarow [107]. At high resolutthe filters
degenerate so in the symmetric case we have- 1 andb; = 1/2,i = 1,2 so thatX, =
Y07X1 =Y anch = %(Xo + Xl)

D.. Then consider a symmetric setup whébg = D; and Ry = R; and define
Ry = 2Ry — R., i.e. R}y describes the additional rate needed for an MD system
over that of an SD system to achieve the central distorfign In order to reduce
the side distortiorD, while keepingD.. fixed it is necessary to introduce redundancy
such thaR, > R.. For a givenR, (or equivalently a giveD,.) and a givenRk;,,the

side distortion for the unit-variance Gaussian sourcevietdounded by [52]

(4.9)

red

Do > {%(1 + 27 — (1 = 272e) /1 —272e), Ry < jiired
T | 27 BetBrg) Ry > R

where Ry = R. — 1 + logy(1 + 2728¢). If Riy = 0 we have optimum central
distortion, i.e. no excess sum rate, but the side distatwati then generally be high.
As we increase the rate while keeping the central distoftiead we are able to lower
the side distortions. Fig. 4.7 shows the side distortian = D; as a function of
the rate redundanci;,, when the central distortion is fixed &. = 272 R, €
{0.5,1,1.5,2,2.5}. It is interesting to observe that wheb. is optimal, i.e. when
R4 = 0, then the gap fronD; to D(Ry) increases with increasing.. To see
this, notice that whetR;,; = 0 it follows from the first bound of (4.9) thab, >
(1 +272E<) /2. The second bound of (4.9) is actually the SD rate-distortiound,
i.e.2-(RetFieg) — 9—2R0 and the gap between these two bounds is shownin Table 4.1.

Two-Channel High-Resolution Results

Based on the results for the Gaussian source of Ozarow [10#h$ shown by
Vaishampayan et al. [136, 137] that at high resolution andHfe symmetric case,
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R. =25

1
14 1.6 1.8 2

0 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

1.2
Riq [bitidim.]

Figure 4.7: Side distortionsDy = D; as a function of rate redundandy,.y. For each curve
the central distortion is held fixed db. = 272F<, The circles mark the points beyond which
the second bound of (4.9) becomes effective. This exanfpbeni$52].

if the side distortions satisfy
Dy = 0% b2 2fo(1=a), (4.10)

for0 < a < 1 andb > 1 then the central distortion is lower bounded by

2
D, > %2—2R0<1+a>, (4.11)

which leads to a simple bound on the distortion produgD,, that is

4
D.Dy > %‘2—41‘%. (4.12)

It was further shown that an optimal two-channel schemeeaelsiequality in (4.11)
and therefore also in (4.12) at high resolution and wiikn< Dy. Since (4.12)

is independent of: it serves as a simple means of relating the performance of MD
schemes to the information theoretic rate-distortion isusf [107]. It is therefore a
standard figure of merit when assessing the performanceosthannel MD schemes

at high resolution. For small ratios @,/D. it is not possible to achieve equality

in (4.12). However, at high resolution the more generaléss used distortion product
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R, Ry (1 + 2_2R“)/2 D(Ro) Gap

0.5 0.25 0.75 0.707 0.043
1 05 0.625 0.5 0.125
15 0.75 0.563 0.354 0.209
2 1 0.531 0.25 0.281
25 1.25 0.516 0.177 0.339

Table 4.1: The gap between the two bounds of (4.9) wR&g = 0. In this caseRo = R./2.

is also achievable [137]

DD =% 1 o ap, (4.13)
T 4 1-D./Dy ’ ‘
which meets the lower bound of (4.12) B#./Dy, — 0. If D, is optimal, i.e. if
Dy = D(Ry), then it follows from [107] thaD. > D, /2. Using the ratiaD./ Dy =
1/2in (4.13) yieldsD.D, = %2—41‘30 which is twice as large as the lower bound
of (4.12).

Fig. 4.8 compares the high resolution approximations ghae(4.10) and (4.11)
(solid lines) to the true bounds given by (4.6) and (4.8) lf@aldines) for the case of
a unit-variance memoryless Gaussian sourcetandl. Notice that the asymptotic
expressions meet the true bounds within a growing inteivdi@rate increases. Since
a is positively bounded away from zero and always less than thieeinterval where
they meet will never include the entire high resolution oegiFor example only large
distortion ratiosDy /D, are achievablé®

The asymmetric situation is often neglected but it is in fagty simple to come
up with a distortion product in the spirit of (4.12). Let ussfirewrite the central and
side distortions in Ozarow’s solution by use of the entropywer Py as was done by
Zamir [157,158], that is

D; > Px2 2R =01, (4.14)
and Rot )
— o+R1
> X2 - (4.15)
1—(|VII - VA[*)
where
II=(1-Dy/Px)(1—D:1/Px) (4.16)
and
A = DgD; /Py — 27 2(RotRy) (4.17)

26n Section 7.1 Remark 7.1.1 we explain in more detail why thergptotic curves never meet the true
curves at the extreme points.
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Ro=1

-10

-30 -25 -20 -15 -10 -5
Do [dB]

Figure 4.8: The central distortionD. as a function of side distortion®y = D, at different
ratesRop = Ri € {1,...,5}. The dashed lines illustrate the true distortion boundsgiv
by (4.6) and (4.8) and the solid lines represent the high ltggm asymptotic bounds given
by (4.10) and (4.11).

and wheré’

, ifx>0
gt 2 {™ T (4.18)
0, otherwise

An advantage of Zamir’s solution is that it acts as an outeunidoto the MD
problem for general sources under the squared-error tisiomeasure. For the
memoryless Gaussian source it becomes tight at any remolutie. it becomes
identical to Ozarow’s solution, and for arbitrary smoothtistnary sources it becomes
asymptotically tight at high resolution.

Lemma 4.1.1.1f 2-2(Fo+R) « DDy <« Dy, i = 0,1 then

D.(Do + Dy +2+/DoDy) > (
Proof. Let us expand the denominator in (4.153%s
2
1= (VI = v/B)" = 1= (V= Do/Px)(1 — Di/Px)
27| . |+ becomes effective only in the high side distortion case,vilken Do + D1 > o% (1 +

2—2(Ro+F1)) [158].
28Here we neglect the high side distortion case.

22h(X)

2
P > 9~ 2(Ro+h1) (4.19)
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2
_ \/DODl/P)Q( _ 272(R0+R1))

=1- ((1 — Do/Px)(1 = D1/Px) + DoDy/P§ — 27 2(Fot )

- 2\/(1 — Do/Px)(1 — D1/Px)(DoD1/P% — 2*2(R°+Rl>>)
= Do/Px + Dy1/Px — 2DoD; /P2 4 27 2(Fo+ k1)
+ 2(D0D1/P)2< — DgD1/P% — DoD} /P + (DoD1/P§)?

1
— (1= Do/Px — D1/Px + DoDs/P§)2 2 o))

N Do+ Dy +2v/DygD;
~ Px ,

(4.20)

where the approximation follows from the assumption of higéolution, i.e.R; —
00,1 = 0,1, sothatwe have—2(fo+f1) « DD, <« D;. The inequalityz—2(Fo+F1)
< DyD; is valid when we have excess marginal rates, i.e. when at dessof the
side decoders is not operating on its lower bound. As suchssenae thaD; grows
as 0(272f) whereR; < R; andRy + Ry < Ry + Ry and it follows that the
entire expression is dominated by terms that growsg8 %) or ¢/(2~(FotF1)),
Inserting (4.20) into (4.15) leads to

PX2*2(R0+R1)

D. > 3
1~ (V- VvZ) (4.21)
~ P)Q( 9—2(Ro+R1)
Dy + Dy +2v/DyD; ’
which completes the proof sind&y = 22*(X) /(2re). O

Remark4.1.2 1t follows that an optimal asymmetric (or symmetric) MD st
achieves equality in (4.19) at high resolution for arbifresmooth) sources. Notice
that the bound (4.19) holds for arbitrary bit distributiooisR, and R, as long as
their sum remains constant and the inequalities (4.14)4ui&) are satisfied (or more
correctly that the corresponding lower bounds on the idial side rates and their
sum rate are satisfied).

4.1.2 K-Channel Rate-Distortion Results

Recently, an achievablg-channel MD rate-distortion region was obtained by Venka-
taramani, Kramer and Goyal [141, 142] for arbitrary memesglsources and single-
letter distortion measures. This region generally takesmapticated form but in the
guadratic Gaussian case it becomes simpler. The regioargessin [142] describes
an asymmetric MD rate-distortion region and includes asaigpcase the symmetric
MD rate-distortion region. The construction of this regiefies upon forming layers
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of conditional random codebooks. It was, however, obsebyeBradhan, Puri and
Ramchandran in a series of papers [109-114] that by exmipriecent results on
distributed source coding it is possible to replace the tmmhl codebooks with
universal codebooks whereby the codebook rate can be r@duwrigh random bin-
ning. While Pradhan et al. limited their interests to the satric case it can be shown
that their results carry over to the asymmetric case as Weik has recently been done
by Wang and Viswanath [146] who further extended the resalthe case of vector
Gaussian sources and covariance distortion measure @ionstr

The largest known achievable rate-distortion region fog fki-channel MD
problem is that of Pradhan et al. [111, 123]Common for all the achievable rate-
distortion regions is that they represent inner bounds aigldurrently not known
whether they can be further improved. However, for the gatalGaussian case it
was conjectured in [114] that their bound is in fact tight. aTleonjecture remains
open.

The key ideas behind the achievable region obtained by Bradhal. are well
explained in [111, 114] and we will here repeat some of thesights and results
before presenting the largest knoirchannel achievable rate-distortion region.

Consider a packet-erasure channel with paraméteandk;, i.e. at leask out of
K descriptions are received. For the moment being, we asdumel. Generate
K independent random codebooks, &y ..., ¢k _1 each of rateR. The source
is now separately and independently quantized using eatheofodebooks. The
index of the nearest codeword in tifé codebook is transmitted on th& channel.
A code constructed in this way was dubbed a source-chanaglier code in [111]
which we, for notational convenience, abridge(fd, k) SCEC. Notice that since
each of the individual codebooks are optimal for the sourea tf only a single index
is received the source is reconstructed with a distortiat ion the distortion-rate
function D(R) of the source. However, if more than one index is receiveslgtiality
of the reconstructed signal can be strictly improved due tdtipie versions of the
quantized source. The above scheme is generalizéf 1¢) SCEC fork > 1 by
making use of random binning. This is possible since the tigroh variables are
assumed (symmetrically) correlated so that general sesfMtistributed source coding
are applicable. Specifically, due to celebrated resultdeyig&n and Wolf [124] and
Wyner and Ziv [154], if it is assumed that sonkeout of the set ofK' correlated
variables are received then (by e.g. use of random binnirg piossible to encode at
a rate close to the joint entropy of ahyariables, in a distributed fashion, so that the
encoder does not need to know whichariables that are received. It is usually then
not possible to decode on reception of fewer thaariables.

Before presenting the main theorem of [111] which describeschievable rate-
distortion regions of K, k) SCECs in the general caseloK k < K, we need some
definitions.

290uter bounds for thé< -channel quadratic Gaussian problem were presented if.[142
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Definition 4.1.6. D) denotes the distortion when receivirig out of K
descriptions.

Definition 4.1.7. Atuple (R, DUk pUSk+1) - DUK.K)) s said to be achievable
if for arbitraryd > 0, there exists, for sufficiently large block lengtha (K, k) SCEC
with parameter$L, ©, A, Ag11,. .., Ak ) with

O < 2LE+) andA, < DEM 45 h =k k+1,...,K. (4.22)

Let.s, ={I:1C{0,...,K —1},|I| > k}. A (K, k) SCEC with parameters
(L,©, Ak, Agt1, ..., Ak) is defined by a set ok encoding functions [111]

F: 2 —{1,2,...,0}, 1=0,...,K—1, (4.23)
and a set of.#;| decoding functions
Gr: @f1.2,....0} = 2, Ve (4.24)
I

where®) denotes the Cartesian productand fohadl {k, k+1,..., K} andX € 2
we have

Ah = Ep(XvGI(Fil(X)v"'7Fih(X)))

(4.25)

I={i1,...,in}, VI€ I, |I|=h.

Theorem 4.1.1( [111], Th. 1) For a probability distributio?f
p(@, Yo, - - Yk —1) = q(@)p(Yo, - - -, yx -1|2) (4.26)

defined over2 @ # X where % is some finite alphabety(yo,...,yx_1|z) is
symmetric, and a set of decoding functiofise .#;,, g; : #1| — 2, if

Ep(X,g:1(Y)) < DFHD . vIe g (4.27)
and ) )
R > EH(YQ,...,kal)—EH(YQ,...,YK,HX) (428)
then(R, DUSR) pUGkHD) - DK.K)) s an achievable rate-distortion tuple.

In [114] an achievable rate-distortion region for tkechannel MD problem was
presented. The region was obtained by constructing a nuafbiayers within each
description where the set of git” layers across thé& descriptions corresponds to
a (K,j) SCEC. Assume that it is desired to achieve some distortiptet( D1,
D®2) DEB:3)) for a three-channel system. Then first a (3,1) SCEC is cartstiu
using a rate ofR(?) bit/dim. per description. We use the superscript to distisly

30To avoid clutter we omit the subscripts on the probabilitgtidbutions in this section.
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between the rat&, of encoder 0 in an asymmetric setup and the Fit8 of layer 0

in a symmetric setup. The rafe(®) is chosen such thdd:!) can be achieved with
the reception of any single description. If two descripsi@ne received the distortion
is further decreased. Howeverlii®>?) is not achieved on the reception of any two
descriptions, then a (3,2) SCEC is constructed at aRR&tebit/dim. per description.
The rateR") is chosen such thdd(®-2) can be achieved on the reception of any two
descriptions. IfD(3) is not achieved on the reception of all three descriptions, a
refinement layer is constructed at a rate?) bit/dim. per description, see Fig. 4.9.
Each description contains three layers, e.g. descriptmmnsists of a concatenation
of Lo;, L1; and Lo;. It is important to see that the first layer, i.e. the (3,1) 8J&
constructed exactly as described by Theorem 4.1.1. Thenddager, i.e. the (3,2)
SCEC differs from the construction in that of the binningeraBince, on reception
of any two descriptions (say description 0 and 1), we haveonbt the two second
layers (1o andL11) but also two base layeré {o andLy;). This makes it possible to
decrease the binning raf&) by exploiting correlation across descriptions as well as
across layers. The final layer can be a simple refinement lalgere bits are evenly
split among the three descriptions or for example a (3,3) GCEhe rate of each
description is then given b = R(®) + R(M) + R(?) and the total rate i8R.

RO RO e
Descrpton [t | [ 1o ] [ om ],
oescpiont [ | [0 ] [0 ],
s ] o )

(3,1) SCEC (3,2) SCEC (3,3) SCEC

Figure 4.9: Concatenation of (3,1), (3,2) and (3,3) SCECs to achievedtbiortion triplet
(D®Y G2 DB Each description contains three layers and the rate of efsftription
isR=R® + R 4 R®,

We are now in a position to introduce the main theorem of [MHich describes
an achievable rate-distortion region for the concatenata (K, k) SCECs. Let;;
be a random variable in th&" layer and;j*" description and Ieté’f‘1 ={0,...,K—
1}. Fori € I)°72, letY; x-1 = (Yio, Y1, ..., Yix—1) represenk random variables
in thei'” layer taking values in alphabéX. Let Yx_; be the last layer refinement
variable taking values in the alphat¥t | and

Yl(f(’zlff(’l = (YOI[f(’l s YH[{<71, - ’Y(K72)I§<’l ) (4.29)

A joint distributionp(y15—2l[§<—l,yK,1|ZZ?) is called symmetric if for alll < r; <
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K wherei e 15(*2, the following is true: the joint distribution of%_; and all
(ro + 71 + - -+ rix_») random variables where amyare chosen from th&" layer,
conditioned o, is the same.

Theorem 4.1.2([114], Th. 2) For any probability distribution
p(@, Y-z -1, yk—1) = pa)p(yx—2 -1, Yk -1|z) (4.30)

wherep(y x -2 k-1, yx -1|) is symmetric, defined ove?” x Y x HE x o
WK, x %1, and a set of decoding functions givertby

gr N ol v c g

=1 ) (4.31)
glf—l :%K X@lK Xoeee Xg/é(_Q XQ/K—I -
the convex closure ofR, DD DUE2) DK js achievable where
Epr(X,91(Yyn-1,)) < DEMD w1 ¢ K1 (4.32)
Eppse—1 (X, gpge-r (Y2 pper, Yic 1)) < DU, (4.33)
and
K—-1 1
R > H(Y00)+ EH(Y]C_11571|Y}(I;72I§71)
k=2 (4.34)
1 1
+ EH(YK,1|YI§<72]§<71) — EH(YI§—2I(§(—1 , YK,1|X).

The main difference between Theorem 4.1.1 and Theorem i.1h2t the latter
theorem considers the complétetuple of distortiong D1 D(E:2) | DK.K))
whereas the former theorem considers(the— k + 1)-tuple of distortiong DF),
DUk - DUSK)) - Hence, an SCEC based on the construction presented

in [111] is specifically tailored to networks where it is knothat at leask channels
out K channels are always working. With the construction preskint [114] it is
possible to concatenate several SCECs and obtain a code/dhled for networks
where the number of working channels is not known a priori.

4.1.3 Quadratic Gaussiank -Channel Rate-Distortion Region

We will now describe the achievahlé-channel rate-distortion region for the quadratic
Gaussian case. This appears to be the only case where efgiidirelatively simple)
closed-form expressions for rate and distortion have beend.

3197 denotes thg times Cartesian product of the alphat
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Consider a unit-variance Gaussian souf¢eand define the random variables
Y;,i=0,...,K — 1, given by

Y- X+ Q. (4.35

where the Q;'s are identically distributed jointly Gaussian random ighles
(independent o) with varianceag and covariance matri® given by

1 pq pq DRI pq
pq 1 pq DRI pq

Q= 02 Pg Pg 1 pgf (4.36)
Pq Pqg Pg - 1

where, forK > 1, itis required that the correlation coefficient satisfiey/ (K —1) <
pq < 1to ensure thaf) is positive semidefinite [142]. In the case of Ozarow’s deubl
branch test channel fdf = 2 descriptions, we only need to consider non positive
pq's. This is, in fact, also the case féf > 2 descriptions [142].

It is easy to show that the MMSE when estimatiigirom any set ofm Y;'s is
given by [111,142]

pUEm) _ ‘73(1 + (m —1)pg)
o+ o2+ (m— 1)pg)

(4.37)

We now focus on thé K, k) SCEC as presented in Theorem 4.1.1. The rate of each
description is given by [111]

1/k
1 (ko =)\ 1, \UE
R = = log, 5 . (4.38)
2 og(1—pq) 1+ (K —1)pq

The quantization error variano§ can now be obtained from (4.38)

-1

3 kK
a§=k<(1—pq>22’m(w> —<1+<k—1>pq>> . (439)

We will follow [111] and look at the performance of @, k) SCEC in three
different situations distinguished by the amount of catieh p, introduced in the
guantization noise.

Independent quantization noise:p, =0

The quantization noise is i.i.d., i.e, = 0, henceQ is diagonal. Assuming that the
quantization noise is normalized such thdt= k/(22* — 1), we get the following
expressions for the distortion

2
D) _ 94 k

T o2t (ktr) 2KE(ktr)—r

foro<r <K -k, (4.40)
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and
DU — 1 for0 < m < k. (4.41)

The distortion when receiving descriptions is optimal, i.eD(/0F) = 2—2kR,

Correlated quantization noise: p, = p;,

The amount of correlatiop;, needed in order to be on the distortion-rate function on
the reception of = K descriptions is given by

22KR -1 1
Pa= Tk —D2KE 17 K1 (4.42)
This leads to the following performance
DED =1 — %(1 —272KR) for0 <y < K. (4.43)

Notice that the distortion when receivirfg descriptions is optimal, i.eD(K) =
2—2KR.
Correlated quantization noise: p; < p, < 0

Here a varying degree of correlation is introduced and ttopaance is given by

DU — ‘72(1 + (T - 1)pq)
03(1 +(r— 1)pq) +r

fork <r <K, (4.44)

and
DU™) — 1 for0 <m < k. (4.45)

Fig. 4.10 shows the three-channel distortibf®3) as a function of the two-
channel distortionD(32) when varyingp, and keeping the rate constant by use
of (4.39). In this example we use(8,2) SCEC withR = 1 bit/dim. At one end
we haveD?) = —12.0412 dB which is on the distortion-rate function of the source
and at the other end we hai#?*3) = —18.0618 dB which is also on the distortion-
rate function.

In Fig. 4.11 we show the simultaneously achievable one+tlab®!), two-
channelD®-2) and three-channdb(3-3) distortions for the unit-variance memoryless
Gaussian source at 1 bit/dim. when usin@al ) SCEC. Itis interesting to observe that
while it is possible to achieve optimum one-channel digarfp, = 0 = DGV ~
—6 dB) and optimum three-channel distortign, (— —1/2 = D®3) ~ —18 dB) it
is not possible to drive the two-channel distortion towatslsptimum §p,, D32 <
—12 dB). In other words, &3, 1) SCEC can achieve optimal one-channel and three-
channel performance and(3 2) SCEC can achieve optimal two-channel and three-
channel performance.
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Figure 4.10: Three-channel versus two-channel distortions for a (3(2ES atR = 1 bit/dim.
for the unit-variance Gaussian source. This example is fibii].

Let us now look at the achievable three-channel region ptedein [114] for
the the memoryless Gaussian source. Rdbit/dim. per description be the rate of
transmission. Let the random variables in the three layedsfined as

Yoj = X + Qoj, Y1, = X + Quj, andYs = X + Qo forj € I, (4.46)

where fori € I3, Q72 are symmetrically distributed Gaussian random variablés w
varianceogi and correlation coefficient,, and Q. is a Gaussian random variable
with varianceo§2. Qozz, Q172 and Q. are independent of each other akd By
changing the four independent variab€), R p, andp,, different trade-offs
betweenD:1) D2 and D3:3) can be made. The correlation coefficients are lower
bounded by [114]

26RY _ 1
The varianceafg0 of the base layer follows from (4.39) by lettiig= 1, that is

Pa; = (4.47)

_ © 1 2
a_qUQ — 22R (1 + 2pq0)3 (1 _ pqo)a —1 (448)
and it can be shown that [114]
(1) 2
0'*27_ 1+pq1 _ 1+pq1 24R (1+pq0+2/0§0)(1+pq1_2/)31)3
= - .
o (1+pqo)030 2 2(1+ pgo)(1 — pg, )3

(4.49)
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Figure 4.11: The simultaneously achievable one-channel, two-channdl taree-channel
distortions for the unit-variance Gaussian source at 1dtl. for a (3,1) SCEC.

Let MSE, denote the distortion given by any two base-layer randonakhes, and
MSE; denote the distortion given by all the random variables m ltase and the
second layer. Hence, MSElenotes the MMSE obtained in estimating the soutce
using either Yoo, Yo1), (Yoo, Yo2) or (Yo1, Yo2). Similarly MSE; denotes the MMSE
in estimatingX from (Yoo, Yo1, Yoo, Y10, Y11, Y12). From (4.37) it follows that

0-3[)(1 + pqo)

MSE, = — @0~ T/
* T 02, (14 pgy) +2

(4.50)

and it can also be shown that [114]

0'300'2] (1 + 2pqo + 2pq1 + 4p40p41)

MSE; = 7
3030(1 + 2/)q0) + 3031 (1 + Qqu) + 030031 (1 +2pg, + 2pq, + 4pq0ptZ1)
(4.51)
and
MSE;
2 _
% T 56(R—RO_RM) _ 1’ (4.52)
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Finally, we have [114]

/(3,1) 03

1) 0

DO = (4.53)

q0

DI(3,2) — O-gl (1 + pql)MSE2 (4 54)

031(1 +pql) +2MSE2’ .
2 MSE;

pEy = Jet>S 4.55

MSE; + o2, ( )

The lower convex hull of(D’31) D'(3:2) D'(3:3)) corresponds to an achievable
distortion tuplgt DGV, DG:2) D(3:3)) See Fig. 4.12 for an example of an achievable
distortion region for the unit-variance memoryless Garssburce foR(®) = R() =

0.5 bit/dim. per description and a description ratefot= R(©) + R = 1 bit/dim. In
this plot the correlation values are varied throughout grge given by (4.47).

-12.54
-13

-13.5

D@3 [dB]

-15

DE2 [t -3 DY [dB]

Figure 4.12: Achievable distortion region faR(®) = R™™) = 0.5 bit/dim. per description. The
description rate isk = R(® + R = 1 bit/dim. The dense peak is in the front.

4.2 Multiple-Description Quantization

The previous section described known information theofetiunds. These bounds
were shown to be achievable by use of random codebooks. tn#iely random
codebooks are usually not very practical due to e.g. higicke@mplexity and large
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memory requirements. From a practical point of view it isdfiere desirable to avoid
random codebooks, which is the case for the MD schemes werrigsthis section.

Existing MD schemes can roughly be divided into three caiego quantizer-
based, transform-based and source-channel erasure cased. bQuantizer-based
schemes include scalar quantization [5, 10, 39, 68, 130,138, 138], trellis coded
guantization [67, 137, 147] and vector quantization [15,18] 27, 28, 36, 37, 48,
51, 73,75, 98, 99, 103-105, 120, 127, 129, 139, 155]. Tramsftased approaches
include correlating transforms [49, 52, 53, 97, 148], owenplete expansions and
filterbanks [4, 20, 29, 54, 55, 76]. Schemes based on soln@erel erasure codes
were presented in [109-114]. For further details on manstierg MD techniques we
refer the reader to the excellent survey article by Goya].[50

The work in this thesis is based on lattice vector quantiredind belongs therefore
to the first of the catagories mentioned above to which weaislh restrict attention.

4.2.1 Scalar Two-Channel Quantization with Index Assignmets

In some of the earliest MD schemes it was recognized thatéwarsite low-resolution
guantizers may be combined to form a high-resolution gaanti he cells of the high-
resolution quantizer are formed as the intersections ot#fle of the low-resolution
qguantizers [50]. The two low-resolution quantizers arelitianally called the side
guantizers and their joint quantizer, the high-resolutjaantizer, is called the central
guantizer. If the side quantizers are regular quantizerstheir cells form connected
regions, then the central quantizer is not much better tharbest of the two side
guantizers. However, if disjoint cells are allowed in the@esgquantizers, then a much
better central quantizer can be formed. According to Geyslirvey article [50],
the idea of using disjoint cells in the side quantizers seenwiginate from some
unpublished work of Reudink [116]. Fig 4.13(a) shows an exenmhere two regular
side quantizer§, and@; each having 3 cells are combined to form a central quantizer
Q. having 5 cells. Hence, the resolution of the central quaniiz only about twice
that of either one of the two side quantizers. Fig. 4.13(lonshan example where
one of the side quantizers have disjoint cells which makesssible to achieve a very
good joint quantizer. In this case both side quantizers liasee cells but), has
disjoint cells. The central quantizer has 9 cells which igado the product of the
number of cells of the side quantizers. Hence, the resalutidhe central quantizer
is comparable to an optimal single description scalar qeanbperating at the sum
rate of the two side quantizers. The price, however, isivelgtpoor performance of
side quantize);.

The idea of using two quantizers with disjoint cells as sidargizers and their
intersections as a central quantizer was independenttpvised by Vaishampayan
[135] some years after Reudink. Vaishampayan proposedensgic way to control
the redundancy in the two side quantizers by use of an indggrasent matrix [135].
The idea is to first partition the real line into intervals irder to obtain the central
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Q0:< 0 } 1 } 2 3 QOZ/ 0 | 1 | 2 >

Q11< 0 | 1 } 2 > Q11/0} 1, 2 0} 1 2} 0>

Qc:< 0 } 1 } 2 } 3 | 4 . Qci/01112}3}4}5}6} 7, 8>
(a) Regular side quantizers (b) Irregular side quantizers

Figure 4.13: Two quantizers are able to refine each other if their cell lrmes do not
coincide. In (a) bothQ, and Q1 are good quantizers buf). is poor. In (b) quantizeiQ:
is poor whereas)o and Q. are both good.

guantizer and then assign a set of central cells to eachncilkiside quantizers. For
example let us partition the real line into 7 intervals asvahan Fig. 4.14(a) (the
bottom quantizer is the central quantizer). We then consthe index assignment
matrix as shown in Fig. 4.14(b). Each column of the matrixespnt a cell of the
side quantizer shown in the top of Fig. 4.14(a). Since theeef@ur columns the
side quantizer has four cells. Similarly, the four rows af thatrix represent the four
cells of the second side quantizer (the middle quantizeligpf414(a)). The central
guantizer in this design, which is based on the two main diatgoand where the side
quantizers have connected cells, is known as a staggeratizprd® If we only use
the main diagonal of the index assignment matrix we get aitepecode. In this case
the side quantizers are identical and they are thereforatletto refine each other,
which means that the central distortion will be equal to ide slistortions.

By placing more elements (numbers) in the index assignmettixithe central
guantizer will have more cells and the central distortion taerefore be reduced.
There is a trade-off here, since placing more elements imgteix will usually cause
the cells of the side quantizers to be disjoint and the sigi®dion will then increase.
Fig. 4.15(b) shows an example where the index assignmenbaigtfull and the
central quantizer therefore has 16 cells. Hence, the dafiftartion is minimized.
From Fig. 4.15(a) it is clear that the cells of the side quaams are disjoint and since
each cell is spread over a large region of the central quaritie side distortion will
be large.

The main difficulty of the design proposed by Vaishampayas il finding good
index assignments, i.e. constructing the index assignmmattix. In [135] several
heuristic designs were proposed for the case of symmeswduton-constrained MD

321t is often possible to make the second side quantizer al#tims of the first side quantizer and use
their intersection as the central quantizer. The qualitgrimmement of a central quantizer constructed this
way over that of the side quantizers is known as the stagge@in. However, as first observed in [39]
and further analyzed in [132] the staggering gain dissagpeaen good high dimensional lattice vector
quantizers are used.
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0 1
Columns —°2 } L } 2 | el 2 3
ROWS 0 | 1 | 2 | 3 4 5
0, 1,2,83,4,5,6 6
(a) Side and central quantizers (b) Index assignment matrix

Figure 4.14: (a) The two side quantizers each having four cells are offeet each other.
Their intersection forms the central quantizer having 7iscel(b) shows the corresponding
index assignment matrix for the quantizers. The columnbeofitatrix form a side quantizer
and the rows also form a side quantizer.

0,1, 0 [1,2,3,2,1,0,1,2, 3 ;2,3
[ [ [ [ [ [ [ [ [ [ [ [ [ 2 4 7 12

0,1,2,3,4,5,6,7,8 9 19 11 12 13 14 15 9 | 10 | 14 | 15
L S A B B S B B

(a) Side and central quantizers (b) Index assignment matrix

Figure 4.15: (a) The two side quantizers each having four cells are nontidal. Their
intersection forms the central quantizer having 16 cells) shows the corresponding index
assignment matrix for the quantizers. The columns of theixrfarm a side quantizer and the
rows also form a side quantizer.
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scalar quantization. Their performance at high resoluti@s evaluated in [136]
and it was shown that in the quadratic Gaussian case, thartéist productD. D,
was 8.69 dB away from the optimal high resolution distortiproduct (4.12).
Vaishampayan and Domaszewicz [138] then proposed an gntapstrained MD
scalar quantizer where the index-assignment matrix wasaed using a generalized
Lloyd algorithm. The distortion product of this design waswn to be only 3.06 dB
away from the theoretical optimum [136]. Recall that thecgphilling loss of an SD
scalar quantizer is 1.53 dB so that, quite surprisinglygdue to the optimal distortion
product of a two-description scalar quantizer is twice taar space-filling loss. The
design of good index assignments for the scalar case issfuctinsidered in [10].

It is known that the entropy-constrained scalar uniformmiizar is optimal in the
SD case, see Chapter 3. This result, however, does not caent@the MD case.
Goyal et al. [51, 73] were the first to recognize that by slightodifying the central
guantizer in a way so that it no longer forms a lattice, it isgble to reduce the
distortion product not only in the scalar case but also intthe-dimensional case.
This phenomenon was further investigated by Tian et al. 13%] who showed that
the scalar distortion product can be further improved by dB4by modifying the
central quantizer.

4.2.2 Lattice Vector Quantization for Multiple Descriptions

Recently, Servetto, Vaishampayan and Sloane [120, 139¢pted a clever construc-
tion based on lattices, which at high resolution and asytigatity in vector dimension
is able to achieve the symmetric two-channel MD rate-digtoregion. The design
of[120, 139] is again based on index assignments which ardinear mappings that
lead to a curious result. Lak, = Ry = R; denote the rate of each of the side
qguantizers and led < a < 1. Then, at high resolution, the central distortidn
satisfies [139]

1
Jim D 2%8:(1%a) — ZG(A)Q%Oﬂ, (4.56)
whereas the side distortio% = D, satisfy

Jim D22 (70 = G(97)2°M), (4.57)

whereG(A) and G(S.) are the dimensionless normalized second moments of the
central latticeA and anL-sphere, respectively. Thus, remarkably, the performance
of the side quantizers is identical to that of quantizersrispherical Voronoi cells;
note that in the SD case this is not possiblelfar L < oco.

The design presented in [120, 139] is based on a centratdattiand a single
sublatticeA; of index N = |A/A;|. Each central lattice point € A is mapped to
a pair of sublattice pointé\g, A1) € As x A, using an index assignment function.
A pair of sublattice points is called an edge. The edges amstnacted by pairing
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closely spaced (in the Euclidean sense) sublattice pdayt®xploiting the direction
of an edge (i.e. the pait\o, \1) is distinguishable froniA1, Ag)) it is possible to use
an edge twice. In order to construct the edges as well as tignasent of edges to
central lattice points, geometric properties of the lattiare exploited. Specifically,
the edgeg )\, A1) and (A1, \g) are mapped to the central lattice poittss A and
N e Awhich satisfy\+)\ = )\y+\; and furthermore, the distance from the midpoint
of an edge and the associated central lattice point showdd bmall as possible (when
averaged over all edges and the corresponding assignedldattice points). Only a
small number of edges and assignments needs to be founckaftezithe symmetry
of the lattices can be exploited in order to cover the entitiice. Examples of edge
constructions and assignments are presented in [120, 139].

The asymmetric case was considered by Diggavi, Sloane astarapayan [27,
28] who constructed a two-channel scheme also based on esgnments and
which, at high resolution and asymptotically in vector divsen, is able to reach
the entire two-channel MD rate-distortion region. Spealfi at high resolution, the
central distortion satisfies [28]

D. = G(A)22(h(X)=Fe) (4.58)

whereR, is the rate of the central quantizer and the side distorsatisfy

2

. 71 2h(X)o9—2(Ro+R1—R.)
Dy = ——=G(Ay)2 2 , 4.59
°7 (v +m)2 (A) (4:59)
and )
_ 70 2h(X)o—2(Ro+R1—Re)
D= ——-G(As)2 2 , 4.60
YT (o +m)? (A) (460

where G(A;) is the dimensionless normalized second moment of a suddattj,
which is geometrically-similar to both side latticds,i = 0,1, andvg,71 € RT
are weights which are introduced to control the asymmetrthinside distortions.
Notice that in the distortion-balanced case we haye= ~; so thatﬁ = i
and ifv = 0 ory; = 0 then the design degenerates to a successive refinement
scheme [28, 32]. It is worth emphasizing that the side qamardiin the asymmetric
design do generally not achieve the sphere bound in finiteéons as was the case
of the symmetric design.

The design presented in [27, 28] is based on a central laitjdevo sublattices
Ao € AandA; C A ofindex Ny = |A/Ag| and Ny = |A/A4|, respectively, and a
product latticeA, C A;,i = 0,1, of index N, = NyN;. The Voronoi cellV.(\;)
of the product lattice poinh, € A, containsN; sublattice points of\y and N,
sublattice points of\, see Fig. 4.16 for an example whekig = 5 andN; = 9. In
this example, only the 45 central lattice points locatethinit’; (0) need to have edges
assigned. The remaining assignments are done simply kynghifiese assignments
by A\ € A.. In other words, if the edgé\y, A1) is assigned to\ then the edge
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(Mo + Ar, A1 + Ay) is assigned to\ + \;. We say that the assignments are shift
invariant with respect to the product lattice.

The 45 edges are constructed in the following way. Firstaterehe setty,
containing the nine sublattice points&f§ which are located withiv; (0), i.e.

EAo = {(07 O)a (_35 1)7 (_27 _1)7 (_17 2)5 (_15 _3)’ (17 _2)5 (17 3)7 (2a 1)7 (3a 1)}

Let X\, be the first element ofE,,, i.e. Ay = (0,0). Pair )Xo
with the five \; points located within V,(0). Thus, at this point we
have five edges{(0,0), (0,0)}, {(0,0),(0,3)}, {(0,0), (0,-3)},{(0,0),(3,0)} and
{(0,0),(—3,0)}. Consider now the second elementff,, i.e. \op = (—3,1). Shift
V:(0) so that it is centered aX, (illustrated by the dashed square in Fig. 4.16).
For notational convenience we dendfg(0) + Ao by V:(Ao). We now pairh, =
(=3, 1) with the five sublattice points of; which are contained withiv;: (o), i.e.
A NVz(Ao) ={(0,0),(-3,0),(-3,3),(—6,0), (-6, 3)}. This procedure should be
repeated for the remaining points Bf,, leading to a total of 45 distinct edges. These
45 edges combined with the 45 central lattice points withijii0) form a bipartite
matching problem where the cost of assigning an edge to aatéattice point is
given by the Euclidean distance between the mid point (ogkted mid point) of the
edge and the central lattice point.

