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Summary

Internet services such as voice over Internet protocol (VoIP) and audio/video
streaming (e.g. video on demand and video conferencing) arebecoming more and
more popular with the recent spread of broadband networks. These kind of “real-
time” services often demand low delay, high bandwidth and low packet-loss rates
in order to deliver tolerable quality for the end users. However, the heterogeneous
communication infrastructure of today’s packet-switchednetworks does not provide
a guaranteed performance in terms of bandwidth or delay and therefore the desired
quality of service is generally not achieved.

To achieve a certain degree of robustness on errorprone channels one can make use
of multiple-description (MD) coding, which is a disciplinethat recently has received a
lot of attention. The MD problem is basically a joint source-channel coding problem.
It is about (lossy) encoding of information for transmission over an unreliableK-
channel communication system. The channels may break down resulting in erasures
and a loss of information at the receiving side. Which of the2K −1 non-trivial subsets
of theK channels that are working is assumed known at the receiving side but not at
the encoder. The problem is then to design an MD scheme which,for given channel
rates (or a given sum rate), minimizes the distortions due toreconstruction of the
source using information from any subsets of the channels.

While this thesis focuses mainly on the information theoretic aspects of MD
coding, we will also show how the proposed MD coding scheme can be used to
construct a perceptually robust audio coder suitable for audio streaming on packet-
switched networks.

We attack the MD problem from a source coding point of view andconsider
the general case involvingK descriptions. We make extensive use of lattice vector
quantization (LVQ) theory, which turns out to be instrumental in the sense that the
proposed MD-LVQ scheme serves as a bridge between theory andpractice. In
asymptotic cases of high resolution and large lattice vector quantizer dimension,
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we show that the best known information theoretic rate-distortion MD bounds can
be achieved, whereas in non-asymptotic cases of finite-dimensional lattice vector
quantizers (but still under high resolution assumptions) we construct practical MD-
LVQ schemes, which are comparable and often superior to existing state-of-the-art
schemes.

In the two-channel symmetric case it has previously been established that the side
descriptions of an MD-LVQ scheme admit side distortions, which (at high resolution
conditions) are identical to that ofL-dimensional quantizers having spherical Voronoi
cells. In this case we say that the side quantizers achieve the L-sphere bound.
Such a result has not been established for the two-channel asymmetric case before.
However, the proposed MD-LVQ scheme is able to achieve theL-sphere bound for
two descriptions, at high resolution conditions, in both the symmetric and asymmetric
cases.

The proposed MD-LVQ scheme appears to be among the first schemes in the
literature that achieves the largest known high-resolution three-channel MD region in
the quadratic Gaussian case. While optimality is only proven forK ≤ 3 descriptions
we conjecture it to be optimal for anyK descriptions.

We present closed-form expressions for the rate and distortion performance for
general smooth stationary sources and squared error distortion criterion and at high
resolution conditions (also for finite-dimensional lattice vector quantizers). It is shown
that the side distortions in the three-channel case is expressed through the dimension-
less normalized second moment of anL-sphere independent of the type of lattice used
for the side quantizers. This is in line with previous results for the two-description
case.

The rate loss when using finite-dimensional lattice vector quantizers is lattice
independent and given by the rate loss of anL-sphere and an additional term
describing the ratio of two dimensionless expansion factors. The overall rate loss
is shown to be superior to existing three-channel schemes.
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Chapter 1
Introduction

1.1 Motivation

Internet services such as voice over Internet protocol (VoIP) and audio/video
streaming (e.g. video on demand and video conferencing) arebecoming more and
more popular with the recent spread of broadband networks. These kinds of “real-
time” services often demand low delay, high bandwidth and low packet-loss rates
in order to deliver tolerable quality for the end users. However, the heterogeneous
communication infrastructure of today’s packet-switchednetworks does not provide
a guaranteed performance in terms of bandwidth or delay and therefore the desired
quality of service is (at least in the authors experience) generally not achieved.

Clearly, many consumers enjoy the Internet telephony services provided for free
through e.g. SkypeTM. This trend seems to be steadily growing, and more and more
people are replacing their traditional landline phones with VoIP compatible systems.
On the wireless side it is likely that cell phones soon are to be replaced by VoIP
compatible wireless (mobile) phones. A driving impetus is consumer demand for
cheaper calls, which sometimes may compromise quality.

The structure of packet-switched networks makes it possible to exploit diversity
in order to achieve robustness towards delay and packet losses and thereby improve
the quality of existing VoIP services. For example, at the cost of increased bandwidth
(or bit rate), every packet may be duplicated and transmitted over two different paths
(or channels) throughout the network. If one of the channelsfails, there will be no
reduction in quality at the receiving side. Thus, we have a great degree of robustness.
On the other hand, if none of the channels fail so that both packets are received, there
will be no improvement in quality over that of using a single packet. Hence, robustness
via diversity comes with a price.

However, if we can tolerate a small quality degradation on reception of a single
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2 (Chapter 1) Introduction

packet, we can reduce the bit rates of the individual packets, while still maintaining
the good quality on reception of both packets by making sure that the two packets
improve upon each other. This idea of trading off bit rate vs.quality between a number
of packets (or descriptions) is usually referred to as the multiple-description (MD)
problem and is the topic of this thesis.

While this thesis focuses mainly on the information theoretic aspects of MD
coding, we will also show how the proposed MD coding scheme can be used to
construct a perceptually robust audio coder suitable for audio streaming on packet-
switched networks. To the best of the author’s knowledge theuse of MD coding in
current state-of-the-art VoIP systems or audio streaming applications is virtually non-
existent. We expect, however, that future schemes will employ MD coding to achieve
a certain degree of robustness towards packet losses. The research presented in this
thesis is a step in that direction.

1.2 Introduction to MD Lattice Vector Quantization

The MD problem is basically a joint source-channel coding problem. It is about
(lossy) encoding of information for transmission over an unreliableK-channel com-
munication system. The channels may break down resulting inerasures and a loss
of information at the receiving side. Which of the2K − 1 non-trivial subsets of the
K channels that are working is assumed known at the receiving side but not at the
encoder. The problem is then to design an MD scheme which, forgiven channel
rates (or a given sum rate), minimizes the distortions on thereceiver side due to
reconstruction of the source using information from any subsets of the channels.

1.2.1 Two Descriptions

The traditional case involves two descriptions as shown in Fig. 1.1. The total bit rate
RT , also known as the sum rate, is split between the two descriptions, i.e.RT =

R0 + R1, and the distortion observed at the receiver depends on which descriptions
arrive. If both descriptions are received, the resulting distortion(Dc) is smaller than
if only a single description is received (D0 or D1). It may be noticed from Fig. 1.1
that Decoder 0 and Decoder 1 are located on the sides of Decoder c and it is therefore
customary to refer to Decoder 0 and Decoder 1 as the side decoders and Decoderc
as the central decoder. In a similar manner we often refer toDi, i = 0, 1, as the
side distortions andDc as the central distortion. The situation whereD0 = D1 and
R0 = R1 is called symmetric MD coding and is a special case of asymmetric MD
coding, where we allow unequal side rates and unequal side distortions.

One of the fundamental problems of MD coding is that if two descriptions both
represent the source well, then, intuitively, they must be very similar to the source and
therefore also similar to each other. Thus, their joint description is not much better
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Source Encoder

Decoder 0

Decoder c

Decoder 1

D0

D1

Dc

R0

R0

R1

R1

Description 0

Description 1

Figure 1.1: The traditional two-channel MD system.

than a single one of them. Informally, we may therefore say that the MD problem
is about how good one can make the simultaneous representations of the individual
descriptions as well as their joint description.

The two-description MD problem was formalized and presented by Wyner,
Witsenhausen, Wolf and Ziv at an information theory workshop in September
1979 [50].1 Formally, the traditional two-description MD problem askswhat is the
largest possible set of distortions(D0, D1, Dc) given the bit rate constraints(R0, R1)

or alternatively the largest set of bit rates(R0, R1) given the distortion constraints
(D0, D1, Dc)? Both these questions were partially answered by El Gamal and Cover
who presented an achievable rate-distortion region [42], which Ozarow [107] proved
was tight in the case of a memoryless Gaussian source and the squared error distortion
measure. Currently, this is the only case where the solutionto the MD problem is
completely known.

1.2.2 Many Descriptions

Recently, the information theoretic aspects of the generalcase ofK > 2 descriptions
have received a lot of attention [111, 114, 141, 142, 146]. This case is the natural
extension of the two-description case. Given the rate tuple(R0, . . . , RK−1), we seek
the largest set of simultaneously achievable distortions over all subsets of descriptions.
The generalK-channel MD problem will be treated in greater detail in Chapter 4.

With this thesis we show that, at least for the case of audio streaming for lossy
packet-switched networks, there seems to be a lot to be gained by using more than
two descriptions. It is likely that this result carries overto VoIP and video streaming
applications.

1At that time the problem was already known to several people including Gersho, Ozarow, Jayant,
Miller, and Boyle who all made contributions towards its solution, see [50] for more information.



4 (Chapter 1) Introduction

1.2.3 Scalar vs. Vector Quantization

In the single-description (SD) case it is known that the scalar rate loss (i.e. the bit
rate increase due to using a scalar quantizer instead of an optimal infinite-dimensional
vector quantizer) is approximately0.2546 bit/dim. [47]. For many applications this
rate loss is discouraging small and it is tempting to quote Uri Erez:2

“The problem of vector quantization is that scalar quantization works so well.”

However, in the MD case, the sum (or accumulative) rate loss over many descrip-
tions can be severe. For example, in the two-description case, it is known that the
scalar rate loss is about twice that of the SD scalar rate loss[136]. Therefore, when
constructing MD schemes for many descriptions, it is important that the rate loss is
kept small. To achieve this, we show in this thesis, that one can, for example, use
lattice vector quantizers combined with an index-assignment algorithm.

1.3 Contributions

The MD problem is a joint source-channel coding problem. However, in this work
we mainly attack the MD problem from a source coding point of view, where we
consider the general case involvingK descriptions. We make extensive use of lattice
vector quantization (LVQ) theory, which turns out to be instrumental in the sense
that the proposed MD-LVQ scheme serves as a bridge between theory and practice.
In asymptotic cases of high resolution and large lattice vector quantizer dimension,
we show that the best known information theoretic rate-distortion MD bounds can
be achieved, whereas in non-asymptotic cases of finite-dimensional lattice vector
quantizers (but still under high resolution assumptions) we construct practical MD-
LVQ schemes, which are comparable and often superior to existing state-of-the-art
schemes.

The main contributions of this thesis are the following:

1. L-sphere bound for two descriptions

In the two-channel symmetric case it has previously been established that the
side descriptions of an MD-LVQ scheme admit side distortions, which (at high
resolution conditions) are identical to that ofL-dimensional quantizers having
spherical Voronoi cells [120, 139]. In this case we say that the side quantizers
achieve theL-sphere bound. Such a result has not been established for the
two-channel asymmetric case before. However, the proposedMD-LVQ scheme
is able to achieve theL-sphere bound for two descriptions, at high resolution
conditions, in both the symmetric and asymmetric cases.

2Said during a break at the International Symposium on Information Theory in Seattle, July 2006.
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2. MD high-resolution region for three descriptions

The proposed MD-LVQ scheme appears to be among the first schemes in the
literature that achieves the largest known high-resolution three-channel MD
region in the quadratic Gaussian case.3 We prove optimality forK ≤ 3 de-
scriptions, but conjecture optimality for anyK descriptions.

3. Exact rate-distortion results for L-dimensional LVQ

We present closed-form expressions for the rate and distortion performance
when usingL-dimensional lattice vector quantizers. These results arevalid
for smooth stationary sources and squared-error distortion criterion and at high
resolution conditions.

4. Rate loss for finite-dimensional LVQ

The rate loss of the proposed MD-LVQ scheme when using finite-dimensional
lattice vector quantizers is lattice independent and givenby the rate loss of
anL-sphere and an additional term describing the ratio of two dimensionless
expansion factors. The overall rate loss is shown to be superior to existing three-
channel schemes, a result that appears to hold for any numberof descriptions.

5. K-channel asymmetric MD-LVQ

In the asymmetric two-description case it has previously been shown that
by introducing weights, the distortion profile of the systemcan range from
successive refinement to complete symmetric MD coding [27, 28]. We show
a similar result for the general case ofK descriptions. Furthermore, for any
set of weights, we find the optimal number of descriptions andshow that the
redundancy in the scheme is independent of the target rate, source distribution
and choice of lattices for the side quantizers. Finally, we show how to optimally
distribute a given bit budget among the descriptions, whichis a topic that has
not been addressed in previous asymmetric designs.

6. Lattice construction using algebraicJ -modules

For the two-description case it has previously been shown that algebraic tools
can be exploited to simplify the construction of MD-LVQ schemes [27,28,120,
139]. We extend these results toK-channel MD-LVQ and show that algebraic
J -modules provide simple solutions to the problem of constructing the lattices
used in MD-LVQ.

3A conference version of the proposed symmetricK-channel MD-LVQ scheme appeared in [104] and
the full version in [105]. The asymmetricK-channel MD-LVQ scheme appeared in [99]. Independently,
Chen et al. [16–18] presented a different design ofK-channel asymmetric MD coding.
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7. K-channel MD-LVQ based audio coding

We present a perceptually robust audio coder based on the modified discrete
cosine transform andK-channel MD-LVQ. This appears to be the first scheme
to consider more than two descriptions for audio coding. Furthermore, we
show that using more than two descriptions is advantageous in packet-switched
network environments with excessive packet losses.

1.4 Structure of Thesis

The main contributions of this thesis are presented in Chapters 5–8 and the
corresponding appendices, i.e. Appendices E–K.

The general structure of the thesis is as follows:

Chapter 2 The theory of LVQ is a fundamental part of this thesis and in this chapter
we describe in detail the construction of lattices and show how they can be used
as vector quantizers. A majority of the material in this chapter is known, but
the use ofJ -modules for constructing product lattices based on more than two
sublattices is new.

Chapter 3 We consider the MD problem from a source-coding perspectiveand in this
chapter we cover aspects of SD rate-distortion theory, which are also relevant
for the MD case.

Chapter 4 In this chapter we present and discuss the existing MD rate-distortion
results, which are needed in order to better understand (andto be able to
compare to) the new MD results to be presented in the forthcoming chapters.

Chapter 5 Here we present the proposed entropy-constrainedK-channel symmetric
MD-LVQ scheme. We derive closed-form expressions for the rate and distortion
performance of MD-LVQ at high resolution and find the optimallattice parame-
ters, which minimize the expected distortion given the packet-loss probabilities.
We further show how to construct practical MD-LVQ schemes and evaluate
their numerical performance. This work was presented in part in [104,105].

Chapter 6 We extend the results of the previous chapter to the asymmetric case.
In addition we present closed-form expressions for the distortion due to
reconstructing using arbitrary subsets of descriptions. We also describe how
to distribute a fixed target bit rate across the descriptionsso that the expected
distortion is minimized. This work was presented in part in [98,99].

Chapter 7 In this chapter we compare the rate-distortion performanceof the
proposed MD-LVQ scheme to that of existing state-of-the-art MD schemes as
well as to known information theoretic high-resolutionK-channel MD rate-
distortion bounds. This work was presented in part in [98,102].
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Chapter 8 In this chapter we propose to combine the modified discrete cosine trans-
form with MD-LVQ in order to construct a perceptually robustaudio coder. Part
of the research presented in this chapter represents joint work with O. Niamut.
This work was presented in part in [106].

Chapter 9 A summary of results and future research directions are given here.

Appendices The appendices contain supporting material including proofs of lemmas,
propositions, and theorems.

1.5 List of Papers

The following papers have been published by the author of this thesis during his Ph.D.
studies or are currently under peer review.

1. J. Østergaard and R. Zamir, “Multiple-Description Coding by Dithered Delta
Sigma Quantization”, IEEE Proc. Data Compression Conference (DCC), pp.
63 – 72. March 2007. (Reference [127]).
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Chapter 2

Lattice Theory

In this chapter we introduce the concept of a lattice and showthat it can be used as
a vector quantizer. We form subsets (called sublattices) ofthis lattice, and show that
these sublattices can also be used as quantizers. In fact, inlater chapters, we will use
a lattice as a central quantizer and the sublattices will be used as side quantizers for
MD-LVQ. We defer the discussion on rate-distortion properties of the lattice vector
quantizer to Chapters 3 and 4.

We begin by describing a lattice in simple terms and show how it can be used
as a vector quantizer. This is done in Section 2.1 and more details can be found in
Appendix C. Then in Section 2.2 we show that lattice theory isintimately connected to
algebra and it is therefore possible to use existing algebraic tools to solve lattice related
problems. For example it is well known that lattices form groups under ordinary vector
addition and it is therefore possible to link fundamental group theory to lattices. In
Section 2.3 we then use these algebraic tools to construct lattices and sublattices. It
might be a good idea here to consult Appendix A for the definition of Quaternions and
Appendix B for a brief introduction to module theory.

We would like to point out that Section 2.1 contains most of the essential lattice
theory needed to understand the concept of MD-LVQ. Sections2.2 and 2.3 are sup-
plementary to Section 2.1. In these sections we construct lattices and sublattices in
an algebraic fashion by using the machinery of module theory. This turns out to be a
very convenient approach, since it allows simple constructions of lattices. This theory
is therefore also very helpful for the practical implementation of MD-LVQ schemes.
In addition, we would like to emphasize that by use of module theory we are able
to prove the existence of lattices which admit the required sublattices and product
lattices. In Chapters 5–7 we will implicitly assume that alllattices, sublattices, and
product lattices are constructed as specified in this chapter.

9
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2.1 Lattices

An L-dimensional lattice is a discrete set of equidistantly spaced points in theL-
dimensional Euclidean vector spaceRL. For example, the set of integersZ forms a
lattice inR and the Cartesian productZ × Z forms a lattice inR2. More formally, we
have the following definition.

Definition 2.1.1 ([22]). A lattice Λ ⊂ RL consists of all possible integral linear
combinations of a set of basis vectors, that is

Λ =

{

λ ∈ RL : λ =

L∑

i=1

ξiζi, ∀ξi ∈ Z

}

, (2.1)

whereζi ∈ RL are the basis vectors also known as generator vectors of the lattice.

The generator vectorsζi, i = 1, . . . , L, (or more correctly their transposes) form
the rows of the generator matrixM . Usually there exists several generator matrices
which all lead to the same lattice. In Appendix D we present some possible generator
matrices for the lattices considered in this thesis.

Definition 2.1.2. Given a discrete set of pointsS ⊂ RL, the nearest neighbor region
of s ∈ S is called a Voronoi cell, Voronoi region or Dirichlet region, and is defined by

V (s) , {x ∈ RL : ‖x− s‖2 ≤ ‖x− s′‖2, ∀ s′ ∈ S}, (2.2)

where‖x‖ denotes the usual norm inRL, i.e.‖x‖2 = xTx.

As an example, Fig. 2.1(a) shows a finite region of the latticeΛ = Z2 consisting
of all pairs of integers. For this lattice, the Voronoi cellsV (λ), λ ∈ Λ, form squares
in the two-dimensional plane. This lattice is also referredto as theZ2 lattice or the
square lattice, cf. Appendix D.2. A latticeΛ and its Voronoi cellsV (λ), ∀λ ∈ Λ,
actually form a vector quantizer. WhenΛ is used as a vector quantizer, a pointx is
mapped (or quantized) toλ ∈ Λ if x ∈ V (λ). An example of a non-lattice vector
quantizer is shown in Fig. 2.1(b). Here we have randomly picked a set of elements
of R2. Notice that the Voronoi cells are not identical but still their union cover the
space. On the other hand, in Fig. 2.1(a), it may be noticed that the Voronoi cells ofΛ
are all identical, and we say that each one of them describes afundamental region. A
fundamental region of a lattice is a closed region which contains a single lattice point
and tessellates the underlying space.

Lemma 2.1.1( [22]). All fundamental regions have the same volumeν.

Lemma 2.1.2( [22]). The fundamental volumeν of Λ is given byν =
√

det(A),
whereA = MMT is called the Gram matrix. We sometimes write the volume as
ν = det(Λ).
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(b) Random point set

Figure 2.1: (a) finite region of the latticeΛ = Z
2. (b) randomly selected points ofR

2. The
solid lines describe the boundaries of the Voronoi cells of the points.

Let us defineV0 , V (0), i.e. the Voronoi cell around the lattice point located at
the origin. This region is called a fundamental region of thelattice since it specifies
the complete lattice through translations. We then have thefollowing definition.

Definition 2.1.3 ( [22]). The dimensionless normalized second moment of inertia
G(Λ) of a latticeΛ is defined by

G(Λ) ,
1

Lν1+2/L

∫

V0

‖x‖2dx, (2.3)

whereν is the volume ofV0.

Applying any scaling or orthogonal transform, e.g. rotation or reflection onΛ will
not changeG(Λ), which makes it a good figure of merit when comparing different
lattices (quantizers). Furthermore,G(Λ) depends only upon the shape ofV0, and in
general, the more sphere-like shape, the smaller normalized second moment [22].

2.1.1 Sublattices

If Λ is a lattice then a sublatticeΛ′ ⊆ Λ is a subset of the elements ofΛ that is itself
a lattice. For example ifΛ = Z then the set of all even integers is a sublattice ofΛ.
Geometrically speaking, a sublatticeΛ′ ⊂ Λ is obtained by scaling and rotating (and
possibly reflecting) the latticeΛ so that all points ofΛ′ coincide with points ofΛ. A
sublatticeΛ′ ⊂ Λ obtained in this manner is referred to as a geometrically-similar
sublattice ofΛ. Fig. 2.2 shows an example of a latticeΛ ⊂ R2 and a geometrically-
similar sublatticeΛ′ ⊂ Λ. In this caseΛ is the hexagonal lattice which is described in
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Appendix D.3. It may be noticed from Fig. 2.2 that all Voronoicells of the sublattice
Λ′ contain exactly seven points ofΛ. In general we would like to design a sublattice so
that each of its Voronoi cells contains exactlyN points ofΛ. We callN the index value
of the sublattice and usually write it asN = |Λ/Λ′|. NormalizingN by dimension,
i.e.N ′ = N1/L, gives what is known as the nesting ratio. We call a sublatticeΛ′ ⊂ Λ

−3 −2 −1 0 1 2 3
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−1

0

1

2

3

Figure 2.2: The hexagonal latticeΛ (small dots) and a sublatticeΛ′ ⊂ Λ (circles) of index
N = 7. The solid lines illustrate the boundaries of the Voronoi cells of Λ′.

clean if no points ofΛ lies on the boundaries of the Voronoi cells ofΛ′. For example,
the sublattice of Fig. 2.2 is clean. IfΛ′ ⊂ Λ is a clean sublattice we call the index
N = |Λ/Λ′| an admissible index value. In this work we are mainly interested in
clean sublattices and we will further discuss the issue of admissible index values in
Section 2.3.1.

2.2 J -Lattice

We showed in the previous section that, geometrically speaking, anL-dimensional
latticeΛ ⊂ RL is a discrete set of regularly spaced points inRL. From Appendix B
it can be deduced that, algebraically speaking, anL-dimensional latticeΛ ⊂ RL is
a free (torsion-free) discreteJ -module of rankL with compact quotientRL/Λ. In
this section we will consider the latter definition of a lattice and construct lattices and
sublattices by use of the theory of modules.

A lattice Λ ⊂ RL as defined in (2.1) forms an additive group(Λ,+) under
ordinary vector addition with the zero-vector being the identity element. If the group
further admits left or right multiplication by the ringJ then we callΛ aJ -module.
In other words,Λ is a J -module if it is closed under addition and subtraction of
members of the group and closed under scalar multiplicationby members of the ring,
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see Appendix B for details. SinceΛ is also a lattice we sometimes prefer the name
J -lattice overJ -module.

Let ζi, i = 1, . . . , L be a set of linearly independent vectors inRL and letJ ⊂ R
be a ring. Then a leftJ -latticeΛ generated byζi, i = 1, . . . , L consists of all linear
combinations

ξ1ζ1 + · · · + ξLζL, (2.4)

whereξi ∈ J , i = 1, . . . , L [22]. A right J -lattice is defined similarly with the
multiplication ofζi on the right byξi instead.

We have so far assumed that the underlying field is the Cartesian product of the
reals, i.e.RL. However, there are other fields which when combined with well defined
rings of integers will lead toJ -lattices that are good for quantization. Let the field be
the complex fieldC and let the ring of integers be the Gaussian integersG , where [22]

G = {ξ1 + iξ2 : ξ1, ξ2 ∈ Z}, i =
√
−1. (2.5)

Then we may form a one-dimensional complex lattice (to whichthere always exists
an isomorphism that will bring it toR2) by choosing any non-zero element (a basis)
ζ1 ∈ C and insert in (2.4), cf. Fig. 2.3(a) where we have made the arbitrary choice of
ζ1 = 11.2 − 2.3i. The lattice described by the set of Gaussian integers is isomorphic
to the square latticeZ2 = Z2. The operationG ζ1 then simply rotate and scale the
Z2 lattice. To better illustrate the shape of theJ -lattice we have in Fig. 2.3(a) also
shown the boundaries (solid lines) of the nearest neighbor regions (also called Voronoi
cells) between the lattice points. Fig. 2.3(b) shows an example where the basisζ1 =

11.2 − 2.3i has been multiplied by the Eisenstein integersE , where [22]

E = {ξ1 + ωξ2 : ξ1, ξ2 ∈ Z}, ω = e2πi/3. (2.6)

The ring of algebraic integersQ is defined by [22]

Q = {ξ1 + ω1ξ2 : ξ1, ξ2 ∈ Z}, (2.7)

whereω1 is, for example, one of

√
−2,

√
−5,

−1 +
√
−7

2
,
−1 +

√
−11

2
. (2.8)

Figs. 2.3(c) and 2.3(d) show examples whereJ is the ring of algebraic integers and
whereω1 =

√
−5 andω1 = (−1+

√
−7)/2, respectively. In both cases we have used

the basisζ1 = 11.2 − 2.3i.

2.2.1 J -Sublattice

If Λ′ is a submodule of aJ -moduleΛ thenΛ′ is simply a sublattice of the latticeΛ.
More formally we have the following lemma.



14 (Chapter 2) Lattice Theory

(a) Λ = G ζ1 (b) Λ = E ζ1

(c) Λ = Qζ1, ω1 =
√
−5 (d) Λ = Qζ1, ω1 = (−1 +

√
−7)/2

Figure 2.3: One-dimensional complexJ -lattices constructed from different rings of integers
by use of the basisζ1 = 11.2 − 2.3i. The solid lines illustrate the boundaries of the nearest
neighbor regions (Voronoi cells) between lattice points.

Lemma 2.2.1( [1]). Let J be a ring. IfΛ is J -module andΛ′ ⊆ Λ,Λ′ 6= ∅, then
Λ′ is aJ -submodule ofΛ if and only if ξ1λ′1 + ξ2λ

′
2 ∈ Λ′ for all λ′1, λ

′
2 ∈ Λ′ and

ξ1, ξ2 ∈ J .

Let Λ be aJ -module. Then we may form the left submoduleΛ′ = ξΛ and
the right submoduleΛ′′ = Λξ by left (or right) multiplication ofΛ by ξ ∈ J .
For example letΛ be theJ -module given by the Eisenstein integers, i.e.Λ = E .
This lattice can be regarded as a two-dimensional real lattice in R2 in which case
it is usually referred to asA2. Then let us form the submoduleΛ′ = ξΛ where
ξ = −3− 2ω andω = e2πi/3, see Fig. 2.4. When the modules in question are lattices
we will usually callΛ a J -lattice andΛ′ a J -sublattice. Sometimes when the ring
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J is clear from the context or irrelevant we will use the simpler terms lattice and
sublattice forΛ andΛ′, respectively.
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Figure 2.4: The Eisenstein latticeΛ is here shown with dots and the circles illustrate points of
the sublatticeΛ′ = ξΛ, ξ = −3 − 2ω, ω = e2πi/3. The solid lines describe the boundaries
between neighboring Voronoi cells of the sublattice points. Notice that there are 7 dots in each
Voronoi cell. The points marked with squares are the seven coset representatives of the quotient
Λ/Λ′.

2.2.2 Quotient Modules

In this section we consider quotient modules and the next section is concerned with
group actions on these quotient modules. Although perhaps unclear at this point, we
show later that these concepts are important in order to identify or associate a set of
sublattice points with a given lattice point. This identification process, which we call
either the labeling problem or the problem of constructing an index assignment map,
focuses on labeling the coset representatives ofΛ/Λ′, i.e. the quotient module. It
then turns out, as first observed in [120, 139], that we actually only need to label the
representatives of the orbits ofΛ/Λ′/Γm instead of all coset representatives ofΛ/Λ′.
Further details about quotient modules and group actions are given in Appendix B.

Definition 2.2.1. Let Λ be aJ -module andΛ′ a J -submodule ofΛ. ThenΛ′

induces a partitionΛ/Λ′ of Λ into equivalence classes (or cosets) moduloΛ′. We call
such a partition the quotient module.
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The order or index|Λ/Λ′| of the quotient moduleΛ/Λ′ is finite and each element
of Λ/Λ′ is a representative for an infinite set called a coset. For anyλ ∈ Λ the coset
of Λ′ in Λ determined byλ is the setλ + Λ′ = {λ + λ′ : λ′ ∈ Λ′}. In this work
we always let the group operation be ordinary vector addition which is a commutative
operation so that the left and right cosets coincide. As suchthere is no ambiguity with
respect to left and right cosets when referring to the cosetλ + Λ′. We will use the
notation[λ] when referring to the cosetλ+ Λ′ and we callλ the coset representative.
It should be clear that any member of the coset[λ] can be the coset representative.
To be consistent we will always let the coset representativebe the unique4 vector of
[λ] which is in the Voronoi cell of the zero-vector ofΛ′. For example ifΛ andΛ′ are
defined as in Fig. 2.4 then the index|Λ/Λ′| = 7 and there is therefore seven distinct
cosets in the quotient moduleΛ/Λ′. The seven cosets representatives are indicated
with squares in Fig. 2.4.

2.2.3 Group Actions on Quotient Modules

Let Γm ⊆ Aut(Λ) be a group of orderm of automorphisms ofΛ. We then denote the
set of orbits under the action ofΓm on the quotient moduleΛ/Λ′ by Λ/Λ′/Γm. For
example letΓ2 = {I2,−I2} be a group (closed under matrix multiplication) of order
2, whereI2 is the two-dimensional identity matrix. Let theJ -moduleΛ be identical
to Z2 and letΛ′ be a submodule ofΛ of indexN = 81. In other words, there areN
coset representatives in the quotient moduleΛ/Λ′ whereas the set of orbitsΛ/Λ′/Γ2

has cardinality|Λ/Λ′/Γ2| = 41. This is illustrated in Fig. 2.5(a) where the coset
representatives ofΛ/Λ′ are illustrated with dots and representatives of the orbitsof
Λ/Λ′/Γ2 are marked with circles.

Next consider the group given by

Γ4 =

{

±I2,±
(

0 −1

1 0

)}

, (2.9)

which has order 4 and includesΓ2 as a subgroup. Fig. 2.5(b) shows coset
representatives forΛ/Λ′ and representatives for the set of orbitsΛ/Λ′/Γ4. Notice
that|Λ/Λ′/Γ4| = 21.

2.3 Construction of Lattices

We now show how to construct the lattices and sublattices that later will be used as
quantizers in MD-LVQ.

4We will later require thatΛ′ is a clean sublattice ofΛ from which the uniqueness property is evident.
If Λ′ is not clean then we make an arbitrary choice amongst the candidate representatives.
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(a) Λ/Λ′/Γ2
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(b) Λ/Λ′/Γ4

Figure 2.5: The 81 coset representatives forΛ/Λ′ are here shown as dots and representatives
for the orbits of (a)Λ/Λ′/Γ2 and (b)Λ/Λ′/Γ4 are shown as circles.

2.3.1 Admissible Index Values

For any geometrically-similar sublatticeΛ′ of Λ, a number of lattice points ofΛ will
be located within each Voronoi cell ofΛ′ and perhaps on the boundaries between
neighboring Voronoi cells. In the latter case ties must be broken in order to have well
defined Voronoi cells. To avoid tie breaking it is required thatΛ′ has no lattice points
on the boundary of its Voronoi cells. In this case,Λ′ is said to be clean. As previously
mentioned, we call an index value of a clean sublattice an admissible index value.
In [21] partial answers are given to whenΛ contains a sublatticeΛ′ of indexN that
is geometrically-similar toΛ, and necessary and sufficient conditions are given for
any lattice in two dimensions to contain a geometrically-similar and clean sublattice
of indexN . These results are extended in [28] to geometrically-similar and clean
sublattices in four dimensions for theZ4 andD4 lattice. In addition, results are given
for anyZL lattice whereL = 4k, k ≥ 1. Table 2.1 briefly summarizes admissible
index values for the known cases. In generalZL has a geometrically-similar and
clean sublattice if and only ifN is odd and

a) L odd andN anLth power, or

b) L = 2 andN of the forma2 + b2, or

c) L = 4k, k ≥ 1 andN of the formmL/2 for some integerm,

see [28] for details.
It can be shown that squaring an admissible index value yields another admis-

sible index value for all lattices considered in this work. We can generalize this even
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Lattice Dim. Admissible index values

Z 1 1,3,5,7,9,. . .
Z2 2 1,5,9,13,17,25,29,37,41,45,49,. . .
A2 2 1,7,13,19,31,37,43,49,. . .
D4 4 1,25,49,169,289,625,. . .
Z4 4 1,25,49,81,121,169,225,289,361,. . .

Table 2.1: Admissible index values for geometrically-similar and clean sublattices in one, two
and four dimensions. See Appendix D for more information about these sets of index values.

further and show that the product of any number of admissibleindex values leads to
an admissible index value.

Lemma 2.3.1. For the latticesA2, D4 andZL whereL = 1, 2 or L = 4k, where
k ≥ 1, the product of two or more admissible index values yields another admissible
index value.

Proof. See Appendix E. �

As noted in [21] it is always possible by e.g. exhaustive search to see if a lattice
Λ contains a sublatticeΛ′ with an index value ofN = cL/2, c ∈ R+. Let the Gram
matrix of Λ beA. Then search throughΛ to see if it contains a set of generator
vectors with Gram matrixcA. In large lattice dimensions this approach easily becomes
infeasible. However, for known lattices the admissible index values can be found off-
line and then tabulated for later use.

If two lattices Λ ⊂ RL and Λ′ ⊂ RL′

are concatenated (i.e. their Cartesian
product is formed) then the resulting latticeΛ′′ is of dimensionL′′ = L + L′, cf.
Definition C.1.7. The set of admissible index values ofΛ′′ (when normalized by
dimension) might be different than that ofΛ or Λ′. For example letΛ = Z1 where the
admissible index values are the odd integers. Then notice that the four-dimensionalZ4

lattice is simply a cascade of fourZ1 lattices. However, the admissible index values
(normalized per dimension) ofZ4 are given by (see Appendix D.4)

N ′ = {1, 2.24, 2.65,3, 3.32, 3.61, 3.87, 4.12, 4.36, 4.58, 4.8,5, . . . }, (2.10)

where we have shown the index values ofZ1 in boldface. Thus, by forming a higher
dimensional lattice by cascading smaller dimensional lattices it is possible to achieve
more (or at least different) index values.

A different strategy is to change the underlying ringJ as shown in Fig. 2.3
which results in a different lattice of the same dimension that might lead to new index
values. In this thesis, however, we will be using the known admissible index values of
Table 2.1.
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2.3.2 Sublattices

In this section we construct sublattices and primarily focus on a special type of
sublattices called product lattices. In [28] the followingdefinition of a product lattice
was presented.

Definition 2.3.1 ( [28]). Let J be an arbitrary ring, letΛ = J and form the two
sublatticesΛ0 = ξ0Λ andΛ1 = Λξ1, ξi ∈ Λ, i = 0, 1. Then the latticeΛπ = ξ0Λξ1
is called a product lattice and it satisfiesΛπ ⊆ Λi, i = 0, 1.

In this work, however, we will make use of a more general notion of a product lattice
which includes Definition 2.3.1 as a special case.

Definition 2.3.2. A product latticeΛπ is any sublattice satisfyingΛπ ⊆ Λi where
Λi = ξiΛ or Λi = Λξi, i = 0, . . . ,K − 1.

The construction of product lattices based on two sublattices as described in
Definition 2.3.1 was treated in detail in [28]. In this section we extend the existing
results of [28] and construct product lattices based on morethan two sublattices for
L = 1, 2 and4 dimensions for the root latticesZ1, Z2, A2, Z

4 andD4, which are
described in Appendix D. Along the same lines as in [28] we construct sublattices
and product lattices by use of the ordinary rational integersZ as well as the Gaussian
integersG , Eisenstein integersE , Lipschitz integral QuaternionsH0 and the Hurwitz
integral QuaternionsH1, whereG andE are given by (2.5) and (2.6), respectively,
and [22]

H0 = {ξ1 + iξ2 + jξ3 + kξ4 : ξ1, ξ2, ξ3, ξ4 ∈ Z}, (2.11)

H1 = {ξ1 + iξ2 + jξ3 + kξ4 : ξ1, ξ2, ξ3, ξ4 all in Z or all in Z + 1/2}, (2.12)

wherei, j andk are unit Quaternions, see Appendix A for more information. For
example a sublatticeΛ1 of Λ = Z is easily constructed, simply by multiplying all
pointsλ ∈ Λ by ξ whereξ ∈ Z\{0}.5 This gives a geometrically-similar sublattice
Λ1 = ξZ of index |ξ|. This way of constructing sublattices may be generalized by
considering different rings of integers. For example, for the square latticeΛ = G

whose points lie in the complex plane, a geometrically-similar sublattice of index 2
may be obtained by multiplying all elements ofΛ by the Gaussian integerξ = 1 + i.

Sublattices and product lattices ofZ1, Z2 andA2

The construction of product lattices based on the sublatticesZ1, Z2 andA2 is a
straight forward generalization of the approach taken in [28]. Let the latticeΛ be
any one ofZ1 = Z, Z2 = G orA2 = E and let the geometrically-similar sublattices
Λi be given byξiΛ whereξi is an element of the rational integersZ, the Gaussian
integersG or the Eisenstein integersE , respectively.

5Since Λ is a torsion freeJ -module the submoduleΛ′ = ξΛ is a non-trivial cyclic submodule
whenever0 6= ξ ∈ Λ.
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Lemma 2.3.2. Λπ = ξ0ξ1 · · · ξK−1Λ is a product lattice.

Proof. See Appendix E. �

Also, as remarked in [28], since the three rings considered are unique factorization
rings, the notion of least common multiple (lcm) is well defined. Let us defineξ∩ ,

lcm(ξ0, . . . , ξK−1) so thatξi|ξ∩, i.e.ξi dividesξ∩. This leads to the following lemma.

Lemma 2.3.3. Λ′
π = ξ∩Λ is a product lattice.

Proof. See Appendix E. �

The relations betweenΛ,Λi,Λ
′
π andΛπ as addressed by Lemmas 2.3.2 and 2.3.3

are shown in Fig. 2.6. For example, letΛ = G (≡Z2) and letN0 = 45 andN1 = 81.
Then we have that lcm(45, 81) = 405 and45 · 81 = 3645. We may chooseξ0 =

3 + 6i, ξ1 = 9 andξ∩ = 9 + 18i, so that|ξ0|2 = 45, |ξ1|2 = 81 and|ξ∩|2 = 405.
Notice thatξ0|ξ∩ andξ1|ξ∩, i.e. ξ∩

ξ0
= 3 ∈ G and ξ∩

ξ1
= 1 + 2i ∈ G . Since bothξ0

andξ1 dividesξ∩, the latticeΛ∩ = ξ∩Λ will be a sublattice ofΛ0 = ξ0Λ as well as
Λ1 = ξ1Λ, see Fig. 2.7.

Λ

Λ0 = ξ0Λ Λ1 = ξ1Λ ΛK−1 = ξK−1Λ

Λ′
π = ξ∩Λ

Λπ = ξ0ξ1 · · · ξK−1Λ

Figure 2.6: The intersection (meet) ofK arbitrary sublattices form a product lattice forZ1, Z2

andA2.

Sublattices and product lattices ofZ4

As was done in [28] we will use the Quaternions [71, 150] for the construction of
sublattices and product lattices forZ4. The Quaternions form a non-commutative ring
and it is therefore necessary to distinguish between left and right multiplication [71,
150]. For the case of two sublattices we adopt the approach of[28] and construct the
sublatticeΛ0 by multiplyingΛ on the left, i.e.Λ0 = ξ0Λ andΛ1 is obtained by right
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Figure 2.7: The latticeΛ = G is here shown as dots. The two latticesΛ0 = (3 + 6i)Λ

(squares) andΛ1 = 9Λ (circles) are sublattices ofΛ and the latticeΛ∩ = (9 + 18i)Λ (stars)
is a sublattice of all the latticesΛ0,Λ1 and Λ. The solid lines describe the boundary of the
Voronoi cellV0 of the product lattice point located at the origin.

multiplicationΛ1 = Λξ1, see Fig. 2.8. More than two descriptions was not considered
in [28]. Let theK sublattices be of indexN0, . . . , NK−1 respectively. Then we may
form Λ0 = ξ0Λ andΛ1 = Λξ1 as above. However, by lettingΛ2 = Λξ2 we run into
trouble when creating the product lattice. For example, if we defineΛπ = ξ0Λξ1ξ2 it
is clear thatΛπ ⊆ Λ0 andΛπ ⊆ Λ2. The problem is that in generalΛπ * Λ1 since
ξ1ξ2 6= ξ2ξ1 and we therefore have to restrict the set of admissible indexvalues.

Lemma 2.3.4. LetN0 andN1 be admissible index values forZ2. ThenN2
0 andN2

1

(which are admissible index values forZ4), can be associated with a pair of Lipschitz
integers(ξ0, ξ1) that commute, i.e.ξ0ξ1 = ξ1ξ0.

Proof. See Appendix E. �

From Lemma 2.3.4 it follows that there exist an infinite number of pairs of ad-
missible index values(N0, N1) whereN0 6= N1 such that the Lipschitz integers
ξ0 andξ1 commute. For example, letN0 = 72, N1 = 132, N2 = 52 and define
Λ0 = ξ0Λ,Λ1 = Λξ1 andΛ2 = Λξ2 whereξ0 = −2−i−j−k, ξ1 = −2−i+0j+0k



22 (Chapter 2) Lattice Theory

Λ

Λ0 = ξ0Λ Λ1 = Λξ1

Λπ = ξ0Λξ1

Figure 2.8: Two arbitrary sublattices form a product lattice.

andξ2 = −3− 2i+ 0j + 0k. For this example we haveξ0ξ1 6= ξ1ξ0 andξ0ξ2 6= ξ2ξ0
but ξ1ξ2 = ξ2ξ1. Letting Λπ = ξ0Λξ1ξ2 makes sure thatΛπ ⊆ Λi for i = 0, 1, 2,
sinceΛπ = (ξ0Λξ1)ξ2 = (ξ0Λξ2)ξ1. In general it is possible to construct the product
lattice Λπ such thatΛπ ⊆ Λi for i = 0, . . . ,K − 1 as long as anyK − 1 of
theK ξi’s commute, see Fig. 2.9, whereξ′∩ = lcm(ξ1, . . . , ξK−1). If all the pairs
(ξi, ξj), i, j ∈ {0, . . . ,K − 1} commute the procedure shown in Fig. 2.6 is also valid.

Λ

Λ0 = ξ0Λ Λ1 = Λξ1 ΛK−1 = ΛξK−1

Λ′
π = ξ0Λξ

′
∩

Λπ = ξ0Λξ1 · · · ξK−1

Figure 2.9: The intersection (meet) ofK arbitrary sublattices form a product lattice forZ4.
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Sublattices and product lattices ofD4

ForD4 we use the ring of Hurwitzian integers, i.e.ξi ∈ H1. For the case of two
sublattices we design the sublattices and product latticesas in [28] and shown in
Fig. 2.8. For more than two sublattices we have to make a restriction on the set
of allowable admissible index values. The Quaternions leading to admissible index
values forD4 obtained in [28] are of the form6 ξi = a

2 (1+ i)+ b
2 (j+k) ∈ H1, where

a andb are odd positive integers. Quaternions of this form do generally not commute
since botha andb are nonzero. In fact two Quaternions commute if and only if their
vector parts are proportional [6], i.e. linearly-dependent, which rarely happens for the
Quaternions of the formξi = a

2 (1 + i) + b
2 (j + k) ∈ H1. For example we did an

exhaustive search based on all admissible index values between 25 and 177241 and
found only five pairs (up to permutations) of Quaternions that commute. These are
shown in Table 2.2.

N0 N1 ξ0 ξ1
25 15625 1

2 + 1
2 i+

3
2j + 3

2k
5
2 + 5

2 i+
15
2 j + 15

2 k

169 105625 1
2 + 1

2 i+
5
2j + 5

2k
5
2 + 5

2 i+
25
2 j + 25

2 k

625 28561 5
2 + 5

2 i+
5
2j + 5

2k
13
2 + 13

2 i+
13
2 j + 13

2 k

625 83521 5
2 + 5

2 i+
5
2j + 5

2k
17
2 + 17

2 i+
17
2 j + 17

2 k

28561 83521 13
2 + 13

2 i+
13
2 j + 13

2 k
17
2 + 17

2 i+
17
2 j + 17

2 k

Table 2.2: Each row shows two Quaternionsξ0 andξ1 which commute, i.e.ξ0ξ1 = ξ1ξ0.

We therefore restrict the set of admissible index values toNi ∈ {a, b} for i =

0, . . . ,K−1 wherea andb are any two admissible index values. With this the product
lattice, forK > 2 sublattices, is based on only two integers e.g.ξ0 andξ1 as shown in
Fig. 2.8 and the index of the product lattice is thenNπ = ab. With this approach it is
possible to obtainΛπ ⊆ Λi for i = 0, . . . ,K − 1.

6With two exceptions beingξi = 1
2

+ 1
2
i + 1

2
j + 5

2
k andξi = 1

2
+ 3

2
i + 3

2
j + 3

2
k both leading to

an index value ofN = 49.





Chapter 3
Single-Description Rate-Distortion

Theory

Source coding with a fidelity criterion, also called rate-distortion theory (or lossy
source coding), was introduced by Shannon in his two landmark papers from
1948 [121] and 1959 [122] and has ever since received a lot of attention. For an
introduction to rate-distortion theory we refer the readerto the survey papers by
Kieffer [74] and Berger and Gibson [9] and the text books by Berger [8], Ciszár and
Körner [26] and Cover and Thomas [24].

3.1 Rate-Distortion Function

A fundamental problem of rate-distortion theory is that of describing the rateR
required to encode a sourceX at a prescribed distortion (fidelity) levelD. Let
XL = {Xi}, i = 1, . . . , L be a sequence of random variables (or letters) of a
stationary7 random processX . Let X̂ be the reproduction ofX and letx and x̂
be realizations ofX and X̂, respectively. The alphabetsX and X̂ of X and
X̂, respectively, can be continuous or discrete and in the latter case we distinguish
between discrete alphabets of finite or countably infinite cardinality. When it is clear
from context we will often ignore the superscriptL which indicates the dimension of
the variable or alphabet so thatx ∈ X ⊂ RL denotes anL-dimensional vector or
element of the alphabetX which is a subset ofRL.

Definition 3.1.1. A fidelity criterion for the sourceX is a family ρ(L)(X, X̂), L ∈
N of distortion measures of whichρ(L) computes the distortion when representing

7Throughout this work we will assume all stochastic processes to be discrete-time zero-mean weak-
sense stationary processes (unless otherwise stated).

25
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X by X̂. If ρ(L)(X, X̂) , 1
L

∑L
i=1 ρ(Xi, X̂i) thenρ is said to be a single-letter

fidelity criterion and we will then use the notationρ(X, X̂). Distortion measures of
the formρ(X−X̂) are called difference distortion measures. For exampleρ(X, X̂) =
1
L‖X−X̂‖2 is a difference distortion measure (usually referred to as the squared-error
distortion measure).

In this work we will be mainly interested in the squared-error single-letter fidelity
criterion which is defined by

ρ(X, X̂) ,
1

L

L∑

i=1

(Xi − X̂i)
2. (3.1)

With this, formally stated, Shannon’s rate-distortion functionR(D) (expressed in
bit/dim.) for stationary sources with memory and single-letter fidelity criterion,ρ, is
defined as [8]

R(D) , lim
L→∞

RL(D), (3.2)

where theLth order rate-distortion function is given by

RL(D) = inf{ 1

L
I(X ; X̂) : Eρ(X, X̂) ≤ D}, (3.3)

whereI(X ; X̂) denotes the mutual information8 betweenX andX̂, E denotes the
statistical expectation operator and the infimum is over allconditional distributions
fX|X̂(x̂|x) for which the joint distributionsfX,X̂(x, x̂) = fX(x)fX̂|X(x̂|x) satisfy
the expected distortion constraint given by

∫

X

∫

X̂

fX(x)fX̂|X(x̂|x)ρ(x, x̂)dx̂dx ≤ D. (3.4)

The Lth order rate-distortion functionRL(D) can be seen as the rate-distortion
function of anL-dimensional i.i.d. vector sourceX producing vectors with the
distribution ofX [82].

Let h(X) denote the differential entropy (or continuous entropy) ofX which is
given by [24]

h(X) = −
∫

X

fX(x) log2(fX(x)) dx

and let the differential entropy ratēh(X) be defined bȳh(X) , limL→∞
1
Lh(X)

where for independently and identically distributed (i.i.d.) scalar processes̄h(X) =

8The mutual information between to continuous-alphabet sourcesX andX̂ with a joint pdffX,X̂ and
marginalsfX andf

X̂
, respectively, is defined as [24]

I(X; X̂) =

∫

X

∫

X̂

fX,X̂(x, x̂) log2

(
fX,X̂(x, x̂)

f
X

(x)f
X̂

(x̂)

)

dxdx̂.
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1
Lh(X). With a slight abuse of notation we will also use the notationh̄(X) to
indicate the dimension normalized differential entropy ofan i.i.d. vector source. If
ρ is a difference distortion measure, then (3.2) and (3.3) canbe lower bounded by the
Shannon lower bound [8]. Specifically, ifEρ is the mean squared error (MSE) fidelity
criterion, then [8,82]

R(D) ≥ h̄(X) − 1

2
log2(2πeD), (3.5)

where equality holds at almost all distortion levelsD for a (stationary) Gaussian
source [8].9 In addition it has been shown that (3.5) becomes asymptotically tight
at high resolution, i.e. asD → 0, for sources with finite differential entropies and
finite second moments for general difference distortion measures, cf. [82].

Recall that the differential entropy of a jointly Gaussian vector is given by [24]

h(X) =
1

2
log2((2πe)

L|Φ|), (3.6)

where|Φ| is the determinant ofΦ = EXXT , i.e. the covariance matrix ofX . It
follows from (3.5) that the rate-distortion function of a memoryless scalar Gaussian
process of varianceσ2

X is given by

R(D) =
1

2
log2

(
σ2

X

D

)

, (3.7)

wheneverD ≤ σ2
X andR(D) = 0 for D > σ2

X sinceR(D) is everywhere non-
negative.

The inverse ofR(D) is called the distortion-rate functionD(R) and it basically
says that if a source sequence is encoded at a rateR the distortion is at leastD(R).
From (3.7) we see that the distortion-rate function of the memoryless Gaussian process
is given by

D(R) = σ2
X2−2R, (3.8)

which is shown in Fig. 3.1 for the case ofσ2
X = 1.

Remark3.1.1. From (3.8) and also from Fig. 3.1 it may be seen that each extrabit
reduces the distortion by a factor of four — a phenomena oftenreferred to as the “6
dB per bit rule” [60]. In fact, the “6 dB per bit rule” is approximately true not just for
the Gaussian source but for arbitrary sources.

The rate-distortion function of a memoryless scalar sourceand squared-error
distortion measure may be upper and lower bounded by use of the entropy-power
inequality, that is [8]

1

2
log2

(
σ2

X

D

)

≥ R(D) ≥ 1

2
log2

(
PX

D

)

, (3.9)

9Eq. (3.5) is tight for allD ≤ essinf SX , whereSX is the power spectrum of a stationary Gaussian
processX [8].
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Figure 3.1:D(R) for the unit-variance memoryless Gaussian source.

wherePX is the entropy power.10 Similarly, the distortion-rate function is bounded as

PX2−2R ≤ D(R) ≤ σ2
X2−2R, (3.10)

with equalities all the way in both (3.9) and (3.10) ifX is Gaussian.

Remark3.1.2. Inequalities (3.9) and (3.10) show that, of all sources, theGaussian
source is the hardest to compress.

3.2 Quantization Theory

A quantizerQ consists of a set of decision cellsS = {Si : i ∈ I } whereI ⊆ N
together with a set of reproduction valuesC = {ci : i ∈ I } [60]. The operation of
quantization is defined asQ(x) , ci if x ∈ Si. We require thatS cover the input
spaceX which implies that

⋃

i∈I
Si ⊃ X and often we needS to partitionX so

that sets ofS are pairwise disjoint, i.e.Si ∩ Sj = ∅, i 6= j so that
⋃

i∈I
Si = X .

Definition 3.2.1. The decision cells of a nearest neighbor quantizer are called Voronoi
cells, Voronoi regions or Dirichlet regions [22]. Given theith reproduction valueci
the Voronoi cellV (ci) is defined by

V (ci) , {x ∈ X : ρ(x, ci) ≤ ρ(x, cj), ∀j ∈ I }, (3.11)

10The entropy powerPX , (2πe)−122h(X) of a sourceX is defined as the variance of a Gaussian
density that has the same differential entropy asX [8].
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where ties (if any) can be arbitrarily broken.11

It follows that the expected distortion of a quantizer is given by

DQ =
∑

i∈I

∫

x∈Si

fX(x)ρ(x, ci) dx. (3.12)

Let us for the moment assume thatX = RL andC = X̂ ⊂ RL. Then, for
the squared error distortion measure, the Voronoi cells of an L-dimensional nearest
neighbor quantizer (vector quantizer) are defined as

V (x̂i) , {x ∈ RL : ‖x− x̂i‖2 ≤ ‖x− x̂j‖2, ∀xj ∈ X̂ }, x̂i ∈ X̂ , (3.13)

where‖ · ‖ denotes theℓ2-norm, i.e.‖x‖2 =
∑L

n=1 x
2
n.

Vector quantizers are often classified as either entropy-constrained quantizers or
resolution-constrained quantizers or as a mixed class where for example the output
of a resolution-constrained quantizer is further entropy coded.12 When designing an
entropy-constrained quantizer one seeks to form the Voronoi regionsV (x̂i), x̂i ∈ X̂ ,
and the reproduction alphabet̂X such that the distortionDQ is minimized subject to
an entropy constraintR on the discrete entropyH(X̂). Recall that the discrete entropy
of a random variable is given by [24]

H(X̂) = −
∑

i∈I

P (x̂i) log2(P (x̂i)), (3.14)

whereP denotes probability andP (x̂i) = P (x ∈ V (x̂i)). On the other hand, in
resolution-constrained quantization the distortion is minimized subject to a constraint
on the cardinality of the reproduction alphabet. In this case the elements ofX̂ are
coded with a fixed rate ofR = log2(|X̂ |)/L. For large vector dimensions, i.e.
whenL ≫ 1, it is very likely that randomly chosen source vectors belong to a
typical setA (L) in which the elements are approximately uniformly distributed [24].
As a consequence, in this situation there is not much difference between entropy-
constrained and resolution-constrained quantization.

There exists several iterative algorithms for designing vector quantizers. One
of the earliest such algorithms is the Lloyd algorithm whichis used to construct
resolution-constrained scalar quantizers [87], see also [88]. The Lloyd algorithm is
basically a cyclic minimizer that alternates between two phases:

1. Given a codebookC = X̂ find the optimal partition of the input space, i.e.
form the Voronoi cellsV (x̂i), ∀x̂i ∈ X̂ .

11Two neighboringL-dimensional Voronoi cells for continuous-alphabet sources share a commonL′-
dimensional face whereL′ ≤ L− 1. For discrete-alphabet sources it is also possible that a point is equally
spaced between two or more centroids of the codebook, in which case tie breaking is necessary in order to
make sure that the point is not assigned to more than one Voronoi cell.

12Entropy-constrained quantizers (resp. resolution-constrained quantizers) are also called variable-rate
quantizers (resp. fixed-rate quantizers).
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2. Given the partition, form an optimal codebook, i.e. letx̂i ∈ X̂ be the centroid
of the setx ∈ V (x̂i).

If an analytical description of the pdf is unavailable it is possible to estimate the
pdf by use of empirical observations [45]. Furthermore, Lloyd’s algorithm has been
extended to the vector case [45,81] but has not been explicitly extended to the case of
entropy-constrained vector quantization. Towards that end Chou et al. [19] presented
an iterative algorithm based on a Lagrangian formulation ofthe optimization problem.
In general these empirically designed quantizers are only locally optimal and unless
some structure is enforced on the codebooks, the search complexity easily becomes
overwhelming (the computational complexity of an unconstrained quantizer increases
exponentially with dimension) [45]. There exists a great deal of different design
algorithms and we refer the reader to the text books [22, 45, 57] as well as the in-
depth article by Gray and Neuhoff [60] for more information about the theory and
practice of vector quantization.

3.3 Lattice Vector Quantization

In this work we will focus on structured vector quantizationand more specifically on
lattice vector quantization (LVQ) [22,46,57]. A family of highly structured quantizers
is the tesselating quantizers which includes lattice vector quantizers as a sub family.
In a tesselating quantizer all decision cells are translated and possibly rotated and
reflected versions of a prototype cell, sayV0. In a lattice vector quantizer all Voronoi
cells are translations ofV0 which is then taken to beV0 , V (0), i.e. the Voronoi cell of
the reproduction point located at the origin (the zero vector) so thatV (x̂i) = V0+x̂i.13

In a high-resolution lattice vector quantizer the reproduction alphabetX̂ is usually
given by anL-dimensional latticeΛ ⊂ RL, see Appendices C and D for more details
about lattices.

In order to describe the performance of a lattice vector quantizer it is convenient to
make use of high resolution (or high rate) assumptions whichfor a stationary source
can be summarized as follows [45,57]:

1. The rate or entropy of the codebook is large, which means that the variance of
the quantization error is small compared to the variance of the source. Thus, the
pdf of the source can be considered constant within a Voronoicell, i.e.fX(x) ≈
fX(x̂i) if x ∈ V (x̂i). Hence, the geometric centroids of the Voronoi cells are
approximately the midpoints of the cells

2. The quantization noise process tends to be uncorrelated even when the source
is correlated

13Notice that not all tesselating quantizers are lattice quantizers. For example, a tesselating quantizer
having triangular shaped decision cells is not a lattice vector quantizer.
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3. The quantization error is approximately uncorrelated with the source

Notice that 1) is always true if the source distribution is uniform. Furthermore, all
the above assumptions have been justified rigorously in the limit as the variance of
the quantization error tends to zero for the case of smooth sources (i.e. continuous-
alphabet sources having finite differential entropies) [86, 145, 161]. If subtractive
dither is used, as is the case of entropy-constrained dithered (lattice) quantization
(ECDQ), the above assumptions are valid at any resolution and furthermore the
quantization errors are independent of the source [159, 160, 165]. A nice property
of ECDQ is that the additive noise model is accurate at any resolution, so that
the quantization operation can be modeled as an additive noise process [160]. The
dither signal of an ECDQ is an i.i.d. random14 process which is uniformly distributed
over a Voronoi cell of the quantizer so that for a scalar quantizer the distribution of
the quantization errors is uniform. Asymptotically, as thedimension of the ECDQ
grows unboundedly, any finite-dimensional marginal of the noise process becomes
jointly Gaussian distributed and the noise process becomesGaussian distributed in
the divergence15 sense [161]. These properties of the noise process are also valid for
entropy-constrained LVQ (without dither) under high resolution assumptions [161]. It
is interesting to see that at very low resolution, i.e. as thevariance of the quantization
error tends to the variance of the source, the performance ofan entropy-constrained
scalar quantizer is asymptotically as good as any vector quantizer [91].

3.3.1 LVQ Rate-Distortion Theory

LetH denote the discrete entropyH(X̂ ) of the codebook of an entropy-constrained
vector quantizer and let the dimension-normalized MSE distortion measureDL be
defined as

DL ,
1

L
E‖X − X̂‖2. (3.15)

Then by extending previous results of Bennett [7] for high resolution scalar
quantization to the vector case it was shown by Zador [156] that ifX has a probability
density then16

lim
H→∞

DL22H/L = aL22h(X)/L, (3.16)

whereh(X) is the differential entropy ofX andaL is a constant that depends only on
L. In the scalar case whereL = 1 it was shown by Gish and Pierce [47] thata1 = 1/12

14The dither signal is assumed known at the decoder so it is in fact a pseudo-random process.
15The information divergence (also called Kullback-Leiblerdistance or relative entropy) between two

pdfsfX andgX is defined as [24]

D(f‖g) =

∫

X

f
X

(x) log2(fX
(x)/g

X
(x)) dx.

16Later on the precise requirements on the source for (3.16) tobe valid was formalized by Linder and
Zeger [86].
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and that the quantizer that achieves this value is the unbounded uniform scalar (lattice)
quantizer. For the case of1 < L < ∞ the value ofaL is unknown [86].17 It was
conjectured by Gersho in 1979 [44] that if the source distribution is uniform over
a bounded convex set inRL then the optimal quantizer will have a partition whose
regions are all congruent to some polytope. Today, more than25 years after, this
conjecture remains open. But if indeed it is true then, at high resolution, the optimal
entropy-constrained quantizer is a tessellating quantizer independent of the source
distribution (as long as it is smooth).

The distortion at high resolution of an entropy-constrained lattice vector quantizer
is given by [44,86]

DL ≈ G(Λ)ν2/L, (3.17)

whereν (the volume of a fundamental region of the lattice) is given by

ν2/L = 22(h(X)−H)/L. (3.18)

Thus, if we assume that Gersho’s conjecture is true and furthermore assume that a
lattice vector quantizer is optimal then (3.17) implies that aL = G(Λ). By inserting
(3.18) in (3.17) the discrete entropy (again at high resolution) is found to be given by

H(X̂ ) ≈ h(X) − L

2
log2

(
DL

G(Λ)

)

[bit] . (3.19)

The Shannon lower bound is the most widely used tool to relatethe performance
of lattice quantizers to the rate-distortion function of a source. For example, at high
resolution, the Shannon lower bound is tight for all smooth sources, thus

R(D) ≈ h̄(X) − 1

2
log2(2πeD) [bit/dim.], (3.20)

so that the asymptotic rate-redundancyRred of a lattice vector quantizer over the rate-
distortion function of a smooth source under the MSE distortion measure is18

Rred =
1

2
log2(2πeG(Λ)) [bit/dim.] (3.21)

From (3.17) it may be noticed that the distortion of a latticevector quantizer is
source independent and in fact, for fixedν, the distortion only depends uponG(Λ).
Furthermore,G(Λ) is scale and rotation invariant and depends only upon the shape of
the fundamental regionV0 of the latticeΛ [22]. In general the more sphere-like shape
of V0 the smallerG(Λ) [22]. It follows thatG(Λ) is lower bounded byG(SL) the
dimensionless normalized second moment of anL-sphere where [22]

G(SL) =
1

(L+ 2)π
Γ

(
L

2
+ 1

)2/L

, (3.22)

17For the case of resolution-constrained quantization botha1 anda2 are known [58].
18Rred is in fact the divergence of the quantization noise from Gaussianity in high resolution lattice vector

quantization.
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and whereΓ(·) is the Gamma function. ForL → ∞ we haveG(S∞) = 1/2πe.
TheL-fold Cartesian product of the integers form anL-dimensional latticeZL = ZL

which has a hypercubic fundamental region. It can easily be computed thatG(ZL) =

1/12 which is in fact the largest dimensionless normalized second moment over all
admissible fundamental regions [22]. Thus,

1/12 ≥ G(Λ) ≥ G(SL) ≥ 1

2πe
, (3.23)

where the first two inequalities become equalities forL = 1 since in one dimension the
only possible lattice isZ1, the scalar uniform lattice, andG(Z1) = G(S1) = 1/12.
For 1 < L < ∞ L-spheres do not pack the Euclidean space and are therefore not
admissible fundamental regions [22]. However, forL→ ∞ and with a proper choice
of lattice it is known thatG(Λ) → G(S∞) [161]. Table 3.1 showsG(Λ) for the best
knownL-dimensional lattices with respect to quantization.

Lattice name Dimension Notation G(Λ) G(SL)

Scalar 1 Z1 0.0833 0.0833

Hexagonal 2 A2 0.0802 0.0796

BCC 3 Ã3 0.0787 0.0770

Schläfli 4 D4 0.0766 0.0750

— 5 D̃5 0.0756 0.0735

— 6 E6 0.0743 0.0723

— 7 Ẽ7 0.0731 0.0713
Gosset 8 E8 0.0717 0.0705

Coxeter-Todd 12 K12 0.0701 0.0681

Barnes-Walls 16 BW16 0.0683 0.0666

Leech 24 Λ24 0.0658 0.0647

Poltyrev19 ∞ Λ∞ 0.0585 0.0585

Table 3.1: The dimensionless normalized second moments of the latticeΛ and theL-sphere are
denotedG(Λ) andG(SL), respectively. All figures are obtained from [22].

While all the lattices in Table 3.1 are the best known lattices for quantization in
their dimensions it is in fact onlyZ1, A2, Ã3 andΛ∞ which are known to be optimal
among all lattices [22] and furthermore, onlyZ1 andΛ∞ are known to be optimal
among all entropy-constrained vector quantizers.

It is interesting to compare the optimal performance of an entropy-constrained
scalar quantizerZ1 to that of an optimal entropy-constrained infinite-dimensional
lattice vector quantizerΛ∞. From Table 3.1 it can be seen that the rate lossRLoss

19The fact that there actually exist lattices in infinite dimensions which are capable of achieving the
dimensionless normalized second moment of a sphere was proven in [161], a proof which was contributed
by G. Poltyrev.
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(at high resolution or at any resolution for the uniform density) when usingZ1 instead
of Λ∞ is given by

RLoss =
1

2
log2

(
G(Z1)

G(Λ∞)

)

= 0.2546 bit/dim. (3.24)

or equivalently the increase in distortion (also known as the space-filling loss or space-
filling gain when reversed) for usingZ1 instead ofΛ∞ is given by

DLoss = 10 log10

(
G(Z1)

G(Λ∞)

)

= 1.5329 dB. (3.25)

Fig. 3.2 illustrates the space-filling loss for the latticesof Table 3.1. For
comparison we also show the space-filling loss ofL-dimensional “quantizers” having
spherical Voronoi cells which is given byDLoss = 10 log10(G(SL)/G(Λ∞)).
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Ẽ7

E8

K12

BW16

Λ24

Figure 3.2: Space-filling loss for the lattices of Table 3.1. The solid line describes the space-
filling loss ofL-spheres.

3.4 Entropy Coding

In the previous section we saw that for stationary sources one achieves space-filling
gains if vector quantizers are used instead of scalar quantizers. The space-filling gain
is independent of the statistical properties of the source.In other words, whether
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the source is i.i.d. or has memory the space-filling gain remains the same. However,
for this to be true, we implicitly assume that any statistical redundancy (correlation)
which might be present in the quantized signal is removed by a(lossless) entropy
coder. Recall that the discrete entropyH(X̂ ) of the quantizer is given by (3.19) and
thatP (x̂i) denotes the probability of the symbolx̂i wherex̂i ∈ X̂ . Assume now that
a codeword (of the entropy coder) of lengthli is assigned to the symbolx̂i. Then the
average codeword length̄s is given by

s̄ =
∑

i∈I

P (x̂i)li. (3.26)

The idea of an entropy coder is to assign short codewords to very probable symbols
and long codewords to less probable symbols in order to drives̄ towards its minimum.
Since we require the (entropy) code to be lossless it means that the code should be a
uniquely decodable code. Due to a result of Shannon we can lower bounds̄ by the
following theorem.

Theorem 3.4.1. [121] The average codeword lengths̄ of a uniquely decodable binary
code satisfies

s̄ ≥ H(X̂ ). (3.27)

In the same paper Shannon also gave an upper bound ons̄, i.e. s̄ < H(X̂ ) + 1

and he furthermore showed that if a sequence of, says, symbols is jointly coded then
the average number of bits per symbol satisfy

H(X̂ ) ≤ s̄ < H(X̂ ) +
1

s
, (3.28)

which shows that the entropyH(X̂ ) can be approximated arbitrarily closely by enco-
ding sufficiently long sequences [121].

In (3.26) we have|I | = |X̂ | and we thereby implicitly restrictX̂ to be a discrete
alphabet be it finite or countably finite, but we do in fact not always require that|X̂ | <
∞. For example it is known that an entropy-constrained vectorquantizer (ECVQ) may
be recast in a Lagrangian sense [19, 59, 63] and that a Lagrangian-optimal20 ECVQ
always exists under general conditions on the source and distortion measure [63].
Furthermore, György et al. [64] showed that, for the squarederror distortion measure,
a Lagrangian-optimal ECVQ has only a finite number of codewords if the tail of
the source distribution is lighter than the tail of the Gaussian distribution (of equal
variance), while if the tail is heavier than that of the Gaussian distribution the
Lagrangian-optimal ECVQ has an infinite number of codewords[64]. If the source
distribution is Gaussian then the finiteness of the codebookdepends upon the rate of

20The operational distortion-rate function is the infimum of the set of distortion-rate functions that can be
obtained by use of any vector quantizer which satisfies the given entropy constraints. A Lagrangian-optimal
ECVQ achieves points on the lower convex hull of the operational distortion-rate function and in general
any point can be achieved by use of time-sharing [63].
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the codebook. In addition they also showed that for source distributions with bounded
support the Lagrangian-optimal ECVQ has a finite number of codewords.21 22

In this work we will not delve into the theory of entropy coding but merely assume
that there exist entropy coders which are complex enough so that (at least in theory)
the discrete entropies of the quantizers can be reached. Formore information about
entropy coding we refer the reader to Chapter 9 of the text book by Gersho and
Gray [45] as well as the references cited in this section.

21These quantizers are not unique. For example it was shown by Gray et al. [58] that for the uniform
density on the unit cube there exists Lagrangian-optimal ECVQs with codebooks of infinite cardinality.

22In Chapter 7 we will show that, in certain important cases, the cardinality of lattice codebooks is finite.



Chapter 4
Multiple-Description

Rate-Distortion Theory

The MD problem is concerned with lossy encoding of information for transmission
over an unreliableK-channel communication system. The channels may break down
resulting in erasures and a potential loss of information atthe receiving side. Which of
the2K − 1 non-trivial subsets of theK channels that are working is assumed known
at the receiving side but not at the encoder. The problem is then to design an MD
system which, for given channel rates or a given sum rate, minimizes the distortions
due to reconstruction of the source using information from any subsets of the channels.
The compound channel (or composite channel) containing theK subchannels is often
described as a packet-switched network where individual packets are either received
errorless or not at all. In such situations the entire systemis identified as a multiple-
description system havingK descriptions.

The classical case involves two descriptions as shown in Fig. 4.1. The total rate
RT , also known as the sum rate, is split between the two descriptions, i.e.RT =

R0 + R1, and the distortion observed at the receiver depends on which descriptions
arrive. If both descriptions are received, the distortion(Dc) is lower than if only
a single description is received (D0 or D1). The generalK-channel MD problem
involvesK descriptions and is depicted in Fig. 4.2.

4.1 Information Theoretic MD Bounds

From an information theoretic perspective the MD problem ispartly about describing
the achievable MD rate-distortion region and partly about designing good practical
codes whose performance is (in some sense) near optimum. Before presenting the
known information theoretic bounds we need the following definitions.

37
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Source Encoder
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Decoder c

Decoder 1
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Description 0
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Figure 4.1: The traditional two-channel MD system.
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Figure 4.2: GeneralK-channel MD system. Descriptions are encoded at an entropy of Ri,
i = 0, . . . ,K − 1. The erasure channel either transmits theith description errorlessly or not
at all.

Definition 4.1.1. TheMD rate-distortion regiongiven a source and a fidelity criterion
is the closure of the set of simultaneously achievable ratesand distortions.

Example4.1.1. In the two-channel case the MD rate-distortion region is theclosure
of the set of achievable quintuples(R0, R1, Dc, D0, D1).

Definition 4.1.2. An inner boundto the MD problem is a set of achievable rate-
distortion points for a specific source and fidelity criterion.

Definition 4.1.3. An outer boundto the MD problem is a set of rate-distortion points,
for a specific source and fidelity criterion, for which it is known that no points outside
this bound can be reached.

Definition 4.1.4. If the inner and outer bounds coincide they are calledtight.

Example4.1.2. An example of inner and outer bounds for the set of achievablerate
pairs(R0, R1) given some fixed distortion triple(Dc, D0, D1) is shown in Fig. 4.3.
In this example there exists a region where the inner and outer bounds meet (coincide)
and the bounds are said to be tight within that region.

Remark4.1.1. The SD rate-distortion bounds form simple outer bounds to the MD
problem. For exampleRi ≥ R(Di), i = 0, . . . ,K − 1 and

∑K−1
i=0 Ri ≥ R(Dc)

whereR(·) describes the SD rate-distortion function.
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R0

R1

Figure 4.3: The solid thin curve show an example of an outer bound and the dashed curve
illustrates an inner bound. In the region where the bounds coincide (thick line), the bounds are
tight.

Definition 4.1.5. The termno excess marginal ratesrefers to the situation where, for
fixed side distortionsDi, the side description rates of an MD system meet the SD rate-
distortion bounds, i.e.Ri = R(Di). At the other extreme we have the situation ofno
excess sum ratewhere for a given sum rate the the central distortionDc achieves its
minimum so that

∑K−1
i=0 Ri = R(Dc).

An interesting subset of the MD rate-distortion region is the symmetric MD rate-
distortion region.23 The term symmetric relates to the situation where all channel
rates (description rates) are equal and the distortion depends only upon the number of
working channels (received descriptions) and as such not onwhich of the channels are
working. This is in contrast to the asymmetric case where thedescription rates as well
as side distortions are allowed to be unequal.

Another important subset of the MD rate-distortion region is the high resolution
region which refers to an MD rate-distortion region that becomes achievable asymp-
totically as the description rates of the system become large relative to the variance of
the source (or equivalently, asymptotically as the distortions tend to zero).

4.1.1 Two-Channel Rate-Distortion Results

El Gamal and Cover [42] obtained inner bounds to the two-channel MD problem
(known as the EGC region) and Ozarow [107] showed that these inner bounds are

23The lower bound of this symmetric region is the symmetric MD rate-distortion function of the source.
With a slight abuse of notation we sometimes call the MD rate-distortion function a region.
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tight for the memoryless Gaussian source under the squared-error fidelity criterion.24

Ahlswede [2] and Zhang and Berger [163] showed that the EGC region is also tight for
general sources and distortion measures in the no excess sumrate case. However, in
the excess sum rate case it was shown by Zhang and Berger [163]that the EGC region
is not always tight for the binary memoryless source under the Hamming distortion
measure. Outer bounds for the binary symmetric source and Hamming distortion have
also been obtained by Wolf, Wyner and Ziv [153], Witsenhausen [152] and Zhang and
Berger [164]. Zamir [157,158] obtained inner and outer bounds for smooth stationary
sources and the squared-error fidelity criterion and further showed that the bounds
become tight at high resolution. High resolution bounds forsmooth sources and
locally quadratic distortion measures have been obtained by Linder et al. [84]. Outer
bounds for arbitrary memoryless sources and squared-errordistortion measure were
obtained by Feng and Effros [35] and Lastras-Montaño and Castelli [79].

To summarize, the achievable MD rate-distortion region is only completely known
for the case of two channels, squared-error fidelity criterion and the memoryless
Gaussian source [42, 107]. This region consists of the convex hull of the set of
achievable quintuples(R0, R1, D0, D1, Dc) where the rates satisfy [18,107]

R0 ≥ R(D0) =
1

2
log2

(
σ2

X

D0

)

(4.1)

R1 ≥ R(D1) =
1

2
log2

(
σ2

X

D1

)

(4.2)

R0 +R1 ≥ R(Dc) +
1

2
log2 δ(D0, D1, Dc) (4.3)

=
1

2
log2

(
σ2

X

Dc

)

+
1

2
log2 δ(D0, D1, Dc), (4.4)

whereσ2
X denotes the source variance andδ(·) is given by [18]

δ(D0, D1, Dc) =







1, Dc < D0 +D1 − σ2
X

σ2
XDc

D0D1
, Dc >

(
1

D0
+ 1

D1
− 1

σ2
X

)−1

(σ2
X−Dc)

2

(σ2
X−Dc)2−

(√
(σ2

X−D0)(σ2
X−D1)−

√
(D0−Dc)(D1−Dc)

)2 , o.w.,

(4.5)

and the distortions satisfy [107]

D0 ≥ σ2
X2−2R0 (4.6)

D1 ≥ σ2
X2−2R1 (4.7)

Dc ≥
σ2

X2−2(R0+R1)

1 −
(√

Π −√△
)2 , (4.8)

24It is customary in the literature to refer to the case of a memoryless Gaussian source and squared-error
fidelity criterion as the quadratic Gaussian case.
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whereΠ = (1 − D0/σ
2
X)(1 − D1/σ

2
X) and△ = (D0D1/σ

4
X) − 2−2(R0+R1). In

general it is only possible to simultaneously achieve equality in two of the three rate
inequalities given by (4.1) – (4.3). However, in the high side distortion case, i.e. when
δ(·) = 1, it is in fact possible to have equality in all three [42].

Fig. 4.4 shows the central distortion (4.8) as a function of the side distortion (4.6)
in a symmetric setup whereD0 = D1 andR0 = R1 = 1 bit/dim. for the unit-variance
Gaussian source. Notice that at one extreme we have optimal side distortion, i.e.
D0 = D(R0) = −6.02 dB, which is on the single-channel rate-distortion function of
a unit-variance Gaussian source at 1 bit/dim. At the other extreme we have optimal
central distortion, i.e.Dc = D(2R0) = −12.04 dB, which is on the single-channel
rate-distortion function of the Gaussian source at 2 bit/dim. Thus, in this example,
the single-channel rate-distortion bounds become effective for the two-channel MD
problem only at two extreme points.
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Figure 4.4: Central distortion(Dc) as a function of side distortion(D0 = D1) in a symmetric
setup whereR0 = R1 = 1 bit/dim. for the unit-variance Gaussian source and MSE.

The rate region comprising the set of achievable rate pairs(R0, R1) which satisfy
(4.1), (4.2) and (4.3) is illustrated in Fig. 4.5. In this example we assume a unit-
variance Gaussian source and choose distortionsD0 = 1

2 , D1 = 1
4 andDc = 1

13.9 .
Notice thatR0 andR1 are lower bounded by0.5 and1 bit/dim., respectively, and the
sum rate is lower bounded byR0 +R1 ≥ 2 bit/dim.

Ozarow’s Double-Branch Test Channel

Ozarow [107] showed that the double-branch test channel depicted in Fig. 4.6 achieves
the complete two-channel MD rate-distortion region in the quadratic Gaussian case.
This channel has two additive noise branchesY0 = X + N0 andY1 = X + N1,
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Figure 4.5: Achievable rate pairs(R0, R1) for the distortion triplet (Dc,D0,D1) =
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4
) in the quadratic Gaussian case.

where all variables are Gaussian distributed and the noise pair (N0, N1) is independent
of X but jointly Gaussian andnegativelycorrelated (except from the case of no-
excess marginal rates, in which case the noises are independent). In the symmetric
case and when the correlation betweenN0 andN1 is high, i.e. near−1, the central
distortion is close to optimum but the side distortions are then generally poor. On the
other hand, when the side distortions are optimal, the noisepair becomes independent
and the central distortion is not much better than either of the side distortions. The
post filters (Wiener filters)ai and bi, i = 0, 1 describe the scalar weights which
are required for minimum MSE (MMSE) estimation ofX based on eitherY0, Y1

or both. At high resolution this test channel is particularly simple since the filters
degenerate. Specifically, in the symmetric case, where the noise variances are equal,
the side reconstructionŝX0 andX̂1 becomeX̂0 = Y0 andX̂1 = Y1, while the central
reconstructionX̂c becomes a simple average, i.e.X̂c = (X̂0 + X̂1)/2.

Rate-Redundancy Region

The redundancy rate-distortion function (RRD) introducedin [97] for the symmetric
case and further developed in [52, 149] describes how fast the side distortion decays
with increasing rate redundancyR∗

red when the central distortionDc is fixed.25 Let
Rc = R(Dc) be the rate needed for an SD system to achieve the (central) distortion

25The rate redundancyR∗

Red is sometimes referred to as the excess sum rate.



Section 4.1 Information Theoretic MD Bounds 43

+

+

+

N1

N0

X

X̂1

X̂0

X̂c

a1

a0

b1

b0

Figure 4.6: The MD optimum test channel of Ozarow [107]. At high resolution the filters

degenerate so in the symmetric case we haveai = 1 and bi = 1/2, i = 1, 2 so thatX̂0 =

Y0, X̂1 = Y1 andX̂c = 1
2
(X̂0 + X̂1).

Dc. Then consider a symmetric setup whereD0 = D1 andR0 = R1 and define
R∗

red , 2R0 − Rc, i.e.R∗
red describes the additional rate needed for an MD system

over that of an SD system to achieve the central distortionDc. In order to reduce
the side distortionD0 while keepingDc fixed it is necessary to introduce redundancy
such that2R0 ≥ Rc. For a givenRc (or equivalently a givenDc) and a givenR∗

red the
side distortion for the unit-variance Gaussian source is lower bounded by [52]

D0 ≥
{

1
2 (1 + 2−2Rc − (1 − 2−2Rc)

√
1 − 2−2R∗

red), R∗
red ≤ R̄∗

red

2−(Rc+R∗
red), R∗

red > R̄∗
red

(4.9)

whereR̄∗
red = Rc − 1 + log2(1 + 2−2Rc). If R∗

red = 0 we have optimum central
distortion, i.e. no excess sum rate, but the side distortions will then generally be high.
As we increase the rate while keeping the central distortionfixed we are able to lower
the side distortions. Fig. 4.7 shows the side distortionD0 = D1 as a function of
the rate redundancyR∗

red when the central distortion is fixed atDc = 2−2Rc , Rc ∈
{0.5, 1, 1.5, 2, 2.5}. It is interesting to observe that whenDc is optimal, i.e. when
R∗

red = 0, then the gap fromD1 to D(R0) increases with increasingRc. To see
this, notice that whenR∗

red = 0 it follows from the first bound of (4.9) thatD0 ≥
(1 + 2−2Rc)/2. The second bound of (4.9) is actually the SD rate-distortion bound,
i.e.2−(Rc+R∗

red) = 2−2R0 , and the gap between these two bounds is shown in Table 4.1.

Two-Channel High-Resolution Results

Based on the results for the Gaussian source of Ozarow [107] it was shown by
Vaishampayan et al. [136, 137] that at high resolution and for the symmetric case,
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Figure 4.7: Side distortionsD0 = D1 as a function of rate redundancyR∗

red. For each curve
the central distortion is held fixed atDc = 2−2Rc . The circles mark the points beyond which
the second bound of (4.9) becomes effective. This example isfrom [52].

if the side distortions satisfy

D0 = σ2
Xb2

−2R0(1−a), (4.10)

for 0 < a < 1 andb ≥ 1 then the central distortion is lower bounded by

Dc ≥ σ2
X

4b
2−2R0(1+a), (4.11)

which leads to a simple bound on the distortion productDcD0, that is

DcD0 ≥ σ4
X

4
2−4R0 . (4.12)

It was further shown that an optimal two-channel scheme achieves equality in (4.11)
and therefore also in (4.12) at high resolution and whenDc ≪ D0. Since (4.12)
is independent ofa it serves as a simple means of relating the performance of MD
schemes to the information theoretic rate-distortion bounds of [107]. It is therefore a
standard figure of merit when assessing the performance of two-channel MD schemes
at high resolution. For small ratios ofD0/Dc it is not possible to achieve equality
in (4.12). However, at high resolution the more general but less used distortion product



Section 4.1 Information Theoretic MD Bounds 45

Rc R0 (1 + 2−2Rc)/2 D(R0) Gap
0.5 0.25 0.75 0.707 0.043
1 0.5 0.625 0.5 0.125

1.5 0.75 0.563 0.354 0.209
2 1 0.531 0.25 0.281

2.5 1.25 0.516 0.177 0.339

Table 4.1: The gap between the two bounds of (4.9) whenR∗

red = 0. In this caseR0 = Rc/2.

is also achievable [137]

DcD0 =
σ4

X

4

1

1 −Dc/D0
2−4R0 , (4.13)

which meets the lower bound of (4.12) ifDc/D0 → 0. If D0 is optimal, i.e. if
D0 = D(R0), then it follows from [107] thatDc ≥ D0/2. Using the ratioDc/D0 =

1/2 in (4.13) yieldsDcD0 =
σ4

X

2 2−4R0 which is twice as large as the lower bound
of (4.12).

Fig. 4.8 compares the high resolution approximations givenby (4.10) and (4.11)
(solid lines) to the true bounds given by (4.6) and (4.8) (dashed lines) for the case of
a unit-variance memoryless Gaussian source andb = 1. Notice that the asymptotic
expressions meet the true bounds within a growing interval as the rate increases. Since
a is positively bounded away from zero and always less than one, the interval where
they meet will never include the entire high resolution region. For example only large
distortion ratiosD0/Dc are achievable.26

The asymmetric situation is often neglected but it is in factfairly simple to come
up with a distortion product in the spirit of (4.12). Let us first rewrite the central and
side distortions in Ozarow’s solution by use of the entropy powerPX as was done by
Zamir [157,158], that is

Di ≥ PX2−2Ri , i = 0, 1, (4.14)

and

Dc ≥ PX2−2(R0+R1)

1 − (|
√

Π −√△|+)2
, (4.15)

where
Π = (1 −D0/PX)(1 −D1/PX) (4.16)

and
△ = D0D1/P

2
X − 2−2(R0+R1), (4.17)

26In Section 7.1 Remark 7.1.1 we explain in more detail why the asymptotic curves never meet the true
curves at the extreme points.
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Figure 4.8: The central distortionDc as a function of side distortionsD0 = D1 at different
ratesR0 = R1 ∈ {1, . . . , 5}. The dashed lines illustrate the true distortion bounds given
by (4.6) and (4.8) and the solid lines represent the high resolution asymptotic bounds given
by (4.10) and (4.11).

and where27

|x|+ ,

{

x, if x > 0

0, otherwise.
(4.18)

An advantage of Zamir’s solution is that it acts as an outer bound to the MD
problem for general sources under the squared-error distortion measure. For the
memoryless Gaussian source it becomes tight at any resolution, i.e. it becomes
identical to Ozarow’s solution, and for arbitrary smooth stationary sources it becomes
asymptotically tight at high resolution.

Lemma 4.1.1. If 2−2(R0+R1) ≪ D0D1 ≪ Di, i = 0, 1 then

Dc(D0 +D1 + 2
√

D0D1) ≥
(

22h(X)

2πe

)2

2−2(R0+R1). (4.19)

Proof. Let us expand the denominator in (4.15) as28

1 −
(√

Π −
√

△
)2

= 1 −
(√

(1 −D0/PX)(1 −D1/PX)

27 | · |+ becomes effective only in the high side distortion case, i.e. whenD0 + D1 > σ2
X(1 +

2−2(R0+R1)) [158].
28Here we neglect the high side distortion case.
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−
√

D0D1/P 2
X − 2−2(R0+R1)

)2

= 1 −
(

(1 −D0/PX)(1 −D1/PX) +D0D1/P
2
X − 2−2(R0+R1)

− 2
√

(1 −D0/PX)(1 −D1/PX)(D0D1/P 2
X − 2−2(R0+R1))

)

= D0/PX +D1/PX − 2D0D1/P
2
X + 2−2(R0+R1)

+ 2
(

D0D1/P
2
X −D2

0D1/P
3
X −D0D

2
1/P

3
X + (D0D1/P

2
X)2

− (1 −D0/PX −D1/PX +D0D1/P
2
X)2−2(R0+R1)

) 1
2

≈ D0 +D1 + 2
√
D0D1

PX
, (4.20)

where the approximation follows from the assumption of highresolution, i.e.Ri →
∞, i = 0, 1, so that we have2−2(R0+R1) ≪ D0D1 ≪ Di. The inequality2−2(R0+R1)

≪ D0D1 is valid when we have excess marginal rates, i.e. when at least one of the
side decoders is not operating on its lower bound. As such we assume thatDi grows
as O(2−2R̃i) whereR̃i ≤ Ri and R̃0 + R̃1 < R0 + R1 and it follows that the
entire expression is dominated by terms that grow asO(2−2R̃i) or O(2−(R̃0+R̃1)).
Inserting (4.20) into (4.15) leads to

Dc ≥ PX2−2(R0+R1)

1 −
(√

Π −√△
)2

≈ P 2
X

D0 +D1 + 2
√
D0D1

2−2(R0+R1),

(4.21)

which completes the proof sincePX = 22h(X)/(2πe). �

Remark4.1.2. It follows that an optimal asymmetric (or symmetric) MD system
achieves equality in (4.19) at high resolution for arbitrary (smooth) sources. Notice
that the bound (4.19) holds for arbitrary bit distributionsof R0 andR1 as long as
their sum remains constant and the inequalities (4.14) and (4.15) are satisfied (or more
correctly that the corresponding lower bounds on the individual side rates and their
sum rate are satisfied).