Notice that for large index values, the sublattice poipte Aq is paired with
points of A; which are evenly distributed within a regidf). centered af\,. If the
product lattice\  is based on the hypercubic lattizé thenV, forms a hypercube. In
Chapters 5 and 6 we show that it is possible to change therdssithat the sublattice
points of A; which are paired with a giveng € Aq are evenly distributed within
an L-dimensional hypersphere regardless of the choice of ptddttice A,. The
purpose of having the points spherically distributed isftld first, the side distortion
is reduced and second, it allows a simple extension to marettho descriptions.

Non Index-Assignment Based Designs

To avoid the difficulty of designing efficient index-assigamt maps it was suggested
in [39] that the index assignments of a two-descriptionesystan be replaced by
successive quantization and linear estimation. More §ipalty, the two side descrip-
tions can be linearly combined and further enhanced by aemefémt layer to yield
the central reconstruction. The design of [39] suffers flonate loss of 0.5 bit/dim.
at high resolution and is therefore not able to achieve theri&tB-distortion bound.
Recently, however, this gap was closed by Chen et al. [17Avh8] showed that by
use of successive quantization and source splittiitgs indeed possible to achieve
the two-channel MD rate-distortion bound, at any resohytigithout the use of index

3330urce splitting denotes the process of splitting a sol¢ciato two or more source variables, e.g.
X — (X1, X2) whereX — X1 — X forms a Markov chain (in that order) [18].
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Figure 4.16: A central lattice A (dots), a sublattice\, (squares) of index 5, a sublattice
(circles) of index 9, and a product lattice (stars) of indéx Zhe solid lines denote the Voronoi
cell Vx(0) of the product lattice point located at the origin. NoticeattV(0) contains 45
central lattice points. The dashed lines dendtg$0) shifted so it is centered &t-3, 1).

assignments. Chen et al. recognized that the rate regidmed¥iD problem forms
a polymatroid and showed that corner points of this rateoregian be achieved
by successive estimation and quantization. This designhisrently asymmetric in
the description rate since any corner point of a non-trivégé region will lead to
asymmetric rates. It is therefore necessary to performcsosplitting in order to
achieve symmetry in the description rate. When finite-disi@mal quantizers are
employed there is a space-filling loss due to the fact thadjtizatizer’s Voronoi cells
are not completely spherical and each description thezxefoffers a rate loss. The
rate loss of the design given in [17,18] is that2df — 1 quantizers because source
splitting is performed by using an additiorfdl- 1 quantizers besides the conventional
K side quantizers. In comparison, the designs of the twoftlaschemes based
on index assignments [27, 28, 120, 139] suffer from a rate &isonly that of two
guantizers and furthermore, in the symmetric case, thdgrsiubm a rate loss of only
that of two spherical quantizers. That it indeed is possiblavoid source splitting
in the symmetric case without the use of index assignmenssregently shown by



64 (Chapter 4) Multiple-Description Rate-Distortion Theory

@stergaard and Zamir [127] who constructedlachannel symmetric MD scheme
based on dithered Delta-Sigma quantization. The desiga2¥][is able to achieve
the entire symmetric two-channel MD rate-distortion reggd any resolution and the
rate loss when finite-dimensional quantizers are used iofitao lattice quantizers.
Hence, in the two-channel case the rate loss when using astggnments is less than
or equal to that of the designs which are not using index assémts [17,18,127].



Chapter

K-Channel Symmetric Lattice
Vector Quantization

In this chapter we consider a special case of the gerérahannel symmetric MD
problem where only a single parameter controls the redunydaadeoffs between the
central and the side distortions. With a single controlizagameter it is possible to
describe the entire symmetric rate-distortion region ¥ow tlescriptions and at high
resolution, as shown in [120, 139], but it is not enough tocdbs the symmetric
achievableK -channel rate-distortion region. As such the proposedreehaffers a
partial solution to the problem of designing balanced MDQ ¥ystems. In Chapter 7
we include more controlling parameters in the design and/ghat the three-channel
MD region given by Theorem 4.1.1 can be reached at high résolu

We derive analytical expressions for the central and sidentigers which,
under high-resolution assumptions, minimize the expediswrtion at the receiving
side subject to entropy constraints on the side descriptfon given packet-loss
probabilities. The central and side quantizers we use #giedaector quantizers. The
central distortion depends upon the lattice type in questioereas the side distortions
only depend on the scaling of the lattices but are indepérafehe specific types of
lattices. In the case of three descriptions we show that ithee distortions can be
expressed through the dimensionless normalized seconcentarha sphere as was
the case for the two descriptions system presented in [BH), 1IFurthermore, we
conjecture that this is true in the general case of an arpitramber of descriptions.

In the presented approach the expected distortion obsatvihe receiving side
depends only upon the number of received descriptions,ehtrecdescriptions are
mutually refinable and reception of amyout of K descriptions yields equivalent
expected distortion. This is different from successivenexfient schemes [32] where
the individual descriptions often must be received in agnibsed order to be able to

65
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refine each other, i.e. description numbevill not do any good unless descriptions
0,...,l—1have already been received. We construct a scheme whiclvéor gacket-
loss probabilities and a maximum bit budget (target entralggermines the optimal
number of descriptions and specifies the correspondingtizeas that minimize the
expected distortion.

5.1 Preliminaries

We consider a central quantizer akd> 2 side quantizers. The central quantizer is
(based on) a lattica. c R* with a fundamental region of volume= det(A.). The
side quantizers are based on a geometrically-similar seahcdublatticé\; C A, of
index N = |A./A| and fundamental regions of volume = vN. The trivial case
K = 1 leads to a single-description system, where we would simpé/one central
guantizer and no side quantizers.

We will consider the balanced situation, where the entr&pis the same for
each description. Furthermore, we consider the case whereantributionD,, i =
0,...,K — 1 of each description to the total distortion is the same. @sigh makes
suré that the distortion observed at the receiving side depenlysom the number of
descriptions received; hence reception of amyut of K descriptions yields equivalent
expected distortion.

5.1.1 Index Assignments

A source vector: is quantized to a reconstruction poikt in the central lattice\..
Hereafter follows index assignments (mappings), whiclyuely map\. to one vector
(reconstruction point) in each of the side quantizers. Timggpping is done through
a labeling functior, and we denote the individual component functions.ddy «;,
wherei = 0,..., K — 1. In other words, the injective map that mapsA. into
Ag X --- x Ag, is given by

Oé()\c) = (aO(AC)7 aq (AC)7 ey aK—l()\c)) (51)
:()\OaAla"'aAK—l)a (52)

wherea;(\.) = \; € Asandi =0, ..., K—1. EachK-tuple(\, ..., Ax—1) isused
only once when labeling points ife. in order to make sure that. can be recovered
unambiguously when alk” descriptions are received. At this point we also define the
inverse component mapz,;l, which gives the set of distinct central lattice points a
specific sublattice point is mapped to. This is given by

a ') ={de €Aciai(A) =N}, A €A, (5.3)

K2

34We prove this symmetry property for the asymptotic cas&/of- oo andvs — 0. For finite N we
cannot guarantee the existence of an exact symmetricaoldiowever, by use of time-sharing arguments,
it is always possible to achieve symmetry.
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where |o; ' (\;)| & N, since there aréV times as many central lattice points as
sublattice points within a bounded regionRf.

Since lattices are infinite arrays of points, we construditift gwariant labeling
function, so we only need to label a finite number of pointssadane in [28, 139].
Following the approach outlined in Chapter 2 we construcbalpct latticeA , which
has N2 central lattice points andV sublattice points in each of its Voronoi cells.
The Voronoi cellsV,; of the product lattice\ . are all similar so by concentrating on
labeling only central lattice points within one Voronoilcef the product lattice, the
rest of the central lattice points may be labeled simply bygtating this Voronoi cell
throughoutR”. Other choices of product lattices are possible, but thisicehhas
a particular simple construction. With this choice of protiattice, we only label
central lattice points withiv,. (0), which is the Voronoi cell of\ . around the origin.
With this we get

a(Ae + Ar) = a(Ae) + Axy (5.4)

forall A\ € A and all\, € A..

5.2 Rate and Distortion Results

Central Distortion

Let us consider a scalar process that generates i.i.d. naadoables with probability
density function (pdf)f. Let X € R be a random vector made by blocking outputs
of the scalar process into vectors of lengthand letz € R” denote a realization of
X. The L-fold pdf of X is denotedfx and given by®

L—-1
fx(@) =] fa;). (5.5)
j=0

The expected distortion (per dimensidn) occuring when all packets are received is
called the central distortion and is defined as

1
p.&L / e = Al fx (@)de, (5.6)
Lge;c veO)

whereV,().) is the Voronoi cell of a single reconstruction poikt € A.. Using
standard high resolution assumptions, cf. Chapter 3, weassiyme that each Voronoi
cell is sufficiently small ang'x (x) is smooth and hence approximately constant within
each cell. In this casea,. is approximately the centroid (conditional mean) of the
corresponding cell, that is

_ Sy oix@)e
T Ix @)

331t is worth pointing out that we actually only require the ividual vectors to be i.i.d. and as such
correlation within vectors is allowed.

A

(5.7)
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Since the pdf is approximately constant within a small regi@ also have that
fX(I) ~ fX(/\c)a Vo € ‘/c(/\c)a (58)
and we can therefore express the probabiltyof a cell as
PO = [ fx@demfx(0) [ i), 69
Ve(Xe) Ve(AXe)

wherev is the volume of a Voronoi cell. With this, we get

P(V(A))

Ix(Ae) = > (5.10)
Inserting (5.10) into (5.6) gives
1 —A||?
p.x1 3 pwow [ e (5.11)
L AocA, Ve(Ae) v

whereA. is a lattice so all Voronoi cells are congruent and the irgkgrsimilar for
all \/'s. Hence, without loss of generality, we let = 0 and simplify (5.11) as

2
D, ~ l/ I=I . (5.12)
L V((o) 1%

where we used the fact that, ., P(V.(\.)) = 1. We can express the average
central distortion (5.12) in terms of the dimensionlessmalized second moment of
inertiaG(A.) by

D, ~ G(A ). (5.13)

Side Distortions

The side distortion for thé&" description, i.e. the distortion when reconstructing gsin
only thei*" description, is given by [139]

1
D=L / 2= )P fx(@)de, i=0,... K—1,
LMZE;C vc@c)H M) I” fx ()
1
=7 Z Hx_)‘C"')‘c_O‘i()‘C)HzfX(x)dx
L& oo
1
-7 2/ o= AP ix (@) + Z/ A Fx (a)d
Ac€A )\GA
+_ Z/ (T = Aes Ae — ai(Ae)) fx (z)d
>\6A

Z IAe = ai(Ae)[IPP(Ac)

AEA
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2
z dx — Ac dz, Ae — a;(Ae
T k;\ </Vc(/\c) xfx(z)dx /VC(/\C) fx(z)dw i )>
=D.+ % Z ”/\c - ai(/\c)HQP(/\c), (514)

Ac€AC

whereP().) is the probability thaf{’ will be mapped to\, i.e.Q(X) = A., and the
last equality follows since by use of (5.7) we have that

/ xfx(x)dr — / Acfx(x)dz = 0. (5.15)
e(Xe) e(Xe)

We notice from (5.14) that independent of which labelingdiion we use, the
distortion introduced by the central quantizer is orthagaofunder high-resolution
assumptions) to the distortion introduced by the side quears.

Exploiting the shift-invariance property of the labelingnttion (5.4) makes it
possible to simplify (5.14) as

1 P(\s
Di~ D+ > z(v2) S e — (A

An€AL cE€EVr
€ A€V (0) (5.16)
Dt S Pe— P i=0,.. K -1
C N2L C 1 C b) )t )
AcEVR(0)

where we assume the regidh (0) is sufficiently small saP(\.) ~ P(\;)/N?, for
Ae € Vi(Ar). Notice that we assumB(\,) to be constant only within each region
V= (Ax), hence it may take on different values for eache A.

Central Rate

Let R, = H(Q(X))/L denote the minimum entropy (per dimension) needed for
a single-description system to achieve an expected dmtodf D., the central
distortion of the multiple-description system as given 5y1.8).

The single-description ratg. is given by

1
Ro=—7 > /C(M fx (z)dz log, </VC(AC) fx(x)dx> . (5.17)

Ac€AC

Using that each quantizer cell has identical volumand assuming thafx (x) is



70 (Chapter 5) K-Channel Symmetric Lattice Vector Quantization

approximately constant within Voronoi cells of the centadfice A, it follows that

Ro~—1 / fx(@)dz logy (fx (o))
Ve(Xe)

L
Ac€AC

—7 X [ At o (x()

Ac€AC

RN R (5.18)

AcE€EA.
_ 1y /V | ety o (Fx(h) ~ 7 Toga(v)

L
Ac€AC

= (X) ~ 7 Toga(0).

Side Rates

Let R; = H(,;(Q(X)))/L denote the entropy (per dimension) of thedescription,
wherei = 0, ..., K — 1. Notice that in the symmetric situation we halg = R;,i €
{0,...,K —1}.

The side descriptions are based on a coarser lattice obithynescaling (and
possibly rotating) the Voronoi cells of the central lattlyea factor of N. Assuming
the pdf of X is roughly constant within a sublattice cell, the entropytha i*" side
description is given by

R, =— 1 Z / x)dz logy Z / fx(z)dz
L e(Ae) Ae€a;t(A) e(Ae)

Ai €A ca; ()
1
-2 > [ ix@de lo (ofx()N)
Ai€As €a; () Ve(de)
1
:_Z Z / z)dz log, (fx(Ai))
NiEA, 71()\) c()\ )
1
-7 Z / x)dx logs(VN)
A €A ca; (M) ()

—h(X) - %mgQ(NV).
(5.19)

The entropy of the side descriptions is related to the egtodphe single-description
system by

— Llog,(V). (5.20)

R, =R,
L
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5.3 Construction of Labeling Function

The index assignment is done by a labeling functigthat maps central lattice points
to sublattice points. An optimal index assignment minimiaecost functional when
0 < k < K descriptions are received. In addition, the index assignrakould
be invertible so the central quantizer can be used when sdirgi¢ions are received.
Before defining the labeling function we have to define thet dasctional to be
minimized. To do so, we first describe how to approximate theee sequence when
receiving onlyx descriptions and how to determine the expected distortiotinat
case. Then we define the cost functional to be minimized byatheling functiona
and describe how to minimize it.

5.3.1 Expected Distortion

At the receiving sideX € R is reconstructed to a quality that is determined only
by the number of received descriptions. If no descriptiorgaceived we reconstruct
using the expected valu& X, and if all K descriptions are received we reconstruct
using the inverse map~—!(\o, ..., Ax_1), hence obtaining the quality of the central
guantizer.

In this work we use a simple reconstruction rule which apgplier arbitrary
sources® When receivingl < x < K descriptions we reconstruct using the average
of the x descriptions. We show later (Theorem 5.3.1) that using therage of
received descriptions as reconstruction rule makes itilplest® split the distortion
due to reception of any number of descriptions into a sum oasegd norms between
pairs of lattice points. Moreover, this lead to the fact thta¢ side quantizers’
performances approach those of quantizers having sph¥daanoi cells. There are
in general several ways of receivirgout of K descriptions. LetZ(%:%) denote an
index set consisting of all possible combinations out of0,..., K — 1}. Hence
|.2IR)| = (K. We denote an element of 5% by | = {l,...,1,_1} € LT,
Upon reception of any descriptions we reconstruat using

k—1
N 1
X==%"x, 5.21
"0 & o20

Our objective is to minimize some cost functional subjecemdropy constraints
on the description rates. We can, for example, choose tormzgithe distortion
when receiving any two out of three descriptions. Anothesioh is to minimize
the weighted distortion over all possible description ézssin the following we will
assume that the cost functional to be minimized is the ergewkighted distortion

38\We show in Chapter 7 that this simple reconstruction rulatijgh resolution, optimal in the quadratic
Gaussian case, i.e. we show that the largest known threereh®D region can be achieved in that case.
This is in line with Ozarow’s double-branch test-channdieve the optimum post filters are trivial at high
resolution.
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over all description losses and we further assume that thightgeare given by the
packet-loss probabilities. We discuss the case where tlightgeare allowed to be
chosen almost arbitrarily in Chapter 6.

Assuming the packet-loss probabilities, gagre independent and are the same for
all descriptions, we may use (5.16) and write the expectsbdion when receiving
k out K descriptions as

2
rk—1
K 1 1
(K,n)% ko K—k - - -
] [ RS-0 SIS DI A se
le LK, §=0

K) Ae EV#(
(5.22)

where);; = a;,().) and the two cases € {0, K'}, which do not involve the index-
assignment map, are given B ~ pX E|| X ||2/L andD**) ~ (1 — p)X D...

5.3.2 Cost Functional

From (5.22) we see that the distortion expression may be ispdi two terms, one
describing the distortion occurring when the central gizants used on the source,
and one that describes the distortion due to the index asgigh An optimal index
assignment jointly minimizes the second term in (5.22) @kl < v« < K — 1
possible descriptions. The cost function&lX) to be minimized by the index
assignment algorithm is then given by

K-1
JE) =N o), (5.23)
where
2
() (L=p)pR" 15~
JU :T > /\C—EZ)\ZJ. . (5.24)
le L (Kr) X\ €V (0) J=0

The cost functional should be minimized subject to an egtagmstraint on the side
descriptions. We remark here that the side entropies degmaly onv and N and as
such not on the particular choice &f-tuples. In other words, for fixed andv the
index assignment problem is solved if (5.23) is minimizede problem of choosing
v andN such that the entropy constraint is satisfied is indepermfght assignment
problem and deferred to Section 5.4.2.

The following theorem makes it possible to rewrite the caosictional in a way
that brings more insight into whicR -tuples to usé’

37Notice that Theorem 5.3.1 is very general. We do not eveniredu or A to be lattices, in fact, they
can be arbitrary sets of points.
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Theorem 5.3.1.For1 < x < K we have

> Theiin 2:2({5)(

1 K-—1
Ao — = Z A
le L (K. k) A Ae 1=0

K —k K-2 K-1 )
+(m) 2 z; A = Al )

i=0 j=i+1

Proof. See Appendix H.1. O
From Theorem 5.3.1 it is clear that (5.24) can be written as

ko K—K
(k) (L—p)°p K
J - LN2 K Z

K-1

1
/\C—E;/\

A(’, ™
(O (5.25)
K-2 K—1
* Y () I X A
AcEVR(0) 1=0 j=1+1

The first term in (5.25) describes the distance from a cefdtate point to the
centroid of its associateff -tuple. The second term describes the sum of pairwise
squared distances (SPSD) between elements ofstitaples. In Section 5.4 (by
Proposition 5.4.2) we show that, under a high-resolutiGuamption, the second term
in (5.25) is dominant, from which we conclude that in ordentmimize (5.23) we
have to choose thE& -tuples with the lowest SPSD. The&etuples are then assigned
to central lattice points in such a way, that the first ternbii2%) is minimized.

Independent of the packet-loss probability, we always mirné the second term
in (5.25) by using thosé -tuples that have the smallest SPSD. This means that, at
high resolution, the optimdl -tuples are independent of packet-loss probabilities and,
consequently, the optimal assignment is indeperilefthe packet-loss probability.

5.3.3 Minimizing Cost Functional

In order to make sure thatis shift-invariant, a giverk -tuple of sublattice reconstruc-
tion points is assigned to only one central lattice painte A.. Notice that twokK -
tuples which are translates of each other by same A, must not both be assigned
to central lattice points located within the same regigr{):), since this causes
assignment of the sanf€-tuples to multiple central lattice points. The regign(0)
will be translated throughol®” and centered at,. € A, so there will be no overlap
between neighboring regions, il (A\; )NV (A¢) = 0, for A, A € Arand\; # Af.
One obvious way of avoiding assignirdg-tuples to multiple central lattice points is

38Given the central lattice and the sublattice, the optimaigmenent is independent pf However, we
show later that the optimal sublattice inddxdepends om.
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then to exclusively use sublattice points located withji{0). However, sublattice
points located close to but outsid& (0), might be better candidates than sublattice
points within V;(0) when labeling central lattice points close to the boundaky.
consistent way of constructing-tuples, is to center a regioli at all sublattice
points Ao € A, N V;(0), and constructs-tuples by combining sublattice points
Ni€Ag,i=1,..., K — 1within 17(/\0) in all possible ways and select the ones that
minimize (5.25). This is illustrated in Fig. 5.1. For a fixad € A, the expression
Yo enni ) 1A = Asl|* is minimized wherl/ forms a sphere centered.gt Our
construction allows fol” to have an arbitrary shape, e.g. the shap&,ofvhich is
the shape used for the two-description system present@s]niiowever, ifV’ is not
chosen to be a sphere, the SPSD is in general not minimized.

For each\y € A, N V,(0) it is possible to construav X ! K-tuples, whereV
is the number of sublattice points within the regign This gives a total ofV NX !
K-tuples when all\, € A, NV, (0) are used. However, onlyf? central lattice points
need to be labeled4 (0) only containsN? central lattice points). WheR = 2, we
let N = N, so the number of possiblE-tuples is equal tav2, which is exactly the
number of central lattice points Wi (0). In general, forK” > 2, the volume? of
V is smaller than the volume df, (0) and as suchV < N. We can approximate
N through the volumes, and7, i.e. N ~ 7/v,. To justify this approximation let
A C R be areal lattice and let = det(A) be the volume of a fundamental region.
Let S(c,r) be a sphere iR" of radiusr and center: € R”. According to Gauss’
counting principle, the numbet;, of integer lattice points in a convex bodyin R-
equals the volume Vg¥') of ¥ with a small error term [92]. In fact i®” = S(c,r)
then by use of a theorem due to Minkowski it can be shown tlatafyc € R”
and asymptotically a8 — oo, Az(r) = Vol(S(c,7)) = wrrl, wherewy, is the
volume of theL-dimensional unit sphere [40], see also [11, 33, 62, 77,.144]s
also known that the number of lattice poims (n) in the firstn shells of the lattice
A satisfies, asymptotically as — oo, Ax(n) = wrn’/?/v [139]. Hence, based
on the above we approximate the number of lattice poinis loy /v, which is an
approximation that becomes exact as the number of shelithin V goes to infinity®
(which corresponds t&V — oo). Our analysis is therefore only exact in the limiting
case ofN — oo. With this we can lower bound by

Jim 7> v, N/(E=1) (5.26)
Hence,V containsN > N/(K-1) syplattice points so that the total number of
possibleK -tuples isNN X1 > N2,
In Fig. 5.1 is shown an example &f andV,, regions for the two-dimensionat?
lattice. In the example we usdd = 3 and N = 25, hence there are 25 sublattice

39For the high-resolution analysis given in Section 5.4 iniportant that> is kept small as the number
of lattice points withinV’ goes to infinity. This is easily done by proper scaling of tutides, i.e. making
sure thats — 0 asN — oo.
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points within V. There areN = N!/(X-1) — 5 sublattice points i/ which is
exactly the minimum number of points required, accordin¢bt@6).

o c A

®c A,

/

......./i\\.
2
ot

RSP M
e o 060 o|ohofo|oelt o o o o

Figure 5.1: The regionV (big circles) is here shown centered at two different suldatpoints
within V(0). Small dots represents sublattice points\gfand large dots represents product
lattice pointsA, € A,. Central lattice points are not shown herd’. (shown as squares)
contains 25 sublattice points centered at product lattiogfs. In this examplé contains 5
sublattice points.

With equality in (5.26) we obtain a region that contains thxaot number of
sublattice points required to constru€ttuples for each of thé&v A, points inV,(0).
According to (5.25), a central lattice point should be asstythatK -tuple where a
weighted average of any subset of the elements okthaple is as close as possible to
the central lattice point. The optimal assignmenfotuples to central lattice points
can be formulated and solved as a linear assignment proffehj. [

Shift-Invariance by use of Cosets

By centeringf/ around each\y € A; N V;(0), we make sure that the mapis
shift-invariant. However, this also means that/gHtuples have their first coordinate
(i.e. \o) insideV, (0). To be optimal this restriction must be removed which islgasi
done by considering all cosets of eakhtuple. The coset of a fixe& -tuple, say

t = (/\0,)\1, - 7)\K—1) where)y € A, N VF(O) and (/\1, ceey /\K—l) S Aﬁ(_l,

is given byCoset(t) = {t + A\ : VA € A:} . K-tuples in a coset are distinct
modulo A, and by making sure that only one member from each coset is tlsed
shift-invariance property is preserved. In general it i§icient to consider only those
A product lattice points that are closeltp(0), e.g. those points whose Voronoi cell
touchesV;(0). The number of such points is given by the kissing-nun#ey,) of
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the particular lattice [22].

Dimensionless Expansion Factot)y,

Centeringl” around\, points causes a certain asymmetry in the pairwise distarfces
the elements within & -tuple. Since the region is centered arowgdhe maximum
pairwise distances betweeyg and any other sublattice point will always be smaller
than the maximum pairwise distance between any two sut#gtdints not including
Ao. This can be seen more clearly in Fig. 5.2. Notice that theadee between the pair
of points labeled A1, \2) is twice the distance of that of the p&ixy, A1) or (Ao, A2).
However, by slightly increasing the regidnto also include\,, other tuples may be
made, which actually have a lower pairwise distance thamp#ie(\, \2). For this
particular example, it is easy to see that thuplet = (Ao, A1, \2) has a greater
SPSD than th8-tuplet’ = (Ao, A1, Ab).

Figure 5.2: The regionV is here centered at the point. Notice that the distance betwegn
and ). is about twice the maximum distance framto any point inA, N V. The dashed circle
illustrates an enlargement &f.

For each\y € V;(0) we center a regioﬂff around the point, and choose those
N K-tuples, that give the smallest SPSD. By expandifgew K -tuples can be
constructed that might have a lower SPSD than the SPSD ofitiea NV K-tuples.
However, the distance fromy to the points farthest away increasesiaincreases.
Since we only need K -tuples, it can be seen thitshould never be larger than twice
the lower bound in (5.26) because then the distance fromaihiecto the boundary of
the enlarged’ region is greater than the maximum distance between any tiviisp
in the V region that reaches the lower bound. In order to theorédyic@iscribe the
performance of the quantizers, we introduce a dimensierdgpansion factotr <
Y1, < 2 which describes how much must be expanded from the theoretical lower
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bound (5.26), to make sure thatoptimal K -tuples can be constructed by combining
sublattice points within a regioW.

For the case of{ = 2 we always have);, = 1 independent of the dimensidn
so itis only in the cas& > 3 that we need to find expressions for .

Theorem 5.3.2. For the case of{ = 3 and any odd_, the dimensionless expansion
factor is given by

1/2L 1/2L
[ wL L+1 ~1/2L
w= ()" (52) s 5.27)
wherewy, is the volume of arl.-dimensional unit sphere art}, is given by
L+1 L—1
(4 s (5 (55,
_ 2 S —n(_1\n
ﬁL-Z(n)Q (=1) Z (L53), k!
n=0 k=0 2 Jk (528)
k k—j J
k 1 (1 1
_ 1V [ = -
X;@ (2> = (4> LHn+]
Proof. See Appendix H.2. O

For the interesting case @f — oo we have the following theorem.

Theorem 5.3.3.For K = 3 andL — oo the dimensionless expansion factor is

given by
A 1/4

Proof. See Appendix H.3. O

Table 5.1 list& ¢, for K = 3 and different values of and it may be noticed that
oo = \/m
Remark5.3.1 In order to extend these results & > 3 it follows from the proof
of Theorem 5.3.2 that we need closed-form expressions fowrtiumes of all the
different convex regions that can be obtainedi®y- 1 overlapping spheres. With
such expressions it should be straightforward to findfor any K. However, the
analysis ofiyr, for the case ofk = 3 (as given in the proof of Theorem 5.3.2) is
constructive in the sense that it reveals hoycan be numerically estimated for any
K andL, see Appendix F.

Remark5.3.2 In order to achieve the shift-invariance property of theeixd
assignment algorithm, we impose a restriction upgpoints. Specifically, we require
that)\, € V;:(0) so that the first coordinate of ady-tuple is within the regior; (0).

40Theorem 5.3.2 is only valid foF, odd. However, in the proof of Theorem 5.3.2 it is straightfard to
replace the volume of spherical caps by standard exprestiomircle cuts in order to obtaips.
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L |4 L |y

1 | 1.1547005--- 15 | 1.1036412- - -
2 | 1.1480804 - - - 17 | 1.1016878 - - -
3 | 1.1346009- - - 19 | 1.1000271- - -
5 | 1.1240543 - - - 21 | 1.0985938- - -
7 | 1.1172933- - - 51 | 1.0883640 - - -
9 | 1.1124896 - - - 71 | 1.0855988 - - -
11| 1.1088540- - - 101 | 1.0831849---
13| 1.1059819- - - oo | 1.0745699...

Table 5.1: 41, values obtained by use of Theorems 5.3.2 and 5.3.&fer 3.

To avoid excludingK -tuples that have their first coordinate outsidg0) we form
cosets of eacli -tuple and allow only one member from each coset to be assigne
a central lattice point withifV;(0). This restriction, which is only put ok € A,
might cause a bias towardg points. However, it is easy to show that, asymptotically
asN — oo, any such bias can be removed. For the casg ef 2 we can use similar
arguments as used in [28], and fAr > 2, as shown in Chapter 6, the number of
K-tuples affected by this restriction is small compared ®rthmber of-tuples not
affected. So for example this means that we can enforceasimébtrictions on all
sublattice points, which, asymptotically 5 — oo, will only reduce the number of
K-tuples by a neglectable amount. And as such, any possietdivards the set of
points)\y € A is removed.

As mentioned above, th&-tuples need to be assigned to central lattice points
within V;(0). This is a standard linear assignment problem where a coasune
is minimized. However, solutions to linear assignment feots are generally not
unique. Therefore, there might exist several labelingschvhll yield the same cost,
but exhibit a different amount of asymmetry. Theoreticalyact symmetry may
then be obtained by e.g. time sharing through a suitablengiwif labelings. In
practice, however, any scheme would use a fiNt€and finite rates). In addition,
for many applications, time sharing is inconvenient. Irstheon-asymptotic cases we
cannot guarantee exact symmetry. To this end, we have mdadew examples that
assess the distortions obtained from practical experisnsae Section 5.6 (Tables 5.3
and 5.4).

5.4 High-Resolution Analysis

In this section we derive high-resolution approximatiomsthe expected distortion.
For this high-resolution analysis we 18t — oo andv, — 0. Thus, the indexV of
the sublattices increases, but the actual volumes of thenddcells shrink.
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5.4.1 Total Expected Distortion

We wish to obtain an analytical expression for the expect&ddion given by (5.22).
In order to achieve this we first relate the sum of distancégd®n pairs of sublattice
points toG (S ), the dimensionless normalized second moment af-aphere. This
is done by Proposition 5.4.1.

Proposition 5.4.1. For K = 2 and asymptotically a& — oo andv, — 0, as well
as forK = 3 and asymptotically a®/, L — oo andv, — 0, we have for any pair

Ay Nj), 4,5=0,..., K =1, i# ],

> llailhe) = () |2 = G(Sy)wf N2 NK/EE D218,
AcEVR(0)
Proof. See Appendix H.4. O

Conjecture 5.4.1. Proposition 5.4.1 is true also féf > 3 asymptotically asV, L —
oo andy, — 0.

Remarks.4.1 Arguments supporting conjecture 5.4.1 are given in Appehi.

Remark5.4.2 In Appendix H.4 we also present an exact expression for Ritpn
5.4.1 forK = 3 and finiteL.

Recall that we previously showed that by use of Theorem 5t3slpossible to
split (5.22) into two terms; one that describes the distdroea a central lattice point to
the centroid of its associatdd-tuple and another which describes the sum of pairwise
squared distances (SPSD) between elements aktheples. To determine which of
the two terms that are dominating we present the followirgppsition:

Proposition 5.4.2. For N — oo and2 < K < oo we have

> S
AeVel —0. (5.30)
Y neva(0) Lico ZJ i 1A = 25012
Proof. See Appendix H.5. O

The expected distortion (5.22) can by use of Theorem 5.3virlieen as
2

K rk—1
D) w2 (1= p)ipR—rx (n) L N2 > Z Ae % Z; M
J=

1€ LK r) \e €V (

K 11 =
— (1 — Kk, K—k Dc - . -
(1=p)"p <n)x< IR X 72
Ac€VR(0) i=0
K-2 K-1
K-k
i — Al
+ (K%(K—l)) . | il )
1=0 j=i+1

(5.31)
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By use of Proposition 5.4.1 (as an approximation that besaract forl, — o),
Proposition 5.4.2 and Eq. (5.13) it follows that (5.31) cenngitten as

K
Dl(lK,n) ~ (1 _p)KpKli< >
K

11 K — K-2 K—1
Do+ —— A — = NI1P] (5.32
\Det 137 2 (KQK(K_1)> > > N7 | (5:32)
A€V (0) i=0 j=i+1
K
~ (1— k, K—k
(L—p)"p <K>
X (G(AC)VZ/L + (K _ “) G(SL)¢§N2K/L<K—1>V2/L) . (5.33)
2Kk
The second term in (5.33), that is
K-k G(SL)¢2N2K/L(K—1)U2/L (5.34)
2Kk L

is the dominating term for < K and N — oo and describes the side distortion due
to reception of any: < K descriptions. Observe that this term is only dependent upon
x through the coefficienf==.

The total expected distortioP'* is obtained from (5.33) by summing over
including the cases where= 0 andx = K, which leads to

DY) ~ K\G(A )" + KoG(Sp )y N*KEE-D2E 4 pK B X2/ L, (5.35)

whereK| is given by

2\ x (5.36)
= _pK7
and K is given by
K
2 K K—k HK — K
Ky = <H>p (1-p) PR (5.37)

Using (5.18) and (5.19) we can writeand N as a function of differential entropy
and side entropies, that is
I/2/L _ 22(%()()—1‘?,0)7 (538)

and

N2E/L(K-1) _ 9255 (Re—Rs) (5.39)
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whereR, = R;,i = 0,..., K — 1 denotes the side description rate. Inserting (5.38)
and (5.39) in (5.35) makes it possible to write the expectstbdion as a function of
entropies

D) ~ K G(A,)22 ()~ Fe)

o 12 2(h(X)—R, 2K_(R.—Rs) K 2 (5.40)
+ K3 G(Sy )22 ~Re)gr=x (Re= ) 4 pK ) X |12/ L,

where we see that the distortion due to the side quantizgrsndis only upon the
scaling (and dimension) of the sublattice but not upon whkidhlattice is used. Thus,
the side distortions can be expressed through the dimdasmnormalized second
moment of a sphere.

5.4.2 Optimaly, N and K

We now derive expressions for the optimal N and K. Using these values we are
able to construct the lattices. andA,. The optimal index assignment is hereafter
found by using the approach outlined in Section 5.3. Theieda combined with
their index assignment completely specify an optimal entroonstrained MD-LVQ
system.

In order for the entropies of the side descriptions to be Emuhe target entropy
Ry /K, we rewrite (5.19) and get

Ny = oL(W(X)—Rr/K) & T, (5.412)

wherer is constant. The expected distortion (5.40) may now be expressed as a
function ofv,

D) = K, G(A )t

. (5.42)
+ Koy} G(Sp)v?/ by mik0 ridn 4 K B X7/ L.
Differentiating w.r.t.v and equating to zero gives,
(K)
0= 0Dy
v
2 . vk 2 2 K \ ., AP ok 2k
—_ - - L(K—1) - L(K—1)
7 EG(Ae)— (L T 1) Koy G(S1)——v T ;
(5.43)

from which we obtain the optimal value of

L(K—1)

_ 1 KyG(Sp) K
v—1 <ﬁf1 G i) . (5.44)
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The optimalV follows easily by use of (5.41)

L(K—1)

B K GA) 1) ™
i <(K_ V7, G(SLW_%)

(5.45)

Eq. (5.45) shows that the optimal redundari¢ys, for fixed K, independent of the
sublattice as well as the target entropy.

For a fixedK the optimalr and N are given by (5.44) and (5.45), respectively,
and the optimal can then easily be found by evaluating (5.35) for variouseslof
K, and choosing the one that yields the lowest expected t@toThe optimalK’ is
then given by

Kopt = arg min DU K =1,..., Knax (5.46)

where Kmax i @ suitable chosen positive integer. In practi€evill always be finite
and furthermore limited to a narrow range of integers, whigtkes the complexity of
the minimization approach, given by (5.46), negligible.

5.5 Construction of Practical Quantizers

5.5.1 Index Values

Egs. (5.44) and (5.45) suggest that we are able to contihptade off central versus
side-distortions by adjustingy andv according to the packet-loss probability. This
is, however, not the case, since certain constraints mushpesed onN. First of
all, since N denotes the number of central lattice points within eactoNor cell of
the sublattice, it must be integer and positive. Second,emggire the sublattice to
be geometrically similar to the central lattice. Finallye wequire the sublattice to
be a clean sublattice, so that no central lattice points @ratéd on boundaries of
Voronoi cells of the sublattice. This restricts the amourad@missible index values
for a particular lattice to a discrete set, cf. Section 2.3.1

Fig. 5.3 shows the theoretically optimal index values {gaoring the fact thatv
belongs to a discrete set) for thle, quantizer, given by (5.45) fop;, = 1,1.1481
and 1.1762 corresponding tdX = 2,3 and4, respectively! Also shown are the
theoretical optimal index values when restricted to adiiissndex values. Notice
that the optimal index valu®&/ increases for increasing number of descriptions. This
is to be expected since a higher index value leads to lessidathgy; this redundancy
reduction, however, is balanced out by the redundancy asereesulting from the
added number of descriptions. In [103] we observed that faoadescription system,
usually only very few index values would be used (assumingr&am minimum
packet-loss probability). Specifically, for the two-dinségonal A, quantizer, only

“The valuey; = 1.1762 for K = 4 is estimated numerically by using the method outlined in
Appendix F.
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= = = K=2: TheoreticalV
—— K=3: TheoreticalV
————— K=4: TheoreticalV
— Admissible N

Index valueg N]

~
-
i R
e

40 50 60 70 80 90 100
Packet-loss probabilit{]

Figure 5.3: Theoretical optimal index values for thd, quantizer as a function of the
packet-loss probability. The thin solid lines are obtainbd restricting the theoretical
optimal index values given by (5.45) to be (optimal) adrblssivalues given by the set
N = {1,7,13,19,31,37,43,49,...}. The optimal admissible index values are those that
minimize (5.35) for a givep.