4.1.2 K-Channel Rate-Distortion Results

Recently, an achievableK-channel MD rate-distortion region was obtained by Venka-
taramani, Kramer and Goyal [141, 142] for arbitrary memoryless sources and single-
letter distortion measures. This region generally takes a complicated form but in the
quadratic Gaussian case it becomes simpler. The region presented in [142] describes
an asymmetric MD rate-distortion region and includes as a special case the symmetric
MD rate-distortion region. The construction of this regionrelies upon forming layers



48 (Chapter 4) Multiple-Description Rate-Distortion Theory

of conditional random codebooks. It was, however, observedby Pradhan, Puri and
Ramchandran in a series of papers [109–114] that by exploiting recent results on
distributed source coding it is possible to replace the conditional codebooks with
universal codebooks whereby the codebook rate can be reduced through random bin-
ning. While Pradhan et al. limited their interests to the symmetric case it can be shown
that their results carry over to the asymmetric case as well.This has recently been done
by Wang and Viswanath [146] who further extended the resultsto the case of vector
Gaussian sources and covariance distortion measure constraints.

The largest known achievable rate-distortion region for the K-channel MD
problem is that of Pradhan et al. [111, 114].29 Common for all the achievable rate-
distortion regions is that they represent inner bounds and it is currently not known
whether they can be further improved. However, for the quadratic Gaussian case it
was conjectured in [114] that their bound is in fact tight. That conjecture remains
open.

The key ideas behind the achievable region obtained by Pradhan et al. are well
explained in [111, 114] and we will here repeat some of their insights and results
before presenting the largest knownK-channel achievable rate-distortion region.

Consider a packet-erasure channel with parametersK andk, i.e. at leastk out of
K descriptions are received. For the moment being, we assumek = 1. Generate
K independent random codebooks, sayC0, . . . ,CK−1 each of rateR. The source
is now separately and independently quantized using each ofthe codebooks. The
index of the nearest codeword in theith codebook is transmitted on theith channel.
A code constructed in this way was dubbed a source-channel erasure code in [111]
which we, for notational convenience, abridge to(K, k) SCEC. Notice that since
each of the individual codebooks are optimal for the source then if only a single index
is received the source is reconstructed with a distortion that is on the distortion-rate
functionD(R) of the source. However, if more than one index is received, the quality
of the reconstructed signal can be strictly improved due to multiple versions of the
quantized source. The above scheme is generalized to(K, k) SCEC fork > 1 by
making use of random binning. This is possible since the quantized variables are
assumed (symmetrically) correlated so that general results of distributed source coding
are applicable. Specifically, due to celebrated results of Slepian and Wolf [124] and
Wyner and Ziv [154], if it is assumed that somek out of the set ofK correlated
variables are received then (by e.g. use of random binning) it is possible to encode at
a rate close to the joint entropy of anyk variables, in a distributed fashion, so that the
encoder does not need to know whichk variables that are received. It is usually then
not possible to decode on reception of fewer thank variables.

Before presenting the main theorem of [111] which describesthe achievable rate-
distortion regions of(K, k) SCECs in the general case of1 ≤ k ≤ K, we need some
definitions.

29Outer bounds for theK-channel quadratic Gaussian problem were presented in [142].



Section 4.1 Information Theoretic MD Bounds 49

Definition 4.1.6. D(K,k) denotes the distortion when receivingk out of K
descriptions.

Definition 4.1.7. A tuple(R,D(K,k), D(K,k+1), . . . , D(K,K)) is said to be achievable
if for arbitraryδ > 0, there exists, for sufficiently large block lengthL, a(K, k) SCEC
with parameters(L,Θ,∆k,∆k+1, . . . ,∆K) with

Θ ≤ 2L(R+δ) and∆h ≤ D(K,h) + δ, h = k, k + 1, . . . ,K. (4.22)

Let Ik = {I : I ⊆ {0, . . . ,K − 1}, |I| ≥ k}. A (K, k) SCEC with parameters
(L,Θ,∆k,∆k+1, . . . ,∆K) is defined by a set ofK encoding functions [111]

Fi : X → {1, 2, . . . ,Θ}, i = 0, . . . ,K − 1, (4.23)

and a set of|Ik| decoding functions

GI :
⊗

I

{1, 2, . . . ,Θ} → X̂ , ∀I ∈ Ik (4.24)

where
⊗

denotes the Cartesian product and for allh ∈ {k, k+1, . . . ,K} andX ∈ X

we have

∆h = Eρ(X,GI(Fi1(X), . . . , Fih
(X)))

I = {i1, . . . , ih}, ∀I ∈ Ik, |I| = h.
(4.25)

Theorem 4.1.1( [111], Th. 1). For a probability distribution30

p(x, y0, . . . , yK−1) = q(x)p(y0, . . . , yK−1|x) (4.26)

defined overX
⊕

Y K where Y is some finite alphabet,p(y0, . . . , yK−1|x) is
symmetric, and a set of decoding functions∀I ∈ Ik, gI : Y |I| → X̂ , if

Eρ(X, gI(YI)) ≤ D(K,|I|), ∀I ∈ Ik (4.27)

and

R >
1

k
H(Y0, . . . , Yk−1) −

1

K
H(Y0, . . . , YK−1|X) (4.28)

then(R,D(K,k), D(K,k+1), . . . , D(K,K)) is an achievable rate-distortion tuple.

In [114] an achievable rate-distortion region for theK-channel MD problem was
presented. The region was obtained by constructing a numberof layers within each
description where the set of alljth layers across theK descriptions corresponds to
a (K, j) SCEC. Assume that it is desired to achieve some distortion triplet (D(3,1),

D(3,2), D(3,3)) for a three-channel system. Then first a (3,1) SCEC is constructed
using a rate ofR(0) bit/dim. per description. We use the superscript to distinguish

30To avoid clutter we omit the subscripts on the probability distributions in this section.
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between the rateR0 of encoder 0 in an asymmetric setup and the rateR(0) of layer 0
in a symmetric setup. The rateR(0) is chosen such thatD(3,1) can be achieved with
the reception of any single description. If two descriptions are received the distortion
is further decreased. However ifD(3,2) is not achieved on the reception of any two
descriptions, then a (3,2) SCEC is constructed at a rateR(1) bit/dim. per description.
The rateR(1) is chosen such thatD(3,2) can be achieved on the reception of any two
descriptions. IfD(3,3) is not achieved on the reception of all three descriptions, a
refinement layer is constructed at a rate ofR(2) bit/dim. per description, see Fig. 4.9.
Each description contains three layers, e.g. descriptioni consists of a concatenation
of L0i, L1i andL2i. It is important to see that the first layer, i.e. the (3,1) SCEC is
constructed exactly as described by Theorem 4.1.1. The second layer, i.e. the (3,2)
SCEC differs from the construction in that of the binning rate. Since, on reception
of any two descriptions (say description 0 and 1), we have notonly the two second
layers (L10 andL11) but also two base layers (L00 andL01). This makes it possible to
decrease the binning rateR(1) by exploiting correlation across descriptions as well as
across layers. The final layer can be a simple refinement layerwhere bits are evenly
split among the three descriptions or for example a (3,3) SCEC. The rate of each
description is then given byR = R(0) +R(1) +R(2) and the total rate is3R.

R(0) R(1) R(2)

L00

L01

L02

L10

L11

L12

L20

L21

L22

Description 0

Description 1

Description 2

(3, 1) SCEC (3, 2) SCEC (3, 3) SCEC

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Figure 4.9: Concatenation of (3,1), (3,2) and (3,3) SCECs to achieve thedistortion triplet
(D(3,1),D(3,2),D(3,3)). Each description contains three layers and the rate of eachdescription
isR = R(0) +R(1) +R(2).

We are now in a position to introduce the main theorem of [114]which describes
an achievable rate-distortion region for the concatenations of(K, k) SCECs. LetYij

be a random variable in theith layer andjth description and letIK−1
0 = {0, . . . ,K−

1}. For i ∈ IK−2
0 , letYiIK−1

0
= (Yi0, Yi1, . . . , YiK−1) representK random variables

in the ith layer taking values in alphabetYi. Let YK−1 be the last layer refinement
variable taking values in the alphabetYK−1 and

YIK−2
0 IK−1

0
= (Y0IK−1

0
, Y1IK−1

0
, . . . , Y(K−2)IK−1

0
). (4.29)

A joint distribution p(yIK−2
0 IK−1

0
, yK−1|x) is called symmetric if for all1 ≤ ri ≤
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K wherei ∈ IK−2
0 , the following is true: the joint distribution ofYK−1 and all

(r0 + r1 + · · ·+ rK−2) random variables where anyri are chosen from theith layer,
conditioned onx, is the same.

Theorem 4.1.2( [114], Th. 2). For any probability distribution

p(x, yIK−2
0 IK−1

0
, yK−1) = p(x)p(yIK−2

0 IK−1
0

, yK−1|x) (4.30)

wherep(yIK−2
0 IK−1

0
, yK−1|x) is symmetric, defined overX × Y K

0 × Y K
1 × · · · ×

Y K
K−2 × YK−1, and a set of decoding functions given by31

gI : Y
|I|

0 × · · · × Y
|I|
|I|−1 → X̂ ∀I ⊂ IK−1

0

gIK−1
0

: Y K
0 × Y K

1 × · · · × Y K
K−2 × YK−1 → X̂

(4.31)

the convex closure of(R,D(K,1), D(K,2), . . . , D(K,K)) is achievable where

EρI(X, gI(YI
|I|−1
0 I

)) ≤ D(K,|I|) ∀I ⊂ IK−1
0 , (4.32)

EρIK−1
0

(X, gIK−1
0

(YIK−2
0 IK−1

0
, YK−1)) ≤ D(K,K), (4.33)

and

R ≥ H(Y00) +
K−1∑

k=2

1

k
H(Yk−1Ik−1

0
|YIk−2

0 Ik−1
0

)

+
1

K
H(YK−1|YIK−2

0 IK−1
0

) − 1

K
H(YIK−2

0 IK−1
0

, YK−1|X).

(4.34)

The main difference between Theorem 4.1.1 and Theorem 4.1.2is that the latter
theorem considers the completeK-tuple of distortions(D(K,1), D(K,2), . . . , D(K,K))

whereas the former theorem considers the(K − k + 1)-tuple of distortions(D(K,k),

D(K,k+1), . . . , D(K,K)). Hence, an SCEC based on the construction presented
in [111] is specifically tailored to networks where it is known that at leastk channels
outK channels are always working. With the construction presented in [114] it is
possible to concatenate several SCECs and obtain a code thatworks for networks
where the number of working channels is not known a priori.

4.1.3 Quadratic GaussianK-Channel Rate-Distortion Region

We will now describe the achievableK-channel rate-distortion region for the quadratic
Gaussian case. This appears to be the only case where explicit (and relatively simple)
closed-form expressions for rate and distortion have been found.

31 Y j
i denotes thej times Cartesian product of the alphabetYi.
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Consider a unit-variance Gaussian sourceX and define the random variables
Yi, i = 0, . . . ,K − 1, given by

Yi = X +Qi, (4.35)

where theQi’s are identically distributed jointly Gaussian random variables
(independent ofX) with varianceσ2

q and covariance matrixQ given by

Q = σ2
q











1 ρq ρq · · · ρq

ρq 1 ρq · · · ρq

ρq ρq 1 · · · ρq

...
...

...
. . .

...
ρq ρq ρq · · · 1











, (4.36)

where, forK > 1, it is required that the correlation coefficient satisfies−1/(K−1) <

ρq ≤ 1 to ensure thatQ is positive semidefinite [142]. In the case of Ozarow’s double
branch test channel forK = 2 descriptions, we only need to consider non positive
ρq ’s. This is, in fact, also the case forK > 2 descriptions [142].

It is easy to show that the MMSE when estimatingX from any set ofm Yi’s is
given by [111,142]

D(K,m) =
σ2

q (1 + (m− 1)ρq)

m+ σ2
q(1 + (m− 1)ρq)

. (4.37)

We now focus on the(K, k) SCEC as presented in Theorem 4.1.1. The rate of each
description is given by [111]

R =
1

2
log2

(

k + σ2
q (1 + (k − 1)ρq)

σ2
q (1 − ρq)

)1/k (
1 − ρq

1 + (K − 1)ρq

)1/K

. (4.38)

The quantization error varianceσ2
q can now be obtained from (4.38)

σ2
q = k

(

(1 − ρq)2
2kR

(
1 + (K − 1)ρq

1 − ρq

)k/K

− (1 + (k − 1)ρq)

)−1

. (4.39)

We will follow [111] and look at the performance of a(K, k) SCEC in three
different situations distinguished by the amount of correlation ρq introduced in the
quantization noise.

Independent quantization noise:ρq = 0

The quantization noise is i.i.d., i.e.ρq = 0, henceQ is diagonal. Assuming that the
quantization noise is normalized such thatσ2

q = k/(22kR − 1), we get the following
expressions for the distortion

D(K,k+r) =
σ2

q

σ2
q + (k + r)

=
k

22kR(k + r) − r
for 0 ≤ r ≤ K − k, (4.40)
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and
D(K,m) = 1 for 0 ≤ m < k. (4.41)

The distortion when receivingk descriptions is optimal, i.e.D(K,k) = 2−2kR.

Correlated quantization noise:ρq = ρ∗q

The amount of correlationρ∗q needed in order to be on the distortion-rate function on
the reception ofk = K descriptions is given by

ρ∗q = − 22KR − 1

(K − 1)22KR + 1
≈ − 1

K − 1
. (4.42)

This leads to the following performance

D(K,r) = 1 − r

K
(1 − 2−2KR) for 0 ≤ r ≤ K. (4.43)

Notice that the distortion when receivingK descriptions is optimal, i.e.D(K,K) =

2−2KR.

Correlated quantization noise:ρ∗q < ρq < 0

Here a varying degree of correlation is introduced and the performance is given by

D(K,r) =
σ2

q (1 + (r − 1)ρq)

σ2
q(1 + (r − 1)ρq) + r

for k ≤ r ≤ K, (4.44)

and
D(K,m) = 1 for 0 ≤ m < k. (4.45)

Fig. 4.10 shows the three-channel distortionD(3,3) as a function of the two-
channel distortionD(3,2) when varyingρq and keeping the rate constant by use
of (4.39). In this example we use a(3, 2) SCEC withR = 1 bit/dim. At one end
we haveD(3,2) = −12.0412 dB which is on the distortion-rate function of the source
and at the other end we haveD(3,3) = −18.0618 dB which is also on the distortion-
rate function.

In Fig. 4.11 we show the simultaneously achievable one-channel D(3,1), two-
channelD(3,2) and three-channelD(3,3) distortions for the unit-variance memoryless
Gaussian source at 1 bit/dim. when using a(3, 1) SCEC. It is interesting to observe that
while it is possible to achieve optimum one-channel distortion (ρq = 0 ⇒ D(3,1) ≈
−6 dB) and optimum three-channel distortion (ρq → −1/2 ⇒ D(3,3) ≈ −18 dB) it
is not possible to drive the two-channel distortion towardsits optimum (∀ρq, D

(3,2) <

−12 dB). In other words, a(3, 1) SCEC can achieve optimal one-channel and three-
channel performance and a(3, 2) SCEC can achieve optimal two-channel and three-
channel performance.
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Figure 4.10: Three-channel versus two-channel distortions for a (3,2) SCEC atR = 1 bit/dim.
for the unit-variance Gaussian source. This example is from[111].

Let us now look at the achievable three-channel region presented in [114] for
the the memoryless Gaussian source. LetR bit/dim. per description be the rate of
transmission. Let the random variables in the three layers be defined as

Y0j = X +Q0j, Y1j = X +Q1j , andY2 = X +Q2 for j ∈ I2
0 , (4.46)

where fori ∈ I1
0 , QiI2

0
are symmetrically distributed Gaussian random variables with

varianceσ2
qi

and correlation coefficientρqi
andQ2 is a Gaussian random variable

with varianceσ2
q2

. Q0I2
0
, Q1I2

0
andQ2 are independent of each other andX . By

changing the four independent variablesR(0), R(1), ρq0 andρq1 different trade-offs
betweenD(3,1), D(3,2) andD(3,3) can be made. The correlation coefficients are lower
bounded by [114]

ρqi
≥ − 26R(i) − 1

2 · 26R(i) + 1
. (4.47)

The varianceσ2
q0

of the base layer follows from (4.39) by lettingk = 1, that is

σ−2
q0

= 22R(0)

(1 + 2ρq0)
1
3 (1 − ρq0)

2
3 − 1 (4.48)

and it can be shown that [114]

σ−2
q1

= − 1 + ρq1

(1 + ρq0)σ
2
q0

− 1 + ρq1

2
+

24R(1)

(1 + ρq0 + 2/σ2
q0

)(1 + ρq1 − 2ρ2
q1

)
2
3

2(1 + ρq0)(1 − ρq1)
1
3

.

(4.49)
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Figure 4.11: The simultaneously achievable one-channel, two-channel and three-channel
distortions for the unit-variance Gaussian source at 1 bit/dim. for a (3,1) SCEC.

Let MSE2 denote the distortion given by any two base-layer random variables, and
MSE3 denote the distortion given by all the random variables in the base and the
second layer. Hence, MSE2 denotes the MMSE obtained in estimating the sourceX

using either (Y00, Y01), (Y00, Y02) or (Y01, Y02). Similarly MSE3 denotes the MMSE
in estimatingX from (Y00, Y01, Y02, Y10, Y11, Y12). From (4.37) it follows that

MSE2 =
σ2

q0
(1 + ρq0)

σ2
q0

(1 + ρq0) + 2
, (4.50)

and it can also be shown that [114]

MSE3 =
σ2

q0
σ2

q1
(1 + 2ρq0 + 2ρq1 + 4ρq0ρq1)

3σ2
q0

(1 + 2ρq0) + 3σ2
q1

(1 + 2ρq1) + σ2
q0
σ2

q1
(1 + 2ρq0 + 2ρq1 + 4ρq0ρq1)

,

(4.51)

and

σ2
q2

=
MSE3

26(R−R(0)−R(1)) − 1
. (4.52)
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Finally, we have [114]

D′(3,1) =
σ2

q0

1 + σ2
q0

, (4.53)

D′(3,2) =
σ2

q1
(1 + ρq1)MSE2

σ2
q1

(1 + ρq1) + 2MSE2
, (4.54)

D′(3,3) =
σ2

q2
MSE3

MSE3 + σ2
q2

. (4.55)

The lower convex hull of(D′(3,1), D′(3,2), D′(3,3)) corresponds to an achievable
distortion tuple(D(3,1), D(3,2), D(3,3)). See Fig. 4.12 for an example of an achievable
distortion region for the unit-variance memoryless Gaussian source forR(0) = R(1) =

0.5 bit/dim. per description and a description rate ofR = R(0) +R(1) = 1 bit/dim. In
this plot the correlation values are varied throughout the range given by (4.47).
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Figure 4.12: Achievable distortion region forR(0) = R(1) = 0.5 bit/dim. per description. The
description rate isR = R(0) +R(1) = 1 bit/dim. The dense peak is in the front.

4.2 Multiple-Description Quantization

The previous section described known information theoretic bounds. These bounds
were shown to be achievable by use of random codebooks. Unfortunately random
codebooks are usually not very practical due to e.g. high search complexity and large
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memory requirements. From a practical point of view it is therefore desirable to avoid
random codebooks, which is the case for the MD schemes we present in this section.

Existing MD schemes can roughly be divided into three categories: quantizer-
based, transform-based and source-channel erasure codes based. Quantizer-based
schemes include scalar quantization [5, 10, 39, 68, 130, 131, 135, 138], trellis coded
quantization [67, 137, 147] and vector quantization [15, 17, 18, 27, 28, 36, 37, 48,
51, 73, 75, 98, 99, 103–105, 120, 127, 129, 139, 155]. Transform-based approaches
include correlating transforms [49, 52, 53, 97, 148], overcomplete expansions and
filterbanks [4, 20, 29, 54, 55, 76]. Schemes based on source-channel erasure codes
were presented in [109–114]. For further details on many existing MD techniques we
refer the reader to the excellent survey article by Goyal [50].

The work in this thesis is based on lattice vector quantization and belongs therefore
to the first of the catagories mentioned above to which we willalso restrict attention.

4.2.1 Scalar Two-Channel Quantization with Index Assignments

In some of the earliest MD schemes it was recognized that two separate low-resolution
quantizers may be combined to form a high-resolution quantizer. The cells of the high-
resolution quantizer are formed as the intersections of thecells of the low-resolution
quantizers [50]. The two low-resolution quantizers are traditionally called the side
quantizers and their joint quantizer, the high-resolutionquantizer, is called the central
quantizer. If the side quantizers are regular quantizers, i.e. their cells form connected
regions, then the central quantizer is not much better than the best of the two side
quantizers. However, if disjoint cells are allowed in the side quantizers, then a much
better central quantizer can be formed. According to Goyal’s survey article [50],
the idea of using disjoint cells in the side quantizers seemsto originate from some
unpublished work of Reudink [116]. Fig 4.13(a) shows an example where two regular
side quantizersQ0 andQ1 each having 3 cells are combined to form a central quantizer
Qc having 5 cells. Hence, the resolution of the central quantizer is only about twice
that of either one of the two side quantizers. Fig. 4.13(b) shows an example where
one of the side quantizers have disjoint cells which makes itpossible to achieve a very
good joint quantizer. In this case both side quantizers havethree cells butQ1 has
disjoint cells. The central quantizer has 9 cells which is equal to the product of the
number of cells of the side quantizers. Hence, the resolution of the central quantizer
is comparable to an optimal single description scalar quantizer operating at the sum
rate of the two side quantizers. The price, however, is relatively poor performance of
side quantizerQ1.

The idea of using two quantizers with disjoint cells as side quantizers and their
intersections as a central quantizer was independently discovered by Vaishampayan
[135] some years after Reudink. Vaishampayan proposed a systematic way to control
the redundancy in the two side quantizers by use of an index assignment matrix [135].
The idea is to first partition the real line into intervals in order to obtain the central
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Figure 4.13: Two quantizers are able to refine each other if their cell bounderies do not
coincide. In (a) bothQ0 andQ1 are good quantizers butQc is poor. In (b) quantizerQ1

is poor whereasQ0 andQc are both good.

quantizer and then assign a set of central cells to each cell in the side quantizers. For
example let us partition the real line into 7 intervals as shown in Fig. 4.14(a) (the
bottom quantizer is the central quantizer). We then construct the index assignment
matrix as shown in Fig. 4.14(b). Each column of the matrix represent a cell of the
side quantizer shown in the top of Fig. 4.14(a). Since there are four columns the
side quantizer has four cells. Similarly, the four rows of the matrix represent the four
cells of the second side quantizer (the middle quantizer of Fig. 4.14(a)). The central
quantizer in this design, which is based on the two main diagonals and where the side
quantizers have connected cells, is known as a staggered quantizer.32 If we only use
the main diagonal of the index assignment matrix we get a repetition code. In this case
the side quantizers are identical and they are therefore notable to refine each other,
which means that the central distortion will be equal to the side distortions.

By placing more elements (numbers) in the index assignment matrix the central
quantizer will have more cells and the central distortion can therefore be reduced.
There is a trade-off here, since placing more elements in thematrix will usually cause
the cells of the side quantizers to be disjoint and the side distortion will then increase.
Fig. 4.15(b) shows an example where the index assignment matrix is full and the
central quantizer therefore has 16 cells. Hence, the central distortion is minimized.
From Fig. 4.15(a) it is clear that the cells of the side quantizers are disjoint and since
each cell is spread over a large region of the central quantizer the side distortion will
be large.

The main difficulty of the design proposed by Vaishampayan lies in finding good
index assignments, i.e. constructing the index assignmentmatrix. In [135] several
heuristic designs were proposed for the case of symmetric resolution-constrained MD

32It is often possible to make the second side quantizer a translation of the first side quantizer and use
their intersection as the central quantizer. The quality improvement of a central quantizer constructed this
way over that of the side quantizers is known as the staggering gain. However, as first observed in [39]
and further analyzed in [132] the staggering gain dissappears when good high dimensional lattice vector
quantizers are used.
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Figure 4.14: (a) The two side quantizers each having four cells are offsetfrom each other.
Their intersection forms the central quantizer having 7 cells. (b) shows the corresponding
index assignment matrix for the quantizers. The columns of the matrix form a side quantizer
and the rows also form a side quantizer.
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Figure 4.15: (a) The two side quantizers each having four cells are not identical. Their
intersection forms the central quantizer having 16 cells. (b) shows the corresponding index
assignment matrix for the quantizers. The columns of the matrix form a side quantizer and the
rows also form a side quantizer.
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scalar quantization. Their performance at high resolutionwas evaluated in [136]
and it was shown that in the quadratic Gaussian case, the distortion productDcD0

was 8.69 dB away from the optimal high resolution distortionproduct (4.12).
Vaishampayan and Domaszewicz [138] then proposed an entropy-constrained MD
scalar quantizer where the index-assignment matrix was optimized using a generalized
Lloyd algorithm. The distortion product of this design was shown to be only 3.06 dB
away from the theoretical optimum [136]. Recall that the space-filling loss of an SD
scalar quantizer is 1.53 dB so that, quite surprisingly, thegap to the optimal distortion
product of a two-description scalar quantizer is twice the scalar space-filling loss. The
design of good index assignments for the scalar case is further considered in [10].

It is known that the entropy-constrained scalar uniform quantizer is optimal in the
SD case, see Chapter 3. This result, however, does not carry over to the MD case.
Goyal et al. [51, 73] were the first to recognize that by slightly modifying the central
quantizer in a way so that it no longer forms a lattice, it is possible to reduce the
distortion product not only in the scalar case but also in thetwo-dimensional case.
This phenomenon was further investigated by Tian et al. [129–131] who showed that
the scalar distortion product can be further improved by 0.4dB by modifying the
central quantizer.

4.2.2 Lattice Vector Quantization for Multiple Descriptions

Recently, Servetto, Vaishampayan and Sloane [120, 139] presented a clever construc-
tion based on lattices, which at high resolution and asymptotically in vector dimension
is able to achieve the symmetric two-channel MD rate-distortion region. The design
of [120,139] is again based on index assignments which are non-linear mappings that
lead to a curious result. LetRs = R0 = R1 denote the rate of each of the side
quantizers and let0 < a < 1. Then, at high resolution, the central distortionDc

satisfies [139]

lim
R→∞

Dc2
2Rs(1+a) =

1

4
G(Λ)22h(X), (4.56)

whereas the side distortionsD0 = D1 satisfy

lim
R→∞

D02
2Rs(1−a) = G(SL)22h(X), (4.57)

whereG(Λ) andG(SL) are the dimensionless normalized second moments of the
central latticeΛ and anL-sphere, respectively. Thus, remarkably, the performance
of the side quantizers is identical to that of quantizers having spherical Voronoi cells;
note that in the SD case this is not possible for1 < L <∞.

The design presented in [120, 139] is based on a central lattice Λ and a single
sublatticeΛs of indexN = |Λ/Λs|. Each central lattice pointλ ∈ Λ is mapped to
a pair of sublattice points(λ0, λ1) ∈ Λs × Λs using an index assignment function.
A pair of sublattice points is called an edge. The edges are constructed by pairing
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closely spaced (in the Euclidean sense) sublattice points.By exploiting the direction
of an edge (i.e. the pair(λ0, λ1) is distinguishable from(λ1, λ0)) it is possible to use
an edge twice. In order to construct the edges as well as the assignment of edges to
central lattice points, geometric properties of the lattices are exploited. Specifically,
the edges(λ0, λ1) and(λ1, λ0) are mapped to the central lattice pointsλ ∈ Λ and
λ′ ∈ Λ which satisfyλ+λ′ = λ0+λ1 and furthermore, the distance from the midpoint
of an edge and the associated central lattice point should beas small as possible (when
averaged over all edges and the corresponding assigned central lattice points). Only a
small number of edges and assignments needs to be found, whereafter the symmetry
of the lattices can be exploited in order to cover the entire lattice. Examples of edge
constructions and assignments are presented in [120,139].

The asymmetric case was considered by Diggavi, Sloane and Vaishampayan [27,
28] who constructed a two-channel scheme also based on indexassignments and
which, at high resolution and asymptotically in vector dimension, is able to reach
the entire two-channel MD rate-distortion region. Specifically, at high resolution, the
central distortion satisfies [28]

Dc = G(Λ)22(h(X)−Rc), (4.58)

whereRc is the rate of the central quantizer and the side distortionssatisfy

D0 =
γ2
1

(γ0 + γ1)2
G(Λs)2

2h(X)2−2(R0+R1−Rc), (4.59)

and

D1 =
γ2
0

(γ0 + γ1)2
G(Λs)2

2h(X)2−2(R0+R1−Rc), (4.60)

whereG(Λs) is the dimensionless normalized second moment of a sublattice Λs,
which is geometrically-similar to both side latticesΛi, i = 0, 1, andγ0, γ1 ∈ R+

are weights which are introduced to control the asymmetry inthe side distortions.

Notice that in the distortion-balanced case we haveγ0 = γ1 so that γ2
0

(γ0+γ1)2
= 1

4

and if γ0 = 0 or γ1 = 0 then the design degenerates to a successive refinement
scheme [28, 32]. It is worth emphasizing that the side quantizers in the asymmetric
design do generally not achieve the sphere bound in finite dimensions as was the case
of the symmetric design.

The design presented in [27, 28] is based on a central latticeΛ, two sublattices
Λ0 ⊂ Λ andΛ1 ⊂ Λ of indexN0 = |Λ/Λ0| andN1 = |Λ/Λ1|, respectively, and a
product latticeΛπ ⊂ Λi, i = 0, 1, of indexNπ = N0N1. The Voronoi cellVπ(λπ)

of the product lattice pointλπ ∈ Λπ containsN1 sublattice points ofΛ0 andN0

sublattice points ofΛ1, see Fig. 4.16 for an example whereN0 = 5 andN1 = 9. In
this example, only the 45 central lattice points located withinVπ(0) need to have edges
assigned. The remaining assignments are done simply by shifting these assignments
by λπ ∈ Λπ. In other words, if the edge(λ0, λ1) is assigned toλ then the edge
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(λ0 + λπ, λ1 + λπ) is assigned toλ + λπ. We say that the assignments are shift
invariant with respect to the product lattice.

The 45 edges are constructed in the following way. First, create the setEΛ0

containing the nine sublattice points ofΛ0 which are located withinVπ(0), i.e.

EΛ0 = {(0, 0), (−3, 1), (−2,−1), (−1, 2), (−1,−3), (1,−2), (1, 3), (2, 1), (3, 1)}.

Let λ0 be the first element ofEΛ0 , i.e. λ0 = (0, 0). Pair λ0

with the five λ1 points located within Vπ(0). Thus, at this point we
have five edges;{(0, 0), (0, 0)}, {(0, 0), (0, 3)}, {(0, 0), (0,−3)}, {(0, 0), (3, 0)} and
{(0, 0), (−3, 0)}. Consider now the second element ofEΛ0 , i.e.λ0 = (−3, 1). Shift
Vπ(0) so that it is centered atλ0 (illustrated by the dashed square in Fig. 4.16).
For notational convenience we denoteVπ(0) + λ0 by Vπ(λ0). We now pairλ0 =

(−3, 1) with the five sublattice points ofΛ1 which are contained withinVπ(λ0), i.e.
Λ1 ∩ Vπ(λ0) = {(0, 0), (−3, 0), (−3, 3), (−6, 0), (−6, 3)}. This procedure should be
repeated for the remaining points ofEΛ0 leading to a total of 45 distinct edges. These
45 edges combined with the 45 central lattice points withinVπ(0) form a bipartite
matching problem where the cost of assigning an edge to a central lattice point is
given by the Euclidean distance between the mid point (or weighted mid point) of the
edge and the central lattice point.

Notice that for large index values, the sublattice pointλ0 ∈ Λ0 is paired with
points ofΛ1 which are evenly distributed within a regionVπ centered atλ0. If the
product latticeΛπ is based on the hypercubic latticeZL thenVπ forms a hypercube. In
Chapters 5 and 6 we show that it is possible to change the design so that the sublattice
points ofΛ1 which are paired with a givenλ0 ∈ Λ0 are evenly distributed within
anL-dimensional hypersphere regardless of the choice of product latticeΛπ. The
purpose of having the points spherically distributed is twofold; first, the side distortion
is reduced and second, it allows a simple extension to more than two descriptions.

Non Index-Assignment Based Designs

To avoid the difficulty of designing efficient index-assignment maps it was suggested
in [39] that the index assignments of a two-description system can be replaced by
successive quantization and linear estimation. More specifically, the two side descrip-
tions can be linearly combined and further enhanced by a refinement layer to yield
the central reconstruction. The design of [39] suffers froma rate loss of 0.5 bit/dim.
at high resolution and is therefore not able to achieve the MDrate-distortion bound.
Recently, however, this gap was closed by Chen et al. [17, 18]who showed that by
use of successive quantization and source splitting33 it is indeed possible to achieve
the two-channel MD rate-distortion bound, at any resolution, without the use of index

33Source splitting denotes the process of splitting a sourceX into two or more source variables, e.g.
X → (X1,X2) whereX → X1 → X2 forms a Markov chain (in that order) [18].
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Figure 4.16: A central latticeΛ (dots), a sublatticeΛ0 (squares) of index 5, a sublattice
(circles) of index 9, and a product lattice (stars) of index 45. The solid lines denote the Voronoi
cell Vπ(0) of the product lattice point located at the origin. Notice that Vπ(0) contains 45
central lattice points. The dashed lines denotesVπ(0) shifted so it is centered at(−3, 1).

assignments. Chen et al. recognized that the rate region of the MD problem forms
a polymatroid and showed that corner points of this rate region can be achieved
by successive estimation and quantization. This design is inherently asymmetric in
the description rate since any corner point of a non-trivialrate region will lead to
asymmetric rates. It is therefore necessary to perform source splitting in order to
achieve symmetry in the description rate. When finite-dimensional quantizers are
employed there is a space-filling loss due to the fact that thequantizer’s Voronoi cells
are not completely spherical and each description therefore suffers a rate loss. The
rate loss of the design given in [17, 18] is that of2K − 1 quantizers because source
splitting is performed by using an additionalK−1 quantizers besides the conventional
K side quantizers. In comparison, the designs of the two-channel schemes based
on index assignments [27, 28, 120, 139] suffer from a rate loss of only that of two
quantizers and furthermore, in the symmetric case, they suffer from a rate loss of only
that of two spherical quantizers. That it indeed is possibleto avoid source splitting
in the symmetric case without the use of index assignments was recently shown by
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Østergaard and Zamir [127] who constructed aK-channel symmetric MD scheme
based on dithered Delta-Sigma quantization. The design of [127] is able to achieve
the entire symmetric two-channel MD rate-distortion region at any resolution and the
rate loss when finite-dimensional quantizers are used is that of two lattice quantizers.
Hence, in the two-channel case the rate loss when using indexassignments is less than
or equal to that of the designs which are not using index assignments [17,18,127].



Chapter 5

K-Channel Symmetric Lattice

Vector Quantization

In this chapter we consider a special case of the generalK-channel symmetric MD
problem where only a single parameter controls the redundancy tradeoffs between the
central and the side distortions. With a single controllingparameter it is possible to
describe the entire symmetric rate-distortion region for two descriptions and at high
resolution, as shown in [120, 139], but it is not enough to describe the symmetric
achievableK-channel rate-distortion region. As such the proposed scheme offers a
partial solution to the problem of designing balanced MD-LVQ systems. In Chapter 7
we include more controlling parameters in the design and show that the three-channel
MD region given by Theorem 4.1.1 can be reached at high resolution.

We derive analytical expressions for the central and side quantizers which,
under high-resolution assumptions, minimize the expecteddistortion at the receiving
side subject to entropy constraints on the side descriptions for given packet-loss
probabilities. The central and side quantizers we use are lattice vector quantizers. The
central distortion depends upon the lattice type in question whereas the side distortions
only depend on the scaling of the lattices but are independent of the specific types of
lattices. In the case of three descriptions we show that the side distortions can be
expressed through the dimensionless normalized second moment of a sphere as was
the case for the two descriptions system presented in [120, 139]. Furthermore, we
conjecture that this is true in the general case of an arbitrary number of descriptions.

In the presented approach the expected distortion observedat the receiving side
depends only upon the number of received descriptions, hence the descriptions are
mutually refinable and reception of anyκ out of K descriptions yields equivalent
expected distortion. This is different from successive refinement schemes [32] where
the individual descriptions often must be received in a prescribed order to be able to

65
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refine each other, i.e. description numberl will not do any good unless descriptions
0, . . . , l−1 have already been received. We construct a scheme which for given packet-
loss probabilities and a maximum bit budget (target entropy) determines the optimal
number of descriptions and specifies the corresponding quantizers that minimize the
expected distortion.

5.1 Preliminaries

We consider a central quantizer andK ≥ 2 side quantizers. The central quantizer is
(based on) a latticeΛc ⊂ RL with a fundamental region of volumeν = det(Λc). The
side quantizers are based on a geometrically-similar and clean sublatticeΛs ⊆ Λc of
indexN = |Λc/Λs| and fundamental regions of volumeνs = νN . The trivial case
K = 1 leads to a single-description system, where we would simplyuse one central
quantizer and no side quantizers.

We will consider the balanced situation, where the entropyR is the same for
each description. Furthermore, we consider the case where the contributionDi, i =

0, . . . ,K − 1 of each description to the total distortion is the same. Our design makes
sure34 that the distortion observed at the receiving side depends only on the number of
descriptions received; hence reception of anyκ out ofK descriptions yields equivalent
expected distortion.

5.1.1 Index Assignments

A source vectorx is quantized to a reconstruction pointλc in the central latticeΛc.
Hereafter follows index assignments (mappings), which uniquely mapλc to one vector
(reconstruction point) in each of the side quantizers. Thismapping is done through
a labeling functionα, and we denote the individual component functions ofα by αi,
wherei = 0, . . . ,K − 1. In other words, the injective mapα that mapsΛc into
Λs × · · · × Λs, is given by

α(λc) = (α0(λc), α1(λc), . . . , αK−1(λc)) (5.1)

= (λ0, λ1, . . . , λK−1), (5.2)

whereαi(λc) = λi ∈ Λs andi = 0, . . . ,K−1. EachK-tuple(λ0, . . . , λK−1) is used
only once when labeling points inΛc in order to make sure thatλc can be recovered
unambiguously when allK descriptions are received. At this point we also define the
inverse component map,α−1

i , which gives the set of distinct central lattice points a
specific sublattice point is mapped to. This is given by

α−1
i (λi) = {λc ∈ Λc : αi(λc) = λi}, λi ∈ Λs, (5.3)

34We prove this symmetry property for the asymptotic case ofN → ∞ andνs → 0. For finiteN we
cannot guarantee the existence of an exact symmetric solution. However, by use of time-sharing arguments,
it is always possible to achieve symmetry.
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where |α−1
i (λi)| ≈ N , since there areN times as many central lattice points as

sublattice points within a bounded region ofRL.
Since lattices are infinite arrays of points, we construct a shift invariant labeling

function, so we only need to label a finite number of points as is done in [28, 139].
Following the approach outlined in Chapter 2 we construct a product latticeΛπ which
hasN2 central lattice points andN sublattice points in each of its Voronoi cells.
The Voronoi cellsVπ of the product latticeΛπ are all similar so by concentrating on
labeling only central lattice points within one Voronoi cell of the product lattice, the
rest of the central lattice points may be labeled simply by translating this Voronoi cell
throughoutRL. Other choices of product lattices are possible, but this choice has
a particular simple construction. With this choice of product lattice, we only label
central lattice points withinVπ(0), which is the Voronoi cell ofΛπ around the origin.
With this we get

α(λc + λπ) = α(λc) + λπ, (5.4)

for all λπ ∈ Λπ and allλc ∈ Λc.

5.2 Rate and Distortion Results

Central Distortion

Let us consider a scalar process that generates i.i.d. random variables with probability
density function (pdf)f . LetX ∈ RL be a random vector made by blocking outputs
of the scalar process into vectors of lengthL, and letx ∈ RL denote a realization of
X . TheL-fold pdf ofX is denotedfX and given by35

fX(x) =

L−1∏

j=0

f(xj). (5.5)

The expected distortion (per dimension)Dc occuring when all packets are received is
called the central distortion and is defined as

Dc ,
1

L

∑

λc∈Λc

∫

Vc(λc)

‖x− λc‖2fX(x)dx, (5.6)

whereVc(λc) is the Voronoi cell of a single reconstruction pointλc ∈ Λc. Using
standard high resolution assumptions, cf. Chapter 3, we mayassume that each Voronoi
cell is sufficiently small andfX(x) is smooth and hence approximately constant within
each cell. In this caseλc is approximately the centroid (conditional mean) of the
corresponding cell, that is

λc ≈
∫

Vc(λc)
xfX(x)dx

∫

Vc(λc)
fX(x)dx

. (5.7)

35It is worth pointing out that we actually only require the individual vectors to be i.i.d. and as such
correlation within vectors is allowed.
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Since the pdf is approximately constant within a small region we also have that

fX(x) ≈ fX(λc), ∀x ∈ Vc(λc), (5.8)

and we can therefore express the probability,P , of a cell as

P (Vc(λc)) =

∫

Vc(λc)

fX(x)dx ≈ fX(λc)

∫

Vc(λc)

dx = νfX(λc), (5.9)

whereν is the volume of a Voronoi cell. With this, we get

fX(λc) ≈
P (Vc(λc))

ν
. (5.10)

Inserting (5.10) into (5.6) gives

Dc ≈
1

L

∑

λc∈Λc

P (Vc(λc))

∫

Vc(λc)

‖x− λc‖2

ν
dx, (5.11)

whereΛc is a lattice so all Voronoi cells are congruent and the integral is similar for
all λc’s. Hence, without loss of generality, we letλc = 0 and simplify (5.11) as

Dc ≈ 1

L

∫

Vc(0)

‖x‖2

ν
dx, (5.12)

where we used the fact that
∑

λc∈Λc
P (Vc(λc)) = 1. We can express the average

central distortion (5.12) in terms of the dimensionless normalized second moment of
inertiaG(Λc) by

Dc ≈ G(Λc)ν
2/L. (5.13)

Side Distortions

The side distortion for theith description, i.e. the distortion when reconstructing using
only theith description, is given by [139]

Di =
1

L

∑

λc∈Λc

∫

Vc(λc)

‖x− αi(λc)‖2fX(x)dx, i = 0, . . . ,K − 1,

=
1

L

∑

λc∈Λc

∫

Vc(λc)

‖x− λc + λc − αi(λc)‖2fX(x)dx

=
1

L

∑

λc∈Λc

∫

Vc(λc)

‖x− λc‖2fX(x)dx +
1

L

∑

λc∈Λc

∫

Vc(λc)

‖λc − αi(λc)‖2fX(x)dx

+
2

L

∑

λc∈Λc

∫

Vc(λc)

〈x− λc, λc − αi(λc)〉fX(x)dx

≈ Dc +
1

L

∑

λc∈Λc

‖λc − αi(λc)‖2P (λc)
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+
2

L

∑

λc∈Λc

〈
∫

Vc(λc)

xfX(x)dx −
∫

Vc(λc)

λcfX(x)dx, λc − αi(λc)

〉

= Dc +
1

L

∑

λc∈Λc

‖λc − αi(λc)‖2P (λc), (5.14)

whereP (λc) is the probability thatX will be mapped toλc, i.e.Q(X) = λc, and the
last equality follows since by use of (5.7) we have that

∫

Vc(λc)

xfX(x)dx −
∫

Vc(λc)

λcfX(x)dx = 0. (5.15)

We notice from (5.14) that independent of which labeling function we use, the
distortion introduced by the central quantizer is orthogonal (under high-resolution
assumptions) to the distortion introduced by the side quantizers.