N € {1,7,13} was used, while for higher dimensional quantizers greati values
would be used. However, here we see that by increasing théeuof descriptions
beyondK = 2, it is optimal to use greater index values which adds morétfiéy to
the scheme.

From Fig. 5.3 it can be seen that when the continuous optind#x value is
rounded to the optimal admissible index value it is alwagsdiosest one from either
below or above. This means that, at least for thelattice, the optimal admissible
index value is found by considering only the two values cdbde the continuous
index value, and using the one that minimizes (5.35).

5.5.2 Constructing K-tuples

The design procedure for constructiAgtuples as described in Section 5.3.3 can be
summarized as follows:

1. Center a spheré at each\o € A, NV, (0) and construct all possibl&-tuples
(MNo,.. ., Ax_1) Wherel; € A,,i = 1,..., K — 1. This makes sure that all
K-tuples have their first coordinate,)) inside V;(0) and they are therefore
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shift invariant. We will only usei -tuples whose elements satigfy; — ), || <
r,Vi,j € {0,..., K — 1}, wherer is the radius of/. MakeV large enough so
that at leastV distinct K -tuples are found for eacky.

2. Construct cosets of eaéfi-tuple.

3. TheN? central lattice points it N V. (0) must now be matched to distinkt-
tuples. This is a standard linear assignment problem whaseane member
from each coset is (allowed to be) matched to a central éapt@nt inV; (0).

The restriction|A; — A;|| < r from step 1) which is used to avoid bias towards any
of the sublattices, reduces the numbe#Gtuples that can be constructed within the
spherel’. To be able to formV K-tuples it is therefore necessary to use a sphere
with a volume larger than the lower bound (5.26). This erdargnt is exactly given
by 1. As such, for each,, we form (at least)V K -tuples and thes& -tuples are the
ones having minimum norm. We show later (see Lemma 6.2.3tarmtaof) that we
actually form all suchx -tuples of minimal norm which implies that no othErtuples
can improve the SPSD.

5.5.3 AssigningK-Tuples to Central Lattice Points

In order to assign the set df-tuples to theN? central lattice points we solve a
linear assignment problem. However, for larye the problem becomes difficult
to solve in practice. To solve a linear assignment problermore specifically a
bipartite matching problem, one can make use of the Hunganigthod [78], which
has complexity of cubic order. Hence, if the Hungarian metisoused to solve the
assignment problem the complexity is of ord&iN°®). We would like point out that
letting N, = N? is a convenient choice, which is valid for any lattice. Hoamg\it

is possible to letV,, = N¢&, where bothV and¢ are admissible index values. In this
caseN, is also guaranteed to be an admissible index value by LemBnha. 2f£ = 1
thenN,, = N, which is a special case whe¥g (0) contains a single sublattice point
Ao Of A,.42 With N, = N¢, the complexity is reduced t6'(N?3).

Vaishampayan et al. observed in [120,139] that the numbegmtfal lattice points
to be labeled can be reduced by exploiting symmetries inatiieés. For example,
one can form the quotieny?-module A/A. and only label representatives of the
orbits of A/A . /T', wherel is a group of automorphisms, cf. Chapter 2. While only
two descriptions were considered in [139] it is straightafard to show that their idea
also works in our design for an arbitrary number of desaimi This is because

“2Practical experiments have shown that having too few stid#gpoints inV; (0) leads to a poor index
assignment. Theoretically, we do not exclude the possilifiat N = N, since we only require that’
contains a large number of sublattice points but such aaiois not imposed of: (0). However, in the
following chapter, where we consider the asymmetric cageh@re are several index values), the special
case is not allowed.
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we design the sublattices and product lattices as deschib€thapter 2, hence the
notion of quotient modules and group action are well defirgidce the order of the
groupT" depends on the lattices but is independeniNgfthe complexity reduction
by exploiting the symmetry of the quotient module is a conistaultiplicative factor
which disappears in the order notation.

Alternatively, Huang and Wu [65] recently showed that forrtam low
dimensional lattices it is possible to avoid the linear@ssient problem by applying
a greedy algorithm, without sacrificing optimality. The qalexity of the greedy
approach is on the order 6f(N), which is a substantial improvement for lariye

In the present work we show that the assignment problem gayalbe posed and
solved as a bipartite matching problem. This holds for attyckin any dimension
and it also holds in the asymmetric case to be discussed ipt&hé. In a practical
situation it might, however, be convenient to compute thggasnents offline and
tabulate for further use.

5.5.4 Example of an Assignment

In the following we show a simple assignment for the cas& of 2, N = 7 and the
Ag lattice. SinceV = 7 we haveN,, = 49 and as such there is 49 central lattice points
within V. (0), see Fig. 5.4. The individual assignments are also showalieTs.2.

The assignments shown in Table 5.2 are obtained by usingtivegure outlined
in Section 5.5.2. Since we havg, = 49 and K = 2 it follows that we have 7
sublattice points of\; within V,;(0) (one of them is the origin). Let us denote this set
of sublattice points by, .

1. Center a sphef¥ at the first element oF)_, i.e. the origin. Pick the candidate
sublattice points o\, i.e. those which are contained withihn A. We make
sure that the radius of the sphere is so large that it conigifs). Thus, we
have at least as many sublattice point¥i@s inV, (0). Then form all possible
distinct edges (2-tuples) having the origikg) as first coordinate and; <
Vx(Xo)NA; as second coordinate. Notice that we have at [¥astiges. Repeat
this for the remaining elements @, so that we end up having at least;
edges in total.

2. Form the coset of each edge. Specifically, construct thenfimg set of edges:
Cosetro, A1) = {(Mo + Ar, A+ Ax) A € Ag) (5.47)

In practice we restrict each coset to contain a finite numibelements. In
fact, we usually only require that the cardinality of the etssis greater than
R(Ay), the kissing number of the lattice. The product lattice poive use
when constructing the cosets are thensifia ) + 1 points of smallest norm.
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Figure 5.4: A central latticeA. (dots) based on the, lattice and a sublatticé\ s (circles) of
index 7. The hexagonal region (dashed lines) descrilig®). The solid lines connect pairs
of sublattice points (also called 2-tuples or edges) anddbtted lines connect each edge to
a central lattice point. A total of 49 edges (some overlapdagh other) are shown and these
edges are associated with the 49 central lattice pointsaoet withinV; (0).

3. If we have more edges than central lattice points we initeddummy” central
lattice points. In this way we have an equal amount of edgdsantral lattice
points. The assignment of edges to central lattice pointsois a straight
forward bipartite problem, where the costs of the dummy sade set to zero,
so that the optimal solutions are not affected. We note thigtane element of
each coset is used. In this way we preserve the shift invegignoperty of the
assignments. We only keep th&. assignments belonging taue central lattice
points and as such we discard the assignments (if any) thatdp® “dummy”
nodes.

In Appendix G we show part of a complete assignment of a monepticated
example.

5.6 Numerical Results

In this section we compare the numerical performances ofdinensional entropy-
constrained MD-LVQ (based on th&; lattice) to their theoretical prescribed perfor-
mances.
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Ae Ao A Ac Ao A1
(-1, 3.46) (-1,5.2) (-0.5, 2.6) (0, 0) (0, 0) (0, 0)
(0,3.46)  (1.5,4.33) (-0.5,2.6) (1,0) (2.5,-0.87) (0, 0)
(-1.5,2.6)  (-3,3.46)  (-0.5,2.6) (2,0) (2,1.73)  (2.5,-0.87)
(-0.5,2.6) (-0.5,2.6) (-0.5,2.6) (3,0) (4.5,0.87) (2.5,-0.87)
(0.5, 2.6) (2,1.73) (-0.5,2.6) (-2.5,-0.87) (-2.5,0.87) (-2,-1.73)
(15,2.6)  (1.5,4.33) (2,1.73)  (-1.5,-0.87) (-2,-1.73) (0, 0)
(2.5,2.6) (4, 3.46) (2,1.73)  (-0.5,-0.87) (0,0) (-2,-1.73)
(-3,1.73) (-3,3.46) (-2.5,0.87) (0.5,-0.87) (0.5, -2.6) (0, 0)
(-2,1.73)  (-25,0.87) (-0.5,2.6) (1.5,-0.87) (0,0 (2.5, -0.87)
(-1,1.73)  (-0.5,2.6) (-2.5,0.87) (2.5,-0.87) (2.5-0.87) (2.5,-0.87)
(0,1.73) (0, 0) (-0.5,2.6)  (35,-0.87) (5,-1.73) (2.5,-0.87)
1,1.73) (-0.5, 2.6) (2,1.73) (-3,-1.73)  (-4.5,-0.87) (-2, -1.73)
(2,1.73) (2,1.73) (2,1.73) (-2,-1.73)  (-2,-1.73)  (-2,-1.73)
(3,1.73) (4.5, 0.87) (2,1.73) (-1,-1.73)  (0.5,-2.6)  (-2,-1.73)
(-35,0.87) (-5,1.73) (-2.5,0.87)  (0,-1.73) (0, 0) (0.5, -2.6)
(-2.5,0.87) (-2.5,0.87) (-2.5,0.87) (1,-1.73) (0.5,-2.6) (2.5,-0.87)
(-1.5,0.87) (0, 0) (-2.5,0.87)  (2,-1.73)  (2.5,-0.87) (0.5, -2.6)
(-0.5,0.87)  (-0.5, 2.6) (0, 0) (3,-1.73) (3,-3.47)  (2.5,-0.87)
(0.5, 0.87) (0,0) (2,1.73) (-2.5,-2.6)  (-4,-3.47)  (-2,-1.73)
(1.5,0.87)  (2,1.73) (0, 0) (-1.5,-2.6) (-1.5,-4.33) (-2,-1.73)
(2.5,0.87) (2.5,-0.87) (2, 1.73) (-0.5,-2.6)  (-2,-1.73)  (0.5,-2.6)
(-3,0)  (-4.5,-0.87) (-2.5,0.87) (0.5,-2.6) (0.5-2.6) (0.5, -2.6)
(-2, 0) (-2,-1.73)  (-2.5,0.87)  (1.5,-2.6) (3,-3.46)  (0.5,-2.6)
(-1,0) (-2.5,0.87) (0, 0) (0,-3.46)  (-1.5,-4.33) (0.5,-2.6)
(1, -3.46) (1,-5.2) (0.5, -2.6)

Table 5.2: A complete assignment for the 49 central lattice points @oed withinV: (0) for
the case o =2andN = 7.

5.6.1 Performance of Individual Descriptions

In the first experiment we design three-channel MD-LVQ bazethe A, quantizer.

We quantize an i.i.d. unit-variance Gaussian source whasheen blocked into two-
dimensional vectors. The number of vectors used in the @rpet is2 - 10°. The

entropy of each side description is 5 bit/dim. and we varyitklex value in the range
31 — 67. The dimensionless expansion factoyr is set t01.14808, see Table 5.1.
The numerical and theoretical distortions when receivinty @ single description
out of three is shown in Table 5.3. Similarly, Table 5.4 shokes distortions of the
same system due to reception of two out of three descriptiodsTable 5.5 shows
the performance of the central quantizer when all threerig#gms are received.
The column labeled “Avg.” illustrates the average distortof the three numerically
measured distortions and the column labeled “Theo.” desstihe theoretical distor-
tions given by (5.34). It is clear from the tables that theteysis symmetric; the
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achieved distortion depends on the number of received igéistis but is essentially
independent ofwhich descriptions are used for reconstruction. The numerically
measured discrete entropies of the side descriptions avensih Table 5.6.

N Ao A1 A2 Avg. Theo.

31 —-25.6918 —25.6875 —25.6395 —25.6729 —24.8853
37 —24.5835 —24.5324 —24.5404 —24.5521 —24.5011
43  —24.5772 —24.5972 —24.5196 —24.5647 —24.1748
49 —24.2007 —24.2837 —24.2713 —24.2519 —23.8911
61 —23.8616 —23.9011 —23.8643 —23.8757 —23.4155
67 —23.7368 —23.7362 —23.7655 —23.7462 —23.2118

Table 5.3: Distortion (in dB) due to reception of a single descriptiaut of three.

N S(Ao+ A1) 5(Xo+A2) (A1 4+ X2)  Avg.

Theo.

31 —30.7792
37 —29.8648
43 —29.9087
49 —29.6290
61 —29.3076
67 —29.1752

—30.7090 —30.7123 —30.7335
—29.8430 —29.9472 —29.8850
—29.8749 —29.9641 —29.9159
—29.5577 —29.6662 —29.6176
—29.2185 —29.3715 —29.2992
—29.2128 —29.2151 —29.2010

—30.9059
—30.5217
—30.1954
—29.9117
—29.4361
—29.2324

Table 5.4: Distortion (in dB) due to reception of two descriptions ofittoee.

N Ae Theo.

31 —43.6509 —43.6508
37 —44.4199 —44.4192
43 —45.0705 —45.0719
49 —45.6401 —45.6391
61 —46.5879 —46.5905
67 —46.9992 —46.9979

Table 5.5: Distortion (in dB) due to reception of all three description

The distortions shown in Tables 5.3 to 5.5 correspond to dse evhere we vary
the index valueV throughout the rangé7 > N > 31 for three-channel MD-LVQ
operating atR; = 5 bit/dim. per description. To achieve similar performandthw
a (3,1) SCEC we need to vary the correlatignwithin the interval—0.49 < p, <
—0.45, as shown in Fig. 5.5.
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N /\0 )\1 )\2

31 5.0011 5.0012 5.0012
37 49925 4.9982 4.9988
43 4.9967 5.0006 5.0006
49 4.9993 5.0004 5.0004
61 5.0018 5.0017 5.0017
67 5.0023 5.0022 5.0022

Table 5.6: Numerically measured discrete entropies [bit/dim.] foe fihdividual descriptions.
Here the target description rate is set to 5 bit/dim.

5.6.2 Distortion as a Function of Packet-Loss Probability

We now show the expected distortion as a function of the geoks probability for
K-channel MD-LVQ wherei = 1,2,3. We block the i.i.d. unit-variance Gaussian
source int®-10° two-dimensional vectors and let the total target entrop§ bi/dim.
The expansion factor is set i = 1 for K = 1,2 and, = 1.14808 for K = 3.
We sweep the packet-loss probabilityn the rangep € [0; 1] in steps of 1/200 and
for eachp we measure the distortion for all admissible index valuebiee that index
value which gives the lowest distortion. This gives rise icoperational lower hull
(OLH) for each quantizer. This is done for the theoreticales as well by inserting
admissible index values in (5.35) and use that index vala¢ diives the lowest
distortion. In other words we compare the numerical OLH itk theoretical OLH
and not the “true® lower hull that would be obtained by using the unrestrictetek
values given by (5.45). The target entropy is evenly diatad overK descriptions.
For example, for' = 2 each description uses 3 bit/dim., whereas&br= 3 each
description uses only 2 bit/dim. The performance is showiign 5.6. The practical
performance of the scheme is described by the lower hull @ffhcurves. Notice
that at higher packet-loss probabilitigs% 5%) it becomes advantageous to use three
descriptions instead two.

It is important to see that when the distortion measure issipected distortion
based on the packet-loss probability, then the notion of m@solution is slightly
misleading. For example, if we let the rate go to infinity, rthfer a given fixed
packet-loss probability the only contributing factor to the expected distortiorhis t
distortion due to the estimation of the source when all peciee lost. This term is
given by%E||X||2pK so that for a unit-variance source, in the asymptotic case of
R — oo, the expected distortion is simply given B§10 log,,(p) dB. In other words,
with a packet-loss probability of 10%, if the number of paskis increased by one,

43A lattice is restricted to a set of admissible index valudsis et is generally expanded when the lattice
is used as a product quantizer, hence admissible indexsvalaser to the optimal values given by (5.45)
can in theory be obtained, cf. Section 2.3.1.
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Figure 5.5: The simultaneously achievable one-channel, two-channel three-channel

distortions for the unit-variance Gaussian source at 5ditt. for —0.49 < p, < —0.45
fora(3,1) SCEC.

then the corresponding decrease in distortion is exactBLOe have illustrated this
inFig.5.7forKk =1,...,5.

5.7 Conclusion

We derived closed-form expressions for the central andaidatizers which, at high-
resolution conditions, minimize the expected distortidracsymmetricK-channel
MD-LVQ scheme subject to entropy constraints on the siderg®ons for given
packet-loss probabilities. The expected distortion olkestrat the receiving side
depends only upon the number of received descriptions hotlependent of which
descriptions are received. We focused on a special case sythmetric MD problem
where only a single parameter (i) controls the redundancy tradeoffs between the
central and the side distortions. We showed that the optimalunt of redundancy is
in independent of the source distribution, the target ratkthe type of lattices used
for the side quantizers.

The practical design allows an arbitrary number of desonyst and the
optimal number of descriptions depends (among other factgron the packet-loss
probability. The theoretical rate-distortion results eeroven for the case df < 3
descriptions and conjectured to be true in the general dabitrary K’ descriptions.
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Figure 5.6: Distortion as a function of the packet-loss probability fbe A; quantizer. The
target entropy is 6 bit/dim., so each description gets 6/#dbh. Thick lines show numerical
performance and thin solid lines show theoretical perfonee& The two curves at the top
(coinciding) illustrate the case dk = 1, the two curves in the middle illustrate the case of
K = 2, and the bottom two curves illustrate the casd<of= 3 descriptions.
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Figure 5.7: Estimation error + E|| X||*p™ as a function of the packet-loss probability for
different number of descriptions. The top curve is for= 1, the second from the top is
for K = 2, and so on. The bottom curve is f&r = 5.






Chapter

K-Channel Asymmetric Lattice
Vector Quantization

In this chapter we will focus on asymmetric MD-LVQ fdk > 2 descriptions,
see Fig. 6.1. Asymmetric schemes offer additional flexipitiver the symmetric
schemes, since the bit distribution is also a design paemaetd different weights
are introduced in order to control the distortions. In fagtmmetric MD-LVQ is a
special case of asymmetric MD-LVQ.

In [27, 28] asymmetric two-channel MD-LVQ systems are dedivsubject to
entropy constraints on the individual side entropies. Haxgesince these schemes
are subject to individual side entropy constraints and abjext to a single constraint
on the sum of the side entropies, the problem of how to digtieila total bit budget
among the two descriptions is not addressed. In this chageterive MD quantizer
parameters subject to individual side entropy constraamid/or subject to a total
entropy constraint on the sum of the side entropies. We thew shat the optimal
bit distribution among the descriptions is not unique buhifact characterized by a
set of solutions, which all lead to minimal expected distort

For the case of{ = 2 our design admits side distortions which are superior to the
side distortions of [27, 28] while achieving identical cehtdistortion. Specifically,
we show that the side distortions of our design can be expdesisrough the
dimensionless normalized second momeéti,) of an L-sphere whereas the side
distortions of previous asymmetric designs [27, 28] dependhe dimensionless
normalized second moment(A) of the L-dimensional lattices. More accurately,
the difference in side distortions between the two schemg#/en by the difference
betweenG(SL) and G(A). Notice thatG(SL) < G(A) with equality forL = 1
and for . — oo by a proper choice of lattice [161], cf. Section 3.3.1. Weoakow
that, for the case o’ = 3 and asymptotically in lattice vector dimension, the side

93
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distortions can again be expressed throGgl,) and we further conjecture this to be
true for K > 3 descriptions.

‘ Description 0 }L>

— Ry \
Description 1 Erasure 5
s e e S LB
: Channel:/

Descriptionx —1 Rioa

Figure 6.1: General K-channel system. Descriptions are encoded at an entrogy; of =
0,...,K — 1. The erasure channel either transmits ti& description errorless or not at all.

6.1 Preliminaries

To be consistent with the previous chapter we will here ohiie the set of lattices
required for the asymmetric design and emphasize how tfiey ttiom the symmetric
design.

Just as in the symmetric case we use a single lafticas the central quantizer.
However, we will make use of several sublattices: = 0,..., K — 1 for the side
guantizers. In fact, we use one side quantizer (sublattare@ach description. We
assume that all sublattices are geometrically-similakt@nd clean. The sublattice
index of theit" sublatticeA; is given byN; = |A./A;|, N; € Z*. The volumey;
of a sublattice Voronoi cell in th&” sublattice is given by; = N;v, wherev is the
volume of a Voronoi cell ofA.. As in the symmetric case we will also here make
use of a product latticd,, C A; C A. of index N, = |A./A| in the design of the
index-assignment map.

The general framework of asymmetric MD-LVQ is similar to gyanmetric case.
We use a single index-assignment mapwhich maps central lattice points t@-
tuples of sublattice points. The main difference is thathe asymmetric case the
sublattice index valuesy;,7 = 0, ..., K — 1, are not necessarily equal, which means
that the side descriptions ratdg are not necessarily equal either. Furthermore,
the weights for the case of receivingout of K descriptions depend upon which
x descriptions are considered. This was not so in the symoreztse.

6.1.1 Index Assignments

The index assignment map (or labeling function) differavfrthe symmetric case
in that it maps from a single lattice to several distinct sttites. Specifically, let
« denote the labeling function and let the individual compurfanctions ofa be
denoted byy;. The injective mapy that maps\. into Ag x --- x A1, is then given



Section 6.1 Preliminaries 95

by

a(Ae) = (ap(Ae), a1 (Ae), -y ax—1(A)) (6.1)
:()\OaAla"'aAK—l)a (62)

whereq;(A\.) = \; € A;andi =0,..., K — 1.

We generalize the approach of the previous chapter andrashatproduct lattice
A which hasN, central lattice points andV,./N; sublattice points from the!”
sublattice in each of its Voronoi cells. The Voronoi célls of the product lattice
A, are all similar so by concentrating on labeling only centa#tice points within
one cell, the rest of the central lattice points may be labsieply by translating
this cell throughouR”. Without loss of generality we eV, = Hf(:gl N;, i.e. by
construction we lef\ . be a geometrically-similar and clean sublatticé\pfor all ;.4
With this choice ofA , we only label central lattice points withi, (0), which is the
Voronoi cell of A, around the origin.

6.1.2 Rate and Distortion Results

The central distortiorD,. is identical to that of a symmetric system, which is given
by (5.13). It also follows from the symmetric case see (5thd} the side distortion
for thei'" description is given by
2L S pe—awalt i=0.. K—1  (63)
L N, ’ R

Ac€ Vi (0)

D, =D.+

Definition 6.1.1. R, denotes the entropy of the individual descriptions. Theogyt
of thei*" description is defined aB; = H(a;(Q(X)))/L.

The side descriptions are based on a coarser lattice odtayneraling the Voronoi
cells of the central lattice by a factor 6f;. Assuming the pdf oX is roughly constant
within a sublattice cell, the entropies of the side desmms are given by

1

R;
L

Q

h(X) log, (N;v). (6.4)

The entropies of the side descriptions are related to the@niR. of the central
guantizer, given by (5.18), by

1
Ri~ R, — 7 log, (Ni).

44From Lemma 2.3.1 it follows that the product of admissibléex values leads to an admissible index
value.
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6.2 Construction of Labeling Function

In this section we construct the index-assignment mawhich takes a single vector
A. and maps it to a set ok vectors{\;},i = 0,..., K — 1, where); € A;. The
mapping is invertible so that we hawg = a=(X\g, ..., Ak _1).

In asymmetric MD-LVQ weights are introduced in order to gohthe amount
of asymmetry between the side distortions. We will in thdofglng assume that
these weights are based on the packet-loss probabilittee afidividual descriptions.
However, it should be clear that the weights are not limitedepresent packet-loss
probabilities but can in fact be almost arbitrarily chos&¥e will consider the case
where the index-assignment map is constructed such thatxpected distortion,
given by the sum of the distortions due to all possible desion losses weighted
by their corresponding loss probabilities, is minimized.

In addition to knowing the weighted distortion over all deéystion losses it is also
interesting to know the distortion of any subset of tiedescriptions. This issue is
considered in Section 6.5.

6.2.1 Expected Distortion

At the receiving side X € R’ is reconstructed to a quality that is determined by
the received descriptions. If no descriptions are receivedeconstruct using the
expected valueF X, and if all K descriptions are received we reconstruct using the
inverse mapx—*(\o, ..., A1), hence obtaining the quality of the central quantizer.
In all other cases, we reconstruct to the average of theuweat@iescriptions as was
done in the symmetric case.

There are in general several ways of receiviraut of K descriptions. Letz’ (%:%)
denote an index set consisting of all possibleombinations out of0, ..., K —1} so
that|.2 %) = (%), We denote an element ¢f %) by | = {ly,...,l.—1}. The
complement® of [ denotes thé{ — « indices not inl, i.e.i® = {0,..., K — 1}\L.
We will use the notatio%(K’“) to indicate the set of all € .#%) that contains
the indexi, i.e., £ = {i : 1 € £ %) andi € 1} and similarly,%ff’“) =
{1 :1e 25" andi,j € I}. Furthermore, lep; be the packet-loss probability
for thei*" description and let;; = 1 — p; be the probability that thé” description
is received. Finally, lep(l) = [T;e; pi [1jese s D(L) = 32 g D),
p(L By = et (1) andp(.Z ")) = 31e 20 p(l). For example, for
K =3 andx = 2 we have?®? = {{0,1},{0,2},{1,2}} and hence(.£?)) =
Hof1p2 + popepr + papepo- In a similar manner foK = 6 andx = 3 we have

257 = {{0,1,2},{1,2,3},{1,2,4}, {1,2,5}},
and

6,2
(&, 1(,2 )) = o1 42P3P4Ps + H1 b2 t3PoPAPs + L1 2 haPoP3Ps + 41 12 b5 PoP3PA-
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As in the symmetric case, upon reception of anyput of K descriptions we
reconstruct taX using
. 1
=— E Aj.
K 7

jel
The distortion when receiving a set of descriptions can b&/eld in a similar way
as was done in the symmetric case. Thus, by use of (5.14) aB) ifecan be
shown that the norm of (6.3), when receiving descriptiorend j, should read

| Ac = 0.5(c;(Ae) + v (Ae))||?. It follows that the expected distortion when receiving
x out of K descriptions is given by

Kk—1
1
(K,I{) ~ —_— PR —
DI Y pl) LN Z S B
le L (K,rK) eV (0) 7=0
(6.5)
Kk—1 2
o 1
= p(£5)D, ZN_ o> p) )\C_EZAIJ‘ ;
A€V (0) l€.L (K m) j=0
where);; = al (M) and the two special Casase {0, K'} are given bnyzK’O) &

LE|X|P T piand D) ~ DT o

6.2.2 Cost Functional
(K k)

From (6.5) we see that the distortian,, may be split into two terms, one
describing the distortion occurring when the central gizants used on the source,
and one that describes the distortion due to the index asgigh An optimal
index assignment minimizes the second term in (6.5) for adisfble combinations
of descriptions. The cost functiondl*) to be minimized by the index-assignment
algorithm can then be written as

K-—1
JE) — Z J(K-ﬁ)’ (6.6)
where
rk—1 2
1
JED = —— 3" N ) re— =D N, - (6.7)
T A EVa(0) Le. P (Kom) Ri20

The cost functional should be minimized subject to someopgtconstraints on the
side descriptions or on e.g. the sum of the side entropieseWark here that the side
entropies depend solely anand N; (see (6.4)) but not on the particular choice of
K-tuples. In other words, for fixed/;'s and a fixedv the index assignment problem
is solved if (6.6) is minimized. The problem of choosingnd N; such that certain
entropy constraints are not violated is independent of #sgament problem and
deferred to Section 6.4.
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Theorem 6.2.1.For anyl < x < K we have

IDIE] 1S Y

Ac leLUKr) 7=0

4 J _ (K,k) oy 2
(LK) p(-fi,j )) A = Ajll )

Proof. See AppendixI.1. O

The cost functional (6.6) can by use of Theorem 6.2.1 beevritis

K—1 2

11 1
K,k) __ K,k . (K-ﬁ)
J )_ZN_ Z (p(f( )) )\C_WZ)\ZM% )
T AEVR(0) i=0
K—2 K-1 (Kn) (K,k)
+ Z Do = ||2< 2 ,K>J) —p(£5) )
0 j=i+1

(6.8)

The first term in (6.8) describes the distance from a ceratéte point to the weighted
centroid of its associatefl -tuple. The second term describes the weighted sum of
pairwise squared distances (WSPSD) between elements Af-thiple. In Section 6.3
(Proposition 6.3.2) we show that, under a high-resolutesuenption, the second term

in (6.8) is dominant, from which we conclude that in order tmimize (6.6) we must
useK -tuples with the smallest WSPSD. Theletuples are then assigned to central
lattice points in such a way, that the first term in (6.8) is imized.

6.2.3 Minimizing Cost Functional

We follow the approach of the symmetric case and center amégiat all sublattice
pointsAg € Ay N V;:(0), and construci-tuples by combining sublattice points from
the other sublattices (i.e\;,i = 1,..., K — 1) within V()\) in all possible ways
and select the ones that minimize (6.6). For eaghe Ao N V;(0) it is possible
to constructH N 1\7 K-tuples, whereV; is the number of sublattice points from
the i** sublattice within the regiof’. This gives a total of N, /No) [T~;" Ni K-
tuples when all\g € Ag N V;(0) are used. The numbé¥; of lattice points within a
connected regiol’ of R” may be approximated hy; ~ 7/v; wherer is the volume
of V, which is an approximation that becomes exact as the nunftsirells of the
lattice within V' goes to infinity, cf. Section 5.3.3. Therefore, our analysisnly
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exact in the asymptotic case 8f;, — oo andvy; — 0. SinceN; ~ v/vN; and we
needN, K-tuples for each\, € V;(0) we see that

so in order to obtain at leadf, K-tuples, the volume of” must satisfy

K-1
Jlim >y [T v/, (6.9)
oo i=0

For the symmetric case, i.& = N;,i = 0,..., K — 1, we havey > v NK/(E-1),
which is in agreement with the results obtained in Chapter 5.

Before we outline the design procedure for constructing atin@l index
assignment we remark that in order to minimize the WSPSD dwertva fixed\; and
the set of point§\; € A; NV} itis required that/ forms a sphere centered st
The design procedure can be outlined as follows:

1. Center a spheréf at each\g € Ao N V,(0) and construct all possiblé&’-
tuples(Xo, A1, ..., Ax_1) wherel; € A; NV (\o) andi = 1,..., K — 1. This
ensures that all(-tuples have their first coordinatg) insideV,(0) and they
are therefore shift-invariant. We will only ugé-tuples whose elements satisfy
|Xi — A\j|l <7,Vi,5 €0,... K — 1, wherer is the radius o/. MakeV large
enough so at leasY, distinct K-tuples are found for eacky.

2. Construct cosets of eadfi-tuple.

3. TheN, central lattice points itA. NV, (0) must now be matched to distin&t-
tuples. As in the symmetric case, this is a standard linesigiasent problem
[151] where only one member from each coset is (allowed tovahed to a
central lattice point iri/;(0).

The restriction|A; — A;|| < r from step 1), which is used to avoid bias towards
any of the sublattices, reduces the number of distiti¢tiples that can be constructed
within the regionl/. To be able to formV, K-tuples it is therefore necessary to use a
regionV with a volume larger than the lower bound in (6.9). In ordethieoretically
describe the performance of the quantizers we need to knewtimal?, i.e. the
smallest volume which (asymptotically for lardgé) leads to exactlyV, K-tuples.

In Section 5.3.3 a dimensionless expansion fagtomwhich only depends o™ and
L was introducedz);, was used to describe how muthhad to be expanded from
the theoretical lower bound (6.9), to make sure tNgtoptimal K -tuples could be
constructed by combining sublattice points within a regian

Lemma 6.2.1. The dimensionless expansion factor for the asymmetric case is
identical to the one for the symmetric case.
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Proof. Follows by replacing the constant by v; in the proof of Theorem 5.3.2.
O

Adopting this approach leads to

D= wguli"[l NH/ED,
=0
Remark6.2.1 It might appear that the shift invariance restriction enéar by using
only one member from each coset will unfairly penalizg However, the next two
lemmas prove that, asymptotically 38 — oo, there is no bias towards any of the
sublattices. We will consider here the casdof> 2 (for K = 2 we can use similar
arguments as given in [28]).

Lemma 6.2.2. For K > 2 the number ofK-tuples that is affected by the coset
restriction is (asymptotically ad’; — oo, Vi) neglectable compared to the number
of K-tuples which are not affected.

Proof. See Appendix I.4. O

Lemma 6.2.3. The set of N, K-tuples that is constructed by centerifigat each
Ao € V(0) N Ay is asymptotically identical to the set constructed by cemgel” at
each); € V;(0) N A, foranyi € {1,..., K —1}.

Proof. See Appendix I.4. O

Remark6.2.2 The K -tuples need to be assigned to central lattice points withii).
This is a standard linear assignment problem where a cossureds minimized.
However, solutions to linear assignment problems are gdigeiot unique. Therefore,
there might exist several labelings, which all yield the samst, but exhibit a different
amount of asymmetry. To achieve the specified distortionsay then be necessary
to e.g. use time sharing through a suitable mixing of lalgslin

6.2.4 Comparison to Existing Asymmetric Index Assignments

In this section we have presented a new design for asymnhBitVQ based on the
asymmetric design of Diggavi et al. [28]. The main differefetween the existing
design of Diggavi et al. and the proposed design is that okttape of the region
within which sublattice points are distributed. More sfieaily, in the design of
Diggavi et al., a given sublattice poiny € Ay is paired with a set of sublattice
points of A; which are all evenly distributed within a Voronoi cell 4f;, the product
lattice. However, in the proposed design, a sublatticetpajre Ay is paired with a
set of sublattice points af; which are all evenly distributed within alxdimensional
hypersphere.

Let us emphasize some of the advantages as well as weakoésiseproposed
design.
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e Advantages

1. The side distortion is reduced (compared to the previassgd) when
finite dimensional lattice vector quantizers are used (wherdimension
is strictly greater than one). To see this, notice that tte distortion is
a function of the dimensionless normalized second mometiteofegion
over which the sublattice points are distributed. For= 1 as well as
L — oo spheres pack space and it is possible to have spherical Moron
cells of A by a proper choice of product lattice.

2. To simplify the design it is often convenient to base thedpict lattice
upon the simple hypercubig’ lattice. In this case, the side distortion
of the design of Diggavi et al. is independent of the vectonatision
of the lattices, whereas with the proposed design the distosteadily
decreases as the dimension increases. The reduction idistdetion is
upper bounded by approximately 1.53 dB per description.

3. The proposed design scales easily to more than two désosplt is not
clear how to obtain more than two descriptions with the presidesigns.

o \Weaknesses

1. The design of Diggavi et al. exploits several geometrapprties of the
underlying lattices to ensure that any single sublattidetgd A is paired
with exactly Ny sublattice points ofA;. On the other hand, the proposed
design guarantees such a symmetry property only in asyroptases.
Thus, in practice, if such a symmetry property is desire@, might need
to search within a set of candidate solutions.

6.3 High-Resolution Analysis

In this section we derive high-resolution approximatiomsthe expected distortion.
In line with the high-resolution analysis presented in Ghap we letN; — oo and
v; — 0, i.e. for each sublattice the index increase, while the wawf their Voronoi
cell shrink.
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6.3.1 Total Expected Distortion

Using Theorem 6.2.1, the expected distortion (6.5) wheut of K descriptions are
received can be written as

rk—1

1 1
(K.K) o (K,k) - _ =
D) = p(L ") Do+ 2 N S > p) | Z A,
Ac€VR(0) le L (K r) j:0
=p("9) D
11 1 Kl (K, k) ’
L (K,k) _K,m
D D (] P D B
AcEVR(0) i=0
K-2 K—1 (K.r) (K;k)
v L (p(gi P2 ) I a2
K2 4 L p(Z(K,n)) 4,3 o ’
=0 j=1i+1

(6.10)

Proposition 6.3.1. For K = 2 and asymptotically a®V; — oo,r; — 0 as well as
for K = 3 and asymptotically a®’;, L — oo andy; — 0, we have for any pair of
sublattices(A;, A;), 4, =0,...,K —1, i # j,

K-1
1
= 2l = ()2 = vivHEG(S LN T] NE/EED,
AcEVR(0) m=0
Proof. See Appendix I.2. O

Conjecture 6.3.1. Proposition 6.3.1 is true for ankf asymptotically ad., N; — o
andy; — 0, Vi.

Proposition 6.3.2. For N; — oo we have

K—1
Z Z p KH)
f)
Ac€VR(0) =0 -0
K-2 K—1 g(KK) (%(K )) Kor) ,
> > &) —p(Z ;) | 1A = Al
Ac€VR(0) =0 j=i+1
Proof. See Appendix I.3. O

By use of Propositions 6.3.1 and 6.3.2 and (5.13) it follohet (6.10) can be
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written as

Foar > ig O G = (L)) a2
L N, K2 p(Z(K,n)) P2 v J
K

Ae€ Vi (0) i=0 j=it+1
—1
~ G (L) 4 2GSy g0 T] N2HHD),

m=0

where3(¥-%) depends on the packet-loss probabilities and is given by

K-2 K—1 g(Kﬁ))p(g(K,n))
K.x) _ (K,r)
B S S |

1=0 j=1+1
The total expected distortiaB'’ is obtained by summing overincluding the cases
wherex = 0 andk = K,

K-1
D) = G Pp(L ) + v P G(SL) [T N3 HED 00
m=0

Ko (6.11)
+ = EHXH2 I1 »:
=0
where
K
L) = p(g o)
k=1
and

BU) — Zﬁ K.r)

Using (5.18) and (6.4) we can wrlteanle as a function of differential entropy

and side entropies, that is )
2L — 92(h(X)=Re)

and

K—-1
H Nf/L(K_l) — 2;?},(1 (Rc*% POHIrS Ri).
=0

Inserting these results in (6.11) leads to

D) x G(A)22MX)=Re) (KD

K-1
U3 G(8,)2 OO (R B R) 500 4 g x )2 T
1=0

(6.12)

where we see that the distortion due to the side quantizéndépendent of the type
of sublattices.
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6.4 Optimal Entropy-Constrained Quantizers

In this section we first derive closed-form expressionslieraptimal scaling factors
v andN; subject to entropy constraints on theside descriptions. With these scaling
factors we are able to construct a central lattice Anslublattices. The index assign-
ments are then found using the approach outlined in SectnThe central lattice
and theK side lattices combined with their index assignment map detaly specify
an optimal scheme for asymmetric entropy-constrained M@ LWe then consider
the situation where the total bit budget is constrainedweefind the optimal scaling
factors subject to entropy constraints on the sum of theesidipies) , R; < R*,
whereR* is the target entropy. We also find the optimal bit distribontamong theé<
descriptions.

6.4.1 Entropy Constraints Per Description

We assuméX descriptions are to be used. Packet-loss probabilities= 0, ..., K —
1, are given as well as entropy-constraints on the side desorp i.e.R; < R},
whereR; are known target entropies. To be optimal, the entropieseo$ide descrip-
tions must be equal to the target entropies, hence by use)ff@ must have that

R;=h(X)— %logQ(Nil/) =R},

from which we get

Nil/ = 2L(h(X)—Rf) = Ti, (613)

wherer; are constants. It follows thay; = 7;/v and since]_[fig1 Nf/L(K_l) =

y 2K/ LK -1 TR 1 22/ EK=1) e can express (6.11) as a functionsf.e.

DU =~ G(A ) Lp( 2T
. 1 K-—1
+ wiwaG(SL)V—QK/L(K—I)TQ/L(K—I)ﬁ(K) + ZEHXH2 EJ i
— G(AC)VQ/Lﬁ(g(K)) + ¢%G(SL)V*Q/L(K*1)72/L(K*1)B(K)
1 K—-1
+ ZEIIXII2 H Dis
1=0

wherer = [T," 7.

Differentiating w.r.t.v and equating to zero gives,
oD 2 )
a _Z /L=1p( op(K)
2
L(K-1)

,L/J%G(SL)V—Q/L(K—l)—17_2/L(K—1)B(K) -0,
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from which we obtain the optimal value of

L(K—1)

oy, 1 G(SL) BE) "
o <%K “1G(A) P20

LKD) (6.14)

— LX) =% S BD) [ 2 G(Sp) ™

'K —1G(A)ﬁ($<K))

The optimallV;'s follow easily by use of (6.13):
(A) p20)\
Ti _ 1 G(Ae) p(& 2

Ni="=nr VK[ —(K-1 S : 6.15
v (¢%( e B ) (613

Eq. (6.15) shows that the optimal redundandigs are, for fixedK, independent of

the sublattices. Moreover, sinegr— /K = 2~ LB~ % ; B}) the source-dependent
term h(X) is eliminated and it follows that the redundanciésare independent of
the source but also of actual values of target entropiésdepends only upon the
difference between the average target entropy&fid

6.4.2 Total Entropy Constraint

First we observe from (6.12) that the expected distortiopedes upon theumof
the side entropies and not the individual side entropiesordier to be optimal it is
necessary to achieve equality in the entropy constratiic = . R;. From (6.4)

we have .
Z R; = Kh(X -7 Z log, (N,
1=0

This equation can be rewritten as

K-1
[T (Vi) = 2-KHO-R) = (6.16)
=0

wherer, is constant for fixed target entropy and differential enieepWriting (6.16)
as

K-1

H NZ/LE=1) _ —2K/L(K-1) 2/L(K-1)

=0

and inserting in (6.11) leads to

K) G(AC)VQ/L A(X(K)) + w%fz)/L(Kq)Tf/L(K—l)G(SL)B(K)
K-1

+ - EHXH2 I1 »:-
1=0
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Differentiating w.r.t.v and equating to zero gives

oD o L
Y ZEG(AC)VQ/L LK)
%

LK —1)

dJ%G(SL)VfQ/L(Kfl)fle/L(K—l)B(K) —0

)

from which we obtain the optimal value of that is

—1)

L(K
1 1 G(Sp) B o
Ly — 9L(A(X)=%&R") <1/’%K G 57T : (6.17)

We note that this expression is identical to (6.14). Theltesitithis section show that
the optimalv is the same whether we optimize subject to entropy conssraim the
individual side entropies or on the sum of the side entropgekng as the total bit
budget is the same.

At this point we still need to find expressions for the optimkal(or equivalently
optimal N; givenv). Let R; = a;R*, where} . a; = 1,a; > 0, henceR* = ), R;.
From (6.4) we have

which can be rewritten as

N; = p1oL(h(X)~a:R"),

Inserting (6.17) leads to an expression for the optimabinddue N;, that is

L(K—1)

G(A) p(LF)\ *F
G(SL) ) )

N; = 2w (1-a)R" (szQ(K —-1) (6.18)
It follows from (5.18) and (6.4) thaR. > a;R* so thate; < R./R*. In addition,
since the rates must be positive, we obtain the followingiradities:

0<aR*<R. i=0,... K-1. (6.19)

Thus, when we only have a constraiRt on the sum of the side entropies, the
individual side entropie®; = a; R* can be arbitrarily chosen (without loss of perfor-
mance) as long as they satisfy (6.19) gnda; = 1. We remark thaf?; is bounded
away from zero by a positive constant, cf. (4.1) and (4.2). éxample, for the two-
channel case we haw®, = aoR* andR; = a1 R* = (1 — ag)R*, so thatR. >
(1 — ag) R* which implies thatR* — R, < Ry < R..*®

This result leads to an interesting observation. Givenglsiantropy constraint on
the sum of the side entropies, the optimal bit distributioroag the two descriptions

45Recall thatR. is fixed, since it depends anwhich is given by (6.17).
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is not unigque but contains in fact a set of solutions (i.e. taof&uantizers) which

all lead to minimal expected distortidf. This allows for additional constraints to
be imposed on the quantizers without sacrificing optimaliith respect to minimal

expected distortion. For example, in some mobile wirelessrenments, it might be

beneficial to use those quantizers from the set of optimahtigexrs that require the
least amount of power.

6.4.3 Example With Total Entropy Constraint

Let us show by an example some interesting aspects restitbng the fact that
we obtain a set of candidate solutions, which all minimize éxpected distortion.
For example, consider IP-telephony applications, whicthwhe recent spread of
broadband networks are being used extensively througheuivbrld today. More
specifically, let us consider a packet-switched networkrelaeuser has access to two
different channels both based on the unreliable user datagrotocol [133]. Channel
0 is a non priority-based channel whereas channel 1 is atyrimased channel or they
are both priority-based channels but of different priesti Equivalently this network
can be thought of as a packet-switched network where theithdil packets are given
priorities; low or high priority. In any case, we assume tbaly a single packet is
transmitted on each channel for each time instance (thibegumstified with e.g. tight
delay constraints). The priority-based channel favor p&clwith higher priority and
the packet-loss probability; on channel 1 is therefore lower than that of channel
0, i.e.p1 < po. Assume the Internet telephony service provider (ITSP)uaston
charges a fixed amount of say $1 ($2) per bit transmitted v@actl O (channel 1).
If we then use say 6 bits on channel 1 the quality is better thare use the 6 bits
on channel 0. It is therefore tempting to transmit all the lirough channel 1 (or
equivalently send both packets with high priority) sinceffers better quality than
channel 0. However, our results reveal that it is often beiafio make use of both
channels (or equivalently send two packets simultaneafdlyw and high priority).
The importance of exploiting two channels is illustratedable 6.1 for the examples
given above for a total bit budget of 6 bits and packet-losbabilitiesp, = 5% and
p1 = 2%. Notice the peculiarity that since the total bit budgetnsited to 6 bits then
even if the user is willing to pay more than $8 the performanoeld be no better
than what can be achieved when paying exactly $8. The lastroolof Table 6.1
describes the expected distortion occurring when quagtiziunit-variance Gaussian
source which has been scalar quantized at a total entroplgittiém. The packet-loss
probabilities arepy = 0.05 andp; = 0.02. The quantization error (hence not taking

48In retrospect, this is not a surprising result since, fortthe-description case, we already saw that for
a fixed distortion tupl€ D., Do, D1) the lower bound of the rate region is piece-wise linear, . &.5.
Furthermore, when the sum rate is minimum, this line segrasta 45 degree (negative) slope. Hence,
any choice of rate pairs on this line segment satisfies theraten The new observation here, however, is
that now we have a practical scheme, which for any number sifrgsions, also satisfies this property.
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Network Ry R; Price Quality Expected distortion

Single-channel 6 0 $6 Poor -12.98 dB

Single-channel 0 6 $12 Good -16.91dB
Two-channel 2 4  $10 Optimal -22.20dB
Two-channel 4 2 $8  Optimal -22.20dB

Table 6.1: A total bit budget of 6 bits is spent in four different wayse Tottom row shows the
most economical way of spending the bits and still achiewinap performance. The packet-
loss probabilities areno = 5% andpi = 2%.

packet losses into account) for an optimal entropy-com&hSD system is-34.59
dB but the expected distortion is dominated by the estimagioor due to description
losses, i.e101log;,(po) = —13.01 dB and10log;,(p1) = —16.99. It follows that the
expected distortion for channel O and channel 1 is giver-b2.98 dB and—16.91
dB, respectively. For the two-description system the etgubdistortion is found by
use of (6.12) to be-22.20 dB, hence a gain of more tha&rdB is possible when using
both channels.

6.5 Distortion of Subsets of Descriptions

We have so far considered the expected distortion occuwiran all possible combi-
nations of K descriptions are taken into account. In a sense this camespto
having only a single receiver. In this section we considegegalization to multiple
receivers that have access to non-identical subsets ak'tdescriptions and where
no packet losses occur. For example one receiver has accdssdriptions{0, 3}
whereas another has access to descript{ons, 2}. A total of 2% — 1 non-trivial
subsets are possible. We note that the design of the inddégraisent map is assumed
unchanged. We are still minimizing the cost functional giv®y (6.6). The only
difference is that the weights do not necessarily refleckgloss probabilities but
can be (almost) arbitrarily chosen to trade off distortiomoag different subsets of
descriptions. For example, in a two-description systens ipéssible to decrease
the distortion of description O by increasing the distortif description 1 without
affecting the rates.

The main result of this section is given by Theorem 6.5.1.

Theorem 6.5.1.The side distortioD(*-!) due to reception of descriptiofis}, where
1 e 2R foranyl < k < K < 3is, asymptotically ag,, N; — oo andy; — 0,
given by

K-1
DD W(K"l)’l/)iVQ/LG(SL) H NS/L(K_I),
i=0



Section 6.5  Distortion of Subsets of Descriptions 109

where
W(ED — 1 x [ p(LEm)22 _ p( P2 K
p(LE )22 2
K-2 K-1
K K,k K,k K,k
) WELIED WD WAL
jEl i=0 j=i+1
and(%) = 0forx = 1.
Proof. See Appendix I.5. O

Conjecture 6.5.1. Theorem 6.5.1 is true fok’ > 3 asL, N; — oo andy; — 0.

Remark6.5.1 For K = 2 Theorem 6.5.1 is true also for finite.*” For K = 3 it
should be seen as an approximation for fidité®

In Theorem 6.5.1 the term*:) is a weight factor that depends on the particular
subset of received descriptions. For example for= 2 we let~yy = pop1 and
~v1 = p1po then fork = 1 the weights for description 0 and 1 are given by

gk %
w0 = L and w®Y= ot (6.20)
(70 + ) (70 + )
which are in agreement with the results obtained for thed¢hannel system in [28].
For K = 3 andx = 1 we letyy = pop1p2, 1 = p1pop2 andye = pzpop1 and
the weight for description 0 is then given by

W30 — i+ + e
(Vo +71 +72)%

whereas forx = 2 we use the notationg, = pop1pe, Yo2 = popepr andye =
11 p2po from which we find the weight when receiving description O artd be

L3401 Yoo + V72 + 02712
4(v01 + Y02 + 712)?

6.5.1 Asymmetric Assignment Example

In this section we illustrate by an example how one can aetasymmetric distortions
for the case of{ = 2 and theZ? lattices. LetN, = 13 andN; = 9 so thatV, = 117.
Thus, withinV;(0) we have 117 central lattice points, 9 sublattice pointsgfand 13
sublattice points of\;. This is illustrated in Fig. 6.2. We first let the weight rdfibe
/71 = 1 so that the two side distortions are identical. In this casesl sublattice

4"This follows since Proposition 6.3.1 is true for ahyfor K = 2.

48]t is in fact possible to find an exact expression for fiditeSee Remark H.4.1.

49The term weight ratio can be related to the ratio of the sidéodions by use of (6.22) and (6.23).
Specifically, it can be shown th&; /Do ~ 'yg/'y%.
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points of Ay located outsidéd/; (0) will be used when labeling central lattice points
insideV;(0). The solid lines in Fig. 6.2 illustrate the 117 edges thateasigned to
the 117 central lattice points.

If we let the weight ratio bey/v1 = 4 we favorA overA;. In this case the edge
assignments are chosen such that for a given edge, thetmblfatint belonging to
A is closer to the central lattice point than the sublatticefeelonging toA;. This
is illustrated in Fig. 6.3. Notice that in this case the sttlda points ofAy used for
the edges that labels central lattice points withj{0) are all located withiri/; (0).
Furthermore, in order to construct the required 117 edgdsagice points of\; at
greater distance froi; (0) need to be used.

In practice, large index values are required in order to@ehiarge weight ratios
~Yo/71 Or v1/70. Notice that we can achieve asymmetric side distortions @avé¢he
case where the sublattices are identical (so Mat= N; and the rates are therefore
identical) simply by lettingy, # ~1. Moreover, we can achieve symmetric side
distortions by lettingy, = ~1 even whenNy # N, (i.e. Ry # Rj). In the case
where eitheryy, = 0 andvy; # 0 ory; = 0 andvyy # 0 the scheme degenerates to
a successive refinement scheme, where the side distorticgsponding to the zero
weight cannot be controlled. In practice this happenslifegity > ~v1 or y1 > 9.

10r - o e e e e e

B.-.@--B--B--B--80-8:
g . B o
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= -5 5 5 10

Figure 6.2: A central lattice based o&? (dots) and two geometrically-similar sublattices of
index 13 (circles) and 9 (squares), respectively. The dhslgeare illustrates the boundary of
Vx(0). The solid lines illustrate the 117 edges (where some ardap@ng). The weight ratio
is here settoyo/y1 = 1.
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Figure 6.3: A central lattice based o&? (dots) and two geometrically-similar sublattices of
index 13 (circles) and 9 (squares), respectively. The dhslgeare illustrates the boundary of
Vx(0). The solid lines illustrate the 117 edges (where some ardapygng). The weight ratio
is here set toyo/y1 = 4.

6.6 Numerical Results

To verify theoretical results we present in this sectionegipental results obtained
by computer simulations. In all simulations we have uged10° unit-variance
independent Gaussian vectors constructed by blocking iah scalar Gaussian
process into two-dimensional vectors. We first assess thechannel performance
of our scheme. This is interesting partly because it is thiy case where the
complete achievable MD rate-distortion region is known padly because it makes it
possible to compare to existing schemes. We end this sdnfishowing the expected
distortion (6.12) in an asymmetric setup using three dpsoris.

6.6.1 Assessing Two-Channel Performance

The side distortionsD, and D; of the two-channel asymmetric MD-LVQ system
presented in [27, 28] are given by (4.59) and (4.60) and th&aedistortion is given
by

D~ G(A)22(MX)~Re), (6.21)
The asymmetric scheme presented in this paper satisfies

2
N 71 2h(X)o—2(Ro+R1—R.)

Dy~ ————G(S1)2 2 , 6.22

’ (70 +m)? (51) ( )
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and
2

N Y0 2h(X)9—2(Ro+R1—R.)
Di~ ——G(S)2 2 , 6.23
" (o +m)? () 623

and the central distortion is identical to (6.21). It follewhat the only difference
between the pair of side distortio®, D) and(D,, D; ) is that the former depends
upon G(A,) and the latter upor7(S.). In other words, the only difference in
distortion between the schemes is the difference betw@éh, ) andG(A ). For the
two dimensional case it is known th@{(S>) = 1/47 whereas ifA . is similar to Z>
we haveG(A,) = 1/12 which is approximately.2 dB worse tharG(Ss). Fig. 6.4
shows the performance when quantizing a unit-variance €&@ausource using the?
guantizer for the design of [27, 28] as well as for the prodagestem. In this setup
we have fixedRy = 5 bit/dim. butR; is varied in the rangg — 5.45 bit/dim. To do so
we fix Ny = 101 and letVy step through the following sequence of admissible index
values:

{101,109, 113,117,121, 125,137, 145, 149, 153, 157, 169, 173, 181, 185},

and for eachVy we scaler such thatR, remains constant. WheN, = 101 then

Ry = Ry = 5 bit/dim. whereas wheNy > N; thenR; > Ry. We have fixed

the ratioy /71 = 1.55 and we keep the side distortions fixed and change the central
distortion. Since the central distortion is the same fortth@ schemes we have not
shown it. Notice thatD, (resp.D;) is strictly smaller (aboud.2 dB) thanDy (resp.

D;). This is to be expected sin€gS, ) is approximately).2 dB smaller tharz(A ;).

6.6.2 Three Channel Performance

In this setup we let);, = 1.4808 and the packet-loss probabilities are fixehgt=
2.5%, p1 = 7.5% except forp, which is varied in the rangg, 10]%. As p, is varied
we updates according to (6.17) and pick the index valu€ssuch thad ~, R; < R*.
Since index values are restricted to a certain set of insegdr Section 2.3.1, the
side entropies might not sum exactly 8. To make sure the target entropy is met
with equality we then re-scaleasy = 2L((X)— % B [TX 1 N5 we see from

Fig. 6.5 a good correspondence between the theoreticallynamerically obtained
results.

6.7 Conclusion

We presented a design for high-resolutifrchannel asymmetric MD-LVQ. Along
the lines of the previous chapter, closed-form expressionshe optimal central
and side quantizers based on packet-loss probabilitiesalpjgct to target entropy
constraints were derived and practical quantizers werstoacted to verify theoretical
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Figure 6.4: The side distortions are here kept fixed as the rate is ine@asNotice that
the numerically obtained side distortiord3, and D; (crosses) are strictly smaller than the
theoretical Dy and D, (thin lines).

results. For the two-channel case we compared the propoSeth\D scheme to a
state-of-the-art two-channel asymmetric scheme and shidwe the performance of
the central quantizer was equivalent to that of the stativ@fart scheme whereas
the side quantizers were strictly superior in finite dimensigreater than one. The
problem of distributing bits among thi€ descriptions was analyzed and it was shown
that the optimal solution was not unique. In fact, it turnedtbat bits could be almost
arbitrarily distributed among th& descriptions without loss of performance. As was
the case for the symmetric design, the practical designyohasetric MD-LVQ allows

an arbitrary number of descriptions but the theoretical-distortion results were only
proven for the case ok < 3 descriptions and conjectured to be true in the general
case of arbitraryx” descriptions.
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Figure 6.5: Expected distortion as a function of packet-loss probtiedifor K = 3 packets
and an entropy of 3 bit/dim. per description. The packes-fm®babilities arepy = 2.5%, p1 =
7.5%,1% < p2 < 10% and, = 1.14808.



Chapter

Comparison to Existing
High-Resolution MD Resulits

In this chapter we compare the rate-distortion performarftiee proposed MD-LVQ
scheme to that of existing state-of-the-art schemes asasélh known information
theoretic high-resolutioi’-channel MD rate-distortion bounds.

7.1 Two-Channel Performance

We will first consider the symmetric case and show that, whiéeproposed design is
different than the design of Vaishampayan et al. [139], we¢hannel performance
is, in fact, identical to the results of [139]. Then we comsithe asymmetric case and
show that the asymmetric distortion product given by Lemmialdis achievable.

7.1.1 Symmetric Case

Let K = 2 so thaty? = 1. From Theorem 6.5.1 (see also (5.34)) we see that the side
distortion (i.e. fork = 1) for the symmetric case, i.&g = D; andR, = R;,i = 0,1,
is given by (asymptotically a& — oo andv, — 0)

1
Dy = ZG(SL)N4/LV2/L. (7.1)

In order to trade off the side rate for the central rate we usElea of [139] and let
2720l — 4 N—2/F where0 < a < 1, which implies that

N = ob(aRs41) (7.2)

115
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Let usinsert (7.2) into (5.19) in order to expresas a function of?, anda,

y — 9L(h(X)=aR.~R.~1) (7.3)

From (6.21) we know that the two-channel central distortignis given by D, =
G(A.)v*/* which by use of (7.3) can be rewritten as

Dc _ G(Ac)22(h(x)faRszsfl)’ (74)
which leads to )
Jim D 2%(%a) — ZG(Ac)z“‘hm (7.5)

By inserting (7.2) and (7.3) in (7.1) we find

Dy = 1G(SL)24<aRs+1>+2<h<X>*aRs*RS*” (7.6)
4 )
which leads to
lim D022R5(17¢1) _ G(SL)22h(X) (77)

Comparing (7.5) and (7.7) with those of Vaishampayan (4ab@)) (4.57) reveals that
the performance of the proposed two-channel design acliieveame performance
as the two-channel design of Vaishampayan et al. [139].hEumiore, leb = 1 and
L — oo and notice that in the memoryless Gaussian €48, )22"(X) = ¢% sothat,
by comparing (7.5) and (7.7) with (4.11) and (4.10), we sex the high-resolution
two-channel symmetric rate-distortion function of Ozaam be achieved.

Remark7.1.1 Itis important to see that in (7.5) and (7.7) is bounded away from
zero and one. In the extreme case where= 0 the ratio of side distortion over
central distortion is small an@/ cannot be made arbitrarily large as is required for
the asymptotic expressions to be valid. On the other handnwh= 1 we can no
longer force the cells of the side quantizers to be small @megbto the variance of
the source and the high resolution assumptions are there@disatisfied. This is also
true for the general case &f > 2 descriptions.

Remark7.1.2 We would like to point out an error in [102] where we overlodkke
requirement that < 1. In [102] we showed that the high resolution performance
of (3,2) SCECs can be achieved by use of lattice codebooks and ind&xraents
(which is true) but we also wrongly claimed that in the exteecase where = 1,
lattice codebooks achieve rate-distortion points thanoaibe achieved by random
codebooks, obviously, this cannot be true sincegfer 1, the high resolution assump-
tions are not satisfied (Remark 7.1.1).

7.1.2 Asymmetric Case

We already showed in Section 6.6 that the performance offyrametric two-channel
scheme by Diggavi et al. [27, 28] can be achieved. In factpitefidimensions greater
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than one, the performance of the proposed scheme wasyssigierior to that of

Diggavi et al. Furthermore, it is easy to show that the higdoh&tion asymmetric

distortion product presented by Lemma 4.1.1 can be achideeskee this note that by
use of (6.22), (6.23) and (6.21) we get

D.(Do 4 Dy +2v/DoD1) = G(A,)22(hX)—Fe) (7.8)
2 2
> ( ( ’70—:— 71)2 G(SL)22h(X)2—2(R0+R1_RC)
Yo T 71

Y3i
2 WG(SL)Q%MXD‘KRM&RJ)
0 1

_ G(AC)G(SL)24h(X)2_2(R0+R]),

which, asymptotically ag — oo, leads to Lemma 4.1.1.

7.2 Achieving Rate-Distortion Region of(3, 1) SCECs

We will now consider the symmetric three-channel case armvsthat the rate-
distortion performance 3, 1) SCECs can be achieved at high resolution.

We are interested in the three-channel casefi.e: 3, and in the limit ofL — oo
so that

G(SL) — i (7.9)
and
P2, = g- (7.10)

Furthermore, without any loss of generality, we assume thatsource has unit
variance. Thus, from (5.34) we see that

PG _ %wgoN’Q—QRs, (7.11)
sinceR. = R, + log,(N'),
DB2) = %%N’rms, (7.12)

and the central distortio®,. = D(33) given by (6.21) can be written as

2
DG — (%) 9 2Rs, (7.13)

The following lemma shows that symmetric three-channel MIG) can achieve
the rate-distortion region B, 1) SCECs at high resolution.
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Lemma 7.2.1. At high resolution, the one, two and three-channel distostiof(3, 1)
SCECs are identical to (7.11) — (7.13) in the quadratic Gans=sase.

Proof. See Appendix J.1. O

Remark7.2.1 The notion of a large sublattice indeX in K-channel MD-LVQ
corresponds to a large (negative) codebook correlatjofor (K,1) SCECs and in
the limit of N — oo we actually have, — —1/(K — 1). Thus, forK = 3 we have
pg — —1/2asN — .

7.3 Achieving Rate-Distortion Region of(3,2) SCECs

We will now show that the rate-distortion performance (8f2) SCECs can be
achieved by extending the proposed design of three-chaviBelVQ to include
random binning on the side codebooks. Specifically, we shawthe achievable two-
channel versus three-channel distortion regiori3o2) SCECs for the memoryless
Gaussian source and MSE can be achieved under high-resoassumptions. Since
the performance of 3, 3) SCEC is identical to that of a single description scheme, it
is clear that we can also achieve such performance simplgthgd X' = 1 and only
use the central quantizer. Explicit bounds f6r> 3 descriptions were not derived
in [111, 114] but we expect that these (non-derived) bouned®kso achievable with
the proposed(-channel MD-LVQ scheme.

We will begin by considering the general situation where Wan&finite dimensio-
nal lattice vector quantizers and asymmetric rates andrtisbs. Then, at the end of
the section, we focus on the symmetric case and infinite-aéioeal lattice vector
guantizers in order to compare the performance to the egistbunds.

Recall that the proposed designigfchannel MD-LVQ is able to vary the redun-
dancy by changing the number of descriptidiisas well as the index valugs;. In
addition, it is possible to trade off distortion among subsd descriptions, without
affecting the rates, simply by varying the weights. InciegsV; and at the same
time decreasing’ so thaty; = N;v remains constant does not affect the r&te
However, the distortion due to th#* description is affected (unless counteracted by
the weights). For example in the symmetric setup whére= N; for all : and the
weights are also balanced, the side distortion due to recepf only a subset of
descriptions is increased a5is increased andN is kept constant. However, in this
case, the central distortion due to reception of all desorig is decreased. In other
words, in the symmetric case, for a giv&n the degree of redundancy is controled by
the single parametey.
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7.3.1 Random Binning on Side Codebooks of MD-LVQ Schemes

In order to achieve the performance of genédsl k) SCECs we need to introduce
more controlling parameters into the designiofchannel MD-LVQ. To do so we
follow an idea of Pradhan et al. [111] and exploit recent itssan distributed source
coding. More specifically, we apply random binning on theesiddebooks of th& -
channel MD-LVQ scheme. This corresponds in some sense kacieg the random
codebooks of K, k) SCECs with structured lattice codebooks except that we also
have a central quantizer and an index assignment map todesnsi

Random binning is usually applied on (in principle infindenensional) random
codebooks. The idea is to exploit the fact that for a givenewedtor, say\,, of
codebookéy, only a small set of the codevectors in codeb@jkis jointly typical
with \g. Then by randomly distributing the codevectorsdf over M; bins, it is
unlikely that two or more codevectors, which are all jointgpical with Ao, end up
in the same bin (at least this is truelif; is large enough). Thus, if the binning rate
Ry 1 = logy (M) is less than the codebook ralg then it is possible to reduce the
description rate by sending the bin indices instead of thieeeector indices.

The rate and distortion performance of lattice vector giaars are often described
using high-resolution assumptions, i.e. the rate of thentiper is sufficiently high
and the source pdf sufficiently smooth, so that the pdf candmsidered constant
within Voronoi regions of the code vectors. Under these mggions the theoretical
performance of lattice vector quantizers can be derivedtoitrary vector dimension.
This is in contrast to the asymptotics used when derivingriftcal expressions
for the performance of random codebooks. For random codebthe theoretical
performance is usually derived based on asymptoticallj kigctor dimension but
arbitrary rates. The theory behind random binning reliesnuasymptotically high
vector dimension and as such when using random binning-channel MD-LVQ
we make use of both asymptotics, i.e. high vector dimensiohhégh rates. It is also
worth mentioning that we consider memoryless sources withite alphabets such as
e.g. the Gaussian source, whereas the analysis of SCEEs uplbn strong typicality
and as such only discrete alphabet memoryless sourceslaréva

In lattice codebooks, the code vectors are generally natlyotypical and the
concept of random binning is therefore not directly apgilealt is, however, possible
to simulate joint typicality by for example some distancenmgeso that code vectors
close together (in e.g. Euclidean sense) are said to bet§jdiypical”. The index
assignments of MD-LVQ is another example of how to simulatetjtypicality. We
use the term admissiblg-tuple for any set ofC code vectorgXo, ..., Ax—1) which
is obtained by applying the index-assignment map on a cod®rE., i.e.a().) =
(Mo, ..., Ak—1) forall A\. € A.. So for lattice code vectors we exploit that only a
subset of allK -tuples are admissibl& -tuples which, in some sense, corresponds to

50However, in [111] the authors remark that the analysis of SE€Ean be generalized to continuous-
alphabet memoryless sources by using the techniques o€ Z].
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the fact that only a subset of all-tuples of random code vectors are jointly typical.

LetJ C {0,..., K—1} denote an index set, whelg| = k. A k-tuple is a set ok
elements{\;},j € J where); € A;. Thek-tuple given by{\;} = {a;(X:)},j € J
forany)\. € A, is said to be an admissibletuple. Each latticé\; contains an infinite
number of lattice points (or reproduction vectors) but wevslby Lemma 7.3.1 that
only finite sets of these points are needed for the codebddke side quantizers and
we denote these sets 8y C A;, where|6;| < co. The set

{X2[{A1; Ao}} =

(7.14)
{/\2 €Ay o= OQ()\C) and(a1 (/\C),Oéo(/\c)) = (/\1,)\0), V. € AC},

denotes the set of,’s which are in admissiblé-tuples that also contain the specific
elements\g and\;.

Since we consider the asymmetric case some ambiguity i€mprés the term
DUF) | pecause it is not specified whi¢hout of the K descriptions that are to be
considered. To overcome this technicality we introducentationD-”) . J e ¢,
where.#” denotes the set of combinations of descriptions for whiehdistortion is
specified. For example, if we are only interested in the disio when receiving
descriptions{0,1},{0,2} or {0,1,2} out of all subset of{0,1,2}, then.# =
{{0,1}, {0,2},{0,1,2}} and nothing is guaranteed upon reception of either a single
description or the pair of descriptiofs$, 2}.

We will now outline the construction df<, .#") MD-LVQ. It can be seen that the
construction of K, .#") MD-LVQ resembles the construction @K, k) SCECs given
in[111].

Construction of lattice codebooks Construct ak'-channel MD-LVQ system with
one central quantizer anl side quantizers of rat&;. Let %, be the codebook of
the central quantizer and l&t.(j.) € %. denote thej" element of¢.. Similarly,
let ¢; wherei = 0,... K — 1 denote the codebook of th#&" side quantizer and let
Xi(ji) € €; denote thq’fh codeword ofg;. Finally, leta be the index-assignment
function that maps central lattice points to sublatticenfmi

Random binning Perform random binning on each of the side codebogk$o
reduce the side description rate fraf to R, ; bit/dim., where we assumg; >
Ry Letg = 2B(Fi—Roitvi) wherey; > 0. Assigné; codewords to each of the
2LRi pins of each codebook. The codewords for a given bin of coolels is
found by randomly extracting, codewords fronis, uniformly, independently and
with replacement. This procedure is then repeated for allrémaining codebooks
C,i=1,..., K —1.

Encoding Given a source work € R’ find the closest element. € %, and use
« to obtain the corresponding-tuple, i.e.a(X.) = (Ao(Jo), .-+, Axk—1(Jr-1)). If
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the codeword\; ¢ %; then setj; equal to a fixed special symi38] sayj; = . For

1 =0,...,K — 1 define the functiory;(\;(j;)) which indicates the index of a bin
containing the codeword; (j;). If A;(4;) is found in more than one bin, sgt(\;(j;))
equal to the least index of these binsAl{j;) is not in any bin, sef;(\;(j;)) = 9.
The bin indexf;(X;(j;)) is sent over channel

Decoding The decoder receives somebin indices and searches through the corre-
sponding bins to identify a unique admissibtetuple.

Remark7.3.1 For (K, .#") MD-LVQ the notion of large block length, i.d. — oo,

is introduced in order to make sure that standard binningraemts can be applied.
However, it should be clear that the quantizer dimensiorldsvad to be finite. If
finite quantizer dimension is used it must be understoodfiméte length) codewords
from consecutive blocks are concatenated to forni.aaequence of codewords. The
dimension of thel.-sequence becomes arbitrarily largelas- oo, but the quantizer
dimension remains fixed. As such this will not affect the limigrrate but the distortion
tuple { D)1, is affected in an obvious way.

Theorem 7.3.1.Let X € R” be a source vector constructed by blocking an arbitrary
i.i.d. source with finite differential entropy into sequescof lengthL. Let J C
{0,..., K — 1} and let\; denote the set of codewords indexed.by The set of
decoding functions is denotegy: &®,.,A; — RE. Then, under high-resolution
assumptions, if

jeJ
E[p(X,g;(A\s)] < DFD e x,

wherep(+, -) is the squared-error distortion measure and fofall .J

1
D Roi> D i+ ploga({AsA-sH), (7.15)
€S €S
the rate-distortion tupléRy, o, . . . , Ry, (1), { DY)} e ) is achievable.
Proof. See Appendix J.2. O

We have the following corollary for the symmetric case:

Corollary 7.3.1 (Symmetric case)Let X € R’ be a source vector constructed by
blocking an arbitrary i.i.d. source with finite differerti@antropy into sequences of
lengthL. ForanyJ C {0,..., K — 1} let \; denote the set of received codewords
and letg;: ®j€JAj — R’ be the set of decoding functions. Then, under high-
resolution assumptions, if

E[p(X,g;(\))] < DY wrcfo,... K —1},1J] > k,

wherep(-, -) is the squared-error distortion measure and fofall .J

51The rate increase caused by the introduction of the additmymbold is vanishing small for largé.
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1

R
b>7+|S|L

logy ([{As|As—s}), (7.16)

the tuple(Ry,, DUCF) pUSK+D) - D)) s achievable.

Proof. Follows immediately from Theorem 7.3.1. O

7.3.2 Symmetric Case

To actually apply Theorem 7.3.1 we need to find a set of binnétgs{R; ;},i =
0,...,K — 1, such that (7.15) is satisfied for all subsstef J and for all elements
J of . Let us consider the symmetric case whé&fe= 3 and design &3, 2)
MD-LVQ system. We then havé = {io, 4, } and it suffices to check the two cases
whereS = iy andS = {ig,i1}. Without loss of generality we assume thgt=

0 andi; = 1. The number of distinch;’s that is paired with a giver\, can be
approximateef by (¢, v/N’)*, whereN’ = N/ is the dimension normalized index
value describing the index (redundancy) per dimension.9.et {0,1} and notice
that [{A\s}| < |[{\1]Xo}| - |%0|- Then, asymptotically, a& — oo, it follows that
{10} = (¥V/N')E. Let us now bound the codebook cardinality.

Lemma 7.3.1. |6;| = 2L, Furthermore, the entropy of the quantizer indices is
upper bounded by, .53

Proof. See Appendix J.1. O

We are now able to findk, by considering the two cas¢S| = 1,2. For|S| =1
we have from (7.16) that

Ry 1 > v+ logy (v VNY), (7.17)
whereas fotS| = 2
1 1
Ry 11 > §Rs+'y+ §log2(1/)L\/N’). (7.18)

The dominantR, is then given byR, = max(R; 1, Ry 11). Since (7.17) and (7.18)
depends uporV’ the dominating binning rate depends updh. To resolve this
problem, we form the inequality?, ;; > Ry, and find thatV’ < 22F: /2. So
for N’ < 2235/1/)% we haveR, = Ry ;. Itis interesting to see that when inserting
N’ = 22B: /2 in (7.17) we getR,; = v + R,. Coincidently, R, ; becomes
effective when the binning ratB;, is equal to the codebook rafe,, which violates
the assumption thak, > R;.

Itis clear that if we seR;, equal to the lower bound in (7.18) we get

1 1 1
Ry = iRS + Z 10g2(N') + 5 10g2(¢L)a

52Recall that this approximation becomes exachNas- co.
53For largeL there is really no loss by assuming ti4t?%: is an integer.
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from which we can expres¥’ and R, as functions of each other afti, that is
N =2t v=2Hey) 2. (7.19)

and )
Ry = 2Ry —logy(vr) — 3 log,(N'). (7.20)

It follows that when varying the redundancy per dimensidh the binning rateR,
can be kept constant by adjustiiy according to (7.20).