Exploiting the shift-invariance property of the labeling function (5.4) makes it
possible to simplify (5.14) as

Di ≈ Dc +
1

L

∑

λπ∈Λπ

P (λπ)

N2

∑

λc∈Vπ(0)

‖λc − αi(λc)‖2

= Dc +
1

N2

1

L

∑

λc∈Vπ(0)

‖λc − αi(λc)‖2, i = 0, . . . ,K − 1,

(5.16)

where we assume the regionVπ(0) is sufficiently small soP (λc) ≈ P (λπ)/N2, for
λc ∈ Vπ(λπ). Notice that we assumeP (λπ) to be constant only within each region
Vπ(λπ), hence it may take on different values for eachλπ ∈ Λπ.

Central Rate

Let Rc = H(Q(X))/L denote the minimum entropy (per dimension) needed for
a single-description system to achieve an expected distortion of Dc, the central
distortion of the multiple-description system as given by (5.13).

The single-description rateRc is given by

Rc = − 1

L

∑

λc∈Λc

∫

Vc(λc)

fX(x)dx log2

(
∫

Vc(λc)

fX(x)dx

)

. (5.17)

Using that each quantizer cell has identical volumeν and assuming thatfX(x) is
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approximately constant within Voronoi cells of the centrallatticeΛc, it follows that

Rc ≈ − 1

L

∑

λc∈Λc

∫

Vc(λc)

fX(x)dx log2 (fX(λc)ν)

= − 1

L

∑

λc∈Λc

∫

Vc(λc)

fX(x)dx log2 (fX(λc))

− 1

L

∑

λc∈Λc

∫

Vc(λc)

fX(x)dx log2(ν)

= − 1

L

∑

λc∈Λc

∫

Vc(λc)

fX(x)dx log2 (fX(λc)) −
1

L
log2(ν)

= h̄(X) − 1

L
log2(ν).

(5.18)

Side Rates

LetRi = H(αi(Q(X)))/L denote the entropy (per dimension) of theith description,
wherei = 0, . . . ,K−1. Notice that in the symmetric situation we haveRs = Ri, i ∈
{0, . . . ,K − 1}.

The side descriptions are based on a coarser lattice obtained by scaling (and
possibly rotating) the Voronoi cells of the central latticeby a factor ofN . Assuming
the pdf ofX is roughly constant within a sublattice cell, the entropy ofthe ith side
description is given by

Ri = − 1

L

∑

λi∈Λs




∑

λc∈α−1
i (λi)

∫

Vc(λc)

fX(x)dx log2




∑

λc∈α−1
i (λi)

∫

Vc(λc)

fX(x)dx









= − 1

L

∑

λi∈Λs




∑

λc∈α−1
i (λi)

∫

Vc(λc)

fX(x)dx log2 (νfX(λi)N)





= − 1

L

∑

λi∈Λs




∑

λc∈α−1
i (λi)

∫

Vc(λc)

fX(x)dx log2 (fX(λi))





− 1

L

∑

λi∈Λs




∑

λc∈α−1
i (λi)

∫

Vc(λc)

fX(x)dx log2(νN)





=h̄(X) − 1

L
log2(Nν).

(5.19)

The entropy of the side descriptions is related to the entropy of the single-description
system by

Ri = Rc −
1

L
log2(N). (5.20)
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5.3 Construction of Labeling Function

The index assignment is done by a labeling functionα, that maps central lattice points
to sublattice points. An optimal index assignment minimizes a cost functional when
0 < κ < K descriptions are received. In addition, the index assignment should
be invertible so the central quantizer can be used when all descriptions are received.
Before defining the labeling function we have to define the cost functional to be
minimized. To do so, we first describe how to approximate the source sequence when
receiving onlyκ descriptions and how to determine the expected distortion in that
case. Then we define the cost functional to be minimized by thelabeling functionα
and describe how to minimize it.

5.3.1 Expected Distortion

At the receiving side,X ∈ RL is reconstructed to a quality that is determined only
by the number of received descriptions. If no descriptions are received we reconstruct
using the expected value,EX , and if allK descriptions are received we reconstruct
using the inverse mapα−1(λ0, . . . , λK−1), hence obtaining the quality of the central
quantizer.

In this work we use a simple reconstruction rule which applies for arbitrary
sources.36 When receiving1 ≤ κ < K descriptions we reconstruct using the average
of the κ descriptions. We show later (Theorem 5.3.1) that using the average of
received descriptions as reconstruction rule makes it possible to split the distortion
due to reception of any number of descriptions into a sum of squared norms between
pairs of lattice points. Moreover, this lead to the fact thatthe side quantizers’
performances approach those of quantizers having spherical Voronoi cells. There are
in general several ways of receivingκ out ofK descriptions. LetL (K,κ) denote an
index set consisting of all possibleκ combinations out of{0, . . . ,K − 1}. Hence
|L (K,κ)| =

(
K
κ

)
. We denote an element ofL (K,κ) by l = {l0, . . . , lκ−1} ∈ L (K,κ).

Upon reception of anyκ descriptions we reconstruct̂X using

X̂ =
1

κ

κ−1∑

j=0

λlj . (5.21)

Our objective is to minimize some cost functional subject toentropy constraints
on the description rates. We can, for example, choose to minimize the distortion
when receiving any two out of three descriptions. Another choice is to minimize
the weighted distortion over all possible description losses. In the following we will
assume that the cost functional to be minimized is the expected weighted distortion

36We show in Chapter 7 that this simple reconstruction rule is,at high resolution, optimal in the quadratic
Gaussian case, i.e. we show that the largest known three-channel MD region can be achieved in that case.
This is in line with Ozarow’s double-branch test-channel, where the optimum post filters are trivial at high
resolution.
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over all description losses and we further assume that the weights are given by the
packet-loss probabilities. We discuss the case where the weights are allowed to be
chosen almost arbitrarily in Chapter 6.

Assuming the packet-loss probabilities, sayp, are independent and are the same for
all descriptions, we may use (5.16) and write the expected distortion when receiving
κ outK descriptions as

D(K,κ)
a ≈ (1 − p)κpK−κ×






(
K

κ

)

Dc +
1

N2

1

L

∑

l∈L (K,κ)

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2



,

(5.22)

whereλlj = αlj (λc) and the two casesκ ∈ {0,K}, which do not involve the index-

assignment map, are given byD(K,0)
a ≈ pKE‖X‖2/L andD(K,K)

a ≈ (1 − p)KDc.

5.3.2 Cost Functional

From (5.22) we see that the distortion expression may be split into two terms, one
describing the distortion occurring when the central quantizer is used on the source,
and one that describes the distortion due to the index assignment. An optimal index
assignment jointly minimizes the second term in (5.22) overall 1 ≤ κ ≤ K − 1

possible descriptions. The cost functionalJ (K) to be minimized by the index
assignment algorithm is then given by

J (K) =

K−1∑

κ=1

J (K,κ), (5.23)

where

J (K,κ) =
(1 − p)κpK−κ

LN2

∑

l∈L (K,κ)

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

. (5.24)

The cost functional should be minimized subject to an entropy constraint on the side
descriptions. We remark here that the side entropies dependsolely onν andN and as
such not on the particular choice ofK-tuples. In other words, for fixedN andν the
index assignment problem is solved if (5.23) is minimized. The problem of choosing
ν andN such that the entropy constraint is satisfied is independentof the assignment
problem and deferred to Section 5.4.2.

The following theorem makes it possible to rewrite the cost functional in a way
that brings more insight into whichK-tuples to use.37

37Notice that Theorem 5.3.1 is very general. We do not even require Λc or Λs to be lattices, in fact, they
can be arbitrary sets of points.
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Theorem 5.3.1.For1 ≤ κ ≤ K we have

∑

l∈L (K,κ)

∑

λc

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

=
∑

λc

(
K

κ

)(
∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+

(
K − κ

K2κ(K − 1)

)K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2

)

.

Proof. See Appendix H.1. �

From Theorem 5.3.1 it is clear that (5.24) can be written as

J (K,κ) =
(1 − p)κpK−κ

LN2

(
K

κ

)



∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+
∑

λc∈Vπ(0)

(
K − κ

K2κ(K − 1)

)K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2



 .

(5.25)

The first term in (5.25) describes the distance from a centrallattice point to the
centroid of its associatedK-tuple. The second term describes the sum of pairwise
squared distances (SPSD) between elements of theK-tuples. In Section 5.4 (by
Proposition 5.4.2) we show that, under a high-resolution assumption, the second term
in (5.25) is dominant, from which we conclude that in order tominimize (5.23) we
have to choose theK-tuples with the lowest SPSD. TheseK-tuples are then assigned
to central lattice points in such a way, that the first term in (5.25) is minimized.

Independent of the packet-loss probability, we always minimize the second term
in (5.25) by using thoseK-tuples that have the smallest SPSD. This means that, at
high resolution, the optimalK-tuples are independent of packet-loss probabilities and,
consequently, the optimal assignment is independent38 of the packet-loss probability.

5.3.3 Minimizing Cost Functional

In order to make sure thatα is shift-invariant, a givenK-tuple of sublattice reconstruc-
tion points is assigned to only one central lattice pointλc ∈ Λc. Notice that twoK-
tuples which are translates of each other by someλπ ∈ Λπ must not both be assigned
to central lattice points located within the same regionVπ(λπ), since this causes
assignment of the sameK-tuples to multiple central lattice points. The regionVπ(0)

will be translated throughoutRL and centered atλπ ∈ Λπ, so there will be no overlap
between neighboring regions, i.e.Vπ(λ′ξ)∩Vπ(λ′′ξ ) = ∅, forλ′ξ, λ

′′
ξ ∈ Λπ andλ′ξ 6= λ′′ξ .

One obvious way of avoiding assigningK-tuples to multiple central lattice points is

38Given the central lattice and the sublattice, the optimal assignment is independent ofp. However, we
show later that the optimal sublattice indexN depends onp.
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then to exclusively use sublattice points located withinVπ(0). However, sublattice
points located close to but outsideVπ(0), might be better candidates than sublattice
points withinVπ(0) when labeling central lattice points close to the boundary.A
consistent way of constructingK-tuples, is to center a regioñV at all sublattice
points λ0 ∈ Λs ∩ Vπ(0), and constructK-tuples by combining sublattice points
λi ∈ Λs, i = 1, . . . ,K − 1 within Ṽ (λ0) in all possible ways and select the ones that
minimize (5.25). This is illustrated in Fig. 5.1. For a fixedλi ∈ Λs, the expression
∑

λj∈Λs∩Ṽ (λi)
‖λi − λj‖2 is minimized wheñV forms a sphere centered atλi. Our

construction allows for̃V to have an arbitrary shape, e.g. the shape ofVπ which is
the shape used for the two-description system presented in [28]. However, ifṼ is not
chosen to be a sphere, the SPSD is in general not minimized.

For eachλ0 ∈ Λs ∩ Vπ(0) it is possible to construct̃NK−1 K-tuples, whereÑ
is the number of sublattice points within the regionṼ . This gives a total ofNÑK−1

K-tuples when allλ0 ∈ Λs ∩ Vπ(0) are used. However, onlyN2 central lattice points
need to be labeled (Vπ(0) only containsN2 central lattice points). WhenK = 2, we
let Ñ = N , so the number of possibleK-tuples is equal toN2, which is exactly the
number of central lattice points inVπ(0). In general, forK > 2, the volumeν̃ of
Ṽ is smaller than the volume ofVπ(0) and as such̃N < N . We can approximate
Ñ through the volumesνs and ν̃, i.e. Ñ ≈ ν̃/νs. To justify this approximation let
Λ ⊂ RL be a real lattice and letν = det(Λ) be the volume of a fundamental region.
Let S(c, r) be a sphere inRL of radiusr and centerc ∈ RL. According to Gauss’
counting principle, the numberAZ of integer lattice points in a convex bodyC in RL

equals the volume Vol(C ) of C with a small error term [92]. In fact ifC = S(c, r)

then by use of a theorem due to Minkowski it can be shown that, for anyc ∈ RL

and asymptotically asr → ∞, AZ(r) = Vol(S(c, r)) = ωLr
L, whereωL is the

volume of theL-dimensional unit sphere [40], see also [11, 33, 62, 77, 144]. It is
also known that the number of lattice pointsAΛ(n) in the firstn shells of the lattice
Λ satisfies, asymptotically asn → ∞, AΛ(n) = ωLn

L/2/ν [139]. Hence, based
on the above we approximate the number of lattice points inṼ by ν̃/νs, which is an
approximation that becomes exact as the number of shellsnwithin Ṽ goes to infinity39

(which corresponds toN → ∞). Our analysis is therefore only exact in the limiting
case ofN → ∞. With this we can lower bound̃ν by

lim
N→∞

ν̃ ≥ νsN
1/(K−1). (5.26)

Hence,Ṽ containsÑ ≥ N1/(K−1) sublattice points so that the total number of
possibleK-tuples isNÑK−1 ≥ N2.

In Fig. 5.1 is shown an example of̃V andVπ regions for the two-dimensionalZ2

lattice. In the example we usedK = 3 andN = 25, hence there are 25 sublattice

39For the high-resolution analysis given in Section 5.4 it is important that̃ν is kept small as the number
of lattice points withinṼ goes to infinity. This is easily done by proper scaling of the lattices, i.e. making
sure thatνs → 0 asN → ∞.
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points withinVπ. There areÑ = N1/(K−1) = 5 sublattice points iñV which is
exactly the minimum number of points required, according to(5.26).

∈ Λs

∈ Λπ

Ṽ

Vπ

Vπ(0)

K = 3

N = 25

Ñ = 5

Figure 5.1: The regionṼ (big circles) is here shown centered at two different sublattice points
within Vπ(0). Small dots represents sublattice points ofΛs and large dots represents product
lattice pointsλπ ∈ Λπ . Central lattice points are not shown here.Vπ (shown as squares)
contains 25 sublattice points centered at product lattice points. In this examplẽV contains 5
sublattice points.

With equality in (5.26) we obtain a region that contains the exact number of
sublattice points required to constructN tuples for each of theN λ0 points inVπ(0).
According to (5.25), a central lattice point should be assigned thatK-tuple where a
weighted average of any subset of the elements of theK-tuple is as close as possible to
the central lattice point. The optimal assignment ofK-tuples to central lattice points
can be formulated and solved as a linear assignment problem [151].

Shift-Invariance by use of Cosets

By centeringṼ around eachλ0 ∈ Λs ∩ Vπ(0), we make sure that the mapα is
shift-invariant. However, this also means that allK-tuples have their first coordinate
(i.e.λ0) insideVπ(0). To be optimal this restriction must be removed which is easily
done by considering all cosets of eachK-tuple. The coset of a fixedK-tuple, say
t = (λ0, λ1, . . . , λK−1) whereλ0 ∈ Λs ∩ Vπ(0) and (λ1, . . . , λK−1) ∈ ΛK−1

s ,
is given byCoset(t) = {t + λπ : ∀λπ ∈ Λπ} . K-tuples in a coset are distinct
moduloΛπ and by making sure that only one member from each coset is used, the
shift-invariance property is preserved. In general it is sufficient to consider only those
λπ product lattice points that are close toVπ(0), e.g. those points whose Voronoi cell
touchesVπ(0). The number of such points is given by the kissing-numberK(Λπ) of
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the particular lattice [22].

Dimensionless Expansion FactorψL

CenteringṼ aroundλ0 points causes a certain asymmetry in the pairwise distancesof
the elements within aK-tuple. Since the region is centered aroundλ0 the maximum
pairwise distances betweenλ0 and any other sublattice point will always be smaller
than the maximum pairwise distance between any two sublattice points not including
λ0. This can be seen more clearly in Fig. 5.2. Notice that the distance between the pair
of points labeled(λ1, λ2) is twice the distance of that of the pair(λ0, λ1) or (λ0, λ2).
However, by slightly increasing the regioñV to also includeλ′2 other tuples may be
made, which actually have a lower pairwise distance than thepair (λ1, λ2). For this
particular example, it is easy to see that the3-tuple t = (λ0, λ1, λ2) has a greater
SPSD than the3-tuplet′ = (λ0, λ1, λ

′
2).

λ0

λ1

λ2

λ′2

Ṽ

Figure 5.2: The regionṼ is here centered at the pointλ0. Notice that the distance betweenλ1

andλ2 is about twice the maximum distance fromλ0 to any point inΛs ∩ Ṽ . The dashed circle
illustrates an enlargement of̃V .

For eachλ0 ∈ Vπ(0) we center a regioñV around the point, and choose those
N K-tuples, that give the smallest SPSD. By expandingṼ newK-tuples can be
constructed that might have a lower SPSD than the SPSD of the originalN K-tuples.
However, the distance fromλ0 to the points farthest away increases asṼ increases.
Since we only needN K-tuples, it can be seen thatṼ should never be larger than twice
the lower bound in (5.26) because then the distance from the center to the boundary of
the enlarged̃V region is greater than the maximum distance between any two points
in the Ṽ region that reaches the lower bound. In order to theoretically describe the
performance of the quantizers, we introduce a dimensionless expansion factor1 ≤
ψL < 2 which describes how much̃V must be expanded from the theoretical lower
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bound (5.26), to make sure thatN optimalK-tuples can be constructed by combining
sublattice points within a regioñV .

For the case ofK = 2 we always haveψL = 1 independent of the dimensionL
so it is only in the caseK ≥ 3 that we need to find expressions forψL.

Theorem 5.3.2.For the case ofK = 3 and any oddL, the dimensionless expansion
factor is given by

ψL =

(
ωL

ωL−1

)1/2L (
L+ 1

2L

)1/2L

β
−1/2L
L , (5.27)

whereωL is the volume of anL-dimensional unit sphere andβL is given by

βL =

L+1
2∑

n=0

(L+1
2

n

)

2
L+1

2 −n(−1)n

L−1
2∑

k=0

(
L+1

2

)

k

(
1−L

2

)

k
(

L+3
2

)

k
k!

×
k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j

(
1

4

)j
1

L+ n+ j
.

(5.28)

Proof. See Appendix H.2. �

For the interesting case ofL→ ∞ we have the following theorem.

Theorem 5.3.3. ForK = 3 andL → ∞ the dimensionless expansion factorψL is
given by

ψ∞ =

(
4

3

)1/4

. (5.29)

Proof. See Appendix H.3. �

Table 5.1 lists40 ψL forK = 3 and different values ofL and it may be noticed that
ψ∞ =

√
ψ1.

Remark5.3.1. In order to extend these results toK > 3 it follows from the proof
of Theorem 5.3.2 that we need closed-form expressions for the volumes of all the
different convex regions that can be obtained byK − 1 overlapping spheres. With
such expressions it should be straightforward to findψL for anyK. However, the
analysis ofψL for the case ofK = 3 (as given in the proof of Theorem 5.3.2) is
constructive in the sense that it reveals howψL can be numerically estimated for any
K andL, see Appendix F.

Remark 5.3.2. In order to achieve the shift-invariance property of the index-
assignment algorithm, we impose a restriction uponλ0 points. Specifically, we require
thatλ0 ∈ Vπ(0) so that the first coordinate of anyK-tuple is within the regionVπ(0).

40Theorem 5.3.2 is only valid forL odd. However, in the proof of Theorem 5.3.2 it is straightforward to
replace the volume of spherical caps by standard expressions for circle cuts in order to obtainψ2.
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L ψL

1 1.1547005 · · ·
2 1.1480804 · · ·
3 1.1346009 · · ·
5 1.1240543 · · ·
7 1.1172933 · · ·
9 1.1124896 · · ·
11 1.1088540 · · ·
13 1.1059819 · · ·

L ψL

15 1.1036412 · · ·
17 1.1016878 · · ·
19 1.1000271 · · ·
21 1.0985938 · · ·
51 1.0883640 · · ·
71 1.0855988 · · ·
101 1.0831849 · · ·
∞ 1.0745699 . . .

Table 5.1:ψL values obtained by use of Theorems 5.3.2 and 5.3.3 forK = 3.

To avoid excludingK-tuples that have their first coordinate outsideVπ(0) we form
cosets of eachK-tuple and allow only one member from each coset to be assigned to
a central lattice point withinVπ(0). This restriction, which is only put onλ0 ∈ Λs,
might cause a bias towardsλ0 points. However, it is easy to show that, asymptotically
asN → ∞, any such bias can be removed. For the case ofK = 2 we can use similar
arguments as used in [28], and forK > 2, as shown in Chapter 6, the number of
K-tuples affected by this restriction is small compared to the number ofK-tuples not
affected. So for example this means that we can enforce similar restrictions on all
sublattice points, which, asymptotically asN → ∞, will only reduce the number of
K-tuples by a neglectable amount. And as such, any possible bias towards the set of
pointsλ0 ∈ Λs is removed.

As mentioned above, theK-tuples need to be assigned to central lattice points
within Vπ(0). This is a standard linear assignment problem where a cost measure
is minimized. However, solutions to linear assignment problems are generally not
unique. Therefore, there might exist several labelings, which all yield the same cost,
but exhibit a different amount of asymmetry. Theoretically, exact symmetry may
then be obtained by e.g. time sharing through a suitable mixing of labelings. In
practice, however, any scheme would use a finiteN (and finite rates). In addition,
for many applications, time sharing is inconvenient. In these non-asymptotic cases we
cannot guarantee exact symmetry. To this end, we have provided a few examples that
assess the distortions obtained from practical experiments, see Section 5.6 (Tables 5.3
and 5.4).

5.4 High-Resolution Analysis

In this section we derive high-resolution approximations for the expected distortion.
For this high-resolution analysis we letN → ∞ andνs → 0. Thus, the indexN of
the sublattices increases, but the actual volumes of the Voronoi cells shrink.
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5.4.1 Total Expected Distortion

We wish to obtain an analytical expression for the expected distortion given by (5.22).
In order to achieve this we first relate the sum of distances between pairs of sublattice
points toG(SL), the dimensionless normalized second moment of anL-sphere. This
is done by Proposition 5.4.1.

Proposition 5.4.1. ForK = 2 and asymptotically asN → ∞ andνs → 0, as well
as forK = 3 and asymptotically asN,L → ∞ andνs → 0, we have for any pair
(λi, λj), i, j = 0, . . . ,K − 1, i 6= j,

1

L

∑

λc∈Vπ(0)

‖αi(λc) − αj(λc)‖2 = G(SL)ψ2
LN

2N2K/L(K−1)ν2/L.

Proof. See Appendix H.4. �

Conjecture 5.4.1.Proposition 5.4.1 is true also forK > 3 asymptotically asN,L→
∞ andνs → 0.

Remark5.4.1. Arguments supporting conjecture 5.4.1 are given in Appendix H.4.

Remark5.4.2. In Appendix H.4 we also present an exact expression for Proposition
5.4.1 forK = 3 and finiteL.

Recall that we previously showed that by use of Theorem 5.3.1it is possible to
split (5.22) into two terms; one that describes the distancefrom a central lattice point to
the centroid of its associatedK-tuple and another which describes the sum of pairwise
squared distances (SPSD) between elements of theK-tuples. To determine which of
the two terms that are dominating we present the following proposition:

Proposition 5.4.2. ForN → ∞ and2 ≤ K <∞ we have

∑

λc∈Vπ(0)

∥
∥
∥λc − 1

K

∑K−1
i=0 λi

∥
∥
∥

2

∑

λc∈Vπ(0)

∑K−2
i=0

∑K−1
j=i+1 ‖λi − λj‖2

→ 0. (5.30)

Proof. See Appendix H.5. �

The expected distortion (5.22) can by use of Theorem 5.3.1 bewritten as

D(K,κ)
a ≈ (1 − p)κpK−κ×






(
K

κ

)

Dc +
1

L

1

N2

∑

l∈L (K,κ)

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2





= (1 − p)κpK−κ

(
K

κ

)

×
(

Dc +
1

L

1

N2

∑

λc∈Vπ(0)





∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+

(
K − κ

K2κ(K − 1)

)K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2





)

.

(5.31)
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By use of Proposition 5.4.1 (as an approximation that becomes exact forL→ ∞),
Proposition 5.4.2 and Eq. (5.13) it follows that (5.31) can be written as

D(K,κ)
a ≈ (1 − p)κpK−κ

(
K

κ

)

×



Dc +
1

L

1

N2

∑

λc∈Vπ(0)

(
K − κ

K2κ(K − 1)

)K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2



 (5.32)

≈ (1 − p)κpK−κ

(
K

κ

)

×
(

G(Λc)ν
2/L +

(
K − κ

2Kκ

)

G(SL)ψ2
LN

2K/L(K−1)ν2/L

)

. (5.33)

The second term in (5.33), that is

(
K − κ

2Kκ

)

G(SL)ψ2
LN

2K/L(K−1)ν2/L (5.34)

is the dominating term forκ < K andN → ∞ and describes the side distortion due
to reception of anyκ < K descriptions. Observe that this term is only dependent upon
κ through the coefficientK−κ

2Kκ .

The total expected distortionD(K)
a is obtained from (5.33) by summing overκ

including the cases whereκ = 0 andκ = K, which leads to

D(K)
a ≈ K̂1G(Λc)ν

2/L + K̂2G(SL)ψ2
LN

2K/L(K−1)ν2/L + pKE‖X‖2/L, (5.35)

whereK̂1 is given by

K̂1 =

K∑

κ=1

(
K

κ

)

pK−κ(1 − p)κ

= 1 − pK ,

(5.36)

andK̂2 is given by

K̂2 =

K∑

κ=1

(
K

κ

)

pK−κ(1 − p)κK − κ

2κK
. (5.37)

Using (5.18) and (5.19) we can writeν andN as a function of differential entropy
and side entropies, that is

ν2/L = 22(h̄(X)−Rc), (5.38)

and

N2K/L(K−1) = 2
2K

K−1 (Rc−Rs), (5.39)
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whereRs = Ri, i = 0, . . . ,K − 1 denotes the side description rate. Inserting (5.38)
and (5.39) in (5.35) makes it possible to write the expected distortion as a function of
entropies

D(K)
a ≈ K̂1G(Λc)2

2(h̄(X)−Rc)

+ K̂2ψ
2
LG(SL)22(h̄(X)−Rc)2

2K
K−1 (Rc−Rs) + pKE‖X‖2/L,

(5.40)

where we see that the distortion due to the side quantizers depends only upon the
scaling (and dimension) of the sublattice but not upon whichsublattice is used. Thus,
the side distortions can be expressed through the dimensionless normalized second
moment of a sphere.

5.4.2 Optimalν,N andK

We now derive expressions for the optimalν, N andK. Using these values we are
able to construct the latticesΛc andΛs. The optimal index assignment is hereafter
found by using the approach outlined in Section 5.3. These lattices combined with
their index assignment completely specify an optimal entropy-constrained MD-LVQ
system.

In order for the entropies of the side descriptions to be equal to the target entropy
RT /K, we rewrite (5.19) and get

Nν = 2L(h̄(X)−RT /K) , τ, (5.41)

whereτ is constant. The expected distortionD(K)
a (5.40) may now be expressed as a

function ofν,

D(K)
a = K̂1G(Λc)ν

2/L

+ K̂2ψ
2
LG(SL)ν2/Lν−

2K
L(K−1) τ

2K
L(K−1) + pKE‖X‖2/L.

(5.42)

Differentiating w.r.t.ν and equating to zero gives,

0 =
∂D

(K)
a

∂ν

=
2

L
K̂1G(Λc)

ν2/L

ν
+

(
2

L
− 2

L

K

K − 1

)

K̂2ψ
2
LG(SL)

ν2/L

ν
ν−

2K
L(K−1) τ

2K
L(K−1) ,

(5.43)

from which we obtain the optimal value ofν

ν = τ

(

1

K − 1

K̂2

K̂1

G(SL)

G(Λc)
ψ2

L

)L(K−1)
2K

. (5.44)
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The optimalN follows easily by use of (5.41)

N =

(

(K − 1)
K̂1

K̂2

G(Λc)

G(SL)

1

ψ2
L

)L(K−1)
2K

. (5.45)

Eq. (5.45) shows that the optimal redundancyN is, for fixedK, independent of the
sublattice as well as the target entropy.

For a fixedK the optimalν andN are given by (5.44) and (5.45), respectively,
and the optimalK can then easily be found by evaluating (5.35) for various values of
K, and choosing the one that yields the lowest expected distortion. The optimalK is
then given by

Kopt = arg min
K

D(K)
a , K = 1, . . . ,Kmax, (5.46)

whereKmax is a suitable chosen positive integer. In practiceK will always be finite
and furthermore limited to a narrow range of integers, whichmakes the complexity of
the minimization approach, given by (5.46), negligible.

5.5 Construction of Practical Quantizers

5.5.1 Index Values

Eqs. (5.44) and (5.45) suggest that we are able to continuously trade off central versus
side-distortions by adjustingN andν according to the packet-loss probability. This
is, however, not the case, since certain constraints must beimposed onN . First of
all, sinceN denotes the number of central lattice points within each Voronoi cell of
the sublattice, it must be integer and positive. Second, we require the sublattice to
be geometrically similar to the central lattice. Finally, we require the sublattice to
be a clean sublattice, so that no central lattice points are located on boundaries of
Voronoi cells of the sublattice. This restricts the amount of admissible index values
for a particular lattice to a discrete set, cf. Section 2.3.1.

Fig. 5.3 shows the theoretically optimal index values (i.e.ignoring the fact thatN
belongs to a discrete set) for theA2 quantizer, given by (5.45) forψL = 1, 1.1481

and1.1762 corresponding toK = 2, 3 and4, respectively.41 Also shown are the
theoretical optimal index values when restricted to admissible index values. Notice
that the optimal index valueN increases for increasing number of descriptions. This
is to be expected since a higher index value leads to less redundancy; this redundancy
reduction, however, is balanced out by the redundancy increase resulting from the
added number of descriptions. In [103] we observed that for atwo-description system,
usually only very few index values would be used (assuming a certain minimum
packet-loss probability). Specifically, for the two-dimensionalA2 quantizer, only

41The valueψL = 1.1762 for K = 4 is estimated numerically by using the method outlined in
Appendix F.
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Figure 5.3: Theoretical optimal index values for theA2 quantizer as a function of the
packet-loss probability. The thin solid lines are obtainedby restricting the theoretical
optimal index values given by (5.45) to be (optimal) admissible values given by the set
N = {1, 7, 13, 19, 31, 37, 43, 49, . . . }. The optimal admissible index values are those that
minimize (5.35) for a givenp.

N ∈ {1, 7, 13}was used, while for higher dimensional quantizers greater index values
would be used. However, here we see that by increasing the number of descriptions
beyondK = 2, it is optimal to use greater index values which adds more flexibility to
the scheme.

From Fig. 5.3 it can be seen that when the continuous optimal index value is
rounded to the optimal admissible index value it is always the closest one from either
below or above. This means that, at least for theA2 lattice, the optimal admissible
index value is found by considering only the two values closest to the continuous
index value, and using the one that minimizes (5.35).

5.5.2 ConstructingK-tuples

The design procedure for constructingK-tuples as described in Section 5.3.3 can be
summarized as follows:

1. Center a spherẽV at eachλ0 ∈ Λs ∩ Vπ(0) and construct all possibleK-tuples
(λ0, . . . , λK−1) whereλi ∈ Λs, i = 1, . . . ,K − 1. This makes sure that all
K-tuples have their first coordinate(λ0) insideVπ(0) and they are therefore
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shift invariant. We will only useK-tuples whose elements satisfy‖λi − λj‖ ≤
r, ∀i, j ∈ {0, . . . ,K − 1}, wherer is the radius of̃V . MakeṼ large enough so
that at leastN distinctK-tuples are found for eachλ0.

2. Construct cosets of eachK-tuple.

3. TheN2 central lattice points inΛc ∩Vπ(0) must now be matched to distinctK-
tuples. This is a standard linear assignment problem where only one member
from each coset is (allowed to be) matched to a central lattice point inVπ(0).

The restriction‖λi − λj‖ ≤ r from step 1) which is used to avoid bias towards any
of the sublattices, reduces the number ofK-tuples that can be constructed within the
sphereṼ . To be able to formN K-tuples it is therefore necessary to use a sphereṼ

with a volume larger than the lower bound (5.26). This enlargement is exactly given
byψL. As such, for eachλ0, we form (at least)N K-tuples and theseK-tuples are the
ones having minimum norm. We show later (see Lemma 6.2.3 and its proof) that we
actually form all suchK-tuples of minimal norm which implies that no otherK-tuples
can improve the SPSD.

5.5.3 AssigningK-Tuples to Central Lattice Points

In order to assign the set ofK-tuples to theN2 central lattice points we solve a
linear assignment problem. However, for largeN , the problem becomes difficult
to solve in practice. To solve a linear assignment problem ormore specifically a
bipartite matching problem, one can make use of the Hungarian method [78], which
has complexity of cubic order. Hence, if the Hungarian method is used to solve the
assignment problem the complexity is of orderO(N6). We would like point out that
lettingNπ = N2 is a convenient choice, which is valid for any lattice. However, it
is possible to letNπ = Nξ, where bothN andξ are admissible index values. In this
caseNπ is also guaranteed to be an admissible index value by Lemma 2.3.1. If ξ = 1

thenNπ = N , which is a special case whereVπ(0) contains a single sublattice point
λ0 of Λs.42 With Nπ = Nξ, the complexity is reduced toO(N3).

Vaishampayan et al. observed in [120,139] that the number ofcentral lattice points
to be labeled can be reduced by exploiting symmetries in the lattices. For example,
one can form the quotientJ -moduleΛ/Λπ and only label representatives of the
orbits ofΛ/Λπ/Γ, whereΓ is a group of automorphisms, cf. Chapter 2. While only
two descriptions were considered in [139] it is straight-forward to show that their idea
also works in our design for an arbitrary number of descriptions. This is because

42Practical experiments have shown that having too few sublattice points inVπ(0) leads to a poor index
assignment. Theoretically, we do not exclude the possibility thatNπ = N , since we only require that̃V
contains a large number of sublattice points but such a contraint is not imposed onVπ(0). However, in the
following chapter, where we consider the asymmetric case (so there are several index values), the special
case is not allowed.
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we design the sublattices and product lattices as describedin Chapter 2, hence the
notion of quotient modules and group action are well defined.Since the order of the
groupΓ depends on the lattices but is independent ofN , the complexity reduction
by exploiting the symmetry of the quotient module is a constant multiplicative factor
which disappears in the order notation.

Alternatively, Huang and Wu [65] recently showed that for certain low
dimensional lattices it is possible to avoid the linear assignment problem by applying
a greedy algorithm, without sacrificing optimality. The complexity of the greedy
approach is on the order ofO(N), which is a substantial improvement for largeN .

In the present work we show that the assignment problem can always be posed and
solved as a bipartite matching problem. This holds for any lattice in any dimension
and it also holds in the asymmetric case to be discussed in Chapter 6. In a practical
situation it might, however, be convenient to compute the assignments offline and
tabulate for further use.

5.5.4 Example of an Assignment

In the following we show a simple assignment for the case ofK = 2, N = 7 and the
A2 lattice. SinceN = 7 we haveNπ = 49 and as such there is 49 central lattice points
within Vπ(0), see Fig. 5.4. The individual assignments are also shown in Table 5.2.

The assignments shown in Table 5.2 are obtained by using the procedure outlined
in Section 5.5.2. Since we haveNπ = 49 andK = 2 it follows that we have 7
sublattice points ofΛs within Vπ(0) (one of them is the origin). Let us denote this set
of sublattice points byEΛs

.

1. Center a spherẽV at the first element ofEλs
, i.e. the origin. Pick the candidate

sublattice points ofΛs, i.e. those which are contained withiñV ∩Λs. We make
sure that the radius of the sphere is so large that it containsVπ(0). Thus, we
have at least as many sublattice points inṼ as inVπ(0). Then form all possible
distinct edges (2-tuples) having the origin (λ0) as first coordinate andλ1 ∈
Vπ(λ0)∩Λs as second coordinate. Notice that we have at leastN edges. Repeat
this for the remaining elements ofEΛs

so that we end up having at leastNπ

edges in total.

2. Form the coset of each edge. Specifically, construct the following set of edges:

Coset(λ0, λ1) = {(λ0 + λπ , λ1 + λπ) : λπ ∈ Λπ}. (5.47)

In practice we restrict each coset to contain a finite number of elements. In
fact, we usually only require that the cardinality of the cosets is greater than
K(Λs), the kissing number of the lattice. The product lattice points we use
when constructing the cosets are then theK(Λs) + 1 points of smallest norm.
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Figure 5.4: A central latticeΛc (dots) based on theA2 lattice and a sublatticeΛs (circles) of
index 7. The hexagonal region (dashed lines) describesVπ(0). The solid lines connect pairs
of sublattice points (also called 2-tuples or edges) and thedotted lines connect each edge to
a central lattice point. A total of 49 edges (some overlapingeach other) are shown and these
edges are associated with the 49 central lattice points contained withinVπ(0).

3. If we have more edges than central lattice points we introduce “dummy” central
lattice points. In this way we have an equal amount of edges and central lattice
points. The assignment of edges to central lattice points isnow a straight
forward bipartite problem, where the costs of the dummy nodes are set to zero,
so that the optimal solutions are not affected. We note that only one element of
each coset is used. In this way we preserve the shift invariance property of the
assignments. We only keep theNπ assignments belonging totruecentral lattice
points and as such we discard the assignments (if any) that belong to “dummy”
nodes.

In Appendix G we show part of a complete assignment of a more complicated
example.

5.6 Numerical Results

In this section we compare the numerical performances of two-dimensional entropy-
constrained MD-LVQ (based on theA2 lattice) to their theoretical prescribed perfor-
mances.
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λc λ0 λ1

(-1, 3.46) (-1, 5.2) (-0.5, 2.6)
(0, 3.46) (1.5, 4.33) (-0.5, 2.6)

(-1.5, 2.6) (-3, 3.46) (-0.5, 2.6)
(-0.5, 2.6) (-0.5, 2.6) (-0.5, 2.6)
(0.5, 2.6) (2, 1.73) (-0.5, 2.6)
(1.5, 2.6) (1.5, 4.33) (2, 1.73)
(2.5, 2.6) (4, 3.46) (2, 1.73)
(-3, 1.73) (-3, 3.46) (-2.5, 0.87)
(-2, 1.73) (-2.5, 0.87) (-0.5, 2.6)
(-1, 1.73) (-0.5, 2.6) (-2.5, 0.87)
(0, 1.73) (0, 0) (-0.5, 2.6)
(1, 1.73) (-0.5, 2.6) (2, 1.73)
(2, 1.73) (2, 1.73) (2, 1.73)
(3, 1.73) (4.5, 0.87) (2, 1.73)

(-3.5, 0.87) (-5, 1.73) (-2.5, 0.87)
(-2.5, 0.87) (-2.5, 0.87) (-2.5, 0.87)
(-1.5, 0.87) (0, 0) (-2.5, 0.87)
(-0.5, 0.87) (-0.5, 2.6) (0, 0)
(0.5, 0.87) (0, 0) (2, 1.73)
(1.5, 0.87) (2, 1.73) (0, 0)
(2.5, 0.87) (2.5, -0.87) (2, 1.73)

(-3, 0 ) (-4.5, -0.87) (-2.5, 0.87)
(-2, 0) (-2, -1.73) (-2.5, 0.87)
(-1, 0) (-2.5, 0.87) (0, 0)

λc λ0 λ1

(0, 0) (0, 0) (0, 0)
(1, 0) (2.5, -0.87) (0, 0)
(2, 0) (2, 1.73) (2.5, -0.87)
(3, 0) (4.5, 0.87) (2.5, -0.87)

(-2.5, -0.87) (-2.5, 0.87) (-2, -1.73)
(-1.5, -0.87) (-2, -1.73) (0, 0)
(-0.5, -0.87) (0,0) (-2, -1.73)
(0.5, -0.87) (0.5, -2.6) (0, 0)
(1.5, -0.87) (0,0) (2.5, -0.87)
(2.5, -0.87) (2.5, -0.87) (2.5, -0.87)
(3.5, -0.87) (5, -1.73) (2.5, -0.87)
(-3, -1.73) (-4.5, -0.87) (-2, -1.73)
(-2, -1.73) (-2, -1.73) (-2, -1.73)
(-1, -1.73) (0.5, -2.6) (-2, -1.73)
(0, -1.73) (0, 0) (0.5, -2.6)
(1, -1.73) (0.5, -2.6) (2.5, -0.87)
(2, -1.73) (2.5, -0.87) (0.5, -2.6)
(3, -1.73) (3, -3.47) (2.5, -0.87)

(-2.5, -2.6) (-4, -3.47) (-2, -1.73)
(-1.5, -2.6) (-1.5, -4.33) (-2, -1.73)
(-0.5, -2.6) (-2, -1.73) (0.5, -2.6)
(0.5, -2.6) (0.5 - 2.6) (0.5, -2.6)
(1.5, -2.6) (3, -3.46) (0.5, -2.6)
(0, -3.46) (-1.5, -4.33) (0.5, -2.6)
(1, -3.46) (1, -5.2) (0.5, -2.6)

Table 5.2: A complete assignment for the 49 central lattice points contained withinVπ(0) for
the case ofK = 2 andN = 7.

5.6.1 Performance of Individual Descriptions

In the first experiment we design three-channel MD-LVQ basedon theA2 quantizer.
We quantize an i.i.d. unit-variance Gaussian source which has been blocked into two-
dimensional vectors. The number of vectors used in the experiment is2 · 106. The
entropy of each side description is 5 bit/dim. and we vary theindex value in the range
31 – 67. The dimensionless expansion factorψL is set to1.14808, see Table 5.1.
The numerical and theoretical distortions when receiving only a single description
out of three is shown in Table 5.3. Similarly, Table 5.4 showsthe distortions of the
same system due to reception of two out of three descriptionsand Table 5.5 shows
the performance of the central quantizer when all three descriptions are received.
The column labeled “Avg.” illustrates the average distortion of the three numerically
measured distortions and the column labeled “Theo.” describes the theoretical distor-
tions given by (5.34). It is clear from the tables that the system is symmetric; the
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achieved distortion depends on the number of received descriptions but is essentially
independent ofwhich descriptions are used for reconstruction. The numerically
measured discrete entropies of the side descriptions are shown in Table 5.6.

N λ0 λ1 λ2 Avg. Theo.

31 −25.6918 −25.6875 −25.6395 −25.6729 −24.8853

37 −24.5835 −24.5324 −24.5404 −24.5521 −24.5011

43 −24.5772 −24.5972 −24.5196 −24.5647 −24.1748

49 −24.2007 −24.2837 −24.2713 −24.2519 −23.8911

61 −23.8616 −23.9011 −23.8643 −23.8757 −23.4155

67 −23.7368 −23.7362 −23.7655 −23.7462 −23.2118

Table 5.3: Distortion (in dB) due to reception of a single description out of three.

N 1
2
(λ0 + λ1)

1
2
(λ0 + λ2)

1
2
(λ1 + λ2) Avg. Theo.

31 −30.7792 −30.7090 −30.7123 −30.7335 −30.9059

37 −29.8648 −29.8430 −29.9472 −29.8850 −30.5217

43 −29.9087 −29.8749 −29.9641 −29.9159 −30.1954

49 −29.6290 −29.5577 −29.6662 −29.6176 −29.9117

61 −29.3076 −29.2185 −29.3715 −29.2992 −29.4361

67 −29.1752 −29.2128 −29.2151 −29.2010 −29.2324

Table 5.4: Distortion (in dB) due to reception of two descriptions out of three.

N λc Theo.

31 −43.6509 −43.6508

37 −44.4199 −44.4192

43 −45.0705 −45.0719

49 −45.6401 −45.6391

61 −46.5879 −46.5905

67 −46.9992 −46.9979

Table 5.5: Distortion (in dB) due to reception of all three descriptions.

The distortions shown in Tables 5.3 to 5.5 correspond to the case where we vary
the index valueN throughout the range67 ≥ N ≥ 31 for three-channel MD-LVQ
operating atRs = 5 bit/dim. per description. To achieve similar performance with
a (3,1) SCEC we need to vary the correlationρq within the interval−0.49 ≤ ρq ≤
−0.45, as shown in Fig. 5.5.
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N λ0 λ1 λ2

31 5.0011 5.0012 5.0012

37 4.9925 4.9982 4.9988

43 4.9967 5.0006 5.0006

49 4.9993 5.0004 5.0004

61 5.0018 5.0017 5.0017

67 5.0023 5.0022 5.0022

Table 5.6: Numerically measured discrete entropies [bit/dim.] for the individual descriptions.
Here the target description rate is set to 5 bit/dim.