In order to compare these results to the existing boundstae e oo so that by
inserting (7.20) in (5.34) we get

D(3,2) — idj2 N/272R5
127

1 (7.21)
— 4 N/ 2274Rb.
U (V)
The central distortionlp, = D)) in MD-LVQ is given by
DB3) = =28 (7.22)
whereR. = R; + log,(N’) which leads to
1
R. = 2Ry, — logy(¥oo) + 3 log, (N'). (7.23)
Inserting (7.23) into (7.22) leads to
wQ
DB:3) = “0g—4f (7.24)

-
Lemma 7.3.2. At high resolution, the two and three-channel distortiohg3) 2)
SCECs are identical to (7.21) and (7.24) in the quadraticsGian case.

Proof. See Appendix J.1. O

7.3.3 Asymmetric Case

For the asymmetric cas& = 3 and wherez” = {{0,1},{0,2},{1,2},{0,1,2}},
i.e. reconstruction is possible when any two or more de8orip are received, it can
be shown (similar to the symmetric case) that the binning Rgt; is lower bounded
by Ry, ; = max(Ry,, Ry, ) Wwhere

1
Ry, =logy(¥r) + 3 logy(N,) — logy(N) (7.25)

and
1

1 1
1 logy(N;,) — 3 logy(N;) + §R’ia (7.26)

1
Rb-,iu = 5 logQ(U)L) +
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whereN, = N/N{Nj.

To see this note that X; and\; both are in the same admissitiietuple, then\;
must be within a spher€ centered ah;. The volume ofi/ is 7, which implies that
the maximum number of distinét; points withinV is approximately/v;. In other
words,

H{il\jH = o/vi
= (Yr/NGN{N3/N:)*,

where the approximation becomes exact for large index gaMéth this it is easy to
see that

(7.27)

1
Rus > Hlogy (A}
X (7.28)
~ logy (Y1) + B log, (NogN1 N3) — logy (N;),

which is identical to (7.25). From Theorem 7.3.1 we can atsmthat the pair-wise
sum rate must satisfy

1
Ry,i+ Roj > 7 logy(|Cil[{[Ai})
X (7.29)
~ R; +logy (V) + B logy (NgN1N3) — logy(Nj),

which can equivalently be expressedfas; + Ry; > 1 logy(|C;[[{\i|A;}]) from
which the individual rate requirements can be found to bemgly (7.26).

7.4 Comparison toK-Channel Schemes

In the asymptotic case of large lattice vector quantizeregision and under high
resolution conditions, we showed in the previous sectibas ¢xisting MD bounds
can be achieved. However, it is also of interest to constuerate-distortion perfor-
mance that can be expected in practical situations. Towhaisend we presented
some numerical results obtained through computer sinamath Sections 5.6 and 6.6.

In this section we will compare the theoretical performaoicne proposed MD-
LVQ scheme to existing state-of-the-dkt-channel MD schemes [18,127]. While
the schemes [18, 127] (as well as the proposed scheme) cdmowe $ be optimal,
under certain asymptotic conditions, they are not withbeirtdisadvantages when
used in practical situations. We will, however, refraimfroomparing implementation
specific factors such as computational complexity as wedkagability in dimension,
description rate and number of descriptions. Such commasjalthough relevant, are
often highly application specific.

The above mentioned schemes are all based on LVQ and it efthepossible to
compare their theoretical rate-distortion performancemfinite-dimensional lattice
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vector quantizers are used. Recall from Section 4.2.2 tleastheme of Chen et
al. [18] has a rate loss d2K — 1) L-dimensional lattice vector quantize¥s.The
scheme of @stergaard and Zamir [127] was, for the cad€ ef 2, shown to have

a rate loss of only twad -dimensional lattice vector quantizers. While this design
was shown to permit an arbitrary number of descriptions,réte loss fork > 2
descriptions was not assessed. The rate loss of the propcseaie, on the other hand,
has a somewhat peculiar form. In the case of two descriptibesrate loss is given
by that of two L-dimensional quantizers having spherical Voronoi c&ligiowever,

in the case o > 2 descriptions, there is an additional term which influenbegate
loss.

7.4.1 Rate Loss of MD-LVQ

To be able to assess the rate loss of MD-LVQ when using finiteedsional quantizers
and more than two descriptions, we B denote the description rate (where the
subscripty indicates that finite-dimensional quantizers are usedgnThe distortion
when receiving a single description out/gf= 3 can be found by use of (5.34) to be
given by

1

DG = §G(SL)(2we)¢§N'2—2Rf. (7.30)

Equalizing (7.11) and (7.30) reveals that the rate ld&s £ R,), for K = 3, is given
by (at high resolution)

Ry~ Ry = 51085(G(S1)(2me)) + loga(tr /). (7.31)

Sincevy;, < i = 2 (at least fork = 3) we can upper bound the second term
of (7.31) by
logs (Y1 /%s) < logs(1hee) = 0.1038 bit/dim. (7.32)

Fig. 7.1 showdog, (v, /1) for 1 < L < 101 for K = 3 using the values of,
from Table 5.1.

Remark7.4.1 For K = 2we havey;, = 1,VL, and (7.31) is true. Furthermore, if the
K-channel MD-LVQ scheme is optimal also far > 3, as we previously conjectured,
then (7.31) is true for anj > 2 (at high resolution).

It is interesting to observe that both terms in (7.31) areepehdent of the
particular type of lattice being used. For example, if thedorct latticeA = Z°°
is used for the side quantizers, then the rate loss vanishbegomes identical to

54In the asymmetric case where corner points of the rate remiemesired, the rate loss of [18] is only
that of K lattice vector quantizers. However, in the symmetric casarce splitting is necessary and there
is an additional rate loss.

55This is true in the symmetric case as well as in the asymmesise.
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zero) even thougli’(A) = 1/12.% This is not the case with the other two schemes
mentioned above, i.e. [18, 127]. Fig. 7.2 shows the ratedbdse different schemes
for K = 3 descriptions. The lattices used are those of Table 3.1.eSicdo not
havey, values for all everl. we have in Fig. 7.2 simply used the average of the two
neighboring values, that is

Y1+ YL
i = ;o Leven (7.33)
’l/JL, L odd

10 20 30 40 50 60 70 80 90 100

Figure 7.1: The rate loss due to the tering, (11 /1« ) is here expressed in bit/dim. as a
function of the dimensioh.

7.5 Conclusion

Inthe previous two chapters we initially used a single irdegignment map to control
the redundancy between descriptions. In this chapter wegshewed that by use of
random binning on the side codebooks in addition to the iraksignment map it
was possible to introduce more rate-distortion contrglfirameters into the design.
While the use of random binning is standard procedure inibdiged source coding

56Recall that the central distortion depends upon the typeaticé being used. However, at high
resolution conditions, the index value is large (. — oo) and as such the central distortion is very
small compared to the side distortion and can therefore glected.
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198, : -8 -Chenetal. [18]

1 —e— (3/2) log,(G(A)2me)
N —— MD-LVQ

N v - - -(3/2) log,(2me/12)

1k \ : — (3/2) log, (G(SL)2me)

Figure 7.2: Rate loss of the different three-channel MD schemes. Fopeadson we have
included a lower bound (thick solid curve), which corresg®mo the sum rate loss of thrde
dimensional quantizers having spherical Voronoi cellse Tibrizontal dashed line corresponds
to the sum rate loss of three lattice vector quantizers witheincubic cells and the circles
illustrate the performance of a scheme having a sum rate dbskree optimal lattice vector
quantizers.

and has previously been applied to MD schemes based on razwhighooks as well,
it appears to be the first time it is used in connection witleicdssignment based MD
schemes.

We showed that the proposed design of MD-LVQ, asymptoticallrate and
lattice vector quantizer dimension, achieves existing-thstortion MD bounds in
the quadratic Gaussian case for two and three descriptions.

In finite lattice vector quantizer dimensions, we showed tha rate-loss of the
proposed design is superior to existing state-of-thecitmes.






Chapter

Network Audio Coding

In this chapter we apply the developed MD coding scheme tptthetical problem of
network audio coding. Specifically, we consider the probtdneliable distribution
of audio over packet-switched networks such as the Inteonggeneral ad hoc
networks>” Thus, in order to combat (excessive) audio packet losseshaese to
transmit multiple audio packets.

Many state-of-the-art audio coding schemes perform tiragtfency analysis of
the source signal, which makes it possible to exploit pdregmodels in both the time
and the frequency domain in order to discard perceptueigleivant information. This
is done in e.g. MPEG-1 (MP3) [93], MPEG-2 advanced audio mgpdAAC) [94],
Lucent PAC [123] and Ogg Vorbis [134]. The time-frequencyglgsis is often done
by a transform coder which is applied to blocks of the inpgnhal. A common
approach is to use the modified discrete cosine transformGm90] as was done
in e.g. MPEG-2 AAC [94], Lucent PAC [123] and Ogg Vorbis [134i this chapter
we combine the MDCT withK'-channel MD-LVQ in order to obtain a perceptual
transform coder, which is robust to packet losses.

MD coding of audio has to the best of the author’s knowledgéasmnly been
considered for two descriptions [3, 119]. However, here vappse a scheme that is
able to use an arbitrary number of descriptions withoutatinly the target entropy.
We show how to distribute the bit budget among the MDCT caeffiils and present
closed-form expressions for the rate and distortion peréorce of theK-channel
MD-LVQ system which minimize the expected distortion basedthe packet-loss
probabilities. Theoretical results are verified with nuit@&rcomputer simulations and
it is shown that in environments with excessive packet lfise advantageous to use
more than two descriptions. We verify the findings that mb@nttwo descriptions
are needed by subjective listening tests, which furthevgsdhat acceptable audio

S7part of the research presented in this chapter represémttsviork with O. Niamut.

129
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quality can be obtained even when the packet-loss rate ighsh 30%.

8.1 Transform Coding

In this section we describe the MDCT and we define a percegisirtion measure
in the MDCT domain.

8.1.1 Modified Discrete Cosine Transform

The MDCT is a modulated lapped transform [90] which is applie overlapping
blocks of the input signal. A window &fM time-domain samples is transformed into
M MDCT coefficients, whereafter the window is shiftéd samples for the next/
MDCT coefficients to be calculated.

Given a blocks € R?M | the set ofd/ MDCT coefficients is given by [90]

2M—1
1 (2n+ M+ 1)(2k + 1)7T)
T = — h, sy COS , k=0,....M—1,
NGV 2 ( AM

n=0

(8.1)
wherexy, h,, € R andh is an appropriate analysis window, e.g. the symmetric sine

window [90]
. 1 7T -

The inverse MDCT is given by [96}

M—-1
_ 1 (2n+ M +1)(2k + 1)7
n = hn S , =0,...,2M — 1.
5 oI ];:0 T} COS < i n

(8.3)

8.1.2 Perceptual Weighting Function

On each block a psycho-acoustic analysis is performed wieiatis to a masking
curve that describes thresholds in the frequency domaowbehich distortions are
inaudible. In our work the masking curve is based @ma/-point DFT wheren € N
and the computation of the masking curve is described irlde{a40]. Let us denote
the masking curve by.. We then define a perceptual weights the inverse of the
masking threshold evaluated at the center frequencies of the MDCT basis fomnsti
that is

e =S50, k=0,...,M—1. (8.4)

58Notice that the MDCT is not an invertible transform on a bldigkblock basis sinc&M samples
are transformed into only/ samples. We therefore use the tilde notation to indicate #iehis point,
the reconstructed samplgés, are not identical to the original samples. In order to achieve perfect
reconstruction we need to perform overlap-add of consexzuéiconstructed blocks [90].
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We requireu to be a multiplicative weight but otherwise arbitrary. Welwiot
go into more details abouyt except mentioning that we assume it can be efficiently
encoded at e.gk kpbs as was done in [96].

8.1.3 Distortion Measure

Let X € RM denote a random vector procgsand letz € RM be a realization of
X. By X}, andx;, we denote thé!” components ofS andz, respectively, and we
will use 2, to denote the alphabet &f;,. The pdf of X is denotedfx with marginals
ka'

We define a perceptual distortion measure in the MDCT dometiwden: and a
quantized versiott of x to be the single-letter distortion measure givefCby

1 M—-1
5\ A A2
p(SC,SC) - M kZ:O /Lk|xk - $k| ) (85)

where uy is given by (8.4). The expected perceptual distortion fetidrom (8.5)
simply by taking the expectation over that is

M—-1
R 1 .
D(r, i) =2 3 /% klok — B[ fx, (o) o, (8.6)
k=0 ke

where we remark that depends on throughz.

8.1.4 Transforming Perceptual Distortion Measure to/s

For the traditional MSE distortion measure which is alsownas thels distortion
measure, itis known that, under high-resolution assumpfia lattice vector quantizer
is good (even optimal a8 — oo) for smooth sources, see Chapter 3. The MSE
distortion measure is used mainly due its mathematicatabdlty. However, in
applications involving a human observer it has been notatidistortion measures
which include some aspects of human auditory perceptioergdéiy perform better
than the MSE. A great number of perceptual distortion messare non-difference
distortion measures and unfortunately even for simple casutheir corresponding
rate-distortion functions are not known. For example, tkeceptual distortion
measure given by (8.6) is an input-weighted MSE (because a function ofs),
hence it is a non-difference distortion measure.

In certain cases it is possible to derive the rate-distorfilctions for general
sources under non-difference distortion measures. Fampbea for the Gaussian
process with a weighted squared error criterion, where thights are restricted to

59In fact it is the output of the MDCT of a random vector procéss R2M ,
60strictly speaking this is not a single-letter distortionasere since the perceptual weight depends upon
the entire vector.
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be linear time-invariant operators, the complete ratésdisn function was found

in [118]. Other examples include the special case of locglipdratic distortion

measures for fixed rate vector quantizers and under highutesn assumptions [43],

results which are extended to variable-rate vector quargin [80, 83]. With regards
to the MD problem, [84] presents a high-resolution rateedtioon region for smooth

sources and locally quadratic distortion measures fordlse of two descriptions. The
case of vector sources and more than two descriptions reraasolved.

Remark8.1.1 In the SD case it has been shown that it is sometimes poseibgty
a function (called a multidimensional compressor) on there® signal in order to
transform it into a domain where a lattice vector quantizegood. This approach
was first considered by Bennett in [7] for the case of a scalarpressor followed
by uniform scalar quantization. The general case of a mmgdsional compressor
followed by lattice vector quantization was considered85][ In general an’-
dimensional source vectdf is “compressed” by an invertible mappifgt! Hereafter
F(X) is quantized by a lattice vector quantizer. To obtain themstructed signak,
the inverse mapping —! (the expander) is applied, that is

X—=F()=Q()—F'()—=X, (8.7)

where ) denotes a lattice vector quantizer. It was shown in [85] #Hrabptimal
compressolF' is independent of the source distribution and only depepds uhe
distortion measure. However, it was also shown that an @btimmpressor does not
always exist§? In the MD case, results on optimal compressors are verydomit
However, it was suggested in [84], that a compressor oldaime similar way as
for the SD case, might perform well also in the two-desaviptcase for smooth
scalar processes. Unfortunately, we have been unsuctas§fuding an analytical
expression for such a vector compressor for our distortieasure (8.5).

In this chapter we will assume that the decoder has accelss feetceptual weight
1, which makes it possible to explqitalso at the encoder when quantizing the MDCT
coefficients. This has been done before by e.g. Edler et &). |8 addition, in the
perceptual MD low delay audio coder presented in [119] a filtest, which resembles
the auditory masking curve, was transmitted as side infaoma The input signal
was first pre filtered by a perceptual filter which transforims input signal into a
perceptual domain that approximates/famlomain. A lattice vector quantizer is used
in this domain and at the decoder the signal is reconstristegplying the post filter.

We adopt the approach of normalizing the input signal by #éegptual weight.
First we show that, under a mild assumption on the maskingeguhis procedure
transforms the perceptual distortion measure inté,atistortion measure. From (8.6)

61The invertible mappingF is for historically reasons called a compressor and saicbtoptess the
signal. However[F is allowed to be any invertible mapping (also an expander)Amuiwill use the term
compressor to be consistent with earlier literature.

62n the scalar case an optimal compressor always exists fid@nange of distortion measures.
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we have that
M-—1

1
D(I, j?) = — / ,LLk|Ik — jk|2fX (xk)dxk (88)

w2/, k

@ 1 M7

< pelzr — 2k |* fx, (zr)day,
PPN :
| M-l

=— lyi — Gr|* fx, (xr)dwr, (8.9)
M k; XJ:/%V )

wherey, = xi\/fk, U = Zx+/ and(a) follows by breaking up the integral into
disjoint partial integrals over each Voronoi cé}l of the quantizer. In order to perform
the necessary variable substitution in the integral giwe(8t9) we write

dyk d

2k e ) 8.10

dor N dur (VEx) + itk (8.10)
At this point we enforce the following condition on the maskicurve. Within each
guantization cell, the first derivative of the masking cuwith respect to the source
signal is assumed approximately zero so that from (8&2Q)~ +/1/uxdys.5® Inser-
ting this in (8.9) leads to

M-—1
. 1 .
D) 33 [ = il o)V I
k=0 5 %0V

M-1
1 2

v Y d 8.1
M kZ:o ;/@mvj 19 = Ixl”Fri (k) dy, ( )
1 M

= ~ 12

- ME ;CZ_O |yk - yk| ,

since it can be shown théi, (yx) = fx, (xx)\/1/px cf. [126, p.100]. In other words,
simply by normalizing the input signalby the root of the input-dependent weight
the perceptual distortion measure fors transformed into a; distortion measure
for y. Therefore, when quantizing the distortion is approximately the same when
measuring thés-distortion i.e.E||y — §||>/M or transformingy and¢ back intox
andz, respectively, and measuring the perceptual distortivargby (8.6).

8.1.5 Optimal Bit Distribution

Each blocks leads tal/ MDCT coefficients, which we first normalize Ry and then
vector quantize usings-channel MD-LVQ. Since, the number of coefficients in the

63To justify this assumption notice that we can approximagenttasking curve by piece-wise flat regions
(since the masking curve also needs to be coded), which ntieainsmall deviations of the source will not
affect the masking curve.
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MDCT is quite large, e.gM = 1024 in our case, it is necessary to split the sequence
of M coefficients into smaller vectors to make the quantizatimblem practically
feasible. Any small number of coefficients can be combinedijamtly quantized.
For example, if the set ¥/ coefficients is split intal/’ bands (vectors) of lengthy
wherek = 0,..., M’ — 1 it can be deduced from (5.40) that the total distortion is
given by

M'—1 )
Z [A(LkG(Ak)zﬂh(Yk)*Rck)
k=0 (8.12)

. - 2K B Ky
—|—K27k’l/)%kG(Sk)22(h(Yk)iRck)2WET(RC)€ Ry) +Z‘)L_kE||YkH2’

1

D, =—
M’

where we allow the quantizers, and the number of packefs;, to vary among the
M’ bands as well as from block to block. For a given target enti@p we need to
find the individual entropie®), for the M’ bands, such thgt_ R, = R*/K and in
addition we need to find the entropi&s, of the central quantizers. For simplicity
we assume in the following that the’’ bands are of equal dimensidr, that similar
central lattices\. are used, and that the number of packéts fixed for all k.

We now use the fact that (5.44) and (5.45) hold for any bitrithistion, hence we
may insert (5.44) and (5.45) into (8.12) which leads to ifdiial distortions given by

K-1
. Vi) 1 K,G(Sp) "
Dy, = K1G(A)22h (k)= Fx) 2 2,
b= KiGA) K—lKlG(Ac)wL
i — Ky G(A) 1 K2 G(S1) K
+ KoG(Sp )22V —Re) () — 1)1 —— 2,
2G(S1) ( >K2 G(S.) | \ K=1FK, G(A.) Vi
K
p
+ ?EHYkHQ
_ K
— o220 =R L Py, |12
L ’
(8.13)
wherea is independent of and given by
1 KyG(Sy) =
A L/
ap = K1G(A.) <K—1f<_2 G(A)ﬁ,) : (8.14)
1 c

64The distortion over individual normalized MDCT coefficieris additive in the MDCT domain (recall
that we are using a single-letter distortion measure). heweadding the entropies of a set of MDCT
coefficients is suboptimal unless the coefficients are iadépnt. Futhermore, the individual MDCT
coefficients will generally be correlated over consecubilecks. For example, overlapping blocks of an
i.i.d. process yields a Markov process. For simplicity, veendt exploit any correlation across blocks nor
between the vectors of MDCT coeffficients (but only withie trectors).
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In order to find the optimal bit distribution among thé' bands subject to the entropy
constraintzjk‘io_1 R, = R*/K we take the common approach of turning the con-
strained optimization problem into an unconstrained protlby introducing a Lagran-
gian cost functional of the form

M’ —1 M’ —1
J=> Dp+XA Y Ry (8.15)
k=0 k=0
Differentiating (8.15) w.r.t Ry, leads to
o) —21n(2)ae22P(Ye)—Ri) 4 )\ (8.16)
ORy,
After equating (8.16) to zero and solving fBy, we get
Ry = —21 A + h(Y3) (8.17)
BT T2\ 91(2)ag k- '

In order to eliminate\ we invoke the sum-rate constrai fC”:,O_l Ry = R*/K and
get

M-1 M’ -1

M’ A _
S| 2~ h(Y;) = R*/K 8.18
E: Rk 2 Og2<2hﬂ2ﬁm> + E: (k) R / ) ( )
k=0 k=0
from which we obtain
A = 21n(2)ap2~ 7 B/ K-SiL5  RO), (8.19)

We can now eliminate by inserting (8.19) into (8.17), that is

_R/K -5 R
= =5

With the simple Lagrangian approach taken here there is aoagtee that the
entropiesRy, given by (8.20) are all non-negative. It might be possiblesxtend
the Lagrangian cost functional (8.15) by’ additional Lagrangian weights (also
called “complementary slackness” variables [128]) in ordeobtainM’ inequality
constraints making sure that, > 0 in addition to the single equality constraint
> R, = R*/K. While the resulting problem can be solved using numeretini-
gues, it does not appear to lead to a closed-form expressiting individual entropies
Ry,. Itis not possible either to simply set negative entropérsabto zero since this will
most likely violate the constraint’ R, = R*/K. Instead we propose a sequential
procedure where we begin by consideringldll bands and then one-by-one eliminate
bands having negative entropies. We assign entropies tolead using (8.20) and
then find the one having the largest negative entropy andidgdhat one from the
optimization process. This procedure continues until rEitapies are positive or zero
as shown in Table 8.1.

Ry,

(Y. (8.20)
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1. .7 =1{0,...,M' —1}

2. h =3 ey MYi)

R*/K—h
3.¢c=
[7]

4. # ={Ry: Ry =c+h(Y3)andR, <0,k € .}

5. If |Z| > 0then goto 2 and se¥ := .#\j, whereR; < Ry, Vk € .&

h(Yy), ke.s
6. ky — ¢TI _
0, otherwise

Table 8.1: Bit-allocation algorithm.

The motivation for this approach is that ultimately we woliké the contribution
of each band to the total distortion to be equal, since theyadirapproximately
equally sensitive to distortion after being flattened byrtteesking curve. However, the
normalized MDCT coefficients in some bands have variancéshndre smaller than
the average distortion, hence assigning zero bits to thasdsbleads to distortions
which are lower than the average distortion over all banderdfore, the bit budget
should only be distributed among the higher variance coraptm

8.2 Robust Transform Coding

In this work we apply MD-LVQ on the normalized coefficients afi MDCT to
obtain a desired degree of robustness when transmittingdecaudio over a lossy
network. The encoder and decoder of the complete scheméanasn Figs. 8.1(a)
and 8.1(b), respectively. In the following we describe hbw ¢ncoding and decoding
is performed.

8.2.1 Encoder

By s we denote the current block, which has been obtained by lsigtke input signal
into overlapping blocks each containiag/ samples. Thé/ MDCT coefficients are
obtained by applying ad/-channel MDCT ons and is represented by the vector
x. It is worth mentioning that we allow for the possibility tsai a flexible time
segmentation in order to better match the time-varyingneatfitypical audio signals,
cf. [95]. Each block is encoded int& descriptions independent of previous blocks
in order to avoid that the decoder is unable to successfedigmstruct due to previous
description losses.
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Figure 8.1: Encoder and decoder.

As discussed in Section 8.1.5 it is infeasible to jointly @he the entire set of
M MDCT coefficients and instead we spfitinto M’ disjoint subsets. The MDCT
coefficients are then normalized by the perceptual weighis order to make sure
that they are approximately equally sensitive to distoriod moreover to make sure
that we operate in af, domain where it is known that lattice vector quantizers are
among the set of good quantizers. Based on the differemtiadgies of the normalized
MDCT coefficientsy and the target entropyR* we find the individual entropies
Ry, k = 0,..., M’ — 1 by using the algorithm described in Table 8.1. Fig. 8.2(a)
shows an example of the distribution of differential entesi(Y") in a 1024-channel
MDCT. In this example a 10 sec. audio signal (jazz music) sachat 48 kHz was
input to the MDCT. Fig. 8.2(b) shows the corresponding ditcentropies assigned
to each of the 1024 bands when the target entropy is 9@t te 88 kbps.

It may be noticed from Fig. 8.2(b) that the bit budget is masgent on the lower
part of the normalized MDCT spectrum. This behavior is tgpfor the audio signals
we have encountered. The reason is partly that the audialsifpave most of their
energy concentrated in the low frequency region but alsttlteahigh frequency part
is deemphasized by the perceptual weight. The perceptughtvis approximately
proportional to the inverse of the masking curve and at tga fiequency region the
steep positive slope of the threshold in quiet dominatestasking curve. We remark
that the bit allocation effectively limits the band width tife source signal since
high frequency bands are simply discarded and it might fbezeprove beneficial
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Figure 8.2: Differential and discrete entropies for the normalized MD€befficients (expressed
in bit/dim.).

(perceptually) to use some kind of spectral band replicaiahe decoder in order to
recover some of the lost high frequency components.

The entropyR,, describes the total entropy assigned to e band (or thek'”
subset of bands if vector quantization is applied). If thenber of descriptions i&
then each side description operates at an entropygfK bit/dim. Knowledge of
Ry, the differential entropyz(Y%), the number of description& and the packet-
loss probabilityp makes it possible to find the scaling factarg and N, of the
central and side quantizers, respectively by use of (5.4d)(&.45). This in turn
completely specify a MD-LVQ scheme havinlg descriptions. Each normalized
MDCT coefficient or vector of coefficientg, is then first quantized with the central
quantizeQy (yx) = A, after which index assignmentgA.,) = {Xo,,-.., Ak, —1}
are performed in order to find the codewords of the side gearsti The codewords
of the side quantizers are losslessly coded and putAniadividual packets. Each
packet then containk/’ encoded codewords.

It is required that the perceptual weighis somehow transmitted to the decoder
in order to be able to reconstruct. Since #igoackets have an equal chance of getting
lost we need the perceptual weight in all packets, whichdead certain degree of
overhead. In the case where more than one packet is receiwatesefore waste
bits. It might be possible to apply some sort of MD coding oa plerceptual weight
in order to decrease the amount of side information whicldsée be duplicated in
all packets. However, it is outside the scope of this chajoténvestigate the many
aspects of perceptual lossless coding @ind we refer the readers to the work of [96]
for more details. In the following we will simply assume thiaé perceptual weight
can be perceptually lossless coded at 4 kbps, hence if thettantropy isR* = 96
kpbs and two packets are to be used, the entropy we can gatsalfor MD-LVQ is
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then only88 kbps, since8 kbps ¢ kbps in each packet) are used for the weight. If
a greater number of packets is desired the overhead fontitiimg) . increases even
further.

8.2.2 Decoder

At the receiving side an estimajeof the normalized MDCT spectrum is first obtained
by simply taking the average of the received descriptiomsji, = % D icr i
wherel’ denotes the indices of the received descriptionsdnd |I’|. This estimate is
then denormalized in order to obtaini.e. 2, = Jx/./px. Finally the inverse MDCT
(including overlap-add) is applied in order to obtain anrappnations of the time
domain signak. The decoding procedure is shown in Fig. 8.1(b).

8.3 Results

In this section we compare numerical simulations with te&oal results and in
addition we show the results of a subjective listening & first show results related
to the expected distortion based on the packet-loss priiiehand then we show
results for the case of scalable coding. In both cases wergsalsymmetric setup.

8.3.1 Expected Distortion Results

For the objective test we use four short audio clips of déffgrgenres (classical jazz
music, German male speech, pop music, rock music) eachdawaration between
10 and 15 sec. and a sampling frequency®fkHz. We refer to these fragments
as “jazz", “speech” , “pop” and “rock”. We set the target eqty to 96 kbps (as
was done in [119]) which corresponds2dit/dim. since the sampling frequency is
48 kHz. We do not encode the perceptual weight but simply asdhatet can be
transmitted to the receiver at an entropylddbps. Since the weight must be included
in all of the K descriptions we deduatK kbps from the total entropy, hence the
effective target entropyr’ is given by R = R* — 4K so that a single description
system has?} = 92 kbps whereas a four description system Kgs= 80 kbps (i.e.
20 kbps for each side description). For simplicity we furthere assume that the
sources are stationary processes so that we can measutatitéecs for each vector
of MDCT coefficients upfront. However, since audio signaisgeneral have time
varying statistics we expect that it will be possible to reglthe bit rate by proper
adaptation to the source. Since for this particular test veenagerely interested in
the performance of the proposed audio coder with a varyimglrar of descriptions
we will not address the issue of efficient entropy coding lmipsy assume that the
guantized variables can be losslessly coded arbitranlgecto their discrete entropies.
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Table 8.2 shows the discrete entropies of the quantizedada®d MDCT coefficients
for the four test fragments.

K=2 K=2 K=3 K=3 K=4 K=4
kbps  bit/dim.  kbps  bit/dim. kbps  bit/dim.
jazz 96.22 1.00 97.09 0.67 96.87 0.51
speech 93.48 0.98 96.00 0.67 96.47 0.50
pop 93.35 0.98 95.25 0.66 95.57 0.50
rock 93.76 0.98 95.38 0.66 95.60 0.50

Table 8.2: Numerical measured output entropies in kilobits per sedébgs) and bit/dim. per
description. The target entropy B8* = 96 kbps or2 bit/dim.

We block the normalized MDCT spectrum into vectors of length and use the
Z? lattice vector quantizer. Because of the short duratiorheftest fragments the
resulting expected distortions depend upon the realiaatid the packet loss patterns.
This phenomena has been noted by other authors, cf. [3]. ‘afeftre decided
to average the distortion results over three different jmsgerns obtained by using
different seeds to the random number generator. The nuallgrabtained expected
distortions are shown in Tables 8.3-8.6 and Figs. 8.3(apad(th).

K=1 p = 10% p=30% p = 50%

jazz  18.17 (18.16) 22.94(23.12) 25.16(25.23)

speech 17.84 (17.79) 22.61(22.82) 24.83(24.86)
pop  17.89(17.83) 22.66(22.83) 24.88(24.91)

rock 18.20(18.20) 22.97 (23.12) 25.18(25.23)

Table 8.3: Theoretical (numerical) expected distortions expressedB for K = 1 andp =
10, 30 and50%. The target entropy i&* = 96 kbps or2 bit/dim.

K=2 p=10% p = 30% p = 50%

jazz 9.44(10.42) 17.96(18.33) 22.24(22.38)

speech 8.80(9.94) 17.55(18.04) 21.88(21.80)
pop  9.04(10.32) 17.62(18.22) 21.94(22.11)

rock 9.70(10.66) 18.00(18.36) 22.27 (22.39)

Table 8.4: Theoretical (numerical) expected distortions expressedB for K = 2 andp =
10, 30 and50%. The target entropy i&* = 96 kbps or2 bit/dim.

As can be seen in Figs. 8.3(a) and 8.3(b) the expected distsrdepend not only
on the packet-loss rate but also upon the number of desomiptiAt high packet-loss
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K=3 p =10% p=30% p = 50%

jazz  17.54 (17.49) 18.80(18.76) 21.39 (21.34)
speech 15.62 (15.50) 17.34(17.29) 20.51 (20.56)
pop  16.38(16.28) 17.85(17.75) 20.76 (20.66)
rock  17.44(17.33) 18.75(18.63) 21.38(21.29)

Table 8.5: Theoretical (numerical) expected distortions expressedd for K = 3 andp =
10, 30 and50%. The target entropy i&* = 96 kbps or2 bit/dim.

K =4 p=10% p=30% p =50%

jazz  20.39(20.35) 20.61(20.59) 21.65 (21.59)

speech 18.88(18.75) 19.17(19.18) 20.52 (20.42)
pop  19.14(19.08) 19.41(19.46) 20.70(20.71)

rock  20.27(20.18) 20.50 (20.44) 21.58 (21.50)

Table 8.6: Theoretical (numerical) expected distortions expressedB for K = 4 andp =
10, 30 and50%. The target entropy i&* = 96 kbps or2 bit/dim.

rates it is advantageous to use a higher number of packetserifyg these findings
we performed an additional subjective comparison test. Wase three different
fragments (jazz, speech and rock) and three different pdoge ratesf = 0.1,

p = 0.3 andp = 0.5). We then performed a standard MUSHRA test [66]. At
each packet-loss rate the original signals were encodejusi = 1,2,3 and4
descriptions. Also included in each test were the hiddearegice and two anchor
signals (3.5 kHz and 7 kHz lowpass filtered signals). We used (nhon-experts)
listeners in the listening test and the results are showigs K.2—K.4 in Appendix K
for the individual fragments averaged over the nine pgrdints. The circles in the
figures denote mean values and the bars describe 95% cordineacals. Fig. 8.4
shows the result when averaging over participants and feagen Notice that for

p = 0.3 andp = 0.5 there is a significant preference for using more than two
descriptions.

The results of the subjective listening tests show genemalkignificant difference
between the two and three packet versions for a packet-&desofp = 0.1, cf.
Figs. K.2(a)- K.4(a). However, the results based on thegmual distortion measure
reveals that ap = 0.1 it is beneficial to use two packets instead of three, cf.
Figs. 8.3(a) and 8.3(b). In fact, a reduction in distortidnabout 7 dB can be
achieved. This discrepancy can be partly explained by optdmentation of the the
bit-allocation strategy outlined in Section 8.1.5. To avassigning a too small rate
to a given frequency band (which then would violate the higéslution assumptions)
we have, in the experiments described above, excluded MDD which were
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Figure 8.3: The expected distortion as a function of packet-loss priitiab for MD-LVQ when
operating at a target entropy of 96 kbps.

assigned a rate lower than 3 bit/dim. per descriptonThe effect of this is that
the high-resolution approximations are good so that thealeand numerical results
agree but the downside is that the input signal is severelpdss filtered. The
contribution of the high frequency bands to the total distoris therefore high,
hence, the reception of more than two descriptions doesnmatave the quality of
the reconstructed signal much. In addition we would likertgphasize two important
factors which might also contribute to the inconsistendyveen subjective listening
tests and the perceptual distortion measure. First of ladl, gerceptual distortion
measure is based upon a single block at a time and therefereotftinuity of the
signal over time is not address&tiSecondly, the distortion measure is defined in the
MDCT domain and since the MDCT is not an orthogonal transftrendistortion in
the MDCT domain is not equivalent to the distortion in thedidomain.

As previously mentioned we have in these tests excluded Mbes where the
rate assignment is less than 3 bit/dim. per description tkensare that the high-
resolution assumptions are valid. Such an approach exzladgreat amount of
MDCT bands (especially those representing the high frequeontents of the signal)
and the coded signal sounds muffled (lowpass filtered). Tasoréng behind this

65If the numerically measured discrete entropy is, for exanpl1 bit/dim. greater than the specified
theoretical entropy, then, since the sampling frequendgisHz, the resulting bit rate is 4.8 kbps above the
target entropy. Furthermore, if this 0.1 bit/dim. gap is gescription, then, in a three-description setup, the
resulting rate would exceed the target rate by 14.4 kbp<tiPahexperiments have shown that at 3 bit/dim.
per description, the numerically measured discrete eptiopff by less than 0.03 bit/dim. per description
for a range of index values.

66The listeners agreed that the “hick-ups” resulting frometigaps due to packet losses were the most
annoying artifacts present in the coded signals. The qweirig nature of the MDCT is, however, able to
reduce the impact of isolated packet losses.
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Figure 8.4: MUSHRA test results averaged over all three audio clipsgfoe 0.1,0.3 and
p = 0.5. The seven signals appear in the following order: Hidden &b kHz, 7 kHzK =
1,K=2,K=3andK = 4.

choice is that a “lowpass” filtered version of the signal bwitit time gaps) is often
preferable over a full bandwidth signal (with time gaps)tefhatively, we may take
into account that the practical rate becomes too high fob#rals that are assigned a
too low theoretical rate. Thus, we can heuristically assigower target rate for the
MDCT coefficients representing the higher frequency bar®isce we encode two-
dimensional vectors there are 512 bands in total but onlytthe first 300 of these
are assigned a positive rate. We then modify the scale fagttor the k" band by
the following rule

1.0 v, 0<k<50,

131, 51 <k <100,

v =14 1.4-v,, 101 <k <200, (8.21)
1.5 v, 201 <k <250,

2.0 vk, 251 <k <300.

For each different fragment we set the targétsuch that the practical rate is very
close t096 kbit/sec. (incl.4 kbit/sec. per packet for the masking curve). These rates
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Fragment R* [kbit/sec.] H(Y') [kbit/sec.]

jazz 92.16 95.92
harpsi 86.40 96.34
speech 91.92 96.03
pop 89.76 96.29
rock 94.08 96.09

Table 8.7: The target rateR™ is set lower tharP6 kbit/sec. which leads to a practical rate
H(Y) close ta96 kbit/sec.

are shown in Table 8.

The numerically measured expected distortions based on pteket-loss
probabilities are shown in Fig. 8.5(a) for the jazz fragm& have swept the packet-
loss probability between 1% and 50% in steps of 1%. Eachgesipeated 10 times
to reduce the influence of a particular loss pattern. Notie¢ already at packet-loss
probabilities as low as one percent it becomes advantagease three descriptions

instead of two descriptions. Fig. 8.5(b) shows the resdlts ©imilar experiment for
the speech fragment.
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Figure 8.5: Expected distortion as a function of packet-loss probtédi

8.3.2 Scalable Coding Results

We now assess the improvement of audio quality as more maaketreceived. This
is a form of scalable coding, where some receivers have sitaaaore information

67In this experiment we have included an additional audiorfrert “harpsi”, which consists of “music”
from a Harpsichord.
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Impairment ITU-R Grade ODG
Imperceptible 5.0 0.0
Perceptiple, but not annoying 4.0 -1.0
Slightly annoying 3.0 -2.0
Annoying 2.0 -3.0
Very annoying 1.0 -4.0

Table 8.8: Relationship between the ITU-R 5-grade impairment scatetha ODGs [12].

Fragment (\g) (A1) (A2) Avg.

jazz 2652 -2571 -2.720 -2.647
harpsi -1.976 -1.757 -2.606 -2.113
speech  -2.649 -2.492 -2.961 -2.701
pop -3.328 -3.375 -3.445 -3.383
rock 2.699 -2.556 -2.787 -2.681

Table 8.9: ODGs when receiving a single description out of three.

(descriptions) than others. In this case no descriptigel®sccur. Instead of using the
expected distortion we will use the Objective Differencer (ODG) based on the
Matlab implementation by Kabal et al. [70] of the PEAQ stanidd08]. The ODGs
are related to the standard ITU-R 5-grade impairment scathawn in Table 8.8.
Tables 8.9-8.11 show the ODGs for the five different testrifraigts. The last column
of Tables 8.9 and 8.10 show the mean ODGs when averaged avthrde different
combinations of descriptions. These average ODGs as wisleassults of Table 8.11
are also shown in the bar diagram in Fig. 8.6.

From the tables it may be observed that the perceptual ticsios approximately
symmetric, i.e. the ODG is essentially independent of whahket is received. In
addition, it can be seen that as more packets are receivdabtastial improvementin
quality can be expected.

Fragment (Ao, A1) (Mo, A2) (A1, 2)  Avg.

jazz -1.033 -1.162 -1.021  -1.072
harpsi -0.729 -0.993 -0.893 -0.872
speech -0.994 -1.171 -1.040 -1.068
pop -1.897 -2.401 -2.082 -2.127
rock -1.125 -1.284  -1.128 -1.179

Table 8.10: ODGs when receiving two descriptions out of three.
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Fragment (Ao, A1, A2)

jazz -0.104
harpsi -0.166
speech -0.189
pop -0.171
rock -0.184

Table 8.11: ODGs when receiving all three descriptions.

L] [] L]
()
e}
©
o
Q
o
=
[
(5
=
a
[
=2
S
2,
Qo
o
-3 B Il One desc.
[ Two desc.
[ JThree desg.
_3.12 L L L L L L I
jazz harpsi speech pop rock

Figure 8.6: ODGs for the reception of one to three packets out of threedffferent test
fragments.

8.4 Conclusion

We combined MD-LVQ with transform coding in order to obtainparceptually
robust audio coder. Previous approaches to this problene westricted to the
case of only two descriptions. In this work we usEdChannel MD-LVQ, which
allowed for the possibility of using more than two descops. For a given packet-
loss probability we found the number of descriptions anditi@llocation between
transform coefficients, which minimizes a perceptual digio measure subject to
an entropy constraint. The optimal MD lattice vector quzans were presented in
closed form, thus avoiding any iterative quantizer desigicedures. The theoretical
results were verified with numerical computer simulatiosmg audio signals and it
was shown that in environments with excessive packet lossesdvantageous to use
more than two descriptions. We verified in subjective ligtgrtests that using more
than two descriptions lead to signals of perceptually higluality.



Chapter

Conclusions and Discussion

9.1 Summary of Results

We presented an index-assignment based desigR -channel MD-LVQ. Where
previous designs have been limited to two descriptions wesidered the general
case of K descriptions. Exact rate-distortion results were derifgdthe case of
K < 3 descriptions and high resolution conditions for smoothiatary sources
and the squared error distortion measure. In the asymuasie of large lattice vector
guantizer dimension and high resolution conditions, it wlaswn that existing rate-
distortion MD bounds can be achieved in the quadratic Ganssase. These results
were conjectured to hold also féf > 3 descriptions.

In the two-description asymmetric case it was shown that ghgormance
was superior to existing state-of-the-art asymmetric seeein finite lattice vector
guantizer dimensions greater than one. In one and infinitedsions as well as in the
symmetric case (for all dimensions), the performance istidal to existing state-of-
the-art schemes.

In the three-description symmetric and asymmetric casefrfite lattice vector
guantizer dimensions, the rate loss of the proposed desgyperior to that of existing
schemes.

The optimal amount of redundancy in the system was shown iodependent
of the source distribution, target rate and type of lattieesd for the side quantizers.
Basically, the channel conditions (expressed through af getcket-loss probabilities)
describe the required amount of redundancy in the systeras,Tbr given channel
conditions, the optimal index-assignment map can be founttlaaapting to time-
varying source distributions or bit rate requirements am®to a simple scaling of
the central and side lattice vector quantizers.

We proposed an entropy-constrained design where eitherdbelescription rates

147
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or their sum rate are subject to entropy contraints. In thse ¢d a single sum rate
entropy contraint, we showed that the optimal bit allogaicross descriptions is not
unique, but in fact consists of a set of solutions, whichedld to minimal expected
distortion.

On the practical side it was shown that the optifiachannel MD lattice vector
guantizers can be found in closed-form, hence avoidingtengtive (e.g. generalized
Lloyd-like) design algorithms. Furthermore, we combine®NVQ with transform
coding in order to obtain a perceptually robust audio coéeevious approaches to
this problem were restricted to the case of only two dedorigt For a given packet-
loss probability we found the number of descriptions anditi@llocation between
transform coefficients, which minimizes a perceptual digio measure subject to
an entropy constraint. The theoretical results were verifigh numerical computer
simulations using audio signals and it was shown that inrenments with excessive
packet losses it is advantageous to use more than two deésiesip We verified in
subjective listening tests that using more than two desorip leads to signals of
perceptually higher quality.

9.2 Future Research Directions

In this thesis we considered index-assignment based MDnsehiat high resolution
conditions, which provide a partial solution to thechannel MD problem. However,
more work is needed before the general MD problem is solvecesidgs the
information theoretic open problems discussed in Chaptbere are many unsolved
problems related to MD-LVQ. Below we list a few of these.

e Proving the conjectures of this thesis, i.e. proving the-distortion results for
K > 3 descriptions.

e Extending the results to general resolution. To the besthef dauthors
knowledge, the only case where exact rate-distortion esgwas (in non high-
resolution cases) have been presented for index-assigtamsd MD schemes,
is the two-channel scalar scheme by Frank-Dayan and Za@iir [3

e It is an open problem of how to construct practical MD-LVQ eates that
comes arbitrarily close to the known MD bounds. Such scheewasire high-
dimensional lattice vector quantizers and large indexesliHowever, solving
the linear assignment problem can become computatiomdégsible for large
index values. For the symmetric case and certain low dirseaslattices, some
progress have been made in reducing this complexity by thigef Huang
and Wu [65]. A construction for high-dimensional nestedidat codes was
recently presented by Zamir et al. [162]. No index-assigmmeethods have,
however, been presented for the nested lattice code desijtha problem is
therefore not solved.
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e Constructing functional MD schemes for existing applicas in real environ-
ments and assessing their performance. For example foetimekapplication,
even if the packet-loss rate of a network is very low, the ylalaight
occasionally be high, which then means that (at least fditie@ applications)
a delayed packet is considered lost (at least for the cufraami) and the use of
MD coding might become benéeficial.






Appendix

Quaternions

We will here briefly define the Quaternions and describe a fepoirrtant properties
that we will use in this work. For a comprehensive treatmdrihe Quaternions we
refer the reader to [23, 71, 150].

The Quaternions, which were discovered in the middle of1fé& century by
Hamilton [71], is in some sense a generalization of the cempumbers. Just ds
and: denote unit vectors of the complex spacave definel, i, j andk to be unit
vectors in Quaternion spad& The set of numbers defined &s + bi + ¢j + dk :
a,b,c,d € R} are then called Quaternion numbers or simply Quaterniomuislitdn
of two Quaterniong = a + bi + ¢j + dk andq’ = a’ + V'i + ¢'j + d'k is defined as

g+q¢ =@+ad)+O0+b)i+ (c+)j+ (d+d)k, (A1)

and multiplication follows by first defining a multiplicatiorule for pairs of
Quaternion units, that is

PP= =k =1
ij="k, ji=—Fk,

3

A.2
Jk=1i, kj=-1, e
ki=j, ik=—j,
which leads to
"= (aa’ — bt — e —dd) + (ab' + ba' + c¢d' — dc')i
qq' = ( )+ ( ) (A3)

+ (ac’ + ca’ + db’ — bd")j + (ad' + da’ + bc’ — cb')k.

Definition A.1.1. The skew fieldH of Quaternions is defined as the spt =
a+bi+cj+dk: a,b, c,d € R} combined with two maps (addition and multiplication)
given by (A.1) and (A.3), respectively, that satisfies fieldbperties except that
multiplication is non commutative.
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Definition A.1.2. Quaternionic conjugation af = a + bi + ¢j + dk € H is given
by ¢* = a — bj — ¢j — dk and we denote by' Quaternionic conjugation and vector
transposition wherg € HE.

Definition A.1.3. The real part of a Quaternign= a+bi+cj+dk is given byR(q) =
a and the complex part (also called the vector part) is give@y = bi + ¢j + dk.

Lemma A.1.1( [6]). Two Quaterniong, andg; commute, i.eqoq1 = q1qo if their
vector parts are proportional (i.e. linear dependent)rogther words, if the cross
product3(go) x S(q1) = 0.

Lemma A.1.2([22]). The norm||¢| of a Quaterniory € H is given by||q|| = v/¢*q
and satisfies the usual vector norm, jl|| = va2 + b2 + 2 + d=.

Definition A.1.4 ( [14]). The Quaternions can be represented in terms of matrices.
The isomorphic mappr: (H,+,:) — (Hixs,®,®) between the spac@l of
Quaternions and the spagh « 4 of 4 x 4 matrices over the real numbékdefined by

a —b —c —-d
. . b —d
or(a+bi+cj+ dk) — . Z " _Z , (A.4)
d —c b a

describes left multiplication by the Quaternion  Similar we define right
multiplication by the mapr: (H, +, ) — (Hix4, P, ®) given by

a —-b —c -

b d —
on(a+bi+cj+dk)— | _Z . z (A.5)

d c —b a

It follows from Definition A.1.4 that addition and multipbdion of two
Quaternions can be done by use of the usual matrix addiiomnd matrix
multiplication®. Furthermore, Quaternionic conjugation can easily be doié,, 4
space where it is simply the matrix transpose.
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Modules

In this appendix we give a brief introduction to the theonatifebraic modules. For
more information we refer the reader to the following textk®([1, 22,61, 72].

B.1 General Definitions

Definition B.1.1. Let ¢ be a ring which is not necessarily commutative with respect
to multiplication. Then an Abelian (commutative) grofifs called a left # -module

or a left module over# with respect to a mapping (scalar multiplication on the left
which is simply denoted by juxtapositiony x S — S such that for alk,b € #
andg,h € S,

1) a(g + h) = ag + ah,
2) (a+b)g = ag + by,
3) (ab)g = a(bg).

RemarkB.1.1 For simplicity we have used the same notations for addithuitiplication
in the group as well as in the ring.

RemarkB.1.2 A right module is defined in a similar way but with multipligat on
the right. In fact if the ring_# is commutative then every leffZ -module is also a
right _#-module [61].

Definition B.1.2. If _# has identityl and if1a = a for all a € S, thenS is called a
unitary or unital_#-module.

RemarkB.1.3 In this work all modules have an identity.
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Definition B.1.3 ( [72]). A subsetS’ = {m,...,m,} C S of the _#-moduleS
is linearly independent ovey if, for x; € 7, xymy + - + zpm, = 0 only if
r1 = -+ =z, = 0. Ifin addition .S’ generates thensS’ is a basis foiS.

ExampleB.1.1 The setS = {2,3} is finite and generate®, considered as &-
module over itself [72]. Howeves is not a linearly independent set. Further, neither
element ofS can be omitted to give a generating set with one member. Héhise
not a basis of.

Definition B.1.4([72]). A _#-module that has a basis is called a frgemodule.

Definition B.1.5 ( [72]). The number of elements in a basis of @-module S is
called the rank or dimension o&f.

RemarkB.1.4. Not all modules have a basis [72]. L#&t, = Z/mZ be the residue
ring of integers, i.eZ,, = {[0],...,[m — 1]}, where[s] = [r] in Z,, impliess = r
(mod m). Notice thatZ,, contains no linear independent subsets, sinee= 0 for
anyzx € Z, henceZ,, has no basis and is therefore not a free module.

Definition B.1.6 ([1]). Let _# be aring and lef, S” be left_#-modules. A function
f:8— S"isa_g-module homomorphism if

1. f(m1 4+ ma) = f(m1) + f(me) forall my, ms € S, and
2. f(am)=af(m)forala e # andm € S.

Definition B.1.7 ( [1]). The set of all_#-module homomorphisms froifi to S’ is
denoted HorS, S7). If S = S’ then we write En¢lS) where elements of Erid) are
called endomorphisms. Jf € End(S) is invertible, then itis called an automorphism.
The group of all automorphisms is denoted @it

Definition B.1.8([72]). Let # be aring ands a _#-module. Then an annihilator of
an elemeny € S is the set

Ann(g) ={h € ¢ : hg =0}. (B.1)

An elementy € S is said to be a torsion element 8fif Ann(g) # 0, that is, there is
some non-zero elemeatc ¢ with ag = 0.

Definition B.1.9([72]). A _#-moduleS is said to be torsion-free if the only torsion
elementinS is 0.

Definition B.1.10. Let S’ be a finite group and lef be a left_#-module. The orbit
under the action ofn € S is obtained by left multiplication, i.e5'm = {gm : g €
S’}
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B.2 Submodule Related Definitions

Definition B.2.1. Let S be a_¢-module andS” a nonempty subset ¢f. ThensS’ is
called a submodule of if S’ is a subgroup of and for allg € S,h € S’, we have
ghes'.

Definition B.2.2 ( [61]). A cyclic submodule is a submodule which is generated by
a single element. For example in a leff-module S, a cyclic submodule can be
generated byn € S in the followingways #m = {zm:x € f}orm_# = {mx:

rxe 7}

Definition B.2.3([61]). In general the submodul¢ of the _#-modulesS generated
by afinite subsefm,,...,m,} C S is the set

Imi+-+ Imy, ={zimi+ -+ zom, x1,..., 5, € I} (B.2)

of all linear combinations ofni,...,m,. Such submodules are called finitely
generated. I§’ = S then{m;,...,m,} is a set of generators fct.

Lemma B.2.1( [72]). Let S andS’ be submodules of g7 -moduleS. Then their
sum
S+8 ={l+n:leSneslY, (B.3)

is also a submodule. Moreove&t+ S’ =S << S’ C S.

Lemma B.2.2( [72]). Let S and.S’ be submodules of g7 -moduleS. Then their
intersection
SNS" ={z:z € Sandz € 5}, (B.4)

is also a submodule. Moreové&tnN S’ = S «<— S C 5.
RemarkB.2.1 Submodules of a vector space are its subspaces.

Proposition B.2.1([72]). Let S’ be a submodule of theZ-moduleS. Letm,n € S
and define a relation ofi by the rule thain = n <= m — n € S’. The equivalence
class of an element € S is given by the set

ml=m+S"={m+1:1€ 5} (B.5)

The quotient module (or factor modulg) S’ is defined to be the set of all such
equivalence classes, with addition given by

[m] + [n] = [m +n], [m], [n] € S/, (B.6)
and multiplication by- € _¢# is given by

rlm] = [rm],[m] € S/S". (B.7)
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Definition B.2.4 ( [72]). The module homomorphism : S — S/S’ defined by
m(m) = [m] is called the natural map (or canonical homomorphism) ffota S/S".

Definition B.2.5. Let S" and S be arbitrary submodules of thgZ-moduleS. If
S+ 8" #£ S andS’ N S” # 0 their configuration or relationship is often expressed
in the diagram shown in Fig. B.1(a). H is the direct sum of5” andS” we have
S'NS” =0andS’+5” = S which lead to the simpler diagram shown in Fig. B.1(b).

(b)

Figure B.1: (a) The modulés is not a direct sum of the submodulgsand S”. (b) The module
S is a direct sum of5’ andS” and thereforeS’ N S” = 0andS’ + 5" = S.

B.3 Quadratic Forms

Definition B.3.1([1]). A conjugation on # is a functionc: # — ¢ satisfying
Loc(e(§) =¢ Vee 7
2. c(&1 + &) =c(&r) te(§2), V&,&€ 7
3. c(61&2) = clér)cl&e), Vi, &2 € F

Definition B.3.2([1]). Let.S be a free #-module. A bilinear form or'is a function
¢:S8xS— ¢ satisfying

1. ¢(&iwr + S22, y) = &10(21,y) + E20(22,Y)
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2. ¢(x,&11 + Sayo) = &10(w,y1) + S (2, y2)
forall z1, 20, y1,y2 € Sandé;, 6 € 7.

Definition B.3.3 ( [1]). Let .S be a free_#-module. A sesquilinear form ofi is a
functiong : S x S — _# satisfying

1. ¢(&rz1 + E2x2,y) = E16(21,Y) + §20(22,Y)

2. ¢(z, 6191 + &ay2) = c(§1)d(x, y1) + c(§2) (T, y2)
for all x1,22,91,y2 € S and&;, & € _# for a non-trivial conjugatio — (&) on
7.

Definition B.3.4([22]). LetA be a_¢# -lattice inR” having basis vectorg, . .., ¢, €
R whose transposes form the rows of the generator madriX hen any lattice point
A € A may be written on generic form as= ¢T' M where¢ = (&1,...,¢.)T and
where; € 7. Letus define the following function of (i.e. a squared norm)

L L
T(\) = Z Z(fi(i)Tijj

i=1 j=1

=eTMmTe,

(B.8)

The functionr in (B.8) is referred to as the quadratic form associated thighlattice

A. If A has full rank, themM/ M7 is a positive definite matrix and the associated
quadratic form is called a positive definite form. If we exdento 7(A1,A2) =

¢ M MT €5 we obtain the bilinear form of Definition B.3.2 and if the uniging field

is non real we get the sesquilinear form of Definition B.3.3ewehthe conjugation
functionc depends on the field.

RemarkB.3.1 In this work we will not make explicitely use of quadratic fhas.

Instead we equip the underlying field with an inner product which satisfies Defi-
nition B.3.2 and is therefore a bilinear form.

ExampleB.3.1 Let A C R%, i.e. A is a lattice embedded in the fieRf". Then we
can define the usual vector noif||2 £ (X, \), whereX € A. Notice that here the

conjugation is simply the identity. See Appendix C for maxaraples.






Appendix
Lattice Definitions

In this appendix we present a number of lattice-related diefits and properties
which are used throughout the thesis.

Let V be a vector space over the fiedkl and letV be equipped with an inner
product(-,-). If K = RZ thenV is the traditional vector space over the Cartesian
product of the real® As such,(V, (-, -)) is an inner-product space. An inner-product
space induces a norip- || defined ag| - |2 £ (-,-). If KXY = R we use the/s-
norm defined agz||> £ 27z whereas ifk” = C* we have||z||? £ 22 where
H denotes Hermitian transposition (i.e. the conjugate pass). IfKY = H* then
|lz||> & 2Tz where denotes Quaternionic conjugation and transposition. Fanem
information about inner-product spaces we refer the readbe widely used textbook

by Luenberger [89].

C.1 General Definitions

Definition C.1.1 ( [22]). A lattice A ¢ K* consists of all possible integral linear
combinations of a set of basis vectors, or, more formally

L
A—{)\EKL:/\—Z&Q,V&'G/}, (C.1)

=1
where¢; € K are the basis vectors also known as generator vectors dttieeland
J C Kis awell defined ring of integers.

RemarkC.1.1 It should be noted that it is often convenient to Use> L basis
vectors to form ar.-dimensional lattice embeddedli-’.

68Recall that, in a vector space oWF, addition and subtraction is with respect to vector® bfwhereas
multiplication is defined as multiplications of vectorsirt with scalar elements @&. Thus, a vector space
is a_#-module where 7 is a field, i.e. a ring where all elements (except 0) have segr
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Definition C.1.2. Let M be a generator matrix of the lattice Then the rows of\/
are given by the tranposes of the column vectdrsi = 1, ..., L, where we actually
do not require thal/ is square.

Definition C.1.3. The square matrixd = M M7 is called the Gram matrix.

Definition C.1.4. A fundamental region of a lattice is a closed region whichtaors
a single lattice points and tessellate the underlying space

Lemma C.1.1([22]). All fundamental regions have the same volume.

Lemma C.1.2( [22]). The fundamental volume of A is given byr = /det(A4),
sometimes written as = det(A). If M is a square generator matrix then=
| det(M)].

Definition C.1.5 ([25]). An L-dimensional polytope is a finite convex regiorlkrk
enclosed by a finite number of hyperplanes.

Definition C.1.6 ( [30]). The quotientK” /A is the L-dimensional torus obtained by
combining opposite faces of the fundamental parallelotepé; + ... + ar (|0 <
a; S 1}

Definition C.1.7. The Cartesian product of two latticesA; and A, is obtained by
pairing all points inA; with every point inA, i.e.

A1 ® A2 = {(/\1, /\2)|)\1 S Al, Ao € AQ} (C2)

It follows that the dimension oA = A; ® A, is equal to the sum of the dimensions
of the two lattices\; andAs.

Definition C.1.8([22]). The automorphism group Autj of a latticeA is the set of
distance-preserving transformations (or isometrieshefpace that fix the origin and
takes the lattice to itself.

Theorem C.1.1( [22]). For a lattice in ordinary Euclidean spaRé, Aut(A) is finite
and the transformations in Autj may be represented by orthogonal matrices.A et
have generator matrix/. Then an orthogonal matri® is in Aut(A) if and only if
there is an integral matri% with determinantt1 such that

UM = MB. (C.3)
This impliesU = MBMT A~!, whereA~! is the Gram matrix of\.

RemarkC.1.2 Aut(A = ZT) consists of all sign changes of thecoordinateg= 2°)
and all permutationé= L!). Hence |Aut(Z%)| = 2L L! [22].
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Definition C.1.9( [22]). The dual lattice\ of the latticeA is given by
A={zcRlzTNecZforall A € A}. (C.4)

Alternatively, if M is a square generator matrix &fthenA can be constructed by use
of the generator matrix/ = (M ~—1)T.

Theorem C.1.2( [30]). If A ¢ R is a discrete subgroup with compact quotient
R% /A thenA is a lattice.

Definition C.1.10( [22]). The coefficientsB; of the Theta serie®,(z) £ >, B¢’
of a lattice A describe the number of points at squared distarnftem an arbitrary
point in space (which is usually taken to be the origin). Thdeterminate; is
sometimes set tg = exp(inz), wherez € C and<(z) > 0.

C.2 Norm Related Definitions

Definition C.2.1( [22]). Let A ¢ K be a lattice. The nearest neighbor region of
A € Ais defined as

VI &2 {zeKRL: |z =N <|z-=N|%2, VN €A} (C.5)

Definition C.2.2. The nearest neighbor regions of a lattice are also calledndir
cells, Voronoi regions or Dirichlet regions. In this work wl use the name Voronoi
cells.

Definition C.2.3. Voronoi cells of a lattice are congruent polytopes, heney #re
similar in size and shape and may be seen as translated neisia fundamental
region, e.gV, = V(0), i.e. the Voronoi cell around the origin.

Definition C.2.4 ( [22]). The dimensionless normalized second moment of inertia
G(A) of a latticeA is defined by

1
G(A) 2 W/v )| 2da. (C.6)

Remark C.2.1 Applying any scaling or orthogonal transform, e.g. rotatior
reflection onA will not changeG(A), which makes it a good figure of merit when
comparing different lattices (quantizers). In other word@$A) depends only upon
the shape of the fundamental region, and in general, the spivere-like shape, the
smaller normalized second-moment [22].

Definition C.2.5 ( [38]). The minimum squared distane&,,(A) between lattice
points is the minimum non-zero norm of any lattice poirt A, i.e.

B2in(A) £ yuin [ ©7)
AZ0
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Definition C.2.6([38]). The packing radiug,(A) of the latticeA C R” is the radius
of the greatest-dimensional sphere that can be inscribed wiftijjnWe then have

pp(A) £ dmin(A) /2. (C.8)

Definition C.2.7([38]). The covering radiug..(A) of the latticeA C R’ is the radius
of the leastL-dimensional sphere that contaiWis i.e.

pe(A) = max |z (C.9)

Definition C.2.8 ( [38]). The kissing® number &(A) is the number of nearest
neighbors to any lattice point, which is also equal to the benof lattice points
of squared norma?, (A), i.e.

RA) £ X € A AP = dn (M)} (C.10)
Definition C.2.9. The space-filling loss of a lattict with dimensionless normalized
second momer®(A) is given by

Dioss= 10log;, (2meG(A)) dB. (C.11)

C.3 Sublattice Related Definitions

Definition C.3.1. A sublatticeA’ C A is a subset of the elements &fthat is itself a
lattice.

Definition C.3.2( [28]). A sublatticeA’” C A is called clean if no point oA lies on
the boundary of the Voronoi cells of .

Definition C.3.3. If A’ is a sublattice ofA then N = |A/A’| denotes the index or
order of the quotienA /A’.

Definition C.3.4. If A’ is a clean sublattice of then the index valu&y = |A/A’| is
called an admissible index value.

Definition C.3.5. The L' root of the index/ is called the nesting ratiav’/, i.e.
N’ = Nl/L.

Definition C.3.6 ( [28]). Let A be anL dimensional lattice with square generator
matrix M. A sublatticeA’ C A is geometrically strictly similar ta\ if and only if the
following holds

1. Thereis an invertiblé x L matrix U; with integer entries

69The terminology kissing number was introduced by N. J. AaBowho drew an analogy to billiards,
where two balls are said to kiss if they touch each other, @eedample the interview with N. J. A. Sloane
by R. Calderbank, which can be found online at http://wwsegech.att.corfjas/doc/interview.html.
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2. anon-zeroscalar € R
3. an orthogonal, x L matrix K with determinant 1,
such that a generator matri¢; for A; can be written as
M, =UM = c;MK,. (C.12)

If (C.12) holds then the inde¥; of A’ is equal to

det(A") det (M)
Ny = |A/N| = = = det = k. C.13
1= |A/A] det(h) | det(M) et(lh) = e (C.13)
Furthermore)\’ has Gram matrix

Ay = MM =UMMTUT = U, AUT = 3 A, (C.14)

whereA = M M7T is a Gram matrix for\.

Definition C.3.7. If in Definition C.3.6 the determinant df; is allowed to bet1,
i.e. K1 can be either a rotation or a reflection operator, then thiagide A’ is said to
be geometrically similar td.






Appendix

Root Lattices

This appendix describes some properties of the/Pdattices considered in this thesis.

D.1 Z!

The scalar uniform lattice also callgt! partitions the real line into intervals of equal
lengths. Table D.1 outlines important constants relatetegd ! lattice.

Description | Notation| Value |
Dimension L 1
Fundamental volume v 1
Packing radius Pp 1/2
Covering radius Pe 1/2
Space-filling loss Dioss 1.5329dB
Space-filling gain ovef! Dagain 0dB
Kissing-number R 2
Minimal squared distance d%in 1
Dimensionless normalized G(A) 112
second moment

Table D.1: Relevant constants for thg! lattice.

The set of admissible index values Bt is the set of all odd integers [28] and the
coefficients of the Theta series are givenfy= 1 andB; = 2,i > 0.

"OThe term root lattice refers to a lattice which can be geeerdty the roots of specific reflection
groups [22, 34].
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D.2 77

A generator matrix foZ? (also known as the square lattice) is given by

et o] o

The Gram matrixA is identical to the generator matrix, i.4.= M. Table D.2 gives
an overview of important constants related to #ielattice.

| Description | Notation| Value |
Dimension L 2
Fundamental volume v 1
Packing radius Pp 1/2
Covering radius De PpV/2
Space-filling loss Dioss 1.5329dB
Space-filling gain ovef! Dagain 0dB
Kissing-number R 4
Minimal squared distance d%in 1
Dimensionless normalized G(A) 112
second moment

Table D.2: Relevant constants for thé? lattice.

The first 50 coefficients of the Theta series, i.e. the numbeomts in each of
the 50 first shells of\ are shown in Table D.3 and the first seven shells are shown in
Fig. D.1.

1,4,4,0,4,8,0,0,4,4,8,0,0,8,0,04,8,4,0,8,0,0,2,0,1
8,0,0,8,0,0,4,0,8,0,4,8,0,0,8,8,0,0,0,8,0,0,0,4

Table D.3: The first 50 coefficients of the Theta series with startingipat zero for theZ?
lattice.

Let A be the square lattice represented in the scalar complexidpngaA = ¢.
Then a sublattice\’ = £A, whereé = a + ib and¢ € ¢ is clean if and only if
N = a? + b? is odd [28]. Equivalently an intege¥ is an admissible index value
if it can be written as a product of primes congruent tanod 4) and/or a product
of primes congruent t8 (mod 4) [21, 28]. This set is given by integer sequence
A057653 [125], see also Table D.4.

A subgroupl’y C Aut(A = Z?) of order 4 is given by (2.9).
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-3 -2 -1 0 1 2 3

Figure D.1: The first 7 non-zero shells & is here shown as large circles (incl. the one at
the origin). Notice that the number of points lying on eachleiagrees with the corresponding
coefficient of its Theta series.

D.3 A

The hexagonal lattice (also known ds) can be represented in the complex field
where it is identical taS. When represented iR? a possible generator matrix is

1 0
M= [_1 - /2] . (0.2)
Its Gram matrix is given by
[ —1y2
A= [_1 2 ] . (0.3)

Table D.5 summarizes important constants related tolthkattice.

Let A be the hexagonal lattice represented in the scalar compleainh, i.e. A =
&. Then a sublattice\’ = ¢A, where = a + wb and{ € & is clean if and only
if « andb are relative prime or equivalently if and only ¥ is a product of primes
congruent tol (mod 6) [28]. This set is given by integer sequence A004611 [125],
see also Table D.6.

A subgroul's C Aut(A = &) of order 6 is given by the rotational group

¢ = {exp(ikm/6),k =0,...,5}. (D.4)
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1,5,9,13,17,25,29,37,41,45,49,53,61,65,73,81,8%/8901,109,113,
117,121,125,137,145,149,153,157,169,173,181,183209,221,225,
229,233,241,245,257,261,265,269,277,281,289,29338317,325

333,337,...
Table D.4: Admissible index values faf?.

| Description Notation| Value |
Dimension L 2
Fundamental volume v V3/2
Packing radius Pp 1/2
Covering radius e 20pV/3
Space-filling loss Dioss 1.3658 dB
Space-filling gain ove#! Dgain | 0.1671dB
Kissing-number R 6
Minimal squared distance d2in 1
Dimensionless normalized
second moment G(A) 5/(36\/5)

Table D.5: Relevant constants for thé, lattice.

The first 50 coefficients of the Theta series f#&r are shown in Table D.7 and
Fig. D.2

D.4 z*

The hypercubic lattic&* is generated by

(D.5)

S O O =
o O = O
o = O O
— o O O

The Gram matrixA is identical to the generator matrix, i.8.= M. Table D.8 gives
an overview of important constants related to #telattice.

Z* has a geometrically-similar and clean sublattice of indfeit and only if NV is
odd and of the forma? for some integet [28]. The set of admissible index values is
given by integer sequence A016754 [125], see also Table D.9.

The first 50 coefficients of the Theta series fr are given in Table D.10.
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1,7,13,19,31,37,43,49,61,67,73,79,91,97,103,1091. 837139,
151,157,163,169,181,193,199,211,217,223,229,2438 271,
277,283,301,307,313,331,337,343,349,361,367,37,8397A03,
409,421,427,433,439,457,. ..

Table D.6: Admissible index values fots.

1,6,0,6,6,0,0,12,0,6,0,0,6,12,0,0,6,0,0,12,0,120(B(D,6,
12,0,0,12,0,0,0,0,6,12,0,12,0,0,0,12,0,0,0,0,6,18

Table D.7: The first 50 coefficients of the Theta series with startingnipat zero for theA,
lattice.

A subgroupl’s C Aut(A = Z*) of order 8 is given by [139]

0-10 0 00-1 0 00 0-1
10 00 00 0 —1 0010
s=q2 g 0 0 1 %100 o |'Flo-10 0 (0-6)
00 —-10 010 0 1000
D5 D,

The D, lattice (also known as the Schlafli lattice or checkerboattice) consists of
all points of Z* that have even squared norms [22]. A possible generatoinisitr
given by

1 1 0 0
-1 1 0
M = 0 -1 0 1 (D.7)
0 -1 0 -1
The Gram matrix is given by
2 -1 -1 -1
-1 2 0 0
A= 1 0 92 ol (D.8)
-1 0 0 2

and a subgroups C Aut(A = D,) of order 8 is given by (D.6). See Table D.11 for
a an overview of important constants related to fhelattice.

If a is 7 or a product of primes congruent fo (mod 4) then D, has a
geometrically-similar and clean sublattice of ind®x= «? [28]. This is the set 7
and integer sequence A004613 [125], see also Table D.12.

The first 50 coefficients of the Theta series for are shown in Table D.13.
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-3 -2 -1 0 1 2 3

Figure D.2: The first 6 non-zero shells of; is here shown as large circles (incl. the one at
the origin). Notice that the number of points lying on eacdhleiagrees with the corresponding
coefficient of the Theta series.

| Description Notation| Value |
Dimension L 4
Fundamental volume v 1
Packing radius Pp 1/2
Covering radius Pe 1
Space-filling loss Dioss 1.5329dB
Space-filling gain ovef! Dagain 0dB
Kissing-number R 8
Minimal squared distance d2in 1
Dimensionless normalized G(A) 112
second moment

Table D.8: Relevant constants for thg* lattice.
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1,9,25,49,81,121,169,225,289,361,441,529,625,729084,
1089,1225,1369,1521,1681,1849,2025,2209,2401,2809,2
3025,3249,3481,3721,3969,4225,4489,4761,5041,5829,5
5929,6241,6561,. ..

Table D.9: Admissible index values faf*.

1,8,24,32,24,48,96,64,24,104,144,96,96,112,192249P44,
312,160,144, 256,288,192,96,248,336,320,192,24®@58(24,
384,432,384,312,304,480,448,144,336,768,352,28%5884
384,96,456

Table D.10: The first 50 coefficients of the Theta series with startingipai zero for theZ*
lattice.

| Description Notation| Value |
Dimension L 4
Fundamental volume v 2
Packing radius Pp 1/v2
Covering radius De PpV/2
Space-filling loss Dioss 1.1672 dB
Space-filling gain ovef! Dgain | 0.3657 dB
Kissing-number R 24
Minimal squared distance d%in 2
Dimensionless normalized G(A) 0.076603
second moment

Table D.11: Relevant constants for th@, lattice.

1,5,7,13,17,25,29,37,41,53,61,65,73,85,89,97,101,10

113,125,137,145,149,157,169,173,181,185,193,197,205
221,229,233,241,257,265,269,277,281,289,293,305,313
317,325,337,349,353,365,373,377,389,397,401,409,421

Table D.12: Admissible index values fdp,.
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1,0,24,0,24,0,96,0,24,0,144,0,96,0,192,0,24,0,31240
0,288,0,96,0,336,0,192,0,576,0,24,0,432,0,312,00480
144,0,768,0,288,0,576,0,96,0

Table D.13: The first 50 coefficients of the Theta series with startingnipai zero for theD,4
lattice.



Appendix

Proofs for Chapter 2

Proof of Lemma 2.3.1Most of the work towards proving the lemma has already been
done in [21] and [28] and we only need some simple extensibtieedr results. For
Z! the proof is trivial, since any odd integer is an admissibi@ex value [28] and
the product of odd integers yields odd integers. Nowulét ¢ Z* be odd integers
that can be written as the product of primes from a certairs sét is clear that the
productab is also odd an can be written as the product of primes. oFor Z2 an
integer is an admissible index value if it can be written asaalpct of a set of primes
which are congruent td (mod 4) and/or congruent td (mod 4) [21, 28]. ForA; an
integer is an admissible index value if and only if it is a prodof primes which are
congruent tal (mod 6) [21,28] and ifm is a product of primes which are congruent
to 1 (mod 4) thenm? is an an admissible integer fd», [28].”* It follows that the
lemma holds for the lattices mentioned above. Finally,férand = 4k, where

k > 1, an integer is an admissible index value if it is odd and cawhten on the
form m’/2 for some integer [28]. Leta = m’/? andb = (m/)%/? we then have
thatab = m%/2(m/)F/?2 = (m")E/2, wherem” = mm/ is odd and therefore an
admissible index value far ~. O

Proof of Lemma 2.3.2The cyclic submoduleAy, = ¢&A is closed under
multiplication by elements oh so for any¢’ = &€ --- €1 € A and any\g € Ag
it is true thaté’\g € Ag which further implies that\, C Aq sinceé’)\y € A-.
Moreover, multiplication is commutative ii, ¢ and & so the order of the set of
elementssy, ..., k1 when formingA, is irrelevant. ThusA, C A; and it is
therefore a product lattice. O

Proof of Lemma 2.3.3Since the rings considered are unique factorization rihgeet

"We have excluded the index value obtained sfier= 7, since this particular index value cannot be
written as a product of primes mod 4 but is a special case foufg8].
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must be an elemegt € A such thaty¢’ = £, whereg’ is unique up to multiplication
by units of the respective rings. However, a uaitc A belongs to AutA) and
multiplication by is therefore an isometric operation which takes a latticistf.
It follows thatéy&’ € Ag for any&y € Ag which implies thatA! C Ag = & A. Once
again we invoke the fact that, ¢ and& are multiplicative commutative rings from
which itis clearthat\! C A; =&A, i =0,..., K — 1. O

Proof of Lemma 2.3.4Follows trivially from the fact that Gaussian integers couten
and Lipschitz integers include Gaussian integers as aapsse where thg?” and
k" elements are both zero. O



Appendix

Estimating ¢/

In this appendix we present a method to numerically estimatéor any L and K.