5.6.2 Distortion as a Function of Packet-Loss Probability

We now show the expected distortion as a function of the packet-loss probability for
K-channel MD-LVQ whereK = 1, 2, 3. We block the i.i.d. unit-variance Gaussian
source into2·106 two-dimensional vectors and let the total target entropy be6 bit/dim.
The expansion factor is set toψ2 = 1 for K = 1, 2 andψ2 = 1.14808 for K = 3.
We sweep the packet-loss probabilityp in the rangep ∈ [0; 1] in steps of 1/200 and
for eachp we measure the distortion for all admissible index values and use that index
value which gives the lowest distortion. This gives rise to an operational lower hull
(OLH) for each quantizer. This is done for the theoretical curves as well by inserting
admissible index values in (5.35) and use that index value that gives the lowest
distortion. In other words we compare the numerical OLH withthe theoretical OLH
and not the “true”43 lower hull that would be obtained by using the unrestricted index
values given by (5.45). The target entropy is evenly distributed overK descriptions.
For example, forK = 2 each description uses 3 bit/dim., whereas forK = 3 each
description uses only 2 bit/dim. The performance is shown inFig. 5.6. The practical
performance of the scheme is described by the lower hull of theK-curves. Notice
that at higher packet-loss probabilities (p > 5%) it becomes advantageous to use three
descriptions instead two.

It is important to see that when the distortion measure is theexpected distortion
based on the packet-loss probability, then the notion of high resolution is slightly
misleading. For example, if we let the rate go to infinity, then for a given fixed
packet-loss probabilityp the only contributing factor to the expected distortion is the
distortion due to the estimation of the source when all packets are lost. This term is
given by 1

LE‖X‖2pK so that for a unit-variance source, in the asymptotic case of
R → ∞, the expected distortion is simply given byK10 log10(p) dB. In other words,
with a packet-loss probability of 10%, if the number of packets is increased by one,

43A lattice is restricted to a set of admissible index values. This set is generally expanded when the lattice
is used as a product quantizer, hence admissible index values closer to the optimal values given by (5.45)
can in theory be obtained, cf. Section 2.3.1.
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Figure 5.5: The simultaneously achievable one-channel, two-channel and three-channel
distortions for the unit-variance Gaussian source at 5 bit/dim. for −0.49 < ρq < −0.45

for a (3, 1) SCEC.

then the corresponding decrease in distortion is exactly 10dB. We have illustrated this
in Fig. 5.7 forK = 1, . . . , 5.

5.7 Conclusion

We derived closed-form expressions for the central and sidequantizers which, at high-
resolution conditions, minimize the expected distortion of a symmetricK-channel
MD-LVQ scheme subject to entropy constraints on the side descriptions for given
packet-loss probabilities. The expected distortion observed at the receiving side
depends only upon the number of received descriptions but isindependent of which
descriptions are received. We focused on a special case of the symmetric MD problem
where only a single parameter (i.e.N ) controls the redundancy tradeoffs between the
central and the side distortions. We showed that the optimalamount of redundancy is
in independent of the source distribution, the target rate and the type of lattices used
for the side quantizers.

The practical design allows an arbitrary number of descriptions and the
optimal number of descriptions depends (among other factors) upon the packet-loss
probability. The theoretical rate-distortion results were proven for the case ofK ≤ 3

descriptions and conjectured to be true in the general case of arbitraryK descriptions.
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Figure 5.6: Distortion as a function of the packet-loss probability fortheA2 quantizer. The
target entropy is 6 bit/dim., so each description gets 6/K bit/dim. Thick lines show numerical
performance and thin solid lines show theoretical performance. The two curves at the top
(coinciding) illustrate the case ofK = 1, the two curves in the middle illustrate the case of
K = 2, and the bottom two curves illustrate the case ofK = 3 descriptions.
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Figure 5.7: Estimation error 1
L
E‖X‖2pK as a function of the packet-loss probability for

different number of descriptions. The top curve is forK = 1, the second from the top is
for K = 2, and so on. The bottom curve is forK = 5.





Chapter 6

K-Channel Asymmetric Lattice

Vector Quantization

In this chapter we will focus on asymmetric MD-LVQ forK ≥ 2 descriptions,
see Fig. 6.1. Asymmetric schemes offer additional flexibility over the symmetric
schemes, since the bit distribution is also a design parameter and different weights
are introduced in order to control the distortions. In fact,symmetric MD-LVQ is a
special case of asymmetric MD-LVQ.

In [27, 28] asymmetric two-channel MD-LVQ systems are derived subject to
entropy constraints on the individual side entropies. However, since these schemes
are subject to individual side entropy constraints and not subject to a single constraint
on the sum of the side entropies, the problem of how to distribute a total bit budget
among the two descriptions is not addressed. In this chapterwe derive MD quantizer
parameters subject to individual side entropy constraintsand/or subject to a total
entropy constraint on the sum of the side entropies. We then show that the optimal
bit distribution among the descriptions is not unique but isin fact characterized by a
set of solutions, which all lead to minimal expected distortion.

For the case ofK = 2 our design admits side distortions which are superior to the
side distortions of [27, 28] while achieving identical central distortion. Specifically,
we show that the side distortions of our design can be expressed through the
dimensionless normalized second momentG(SL) of anL-sphere whereas the side
distortions of previous asymmetric designs [27, 28] dependon the dimensionless
normalized second momentG(Λ) of the L-dimensional lattices. More accurately,
the difference in side distortions between the two schemes is given by the difference
betweenG(SL) andG(Λ). Notice thatG(SL) ≤ G(Λ) with equality forL = 1

and forL → ∞ by a proper choice of lattice [161], cf. Section 3.3.1. We also show
that, for the case ofK = 3 and asymptotically in lattice vector dimension, the side

93
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distortions can again be expressed throughG(SL) and we further conjecture this to be
true forK > 3 descriptions.

Channel
Decoder

Erasure
EncoderX X̂

R0

R1

RK−1

Description 0

Description 1

DescriptionK−1

Figure 6.1: GeneralK-channel system. Descriptions are encoded at an entropy ofRi, i =

0, . . . ,K − 1. The erasure channel either transmits theith description errorless or not at all.

6.1 Preliminaries

To be consistent with the previous chapter we will here introduce the set of lattices
required for the asymmetric design and emphasize how they differ from the symmetric
design.

Just as in the symmetric case we use a single latticeΛc as the central quantizer.
However, we will make use of several sublatticesΛi, i = 0, . . . ,K − 1 for the side
quantizers. In fact, we use one side quantizer (sublattice)for each description. We
assume that all sublattices are geometrically-similar toΛc and clean. The sublattice
index of theith sublatticeΛi is given byNi = |Λc/Λi|, Ni ∈ Z+. The volumeνi

of a sublattice Voronoi cell in theith sublattice is given byνi = Niν, whereν is the
volume of a Voronoi cell ofΛc. As in the symmetric case we will also here make
use of a product latticeΛπ ⊆ Λi ⊆ Λc of indexNπ = |Λc/Λπ| in the design of the
index-assignment map.

The general framework of asymmetric MD-LVQ is similar to thesymmetric case.
We use a single index-assignment mapα, which maps central lattice points toK-
tuples of sublattice points. The main difference is that in the asymmetric case the
sublattice index values,Ni, i = 0, . . . ,K − 1, are not necessarily equal, which means
that the side descriptions ratesRi are not necessarily equal either. Furthermore,
the weights for the case of receivingκ out of K descriptions depend upon which
κ descriptions are considered. This was not so in the symmetric case.

6.1.1 Index Assignments

The index assignment map (or labeling function) differs from the symmetric case
in that it maps from a single lattice to several distinct sublattices. Specifically, let
α denote the labeling function and let the individual component functions ofα be
denoted byαi. The injective mapα that mapsΛc into Λ0 × · · ·×ΛK−1, is then given
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by

α(λc) = (α0(λc), α1(λc), . . . , αK−1(λc)) (6.1)

= (λ0, λ1, . . . , λK−1), (6.2)

whereαi(λc) = λi ∈ Λi andi = 0, . . . ,K − 1.

We generalize the approach of the previous chapter and construct a product lattice
Λπ which hasNπ central lattice points andNπ/Ni sublattice points from theith

sublattice in each of its Voronoi cells. The Voronoi cellsVπ of the product lattice
Λπ are all similar so by concentrating on labeling only centrallattice points within
one cell, the rest of the central lattice points may be labeled simply by translating
this cell throughoutRL. Without loss of generality we letNπ =

∏K−1
i=0 Ni, i.e. by

construction we letΛπ be a geometrically-similar and clean sublattice ofΛi for all i.44

With this choice ofΛπ, we only label central lattice points withinVπ(0), which is the
Voronoi cell ofΛπ around the origin.

6.1.2 Rate and Distortion Results

The central distortionDc is identical to that of a symmetric system, which is given
by (5.13). It also follows from the symmetric case see (5.14)that the side distortion
for theith description is given by

Di = Dc +
1

L

1

Nπ

∑

λc∈Vπ(0)

‖λc − αi(λc)‖2, i = 0, . . . ,K − 1. (6.3)

Definition 6.1.1. Ri denotes the entropy of the individual descriptions. The entropy
of theith description is defined asRi , H(αi(Q(X)))/L.

The side descriptions are based on a coarser lattice obtained by scaling the Voronoi
cells of the central lattice by a factor ofNi. Assuming the pdf ofX is roughly constant
within a sublattice cell, the entropies of the side descriptions are given by

Ri ≈ h̄(X) − 1

L
log2(Niν). (6.4)

The entropies of the side descriptions are related to the entropy Rc of the central
quantizer, given by (5.18), by

Ri ≈ Rc −
1

L
log2(Ni).

44From Lemma 2.3.1 it follows that the product of admissible index values leads to an admissible index
value.
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6.2 Construction of Labeling Function

In this section we construct the index-assignment mapα, which takes a single vector
λc and maps it to a set ofK vectors{λi}, i = 0, . . . ,K − 1, whereλi ∈ Λi. The
mapping is invertible so that we haveλc = α−1(λ0, . . . , λK−1).

In asymmetric MD-LVQ weights are introduced in order to control the amount
of asymmetry between the side distortions. We will in the following assume that
these weights are based on the packet-loss probabilities ofthe individual descriptions.
However, it should be clear that the weights are not limited to represent packet-loss
probabilities but can in fact be almost arbitrarily chosen.We will consider the case
where the index-assignment map is constructed such that theexpected distortion,
given by the sum of the distortions due to all possible description losses weighted
by their corresponding loss probabilities, is minimized.

In addition to knowing the weighted distortion over all description losses it is also
interesting to know the distortion of any subset of theK descriptions. This issue is
considered in Section 6.5.

6.2.1 Expected Distortion

At the receiving side,X ∈ RL is reconstructed to a quality that is determined by
the received descriptions. If no descriptions are receivedwe reconstruct using the
expected value,EX , and if allK descriptions are received we reconstruct using the
inverse mapα−1(λ0, . . . , λK−1), hence obtaining the quality of the central quantizer.
In all other cases, we reconstruct to the average of the received descriptions as was
done in the symmetric case.

There are in general several ways of receivingκ out ofK descriptions. LetL (K,κ)

denote an index set consisting of all possibleκ combinations out of{0, . . . ,K−1} so
that |L (K,κ)| =

(
K
κ

)
. We denote an element ofL (K,κ) by l = {l0, . . . , lκ−1}. The

complementlc of l denotes theK − κ indices not inl, i.e. lc = {0, . . . ,K − 1}\l.
We will use the notationL (K,κ)

i to indicate the set of alll ∈ L (K,κ) that contains

the indexi, i.e., L
(K,κ)
i = {l : l ∈ L (K,κ) and i ∈ l} and similarlyL

(K,κ)
i,j =

{l : l ∈ L (K,κ) and i, j ∈ l}. Furthermore, letpi be the packet-loss probability
for the ith description and letµi = 1 − pi be the probability that theith description
is received. Finally, letp(l) =

∏

i∈l µi

∏

j∈lc pj , p(L (K,κ)) =
∑

l∈L (K,κ) p(l),

p(L
(K,κ)
i ) =

∑

l∈L
(K,κ)
i

p(l) andp(L (K,κ)
i,j ) =

∑

l∈L
(K,κ)
i,j

p(l). For example, for

K = 3 andκ = 2 we haveL (3,2) = {{0, 1}, {0, 2}, {1, 2}} and hencep(L (3,2)) =

µ0µ1p2 + µ0µ2p1 + µ1µ2p0. In a similar manner forK = 6 andκ = 3 we have

L
(6,3)
1,2 = {{0, 1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}},

and

p(L
(6,2)
1,2 ) = µ0µ1µ2p3p4p5 + µ1µ2µ3p0p4p5 + µ1µ2µ4p0p3p5 + µ1µ2µ5p0p3p4.
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As in the symmetric case, upon reception of anyκ out of K descriptions we
reconstruct toX̂ using

X̂ =
1

κ

∑

j∈l

λj .

The distortion when receiving a set of descriptions can be derived in a similar way
as was done in the symmetric case. Thus, by use of (5.14) and (6.3) it can be
shown that the norm of (6.3), when receiving descriptionsi and j, should read
‖λc − 0.5(αi(λc) +αj(λc))‖2. It follows that the expected distortion when receiving
κ out ofK descriptions is given by

D(K,κ)
a ≈

∑

l∈L (K,κ)

p(l)




Dc +

1

L

1

Nπ

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2





= p(L (K,κ))Dc +
1

L

1

Nπ

∑

λc∈Vπ(0)

∑

l∈L (K,κ)

p(l)

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

,

(6.5)

whereλlj = αlj (λc) and the two special casesκ ∈ {0,K} are given byD(K,0)
a ≈

1
LE‖X‖2

∏K−1
i=0 pi andD(K,K)

a ≈ Dc

∏K−1
i=0 µi.

6.2.2 Cost Functional

From (6.5) we see that the distortionD(K,κ)
a may be split into two terms, one

describing the distortion occurring when the central quantizer is used on the source,
and one that describes the distortion due to the index assignment. An optimal
index assignment minimizes the second term in (6.5) for all possible combinations
of descriptions. The cost functionalJ (K) to be minimized by the index-assignment
algorithm can then be written as

J (K) =
K−1∑

κ=1

J (K,κ), (6.6)

where

J (K,κ) =
1

L

1

Nπ

∑

λc∈Vπ(0)

∑

l∈L (K,κ)

p(l)

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

. (6.7)

The cost functional should be minimized subject to some entropy-constraints on the
side descriptions or on e.g. the sum of the side entropies. Weremark here that the side
entropies depend solely onν andNi (see (6.4)) but not on the particular choice of
K-tuples. In other words, for fixedNi’s and a fixedν the index assignment problem
is solved if (6.6) is minimized. The problem of choosingν andNi such that certain
entropy constraints are not violated is independent of the assignment problem and
deferred to Section 6.4.
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Theorem 6.2.1.For any1 ≤ κ ≤ K we have

∑

λc

∑

l∈L (K,κ)

p(l)

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

=
∑

λc

(

p(L (K,κ))

∥
∥
∥
∥
∥
λc −

1

κp(L (K,κ))

K−1∑

i=0

p(L
(K,κ)
i )λi

∥
∥
∥
∥
∥

2

+
1

κ2

K−2∑

i=0

K−1∑

j=i+1

(

p(L
(K,κ)
i )p(L

(K,κ)
j )

p(L (K,κ))
− p(L

(K,κ)
i,j )

)

‖λi − λj‖2

)

.

Proof. See Appendix I.1. �

The cost functional (6.6) can by use of Theorem 6.2.1 be written as

J (K,κ) =
1

L

1

Nπ

∑

λc∈Vπ(0)

(

p(L (K,κ))

∥
∥
∥
∥
∥
λc −

1

κp(L (K,κ))

K−1∑

i=0

λip(L
(K,κ)
i )

∥
∥
∥
∥
∥

2

+
1

κ2

K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2

(

p(L
(K,κ)
i )p(L

(K,κ)
j )

p(L (K,κ))
− p(L

(K,κ)
i,j )

))

.

(6.8)

The first term in (6.8) describes the distance from a central lattice point to the weighted
centroid of its associatedK-tuple. The second term describes the weighted sum of
pairwise squared distances (WSPSD) between elements of theK-tuple. In Section 6.3
(Proposition 6.3.2) we show that, under a high-resolution assumption, the second term
in (6.8) is dominant, from which we conclude that in order to minimize (6.6) we must
useK-tuples with the smallest WSPSD. TheseK-tuples are then assigned to central
lattice points in such a way, that the first term in (6.8) is minimized.

6.2.3 Minimizing Cost Functional

We follow the approach of the symmetric case and center a region Ṽ at all sublattice
pointsλ0 ∈ Λ0 ∩ Vπ(0), and constructK-tuples by combining sublattice points from
the other sublattices (i.e.Λi, i = 1, . . . ,K − 1) within Ṽ (λ0) in all possible ways
and select the ones that minimize (6.6). For eachλ0 ∈ Λ0 ∩ Vπ(0) it is possible
to construct

∏K−1
i=1 Ñi K-tuples, whereÑi is the number of sublattice points from

the ith sublattice within the regioñV . This gives a total of(Nπ/N0)
∏K−1

i=1 Ñi K-
tuples when allλ0 ∈ Λ0 ∩ Vπ(0) are used. The number̃Ni of lattice points within a
connected regioñV of RL may be approximated bỹNi ≈ ν̃/νi whereν̃ is the volume
of Ṽ , which is an approximation that becomes exact as the number of shells of the
lattice within Ṽ goes to infinity, cf. Section 5.3.3. Therefore, our analysisis only
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exact in the asymptotic case ofNi → ∞ andνi → 0. SinceÑi ≈ ν̃/νNi and we
needN0 K-tuples for eachλ0 ∈ Vπ(0) we see that

N0 =

K−1∏

i=1

Ñi ≈
ν̃K−1

νK−1

K−1∏

i=1

N−1
i ,

so in order to obtain at leastN0 K-tuples, the volume of̃V must satisfy

lim
Ni→∞,∀i

ν̃ ≥ ν

K−1∏

i=0

N
1/(K−1)
i . (6.9)

For the symmetric case, i.e.N = Ni, i = 0, . . . ,K − 1, we havẽν ≥ νNK/(K−1),
which is in agreement with the results obtained in Chapter 5.

Before we outline the design procedure for constructing an optimal index
assignment we remark that in order to minimize the WSPSD between a fixedλi and
the set of points{λj ∈ Λj ∩ Ṽ } it is required that̃V forms a sphere centered atλi.
The design procedure can be outlined as follows:

1. Center a spherẽV at eachλ0 ∈ Λ0 ∩ Vπ(0) and construct all possibleK-
tuples(λ0, λ1, . . . , λK−1) whereλi ∈ Λi ∩ Ṽ (λ0) andi = 1, . . . ,K − 1. This
ensures that allK-tuples have their first coordinate (λ0) insideVπ(0) and they
are therefore shift-invariant. We will only useK-tuples whose elements satisfy
‖λi − λj‖ ≤ r, ∀i, j ∈ 0, . . .K − 1, wherer is the radius of̃V . MakeṼ large
enough so at leastN0 distinctK-tuples are found for eachλ0.

2. Construct cosets of eachK-tuple.

3. TheNπ central lattice points inΛc ∩Vπ(0) must now be matched to distinctK-
tuples. As in the symmetric case, this is a standard linear assignment problem
[151] where only one member from each coset is (allowed to be)matched to a
central lattice point inVπ(0).

The restriction‖λi − λj‖ ≤ r from step 1), which is used to avoid bias towards
any of the sublattices, reduces the number of distinctK-tuples that can be constructed
within the regionṼ . To be able to formN0 K-tuples it is therefore necessary to use a
regionṼ with a volume larger than the lower bound in (6.9). In order totheoretically
describe the performance of the quantizers we need to know the optimalν̃, i.e. the
smallest volume which (asymptotically for largeNi) leads to exactlyN0 K-tuples.
In Section 5.3.3 a dimensionless expansion factorψL which only depends onK and
L was introduced.ψL was used to describe how much̃V had to be expanded from
the theoretical lower bound (6.9), to make sure thatN0 optimalK-tuples could be
constructed by combining sublattice points within a regionṼ .

Lemma 6.2.1. The dimensionless expansion factorψL for the asymmetric case is
identical to the one for the symmetric case.
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Proof. Follows by replacing the constantνs by νi in the proof of Theorem 5.3.2.
�

Adopting this approach leads to

ν̃ = ψL
Lν

K−1∏

i=0

N
1/(K−1)
i .

Remark6.2.1. It might appear that the shift invariance restriction enforced by using
only one member from each coset will unfairly penalizeΛ0. However, the next two
lemmas prove that, asymptotically asNi → ∞, there is no bias towards any of the
sublattices. We will consider here the case ofK > 2 (for K = 2 we can use similar
arguments as given in [28]).

Lemma 6.2.2. For K > 2 the number ofK-tuples that is affected by the coset
restriction is (asymptotically asNi → ∞, ∀i) neglectable compared to the number
of K-tuples which are not affected.

Proof. See Appendix I.4. �

Lemma 6.2.3. The set ofNπ K-tuples that is constructed by centeringṼ at each
λ0 ∈ Vπ(0) ∩ Λ0 is asymptotically identical to the set constructed by centering Ṽ at
eachλi ∈ Vπ(0) ∩ Λi, for anyi ∈ {1, . . . ,K − 1}.

Proof. See Appendix I.4. �

Remark6.2.2. TheK-tuples need to be assigned to central lattice points withinVπ(0).
This is a standard linear assignment problem where a cost measure is minimized.
However, solutions to linear assignment problems are generally not unique. Therefore,
there might exist several labelings, which all yield the same cost, but exhibit a different
amount of asymmetry. To achieve the specified distortions itmay then be necessary
to e.g. use time sharing through a suitable mixing of labelings.

6.2.4 Comparison to Existing Asymmetric Index Assignments

In this section we have presented a new design for asymmetricMD-LVQ based on the
asymmetric design of Diggavi et al. [28]. The main difference between the existing
design of Diggavi et al. and the proposed design is that of theshape of the region
within which sublattice points are distributed. More specifically, in the design of
Diggavi et al., a given sublattice pointλ0 ∈ Λ0 is paired with a set of sublattice
points ofΛ1 which are all evenly distributed within a Voronoi cell ofΛπ, the product
lattice. However, in the proposed design, a sublattice point λ0 ∈ Λ0 is paired with a
set of sublattice points ofΛ1 which are all evenly distributed within anL-dimensional
hypersphere.

Let us emphasize some of the advantages as well as weaknessesof the proposed
design.
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• Advantages

1. The side distortion is reduced (compared to the previous design) when
finite dimensional lattice vector quantizers are used (whenthe dimension
is strictly greater than one). To see this, notice that the side distortion is
a function of the dimensionless normalized second moment ofthe region
over which the sublattice points are distributed. ForL = 1 as well as
L → ∞ spheres pack space and it is possible to have spherical Voronoi
cells ofΛπ by a proper choice of product lattice.

2. To simplify the design it is often convenient to base the product lattice
upon the simple hypercubicZL lattice. In this case, the side distortion
of the design of Diggavi et al. is independent of the vector dimension
of the lattices, whereas with the proposed design the distortion steadily
decreases as the dimension increases. The reduction in sidedistortion is
upper bounded by approximately 1.53 dB per description.

3. The proposed design scales easily to more than two descriptions. It is not
clear how to obtain more than two descriptions with the previous designs.

• Weaknesses

1. The design of Diggavi et al. exploits several geometric properties of the
underlying lattices to ensure that any single sublattice point of Λ0 is paired
with exactlyN0 sublattice points ofΛ1. On the other hand, the proposed
design guarantees such a symmetry property only in asymptotic cases.
Thus, in practice, if such a symmetry property is desired, one might need
to search within a set of candidate solutions.

6.3 High-Resolution Analysis

In this section we derive high-resolution approximations for the expected distortion.
In line with the high-resolution analysis presented in Chapter 5 we letNi → ∞ and
νi → 0, i.e. for each sublattice the index increase, while the volume of their Voronoi
cell shrink.
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6.3.1 Total Expected Distortion

Using Theorem 6.2.1, the expected distortion (6.5) whenκ out ofK descriptions are
received can be written as

D(K,κ)
a ≈ p(L (K,κ))Dc +

1

L

1

Nπ

∑

λc∈Vπ(0)

∑

l∈L (K,κ)

p(l)

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

= p(L (K,κ))Dc

+
1

L

1

Nπ

∑

λc∈Vπ(0)

(

p(L (K,κ))

∥
∥
∥
∥
∥
λc −

1

κp(L (K,κ))

K−1∑

i=0

p(L
(K,κ)
i )λi

∥
∥
∥
∥
∥

2

+
1

κ2

K−2∑

i=0

K−1∑

j=i+1

(

p(L
(K,κ)
i )p(L

(K,κ)
j )

p(L (K,κ))
− p(L

(K,κ)
i,j )

)

‖λi − λj‖2

)

.

(6.10)

Proposition 6.3.1. ForK = 2 and asymptotically asNi → ∞, νi → 0 as well as
for K = 3 and asymptotically asNi, L → ∞ andνi → 0, we have for any pair of
sublattices,(Λi,Λj), i, j = 0, . . . ,K − 1, i 6= j,

1

L

∑

λc∈Vπ(0)

‖αi(λc) − αj(λc)‖2 = ψ2
Lν

2/LG(SL)Nπ

K−1∏

m=0

N2/L(K−1)
m .

Proof. See Appendix I.2. �

Conjecture 6.3.1. Proposition 6.3.1 is true for anyK asymptotically asL,Ni → ∞
andνi → 0, ∀i.

Proposition 6.3.2. ForNi → ∞ we have

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
λc −

1

κp(L )

K−1∑

i=0

p(L
(K,κ)
i )λi

∥
∥
∥
∥
∥

2

∑

λc∈Vπ(0)

K−2∑

i=0

K−1∑

j=i+1

(

p(L
(K,κ)
i )p(L

(K,κ)
j )

p(L (K,κ))
− p(L

(K,κ)
i,j )

)

‖λi − λj‖2

→ 0.

Proof. See Appendix I.3. �

By use of Propositions 6.3.1 and 6.3.2 and (5.13) it follows that (6.10) can be
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written as

D(K,κ)
a ≈ p(L (K,κ))Dc

+
1

L

1

Nπ

∑

λc∈Vπ(0)




1

κ2

K−2∑

i=0

K−1∑

j=i+1

(

p(L
(K,κ)
i )p(L

(K,κ)
j )

p(L (K,κ))
− p(L

(K,κ)
i,j )

)

‖λi − λj‖2





≈ G(Λc)ν
2/Lp(L (K,κ)) + ψ2

Lν
2/LG(SL)β(K,κ)

K−1∏

m=0

N2/L(K−1)
m ,

whereβ(K,κ) depends on the packet-loss probabilities and is given by

β(K,κ) =
1

κ2

K−2∑

i=0

K−1∑

j=i+1

(

p(L
(K,κ)
i )p(L

(K,κ)
j )

p(L (K,κ))
− p(L

(K,κ)
i,j )

)

.

The total expected distortionD(K)
a is obtained by summing overκ including the cases

whereκ = 0 andκ = K,

D(K)
a ≈ G(Λc)ν

2/Lp̂(L (K)) + ψ2
Lν

2/LG(SL)

K−1∏

m=0

N2/L(K−1)
m β̂(K)

+
1

L
E‖X‖2

K−1∏

i=0

pi,

(6.11)

where

p̂(L (K)) =

K∑

κ=1

p(L (K,κ))

and

β̂(K) =

K∑

κ=1

β(K,κ).

Using (5.18) and (6.4) we can writeν andNi as a function of differential entropy
and side entropies, that is

ν2/L = 22(h̄(X)−Rc),

and
K−1∏

i=0

N
2/L(K−1)
i = 2

2K
K−1 (Rc− 1

K

∑K−1
i=0 Ri).

Inserting these results in (6.11) leads to

D(K)
a ≈ G(Λc)2

2(h̄(X)−Rc)p̂(L (K))

+ ψ2
LG(SL)22(h̄(X)−Rc)2

2K
K−1 (Rc− 1

K

∑K−1
i=0 Ri)β̂(K) +

1

L
E‖X‖2

K−1∏

i=0

pi,

(6.12)

where we see that the distortion due to the side quantizers isindependent of the type
of sublattices.
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6.4 Optimal Entropy-Constrained Quantizers

In this section we first derive closed-form expressions for the optimal scaling factors
ν andNi subject to entropy constraints on theK side descriptions. With these scaling
factors we are able to construct a central lattice andK sublattices. The index assign-
ments are then found using the approach outlined in Section 6.2. The central lattice
and theK side lattices combined with their index assignment map completely specify
an optimal scheme for asymmetric entropy-constrained MD-LVQ. We then consider
the situation where the total bit budget is constrained, i.e. we find the optimal scaling
factors subject to entropy constraints on the sum of the sideentropies

∑

i Ri ≤ R∗,
whereR∗ is the target entropy. We also find the optimal bit distribution among theK
descriptions.

6.4.1 Entropy Constraints Per Description

We assumeK descriptions are to be used. Packet-loss probabilitiespi, i = 0, . . . ,K−
1, are given as well as entropy-constraints on the side descriptions, i.e.Ri ≤ R∗

i ,
whereR∗

i are known target entropies. To be optimal, the entropies of the side descrip-
tions must be equal to the target entropies, hence by use of (6.4) we must have that

Ri = h̄(X) − 1

L
log2(Niν) = R∗

i ,

from which we get
Niν = 2L(h̄(X)−R∗

i ) = τi, (6.13)

whereτi are constants. It follows thatNi = τi/ν and since
∏K−1

i=0 N
2/L(K−1)
i =

ν−2K/L(K−1)
∏K−1

i=0 τ
2/L(K−1)
i we can express (6.11) as a function ofν, i.e.

D(K)
a ≈ G(Λc)ν

2/Lp̂(L (K))

+ ψ2
Lν

2/LG(SL)ν−2K/L(K−1)τ2/L(K−1)β̂(K) +
1

L
E‖X‖2

K−1∏

i=0

pi

= G(Λc)ν
2/Lp̂(L (K)) + ψ2

LG(SL)ν−2/L(K−1)τ2/L(K−1)β̂(K)

+
1

L
E‖X‖2

K−1∏

i=0

pi,

whereτ =
∏K−1

i=0 τi.
Differentiating w.r.t.ν and equating to zero gives,

∂D
(K)
a

∂ν
=

2

L
G(Λc)ν

2/L−1p̂(L (K))

− 2

L(K − 1)
ψ2

LG(SL)ν−2/L(K−1)−1τ2/L(K−1)β̂(K) = 0,



Section 6.4 Optimal Entropy-Constrained Quantizers 105

from which we obtain the optimal value ofν

ν = τ1/K

(

ψ2
L

1

K − 1

G(SL)

G(Λc)

β̂(K)

p̂(L (K))

)L(K−1)
2K

= 2L(h̄(X)− 1
K

∑

i R∗
i )

(

ψ2
L

1

K − 1

G(SL)

G(Λc)

β̂(K)

p̂(L (K))

)L(K−1)
2K

.

(6.14)

The optimalNi’s follow easily by use of (6.13):

Ni =
τi
ν

= τiτ
−1/K

(
1

ψ2
L

(K − 1)
G(Λc)

G(SL)

p̂(L (K))

β̂(K)

)L(K−1)
2K

. (6.15)

Eq. (6.15) shows that the optimal redundanciesNi’s are, for fixedK, independent of
the sublattices. Moreover, sinceτiτ−1/K = 2−L(R∗

i − 1
K

∑

j
R∗

j ) the source-dependent
term h̄(X) is eliminated and it follows that the redundanciesNi are independent of
the source but also of actual values of target entropies (Ni depends only upon the
difference between the average target entropy andR∗

i ).

6.4.2 Total Entropy Constraint

First we observe from (6.12) that the expected distortion depends upon thesumof
the side entropies and not the individual side entropies. Inorder to be optimal it is
necessary to achieve equality in the entropy constraint, i.e.R∗ =

∑

iRi. From (6.4)
we have

R∗ =

K−1∑

i=0

Ri = Kh̄(X) − 1

L

K−1∑

i=0

log2(Niν).

This equation can be rewritten as

K−1∏

i=0

(Niν) = 2L(Kh̄(X)−R∗) = τ∗, (6.16)

whereτ∗ is constant for fixed target entropy and differential entropies. Writing (6.16)
as

K−1∏

i=0

N
2/L(K−1)
i = ν−2K/L(K−1)τ

2/L(K−1)
∗ ,

and inserting in (6.11) leads to

D(K)
a ≈ G(Λc)ν

2/Lp̂(L (K)) + ψ2
Lν

−2/L(K−1)τ
2/L(K−1)
∗ G(SL)β̂(K)

+
1

L
E‖X‖2

K−1∏

i=0

pi.
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Differentiating w.r.t.ν and equating to zero gives

∂D
(K)
a

∂ν
=

2

L
G(Λc)ν

2/L−1p̂(L (K))

− 2

L(K − 1)
ψ2

LG(SL)ν−2/L(K−1)−1τ
2/L(K−1)
∗ β̂(K) = 0,

from which we obtain the optimal value ofν, that is

ν = 2L(h̄(X)− 1
K

R∗)

(

ψ2
L

1

K − 1

G(SL)

G(Λc)

β̂(K)

p̂(L (K))

)L(K−1)
2K

. (6.17)

We note that this expression is identical to (6.14). The results of this section show that
the optimalν is the same whether we optimize subject to entropy constraints on the
individual side entropies or on the sum of the side entropiesas long as the total bit
budget is the same.

At this point we still need to find expressions for the optimalRi (or equivalently
optimalNi givenν). LetRi = aiR

∗, where
∑

i ai = 1, ai ≥ 0, henceR∗ =
∑

iRi.
From (6.4) we have

Ri = h̄(X) − 1

L
log2(Niν) = aiR

∗,

which can be rewritten as

Ni = ν−12L(h̄(X)−aiR
∗).

Inserting (6.17) leads to an expression for the optimal index valueNi, that is

Ni = 2
L
K

(1−ai)R
∗

(

ψ−2
L (K − 1)

G(Λc)

G(SL)

p̂(L (K))

β̂(K)

)L(K−1)
2K

. (6.18)

It follows from (5.18) and (6.4) thatRc ≥ aiR
∗ so thatai ≤ Rc/R

∗. In addition,
since the rates must be positive, we obtain the following inequalities:

0 < aiR
∗ ≤ Rc, i = 0, . . . ,K − 1. (6.19)

Thus, when we only have a constraintR∗ on the sum of the side entropies, the
individual side entropiesRi = aiR

∗ can be arbitrarily chosen (without loss of perfor-
mance) as long as they satisfy (6.19) and

∑

i ai = 1. We remark thatRi is bounded
away from zero by a positive constant, cf. (4.1) and (4.2). For example, for the two-
channel case we haveR0 = a0R

∗ andR1 = a1R
∗ = (1 − a0)R

∗, so thatRc ≥
(1 − a0)R

∗ which implies thatR∗ −Rc ≤ R0 ≤ Rc.45

This result leads to an interesting observation. Given a single entropy constraint on
the sum of the side entropies, the optimal bit distribution among the two descriptions

45Recall thatRc is fixed, since it depends onν which is given by (6.17).
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is not unique but contains in fact a set of solutions (i.e. a set of quantizers) which
all lead to minimal expected distortion.46 This allows for additional constraints to
be imposed on the quantizers without sacrificing optimalitywith respect to minimal
expected distortion. For example, in some mobile wireless environments, it might be
beneficial to use those quantizers from the set of optimal quantizers that require the
least amount of power.

6.4.3 Example With Total Entropy Constraint

Let us show by an example some interesting aspects resultingfrom the fact that
we obtain a set of candidate solutions, which all minimize the expected distortion.
For example, consider IP-telephony applications, which with the recent spread of
broadband networks are being used extensively throughout the world today. More
specifically, let us consider a packet-switched network where a user has access to two
different channels both based on the unreliable user datagram protocol [133]. Channel
0 is a non priority-based channel whereas channel 1 is a priority-based channel or they
are both priority-based channels but of different priorities. Equivalently this network
can be thought of as a packet-switched network where the individual packets are given
priorities; low or high priority. In any case, we assume thatonly a single packet is
transmitted on each channel for each time instance (this canbe justified with e.g. tight
delay constraints). The priority-based channel favor packets with higher priority and
the packet-loss probabilityp1 on channel 1 is therefore lower than that of channel
0, i.e.p1 < p0. Assume the Internet telephony service provider (ITSP) in question
charges a fixed amount of say $1 ($2) per bit transmitted via channel 0 (channel 1).
If we then use say 6 bits on channel 1 the quality is better thanif we use the 6 bits
on channel 0. It is therefore tempting to transmit all the bits through channel 1 (or
equivalently send both packets with high priority) since itoffers better quality than
channel 0. However, our results reveal that it is often beneficial to make use of both
channels (or equivalently send two packets simultaneouslyof low and high priority).
The importance of exploiting two channels is illustrated inTable 6.1 for the examples
given above for a total bit budget of 6 bits and packet-loss probabilitiesp0 = 5% and
p1 = 2%. Notice the peculiarity that since the total bit budget is limited to 6 bits then
even if the user is willing to pay more than $8 the performancewould be no better
than what can be achieved when paying exactly $8. The last column of Table 6.1
describes the expected distortion occurring when quantizing a unit-variance Gaussian
source which has been scalar quantized at a total entropy of 6bit/dim. The packet-loss
probabilities arep0 = 0.05 andp1 = 0.02. The quantization error (hence not taking

46In retrospect, this is not a surprising result since, for thetwo-description case, we already saw that for
a fixed distortion tuple(Dc, D0, D1) the lower bound of the rate region is piece-wise linear, cf. Fig. 4.5.
Furthermore, when the sum rate is minimum, this line segmenthas a 45 degree (negative) slope. Hence,
any choice of rate pairs on this line segment satisfies the sumrate. The new observation here, however, is
that now we have a practical scheme, which for any number of descriptions, also satisfies this property.
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Network R0 R1 Price Quality Expected distortion
Single-channel 6 0 $6 Poor -12.98 dB
Single-channel 0 6 $12 Good -16.91 dB
Two-channel 2 4 $10 Optimal -22.20 dB
Two-channel 4 2 $8 Optimal -22.20 dB

Table 6.1: A total bit budget of 6 bits is spent in four different ways. The bottom row shows the
most economical way of spending the bits and still achieve optimal performance. The packet-
loss probabilities arep0 = 5% andp1 = 2%.

packet losses into account) for an optimal entropy-constrained SD system is−34.59

dB but the expected distortion is dominated by the estimation error due to description
losses, i.e.10 log10(p0) = −13.01 dB and10 log10(p1) = −16.99. It follows that the
expected distortion for channel 0 and channel 1 is given by−12.98 dB and−16.91

dB, respectively. For the two-description system the expected distortion is found by
use of (6.12) to be−22.20 dB, hence a gain of more than5 dB is possible when using
both channels.

6.5 Distortion of Subsets of Descriptions

We have so far considered the expected distortion occurringwhen all possible combi-
nations ofK descriptions are taken into account. In a sense this corresponds to
having only a single receiver. In this section we consider a generalization to multiple
receivers that have access to non-identical subsets of theK descriptions and where
no packet losses occur. For example one receiver has access to descriptions{0, 3}
whereas another has access to descriptions{0, 1, 2}. A total of 2K − 1 non-trivial
subsets are possible. We note that the design of the index-assignment map is assumed
unchanged. We are still minimizing the cost functional given by (6.6). The only
difference is that the weights do not necessarily reflect packet-loss probabilities but
can be (almost) arbitrarily chosen to trade off distortion among different subsets of
descriptions. For example, in a two-description system it is possible to decrease
the distortion of description 0 by increasing the distortion of description 1 without
affecting the rates.

The main result of this section is given by Theorem 6.5.1.

Theorem 6.5.1.The side distortionD(K,l) due to reception of descriptions{l}, where
l ∈ L (K,κ) for any1 ≤ κ ≤ K ≤ 3 is, asymptotically asL,Ni → ∞ andνi → 0,
given by

D(K,l) = ω(K,l)ψ2
Lν

2/LG(SL)
K−1∏

i=0

N
2/L(K−1)
i ,
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where

ω(K,l) =
1

p(L (K,κ))2κ2
×
(

p(L (K,κ))2κ2 − p(L (K,κ))2
(
κ

2

)

− p(L (K,κ))
∑

j∈l

p(L
(K,κ)
j ) −

K−2∑

i=0

K−1∑

j=i+1

p(L
(K,κ)
i )p(L

(K,κ)
j )

)

and
(
κ
2

)
= 0 for κ = 1.

Proof. See Appendix I.5. �

Conjecture 6.5.1. Theorem 6.5.1 is true forK > 3 asL,Ni → ∞ andνi → 0.

Remark6.5.1. ForK = 2 Theorem 6.5.1 is true also for finiteL.47 ForK = 3 it
should be seen as an approximation for finiteL.48

In Theorem 6.5.1 the termω(K,l) is a weight factor that depends on the particular
subset of received descriptions. For example forK = 2 we let γ0 = µ0p1 and
γ1 = µ1p0 then forκ = 1 the weights for description 0 and 1 are given by

ω(2,0) =
γ2
1

(γ0 + γ1)2
and ω(2,1) =

γ2
0

(γ0 + γ1)2
, (6.20)

which are in agreement with the results obtained for the two-channel system in [28].
ForK = 3 andκ = 1 we letγ0 = µ0p1p2, γ1 = µ1p0p2 andγ2 = µ2p0p1 and

the weight for description 0 is then given by

ω(3,0) =
γ2
1 + γ2

2 + γ1γ2

(γ0 + γ1 + γ2)2
,

whereas forκ = 2 we use the notationγ01 = µ0µ1p2, γ02 = µ0µ2p1 andγ12 =

µ1µ2p0 from which we find the weight when receiving description 0 and1 to be

ω(3,{0,1}) =
γ2
02 + γ2

12 + γ02γ12

4(γ01 + γ02 + γ12)2
.

6.5.1 Asymmetric Assignment Example

In this section we illustrate by an example how one can achieve asymmetric distortions
for the case ofK = 2 and theZ2 lattices. LetN0 = 13 andN1 = 9 so thatNπ = 117.
Thus, withinVπ(0) we have 117 central lattice points, 9 sublattice points ofΛ0, and 13
sublattice points ofΛ1. This is illustrated in Fig. 6.2. We first let the weight ratio49 be
γ0/γ1 = 1 so that the two side distortions are identical. In this case several sublattice

47This follows since Proposition 6.3.1 is true for anyL for K = 2.
48It is in fact possible to find an exact expression for finiteL. See Remark H.4.1.
49The term weight ratio can be related to the ratio of the side distortions by use of (6.22) and (6.23).

Specifically, it can be shown thatD1/D0 ≈ γ2
0/γ

2
1 .
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points ofΛ0 located outsideVπ(0) will be used when labeling central lattice points
insideVπ(0). The solid lines in Fig. 6.2 illustrate the 117 edges that areassigned to
the 117 central lattice points.

If we let the weight ratio beγ0/γ1 = 4 we favorΛ0 overΛ1. In this case the edge
assignments are chosen such that for a given edge, the sublattice point belonging to
Λ0 is closer to the central lattice point than the sublattice point belonging toΛ1. This
is illustrated in Fig. 6.3. Notice that in this case the sublattice points ofΛ0 used for
the edges that labels central lattice points withinVπ(0) are all located withinVπ(0).
Furthermore, in order to construct the required 117 edges, sublattice points ofΛ1 at
greater distance fromVπ(0) need to be used.

In practice, large index values are required in order to achieve large weight ratios
γ0/γ1 or γ1/γ0. Notice that we can achieve asymmetric side distortions even in the
case where the sublattices are identical (so thatN0 = N1 and the rates are therefore
identical) simply by lettingγ0 6= γ1. Moreover, we can achieve symmetric side
distortions by lettingγ0 = γ1 even whenN0 6= N1 (i.e. R0 6= R1). In the case
where eitherγ0 = 0 andγ1 6= 0 or γ1 = 0 andγ0 6= 0 the scheme degenerates to
a successive refinement scheme, where the side distortion corresponding to the zero
weight cannot be controlled. In practice this happens if eitherγ0 ≫ γ1 or γ1 ≫ γ0.
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Figure 6.2: A central lattice based onZ2 (dots) and two geometrically-similar sublattices of
index 13 (circles) and 9 (squares), respectively. The dashed square illustrates the boundary of
Vπ(0). The solid lines illustrate the 117 edges (where some are overlapping). The weight ratio
is here set toγ0/γ1 = 1.
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Figure 6.3: A central lattice based onZ2 (dots) and two geometrically-similar sublattices of
index 13 (circles) and 9 (squares), respectively. The dashed square illustrates the boundary of
Vπ(0). The solid lines illustrate the 117 edges (where some are overlapping). The weight ratio
is here set toγ0/γ1 = 4.

6.6 Numerical Results

To verify theoretical results we present in this section experimental results obtained
by computer simulations. In all simulations we have used2 · 106 unit-variance
independent Gaussian vectors constructed by blocking an i.i.d. scalar Gaussian
process into two-dimensional vectors. We first assess the two-channel performance
of our scheme. This is interesting partly because it is the only case where the
complete achievable MD rate-distortion region is known andpartly because it makes it
possible to compare to existing schemes. We end this sectionby showing the expected
distortion (6.12) in an asymmetric setup using three descriptions.

6.6.1 Assessing Two-Channel Performance

The side distortions̄D0 and D̄1 of the two-channel asymmetric MD-LVQ system
presented in [27, 28] are given by (4.59) and (4.60) and the central distortion is given
by

D̄c ≈ G(Λc)2
2(h̄(X)−Rc). (6.21)

The asymmetric scheme presented in this paper satisfies

D0 ≈ γ2
1

(γ0 + γ1)2
G(SL)22h̄(X)2−2(R0+R1−Rc), (6.22)
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and

D1 ≈ γ2
0

(γ0 + γ1)2
G(SL)22h̄(X)2−2(R0+R1−Rc), (6.23)

and the central distortion is identical to (6.21). It follows that the only difference
between the pair of side distortions(D̄0, D̄1) and(D0, D1) is that the former depends
uponG(Λπ) and the latter uponG(SL). In other words, the only difference in
distortion between the schemes is the difference betweenG(SL) andG(Λπ). For the
two dimensional case it is known thatG(S2) = 1/4π whereas ifΛπ is similar toZ2

we haveG(Λπ) = 1/12 which is approximately0.2 dB worse thanG(S2). Fig. 6.4
shows the performance when quantizing a unit-variance Gaussian source using theZ2

quantizer for the design of [27, 28] as well as for the proposed system. In this setup
we have fixedR0 = 5 bit/dim. butR1 is varied in the range5 – 5.45 bit/dim. To do so
we fixN1 = 101 and letN0 step through the following sequence of admissible index
values:

{101, 109, 113, 117, 121, 125, 137, 145, 149, 153, 157, 169, 173, 181, 185},

and for eachN0 we scaleν such thatR0 remains constant. WhenN0 = 101 then
R0 = R1 = 5 bit/dim. whereas whenN0 > N1 thenR1 > R0. We have fixed
the ratioγ0/γ1 = 1.55 and we keep the side distortions fixed and change the central
distortion. Since the central distortion is the same for thetwo schemes we have not
shown it. Notice thatD0 (resp.D1) is strictly smaller (about0.2 dB) thanD̄0 (resp.
D̄1). This is to be expected sinceG(S2) is approximately0.2 dB smaller thanG(Λπ).

6.6.2 Three Channel Performance

In this setup we letψL = 1.4808 and the packet-loss probabilities are fixed atp0 =

2.5%, p1 = 7.5% except forp2 which is varied in the range[1, 10]%. As p2 is varied
we updateν according to (6.17) and pick the index valuesNi such that

∑

iRi ≤ R∗.
Since index values are restricted to a certain set of integers, cf. Section 2.3.1, the
side entropies might not sum exactly toR∗. To make sure the target entropy is met
with equality we then re-scaleν asν = 2L(h̄(X)− 1

K
R∗)
∏K−1

i=0 N
−1/K
i . We see from

Fig. 6.5 a good correspondence between the theoretically and numerically obtained
results.

6.7 Conclusion

We presented a design for high-resolutionK-channel asymmetric MD-LVQ. Along
the lines of the previous chapter, closed-form expressionsfor the optimal central
and side quantizers based on packet-loss probabilities andsubject to target entropy
constraints were derived and practical quantizers were constructed to verify theoretical
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Figure 6.4: The side distortions are here kept fixed as the rate is increased. Notice that
the numerically obtained side distortionsD0 andD1 (crosses) are strictly smaller than the
theoreticalD̄0 andD̄1 (thin lines).

results. For the two-channel case we compared the proposed MD-LVQ scheme to a
state-of-the-art two-channel asymmetric scheme and showed that the performance of
the central quantizer was equivalent to that of the state-of-the-art scheme whereas
the side quantizers were strictly superior in finite dimensions greater than one. The
problem of distributing bits among theK descriptions was analyzed and it was shown
that the optimal solution was not unique. In fact, it turned out that bits could be almost
arbitrarily distributed among theK descriptions without loss of performance. As was
the case for the symmetric design, the practical design of asymmetric MD-LVQ allows
an arbitrary number of descriptions but the theoretical rate-distortion results were only
proven for the case ofK ≤ 3 descriptions and conjectured to be true in the general
case of arbitraryK descriptions.
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Figure 6.5: Expected distortion as a function of packet-loss probabilities forK = 3 packets
and an entropy of 3 bit/dim. per description. The packet-loss probabilities arep0 = 2.5%, p1 =

7.5%, 1% ≤ p2 ≤ 10% andψL = 1.14808.



Chapter 7
Comparison to Existing

High-Resolution MD Results

In this chapter we compare the rate-distortion performanceof the proposed MD-LVQ
scheme to that of existing state-of-the-art schemes as wellas to known information
theoretic high-resolutionK-channel MD rate-distortion bounds.

7.1 Two-Channel Performance

We will first consider the symmetric case and show that, whilethe proposed design is
different than the design of Vaishampayan et al. [139], the two-channel performance
is, in fact, identical to the results of [139]. Then we consider the asymmetric case and
show that the asymmetric distortion product given by Lemma 4.1.1 is achievable.

7.1.1 Symmetric Case

LetK = 2 so thatψ2
L = 1. From Theorem 6.5.1 (see also (5.34)) we see that the side

distortion (i.e. fork = 1) for the symmetric case, i.e.D0 = D1 andRs = Ri, i = 0, 1,
is given by (asymptotically asN → ∞ andνs → 0)

D0 =
1

4
G(SL)N4/Lν2/L. (7.1)

In order to trade off the side rate for the central rate we use an idea of [139] and let
2−2aRs = 4N−2/L where0 < a < 1, which implies that

N = 2L(aRs+1). (7.2)

115
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Let us insert (7.2) into (5.19) in order to expressν as a function ofRs anda,

ν = 2L(h(X)−aRs−Rs−1). (7.3)

From (6.21) we know that the two-channel central distortionDc is given byDc =

G(Λc)ν
2/L which by use of (7.3) can be rewritten as

Dc = G(Λc)2
2(h(X)−aRs−Rs−1), (7.4)

which leads to

lim
Rs→∞

Dc2
2Rs(1+a) =

1

4
G(Λc)2

2h(X). (7.5)

By inserting (7.2) and (7.3) in (7.1) we find

D0 =
1

4
G(SL)24(aRs+1)+2(h(X)−aRs−Rs−1), (7.6)

which leads to
lim

Rs→∞
D02

2Rs(1−a) = G(SL)22h(X). (7.7)

Comparing (7.5) and (7.7) with those of Vaishampayan (4.56)and (4.57) reveals that
the performance of the proposed two-channel design achievethe same performance
as the two-channel design of Vaishampayan et al. [139]. Furthermore, letb = 1 and
L→ ∞ and notice that in the memoryless Gaussian caseG(S∞)22h(X) = σ2

X so that,
by comparing (7.5) and (7.7) with (4.11) and (4.10), we see that the high-resolution
two-channel symmetric rate-distortion function of Ozarowcan be achieved.

Remark7.1.1. It is important to see thata in (7.5) and (7.7) is bounded away from
zero and one. In the extreme case wherea = 0 the ratio of side distortion over
central distortion is small andN cannot be made arbitrarily large as is required for
the asymptotic expressions to be valid. On the other hand, when a = 1 we can no
longer force the cells of the side quantizers to be small compared to the variance of
the source and the high resolution assumptions are therefore not satisfied. This is also
true for the general case ofK > 2 descriptions.

Remark7.1.2. We would like to point out an error in [102] where we overlooked the
requirement thata < 1. In [102] we showed that the high resolution performance
of (3, 2) SCECs can be achieved by use of lattice codebooks and index assigments
(which is true) but we also wrongly claimed that in the extreme case wherea = 1,
lattice codebooks achieve rate-distortion points that cannot be achieved by random
codebooks, obviously, this cannot be true since, fora = 1, the high resolution assump-
tions are not satisfied (Remark 7.1.1).

7.1.2 Asymmetric Case

We already showed in Section 6.6 that the performance of the asymmetric two-channel
scheme by Diggavi et al. [27,28] can be achieved. In fact, in finite dimensions greater
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than one, the performance of the proposed scheme was strictly superior to that of
Diggavi et al. Furthermore, it is easy to show that the high resolution asymmetric
distortion product presented by Lemma 4.1.1 can be achieved. To see this note that by
use of (6.22), (6.23) and (6.21) we get

Dc(D0 +D1 + 2
√

D0D1) = G(Λc)2
2(h(X)−Rc) (7.8)

×
(

γ2
0 + γ2

1

(γ0 + γ1)2
G(SL)22h(X)2−2(R0+R1−Rc)

+ 2

√

γ2
0γ

2
1

(γ0 + γ1)4
G(SL)224h(X)2−4(R0+R1−Rc)

)

= G(Λc)G(SL)24h(X)2−2(R0+R1),

which, asymptotically asL→ ∞, leads to Lemma 4.1.1.

7.2 Achieving Rate-Distortion Region of(3, 1) SCECs

We will now consider the symmetric three-channel case and show that the rate-
distortion performance of(3, 1) SCECs can be achieved at high resolution.

We are interested in the three-channel case, i.e.K = 3, and in the limit ofL→ ∞
so that

G(SL) → 1

2πe
(7.9)

and

ψ2
∞ =

√

4

3
. (7.10)

Furthermore, without any loss of generality, we assume thatthe source has unit
variance. Thus, from (5.34) we see that

D(3,1) =
1

3
ψ2
∞N

′2−2Rs , (7.11)

sinceRc = Rs + log2(N
′),

D(3,2) =
1

12
ψ2
∞N

′2−2Rs , (7.12)

and the central distortionDc = D(3,3) given by (6.21) can be written as

D(3,3) =

(
1

N ′

)2

2−2Rs . (7.13)

The following lemma shows that symmetric three-channel MD-LVQ can achieve
the rate-distortion region of(3, 1) SCECs at high resolution.
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Lemma 7.2.1. At high resolution, the one, two and three-channel distortions of(3, 1)

SCECs are identical to (7.11) – (7.13) in the quadratic Gaussian case.

Proof. See Appendix J.1. �

Remark7.2.1. The notion of a large sublattice indexN in K-channel MD-LVQ
corresponds to a large (negative) codebook correlationρq for (K, 1) SCECs and in
the limit ofN → ∞ we actually haveρq → −1/(K − 1). Thus, forK = 3 we have
ρq → −1/2 asN → ∞.

7.3 Achieving Rate-Distortion Region of(3, 2) SCECs

We will now show that the rate-distortion performance of(3, 2) SCECs can be
achieved by extending the proposed design of three-channelMD-LVQ to include
random binning on the side codebooks. Specifically, we show that the achievable two-
channel versus three-channel distortion region of(3, 2) SCECs for the memoryless
Gaussian source and MSE can be achieved under high-resolution assumptions. Since
the performance of a(3, 3) SCEC is identical to that of a single description scheme, it
is clear that we can also achieve such performance simply by lettingK = 1 and only
use the central quantizer. Explicit bounds forK > 3 descriptions were not derived
in [111, 114] but we expect that these (non-derived) bounds are also achievable with
the proposedK-channel MD-LVQ scheme.

We will begin by considering the general situation where we allow finite dimensio-
nal lattice vector quantizers and asymmetric rates and distortions. Then, at the end of
the section, we focus on the symmetric case and infinite-dimensional lattice vector
quantizers in order to compare the performance to the existing bounds.

Recall that the proposed design ofK-channel MD-LVQ is able to vary the redun-
dancy by changing the number of descriptionsK as well as the index valuesNi. In
addition, it is possible to trade off distortion among subsets of descriptions, without
affecting the rates, simply by varying the weights. Increasing Ni and at the same
time decreasingν so thatνi = Niν remains constant does not affect the rateRi.
However, the distortion due to theith description is affected (unless counteracted by
the weights). For example in the symmetric setup whereN = Ni for all i and the
weights are also balanced, the side distortion due to reception of only a subset of
descriptions is increased asN is increased andνN is kept constant. However, in this
case, the central distortion due to reception of all descriptions is decreased. In other
words, in the symmetric case, for a givenK, the degree of redundancy is controled by
the single parameterN .
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7.3.1 Random Binning on Side Codebooks of MD-LVQ Schemes

In order to achieve the performance of general(K, k) SCECs we need to introduce
more controlling parameters into the design ofK-channel MD-LVQ. To do so we
follow an idea of Pradhan et al. [111] and exploit recent results on distributed source
coding. More specifically, we apply random binning on the side codebooks of theK-
channel MD-LVQ scheme. This corresponds in some sense to replacing the random
codebooks of(K, k) SCECs with structured lattice codebooks except that we also
have a central quantizer and an index assignment map to consider.

Random binning is usually applied on (in principle infinite-dimensional) random
codebooks. The idea is to exploit the fact that for a given codevector, sayλ0, of
codebookC0, only a small set of the codevectors in codebookC1 is jointly typical
with λ0. Then by randomly distributing the codevectors ofC1 overM1 bins, it is
unlikely that two or more codevectors, which are all jointlytypical with λ0, end up
in the same bin (at least this is true ifM1 is large enough). Thus, if the binning rate
Rb,1 = log2(M1) is less than the codebook rateR1 then it is possible to reduce the
description rate by sending the bin indices instead of the codevector indices.

The rate and distortion performance of lattice vector quantizers are often described
using high-resolution assumptions, i.e. the rate of the quantizer is sufficiently high
and the source pdf sufficiently smooth, so that the pdf can be considered constant
within Voronoi regions of the code vectors. Under these assumptions the theoretical
performance of lattice vector quantizers can be derived forarbitrary vector dimension.
This is in contrast to the asymptotics used when deriving theoretical expressions
for the performance of random codebooks. For random codebooks the theoretical
performance is usually derived based on asymptotically high vector dimension but
arbitrary rates. The theory behind random binning relies upon asymptotically high
vector dimension and as such when using random binning inK-channel MD-LVQ
we make use of both asymptotics, i.e. high vector dimension and high rates. It is also
worth mentioning that we consider memoryless sources with infinite alphabets such as
e.g. the Gaussian source, whereas the analysis of SCECs relies upon strong typicality
and as such only discrete alphabet memoryless sources are valid.50

In lattice codebooks, the code vectors are generally not jointly typical and the
concept of random binning is therefore not directly applicable. It is, however, possible
to simulate joint typicality by for example some distance metric, so that code vectors
close together (in e.g. Euclidean sense) are said to be “jointly typical”. The index
assignments of MD-LVQ is another example of how to simulate joint typicality. We
use the term admissibleK-tuple for any set ofK code vectors(λ0, . . . , λK−1) which
is obtained by applying the index-assignment map on a code vectorλc, i.e.α(λc) =

(λ0, . . . , λK−1) for all λc ∈ Λc. So for lattice code vectors we exploit that only a
subset of allK-tuples are admissibleK-tuples which, in some sense, corresponds to

50However, in [111] the authors remark that the analysis of SCECs can be generalized to continuous-
alphabet memoryless sources by using the techniques of [41,Ch.7].
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the fact that only a subset of allK-tuples of random code vectors are jointly typical.
LetJ ⊆ {0, . . . ,K−1} denote an index set, where|J | = k. A k-tuple is a set ofk

elements{λj}, j ∈ J whereλj ∈ Λj . Thek-tuple given by{λj} = {αj(λc)}, j ∈ J

for anyλc ∈ Λc is said to be an admissiblek-tuple. Each latticeΛi contains an infinite
number of lattice points (or reproduction vectors) but we show by Lemma 7.3.1 that
only finite sets of these points are needed for the codebooks of the side quantizers and
we denote these sets byCi ⊂ Λi, where|Ci| <∞. The set

{λ2|{λ1, λ0}} =

{λ2 ∈ Λ2 : λ2 = α2(λc) and(α1(λc), α0(λc)) = (λ1, λ0), ∀λc ∈ Λc},
(7.14)

denotes the set ofλ2’s which are in admissiblek-tuples that also contain the specific
elementsλ0 andλ1.

Since we consider the asymmetric case some ambiguity is present in the term
D(K,k), because it is not specified whichk out of theK descriptions that are to be
considered. To overcome this technicality we introduce thenotationD(K,J), J ∈ K ,
whereK denotes the set of combinations of descriptions for which the distortion is
specified. For example, if we are only interested in the distortion when receiving
descriptions{0, 1}, {0, 2} or {0, 1, 2} out of all subset of{0, 1, 2}, then K =

{{0, 1}, {0, 2}, {0, 1, 2}} and nothing is guaranteed upon reception of either a single
description or the pair of descriptions{1, 2}.

We will now outline the construction of(K,K ) MD-LVQ. It can be seen that the
construction of(K,K ) MD-LVQ resembles the construction of(K, k) SCECs given
in [111].

Construction of lattice codebooks Construct aK-channel MD-LVQ system with
one central quantizer andK side quantizers of rateRi. Let Cc be the codebook of
the central quantizer and letλc(jc) ∈ Cc denote thejth

c element ofCc. Similarly,
let Ci wherei = 0, . . .K − 1 denote the codebook of theith side quantizer and let
λi(ji) ∈ Ci denote thejth

i codeword ofCi. Finally, letα be the index-assignment
function that maps central lattice points to sublattice points.

Random binning Perform random binning on each of the side codebooksCi to
reduce the side description rate fromRi to Rb,i bit/dim., where we assumeRi >

Rb,i. Let ξi = 2L(Ri−Rb,i+γi) whereγi > 0. Assignξi codewords to each of the
2LRb,i bins of each codebook. The codewords for a given bin of codebook C0 is
found by randomly extractingξ0 codewords fromC0 uniformly, independently and
with replacement. This procedure is then repeated for all the remaining codebooks
Ci, i = 1, . . . ,K − 1.

Encoding Given a source wordX ∈ RL, find the closest elementλc ∈ Cc and use
α to obtain the correspondingK-tuple, i.e.α(λc) = (λ0(j0), . . . , λK−1(jK−1)). If
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the codewordλi /∈ Ci then setji equal to a fixed special symbol51, sayji = ϑ. For
i = 0, . . . ,K − 1 define the functionfi(λi(ji)) which indicates the index of a bin
containing the codewordλi(ji). If λi(ji) is found in more than one bin, setfi(λi(ji))

equal to the least index of these bins. Ifλi(ji) is not in any bin, setfi(λi(ji)) = ϑ.
The bin indexfi(λi(ji)) is sent over channeli.

Decoding The decoder receives somem bin indices and searches through the corre-
sponding bins to identify a unique admissiblem-tuple.

Remark7.3.1. For (K,K ) MD-LVQ the notion of large block length, i.e.L → ∞,
is introduced in order to make sure that standard binning arguments can be applied.
However, it should be clear that the quantizer dimension is allowed to be finite. If
finite quantizer dimension is used it must be understood that(finite length) codewords
from consecutive blocks are concatenated to form anL-sequence of codewords. The
dimension of theL-sequence becomes arbitrarily large asL → ∞, but the quantizer
dimension remains fixed. As such this will not affect the binning rate but the distortion
tuple{D(K,J)}J∈K is affected in an obvious way.

Theorem 7.3.1.LetX ∈ RL be a source vector constructed by blocking an arbitrary
i.i.d. source with finite differential entropy into sequences of lengthL. Let J ⊆
{0, . . . ,K − 1} and letλJ denote the set of codewords indexed byJ . The set of
decoding functions is denotedgJ :

⊗

j∈J Λj → RL. Then, under high-resolution
assumptions, if

E[ρ(X, gJ(λJ ))] ≤ D(K,J), ∀J ∈ K ,

whereρ(·, ·) is the squared-error distortion measure and for allS ⊆ J
∑

i∈S

Rb,i >
∑

i∈S

γi +
1

L
log2(|{λS |λJ−S}|), (7.15)

the rate-distortion tuple(Rb,0, . . . , Rb,(K−1), {D(K,J)}J∈K ) is achievable.

Proof. See Appendix J.2. �

We have the following corollary for the symmetric case:

Corollary 7.3.1 (Symmetric case). Let X ∈ RL be a source vector constructed by
blocking an arbitrary i.i.d. source with finite differential entropy into sequences of
lengthL. For anyJ ⊆ {0, . . . ,K − 1} let λJ denote the set of received codewords
and letgJ :

⊗

j∈J Λj → RL be the set of decoding functions. Then, under high-
resolution assumptions, if

E[ρ(X, gJ(λJ ))] ≤ D(K,|J|), ∀J ⊆ {0, . . . ,K − 1}, |J | ≥ k,

whereρ(·, ·) is the squared-error distortion measure and for allS ⊆ J

51The rate increase caused by the introduction of the additional symbolϑ is vanishing small for largeL.
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Rb > γ +
1

|S|L log2(|{λS |λJ−S}|), (7.16)

the tuple(Rb, D
(K,k), D(K,k+1), . . . , D(K,K)) is achievable.

Proof. Follows immediately from Theorem 7.3.1. �

7.3.2 Symmetric Case

To actually apply Theorem 7.3.1 we need to find a set of binningrates{Rb,i}, i =

0, . . . ,K − 1, such that (7.15) is satisfied for all subsetsS of J and for all elements
J of K . Let us consider the symmetric case whereK = 3 and design a(3, 2)

MD-LVQ system. We then haveJ = {i0, i1} and it suffices to check the two cases
whereS = i0 andS = {i0, i1}. Without loss of generality we assume thati0 =

0 and i1 = 1. The number of distinctλ1’s that is paired with a givenλ0 can be
approximated52 by (ψL

√
N ′)L, whereN ′ = N1/L is the dimension normalized index

value describing the index (redundancy) per dimension. LetS = {0, 1} and notice
that |{λS}| ≤ |{λ1|λ0}| · |C0|. Then, asymptotically, asN → ∞, it follows that
|{λ1|λ0}| = (ψL

√
N ′)L. Let us now bound the codebook cardinality.

Lemma 7.3.1. |Ci| = 2LRi. Furthermore, the entropy of the quantizer indices is
upper bounded byRi.53

Proof. See Appendix J.1. �

We are now able to findRb by considering the two cases|S| = 1, 2. For |S| = 1

we have from (7.16) that

Rb,I > γ + log2(ψL

√
N ′), (7.17)

whereas for|S| = 2

Rb,II >
1

2
Rs + γ +

1

2
log2(ψL

√
N ′). (7.18)

The dominantRb is then given byRb = max(Rb,I , Rb,II). Since (7.17) and (7.18)
depends uponN ′ the dominating binning rate depends uponN ′. To resolve this
problem, we form the inequalityRb,II ≥ Rb,I and find thatN ′ ≤ 22Rs/ψ2

L. So
for N ′ ≤ 22Rs/ψ2

L we haveRb = Rb,II . It is interesting to see that when inserting
N ′ = 22Rs/ψ2

L in (7.17) we getRb,I = γ + Rs. Coincidently,Rb,I becomes
effective when the binning rateRb is equal to the codebook rateRs, which violates
the assumption thatRb > Rs.

It is clear that if we setRb equal to the lower bound in (7.18) we get

Rb =
1

2
Rs +

1

4
log2(N

′) +
1

2
log2(ψL),

52Recall that this approximation becomes exact asN → ∞.
53For largeL there is really no loss by assuming that2LRi is an integer.
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from which we can expressN ′ andRs as functions of each other andRb, that is

N ′ = 24Rb−2Rsψ−2
L , (7.19)

and

Rs = 2Rb − log2(ψL) − 1

2
log2(N

′). (7.20)

It follows that when varying the redundancy per dimensionN ′, the binning rateRb

can be kept constant by adjustingRs according to (7.20).
In order to compare these results to the existing bounds we let L → ∞ so that by

inserting (7.20) in (5.34) we get

D(3,2) =
1

12
ψ2
∞N

′2−2Rs

=
1

12
ψ4
∞(N ′)22−4Rb .

(7.21)

The central distortion (Dc = D(3,3)) in MD-LVQ is given by

D(3,3) = 2−2Rc , (7.22)

whereRc = Rs + log2(N
′) which leads to

Rc = 2Rb − log2(ψ∞) +
1

2
log2(N

′). (7.23)

Inserting (7.23) into (7.22) leads to

D(3,3) =
ψ2
∞
N ′ 2−4Rb . (7.24)

Lemma 7.3.2. At high resolution, the two and three-channel distortions of (3, 2)

SCECs are identical to (7.21) and (7.24) in the quadratic Gaussian case.

Proof. See Appendix J.1. �

7.3.3 Asymmetric Case

For the asymmetric case,K = 3 and whereK = {{0, 1}, {0, 2}, {1, 2}, {0, 1, 2}},
i.e. reconstruction is possible when any two or more descriptions are received, it can
be shown (similar to the symmetric case) that the binning rateRb,i is lower bounded
byRb,i = max(Rb,iI

, Rb,iII
) where

Rb,iI
= log2(ψL) +

1

2
log2(N

′
π) − log2(N

′
i) (7.25)

and

Rb,iII
=

1

2
log2(ψL) +

1

4
log2(N

′
π) − 1

2
log2(N

′
i) +

1

2
Ri, (7.26)
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whereN ′
π = N ′

0N
′
1N

′
2.

To see this note that ifλi andλj both are in the same admissibleK-tuple, thenλi

must be within a spherẽV centered atλj . The volume ofṼ is ν̃, which implies that
the maximum number of distinctλi points withinṼ is approximatelỹν/νi. In other
words,

|{λi|λj}| ≈ ν̃/νi

= (ψL

√

N ′
0N

′
1N

′
2/Ni)

L,
(7.27)

where the approximation becomes exact for large index values. With this it is easy to
see that

Rb,i >
1

L
log2(|{λi|λj}|)

≈ log2(ψL) +
1

2
log2(N

′
0N

′
1N

′
2) − log2(Ni),

(7.28)

which is identical to (7.25). From Theorem 7.3.1 we can also see that the pair-wise
sum rate must satisfy

Rb,i +Rb,j >
1

L
log2(|Ci||{λj |λi}|)

≈ Ri + log2(ψL) +
1

2
log2(N

′
0N

′
1N

′
2) − log2(Nj),

(7.29)

which can equivalently be expressed asRb,i + Rb,j >
1
L log2(|Cj ||{λi|λj}|) from

which the individual rate requirements can be found to be given by (7.26).

7.4 Comparison toK-Channel Schemes

In the asymptotic case of large lattice vector quantizer dimension and under high
resolution conditions, we showed in the previous sections that existing MD bounds
can be achieved. However, it is also of interest to consider the rate-distortion perfor-
mance that can be expected in practical situations. Towardsthat end we presented
some numerical results obtained through computer simulations in Sections 5.6 and 6.6.

In this section we will compare the theoretical performanceof the proposed MD-
LVQ scheme to existing state-of-the-artK-channel MD schemes [18, 127]. While
the schemes [18, 127] (as well as the proposed scheme) can be shown to be optimal,
under certain asymptotic conditions, they are not without their disadvantages when
used in practical situations. We will, however, refrain from comparing implementation
specific factors such as computational complexity as well asscalability in dimension,
description rate and number of descriptions. Such comparisons, although relevant, are
often highly application specific.

The above mentioned schemes are all based on LVQ and it is therefore possible to
compare their theoretical rate-distortion performance when finite-dimensional lattice
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vector quantizers are used. Recall from Section 4.2.2 that the scheme of Chen et
al. [18] has a rate loss of(2K − 1) L-dimensional lattice vector quantizers.54 The
scheme of Østergaard and Zamir [127] was, for the case ofK = 2, shown to have
a rate loss of only twoL-dimensional lattice vector quantizers. While this design
was shown to permit an arbitrary number of descriptions, therate loss forK > 2

descriptions was not assessed. The rate loss of the proposedscheme, on the other hand,
has a somewhat peculiar form. In the case of two descriptions, the rate loss is given
by that of twoL-dimensional quantizers having spherical Voronoi cells.55 However,
in the case ofK > 2 descriptions, there is an additional term which influences the rate
loss.

7.4.1 Rate Loss of MD-LVQ

To be able to assess the rate loss of MD-LVQ when using finite-dimensional quantizers
and more than two descriptions, we letRf denote the description rate (where the
subscriptf indicates that finite-dimensional quantizers are used). Then the distortion
when receiving a single description out ofK = 3 can be found by use of (5.34) to be
given by

D(3,1) =
1

3
G(SL)(2πe)ψ2

LN
′2−2Rf . (7.30)

Equalizing (7.11) and (7.30) reveals that the rate loss (Rf −Rs), forK = 3, is given
by (at high resolution)

Rf −Rs =
1

2
log2(G(SL)(2πe)) + log2(ψL/ψ∞). (7.31)

SinceψL ≤ ψ1 = ψ2
∞ (at least forK = 3) we can upper bound the second term

of (7.31) by

log2(ψL/ψ∞) ≤ log2(ψ∞) = 0.1038 bit/dim. (7.32)

Fig. 7.1 showslog2(ψL/ψ∞) for 1 ≤ L ≤ 101 for K = 3 using the values ofψL

from Table 5.1.

Remark7.4.1. ForK = 2 we haveψL = 1, ∀L, and (7.31) is true. Furthermore, if the
K-channel MD-LVQ scheme is optimal also forK > 3, as we previously conjectured,
then (7.31) is true for anyK ≥ 2 (at high resolution).

It is interesting to observe that both terms in (7.31) are independent of the
particular type of lattice being used. For example, if the product latticeΛ = Z∞

is used for the side quantizers, then the rate loss vanishes (it becomes identical to

54In the asymmetric case where corner points of the rate regionare desired, the rate loss of [18] is only
that ofK lattice vector quantizers. However, in the symmetric case,source splitting is necessary and there
is an additional rate loss.

55This is true in the symmetric case as well as in the asymmetriccase.
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zero) even thoughG(Λ) = 1/12.56 This is not the case with the other two schemes
mentioned above, i.e. [18, 127]. Fig. 7.2 shows the rate lossof the different schemes
for K = 3 descriptions. The lattices used are those of Table 3.1. Since we do not
haveψL values for all evenL we have in Fig. 7.2 simply used the average of the two
neighboring values, that is

ψL =







ψL−1 + ψL+1

2
, L even

ψL, L odd.
(7.33)
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Figure 7.1: The rate loss due to the termlog2(ψL/ψ∞) is here expressed in bit/dim. as a
function of the dimensionL.

7.5 Conclusion

In the previous two chapters we initially used a single index-assignment map to control
the redundancy between descriptions. In this chapter we then showed that by use of
random binning on the side codebooks in addition to the index-assignment map it
was possible to introduce more rate-distortion controlling parameters into the design.
While the use of random binning is standard procedure in distributed source coding

56Recall that the central distortion depends upon the type of lattice being used. However, at high
resolution conditions, the index value is large (i.e.N → ∞) and as such the central distortion is very
small compared to the side distortion and can therefore be neglected.
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Figure 7.2: Rate loss of the different three-channel MD schemes. For comparison we have
included a lower bound (thick solid curve), which corresponds to the sum rate loss of threeL-
dimensional quantizers having spherical Voronoi cells. The horizontal dashed line corresponds
to the sum rate loss of three lattice vector quantizers with hypercubic cells and the circles
illustrate the performance of a scheme having a sum rate lossof three optimal lattice vector
quantizers.

and has previously been applied to MD schemes based on randomcodebooks as well,
it appears to be the first time it is used in connection with index-assignment based MD
schemes.

We showed that the proposed design of MD-LVQ, asymptotically in rate and
lattice vector quantizer dimension, achieves existing rate-distortion MD bounds in
the quadratic Gaussian case for two and three descriptions.

In finite lattice vector quantizer dimensions, we showed that the rate-loss of the
proposed design is superior to existing state-of-the-art schemes.





Chapter 8
Network Audio Coding

In this chapter we apply the developed MD coding scheme to thepractical problem of
network audio coding. Specifically, we consider the problemof reliable distribution
of audio over packet-switched networks such as the Internetor general ad hoc
networks.57 Thus, in order to combat (excessive) audio packet losses we choose to
transmit multiple audio packets.

Many state-of-the-art audio coding schemes perform time-frequency analysis of
the source signal, which makes it possible to exploit perceptual models in both the time
and the frequency domain in order to discard perceptually-irrelevant information. This
is done in e.g. MPEG-1 (MP3) [93], MPEG-2 advanced audio coding (AAC) [94],
Lucent PAC [123] and Ogg Vorbis [134]. The time-frequency analysis is often done
by a transform coder which is applied to blocks of the input signal. A common
approach is to use the modified discrete cosine transform (MDCT) [90] as was done
in e.g. MPEG-2 AAC [94], Lucent PAC [123] and Ogg Vorbis [134]. In this chapter
we combine the MDCT withK-channel MD-LVQ in order to obtain a perceptual
transform coder, which is robust to packet losses.

MD coding of audio has to the best of the author’s knowledge sofar only been
considered for two descriptions [3, 119]. However, here we propose a scheme that is
able to use an arbitrary number of descriptions without violating the target entropy.
We show how to distribute the bit budget among the MDCT coefficients and present
closed-form expressions for the rate and distortion performance of theK-channel
MD-LVQ system which minimize the expected distortion basedon the packet-loss
probabilities. Theoretical results are verified with numerical computer simulations and
it is shown that in environments with excessive packet losses it is advantageous to use
more than two descriptions. We verify the findings that more than two descriptions
are needed by subjective listening tests, which further proves that acceptable audio

57Part of the research presented in this chapter represents joint work with O. Niamut.
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quality can be obtained even when the packet-loss rate is as high as 30%.

8.1 Transform Coding

In this section we describe the MDCT and we define a perceptualdistortion measure
in the MDCT domain.

8.1.1 Modified Discrete Cosine Transform

The MDCT is a modulated lapped transform [90] which is applied on overlapping
blocks of the input signal. A window of2M time-domain samples is transformed into
M MDCT coefficients, whereafter the window is shiftedM samples for the nextM
MDCT coefficients to be calculated.

Given a blocks ∈ R2M , the set ofM MDCT coefficients is given by [90]

xk =
1√
2M

2M−1∑

n=0

hnsn cos

(
(2n+M + 1)(2k + 1)π

4M

)

, k = 0, . . . ,M − 1,

(8.1)
wherexk, hn ∈ R andh is an appropriate analysis window, e.g. the symmetric sine
window [90]

hn = sin

((

n+
1

2

)(
π

2M

))

, n = 0, . . . , 2M − 1. (8.2)

The inverse MDCT is given by [90]58

s̃n = hn
1√
2M

M−1∑

k=0

xk cos

(
(2n+M + 1)(2k + 1)π

4M

)

, n = 0, . . . , 2M − 1.

(8.3)

8.1.2 Perceptual Weighting Function

On each block a psycho-acoustic analysis is performed whichleads to a masking
curve that describes thresholds in the frequency domain below which distortions are
inaudible. In our work the masking curve is based on a2nM -point DFT wheren ∈ N
and the computation of the masking curve is described in detail in [140]. Let us denote
the masking curve byΣ. We then define a perceptual weightµ as the inverse of the
masking thresholdΣ evaluated at the center frequencies of the MDCT basis functions,
that is

µk = Σ−1
2nk+1, k = 0, . . . ,M − 1. (8.4)

58Notice that the MDCT is not an invertible transform on a block-by-block basis since2M samples
are transformed into onlyM samples. We therefore use the tilde notation to indicate that, at this point,
the reconstructed samples̃sn are not identical to the original samplessn. In order to achieve perfect
reconstruction we need to perform overlap-add of consecutive reconstructed blocks [90].
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We requireµ to be a multiplicative weight but otherwise arbitrary. We will not
go into more details aboutµ except mentioning that we assume it can be efficiently
encoded at e.g.4 kpbs as was done in [96].

8.1.3 Distortion Measure

Let X ∈ RM denote a random vector process59 and letx ∈ RM be a realization of
X . By Xk andxk we denote thekth components ofX andx, respectively, and we
will useXk to denote the alphabet ofXk. The pdf ofX is denotedfX with marginals
fXk

.
We define a perceptual distortion measure in the MDCT domain betweenx and a

quantized version̂x of x to be the single-letter distortion measure given by60

ρ(x, x̂) ,
1

M

M−1∑

k=0

µk|xk − x̂k|2, (8.5)

whereµk is given by (8.4). The expected perceptual distortion follows from (8.5)
simply by taking the expectation overx, that is

D(x, x̂) =
1

M

M−1∑

k=0

∫

Xk

µk|xk − x̂k|2fXk
(xk)dxk, (8.6)

where we remark thatµ depends ons throughx.

8.1.4 Transforming Perceptual Distortion Measure toℓ2

For the traditional MSE distortion measure which is also known as theℓ2 distortion
measure, it is known that, under high-resolution assumptions, a lattice vector quantizer
is good (even optimal asL → ∞) for smooth sources, see Chapter 3. The MSE
distortion measure is used mainly due its mathematical tractability. However, in
applications involving a human observer it has been noted that distortion measures
which include some aspects of human auditory perception generally perform better
than the MSE. A great number of perceptual distortion measures are non-difference
distortion measures and unfortunately even for simple sources their corresponding
rate-distortion functions are not known. For example, the perceptual distortion
measure given by (8.6) is an input-weighted MSE (becauseµ is a function ofs),
hence it is a non-difference distortion measure.

In certain cases it is possible to derive the rate-distortion functions for general
sources under non-difference distortion measures. For example, for the Gaussian
process with a weighted squared error criterion, where the weights are restricted to

59In fact it is the output of the MDCT of a random vector processS ∈ R
2M .

60Strictly speaking this is not a single-letter distortion measure since the perceptual weight depends upon
the entire vector.
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be linear time-invariant operators, the complete rate-distortion function was found
in [118]. Other examples include the special case of locallyquadratic distortion
measures for fixed rate vector quantizers and under high-resolution assumptions [43],
results which are extended to variable-rate vector quantizers in [80,83]. With regards
to the MD problem, [84] presents a high-resolution rate-distortion region for smooth
sources and locally quadratic distortion measures for the case of two descriptions. The
case of vector sources and more than two descriptions remains unsolved.

Remark8.1.1. In the SD case it has been shown that it is sometimes possible to apply
a function (called a multidimensional compressor) on the source signal in order to
transform it into a domain where a lattice vector quantizer is good. This approach
was first considered by Bennett in [7] for the case of a scalar compressor followed
by uniform scalar quantization. The general case of a multidimensional compressor
followed by lattice vector quantization was considered in [85]. In general anL-
dimensional source vectorX is “compressed” by an invertible mappingF .61 Hereafter
F (X) is quantized by a lattice vector quantizer. To obtain the reconstructed signal̂X ,
the inverse mappingF−1 (the expander) is applied, that is

X → F (·) → Q(·) → F−1(·) → X̂, (8.7)

whereQ denotes a lattice vector quantizer. It was shown in [85] thatan optimal
compressorF is independent of the source distribution and only depends upon the
distortion measure. However, it was also shown that an optimal compressor does not
always exists.62 In the MD case, results on optimal compressors are very limited.
However, it was suggested in [84], that a compressor obtained in a similar way as
for the SD case, might perform well also in the two-description case for smooth
scalar processes. Unfortunately, we have been unsuccessful in finding an analytical
expression for such a vector compressor for our distortion measure (8.5).

In this chapter we will assume that the decoder has access to the perceptual weight
µ, which makes it possible to exploitµ also at the encoder when quantizing the MDCT
coefficients. This has been done before by e.g. Edler et al. [31]. In addition, in the
perceptual MD low delay audio coder presented in [119] a postfilter, which resembles
the auditory masking curve, was transmitted as side information. The input signal
was first pre filtered by a perceptual filter which transforms the input signal into a
perceptual domain that approximates anℓ2 domain. A lattice vector quantizer is used
in this domain and at the decoder the signal is reconstructedby applying the post filter.

We adopt the approach of normalizing the input signal by the perceptual weight.
First we show that, under a mild assumption on the masking curve, this procedure
transforms the perceptual distortion measure into anℓ2 distortion measure. From (8.6)

61The invertible mappingF is for historically reasons called a compressor and said to compress the
signal. However,F is allowed to be any invertible mapping (also an expander) but we will use the term
compressor to be consistent with earlier literature.

62In the scalar case an optimal compressor always exists for a wide range of distortion measures.
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we have that

D(x, x̂) =
1

M

M−1∑

k=0

∫

Xk

µk|xk − x̂k|2fXk
(xk)dxk (8.8)

(a)
=

1

M

M−1∑

k=0

∑

j

∫

Xk∩V ′
j

µk|xk − x̂k|2fXk
(xk)dxk

=
1

M

M−1∑

k=0

∑

j

∫

Xk∩V ′
j

|yk − ŷk|2fXk
(xk)dxk, (8.9)

whereyk = xk
√
µk, ŷk = x̂k

√
µk and(a) follows by breaking up the integral into

disjoint partial integrals over each Voronoi cellV ′
j of the quantizer. In order to perform

the necessary variable substitution in the integral given by (8.9) we write

dyk

dxk
= xk

d

dxk
(
√
µk) +

√
µk. (8.10)

At this point we enforce the following condition on the masking curve. Within each
quantization cell, the first derivative of the masking curvewith respect to the source
signal is assumed approximately zero so that from (8.10)dxk ≈

√

1/µkdyk.63 Inser-
ting this in (8.9) leads to

D(x, x̂) ≈ 1

M

M−1∑

k=0

∑

j

∫

Yk∩Vj

|yk − ŷk|2fXk
(xk)

√

1/µkdyk

=
1

M

M−1∑

k=0

∑

j

∫

Yk∩Vj

|yk − ŷk|2fYk
(yk)dyk,

=
1

M
E

M−1∑

k=0

|yk − ŷk|2,

(8.11)

since it can be shown thatfYk
(yk) = fXk

(xk)
√

1/µk cf. [126, p.100]. In other words,
simply by normalizing the input signalx by the root of the input-dependent weightµ,
the perceptual distortion measure forx is transformed into anℓ2 distortion measure
for y. Therefore, when quantizingy, the distortion is approximately the same when
measuring theℓ2-distortion i.e.E‖y − ŷ‖2/M or transformingy and ŷ back intox
andx̂, respectively, and measuring the perceptual distortion given by (8.6).

8.1.5 Optimal Bit Distribution

Each blocks leads toM MDCT coefficients, which we first normalize by
√
µ and then

vector quantize usingK-channel MD-LVQ. Since, the number of coefficients in the

63To justify this assumption notice that we can approximate the masking curve by piece-wise flat regions
(since the masking curve also needs to be coded), which meansthat small deviations of the source will not
affect the masking curve.
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MDCT is quite large, e.g.M = 1024 in our case, it is necessary to split the sequence
of M coefficients into smaller vectors to make the quantization problem practically
feasible. Any small number of coefficients can be combined and jointly quantized.
For example, if the set ofM coefficients is split intoM ′ bands (vectors) of lengthLk

wherek = 0, . . . ,M ′ − 1 it can be deduced from (5.40) that the total distortion is
given by64

Da =
1

M ′

M ′−1∑

k=0

K̂1,kG(Λk)22(h̄(Yk)−Rck
)

+ K̂2,kψ
2
Lk
G(Sk)22(h̄(Yk)−Rck

)2
2Kk

Kk−1 (Rck
−Rk)

+
pKk

Lk
E‖Yk‖2,

(8.12)

where we allow the quantizersΛk and the number of packetsKk to vary among the
M ′ bands as well as from block to block. For a given target entropy R∗ we need to
find the individual entropiesRk for theM ′ bands, such that

∑
Rk = R∗/K and in

addition we need to find the entropiesRck
of the central quantizers. For simplicity

we assume in the following that theM ′ bands are of equal dimensionL′, that similar
central latticesΛc are used, and that the number of packetsK is fixed for allk.