F.1 Algorithm

In Chapter 5 we presented closed-form expressiong fofor the case of{ = 3 and

L = 2 or odd as well as for the asymptotic caselof- oo. In order to extend these
results toK > 3 it follows from the proof of Theorem 5.3.2 that we need clogaun
expressions for the volumes of all the different convexoegithat can be obtained by
K —1 overlapping spheres. With such expressions it should bgktforward to find
¢, for any K. However, we will take a different approach here.

Let 7 be the volume of the sphefé which contains the exact number of sublattice
points required to construé{ distinct K -tuples, where the elements of eadghtuple
satisfy||\;—\;|| < r, wherer is the radius of/. Notice thafl’ is the expanded sphere.
Thus, the volume of V is YL times larger than the lower bound of (5.26). Now let
' = /9 E denote the volume of a sphere that achieves the lower bou2l)(&o that
N = (7 Jvs)K~1 (atleast this is true for larg®). But this implies that asymptotically
as the number of lattice points Ifi goes to infinity we have

~ L K—-1
N= (—”/W) 7 (F1)
Vs
which leads to
wLTL 1/L
YL = (W) ) (F2)

where, without loss of generality, we can assume that 1 (simply a matter of
scaling). For a givem in (F.2) we can numerically estimafg, which then leads to
an estimate ofy,. To numerically estimaté/ it follows that we need to find the set
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of lattice points within a spher& of radiusr. For each of these lattice points we
center another sphere of radiuand find the set of lattice points which are within the
intersection of the two spheres. This procedure contifides1 times. In the end we
find V by adding the number of lattice points within each interisect.e.

N=3230 30 BNV Ak2) 00V ), (F.3)
A1 As Ag_o

where

=

1

{A A € ANV (M)},
D X € ANV (M) NV (M)},

=

2
(F.4)

AK_Q = {)\K_Q tAKk_2 € AgN V(/\K_3) n---N ‘7(/\0)}

As r gets large the estimate gets better. For exampleifor= 4, A = Z2 and
r = 10,20,50 and 70 then using the algorithm outlined above we figd =~
1.1672,1.1736, 1.1757 and1.1762, respectively.



Appendix

Assignment Example

In this appendix we give an example of part of a complete assant. We let

A = Z2,K = 2andN = 101 and construct 2-tuples as outlined in Sections 5.3.3
and 5.5.2. These 2-tuples are then assigned to centraklattiints inV,;(0). Since

N = 101 then (at least theoretically) each sublattice points wéllused 101 times.
Furthermore, for a given sublattice point, say € Ag, the N associated sublattice
points, i.e. the set of sublattice points representing #wisd coordinate of the 2-
tuples having)y as first coordinate, will be approximately spherically disited
around), (sinceV forms a sphere). Fig. G.1(a) shows the seNo$ublattice points
given by

(A1 €Ay A = ar(A\e) andag(Ae) = (1, —10), Ae € Ac), (G.1)

which represent the set of second coordinates of¥h&-tuples all having\, =
(1,—10) as first coordinate. Each 2-tuple is assigned to a centtadagioint. This
assignment is illustrated in Fig. G.1(b). Here a dashed dioenects a given 2-
tuple (represented by its second coordingtg with a central lattice point. These
N assignments are also shown in Table G.1.
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(Appendix G) Assignment Example
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Figure G.1: The square marks the sublattice poik§ = (1,—10) and the small circles
illustrate the 101 sublattice points which are associatétthW,. (a) The large circle emphasize

that the sublattice points are approximately sphericaligtibuted around \o.

(b) The

assignments are illustrated with dashed lines and the sduoédl represent central lattice points.
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Ae €A ar1(Ae) €As | Ac €A a1(Ae) €As | Adc €A a1(Ae) € As
(-27,-6)  (-50,-5) (21,-8)  (41,-6) (-3,-32)  (-5,-51)
(-27,-4) (-51,5) (20,2) (39,14) (-10,-32) (-25,-53)
(-26,-14) (-49,-15) (17,-5) (30,3) (6,-31) (15,-49)
(-25,-16) (-48,-25) (16,-9) (31,-7) (5,-31) (5,-50)
(-23,-20) (-47,-35) (15,1) (29,13) (20,-30)  (35,-47)
(-23,4)  (-42,16) (14,11)  (27,33) (15,-30)  (25,-48)
(-23,7) (-43,26) (14,7) (28,23) (22,-29)  (45,-46)
(-22,-3)  (-41,6) (14,-12) (32,-17) (-14,-29) (-26,-43)
(-21,-16) (-38,-24) (11,-8) (21,-8) (-16,-29) (-36,-44)
(-20,-7)  (-40,-4) (10,6) (18,22) (16,-26)  (34,-37)
(-19,-12) (-39,-14) (10,-1)  (19,12) (5,-26)  (4,-40)
(-16,4) (-32,17) (10,-4) (20,2) (-3,-26)  (-6,-41)
(-16,11) (-33,27) (5,-4) (10,1) (24,-25)  (44,-36)
(-15,-7)  (-30,-3) (3,-1) (9,11) (-9,-25) (-16,-42)
(-15,-2)  (-31,7) (5,18) (6,41) (13,-24)  (24,-38)
(-14,-12) (-29,-13) (7,18) (16,42) (8,-24)  (14,-39)
(-13,4) (-22,18) (-5,17) (-14,39) (-13,-24) (-27,-33)
(-13,8) (-23,28) (-3,17) (-4,40) (-17,-24) (-37,-34)
(-10,-1)  (-21,8) (-13,16)  (-24,38) (7,-19)  (13,-29)
(-9,-9)  (-19,-12) (5,13) (7,31) (-5,-19)  (-7,-31)
(-8,-4)  (-20,-2) (-5,12)  (-13,29) (-8,-19)  (-17,-32)
(-8,6) (-12,19) (-2,12) (-3,30) (-15,-19) (-28,-23)
(-5,0) (-11,9) (9,11) (17,32) (17,-18)  (33,-27)
(28,-4)  (50,5) (-2,7) (-2,20) (3,-18)  (3,-30)
(28,-6)  (51,-5) (5,6) (8,21) (11,-17)  (23,-28)
(28,-19)  (53,-25) (1,2) (-1,10) (2,-16)  (2,-20)
(25,3) (49,15) (-6,-37) (-14,-62) (-8,-16)  (-18,-22)
(24,-11)  (52,-15) (14,-36)  (26,-58) (14,-14)  (22,-18)
(24,-14)  (42,-16) (7,-36)  (16,-59) (-4,-14)  (-8,-21)
(22,6) (38,24) (3,-36)  (6,-60) (8,-13)  (12,-19)
(22,-18)  (43,-26) (-4,-34)  (-4,-61) (-4,-11)  (-9,-11)
(21,13) (37,34) (-9,-33)  (-15,-52) (6,-9) (11,-9)
(21,-3) (40,4) (-17,-33) (-35,-54) (-1,-8) (1,-10)
(-4,-6)  (-10,-1) (-2,-3) (0,0

Table G.1: The assignments of the = 101 2-tuples which all have\, = (1, —10) as first
coordinate, i.eap(A:) = (1, —10).






Appendix

Proofs for Chapter 5

For notational convenience we will in this appendix use ttrter notationZ instead
of L K:»),

H.1 Proof of Theorem 5.3.1

In order to prove Theorem 5.3.1, we need the following result

LemmaH.1.1. Forl < k < K we have

r—1 k (K K-1
(e 5n) =5 () ()
le” 7=0 =0
Proof. Expanding the sum on the left-hand-side Iead@fjgm different terms of the

form (., \;), wherei € {0,..., K — 1}. There areK distinct\;’s so the number of
times each\; occur is(%) /K. 0

LemmaH.1.2. Forl < x < K we have

2

> Ki% = ( )ZIIAI2 % ( )KZQ Kzl A A)

leZ||j=0 i=0 j=i+1

Proof. There are(f) distinct ways of adding: out of K elements. Squaring a sum
of k elements leads te squared elements am{ ) cross products (product of two
different elements). This gives a total 0f ) x squared elements, aad”) (%) cross
products. Now since there afé distinct elements, the number of times each squared

element occurs is given by
K\ k
2 = —. H.1
#ix <k)K (H.1)

181
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There are(g() distinct cross products, so the number of times each crassdupt
occurs is given by

Fnn) = (f) 2(%) - ?(H((Ilz:ll)) (f) (H.ZD)

Lemma H.1.3. For K > 1 we have

K-2 K-1 K-2 K—-1
K—-1) Aill? -2 Ai, Aj) Ai — A7
ZII I > [Ai =X (H.3)
=0 j=i+1 =0 j=i+1

Proof. Expanding the right-hand-side of (H.3) yields

K-2 K-—1 K-2 K-—1
ST TN =N =0 DT (NP IR =206, 0)) - (H.4)
i=0 j—it1 i=0 j—it1

We also have

K-2 K—-1 K-2 K—2 K—1
S0 (NP +1x17) Z 1 LY S D PV &
i=0 j=i+1 i= i=0 j=i+1

K-2

K-1
(K = 1= a)|INlP + Yl

j=1

K-1
(K = 1= a)|INl* + Yl

-
Il
=)

=

i=0 §=0
K-1 K-1 K-1
= D = DINIE = Yl + D gl
i=0 i=0 j=0
K-1
= (K -1 |nl?
=0
(H.5)
which completes the proof. O

We are now in a position to prove the following result.

Proposition H.1.1. For1 < k < K we have
2
1= K
§ )\c - = g /\lj - ( ) < A
K < R -
e’ 7=0 i=0

K-2 K-1
e i - Aj||2>.

1=0 j=1i+1

1 Kfl/\-
c K %
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Proof. We have

2
rk—1
1
= c 2_2 cy ; 5
Il =2 (e 30 )+

Hence, by use of Lemmas H.1.1 and H.1.2, we have that

2
K—-1 K-1
(K , 2 | 1 2
- (& )(M I - K<Ac, > Az>+K,€ >

20i-1) NSNS M)

11{71
Ao — ;JZ::OAZJ.

>

les

1 k—1
Ae — E;/\lj

KK -1k

i=0 j=i+
B K \ 1 Kfl/\- 1 Kfl)\.
-\ & ‘K ! K2 !
1=0 =0

1 (k—1) K-2 K-1
+Kﬂzznx 2+ mz; <m>)
K
(L8
+ 2(“7_1)_1 ISE S iy Aj)
K(K-1)x K?) < v
K-1 |?
K 1
—(K)(Ac—ﬁg% b
K-2 K—1
()5 S )
1=0 j=1+1

=0
K-2 K-1
+ (K2 ) ”/\i_)‘j”Q)a
=0 j=i+1

which completes the proof. O
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Theorem 5.3.1.For 1 < x < K we have

2
Kk—1 K-1
1 K 1

) SP DY FHEED SPY —Z(K></\C—E Y

Ae l€Z j=0 A i=0
K-2 K-1

K-k 9
+(K21€(K—1)) . pa H)‘l_/\JH )
1=0 j=1+1
Proof. Follows trivially from Proposition H.1.1. O

H.2 Proof of Theorem 5.3.2

Theorem 5.3.2.For the case of’ = 3 and any oddL, the dimensionless expansion
factor is given by

1/2L 1/2L
wr, L+1 —1/2L
= — H.6
w= () (B (H6)
wherejy, is given by
I . %(L21 L (35L),
=3 (7 ) e S
n=0 n k=0 ( 2 )k :

e\ Ny )
()G () e

Proof. In the following we consider the case & = 3. For a specific\y € A,
we need to construdy 3-tuples all having\q as the first coordinate. To do this we
first center a spher& of radiusr at \y, see Fig. 5.2. For largd’ and smallv,
this sphere contains approximatélyv, lattice points fromA . Hence, it is possible
to construct(7/v,)? distinct 3-tuples using lattice points inside. However, the
maximum distance between and \, points is greater than the maximum distance
between), and \; points and also betweek, and )\, points. To avoid this bias
towards)\, points we only use 3-tuples that satigfy; — A;|| < r fori,j = 0,1, 2.
However, with this restriction we can no longer foin3-tuples. In order to make sure
that exactlyN 3-tuples can be made we exparicy the factory .. It is well known
that the number of lattice points at exactly squared digtafrom ¢, for anyc € R” is
given by the coefficients of the Theta series of the lathid@2]. Theta series depend
on the lattices and also an[22]. Instead of working directly with Theta series we
will, in order to be lattice and displacement independemnisider thel.-dimensional
hollow sphere?’ obtained a&’ = S(c,m) — S(c,m — 1) and shown in Fig. H.1(a).
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<
QN

7

(b)
Figure H.1: The number of lattice points in the shaded region in (a) givea,, = VoI(%) /vs
and in (b) it is given by,, = Vol(¢) /vs.

The number of lattice points,, in % is given by|¢'NA| and asymptotically ag, — 0
(and independent af)
am = VOI(B) Jvs = = (m* — (m — 1)"). (H.8)
1%

The following construction makes sure that we he — \»|| < r. For a specific
A1 € V(Xo) N A, we center a spher at \; and use only\, points fromV (\g) N
V(A1) N As. In Fig. H.1(b) we have shown two overlapping spheres wHeeefitst
one is centered at somg and the second one is centered at some V (\o) which
is at distancen from X, i.e. ||\ — A1|| = m. Let us by@ denote the convex region
obtained as the intersection of the two sphereszi.e= V(\o) N V(). Now letb,,
denote the number of lattice points#n A,. With this we have, asymptotically as
vs — 0, thatb,, is given by

b, = VOI(E) /vs. (H.9)

It follows that the numbeT’ of distinct 3-tuples which satisfiyA; — ;|| < r is given
by

Jim T = mz_:l b (H.10)
We now proceed to find a closed-form expression for the voloime’, which

eventually will lead to a simple expression foy,. Let o.%;(-) denote the
Hypergeometric function defined by [115]

2 F1 (a,b;¢;2) = Z (C(Lc);c:l;{)'k 2", (H.11)
k=0

where(-), is the Pochhammer symbol defined as

1 k=0
(@) = {a(a+1)~-~(a—|—k—1) k>1. (H12)
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Lemma H.2.1. The volume of arl.-dimensional {. odd) spherical captap is given
by

2w,
Vol (Veap) = %ML—D/Q(QT _ ) (B2

L+1 1—-L L+3 2r—m
X 9% ) ; ; )
2 2 2 4r

(H.13)

Proof. This is a special case of what was proven in [143] and we cagfibre use the
same technique with only minor modifications. ket m /2 and letu be a unit vector
of RL. Furthermore, lefd;, ,, be the affine hyperplang + hu|z € RE, 2 - u = 0} of
R which contains the intersection of two spheres of equal raaind with centers at
distancem < r apart, see Fig. H.2.

| Cgr h,u

)

Figure H.2: Two balls inR? of equal radiir and distancen apart.

We define the spherical cap as
Grhu=1{z€ B(0,r)|z-u>h}, (H.14)
and its surface is described by
Frhu ={2€85(0,7)|z-u>h}, (H.15)

whereB(0,7) € RY andS(0,7) € R” denote the balf respectively the sphere of
radiusr and centered at the origin.

72| this proof we redefine the concept of a sphere to be in lirth §#i43]. As such, the term sphere
denotes the surface of a ball, hence, a sphere has no infehigrterminology is only needed in this proof.
Elsewhere we define the sphere to be a solid sphere (i.e. artehits surface) as is customary in the lattice
literature.
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The sphereH}, ,, N 7. 1, has radiuse = r? — h? and it is clear thah =
Vr2 — 22, Moreover, any point of#,  ,, which is at distanc@ ¢ from H, ,, is at
distance(z? — t? — 2th)'/? from the real lineRu (i.e. the span of)). Hence, the
volume Vo[, 1,.,) of €, 1 . IS given by

r—h
VOI(CKT_’hyu) = / WLfl(IQ _ t2 _ 2th,)(L71)/2 dt
0
r—h

:“’H/ (r—h—t)(r+h+1) 072 gt (H.16)
0

o [ a1y gy
0

wherea =r — h, 8 = —r — handy = (L — 1)/2. The last integral in (H.16) can be
shown to be equal to [69, Eq. 3.196.1]

«@ +1/_
[a-ve-pya=""E0s (1,—7;%2;%), (H.17)

which by use of (H.35) can be written as

Y+1(_ 3\
o 0 (1,—7;7+2;g) =
v+1 B
8 (H.18)
(1_8) aat(=p) ( e +2.L)
6 '7+1 2771 | Y y TV Y ,Oé—ﬁ .

The volume Vo[ 1,,.,) follows by inserting (H.18) in (H.16), that is

Y L3y
\Vol(6nu) = wr—1 (1 - 2) Mzﬁl (7 +1,—y7+2 L)

16} v+1 o —
— YLl (L-1)/2(9, _ ) (LHD)/2
T T (2r —m)
2r —
X 2. <L/2 £1/2,1/2— L/2;L/2+3/2; T4Tm) ,
(H.19)
which completes the proof. O

The region%é consists of two equally sized spherical caps. Inserting8YH.

73By distance we mean the length of the shortest straight liat ¢an be drawn betweetd), , and
Zr.hu- Itis clear that this line is perpendicular i, ,,.
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and (H.9) into (H.10) leads th (asymptotically as’;, — 0)

_ SwLwL—-1 (mL _ (m _ 1)L)T(L71)/2

><(2r_m)(L+1)/22€§'1 (L+1 1_LL+32T_m>

2 7 2 7 2 7 4y

(a) 2wrwr—1 L1 Ll L1, .
S 2o+ 2)( S ICO I e
3t (L4l (1-L) k k—j ;
XZ(2)I@(2)I¢Z<1€><1) (_)7<i)
I+3 -
= ()R =/ \2 ar
X Z(mL — (m — D)E)ym"m?
m=1
£ H.20
b) 2WLWr—1 L1 e [(EE Lyl ( )
= roz 2 ) @2r) T (="
2+ 2 n
S~ (), 58 g (1) (1) (LY
s () 6) )
k=0 (%)k k| §=0 J 2 4T
X (L Z mL71+n+j + ﬁ(mLQJrnJrj)) '
m=1
=y
(© 2wpwp 1 L=1 == L1, .
2(L+1) n_o( n )( r) (=)
L1 ‘
(), (155, & g (1) Y
. oy =) ) Ve
k=0 2 Jk j=0 J
L L+4n+j L—1+4+n+j
- n 172 n+j
x <L+n+jr o ))

where(a) follows by use of the binomial series expansion [56, p.16€](z + y)* =
Sk (¥)2*~my", which in our case leads to

n=0 \n
L41
S G T H.21
rm) = 32 (2 )y (H.21)

"In this asymptotic analysis we assume thathallpoints within a given is at exact same distance
from the center of/ (i.e. from o). The error due to this assumption is neglectable, sincecangtant
offset fromm will appear inside/(+).
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and

() 506 ey

=0

(b) is obtained by once again applying the binomial series esipanthat is
(m—1)F =ml — LmP~! + 0(m*~?), (H.23)

and(c) follows from the fact thad ", _, m” = Aorftt + 6 (r1).
Next we letr — oo so that the number dfiollow spheres insidd’ goes to
infinity.”> From (H.20) we see that, asymptotically as — 0 andr — oo, we

have
wrWwr—1 L

vZ L+1
wheregy, is constant for fixed. and given by (H.7).

We are now in a position to find an expressiongr. Let v be equal to the lower
bound (5.26), i.ev = v,v/N and let be the radius of the sphere having volume
Thenty, is given by the ratio of- and, i.e.¢;, = r/7, wherer is the radius ofV.
Using this in (H.25) leads to

T_< Tw,(L+1) >”2L. (H.26)

T =

Brrt, (H.25)

2wrwr 1 LB
Since the radius of an L-dimensional sphere of volumeis given by
_\1/L
7= (i) , (H.27)
wr,
we can findy, by dividing (H.26) by (H.27), that is
2 1/2L — —-1/L
_ <7TVS(L+1) > <L> . (H.28)

2wrwr—1 LB wr,

Yr =

=3

Since we need to obtailV 3-tuples we lefl’ = N so that withv = V' Nvg we can

rewrite (H.28) as
1/2L 1/2L
[ wr L+1 ~1/2L
vr = (w) ( s ) ) (H.29)

This completes the proof. O

7SWe would like to emphasize that this is equivalent to keepirfixed, sayr = 1, and then let the
number ofhollow spheres insid& go to infinity. To see this led — oo and then rewrite (H.8) as

_ wr, m\L m—1\%
= = = — - —— < < M. .
amar = ON(E) s = = ((M) ( = ) > 1<m<M (H.24)
A similar change applies to (H.9). Hence, the asymptotiaesgion forT" is also valid within a localized
region ofRL which is a useful property we exploit when proving Proposits.4.1.
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H.3 Proof of Theorem 5.3.3

Lemma H.3.1. For L — oo we have

1/2L
( “L > —1. (H.30)
wWr—1

Proof. The volumew;, of an L-dimensional unit hypersphere is given by =
7l/2 /(L/2)! so we have that

7L2 (L2 —1/2)0 " **

3%(@/2)! L2172 )
= lim ©'/* (6(L7))

L—oo

1/2L (H.31)

=1. 0

Lemma H.3.2. For L — oo we have
1 4 1/4
L

Proof. The inner sum in (5.28) may be well approximated by using fAat~ + for
L > ¢, which leads to

S (@) e ()

SO @ e

<

We also have that
g
(5 k(laL)k (1)’“ . <L+1 l—L.L+3.1>
Z 3 —2</1 ) 9 ]
Pt ( ) 4 2 2 2 4

a 1-L L+3 1
R (1, — ,—§>

L/2-1/2

_ (3/4)(71+L)/2 k! (1/2_L/2)k (_1/3)k

kK (3/2+L/2))

_ (3/4)(—1+L)/2

L/2—1/2

—L/2)* .
< % (wmrrams o) e

k=0
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L/2—1/2

A (3/4) RN (13, (H.34)

k=0

where(a) follows from the following hypergeometric transformatifdri 5]
2 F1 (a,b;c;2) = (1 — z)7b2351 (c—a,b;¢;8), (H.35)
where¢ = 5. Finally, it is true that

L/24+1/2
3 (L/2 + 1/2> oL/2+1/2=n(_qyn 1, (H.36)
n

n=0
Inserting (H.33), (H.34) and (H.36) into (H.7) leads to

L/2—1/2

N D S (H37)

k=0

where sinc& "7~ ,(1/3)F = 3/2, we get

1
lim ——— = lim (4/3)'/4(4/3)" /4L /2L (9/3)1/2L
L—oo ﬁi/QL L—oo (H38)

= (4/3)/%,
which proves the Lemma. O

We are now in a position to prove the following theorem.
Theorem 5.3.3.For K = 3 and L — oo the dimensionless expansion factoy is

given by
4 1/4
Yoo = (5) . (H.39)

Proof. The prooffollows trivially by use of LemmaH.3.1 and Lemm@&I2.in (H.29).
O

H.4 Proof of Proposition 5.4.1

LetT; = {\i: A = ai(\e), A € V(0)}, i.e. the set ofV? sublattice points\; € A
associated with thé'? central lattice points withifV,.(0). Furthermore, let; C T;
be the set of unique elementsBf where|T/| ~ N. Finally, let

Tj()\z) = {/\7 : /\j = Oéj(/\c) and/\i = ai(/\c), A € Vﬂ—(O)}, (H40)

and letT;(\;) € T;(\;) be the set of unique elements. Thatfig(\;) contains all the
elements\; € A, which are in the/{-tuples that also contains a specific We will
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also make use of the notatigfy ; to indicate the number of occurrences of a specific
)\j in TJ(/\l)
For the pair(i, j) we have

S i) —aA)lIP= D0 > I = Al

)\cGVﬂ'(O) i GT{ ;€T ()\1)

Given); € T}, we have

DR PN 2 N S DYDY 2

A ET;(Xi) AGETS(Ai)

a) N

(’;:i) = Z ”/\z - )\j”zl/s
X €T (X:)

N (H.41)

N _
~ ﬁlerQ/LLG(SL)

1N — x||2 dz

© N ELG(S,),
where(a) follows by assuming (see the discussion below for the cask 6f 3)
that#,, = N/N forall \; € T;(\;) and(b) follows sincer = Nv,. Hence, with
7= Nvy, = yNYE-Dy andy, = Nv, we have
1
7 > I = AjlPve & Nuggpf v ENYENPHE-DG (S )
)\jETj(}\i)

_ sz%N1+2K/L(K71)VQ/LG(SL)’

which is independent of;, so that

N
DI DN VPV LIV S PP

X €T A €T (i) A ET;(Xs)
~ ¢%N2+2K/L(K71)V2/LG(SL).

In (H.41) we used the approximatigfy, ~ N/N without any explanation. For
the case of = 2 and asN — oo we have thafl] = T, and N = N, hence the
approximation becomes exact, i#,, = 1. This proves the Proposition fat = 2.
We will now consider the case df = 3 and show that asymptotically, ds— oo,
the following approximation becomes exact.

% > = NP & NPEG(S,). (H.42)
AFET;(N;)
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To prove this we use the same procedure as when derivingdefosm expressions
for ¢, leads to the following asymptotic expression

D= Al = }:mnmm (H.43)

X ET;(X:)

where we without loss of generality assumed that= 0 and used the fact that we
can replacé|\;||? by m? for the \; points which are at distanee from \; = 0. It
follows that we have

1 o _oWrwr—1_ 1 o oryo

D DN e Lk S L2 (H.44)
A ET;(A:)

where

L= L piy /1L

— % 9t —n(_1)n m

-3 (T )y Ul
n=0 k=0 2 Jk (H45)

SR () e

Sincei = wrr? = ¢YE/Nv, we can rewrite (H.44) as

-1 1 1
D= A P = 2 e g

2 L 2+2/L
N ET; (M) vi LAl wr, /
_ 9 WL-1 1 52/L,2L
=2 1+2/LL+15L v N
(H.46)
(é)QwL 1 ,~2/L wr, L+1\ 1
1+2/L L W1 2L ﬁL
1 1.5 ﬁ/L
- N ==,
w2/ " L BL
where(a) follows by inserting (H.29). Dividing (H.46) by (H.42) leado
1 1 1 B, L4253
— 2 = . H.47
LGSR L B (H47)
Hence, asymptotically a6 — oo we have that
. L4283,

which proves the Proposition.

RemarkH.4.1 Proposition 5.4.1 considered the asymptotic casé ef co. Exact
distortion expressions for the casef6f= 3 and finite L follow by replacing (H.41)
with (H.43).
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RemarkH.4.2 For K > 3 it is very likely that similar equations can be found for
11, which can then be used to verify the goodness of the apprdixinsafor anyK .
Moreover, in Appendix H.5 we show that the rate of growth of4H is unaffected

if we replace#,, by eithermin,, {#»,} or maxy, {#2,} which means that the error

by using the approximatioN/N instead of the truef,; is constant (i.e. it does not
depend onV) for fixed K and L. It remains to be shown whether this error term tends
to zero ad. — oo for K > 3. However, based on the discussion above we conjecture
that Proposition 5.4.1 is true for arfy asymptotically agV, . — oo andv; — 0.

In other words, the side distortion offé-channel MD-LVQ system can be expressed
through the normalized second moment of a sphere as the siiomegoes to infinity.

H.5 Proof of Proposition 5.4.2

Before proving Proposition 5.4.2 we need to lower and uppemb #,; (see Ap-
pendix H.4 for an introduction to this notation). As prevsbumentioned the\;
points which are close (in Euclidean sense}toccur more frequently thak; points
farther away. To see this observe that the constructioR d@fiples can be seen as
an iterative procedure that first picks\@ € A; N V;(0) and then any\; € A, is
picked such thaffA\g — A1|| < r, hence\; € A; N f/()\o). The set ofAx_; points
that can be picked for a particulak” — 1)-tuple e.g( o, . .., Ak —2) is then given by
A1 A1 € ANV (Ag_2)N---NV(Xo)}. Itis clear that|\; — \;|| < r where
()\1‘, /\j) = (Oéi(/\c), Oéj()\c)),V)\c e A.and anyi, j € {O, o, K= 1}

Let Tmin(Ai; Aj) denote the minimum number of times the p@ir, A, ) is used.
The minimumTmin Of Tmin(A;, A;) over all pairs(A;, A;) lower boundsN/N. We
will now show thatT,, is always bounded away from zero. To see this notice that the
minimum overlap between two spheres of radiegntered aky and\, respectively,
is obtained when\y and \; are are maximally separated, i.e. wheky — ;|| =
r. This is shown by the shaded area in Fig. H.3 for= 2. For three spheres the
minimum overlap is again obtained when all pairwise distanare maximized, i.e.
when||X; — A;|| = rfori,j € {0,1,2} andi # j. Itis clear that the volume of
the intersection of three spheres is less than that of twersghhence the minimum
number of Ay points is greater than the minimum number)gf points. However,
by construction it follows that when centeridg spheres at the set of poinis=
{Xo, -y Ax—1} = {ao(Ae), - .., ax—1(Ac)} each of the points i will be in the
intersectiom, of the K spheres. Since the intersection of an arbitrary colleation
convex sets leads to a convex set [117], the convex#i(d) of s will also be inN;.
Furthermore, for the example in Fig. H.3, it can be seen#@} (indicated by the
equilateral triangle) will not get smaller fdk > 3 and this is true in general since
points are never removed frosras K grows. ForL = 3 the regular tetrahedron [25]
consisting of four points with a pairwise distanceroflescribes a regular convex
polytope which lies im,. In general the regulak-simplex [25] lies inN, and the
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Figure H.3: Three spheres of equal radius are here centered at the sebiotsps =
{Ao0, A1, A2}. The shaded area describes the intersection of two sphefé® equilateral
triangle describes the convex hifl(s) of s.

volume Vol L) of a regularL-simplex with side length is given by [13]

LJL+1
\Vol(L) = %@ / 2% =cpr®, (H.49)

wherecy, depends only ord.. It follows that the minimum number oK -tuples that
contains a specifi¢);, \;) pair is lower bounded by VL)X ~2/vK=2. Since the
volume# of V is given by? = wyr* we get

O

Also, by construction we have that < (7/v,)*~! and thatN = /v, so an upper
bound onN/N is given by

N _(7\*7?

=< (-) , (H.51)

N Vs

which differs from the lower bound in (H.50) by a multiplidag constant.
We are now in a position to prove Proposition 5.4.2.

Proposition 5.4.2For N — oo and2 < K < oo we have

2
K-—1
DA€V, (0) ‘ Ae = % 2imo N

K—2—K-1
Z)\CEVW(O) Zi:o j=i+1 ||)‘z - )‘j||2

Proof. The numerator describes the distance from a central Igitiag to the mean
vector of its associated -tuple. This distance is upper bounded by the covering
radius of the sublatticd ;. The rate of growth of the covering radius is proportional

—0. (H.52)
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tovs’" = (Nv)/L, hence

1Kfl
> AC—KZ;AZ-

AcEVR(0)
Since the approximatioN/N used in Proposition 5.4.1 is sandwiched between the
lower and upper bounds (i.e. Egs. (H.50) and (H.51)) we catewr

2
y (NQNZ/LVWL) . (H.53)

K-2 K—-1

> > Z lai(Ae) = aj(Ae)*

_ Yo llai(he) = a; ()

i=0 j=i+1 A.€V;(0)

(H.54)

K(K _ 1)G(SL)1/1%N2N2K/L(K_1)U2/L,

so that, since\; = a;(\.),

K-2 K-1

SOY Y - allP = o (NENEEEED ), (H.55)

Ae€VR(0) =0 j=i+1

Comparing (H.53) to (H.55) we see that (H.52) growszabN — /(X -1)) — ¢ for
N — oo andK < co. O



Appendix

Proofs for Chapter 6

For notational convenience we will in this appendix use therter notations?, .%;
and.# ; instead otz (%), 2" and.£ "),

.1 Proof of Theorem 6.2.1

To prove Theorem 6.2.1 we need the following results.

Lemmal.1l.1. Forl1 < x < K and anyi € {0,..., K — 1} we have

K-1
p(Z) = £p(£L) — p(£)
)
G
Proof. Since || = (¥7) the sum ¥ ' p(.%) contains K (X)) terms.

However, the number of distinct terms|i&’| = (f) and each individual term occurs
 times in the sum, since

@)

Subtracting the terms fgr= i proves the lemma. O

K(K_l) _

Lemmal.1l.2. Forl < x < K and anyi,j € {0,..., K — 1} we have

K-1

p(Zij) = kp(Z).-

=

<

197
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Proof. It is true that%;; = . and since.%;| = (%) and|.%; ;| = (X22) the
sumz7 < p( ;) containg K — 1) (X 72) + (X)) terms. However, the number of
distinct! € .Z; terms is|.%;| = (nq) and each term occurstimes in the sum, since

(K -1)(5) + (50
(K—l) = K.
rk—1 O
Lemmal.1.3. Forl < k < K we have

K-1
> n(2) </\67%Z/\i> = </\c,% > Az—p(ﬂ)>-
ez i€l i=0

Proof. We have that

S p(2) <Ac, ’ ZAZ-> - <Ac, -~ zpa>ZAi>

lez i€l e’ i€l

1 K-1

where the last equality follows sinc#; denotes the set of dliterms that contains the
indexi. O

Lemmal.1l.4. Forl < x < K we have

K-2 K-1 K-1
Yo D p&(E)IN = NIP =Y (L) (5p(L) = p(L) [Nl
=0 j=1i+1 1=0
K-2 K-1
=23 > (L) N Ag)
i=0 j=i+1

Proof. We have that

K-2 K-1 K-2 K-1
S 3 AN - = Y S s AN+ I
=0 j=i+1 =0 j=i+1
K-2 K-1
-2 > p (s Aj).
1=0 j=1i+1

Furthermore, it follows that

K-2 K-

—

p(LIP(ZH NN + 12 17)

1=0 j=1i+1
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K-2 K—-1 K—-1
= > p@)INIP D p(Z) + D p(L)lIN HQZP
=0 Jj=i+1 j=1
K—-1 K—-1 K—-1
=Y p(@)INIP Y p(Z) + D p(Z)lINIP Zp
i=0 j=i+1 j=0
———— _\,—/
0 for i=K—1 0 for =0
K-1 K—-1
= > plL)In? Zp + > ()
1=0 Jj=i+1
K—-1 K—-1
= p(BINIP Y p(%)
i=0 j=0
J#
K—-1
= ) ()N (5p(L) = p(£))
=0
where the last equality follows by use of Lemma [.1.1. O

Lemmal.1.5. Forl < k < K we have

K-2 K-1 K—-1
Yo D o GplIh =Ml = =1) Y (L)l
1=0 j=1i+1 1=0
K-2 K-1
=23 > (L) Ag)-
1=0 j=1i+1

Proof. We have that

K-2 K-—1 K-2 K-—1
DX eI =N1P =0 > ()N
1=0 j=1i+1 =0 j=1i+1
K-2 K-—1
FINID =2 0 D7 p(Z) e A).
=0 j=i+1
Furthermore, it follows that
K-2 K-—1
SN (G UNIE+ 10117
=0 j=1i+1
K-2 K-1 K-2 K-1
= ()N + D Y p(Z)IN P
i=0 j=i+1 i=0 j=i+1
K-2 K-—1 K—-1j-1

N2 D p(Zig) + Y0 Y eIl

=0 j=i+1 j=1 =0
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K—-1 K-1 K—-1 j—1
=Y NP DS p( L)+ D NP p(Zy)
1=0 j=i+1 j=0 i
————— —_————
0 for i=K—1 0 for 5=0

= (= 1) Y INIPR()

where(a) follows by use of Lemma l.1.2. O

Lemmal.1.6. Forl < x < K we have

Z p(l) Z /\i

ez i€l

K-1 K-2 K-1

=k p(AINIP =D D plZip)lni = Al

1=0 =0 j=1i+1

Proof. The set of all elementsof £ that contains the indekis denoted by.%;.
Similarly the set of all elements that contains the indicaad; is denoted byZ; ;.
From this we see that

Z p(l) Z Ai

2 k—2 Kk—1
=30 (anuzz 3 <Azi,Azj>>

e’ i€l e’ i€l =0 j=i+1
K-1 K-2 K-1
LINIP+2D 7 D p(Zg) i Ag).
=0 1=0 j=1+1

By use of Lemma |.1.5 it follows that

2 K-1

K-1
oM Do =D PN+ (5= 1) D ()N
e’ i€l 1=0 1=0
-2 K-—1
Z p(Z )N — Nl
=0 j=i+1
K-—1 K-2 K-1

=5 > p@INIE = Y p(Z)ln - Nl

1=0 1=0 j=1i+1 |:|
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We are now in a position to prove the following result.