We now use the fact that (5.44) and (5.45) hold for any bit distribution, hence we
may insert (5.44) and (5.45) into (8.12) which leads to individual distortions given by

Dk = K̂1G(Λc)2
2(h̄(Yk)−Rk)

(

1

K − 1

K̂2

K̂1

G(SL′)

G(Λc)
ψ2

L′

)K−1
K

+ K̂2G(SL′)22(h̄(Yk)−Rk)

(

(K − 1)
K̂1

K̂2

G(Λc)

G(SL′)

)(

1

K − 1

K̂2

K̂1

G(SL′)

G(Λc)
ψ2

L′

)K−1
K

+
pK

L′ E‖Yk‖2

= a02
2(h̄(Yk)−Rk) +

pK

L′ E‖Yk‖2,

(8.13)

wherea0 is independent ofk and given by

a0 = K̂1G(Λc)

(

1

K − 1

K̂2

K̂1

G(SL′)

G(Λc)
ψ2

L′

)K−1
K

. (8.14)

64The distortion over individual normalized MDCT coefficients is additive in the MDCT domain (recall
that we are using a single-letter distortion measure). However, adding the entropies of a set of MDCT
coefficients is suboptimal unless the coefficients are independent. Futhermore, the individual MDCT
coefficients will generally be correlated over consecutiveblocks. For example, overlapping blocks of an
i.i.d. process yields a Markov process. For simplicity, we do not exploit any correlation across blocks nor
between the vectors of MDCT coeffficients (but only within the vectors).
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In order to find the optimal bit distribution among theM ′ bands subject to the entropy
constraint

∑M ′−1
k=0 Rk = R∗/K we take the common approach of turning the con-

strained optimization problem into an unconstrained problem by introducing a Lagran-
gian cost functional of the form

J =

M ′−1∑

k=0

Dk + λ

M ′−1∑

k=0

Rk. (8.15)

Differentiating (8.15) w.r.t.Rk leads to

∂J

∂Rk
= −2 ln(2)a02

2(h̄(Yk)−Rk) + λ. (8.16)

After equating (8.16) to zero and solving forRk we get

Rk = −1

2
log2

(
λ

2 ln(2)a0

)

+ h̄(Yk). (8.17)

In order to eliminateλ we invoke the sum-rate constraint
∑M ′−1

k=0 Rk = R∗/K and
get

M−1∑

k=0

Rk = −M
′

2
log2

(
λ

2 ln(2)a0

)

+
M ′−1∑

k=0

h̄(Yk) = R∗/K, (8.18)

from which we obtain

λ = 2 ln(2)a02
− 2

M′ (R
∗/K−∑M′−1

k=0 h̄(Yk)). (8.19)

We can now eliminateλ by inserting (8.19) into (8.17), that is

Rk =
R∗/K −∑M ′−1

k=0 h̄(Yk)

M ′ + h̄(Yk). (8.20)

With the simple Lagrangian approach taken here there is no guarantee that the
entropiesRk given by (8.20) are all non-negative. It might be possible toextend
the Lagrangian cost functional (8.15) byM ′ additional Lagrangian weights (also
called “complementary slackness” variables [128]) in order to obtainM ′ inequality
constraints making sure thatRk ≥ 0 in addition to the single equality constraint
∑
Rk = R∗/K. While the resulting problem can be solved using numerical techni-

ques, it does not appear to lead to a closed-form expression for the individual entropies
Rk. It is not possible either to simply set negative entropies equal to zero since this will
most likely violate the constraint

∑
Rk = R∗/K. Instead we propose a sequential

procedure where we begin by considering allM ′ bands and then one-by-one eliminate
bands having negative entropies. We assign entropies to each band using (8.20) and
then find the one having the largest negative entropy and exclude that one from the
optimization process. This procedure continues until all entropies are positive or zero
as shown in Table 8.1.
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1. I = {0, . . . ,M ′ − 1}

2. h =
∑

k∈I
h̄(Yk)

3. c = R∗/K−h
|I |

4. R = {Rk : Rk = c+ h̄(Yk) andRk < 0, k ∈ I }

5. If |R| > 0 then goto 2 and setI := I \j, whereRj ≤ Rk, ∀k ∈ I

6. Rk =

{

c+ h̄(Yk), k ∈ I

0, otherwise

Table 8.1: Bit-allocation algorithm.

The motivation for this approach is that ultimately we wouldlike the contribution
of each band to the total distortion to be equal, since they are all approximately
equally sensitive to distortion after being flattened by themasking curve. However, the
normalized MDCT coefficients in some bands have variances which are smaller than
the average distortion, hence assigning zero bits to these bands leads to distortions
which are lower than the average distortion over all bands. Therefore, the bit budget
should only be distributed among the higher variance components.

8.2 Robust Transform Coding

In this work we apply MD-LVQ on the normalized coefficients ofan MDCT to
obtain a desired degree of robustness when transmitting encoded audio over a lossy
network. The encoder and decoder of the complete scheme are shown in Figs. 8.1(a)
and 8.1(b), respectively. In the following we describe how the encoding and decoding
is performed.

8.2.1 Encoder

By swe denote the current block, which has been obtained by blocking the input signal
into overlapping blocks each containing2M samples. TheM MDCT coefficients are
obtained by applying anM -channel MDCT ons and is represented by the vector
x. It is worth mentioning that we allow for the possibility to use a flexible time
segmentation in order to better match the time-varying nature of typical audio signals,
cf. [95]. Each block is encoded intoK descriptions independent of previous blocks
in order to avoid that the decoder is unable to successfully reconstruct due to previous
description losses.
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Figure 8.1: Encoder and decoder.

As discussed in Section 8.1.5 it is infeasible to jointly encode the entire set of
M MDCT coefficients and instead we splitx into M ′ disjoint subsets. The MDCT
coefficients are then normalized by the perceptual weightsµ in order to make sure
that they are approximately equally sensitive to distortion and moreover to make sure
that we operate in anℓ2 domain where it is known that lattice vector quantizers are
among the set of good quantizers. Based on the differential entropies of the normalized
MDCT coefficientsy and the target entropyR∗ we find the individual entropies
Rk, k = 0, . . . ,M ′ − 1 by using the algorithm described in Table 8.1. Fig. 8.2(a)
shows an example of the distribution of differential entropiesh̄(Y ) in a 1024-channel
MDCT. In this example a 10 sec. audio signal (jazz music) sampled at 48 kHz was
input to the MDCT. Fig. 8.2(b) shows the corresponding discrete entropies assigned
to each of the 1024 bands when the target entropy is set toR∗ = 88 kbps.

It may be noticed from Fig. 8.2(b) that the bit budget is mainly spent on the lower
part of the normalized MDCT spectrum. This behavior is typical for the audio signals
we have encountered. The reason is partly that the audio signals have most of their
energy concentrated in the low frequency region but also that the high frequency part
is deemphasized by the perceptual weight. The perceptual weight is approximately
proportional to the inverse of the masking curve and at the high frequency region the
steep positive slope of the threshold in quiet dominates themasking curve. We remark
that the bit allocation effectively limits the band width ofthe source signal since
high frequency bands are simply discarded and it might therefore prove beneficial
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Figure 8.2: Differential and discrete entropies for the normalized MDCT coefficients (expressed
in bit/dim.).

(perceptually) to use some kind of spectral band replication at the decoder in order to
recover some of the lost high frequency components.

The entropyRk describes the total entropy assigned to thekth band (or thekth

subset of bands if vector quantization is applied). If the number of descriptions isK
then each side description operates at an entropy ofRk/K bit/dim. Knowledge of
Rk, the differential entropȳh(Yk), the number of descriptionsK and the packet-
loss probabilityp makes it possible to find the scaling factorsνk andNk of the
central and side quantizers, respectively by use of (5.44) and (5.45). This in turn
completely specify a MD-LVQ scheme havingK descriptions. Each normalized
MDCT coefficient or vector of coefficientsyk is then first quantized with the central
quantizerQk(yk) = λck

after which index assignmentsα(λck
) = {λ0k

, . . . , λKk−1}
are performed in order to find the codewords of the side quantizers. The codewords
of the side quantizers are losslessly coded and put intoK individual packets. Each
packet then containsM ′ encoded codewords.

It is required that the perceptual weightµ is somehow transmitted to the decoder
in order to be able to reconstruct. Since theK packets have an equal chance of getting
lost we need the perceptual weight in all packets, which leads to a certain degree of
overhead. In the case where more than one packet is received we therefore waste
bits. It might be possible to apply some sort of MD coding on the perceptual weight
in order to decrease the amount of side information which needs to be duplicated in
all packets. However, it is outside the scope of this chapterto investigate the many
aspects of perceptual lossless coding ofµ and we refer the readers to the work of [96]
for more details. In the following we will simply assume thatthe perceptual weight
can be perceptually lossless coded at 4 kbps, hence if the target entropy isR∗ = 96

kpbs and two packets are to be used, the entropy we can actually use for MD-LVQ is
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then only88 kbps, since8 kbps (4 kbps in each packet) are used for the weight. If
a greater number of packets is desired the overhead for transmitting µ increases even
further.

8.2.2 Decoder

At the receiving side an estimatêy of the normalized MDCT spectrum is first obtained
by simply taking the average of the received descriptions, i.e. ŷk = 1

κ′

∑

i∈l′ λik
,

wherel′ denotes the indices of the received descriptions andκ′ = |l′|. This estimate is
then denormalized in order to obtainx̂, i.e. x̂k = ŷk/

√
µk. Finally the inverse MDCT

(including overlap-add) is applied in order to obtain an approximationŝ of the time
domain signals. The decoding procedure is shown in Fig. 8.1(b).

8.3 Results

In this section we compare numerical simulations with theoretical results and in
addition we show the results of a subjective listening test.We first show results related
to the expected distortion based on the packet-loss probabilities and then we show
results for the case of scalable coding. In both cases we assume a symmetric setup.

8.3.1 Expected Distortion Results

For the objective test we use four short audio clips of different genres (classical jazz
music, German male speech, pop music, rock music) each having a duration between
10 and 15 sec. and a sampling frequency of48 kHz. We refer to these fragments
as “jazz”, “speech” , “pop” and “rock”. We set the target entropy to 96 kbps (as
was done in [119]) which corresponds to2 bit/dim. since the sampling frequency is
48 kHz. We do not encode the perceptual weight but simply assumethat it can be
transmitted to the receiver at an entropy of4 kbps. Since the weight must be included
in all of theK descriptions we deduct4K kbps from the total entropy, hence the
effective target entropyR∗

e is given byR∗
e = R∗ − 4K so that a single description

system hasR∗
e = 92 kbps whereas a four description system hasR∗

e = 80 kbps (i.e.
20 kbps for each side description). For simplicity we furthermore assume that the
sources are stationary processes so that we can measure the statistics for each vector
of MDCT coefficients upfront. However, since audio signals in general have time
varying statistics we expect that it will be possible to reduce the bit rate by proper
adaptation to the source. Since for this particular test we are merely interested in
the performance of the proposed audio coder with a varying number of descriptions
we will not address the issue of efficient entropy coding but simply assume that the
quantized variables can be losslessly coded arbitrarily close to their discrete entropies.
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Table 8.2 shows the discrete entropies of the quantized normalized MDCT coefficients
for the four test fragments.

K = 2 K = 2 K = 3 K = 3 K = 4 K = 4

kbps bit/dim. kbps bit/dim. kbps bit/dim.
jazz 96.22 1.00 97.09 0.67 96.87 0.51
speech 93.48 0.98 96.00 0.67 96.47 0.50
pop 93.35 0.98 95.25 0.66 95.57 0.50
rock 93.76 0.98 95.38 0.66 95.60 0.50

Table 8.2: Numerical measured output entropies in kilobits per second(kbps) and bit/dim. per
description. The target entropy isR∗ = 96 kbps or2 bit/dim.

We block the normalized MDCT spectrum into vectors of lengthtwo and use the
Z2 lattice vector quantizer. Because of the short duration of the test fragments the
resulting expected distortions depend upon the realizations of the packet loss patterns.
This phenomena has been noted by other authors, cf. [3]. We therefore decided
to average the distortion results over three different losspatterns obtained by using
different seeds to the random number generator. The numerically obtained expected
distortions are shown in Tables 8.3–8.6 and Figs. 8.3(a) and8.3(b).

K = 1 p = 10% p = 30% p = 50%

jazz 18.17 (18.15) 22.94 (23.12) 25.16 (25.23)
speech 17.84 (17.79) 22.61 (22.82) 24.83 (24.86)
pop 17.89 (17.83) 22.66 (22.83) 24.88 (24.91)
rock 18.20 (18.20) 22.97 (23.12) 25.18 (25.23)

Table 8.3: Theoretical (numerical) expected distortions expressed in dB forK = 1 andp =

10, 30 and50%. The target entropy isR∗ = 96 kbps or2 bit/dim.

K = 2 p = 10% p = 30% p = 50%

jazz 9.44 (10.42) 17.96 (18.33) 22.24 (22.38)
speech 8.80 (9.94) 17.55 (18.04) 21.88 (21.80)
pop 9.04 (10.32) 17.62 (18.22) 21.94 (22.11)
rock 9.70 (10.66) 18.00 (18.36) 22.27 (22.39)

Table 8.4: Theoretical (numerical) expected distortions expressed in dB forK = 2 andp =

10, 30 and50%. The target entropy isR∗ = 96 kbps or2 bit/dim.

As can be seen in Figs. 8.3(a) and 8.3(b) the expected distortions depend not only
on the packet-loss rate but also upon the number of descriptions. At high packet-loss
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K = 3 p = 10% p = 30% p = 50%

jazz 17.54 (17.49) 18.80 (18.76) 21.39 (21.34)
speech 15.62 (15.50) 17.34 (17.29) 20.51 (20.56)
pop 16.38 (16.28) 17.85 (17.75) 20.76 (20.66)
rock 17.44 (17.33) 18.75 (18.63) 21.38 (21.29)

Table 8.5: Theoretical (numerical) expected distortions expressed in dB forK = 3 andp =

10, 30 and50%. The target entropy isR∗ = 96 kbps or2 bit/dim.

K = 4 p = 10% p = 30% p = 50%

jazz 20.39 (20.35) 20.61 (20.59) 21.65 (21.59)
speech 18.88 (18.75) 19.17 (19.18) 20.52 (20.42)
pop 19.14 (19.08) 19.41 (19.46) 20.70 (20.71)
rock 20.27 (20.18) 20.50 (20.44) 21.58 (21.50)

Table 8.6: Theoretical (numerical) expected distortions expressed in dB forK = 4 andp =

10, 30 and50%. The target entropy isR∗ = 96 kbps or2 bit/dim.

rates it is advantageous to use a higher number of packets. Toverify these findings
we performed an additional subjective comparison test. We chose three different
fragments (jazz, speech and rock) and three different packet-loss rates (p = 0.1,
p = 0.3 and p = 0.5). We then performed a standard MUSHRA test [66]. At
each packet-loss rate the original signals were encoded using K = 1, 2, 3 and 4

descriptions. Also included in each test were the hidden reference and two anchor
signals (3.5 kHz and 7 kHz lowpass filtered signals). We used nine (non-experts)
listeners in the listening test and the results are shown in Figs. K.2–K.4 in Appendix K
for the individual fragments averaged over the nine participants. The circles in the
figures denote mean values and the bars describe 95% confidence intervals. Fig. 8.4
shows the result when averaging over participants and fragments. Notice that for
p = 0.3 and p = 0.5 there is a significant preference for using more than two
descriptions.

The results of the subjective listening tests show generally no significant difference
between the two and three packet versions for a packet-loss rate of p = 0.1, cf.
Figs. K.2(a)– K.4(a). However, the results based on the perceptual distortion measure
reveals that atp = 0.1 it is beneficial to use two packets instead of three, cf.
Figs. 8.3(a) and 8.3(b). In fact, a reduction in distortion of about 7 dB can be
achieved. This discrepancy can be partly explained by our implementation of the the
bit-allocation strategy outlined in Section 8.1.5. To avoid assigning a too small rate
to a given frequency band (which then would violate the high-resolution assumptions)
we have, in the experiments described above, excluded MDCT bands which were
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Figure 8.3: The expected distortion as a function of packet-loss probabilities for MD-LVQ when
operating at a target entropy of 96 kbps.

assigned a rate lower than 3 bit/dim. per description.65 The effect of this is that
the high-resolution approximations are good so that theoretical and numerical results
agree but the downside is that the input signal is severely lowpass filtered. The
contribution of the high frequency bands to the total distortion is therefore high,
hence, the reception of more than two descriptions does not improve the quality of
the reconstructed signal much. In addition we would like to emphasize two important
factors which might also contribute to the inconsistency between subjective listening
tests and the perceptual distortion measure. First of all, the perceptual distortion
measure is based upon a single block at a time and therefore the continuity of the
signal over time is not addressed.66 Secondly, the distortion measure is defined in the
MDCT domain and since the MDCT is not an orthogonal transformthe distortion in
the MDCT domain is not equivalent to the distortion in the time domain.

As previously mentioned we have in these tests excluded MDCTbands where the
rate assignment is less than 3 bit/dim. per description to make sure that the high-
resolution assumptions are valid. Such an approach excludes a great amount of
MDCT bands (especially those representing the high frequency contents of the signal)
and the coded signal sounds muffled (lowpass filtered). The reasoning behind this

65If the numerically measured discrete entropy is, for example, 0.1 bit/dim. greater than the specified
theoretical entropy, then, since the sampling frequency is48 kHz, the resulting bit rate is 4.8 kbps above the
target entropy. Furthermore, if this 0.1 bit/dim. gap is perdescription, then, in a three-description setup, the
resulting rate would exceed the target rate by 14.4 kbps. Practical experiments have shown that at 3 bit/dim.
per description, the numerically measured discrete entropy is off by less than 0.03 bit/dim. per description
for a range of index values.

66The listeners agreed that the “hick-ups” resulting from time gaps due to packet losses were the most
annoying artifacts present in the coded signals. The overlapping nature of the MDCT is, however, able to
reduce the impact of isolated packet losses.
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Figure 8.4: MUSHRA test results averaged over all three audio clips forp = 0.1, 0.3 and
p = 0.5. The seven signals appear in the following order: Hidden ref., 3.5 kHz, 7 kHz,K =

1,K = 2, K = 3 andK = 4.

choice is that a “lowpass” filtered version of the signal (without time gaps) is often
preferable over a full bandwidth signal (with time gaps). Alternatively, we may take
into account that the practical rate becomes too high for thebands that are assigned a
too low theoretical rate. Thus, we can heuristically assigna lower target rate for the
MDCT coefficients representing the higher frequency bands.Since we encode two-
dimensional vectors there are 512 bands in total but only about the first 300 of these
are assigned a positive rate. We then modify the scale factorνk for thekth band by
the following rule

νk =







1.0 · νk, 0 ≤ k ≤ 50,

1.3 · νk, 51 ≤ k ≤ 100,

1.4 · νk, 101 ≤ k ≤ 200,

1.5 · νk, 201 ≤ k ≤ 250,

2.0 · νk, 251 ≤ k ≤ 300.

(8.21)

For each different fragment we set the targetR∗ such that the practical rate is very
close to96 kbit/sec. (incl.4 kbit/sec. per packet for the masking curve). These rates
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Fragment R∗ [kbit/sec.] H(Y ) [kbit/sec.]
jazz 92.16 95.92
harpsi 86.40 96.34
speech 91.92 96.03
pop 89.76 96.29
rock 94.08 96.09

Table 8.7: The target rateR∗ is set lower than96 kbit/sec. which leads to a practical rate
H(Y ) close to96 kbit/sec.

are shown in Table 8.7.67

The numerically measured expected distortions based on thepacket-loss
probabilities are shown in Fig. 8.5(a) for the jazz fragment. We have swept the packet-
loss probability between 1% and 50% in steps of 1%. Each test is repeated 10 times
to reduce the influence of a particular loss pattern. Notice that already at packet-loss
probabilities as low as one percent it becomes advantageousto use three descriptions
instead of two descriptions. Fig. 8.5(b) shows the results of a similar experiment for
the speech fragment.
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Figure 8.5: Expected distortion as a function of packet-loss probabilities.

8.3.2 Scalable Coding Results

We now assess the improvement of audio quality as more packets are received. This
is a form of scalable coding, where some receivers have access to more information

67In this experiment we have included an additional audio fragment “harpsi”, which consists of “music”
from a Harpsichord.
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Impairment ITU-R Grade ODG
Imperceptible 5.0 0.0
Perceptiple, but not annoying 4.0 -1.0
Slightly annoying 3.0 -2.0
Annoying 2.0 -3.0
Very annoying 1.0 -4.0

Table 8.8: Relationship between the ITU-R 5-grade impairment scale and the ODGs [12].

Fragment (λ0) (λ1) (λ2) Avg.
jazz -2.652 -2.571 -2.720 -2.647
harpsi -1.976 -1.757 -2.606 -2.113
speech -2.649 -2.492 -2.961 -2.701
pop -3.328 -3.375 -3.445 -3.383
rock -2.699 -2.556 -2.787 -2.681

Table 8.9: ODGs when receiving a single description out of three.

(descriptions) than others. In this case no description losses occur. Instead of using the
expected distortion we will use the Objective Difference Grade (ODG) based on the
Matlab implementation by Kabal et al. [70] of the PEAQ standard [108]. The ODGs
are related to the standard ITU-R 5-grade impairment scale as shown in Table 8.8.
Tables 8.9–8.11 show the ODGs for the five different test fragments. The last column
of Tables 8.9 and 8.10 show the mean ODGs when averaged over the three different
combinations of descriptions. These average ODGs as well asthe results of Table 8.11
are also shown in the bar diagram in Fig. 8.6.

From the tables it may be observed that the perceptual distortion is approximately
symmetric, i.e. the ODG is essentially independent of whichpacket is received. In
addition, it can be seen that as more packets are received a substantial improvement in
quality can be expected.

Fragment (λ0, λ1) (λ0, λ2) (λ1, λ2) Avg.
jazz -1.033 -1.162 -1.021 -1.072
harpsi -0.729 -0.993 -0.893 -0.872
speech -0.994 -1.171 -1.040 -1.068
pop -1.897 -2.401 -2.082 -2.127
rock -1.125 -1.284 -1.128 -1.179

Table 8.10:ODGs when receiving two descriptions out of three.
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Fragment (λ0, λ1, λ2)

jazz -0.104
harpsi -0.166
speech -0.189
pop -0.171
rock -0.184

Table 8.11:ODGs when receiving all three descriptions.

jazz harpsi speech pop rock
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

O
bj

ec
tiv

e 
D

iff
er

en
ce

 G
ra

de

One desc.
Two desc.
Three desc.

Figure 8.6: ODGs for the reception of one to three packets out of three fordifferent test
fragments.

8.4 Conclusion

We combined MD-LVQ with transform coding in order to obtain aperceptually
robust audio coder. Previous approaches to this problem were restricted to the
case of only two descriptions. In this work we usedK-Channel MD-LVQ, which
allowed for the possibility of using more than two descriptions. For a given packet-
loss probability we found the number of descriptions and thebit allocation between
transform coefficients, which minimizes a perceptual distortion measure subject to
an entropy constraint. The optimal MD lattice vector quantizers were presented in
closed form, thus avoiding any iterative quantizer design procedures. The theoretical
results were verified with numerical computer simulations using audio signals and it
was shown that in environments with excessive packet lossesit is advantageous to use
more than two descriptions. We verified in subjective listening tests that using more
than two descriptions lead to signals of perceptually higher quality.



Chapter 9
Conclusions and Discussion

9.1 Summary of Results

We presented an index-assignment based design ofK-channel MD-LVQ. Where
previous designs have been limited to two descriptions we considered the general
case ofK descriptions. Exact rate-distortion results were derivedfor the case of
K ≤ 3 descriptions and high resolution conditions for smooth stationary sources
and the squared error distortion measure. In the asymptoticcase of large lattice vector
quantizer dimension and high resolution conditions, it wasshown that existing rate-
distortion MD bounds can be achieved in the quadratic Gaussian case. These results
were conjectured to hold also forK > 3 descriptions.

In the two-description asymmetric case it was shown that theperformance
was superior to existing state-of-the-art asymmetric schemes in finite lattice vector
quantizer dimensions greater than one. In one and infinite dimensions as well as in the
symmetric case (for all dimensions), the performance is identical to existing state-of-
the-art schemes.

In the three-description symmetric and asymmetric cases for finite lattice vector
quantizer dimensions, the rate loss of the proposed design is superior to that of existing
schemes.

The optimal amount of redundancy in the system was shown to beindependent
of the source distribution, target rate and type of latticesused for the side quantizers.
Basically, the channel conditions (expressed through a setof packet-loss probabilities)
describe the required amount of redundancy in the system. Thus, for given channel
conditions, the optimal index-assignment map can be found and adapting to time-
varying source distributions or bit rate requirements amounts to a simple scaling of
the central and side lattice vector quantizers.

We proposed an entropy-constrained design where either theside description rates

147
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or their sum rate are subject to entropy contraints. In the case of a single sum rate
entropy contraint, we showed that the optimal bit allocation across descriptions is not
unique, but in fact consists of a set of solutions, which all lead to minimal expected
distortion.

On the practical side it was shown that the optimalK-channel MD lattice vector
quantizers can be found in closed-form, hence avoiding any iterative (e.g. generalized
Lloyd-like) design algorithms. Furthermore, we combined MD-LVQ with transform
coding in order to obtain a perceptually robust audio coder.Previous approaches to
this problem were restricted to the case of only two descriptions. For a given packet-
loss probability we found the number of descriptions and thebit allocation between
transform coefficients, which minimizes a perceptual distortion measure subject to
an entropy constraint. The theoretical results were verified with numerical computer
simulations using audio signals and it was shown that in environments with excessive
packet losses it is advantageous to use more than two descriptions. We verified in
subjective listening tests that using more than two descriptions leads to signals of
perceptually higher quality.

9.2 Future Research Directions

In this thesis we considered index-assignment based MD schemes at high resolution
conditions, which provide a partial solution to theK-channel MD problem. However,
more work is needed before the general MD problem is solved. Besides the
information theoretic open problems discussed in Chapter 4there are many unsolved
problems related to MD-LVQ. Below we list a few of these.

• Proving the conjectures of this thesis, i.e. proving the rate-distortion results for
K > 3 descriptions.

• Extending the results to general resolution. To the best of the authors
knowledge, the only case where exact rate-distortion expressions (in non high-
resolution cases) have been presented for index-assignment based MD schemes,
is the two-channel scalar scheme by Frank-Dayan and Zamir [39].

• It is an open problem of how to construct practical MD-LVQ schemes that
comes arbitrarily close to the known MD bounds. Such schemesrequire high-
dimensional lattice vector quantizers and large index values. However, solving
the linear assignment problem can become computationally infeasible for large
index values. For the symmetric case and certain low dimensional lattices, some
progress have been made in reducing this complexity by the design of Huang
and Wu [65]. A construction for high-dimensional nested lattice codes was
recently presented by Zamir et al. [162]. No index-assignment methods have,
however, been presented for the nested lattice code design and the problem is
therefore not solved.
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• Constructing functional MD schemes for existing applications in real environ-
ments and assessing their performance. For example for real-time application,
even if the packet-loss rate of a network is very low, the delay might
occasionally be high, which then means that (at least for real-time applications)
a delayed packet is considered lost (at least for the currentframe) and the use of
MD coding might become beneficial.





Appendix A
Quaternions

We will here briefly define the Quaternions and describe a few important properties
that we will use in this work. For a comprehensive treatment of the Quaternions we
refer the reader to [23,71,150].

The Quaternions, which were discovered in the middle of the19th century by
Hamilton [71], is in some sense a generalization of the complex numbers. Just as1
and i denote unit vectors of the complex spaceC we define1, i, j andk to be unit
vectors in Quaternion spaceH. The set of numbers defined as{a + bi + cj + dk :

a, b, c, d ∈ R} are then called Quaternion numbers or simply Quaternions. Addition
of two Quaternionsq = a+ bi+ cj + dk andq′ = a′ + b′i+ c′j + d′k is defined as

q + q′ = (a+ a′) + (b+ b′)i+ (c+ c′)j + (d+ d′)k, (A.1)

and multiplication follows by first defining a multiplication rule for pairs of
Quaternion units, that is

i2 = j2 = k2 = −1,

ij = k, ji = −k,
jk = i, kj = −1,

ki = j, ik = −j,

(A.2)

which leads to

qq′ = (aa′ − bb′ − cc′ − dd′) + (ab′ + ba′ + cd′ − dc′)i

+ (ac′ + ca′ + db′ − bd′)j + (ad′ + da′ + bc′ − cb′)k.
(A.3)

Definition A.1.1. The skew fieldH of Quaternions is defined as the set{z =

a+bi+cj+dk : a, b, c, d ∈ R} combined with two maps (addition and multiplication)
given by (A.1) and (A.3), respectively, that satisfies field properties except that
multiplication is non commutative.
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Definition A.1.2. Quaternionic conjugation ofq = a + bi + cj + dk ∈ H is given
by q∗ = a− bj − cj − dk and we denote byq† Quaternionic conjugation and vector
transposition whereq ∈ HL.

Definition A.1.3. The real part of a Quaternionq = a+bi+cj+dk is given byℜ(q) =

a and the complex part (also called the vector part) is given byℑ(q) = bi+ cj + dk.

Lemma A.1.1 ( [6]). Two Quaternionsq0 andq1 commute, i.e.q0q1 = q1q0 if their
vector parts are proportional (i.e. linear dependent) or, in other words, if the cross
productℑ(q0) ×ℑ(q1) = 0.

Lemma A.1.2( [22]). The norm‖q‖ of a Quaternionq ∈ H is given by‖q‖ =
√
q∗q

and satisfies the usual vector norm, i.e.‖q‖ =
√
a2 + b2 + c2 + d2.

Definition A.1.4 ( [14]). The Quaternions can be represented in terms of matrices.
The isomorphic mapφL : (H,+, ·) → (H4×4,⊕,⊗) between the spaceH of
Quaternions and the spaceH4×4 of 4×4 matrices over the real numbersR defined by

φL(a+ bi+ cj + dk) 7→







a −b −c −d
b a −d c

c d a −b
d −c b a






, (A.4)

describes left multiplication by the Quaternionq. Similar we define right
multiplication by the mapφR : (H,+, ·) → (H4×4,⊕,⊗) given by

φR(a+ bi+ cj + dk) 7→







a −b −c −d
b a d −c
c −d a b

d c −b a






. (A.5)

It follows from Definition A.1.4 that addition and multiplication of two
Quaternions can be done by use of the usual matrix addition⊕ and matrix
multiplication⊗. Furthermore, Quaternionic conjugation can easily be donein H4×4

space where it is simply the matrix transpose.



Appendix B
Modules

In this appendix we give a brief introduction to the theory ofalgebraic modules. For
more information we refer the reader to the following textbooks [1,22,61,72].

B.1 General Definitions

Definition B.1.1. Let J be a ring which is not necessarily commutative with respect
to multiplication. Then an Abelian (commutative) groupS is called a leftJ -module
or a left module overJ with respect to a mapping (scalar multiplication on the left
which is simply denoted by juxtaposition)J × S → S such that for alla, b ∈ J

andg, h ∈ S,

1) a(g + h) = ag + ah,

2) (a+ b)g = ag + bg,

3) (ab)g = a(bg).

RemarkB.1.1. For simplicity we have used the same notations for addition/multiplication
in the group as well as in the ring.

RemarkB.1.2. A right module is defined in a similar way but with multiplication on
the right. In fact if the ringJ is commutative then every leftJ -module is also a
right J -module [61].

Definition B.1.2. If J has identity1 and if 1a = a for all a ∈ S, thenS is called a
unitary or unitalJ -module.

RemarkB.1.3. In this work all modules have an identity.
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Definition B.1.3 ( [72]). A subsetS′ = {m1, . . . ,mn} ⊂ S of the J -moduleS
is linearly independent overJ if, for xi ∈ J , x1m1 + · · · + xnmn = 0 only if
x1 = · · · = xn = 0. If in additionS′ generatesS thenS′ is a basis forS.

ExampleB.1.1. The setS = {2, 3} is finite and generatesZ, considered as aZ-
module over itself [72]. However,S is not a linearly independent set. Further, neither
element ofS can be omitted to give a generating set with one member. Hence, S is
not a basis ofZ.

Definition B.1.4 ( [72]). A J -module that has a basis is called a freeJ -module.

Definition B.1.5 ( [72]). The number of elements in a basis of aJ -moduleS is
called the rank or dimension ofS.

RemarkB.1.4. Not all modules have a basis [72]. LetZm = Z/mZ be the residue
ring of integers, i.e.Zm = {[0], . . . , [m − 1]}, where[s] = [r] in Zm impliess ≡ r

(mod m). Notice thatZm contains no linear independent subsets, sincemx = 0 for
anyx ∈ Z, henceZm has no basis and is therefore not a free module.

Definition B.1.6 ( [1]). Let J be a ring and letS, S′ be leftJ -modules. A function
f : S → S′ is aJ -module homomorphism if

1. f(m1 +m2) = f(m1) + f(m2) for all m1,m2 ∈ S, and

2. f(am) = af(m) for all a ∈ J andm ∈ S.

Definition B.1.7 ( [1]). The set of allJ -module homomorphisms fromS to S′ is
denoted Hom(S, S′). If S = S′ then we write End(S) where elements of End(S) are
called endomorphisms. Iff ∈ End(S) is invertible, then it is called an automorphism.
The group of all automorphisms is denoted Aut(S).

Definition B.1.8 ( [72]). Let J be a ring andS aJ -module. Then an annihilator of
an elementg ∈ S is the set

Ann(g) = {h ∈ J : hg = 0}. (B.1)

An elementg ∈ S is said to be a torsion element ofS if Ann(g) 6= 0, that is, there is
some non-zero elementa ∈ J with ag = 0.

Definition B.1.9 ( [72]). A J -moduleS is said to be torsion-free if the only torsion
element inS is 0.

Definition B.1.10. Let S′ be a finite group and letS be a leftJ -module. The orbit
under the action ofm ∈ S is obtained by left multiplication, i.e.S′m = {gm : g ∈
S′}.
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B.2 Submodule Related Definitions

Definition B.2.1. Let S be aJ -module andS′ a nonempty subset ofS. ThenS′ is
called a submodule ofS if S′ is a subgroup ofS and for allg ∈ S, h ∈ S′, we have
gh ∈ S′.

Definition B.2.2 ( [61]). A cyclic submodule is a submodule which is generated by
a single element. For example in a leftJ -moduleS, a cyclic submodule can be
generated bym ∈ S in the following waysJm = {xm : x ∈ J } ormJ = {mx :

x ∈ J }.

Definition B.2.3 ( [61]). In general the submoduleS′ of theJ -moduleS generated
by a finite subset{m1, . . . ,mn} ⊂ S is the set

Jm1 + · · · + Jmn = {x1m1 + · · · + xnmn : x1, . . . , xi ∈ J } (B.2)

of all linear combinations ofm1, . . . ,mn. Such submodules are called finitely
generated. IfS′ = S then{m1, . . . ,mn} is a set of generators forS.

Lemma B.2.1( [72]). Let S andS′ be submodules of aJ -moduleS. Then their
sum

S + S′ = {l+ n : l ∈ S, n ∈ S′}, (B.3)

is also a submodule. Moreover,S + S′ = S ⇐⇒ S′ ⊆ S.

Lemma B.2.2( [72]). Let S andS′ be submodules of aJ -moduleS. Then their
intersection

S ∩ S′ = {x : x ∈ S andx ∈ S′}, (B.4)

is also a submodule. Moreover,S ∩ S′ = S ⇐⇒ S ⊆ S′.

RemarkB.2.1. Submodules of a vector space are its subspaces.

Proposition B.2.1( [72]). LetS′ be a submodule of theJ -moduleS. Letm,n ∈ S

and define a relation onS by the rule thatm ≡ n ⇐⇒ m− n ∈ S′. The equivalence
class of an elementm ∈ S is given by the set

[m] = m+ S′ = {m+ l : l ∈ S′}. (B.5)

The quotient module (or factor module)S/S′ is defined to be the set of all such
equivalence classes, with addition given by

[m] + [n] = [m+ n], [m], [n] ∈ S/S′, (B.6)

and multiplication byr ∈ J is given by

r[m] = [rm], [m] ∈ S/S′. (B.7)
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Definition B.2.4 ( [72]). The module homomorphismπ : S → S/S′ defined by
π(m) = [m] is called the natural map (or canonical homomorphism) fromS to S/S′.

Definition B.2.5. Let S′ andS′′ be arbitrary submodules of theJ -moduleS. If
S′ + S′′ 6= S andS′ ∩ S′′ 6= 0 their configuration or relationship is often expressed
in the diagram shown in Fig. B.1(a). IfS is the direct sum ofS′ andS′′ we have
S′∩S′′ = 0 andS′+S′′ = S which lead to the simpler diagram shown in Fig. B.1(b).

S′ S′′

S

S′ ∩ S′′

S′ + S′′

0

(a)

S′ S′′

S

0

(b)

Figure B.1: (a) The moduleS is not a direct sum of the submodulesS′ andS′′. (b) The module
S is a direct sum ofS′ andS′′ and thereforeS′ ∩ S′′ = 0 andS′ + S′′ = S.

B.3 Quadratic Forms

Definition B.3.1 ( [1]). A conjugation onJ is a functionc : J → J satisfying

1. c(c(ξ)) = ξ, ∀ξ ∈ J

2. c(ξ1 + ξ2) = c(ξ1) + c(ξ2), ∀ξ1, ξ2 ∈ J

3. c(ξ1ξ2) = c(ξ1)c(ξ2), ∀ξ1, ξ2 ∈ J

Definition B.3.2( [1]). LetS be a freeJ -module. A bilinear form onS is a function
φ : S × S → J satisfying

1. φ(ξ1x1 + ξ2x2, y) = ξ1φ(x1, y) + ξ2φ(x2, y)
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2. φ(x, ξ1y1 + ξ2y2) = ξ1φ(x, y1) + ξ2φ(x, y2)

for all x1, x2, y1, y2 ∈ S andξ1, ξ2 ∈ J .

Definition B.3.3 ( [1]). Let S be a freeJ -module. A sesquilinear form onS is a
functionφ : S × S → J satisfying

1. φ(ξ1x1 + ξ2x2, y) = ξ1φ(x1, y) + ξ2φ(x2, y)

2. φ(x, ξ1y1 + ξ2y2) = c(ξ1)φ(x, y1) + c(ξ2)φ(x, y2)

for all x1, x2, y1, y2 ∈ S andξ1, ξ2 ∈ J for a non-trivial conjugationξ 7→ c(ξ) on
J .

Definition B.3.4( [22]). LetΛ be aJ -lattice inRL having basis vectorsζ1, . . . , ζL ∈
RL whose transposes form the rows of the generator matrixM . Then any lattice point
λ ∈ Λ may be written on generic form asλ = ξTM whereξ = (ξ1, . . . , ξL)T and
whereξi ∈ J . Let us define the following function ofλ (i.e. a squared norm)

τ(λ) =

L∑

i=1

L∑

j=1

(ξiζi)
T ξjζj

= ξTMMT ξ.

(B.8)

The functionτ in (B.8) is referred to as the quadratic form associated withthe lattice
Λ. If Λ has full rank, thenMMT is a positive definite matrix and the associated
quadratic form is called a positive definite form. If we extend τ to τ(λ1, λ2) =

ξT
1 MMT ξ2 we obtain the bilinear form of Definition B.3.2 and if the underlying field

is non real we get the sesquilinear form of Definition B.3.3 where the conjugation
functionc depends on the field.

RemarkB.3.1. In this work we will not make explicitely use of quadratic forms.
Instead we equip the underlying field with an inner product〈·, ·〉 which satisfies Defi-
nition B.3.2 and is therefore a bilinear form.

ExampleB.3.1. Let Λ ⊂ RL, i.e.Λ is a lattice embedded in the fieldRL. Then we
can define the usual vector norm‖λ‖2 , 〈λ, λ〉, whereλ ∈ Λ. Notice that here the
conjugation is simply the identity. See Appendix C for more examples.





Appendix C
Lattice Definitions

In this appendix we present a number of lattice-related definitions and properties
which are used throughout the thesis.

Let V be a vector space over the fieldK and letV be equipped with an inner
product〈·, ·〉. If KL = RL thenV is the traditional vector space over the Cartesian
product of the reals.68 As such,(V, 〈·, ·〉) is an inner-product space. An inner-product
space induces a norm‖ · ‖ defined as‖ · ‖2 , 〈·, ·〉. If KL = RL we use theℓ2-
norm defined as‖x‖2 , xTx whereas ifKL = CL we have‖x‖2 , xHx where
H denotes Hermitian transposition (i.e. the conjugate transpose). IfKL = HL then
‖x‖2 , x†x where† denotes Quaternionic conjugation and transposition. For more
information about inner-product spaces we refer the readerto the widely used textbook
by Luenberger [89].

C.1 General Definitions

Definition C.1.1 ( [22]). A lattice Λ ⊂ KL consists of all possible integral linear
combinations of a set of basis vectors, or, more formally

Λ =

{

λ ∈ KL : λ =
L∑

i=1

ξiζi, ∀ξi ∈ J

}

, (C.1)

whereζi ∈ KL are the basis vectors also known as generator vectors of the lattice and
J ⊂ K is a well defined ring of integers.

RemarkC.1.1. It should be noted that it is often convenient to useL′ > L basis
vectors to form anL-dimensional lattice embedded inKL′

.
68Recall that, in a vector space overR

L, addition and subtraction is with respect to vectors ofR
L whereas

multiplication is defined as multiplications of vectors inR
L with scalar elements ofR. Thus, a vector space

is aJ -module whereJ is a field, i.e. a ring where all elements (except 0) have inverses.
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Definition C.1.2. LetM be a generator matrix of the latticeΛ. Then the rows ofM
are given by the tranposes of the column vectorsζT

i , i = 1, . . . , L, where we actually
do not require thatM is square.

Definition C.1.3. The square matrixA = MMT is called the Gram matrix.

Definition C.1.4. A fundamental region of a lattice is a closed region which contains
a single lattice points and tessellate the underlying space.

Lemma C.1.1( [22]). All fundamental regions have the same volume.

Lemma C.1.2( [22]). The fundamental volumeν of Λ is given byν =
√

det(A),
sometimes written asν = det(Λ). If M is a square generator matrix thenν =

| det(M)|.

Definition C.1.5 ( [25]). An L-dimensional polytope is a finite convex region inKL

enclosed by a finite number of hyperplanes.

Definition C.1.6 ( [30]). The quotientKL/Λ is theL-dimensional torus obtained by
combining opposite faces of the fundamental parallelotope{a1ζ1 + . . . + aLζL|0 ≤
ai ≤ 1}.

Definition C.1.7. The Cartesian product⊗ of two latticesΛ1 andΛ2 is obtained by
pairing all points inΛ1 with every point inΛ2, i.e.

Λ1 ⊗ Λ2 = {(λ1, λ2)|λ1 ∈ Λ1, λ2 ∈ Λ2}. (C.2)

It follows that the dimension ofΛ = Λ1 ⊗ Λ2 is equal to the sum of the dimensions
of the two latticesΛ1 andΛ2.

Definition C.1.8 ( [22]). The automorphism group Aut(Λ) of a latticeΛ is the set of
distance-preserving transformations (or isometries) of the space that fix the origin and
takes the lattice to itself.

Theorem C.1.1( [22]). For a lattice in ordinary Euclidean spaceRL, Aut(Λ) is finite
and the transformations in Aut(Λ) may be represented by orthogonal matrices. LetΛ

have generator matrixM . Then an orthogonal matrixB is in Aut(Λ) if and only if
there is an integral matrixU with determinant±1 such that

UM = MB. (C.3)

This impliesU = MBMTA−1, whereA−1 is the Gram matrix ofΛ.

RemarkC.1.2. Aut(Λ = ZL) consists of all sign changes of theL coordinates(= 2L)

and all permutations(= L!). Hence,|Aut(ZL)| = 2LL! [22].
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Definition C.1.9 ( [22]). The dual latticẽΛ of the latticeΛ is given by

Λ̃ = {x ∈ RL|xTλ ∈ Z for all λ ∈ Λ}. (C.4)

Alternatively, ifM is a square generator matrix ofΛ thenΛ̃ can be constructed by use
of the generator matrix̃M = (M−1)T .

Theorem C.1.2( [30]). If Λ ⊂ RL is a discrete subgroup with compact quotient
RL/Λ thenΛ is a lattice.

Definition C.1.10( [22]). The coefficientsBi of the Theta seriesΘΛ(z) ,
∑

iBiq
i

of a latticeΛ describe the number of points at squared distancei from an arbitrary
point in space (which is usually taken to be the origin). The indeterminateq is
sometimes set toq = exp(iπz), wherez ∈ C andℑ(z) > 0.

C.2 Norm Related Definitions

Definition C.2.1 ( [22]). Let Λ ⊂ KL be a lattice. The nearest neighbor region of
λ ∈ Λ is defined as

V (λ) , {x ∈ KL : ‖x− λ‖2 ≤ ‖x− λ′‖2, ∀λ′ ∈ Λ}. (C.5)

Definition C.2.2. The nearest neighbor regions of a lattice are also called Voronoi
cells, Voronoi regions or Dirichlet regions. In this work wewill use the name Voronoi
cells.

Definition C.2.3. Voronoi cells of a lattice are congruent polytopes, hence they are
similar in size and shape and may be seen as translated versions of a fundamental
region, e.g.V0 = V (0), i.e. the Voronoi cell around the origin.