Proposition .1.1. For1 < x < K we have

K-1
3ot - —;x =22) |3~ = PN
K—-2 K-1 ] )
§ % > > (BB ) - al
i=0 j=i+1

(1.1)

)

Proof. Expansion of the norm on the left-hand-side in (I.1) leads to

> n( ‘A——ZA —Zp(l)(|Ac|2—2<Ac,%ZAi>+%

pRRY

les i€l ey i€l i€l
@ | K-l 1 2
P(L)A |2—2< Y n >+pzpa> A
i=0 lez i€l
K—1 2 K—1 2
=p(Z) | e — p(Z > (LA
i=0 i=0
) 2
T3 ZP(Z) Z/\i
les i€l
K—1 2 1 2
= (f p Ai +sz(1) Z)\i
Kp(Z i=0 les i€l
K—1 K-2 K—1
PP INIP+2> 0 Y p( ) (Niy Aj)
1=0 1=0 j=1i+1
" | Kl 2 =
=p(ZL) || Ae — p(Z)Xi| +=) p(Z) NP
] e DIEON R WY
| K2 Kl ;K
- — ZLilhi = X% = LA IN?
=P 7;1]9( ll il 5(27) 2 (L) Ill
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K-2 K—-1 )
DI I LR [TV
1=0 j=1+1
where(a) follows by use of Lemma 1.1.3 an@) by use of Lemmas 1.1.4 and I.1.6.
O
Theorem |.1.1. For1 < k < K we have
1 2 K—1 2
S w0 A =3 (060 o S
Ae L€ 1€ c = (|2)
L &\ (2L)p(%) 2
iy 3 (B ) o)
Proof. Follows trivially from Proposition 1.1.1. O

[.2 Proof of Proposition 6.3.1

Proposition 6.3.1For K = 2 and asymptotically a®V; — oco,v; — 0 as well as
for K = 3 and asymptotically a®’;, L — oo andy; — 0, we have for any pair of
sublattices(A;, A;), 4, =0,...,K —1, i # j,

K-1
1 _
T2 i) = O)IP = vEv EGSLNG [T N/,
AcEVR(0) m=0

Proof. LetT; = {\; : A; = a;(\e), Ac € Vz(0)}, i.e. the set ofV,. sublattice points
A; € A; associated with thév, central lattice points withii/;(0). Furthermore,
let 7/ C T; be the set of unique elementsBf. Since (for largeN;) all the lattice
points of A; which are contained withifi; (0) are used in somK—tupIes, it follows
that|T}| ~ 7/v; = N, /N,. Finally, letT;(\;) = {); : A\j = a;j(A\;) and\; =
@i(Ac), Ac € V(0)} and letT7(\;) C T;(\:) be the set of unique elements. That
is, T;(X;) contains all the elements; € A; which are in theK-tuples that also
contains a specifig; € A;. We will also make use of the notatigpy ; to indicate the
number of occurrences of a specifi¢ in T;(\;). For example fot = 2 we have
#x, = 1,V)\; whereas for’ > 2 we have#,, > 1. We will show later that using
the approximation#,; ~ Ni/Nj is asymptotically good foi = 3, L — oo and
N,, — oo, Vn. Furthermore, we conjecture this to be the casdfar 3 as well.

For sublatticeA; andA; we have

> i) —aA)lIP= D0 D I = Al

A€V (0) M ET! X €T5(Ns)
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Given); € T}, we have

SN =NIPr = D #alhi = APy

)\jETj()\i) A]‘GTJ{(Ai)

N;
Tl Ai—)\'2V'
S DRV
N;

%

Aj ET]{(Ai)

/ |\ — 2||? dz
V()

= L/ LLG(S)
J

= NiVjﬁz/LLG(SL)

(1.3)

%

2z =

1/(K 1)

sinceN; = i7/v;. Hence, with = UJLVH , we have

K—-1
1
L >IN = NPy & N v P G(SL) ] Va2,
A ET;(Ai) m=0

which is independent of;, so that

1Y X AP IE X AP

)\1',€Ti, Aj GTj()\i) Aj GTj()\i)

K—-1
~ Y2 ¥EG(SL) N, H NZ/EK-1)
m=0
which completes the first part of the proof. We still need tovstihat for X' = 3
andL — oo as well asN,,, — oo, Vm the approximation#,, ~ NZ-/NJ- is good.
That this is so can be deduced from the proof of Propositidrigthe last part where
= 3) by using the fact that = 1=v [ Na/ "~ in order to prove that
1 -
= Y AR = N EG(S), (14)
A ET;(Ai)

which shows that (1.3) is asymptotically true f&r = 3, L — oo andN,, — oo, Vn.

(]
[.3 Proof of Proposition 6.3.2
Proposition 6.3.2For N; — oo we have
v Ac—,ﬂ,g)Zz —o AN ~0.  (15)

ZLi)p(ZL;
Caevo Tin St (BEEL - p(2)) 12 = A2
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Proof. The numerator describes the distance from a central lafi@at to the
weighted centroid of its associatéd-tuple. Let us choosg# such thatvy < N;, Vi.
Then, since by construction there is no bias towards any efsthblattices, the
weighted centroids will be evenly distributed aroukxidpoints. Hence, the distance
from central lattice points to the centroids can be uppenlded by the covering radius
of Ag. This is a conservatiVé upper bound but will suffice for the proof. The rate of
growth of the covering radius is proportlonaln@/ (Nov)Y/%, hence

2

K—-1
3 Z (L y (N,,Ng/LVQ/L) . (18)
AcEVR(0) i=0

By use of Proposition 6.3.1 we haife

=
M7
b
x
L
PR
=

1N

5
AN

HE L) —p(x,n) i (he) — (A2

1 K-2 K— Z L.
-1 (P55 ) T Jat) -l
i=0 j=it1 Ae€V=(0)
~ 022/LG(Sy) NHN2/LK 1)KZQKX:1< i”)_ ,2”)
. p(Zij) |
=0 j=i+1

so that, since\; = a;()\.), we get by use of Proposition 6.3%1

S Y Y (ML) )Yl

AcEVR(0) i=0 j=i+1
K-1
=Q <N,,u2/L H N;/L<K1>> .

m=0
(1.7)

Comparing (1.6) to (1.7) we see that (1.5) grows@s(Nz/L/Nz/L(K 1)) — 0 for
N; — oo. [l

76The number of distinct centroids per unit volume is largemtithe number of points ofy per unit
volume.

""The approximation O#)\j in Proposition 6.3.1 does not influence this analysis. Tatlsisewe refer
the reader to Appendix H.5.

8In this case we actually lower bound the expression and dstkaorder operataf is in fact(). Recall
that we say thaff(n) = 0(g(n)) if 0 < f(n) < c1g(n) and f(n) = Q(g(n)) if f(n) > cog(n), for
co,c1 > 0 and some large. Furthermoref(n) = ©(g(n)) if cog(n) < f(n) < c1g(n), cf. [56].
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Figure 1.1: The complete sphere consisting of the regiohand % describeV; (0). The radius
of V- (0) is 7. The small bright sphere describ& WhenV is centered af points within the
spheregs of radiusr, it will be completely contained withilr; (0).

.4 Proof of Lemmas

Proof of Lemma 6.2.2For simplicity (and without any loss of generality) we assum
thatV,:(0) forms the shape of a sphere, see Fig. |.1. Kneuples are constructed by
centering a sphefi of volume# around each, € V;(0) and taking all combinations
of lattice points within this region (keepinly, as first coordinate). From Fig. 1.1 it
may be seen that any, which is contained in the region denoted will always be
combined with sublattice points that are also containeld;if0). On the other hand,
any \o which is contained in regios? will occasionally be combined with points
outsideV,.(0). Therefore, we need to show that the voluiig of </ approaches
the volume ofV;(0) as N; — oo or equivalently that the ratio dfz/V.y — 0 as
N; — oo, WwhereV 4 denotes the volume of the regica.

Let w;, denote the volume of ah-dimensional unit sphere. Thén, = wrrk
andVyg = v, — Vg, wherev, is the volume oft;(0). The radius of </ can be
expressed as the difference between the ragia$ v, (0) and the radius of, that is

= (vp o) — (5w E. (1.8)
since,vy = v[[N; = vN, andi = Ly [JNYE = pLyNY Y we can
write V, as

Vo = erlL
N\ 1/L\ L
B N
=wr | () BT (1.9)

v (N mN;/L(K—l))L .
The volume 0f% can be expressed through the volumesohs

V@ =Vr — VQ{, (IlO)
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so that their ratio is given by

g N,
Va _ -1 (1.11)
Vi (Nl/L _ Nl/L(K—l))
Clearly, for K > 2 we have
Nr
Nlim 7 =1, (1.12)
=00 (N;/L _ Nﬂl'/L(Kfl))
which proves the claim. O

Proof of Lemma 6.2.3We only need to prove Lemma 6.2.3 fdg andA;. Then by
symmetry it must hold for any pair. Le¥’,, denote the set oK -tuples constructed
by centeringf/ at some\y € V;(0) N Ag. Hences € %, has), as first coordinate
and the distance between any two elements isfless thar, the radius ofl’. We
will assumé® that Sy, # 0, V.

Similarly, define the set\, # 0 by centering’ at some); € Vx(0) N Aj.
Assumé° all elements of thé( -tuples are i/ (0). Then it must hold that for any €
S5, we haves € Uy, ey na, - Butitis also true that for any € .7, we have
s" € Uy, ev.na, \ - Hence, we deduce they, oy 1n, 20 = Uy, ev.nn, P
Furthermore|V;.(0) N Ao| = Nz /No,|-#»,| = No, VAo € Vz(0) N Ag and.#y, N
Sy = 0,2 # Ay, which implies that U, <y qa, ol = N a

.5 Proof of Theorem 6.5.1

Before proving Theorem 6.5.1 we need the following results.

Lemmal.5.1. Forl < x < K and anyi € . we have

2

k—2 k—1
SN =EDCINIE=D0 DT I =l
jel jgel =0 j=1i+1

"This is always the case if > max; r(A;) wherer(A;) is the covering radius of th#” sublattice.
The covering radius depends on the lattice and is maximizag is geometrically similar t&z, in which
case we have [22]

1
T(AZ) — 5\/iljl/[/]vil/[/.

Sincer = ¢Lu1/LN71r/L(K71)/w2/L it follows that in order to make sure that), # 0 the index
values must satisfy
N; < (V2gp) P Ni/ 7Y i 0, K- *)
Throughout this work we therefore require (and implicitssame) that (*) is satisfied.
80This is asymptotically true according to Lemma 6.2.2 sineeatithis point do not consider the cosets of
the K-tuples. Furthermore, the cosets are invariant to whigkeéais used for the construction &f -tuples
as long as all elements of thé-tuples are withinV/; (0).
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Proof. We can write

2
k—2 k—1
DN =0 INIE 2 Y T u ),
jel jel i=0 j=i+1
which by use of Lemma H.1.3 leads to
2
k—2 k—1
DN =D INIP =D INIE =D D Iy = Al
JjEl JEL jEl i=0 j=i+1
k—2 k—1
=my INIP=D0 D0 I = Al
jel i=0 j=i+1 0

Lemmal.5.2. For1l < x < K and anyl € . we have

K-1
2 <z s p<ﬁ>Ai> = p(2)r Y N2

jel i=0 jel

+HZ Dl — ZZ DIRYEPN i

jel =0

Proof.

jel =0 i=0
K-1
ZZP DA — Aall?
7'61
+Z p(Z) (IN11P + [ll%)
jel =0

where by use of Lemmal.1.1 we obtain

2<2Aj,ffp<z> T

jel i=0 jel i=0

+rp(L) D IINIP + 5 Z DI,

el
J O
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Proposition 1.5.1. For0 < k < K < 3, N; — oo,v; — 0 and anyl € .Z we have

2

K-1
- Y p(ZLi)Ni
AcEVR(0) ]El =0
K-1
= w0y QSN [T Vo,
m=0
where

wmwz_éﬁg@@wﬁ—mxﬁg>ﬂﬂﬂiﬁ@ﬂ

p( JjEl
K—-2 K-—1
- §LWZ))
=0 j=1i+1
where(5) = 0for s = 1.
Proof. We have that
K—-1 2
ZA— p(L)
]El 1=0
1 2 K-1 2
_ 2 s D
WWH( 2N |20
K-—1
—2p(Z) <Z "y p(fi)Ai> )
jel i=0
which by use of Lemmas I.5.1 and 1.5.2 leads to
1 1= 2
PO DR R B (E )Y
’{j; J p(Z)IQ gt ( )
1 k—2 k—1
= —— 5= (L)) INIP—p(£)? A — M, |17
e (1Y ZZ
K-—1 K-2 K-—1
+p(L)r Y p(Z)INIP =D > Bl Z5) X = MllIP
1=0 1=0 j=1+1
K-—1
—p(L)’k > _INIP = p(L)r Y p(L)I|N?
jJel 1=0
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e (12 IS A B - A

jel =0
k—2 k—1
)QZ Z ”/\11 _)\lj||2
i=0 j=i+1
K-2 K-1
D3PI EAIE ] (.13
i=0 j—it+1

It follows from Proposition 6.3.1, (1.13) and Lemma |.1. hthwve can write

1 1 1
Z Z Z/\7 - p(g)ﬂ Zp(Z)Az
AcE€EVR(0) jel i=0
1 K—-1 k—2 k—1 K-2 K-1
~ 2
~ (MO ) w2 Y Y - W)
jel 2;9 =0 j=i+1 i=0 j=i+1
U)Q 2/LG(SL Nﬂ- H NQ/LK 1)
m=0
= (p( 22— p(L)Y p(Z 2<K>
=— _
(L)%K < 2
K-2 K-—1 K—-1
p >U)2 2/LG(SL N H NZ/L(K 1)
=0 j=i+1 m=0
This completes the proof. O

Proposition I.5.2. For anyl < x < K andl € . we have

K—-1 K-1
Z Z . ﬁzp (1/LN HNl/LK 1))

AcEVR(0) ]El i= m=0

Proof. Recall that the sublattice points and\; satisfy||A\; — A;|| < r, wherer =
(7/wr)'/F is the radius of’. Hence, without loss of generality, we lgf = r and
A; = 0, which leads to

2

AcEVR(0)

Z A — T p(Zi)Ni

jel i=0

K-1
-0 (1/1/LN7T H ern/L(K—l)> :

m=0

sincer = ¢Eu [T5Z0 N/ 7Y, O
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Proposition1.5.3. For1 < x < K < 3,1l € 4, N; — oo andy; — 0 we have
2 2

K—1
p(iﬂz‘)/\i .

1 1 1
Z ;Z/\j_)\c - Z ;Z/\j_p(g)li

A€V, (0) jel A€V, (0) jel i=0

Proof. LetA = —2— S0 0t p(Z) A andX = 2 37 ;. We now follow [28, Egs.

p(ZL)k
(67) — (72)] and obtain the following inequalities:

IX = Al = 1N = A+ A = Ac?
= N = A+ A = Al +2(( = A), (A = Xo)),
from which we can establish the inequality
X = AP+ A = Acll? = 21 = A), (A = A <IN = Al
SN = AP+ A = Acl® + 2/ = A), (A = Ao))l-
Using the Cauchy-Schwartz inequality we get
IX = A2+ 1A = Al = 2V = NI = Al < IV = Al
SN = AP+ 1A = Al + 201 = D = A
which can be rewritten as
- A=A
”/\/ _ /\H2 (1 _ H H

2
”/\/ A”) < ||/\/_/\CH2

N 2
5 A=Al
<IN = A2 (1+ nAz el
A" = All

Summing oven,. € V,(0) and observing thath — \.||> > 0, we get
DoV =AP =2V =MIA=Al) < D0 A= NP
AcEVR(0) AcEVR(0)

< ST IV = AP A= AP+ 20N = AHIA = Al
AcEVR(0)

which can be rewritten as

< N = AllIA = Ae
Z ||A/ _ )\H2 (1 _ 2Z>\c€Vﬂ(0) || /HH —_ ||> (|14)
A€V, (0) 2oaevao) N =All
< > e =X (1.15)
A€V (0)
<| > V=P
AcEVR(0)

A= Ac?
) (HZACGVWW e,

Snevs o X = Al = Acll
> EEEE (1.16)
A€V (0) -

Yaevao IV = Al
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By use of (1.6) and Proposition I.5.2 it is possible to uppaufd the numerator of the
fraction in (1.14) by

K—-1
Yo IV =AA=Al =€ ((Nk’/)l/Lqul/L I1 N;/L<K—1>> :

AcEVR(0) m=0

since the covering radius of thé” sublattice is proportional taN,v)'/*, whereN;
is the minimum ofN;,7 =0,..., K — 1.
By use of Proposition 1.5.1 it is easily seen that the denamoinin (1.14) grows as

K-1
Z H)\l _ ;\”2 =0 <I/2/LN7T H N%/L(K_l)> ,

AcEVR(0) m=0

hence the fraction in (1.14) go to zero fdf; — oo. By a similar analysis it is easily
seen that the fractions in (1.16) also go to zerd\gs— oc.

Based on the asymptotic behavior of the fractions in (I.14) @.16) we see that
(asymptotically asV; — o)

SN =P DD = XNIPS YD IV =R

A€V (0) A€V (0) A€V (0)
hence
Yoo NIPR D IV
AcE€EVR(0) AcEVR(0)
which completes the proof. O

We are now in a position to prove Theorem 6.5.1.
Theorem 6.5.1The side distortioD*:!) due to reception of descriptio{$}, where
le Zforanyl < k < K < 3is, asymptotically ad,, N; — oo andy; — 0, given

by

K—1
DD w(K’l)U)iVQ/LG(SL) H Ni?/L(K—l)7
i=0
where

Wi = L <p($)2112 — p(2)? <;> -p(2)Y p(Z)

jel

where(5) = 0for k = 1.
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Proof. By use of (5.16) we can write the distortion as

2

jel
2
11 1
~ 11 L N .17
De+ 70 PO DR (1.17)
A€V (0) jel
2
11 1
NIV Dol A
Ae€Vr (0) jel

where the second approximation follows from that fact tisd¥Va— oo, the distortion

due to the index assignment is dominating. Furthermore skyofi Propositions 1.5.3
and 1.5.1in (1.17) we are able to write

11 1 1 =
DED ~ — — NN - —— L
L N, Z /{Z T p(DP)k ZP( )
A€V (0) JEl =0
K-—1
~ w02 2GS, [] N2,
m=0

which completes the proof. O



Appendix

Proofs for Chapter 7

This appendix contains proofs of the Lemmas and Theorensepted in Chapter 7.

J.1 Proofs of Lemmas

Proof of Lemma 7.2.1For K = 3,k = 1 and R, — oo we see from (4.39) that

1/3 -1
0'2 = (1 — pq)QQRS (L%) -1
a 1—pq J.2)

~ 1_p —2/3 1+2p )—1/32—2}%37
q q

where the approximation follows from the high resolutiosuaaption which implies
that22% > 1. With this, we can write the optimal single-channel distortof a
(3,1) SCEC, which is given by (4.37), as
pBL — o
o2 +1 (J.2)

~ O

[ V)

q7
where the approximation follows sine§ < 1. We now equalize the single-channel

distortion of three-channel MD-LVQ (or (3,1) MD-LVQ) and,(3 SCECs (i.e. we set
(7.11) equal to (J.2)) so that we can expresas a function ofV'. This leads to

3\’ _
1+ 2pg = <W) (1= pg)~2 (J.3)
Using (4.37) we rewrite the two-channel distortion of (330ECs as
D(3’2) o 02(1 "’Pq)

C 021+ pg) +2
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(@) 1
N 502(1 + pg)

®) 1+ pq
6

1 2 19—2R;
— P N'27 J.4
0%, (24

¢2 N/2—2RS

©)

where (a) is true at high resolution since; < 1, (b) follows by replacings?
with (J.1) and inserting (J.3) ar(d) is valid for largeN’ sinceN’ > 1 implies that
pq = —1/2. Similarly, by using (J.3) in (4.37) the optimal three-chahdistortion
can be written as

03(1 +2pq)

DB3) —
02(1+2p4) +3

Q

1
502(1 +2pq)

1\? (3.5)
=30 (1= pg) (F) g2

2
-3
N’ ’

where the first approximation is valid Wherj < 1 and the second follows since
pq =~ —1/2. Comparing (J.4) and (J.5) to (7.12) and (7.13) shows tlrattchannel
MD-LVQ reach the achievable rate-distortion region ¢8al) SCEC in the quadratic
Gaussian case at high resolution. O

Proof of Lemma 7.3.1Let AEL) denote the set of epsilon-typical sequences [24] and
note thatAEL) must have bounded support since, for dnyfx(zo,...,zL-1) >
2~ LX)+ for z € A" and

- fx(xm ceey ,TL_l)d.T S 1.
Ae

Let the side quantizers of an MD-LVQ system be SD entropystraimed lattice
vector quantizers. An SD lattice vector quantizer desigioeén output entropy of,
sayR;, for the L-dimensional uniform source with bounded support (in faatehed
to the support of4§L)) has a finite number of codewords givenddy*:. The distortion
performance of a lattice vector quantizer is, under higtelgion assumptions, inde-
pendent of the source pdf [22,86]. Therefore, using thimtmer for A instead
of a truly uniformly distributed source will not affect théstbrtion performance but
it might affect the rate. However, since the bounded unifdistribution is entropy
maximizing it follows thatR; upper bounds the rate of the quantizer. O

Proof of Lemma 7.3.2The two-channel distortion of @, 2) SCEC is given by

1
DB2) 503(1 + pq)s (J.6)
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where from (4.39) we see that
02 = 2(1 — pg) /3 (1 + 2pg) /3274 F, (3.7

Inserting (J.7) into (J.6) and setting the result equal t2XY, i.e. we normalize such
that the two-channel distortion of (3,2) SCECs is equal &b tifi (3,2) MD-LVQ. This
leads to

1
(L pa)(L = po) ™21+ 20) 2 = UL (N, (2.8)
from which we find that

~1/2
(4200 = (GUAWD) W) 20 p) 0 (09)

It follows that we can writeD(3:3) as

1
D3 — gag’(l +2p,)

2 _ -
= 5(1 = Pq) 1/3(1 + 2Pq)1/32 e
2
= 2 (1= p) VIR 4 pg) V(1= ) OGN g

U)go —4R
N
where the approximation follows by insertipg~ —1/2. The proof is now complete

since (J.10) is identical to (7.24). O

Q

(3.10)

J.2 Proof of Theorem 7.3.1

Since(3,2) MD-LVQ is closely related tq3,2) SCECs we can to some extent use
the proof techniques of [111]. However, there are some itapbdifferences. We
cannot rely on random coding arguments since we are not uaimdpm codebooks.
For example where [111] exploit properties of the entropysabsets, we need to
show that certain properties hold for all subsets and noojusiverage. Furthermore,
we consider the asymmetric case where the individual caaletaiesR; and binning
ratesRy ; are allowed to be unequal whereas in [111] the symmetricwaseonside-
red, i.e. only a single codebook raf& and a single binning rat&; was taken into
account.

Theorem 7.3.1Let X € R’ be a source vector constructed by blocking an arbitrary
i.i.d. source with finite differential entropy into sequencf lengthL. LetJ C
{0,..., K — 1} and let\; denote the set of codewords indexed.Jby The set of
decoding functions is denoted: & .., A; — RL. Then, under high-resolution
assumptions, if

jeJ

E[p(X,g;(A\s)] < DFD e,
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wherep(-, -) is the squared-error distortion measure and for &liC J

1
ZRb,i > Z%‘ +7 logy (H{As[As—s}), (J.11)
€S €S
the rate-distortion tupléRs o, . . ., Ry (x—1), { D7)} s ) is achievable.

Proof of Theorem 7.3.1Define the following error events.
1. & : X does not belong t@lgL)(X).

2. & :There exists noindic€3o, . . ., jx—1) suchthat\o(jo), ..., Axk—1(Jx-1)) =
a(X.) for A, = Q(X).

3. & : Not all channel indices are valid.

4. &5 : For somek received bin indices there exists another admisdiktieple in
the same bins.

As usual we have = Ufigl 6; and the probability of error is bounded from above

by the union bound, i.eP(&) < S5 ' P(&).

BoundingP(&p): Applying standard arguments for typical sequences it can be
shown thatP (&) — 0 for L sufficiently large [24]. We may now assume the event
&¢, i.e. all source vectors belong to the set of typical seqegmnd hence they are
approximately uniformly distributed.

BoundingP(&1): The source vectok is encoded by the central quantizer using
a nearest neighbor rule. Since any source vector will havesest element (which
might not be unique) if,. and by construction all, € %, have an associatdd-tuple
of sublattice points, it follows tha® (&) = 0 for all L.

BoundingP(&>): We only have to prove this for one of the channels. Then by
symmetry it holds for all of them. Furthermore, since thesiséction of a finite
number of sets of probability 1 is 1 it follows that with prddility 1 a codeword
A; given )\, can be found in some bin. In the following we assuiie< co. Let A,
be the codeword associated wixh(i.e. X is quantized to\.), whereX € AEL)(X).
Let A denote the event thag (jo) exists in the codebodky, i.e. the evenfhg(jo) €
6o, Mo (o) = an(Ae)]. We then have that

P(fo(Ao(jo)) # ?) = P(fo(Aa(jo)) # 9|A°)P(A?)
+ P(fo(ho(ho)) # V[A)P(A),

where the first term on the right hand side is zero if we make that all\.'s are
assigned a (uniquéy -tuple. Therefore, we only have to look at the second term as
was the case in [111]. We must show tliat P[fo(Ao(jo)) # 9A] — 1, i.e.

1 =G = P[Xo; # Ao(jo),0 < j < Mo — 1]A], (J.12)
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whereM, = £ 250 = 2L(Ro+) js the total number of codewords selected for all
bins from%, and )\, indicates the/?” such selected codeword. Since the codewords
Ao, are chosen independently (uniformly) and with replacertiesyt all have the same
probability of being equal ta (jo), so we letj = 0 and rewrite (J.12) as

1—G = [P(Xo, # Ao(jo)|A)]M

The size ofé; is || and all codewords o) are equally probable so

1\ M
1_(;:(1_@) | (3.13)

Taking logs and invoking the log-inequalfty Eq. (J.13) can be rewritten as

M, 9L(Ro+0)
logl-G) < ——p = -,
8l )< |0l |%0]

which goes to-oco for L — oo if Ry + 70 > + logy(|%0|). By use of Lemma 7.3.1
we havelCy| = 217 so thatl — G — 0 for L — oo'if 79 > 0.

BoundingP(&3): Assume we receivé bin indices from the encoder. We then
need to show that there is a unique set of codewords (one faghnl@n) which form
an admissiblé-tuple. LetJ = {4y, ..., ix—1}. Along the lines of [111] we define the
following error event for anys C J :

&g 3ji # 5i, Vi € S, fs(As(4s)) = fs(As(4s)),
(/\S(]fg)v )‘J*S(ijS)) = aJ(AC)v Ae € Co,
i.e. that there exist more than one admissibiiple in the givenk bins. The event

&3 can be expressed & = (Jg ; £5. The probability of the error evedt; can be
upper bounded by

P(&%) < H P[(Ns, Ay—s(ji-s)) = as(Ac)],
€S

for some\., where\! is arandomly chosen vector frotj for i € S. Let{Ag|A;_g}
denote the set of admissibletuples that contains; _s so that

, [{As[As—s}
Pl(Ag As—s(js-s)) = as(Ae)] < >
g [ics il
We are then able to bourfd(&)) by
As|A
play < [ el
€S zES
= H 9L(vi—Ro.) HAsAs—s},
ies

81The log-inequality is given bjog(z) < z — 1,z > 0, wherelog denotes the natural logarithm.
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which goes to zero if

1
S Ry > i+ —logy([{As|As_s})- (3.14)
€S €S L

Finally, the expected distortion is bounded BY&“)D ; + P(&)dmax, VJ € A
whereP(&) — 0 for L — oo and assuming that the distortion measure is bounded,
i.e. dmax < 00, proves the theorefft. O

82\We here make the assumption, as appears to be customarpettistortion measure is bounded also
for sources with unbounded support.



Appendix
Results of Listening Test

In this appendix we present the results of the MUSHRA listgrtest described in
Chapter 8.

p=10% p=30% p = 50%
100 100 100 o
% 90 90
801 80 80

70 <|@ 70 70 *

S A B O
ooy

MOSs

20 % 201 201

101 10 101 (i)

U I | I | I | U I | I | I | U I | Q | I |
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure K.1: MUSHRA test results averaged over all three audio clipspfee 0.1, 0.3 and
p = 0.5. The seven signals appear in the following order: Hidden &b kHz, 7 kHzK =
,K=2K=3andK =4.
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(Appendix K) Results of Listening Test
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Figure K.2: MUSHRA test results for the jazz fragment angt 0.1,0.3 andp = 0.5.
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Figure K.3: MUSHRA test results for the speech fragmentaned 0.1,0.3 andp = 0.5.
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Figure K.4: MUSHRA test results for the rock fragment gnek 0.1,0.3 andp = 0.5.



Samenvatting

Internetdiensten zoals het voice over Internet-protodd@IF) en audio/video
streaming (b.v. video op verzoek en video vergaderen) wosteeds populairder
door de recente groei van breedbandnetwerken. Dit so@dttiree" diensten vereisen
vaak een lage verzendtijd, een hoge bandbreedte en eendkketverlies kans om
acceptabele kwaliteit voor de eindgebruikers te leverenh&erogene communicatie
infrastructuur van de huidige pakketgeschakelde netwevkeschaffen echter geen
gegarandeerde prestaties met betrekking tot bandbreédtrazendtijd en daarom
wordt de gewenste kwaliteit over het algemeen niet bereikt.

Om een bepaalde mate van robuustheid te bereiken op kanakmpvfouten
kunnen voorkomen, kan multiple-description (MD) codingdepast worden. Dit is
een methode waar de laatste tijd erg veel aandacht aan eedesiet MD probleem
is in wezen een gecombineerd bron-kanaal coderingsproldeé gaat over (het met
verlies) coderen van informatie voor transmissie over edetouwbaals-kanalen
communicatie systeem. De kanalen kunnen falen, met al#aaeshet verlies van
een pakket en daardoor een verlies van informatie aan damggwnde kant. Welke
van de2” — 1 niet-triviale deelverzamelingen van dékanalen falen, wordt bekend
verondersteld aan de ontvangende kant, maar niet bij dedencélet probleem is
dan een MD schema te ontwerpen dat, voor gegeven kanaabfaten gegeven som
rate), de distorsies minimaliseert die een gevolg zijn wmonstruering van de bron,
gebruik makend van informatie van willekeurige deelvergingen van de kanalen.

Hoewel wij ons in dit proefschrift hoofdzakelijk richten aje informatie theo-
retische aspecten van MD codering, zullen we voor de valeeid ook laten zien
hoe het voorgestelde MD coderingsschema kan worden gelomileen perceptueel
robuuste audio coder te construeren, die geschikt is vaor dudio-streaming op
pakketgeschakelde netwerken.

We richten ons op het MD probleem vanuit een bron-coderiagdgiunt en
bekijken het algemene geval vdn pakketten. We maken uitgebreid gebruik van
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lattice vector kwantisatie (LVQ) theorie, hetgeen een gmsttument blijkt, in de

zin dat het voorgestelde MD-LVQ schema als brug tussen itneor praktijk dient.

Voor asymptotische gevallen van hoge resolutie en grotiedavector kwantisator
dimensie, tonen wij aan dat de beste bekende informatigdtische rate-distorsie
MD grenzen kunnen worden bereikt, terwijl we, in niet asyamtigthe gevallen

van eindig-dimensionale lattice vector kwantisators (nremy onder hoge resolutie
veronderstelling), praktische MD-LVQ schemas constmgie vergelijkbaar met en
vaak superieur zijn aan bestaande state-of-the-art schema

In het twee-kanaal symmetrische geval is eerder aangettairt zij-representa-
ties van een MD-LVQ schema zij-distorsies toelaten, dightge resolutie voorwaar-
den) identiek zijn aan die vah-dimensionale kwantisators met bolvormige Voronoi
cellen. In dit geval zeggen wij dat de zij-kwantisatorsIddol grens bereikt. Een
dergelijk resultaat is niet eerder aangetoond voor het -keemal asymmetrische
geval. Het voorgestelde MD-LVQ schema is echter in staatLe®ol grens te
bereiken, bij hoge resolutie voorwaarden, voor zowel hatragtrische geval als het
asymmetrische geval.

Het voorgestelde MD-LVQ schema schijnt een van de eersensat in de litera-
tuur te zijn die het grootst bekende hoge resolutie drieakbMID gebied in het
kwadratische Gaussische geval bereikt. Hoewel de optiitadilleen voork < 3
wordt bewezen, nemen we aan dat het optimaal is voor willége k' representaties.

We laten gesloten-vorm uitdrukkingen zien voor de rate stodsie prestaties voor
algemene gladde stationaire bronnen en een kwadratiscielistorsie criterium en
voor hoge resolutie voorwaarden (ook voor eindig-dimemeie lattice vector kwanti-
sators). Er wordt aangetoond dat de zij-distorsies in Hetldanaal geval kan worden
uitgedruktin het dimensieloze, genormaliseerde, tweenlaemt van ee.-bol, onaf-
hankelijk van het type lattice dat wordt gebruikt voor dekzijantisators. Dit komt
overeen met eerdere resultaten voor het geval van tweessspiegies.

Het rate verlies wanneer eindig-dimensionale latticeardoivantisators gebruikt
worden is onafhankelijk van het lattice en wordt gegeverr iebrate verlies van een
L-bol en een bijkomende term die de ratio van twee dimensetepansie factoren
beschrijft. Er wordt aangetoond dat het totale rate vedigserieur is aan bestaande
drie-kanaal schemas. Dit resultaat lijkt te gelden vootaalital representaties.
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Glossary of Symbols and Terms

Symbol Description
RE L-dimensional Euclidean space (real field)
Ccr L-dimensional complex field
VAR L-dimensional set of all rational integers
i Gaussian integers
2 Algebraic integers
& Eisenstein integers
4 Lipschitz integers
JA Hurwitzian integers
o Hermitian transposition (conjugate transposition)
xf Quaternionic transposition (Quaternionic conjugatedpasition)
B4 _Z-module (7 -lattice)
IX]  Vector norm with respect to underlying field
(X,X) Innerproduct

Table K.1: Algebra-related symbols.
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Symbol Description
X Scalar random process brdimensional random vect¢X € RY)
x L-dimensional vector (realization df)
fx Distribution of X
X Reconstruction of{
Z
Z

Alphabet ofX (usually 2" = R%)
Alphabet ofX (usually 2" c RE)
P Fidelity criterion (usually squared-error)
R(D) Rate-distortion function
D(R) Distortion-rate function
I(;-)  Mutual information
() Differential entropy
() Differential entropy rate
H() Discrete entropy
E Statistical expectation operator
RsiB Shannon lower bound
Rioss Rateloss
*4  Rateredundancy
Dioss Space-filling loss
0%  Variance ofX
Px Entropy power
Q(X) Quantization ofX

Table K.2: Source-coding related symbols.
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Symbol Description
A Central lattice (central quantizer)
A, SublatticeA; C A, (side quantizer in symmetric case)
A; SublatticeA; C A, (side quantizer in asymmetric case)
Ay Product lattice\, C A; or A, C A,
Ac/Ax Quotient lattice
V. Voronoi cell of A,
\% Voronoi cell of A or A;
v Volume of Voronoi cell ofA,
Vg Volume of Voronoi cell ofA
v; Volume of Voronoi cell ofA;
Uy Volume of Voronoi cell ofA
N Index value of sublatticA (IV = |A./As])
N; Index value of sublatticd s (N; = |A./A;])
N, Index value of product lattica . (N = |A:/Ax]|)
N’ Nesting ratio ofA ; (index per dimension)
G(A) Dimensionless normalized second momentof
G(SL) Dimensionless normalized second momenLedphere
G Basis vector (lattice generator vector)
M Lattice generator matrix
A Gram matrix
T Multiplicative group of automorphisms of order
A./A,/T,, Setof orbit representatives
Z1 Scalar lattice (uniform lattice)
Z? Square lattice
A Hypercubic lattice
As Hexagonal two-dimensional lattice
Dy Four dimensional (checker board) lattice
EA. Sublattice ofA. (cyclic right submodule)
A& Sublattice ofA. (cyclic left submodule)
R(A) Kissing number of\

Table K.3: Lattice-related symbols.
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Glossary of Symbols and Terms

Symbol Description
« Index assignment mapu(A.) = (Ao, ..., Ax—1))
a! Inverse index assignment map
o Component function); = «a;(\.))
K Number of descriptions
K Number of received descriptions
1% L-dimensional sphere
v Volume of V
N; Number of lattice points of; within V/
U, Dimensionless expansion factor
wr, Volume of unitL-sphere
R, Description rate [bit/dim.] in symmetric setup
R; Description rate [bit/dim.] of!" description
R, Rate of central quantizer
Rt Sumrate Rr = > R;)
D; Side distortion of*" description
D, Central distortion
D) Distortion due to reconstructing usimgdescriptions out
of K
J ) Cost functional
D Packet-loss probability
2k Index set describing all distinat-tuples out of the set
{0,..., K —1}
.ZZ.(K’“) Index set describing all distinat-tuples out of the set
{0,..., K — 1}, which contains the indeix
.,iﬁl(f") Index set describing all distinet-tuples out of the set
' {0,..., K — 1}, which contains the pair of indicés, j)
p( i(j{’”)) Probability of the seii”iff’”)
D) Expected distortion when receiving: out of K
descriptions based on the packet-loss probability
DD Distortion due to reconstructing using the subset of
descriptions C {0,..., K — 1}
MD-LVQ  Multiple-description lattice vector quantization
SCEC Source-channel erasure code
SPSD Sum of pairwise squared distances
WSPSD  Weighted sum of pairwise squared distances

Table K.4: MD-LVQ related symbols and terms.
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