Definition C.2.4 ( [22]). The dimensionless normalized second moment of inertia
G(Λ) of a latticeΛ is defined by

G(Λ) ,
1

Lν1+2/L

∫

V0

‖x‖2dx. (C.6)

Remark C.2.1. Applying any scaling or orthogonal transform, e.g. rotation or
reflection onΛ will not changeG(Λ), which makes it a good figure of merit when
comparing different lattices (quantizers). In other words, G(Λ) depends only upon
the shape of the fundamental region, and in general, the moresphere-like shape, the
smaller normalized second-moment [22].

Definition C.2.5 ( [38]). The minimum squared distanced2
min(Λ) between lattice

points is the minimum non-zero norm of any lattice pointλ ∈ Λ, i.e.

d2
min(Λ) , min

λ∈Λ
λ6=0

‖λ‖2. (C.7)
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Definition C.2.6( [38]). The packing radiusρp(Λ) of the latticeΛ ⊂ RL is the radius
of the greatestL-dimensional sphere that can be inscribed withinV0. We then have

ρp(Λ) , dmin(Λ)/2. (C.8)

Definition C.2.7( [38]). The covering radiusρc(Λ) of the latticeΛ ⊂ RL is the radius
of the leastL-dimensional sphere that containsV0, i.e.

ρc(Λ) , max
x∈V0

‖x‖. (C.9)

Definition C.2.8 ( [38]). The kissing69 numberK(Λ) is the number of nearest
neighbors to any lattice point, which is also equal to the number of lattice points
of squared normd2

min(Λ), i.e.

K(Λ) , |{λ ∈ Λ : ‖λ‖2 = d2
min(Λ)}|. (C.10)

Definition C.2.9. The space-filling loss of a latticeΛ with dimensionless normalized
second momentG(Λ) is given by

DLoss = 10 log10 (2πeG(Λ)) dB. (C.11)

C.3 Sublattice Related Definitions

Definition C.3.1. A sublatticeΛ′ ⊆ Λ is a subset of the elements ofΛ that is itself a
lattice.

Definition C.3.2 ( [28]). A sublatticeΛ′ ⊂ Λ is called clean if no point ofΛ lies on
the boundary of the Voronoi cells ofΛ′.

Definition C.3.3. If Λ′ is a sublattice ofΛ thenN = |Λ/Λ′| denotes the index or
order of the quotientΛ/Λ′.

Definition C.3.4. If Λ′ is a clean sublattice ofΛ then the index valueN = |Λ/Λ′| is
called an admissible index value.

Definition C.3.5. The Lth root of the indexN is called the nesting ratioN ′, i.e.
N ′ = N1/L.

Definition C.3.6 ( [28]). Let Λ be anL dimensional lattice with square generator
matrixM . A sublatticeΛ′ ⊆ Λ is geometrically strictly similar toΛ if and only if the
following holds

1. There is an invertibleL× L matrixU1 with integer entries

69The terminology kissing number was introduced by N. J. A. Sloane who drew an analogy to billiards,
where two balls are said to kiss if they touch each other, see for example the interview with N. J. A. Sloane
by R. Calderbank, which can be found online at http://www.research.att.com/˜njas/doc/interview.html.
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2. a non-zero scalarc1 ∈ R

3. an orthogonalL× L matrixK1 with determinant 1,

such that a generator matrixM1 for Λ1 can be written as

M1 = U1M = c1MK1. (C.12)

If (C.12) holds then the indexN1 of Λ′ is equal to

N1 = |Λ/Λ′| =
det(Λ′)

det(Λ)
=

∣
∣
∣
∣

det(M1)

det(M)

∣
∣
∣
∣
= det(U1) = cL1 . (C.13)

Furthermore,Λ′ has Gram matrix

A1 = M1M
T
1 = U1MMTUT

1 = U1AU
T
1 = c21A, (C.14)

whereA = MMT is a Gram matrix forΛ.

Definition C.3.7. If in Definition C.3.6 the determinant ofK1 is allowed to be±1,
i.e.K1 can be either a rotation or a reflection operator, then the sublatticeΛ′ is said to
be geometrically similar toΛ.





Appendix D
Root Lattices

This appendix describes some properties of the root70 lattices considered in this thesis.

D.1 Z1

The scalar uniform lattice also calledZ1 partitions the real line into intervals of equal
lengths. Table D.1 outlines important constants related totheZ1 lattice.

Description Notation Value

Dimension L 1
Fundamental volume ν 1

Packing radius ρp 1/2

Covering radius ρc 1/2

Space-filling loss Dloss 1.5329 dB
Space-filling gain overZ1 Dgain 0 dB
Kissing-number K 2
Minimal squared distance d2

min 1
Dimensionless normalized
second moment

G(Λ) 1/12

Table D.1: Relevant constants for theZ1 lattice.

The set of admissible index values forZ1 is the set of all odd integers [28] and the
coefficients of the Theta series are given byB0 = 1 andBi = 2, i > 0.

70The term root lattice refers to a lattice which can be generated by the roots of specific reflection
groups [22, 34].
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D.2 Z2

A generator matrix forZ2 (also known as the square lattice) is given by

M =

[
1 0

0 1

]

. (D.1)

The Gram matrixA is identical to the generator matrix, i.e.A = M . Table D.2 gives
an overview of important constants related to theZ2 lattice.

Description Notation Value

Dimension L 2
Fundamental volume ν 1

Packing radius ρp 1/2
Covering radius ρc ρp

√
2

Space-filling loss Dloss 1.5329 dB
Space-filling gain overZ1 Dgain 0 dB
Kissing-number K 4
Minimal squared distance d2

min 1
Dimensionless normalized
second moment

G(Λ) 1/12

Table D.2: Relevant constants for theZ2 lattice.

The first 50 coefficients of the Theta series, i.e. the number of points in each of
the 50 first shells ofΛ are shown in Table D.3 and the first seven shells are shown in
Fig. D.1.

1,4,4,0,4,8,0,0,4,4,8,0,0,8,0,0,4,8,4,0,8,0,0,0,0,12,
8,0,0,8,0,0,4,0,8,0,4,8,0,0,8,8,0,0,0,8,0,0,0,4

Table D.3: The first 50 coefficients of the Theta series with starting point at zero for theZ2

lattice.

Let Λ be the square lattice represented in the scalar complex domain, i.e.Λ = G .
Then a sublatticeΛ′ = ξΛ, whereξ = a + ib andξ ∈ G is clean if and only if
N = a2 + b2 is odd [28]. Equivalently an integerN is an admissible index value
if it can be written as a product of primes congruent to1 (mod 4) and/or a product
of primes congruent to3 (mod 4) [21, 28]. This set is given by integer sequence
A057653 [125], see also Table D.4.

A subgroupΓ4 ⊂ Aut(Λ = Z2) of order 4 is given by (2.9).
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Figure D.1: The first 7 non-zero shells ofZ2 is here shown as large circles (incl. the one at
the origin). Notice that the number of points lying on each circle agrees with the corresponding
coefficient of its Theta series.

D.3 A2

The hexagonal lattice (also known asA2) can be represented in the complex field
where it is identical toE . When represented inR2 a possible generator matrix is

M =

[
1 0

−1/2
√

3/2

]

. (D.2)

Its Gram matrix is given by

A =

[
1 −1/2

−1/2 1

]

. (D.3)

Table D.5 summarizes important constants related to theA2 lattice.
Let Λ be the hexagonal lattice represented in the scalar complex domain, i.e.Λ =

E . Then a sublatticeΛ′ = ξΛ, whereξ = a + ωb andξ ∈ E is clean if and only
if a andb are relative prime or equivalently if and only ifN is a product of primes
congruent to1 (mod 6) [28]. This set is given by integer sequence A004611 [125],
see also Table D.6.

A subgroupΓ6 ⊂ Aut(Λ = E ) of order 6 is given by the rotational group

Γ6 = {exp(ikπ/6), k = 0, . . . , 5}. (D.4)
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1,5,9,13,17,25,29,37,41,45,49,53,61,65,73,81,85,89,97,101,109,113,
117,121,125,137,145,149,153,157,169,173,181,185,197,205,221,225,
229,233,241,245,257,261,265,269,277,281,289,293,305,313,317,325
333,337,. . .

Table D.4: Admissible index values forZ2.

Description Notation Value

Dimension L 2
Fundamental volume ν

√
3/2

Packing radius ρp 1/2
Covering radius ρc 2ρp

√
3

Space-filling loss Dloss 1.3658 dB
Space-filling gain overZ1 Dgain 0.1671 dB
Kissing-number K 6
Minimal squared distance d2

min 1
Dimensionless normalized
second moment

G(Λ) 5/(36
√

3)

Table D.5: Relevant constants for theA2 lattice.

The first 50 coefficients of the Theta series forA2 are shown in Table D.7 and
Fig. D.2

D.4 Z4

The hypercubic latticeZ4 is generated by

M =







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1






. (D.5)

The Gram matrixA is identical to the generator matrix, i.e.A = M . Table D.8 gives
an overview of important constants related to theZ4 lattice.

Z4 has a geometrically-similar and clean sublattice of indexN if and only ifN is
odd and of the forma2 for some integera [28]. The set of admissible index values is
given by integer sequence A016754 [125], see also Table D.9.

The first 50 coefficients of the Theta series forZ4 are given in Table D.10.
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1,7,13,19,31,37,43,49,61,67,73,79,91,97,103,109,127,133,139,
151,157,163,169,181,193,199,211,217,223,229,241,247,259,271,
277,283,301,307,313,331,337,343,349,361,367,373,379,397,403,
409,421,427,433,439,457,. . .

Table D.6: Admissible index values forA2.

1,6,0,6,6,0,0,12,0,6,0,0,6,12,0,0,6,0,0,12,0,12,0,0,0,6,0,6,
12,0,0,12,0,0,0,0,6,12,0,12,0,0,0,12,0,0,0,0,6,18

Table D.7: The first 50 coefficients of the Theta series with starting point at zero for theA2

lattice.

A subgroupΓ8 ⊂ Aut(Λ = Z4) of order 8 is given by [139]

Γ8 =







±I4,±







0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0






,±







0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0






,±







0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0













. (D.6)

D.5 D4

TheD4 lattice (also known as the Schläfli lattice or checkerboard lattice) consists of
all points ofZ4 that have even squared norms [22]. A possible generator matrix is
given by

M =







1 1 0 0

−1 0 1 0

0 −1 0 1

0 −1 0 −1






. (D.7)

The Gram matrix is given by

A =







2 −1 −1 −1

−1 2 0 0

−1 0 2 0

−1 0 0 2






, (D.8)

and a subgroupΓ8 ⊂ Aut(Λ = D4) of order 8 is given by (D.6). See Table D.11 for
a an overview of important constants related to theD4 lattice.

If a is 7 or a product of primes congruent to1 (mod 4) then D4 has a
geometrically-similar and clean sublattice of indexN = a2 [28]. This is the set 7
and integer sequence A004613 [125], see also Table D.12.

The first 50 coefficients of the Theta series forD4 are shown in Table D.13.
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Figure D.2: The first 6 non-zero shells ofA2 is here shown as large circles (incl. the one at
the origin). Notice that the number of points lying on each circle agrees with the corresponding
coefficient of the Theta series.

Description Notation Value

Dimension L 4
Fundamental volume ν 1

Packing radius ρp 1/2
Covering radius ρc 1
Space-filling loss Dloss 1.5329 dB
Space-filling gain overZ1 Dgain 0 dB
Kissing-number K 8
Minimal squared distance d2

min 1
Dimensionless normalized
second moment

G(Λ) 1/12

Table D.8: Relevant constants for theZ4 lattice.
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1,9,25,49,81,121,169,225,289,361,441,529,625,729,841,961,
1089,1225,1369,1521,1681,1849,2025,2209,2401,2601,2809,
3025,3249,3481,3721,3969,4225,4489,4761,5041,5329,5625,
5929,6241,6561,. . .

Table D.9: Admissible index values forZ4.

1,8,24,32,24,48,96,64,24,104,144,96,96,112,192,192,24,144,
312,160,144, 256,288,192,96,248,336,320,192,240,576,256,24,
384,432,384,312,304,480,448,144,336,768,352,288,624,576,
384,96,456

Table D.10: The first 50 coefficients of the Theta series with starting point at zero for theZ4

lattice.

Description Notation Value

Dimension L 4
Fundamental volume ν 2

Packing radius ρp 1/
√

2

Covering radius ρc ρp

√
2

Space-filling loss Dloss 1.1672 dB
Space-filling gain overZ1 Dgain 0.3657 dB
Kissing-number K 24
Minimal squared distance d2

min 2
Dimensionless normalized
second moment

G(Λ) 0.076603

Table D.11: Relevant constants for theD4 lattice.

1,5,7,13,17,25,29,37,41,53,61,65,73,85,89,97,101,109,
113,125,137,145,149,157,169,173,181,185,193,197,205,
221,229,233,241,257,265,269,277,281,289,293,305,313,
317,325,337,349,353,365,373,377,389,397,401,409,421,. . .

Table D.12: Admissible index values forD4.
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1,0,24,0,24,0,96,0,24,0,144,0,96,0,192,0,24,0,312,0,144,
0,288,0,96,0,336,0,192,0,576,0,24,0,432,0,312,0,480,0,
144,0,768,0,288,0,576,0,96,0

Table D.13: The first 50 coefficients of the Theta series with starting point at zero for theD4

lattice.



Appendix E
Proofs for Chapter 2

Proof of Lemma 2.3.1.Most of the work towards proving the lemma has already been
done in [21] and [28] and we only need some simple extensions of their results. For
Z1 the proof is trivial, since any odd integer is an admissible index value [28] and
the product of odd integers yields odd integers. Now leta, b ∈ Z+ be odd integers
that can be written as the product of primes from a certain sets. It is clear that the
productab is also odd an can be written as the product of primes ofs. ForZ2 an
integer is an admissible index value if it can be written as a product of a set of primes
which are congruent to1 (mod 4) and/or congruent to3 (mod 4) [21,28]. ForA2 an
integer is an admissible index value if and only if it is a product of primes which are
congruent to1 (mod 6) [21, 28] and ifm is a product of primes which are congruent
to 1 (mod 4) thenm2 is an an admissible integer forD4 [28].71 It follows that the
lemma holds for the lattices mentioned above. Finally, forZL andL = 4k, where
k ≥ 1, an integer is an admissible index value if it is odd and can bewritten on the
formmL/2 for some integerm [28]. Let a = mL/2 andb = (m′)L/2 we then have
that ab = mL/2(m′)L/2 = (m′′)L/2, wherem′′ = mm′ is odd and therefore an
admissible index value forZL. �

Proof of Lemma 2.3.2.The cyclic submoduleΛ0 = ξ0Λ is closed under
multiplication by elements ofΛ so for anyξ′ = ξ1ξ2 · · · ξK−1 ∈ Λ and anyλ0 ∈ Λ0

it is true thatξ′λ0 ∈ Λ0 which further implies thatΛπ ⊆ Λ0 sinceξ′λ0 ∈ Λπ.
Moreover, multiplication is commutative inZ,G and E so the order of the set of
elementsξ0, . . . , ξK−1 when formingΛπ is irrelevant. Thus,Λπ ⊆ Λi and it is
therefore a product lattice. �

Proof of Lemma 2.3.3.Since the rings considered are unique factorization rings there

71We have excluded the index value obtained form = 7, since this particular index value cannot be
written as a product of primes mod 4 but is a special case foundin [28].
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must be an elementξ′ ∈ Λ such thatξ0ξ′ = ξ∩, whereξ′ is unique up to multiplication
by units of the respective rings. However, a unitu ∈ Λ belongs to Aut(Λ) and
multiplication byu is therefore an isometric operation which takes a lattice toitself.
It follows thatξ0ξ′ ∈ Λ0 for anyξ0 ∈ Λ0 which implies thatΛ′

π ⊆ Λ0 = ξ0Λ. Once
again we invoke the fact thatZ,G andE are multiplicative commutative rings from
which it is clear thatΛ′

π ⊆ Λi = ξiΛ, i = 0, . . . ,K − 1. �

Proof of Lemma 2.3.4.Follows trivially from the fact that Gaussian integers commute
and Lipschitz integers include Gaussian integers as a special case where thejth and
kth elements are both zero. �



Appendix F
Estimating ψL

In this appendix we present a method to numerically estimateψL for anyL andK.

F.1 Algorithm

In Chapter 5 we presented closed-form expressions forψL for the case ofK = 3 and
L = 2 or odd as well as for the asymptotic case ofL → ∞. In order to extend these
results toK > 3 it follows from the proof of Theorem 5.3.2 that we need closed-form
expressions for the volumes of all the different convex regions that can be obtained by
K−1 overlapping spheres. With such expressions it should be straightforward to find
ψL for anyK. However, we will take a different approach here.

Let ν̃ be the volume of the spherẽV , which contains the exact number of sublattice
points required to constructN distinctK-tuples, where the elements of eachK-tuple
satisfy‖λi−λj‖ ≤ r, wherer is the radius of̃V . Notice thatṼ is the expanded sphere.
Thus, the volumẽν of Ṽ is ψL

L times larger than the lower bound of (5.26). Now let
ν̃′ = ν̃/ψL

L denote the volume of a sphere that achieves the lower bound (5.26) so that
N = (ν̃′/νs)

K−1 (at least this is true for largeN ). But this implies that asymptotically
as the number of lattice points iñV goes to infinity we have

N =

(
ν̃/ψL

L

νs

)K−1

, (F.1)

which leads to

ψL =

(
ωLr

L

νsN1/K−1

)1/L

, (F.2)

where, without loss of generality, we can assume thatνs = 1 (simply a matter of
scaling). For a givenr in (F.2) we can numerically estimateN , which then leads to
an estimate ofψL. To numerically estimateN it follows that we need to find the set
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of lattice points within a spherẽV of radiusr. For each of these lattice points we
center another sphere of radiusr and find the set of lattice points which are within the
intersection of the two spheres. This procedure continuesK − 1 times. In the end we
findN by adding the number of lattice points within each intersection, i.e.

N =
∑

Λ̃1

∑

Λ̃2

· · ·
∑

Λ̃K−2

|Λs ∩ Ṽ (λK−2) ∩ · · · ∩ Ṽ (λ0)|, (F.3)

where

Λ̃1 = {λ1 : λ1 ∈ Λs ∩ Ṽ (λ0)},
Λ̃2 = {λ2 : λ2 ∈ Λs ∩ Ṽ (λ1) ∩ Ṽ (λ0)},

...

Λ̃K−2 = {λK−2 : λK−2 ∈ Λs ∩ Ṽ (λK−3) ∩ · · · ∩ Ṽ (λ0)}.

(F.4)

As r gets large the estimate gets better. For example forK = 4,Λ = Z2 and
r = 10, 20, 50 and 70 then using the algorithm outlined above we findψ2 ≈
1.1672, 1.1736, 1.1757 and1.1762, respectively.



Appendix G
Assignment Example

In this appendix we give an example of part of a complete assignment. We let
Λ = Z2,K = 2 andN = 101 and construct 2-tuples as outlined in Sections 5.3.3
and 5.5.2. These 2-tuples are then assigned to central lattice points inVπ(0). Since
N = 101 then (at least theoretically) each sublattice points will be used 101 times.
Furthermore, for a given sublattice point, sayλ0 ∈ Λs, theN associated sublattice
points, i.e. the set of sublattice points representing the second coordinate of the 2-
tuples havingλ0 as first coordinate, will be approximately spherically distributed
aroundλ0 (sinceṼ forms a sphere). Fig. G.1(a) shows the set ofN sublattice points
given by

{λ1 ∈ Λs : λ1 = α1(λc) andα0(λc) = (1,−10), λc ∈ Λc}, (G.1)

which represent the set of second coordinates of theN 2-tuples all havingλ0 =

(1,−10) as first coordinate. Each 2-tuple is assigned to a central lattice point. This
assignment is illustrated in Fig. G.1(b). Here a dashed lineconnects a given 2-
tuple (represented by its second coordinateλ1) with a central lattice point. These
N assignments are also shown in Table G.1.
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Figure G.1: The square marks the sublattice pointλ0 = (1,−10) and the small circles
illustrate the 101 sublattice points which are associated with λ0. (a) The large circle emphasize
that the sublattice points are approximately spherically distributed aroundλ0. (b) The
assignments are illustrated with dashed lines and the smalldots represent central lattice points.
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λc ∈ Λ α1(λc) ∈ Λs λc ∈ Λ α1(λc) ∈ Λs λc ∈ Λ α1(λc) ∈ Λs

(-27,-6) (-50,-5) (21,-8) (41,-6) (-3,-32) (-5,-51)
(-27,-4) (-51,5) (20,2) (39,14) (-10,-32) (-25,-53)
(-26,-14) (-49,-15) (17,-5) (30,3) (6,-31) (15,-49)
(-25,-16) (-48,-25) (16,-9) (31,-7) (5,-31) (5,-50)
(-23,-20) (-47,-35) (15,1) (29,13) (20,-30) (35,-47)
(-23,4) (-42,16) (14,11) (27,33) (15,-30) (25,-48)
(-23,7) (-43,26) (14,7) (28,23) (22,-29) (45,-46)
(-22,-3) (-41,6) (14,-12) (32,-17) (-14,-29) (-26,-43)
(-21,-16) (-38,-24) (11,-8) (21,-8) (-16,-29) (-36,-44)
(-20,-7) (-40,-4) (10,6) (18,22) (16,-26) (34,-37)
(-19,-12) (-39,-14) (10,-1) (19,12) (5,-26) (4,-40)
(-16,4) (-32,17) (10,-4) (20,2) (-3,-26) (-6,-41)
(-16,11) (-33,27) (5,-4) (10,1) (24,-25) (44,-36)
(-15,-7) (-30,-3) (3,-1) (9,11) (-9,-25) (-16,-42)
(-15,-2) (-31,7) (5,18) (6,41) (13,-24) (24,-38)
(-14,-12) (-29,-13) (7,18) (16,42) (8,-24) (14,-39)
(-13,4) (-22,18) (-5,17) (-14,39) (-13,-24) (-27,-33)
(-13,8) (-23,28) (-3,17) (-4,40) (-17,-24) (-37,-34)
(-10,-1) (-21,8) (-13,16) (-24,38) (7,-19) (13,-29)
(-9,-9) (-19,-12) (5,13) (7,31) (-5,-19) (-7,-31)
(-8,-4) (-20,-2) (-5,12) (-13,29) (-8,-19) (-17,-32)
(-8,6) (-12,19) (-2,12) (-3,30) (-15,-19) (-28,-23)
(-5,0) (-11,9) (9,11) (17,32) (17,-18) (33,-27)
(28,-4) (50,5) (-2,7) (-2,20) (3,-18) (3,-30)
(28,-6) (51,-5) (5,6) (8,21) (11,-17) (23,-28)
(28,-19) (53,-25) (1,2) (-1,10) (2,-16) (2,-20)
(25,3) (49,15) (-6,-37) (-14,-62) (-8,-16) (-18,-22)
(24,-11) (52,-15) (14,-36) (26,-58) (14,-14) (22,-18)
(24,-14) (42,-16) (7,-36) (16,-59) (-4,-14) (-8,-21)
(22,6) (38,24) (3,-36) (6,-60) (8,-13) (12,-19)
(22,-18) (43,-26) (-4,-34) (-4,-61) (-4,-11) (-9,-11)
(21,13) (37,34) (-9,-33) (-15,-52) (6,-9) (11,-9)
(21,-3) (40,4) (-17,-33) (-35,-54) (-1,-8) (1,-10)
(-4,-6) (-10,-1) (-2,-3) (0,0)

Table G.1: The assignments of theN = 101 2-tuples which all haveλ0 = (1,−10) as first
coordinate, i.e.α0(λc) = (1,−10).





Appendix H
Proofs for Chapter 5

For notational convenience we will in this appendix use the shorter notationL instead
of L (K,κ).

H.1 Proof of Theorem 5.3.1

In order to prove Theorem 5.3.1, we need the following results.

Lemma H.1.1. For1 ≤ κ ≤ K we have

∑

l∈L

〈

λc,

κ−1∑

j=0

λlj

〉

=
κ

K

(
K

κ

)〈

λc,

K−1∑

i=0

λi

〉

.

Proof. Expanding the sum on the left-hand-side leads to
(
K
κ

)
κ different terms of the

form 〈λc, λi〉, wherei ∈ {0, . . . ,K − 1}. There areK distinctλi’s so the number of
times eachλi occur is

(
K
κ

)
κ/K. �

Lemma H.1.2. For1 ≤ κ ≤ K we have

∑

l∈L

∥
∥
∥
∥
∥
∥

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

=
κ

K

(
K

κ

)K−1∑

i=0

‖λi‖2 +
2κ(κ− 1)

K(K − 1)

(
K

κ

)K−2∑

i=0

K−1∑

j=i+1

〈λi, λj〉.

Proof. There are
(
K
κ

)
distinct ways of addingκ out ofK elements. Squaring a sum

of κ elements leads toκ squared elements and2
(
κ
2

)
cross products (product of two

different elements). This gives a total of
(

K
κ

)
κ squared elements, and2

(
K
κ

)(
κ
2

)
cross

products. Now since there areK distinct elements, the number of times each squared
element occurs is given by

#‖λi‖2 =

(
K

k

)
κ

K
. (H.1)
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There are
(
K
2

)
distinct cross products, so the number of times each cross product

occurs is given by

#〈λi,λj〉 =

(
K

κ

)
2
(
κ
2

)

(
K
2

) =
2κ(κ− 1)

K(K − 1)

(
K

κ

)

. (H.2)
�

Lemma H.1.3. ForK ≥ 1 we have

(K − 1)

K−1∑

i=0

‖λi‖2 − 2

K−2∑

i=0

K−1∑

j=i+1

〈λi, λj〉 =

K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2. (H.3)

Proof. Expanding the right-hand-side of (H.3) yields

K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2 =

K−2∑

i=0

K−1∑

j=i+1

(
‖λi‖2 + ‖λj‖2 − 2〈λi, λj〉

)
. (H.4)

We also have

K−2∑

i=0

K−1∑

j=i+1

(
‖λi‖2 + ‖λj‖2

)
=

K−2∑

i=0

(K − 1 − i)‖λi‖2 +

K−2∑

i=0

K−1∑

j=i+1

‖λj‖2

=

K−2∑

i=0

(K − 1 − i)‖λi‖2 +

K−1∑

j=1

j‖λj‖2

=

K−1∑

i=0

(K − 1 − i)‖λi‖2 +

K−1∑

j=0

j‖λj‖2

=

K−1∑

i=0

(K − 1)‖λi‖2 −
K−1∑

i=0

i‖λi‖2 +

K−1∑

j=0

j‖λj‖2

= (K − 1)

K−1∑

i=0

‖λi‖2,

(H.5)

which completes the proof. �

We are now in a position to prove the following result.

Proposition H.1.1. For1 ≤ κ ≤ K we have

∑

l∈L

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

=

(
K

κ

)(
∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+

(
K − κ

K2κ(K − 1)

)K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2

)

.
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Proof. We have

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

= ‖λc‖2 − 2

〈

λc,
1

κ

κ−1∑

j=0

λlj

〉

+
1

κ2

∥
∥
∥
∥
∥
∥

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

.

Hence, by use of Lemmas H.1.1 and H.1.2, we have that

∑

l∈L

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

=

(
K

κ

)(

‖λc‖2 − 2

K

〈

λc,
K−1∑

i=0

λi

〉

+
1

Kκ

K−1∑

i=0

‖λi‖2

+
2(κ− 1)

K(K − 1)κ

K−2∑

i=0

K−1∑

j=i+1

〈λi, λj〉
)

=

(
K

κ

)(
∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

− 1

K2

∥
∥
∥
∥
∥

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+
1

Kκ

K−1∑

i=0

‖λi‖2 +
2(κ− 1)

K(K − 1)κ

K−2∑

i=0

K−1∑

j=i+1

〈λi, λj〉
)

=

(
K

κ

)(
∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+

(
1

Kκ
− 1

K2

)K−1∑

i=0

‖λi‖2

+

(
2(κ− 1)

K(K − 1)κ
− 2

K2

)K−2∑

i=0

K−1∑

j=i+1

〈λi, λj〉
)

=

(
K

κ

)(
∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+

(
K − κ

K2κ

)K−1∑

i=0

‖λi‖2

−
(

K − κ

K2κ(K − 1)

)

2
K−2∑

i=0

K−1∑

j=i+1

〈λi, λj〉
)

so that, by Lemma H.1.3, we finally have that

=

(
K

κ

)(
∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+

(
K − κ

K2κ(K − 1)

)K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2

)

,

which completes the proof. �
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Theorem 5.3.1.For 1 ≤ κ ≤ K we have

∑

λc

∑

l∈L

∥
∥
∥
∥
∥
∥

λc −
1

κ

κ−1∑

j=0

λlj

∥
∥
∥
∥
∥
∥

2

=
∑

λc

(
K

κ

)(
∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

+

(
K − κ

K2κ(K − 1)

)K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2

)

.

Proof. Follows trivially from Proposition H.1.1. �

H.2 Proof of Theorem 5.3.2

Theorem 5.3.2.For the case ofK = 3 and any oddL, the dimensionless expansion
factor is given by

ψL =

(
ωL

ωL−1

)1/2L (
L+ 1

2L

)1/2L

β
−1/2L
L , (H.6)

whereβL is given by

βL =

L+1
2∑

n=0

(L+1
2

n

)

2
L+1

2 −n(−1)n

L−1
2∑

k=0

(
L+1

2

)

k

(
1−L

2

)

k
(

L+3
2

)

k
k!

×
k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j

(
1

4

)j
1

L+ n+ j
.

(H.7)

Proof. In the following we consider the case ofK = 3. For a specificλ0 ∈ Λs

we need to constructN 3-tuples all havingλ0 as the first coordinate. To do this we
first center a spherẽV of radiusr at λ0, see Fig. 5.2. For largeN and smallνs

this sphere contains approximatelyν̃/νs lattice points fromΛs. Hence, it is possible
to construct(ν̃/νs)

2 distinct 3-tuples using lattice points insidẽV . However, the
maximum distance betweenλ1 andλ2 points is greater than the maximum distance
betweenλ0 andλ1 points and also betweenλ0 andλ2 points. To avoid this bias
towardsλ0 points we only use 3-tuples that satisfy‖λi − λj‖ ≤ r for i, j = 0, 1, 2.
However, with this restriction we can no longer formN 3-tuples. In order to make sure
that exactlyN 3-tuples can be made we expandṼ by the factorψL. It is well known
that the number of lattice points at exactly squared distance l from c, for anyc ∈ RL is
given by the coefficients of the Theta series of the latticeΛ [22]. Theta series depend
on the lattices and also onc [22]. Instead of working directly with Theta series we
will, in order to be lattice and displacement independent, consider theL-dimensional
hollow sphereC̄ obtained asC̄ = S(c,m) − S(c,m − 1) and shown in Fig. H.1(a).
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Ṽ

C̄

r

(a)

Ṽ

m

C

(b)

Figure H.1: The number of lattice points in the shaded region in (a) givenbyam = Vol(C̄ )/νs

and in (b) it is given bybm = Vol(C )/νs.

The number of lattice pointsam in C̄ is given by|C̄ ∩Λ| and asymptotically asνs → 0

(and independent ofc)

am = Vol(C̄ )/νs =
ωL

νs

(
mL − (m− 1)L). (H.8)

The following construction makes sure that we have‖λ1−λ2‖ ≤ r. For a specific
λ1 ∈ Ṽ (λ0) ∩ Λs we center a spherẽV at λ1 and use onlyλ2 points fromṼ (λ0) ∩
Ṽ (λ1) ∩ Λs. In Fig. H.1(b) we have shown two overlapping spheres where the first
one is centered at someλ0 and the second one is centered at someλ1 ∈ Ṽ (λ0) which
is at distancem from λ0, i.e.‖λ0 − λ1‖ = m. Let us byC denote the convex region
obtained as the intersection of the two spheres, i.e.C = Ṽ (λ0) ∩ Ṽ (λ1). Now letbm
denote the number of lattice points inC ∩ Λs. With this we have, asymptotically as
νs → 0, thatbm is given by

bm = Vol(C )/νs. (H.9)

It follows that the numberT of distinct 3-tuples which satisfy‖λi −λj‖ ≤ r is given
by

lim
νs→0

T =
r∑

m=1

ambm. (H.10)

We now proceed to find a closed-form expression for the volumeof C , which
eventually will lead to a simple expression forbm. Let 2F1(·) denote the
Hypergeometric function defined by [115]

2F1 (a, b; c; z) =

∞∑

k=0

(a)k(b)k

(c)k k!
zk, (H.11)

where(·)k is the Pochhammer symbol defined as

(a)k =

{

1 k = 0

a(a+ 1) · · · (a+ k − 1) k ≥ 1.
(H.12)
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Lemma H.2.1. The volume of anL-dimensional (L odd) spherical capVcap is given
by

Vol(Vcap) =
2ωL−1

L+ 1
r(L−1)/2(2r −m)(L+1)/2

× 2F1

(
L+ 1

2
,
1 − L

2
;
L+ 3

2
;
2r −m

4r

)

,
(H.13)

Proof. This is a special case of what was proven in [143] and we can therefore use the
same technique with only minor modifications. Leth = m/2 and letu be a unit vector
of RL. Furthermore, letHh,u be the affine hyperplane{z + hu|z ∈ RL, z · u = 0} of
RL which contains the intersection of two spheres of equal radii r and with centers at
distancem ≤ r apart, see Fig. H.2.

Hh,u
Cr,h,u

Sr,h,u

r

r

h

m

x

Figure H.2: Two balls inR
2 of equal radiir and distancem apart.

We define the spherical cap as

Cr,h,u = {z ∈ B(0, r)|z · u ≥ h}, (H.14)

and its surface is described by

Sr,h,u = {z ∈ S(0, r)|z · u ≥ h}, (H.15)

whereB(0, r) ∈ RL andS(0, r) ∈ RL denote the ball72 respectively the sphere of
radiusr and centered at the origin.

72In this proof we redefine the concept of a sphere to be in line with [143]. As such, the term sphere
denotes the surface of a ball, hence, a sphere has no interior. This terminology is only needed in this proof.
Elsewhere we define the sphere to be a solid sphere (i.e. a balland its surface) as is customary in the lattice
literature.
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The sphereHh,u ∩ Sr,h,u has radiusx =
√
r2 − h2 and it is clear thath =√

r2 − x2. Moreover, any point ofSr,h,u which is at distance73 t from Hh,u is at
distance(x2 − t2 − 2th)1/2 from the real lineRu (i.e. the span ofu). Hence, the
volume Vol(Cr,h,u) of Cr,h,u is given by

Vol(Cr,h,u) =

∫ r−h

0

ωL−1(x
2 − t2 − 2th)(L−1)/2 dt

= ωL−1

∫ r−h

0

((r − h− t)(r + h+ t))
(L−1)/2

dt

= ωL−1

∫ α

0

(α− t)γ(t− β)γ dt,

(H.16)

whereα = r − h, β = −r − h andγ = (L− 1)/2. The last integral in (H.16) can be
shown to be equal to [69, Eq. 3.196.1]

∫ α

0

(α − t)γ(t− β)γ dt =
αγ+1(−β)γ

γ + 1
2F1

(

1,−γ; γ + 2;
α

β

)

, (H.17)

which by use of (H.35) can be written as

αγ+1(−β)γ

γ + 1
2F1

(

1,−γ; γ + 2;
α

β

)

=

(

1 − α

β

)γ
αγ+1(−β)γ

γ + 1
2F1

(

γ + 1,−γ; γ + 2;
α

α− β

)

.

(H.18)

The volume Vol(Cr,h,u) follows by inserting (H.18) in (H.16), that is

Vol(Cr,h,u) = ωL−1

(

1 − α

β

)γ
αγ+1(−β)γ

γ + 1
2F1

(

γ + 1,−γ; γ + 2;
α

α− β

)

=
ωL−1

L+ 1
r(L−1)/2(2r −m)(L+1)/2

× 2F1

(

L/2 + 1/2, 1/2− L/2;L/2 + 3/2;
2r −m

4r

)

,

(H.19)

which completes the proof. �

The regionC consists of two equally sized spherical caps. Inserting (H.8)

73By distance we mean the length of the shortest straight line that can be drawn betweenHh,u and
Sr,h,u. It is clear that this line is perpendicular toHh,u.
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and (H.9) into (H.10) leads to74 (asymptotically asνs → 0)

T =

r∑

m=1

ambm

=
2ωLωL−1

ν2
s (L+ 1)

r∑

m=1

(mL − (m− 1)L)r(L−1)/2

× (2r −m)(L+1)/2
2F1

(
L+ 1

2
,
1 − L

2
;
L+ 3

2
;
2r −m

4r

)

(a)
=

2ωLωL−1

ν2
s (L+ 1)

r
L−1

2

L+1
2∑

n=0

(L+1
2

n

)

(2r)
L+1

2 −n(−1)n

×
L−1

2∑

k=0

(
L+1

2

)

k

(
1−L

2

)

k
(

L+3
2

)

k
k!

k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j

(
1

4r

)j

×
r∑

m=1

(mL − (m− 1)L)mnmj

(b)
=

2ωLωL−1

ν2
s (L+ 1)

r
L−1

2

L+1
2∑

n=0

(L+1
2

n

)

(2r)
L+1

2 −n(−1)n

×
L−1

2∑

k=0

(
L+1

2

)

k

(
1−L

2

)

k
(

L+3
2

)

k
k!

k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j

(
1

4r

)j

×
(

L
r∑

m=1

mL−1+n+j + O(mL−2+n+j)

)

.

(c)
=

2ωLωL−1

ν2
s (L+ 1)

r
L−1

2

L+1
2∑

n=0

(L+1
2

n

)

(2r)
L+1

2 −n(−1)n

×
L−1

2∑

k=0

(
L+1

2

)

k

(
1−L

2

)

k
(

L+3
2

)

k
k!

k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j

(
1

4r

)j

×
(

L

L+ n+ j
rL+n+j + O

(
rL−1+n+j

)
)

,

(H.20)

where(a) follows by use of the binomial series expansion [56, p.162],i.e.(x+ y)k =
∑k

n=0

(
k
n

)
xk−nyn, which in our case leads to

(2r −m)
L+1

2 =

L+1
2∑

n=0

(L+1
2

n

)

(2r)
L+1

2 −n(−1)nmn (H.21)

74In this asymptotic analysis we assume that allλ1 points within a givenC̄ is at exact same distance
from the center of̃V (i.e. fromλ0). The error due to this assumption is neglectable, since anyconstant
offset fromm will appear insideO(·).
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and
(

2r −m

4r

)k

=

k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j
(m

4r

)j

. (H.22)

(b) is obtained by once again applying the binomial series expansion, that is

(m− 1)L = mL − LmL−1 + O(mL−2), (H.23)

and(c) follows from the fact that
∑r

m=1m
L = 1

L+1r
L+1 + O(rL).

Next we let r → ∞ so that the number ofhollow spheres insidẽV goes to
infinity.75 From (H.20) we see that, asymptotically asνs → 0 and r → ∞, we
have

T = 2
ωLωL−1

ν2
s

L

L+ 1
βLr

2L, (H.25)

whereβL is constant for fixedL and given by (H.7).
We are now in a position to find an expression forψL. Let ν̄ be equal to the lower

bound (5.26), i.e.̄ν = νs

√
N and letr̄ be the radius of the sphere having volumeν̄.

ThenψL is given by the ratio ofr andr̄, i.e.ψL = r/r̄, wherer is the radius of̃V .
Using this in (H.25) leads to

r =

(
Tνs(L + 1)

2ωLωL−1LβL

)1/2L

. (H.26)

Since the radius̄r of anL-dimensional sphere of volumēν is given by

r̄ =

(
ν̄

ωL

)1/L

, (H.27)

we can findψL by dividing (H.26) by (H.27), that is

ψL =
r

r̄
=

(
Tν2

s (L+ 1)

2ωLωL−1LβL

)1/2L(
ν̄

ωL

)−1/L

. (H.28)

Since we need to obtainN 3-tuples we letT = N so that withν̄ =
√
Nνs we can

rewrite (H.28) as

ψL =

(
ωL

ωL−1

)1/2L (
L+ 1

2L

)1/2L

β
−1/2L
L . (H.29)

This completes the proof. �

75We would like to emphasize that this is equivalent to keepingr fixed, sayr = 1, and then let the
number ofhollow spheres insidẽV go to infinity. To see this letM → ∞ and then rewrite (H.8) as

am/M = Vol(C̄ )/νs =
ωL

νs

(
(m

M

)L
−
(
m− 1

M

)L
)

, 1 ≤ m ≤ M. (H.24)

A similar change applies to (H.9). Hence, the asymptotic expression forT is also valid within a localized
region ofRL which is a useful property we exploit when proving Proposition 5.4.1.
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H.3 Proof of Theorem 5.3.3

Lemma H.3.1. ForL→ ∞ we have
(

ωL

ωL−1

)1/2L

= 1. (H.30)

Proof. The volumeωL of an L-dimensional unit hypersphere is given byωL =

πL/2/(L/2)! so we have that

lim
L→∞

(
πL/2

(L/2)!

(L/2 − 1/2)!

πL/2−1/2

)1/2L

= lim
L→∞

π1/4L
(
O(L−1)

)1/2L

= 1.

(H.31)

�

Lemma H.3.2. ForL→ ∞ we have

1

β
1/2L
L

=

(
4

3

)1/4

. (H.32)

Proof. The inner sum in (5.28) may be well approximated by using that1
L+c ≈ 1

L for
L≫ c, which leads to

k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j

(
1

4

)j
1

L+ n+ j

≈
k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j

(
1

4

)j
1

L

=
1

L

(
1

4

)k

.

(H.33)

We also have that
L−1

2∑

k=0

(
L+1

2

)

k

(
1−L

2

)

k
(

L+3
2

)

k
k!

(
1

4

)k

=2F1

(
L+ 1

2
,
1 − L

2
;
L+ 3

2
;
1

4

)

(a)
= (1 − 1/4)(−1+L)/2

2F1

(

1,
1 − L

2
;
L+ 3

2
;−1

3

)

= (3/4)(−1+L)/2

L/2−1/2
∑

k=0

k!

k!

(1/2 − L/2)k

(3/2 + L/2)k
(−1/3)k

= (3/4)(−1+L)/2

×
L/2−1/2
∑

k=0

(
(−L/2)k

(L/2)k + O(Lk−1)
+ O(L−1)

)

(−1/3)k
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≈ (3/4)(−1+L)/2

L/2−1/2
∑

k=0

(1/3)k, (H.34)

where(a) follows from the following hypergeometric transformation[115]

2F1 (a, b; c; z) = (1 − z)−b
2F1 (c− a, b; c; ξ) , (H.35)

whereξ = z
z−1 . Finally, it is true that

L/2+1/2
∑

n=0

(
L/2 + 1/2

n

)

2L/2+1/2−n(−1)n = 1. (H.36)

Inserting (H.33), (H.34) and (H.36) into (H.7) leads to

βL ≈ (3/4)(−1+L)/2 1

L

L/2−1/2
∑

k=0

(1/3)k, (H.37)

where since
∑∞

k=0(1/3)k = 3/2, we get

lim
L→∞

1

β
1/2L
L

= lim
L→∞

(4/3)1/4(4/3)−1/4LL1/2L(2/3)1/2L

= (4/3)1/4,

(H.38)

which proves the Lemma. �

We are now in a position to prove the following theorem.
Theorem 5.3.3.For K = 3 andL → ∞ the dimensionless expansion factorψL is
given by

ψ∞ =

(
4

3

)1/4

. (H.39)

Proof. The proof follows trivially by use of Lemma H.3.1 and Lemma H.3.2 in (H.29).
�

H.4 Proof of Proposition 5.4.1

LetTi = {λi : λi = αi(λc), λc ∈ Vπ(0)}, i.e. the set ofN2 sublattice pointsλi ∈ Λs

associated with theN2 central lattice points withinVπ(0). Furthermore, letT ′
i ⊆ Ti

be the set of unique elements ofTi, where|T ′
i | ≈ N . Finally, let

Tj(λi) = {λj : λj = αj(λc) andλi = αi(λc), λc ∈ Vπ(0)}, (H.40)

and letT ′
j(λi) ⊆ Tj(λi) be the set of unique elements. That is,Tj(λi) contains all the

elementsλj ∈ Λs which are in theK-tuples that also contains a specificλi. We will
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also make use of the notation#λj
to indicate the number of occurrences of a specific

λj in Tj(λi).
For the pair(i, j) we have

∑

λc∈Vπ(0)

‖αi(λc) − αj(λc)‖2 =
∑

λi∈T ′
i

∑

λj∈Tj(λi)

‖λi − λj‖2.

Givenλi ∈ T ′
i , we have

∑

λj∈Tj(λi)

‖λi − λj‖2νs =
∑

λj∈T ′
j(λi)

#λj
‖λi − λj‖2νs

(a)≈ N

Ñ

∑

λj∈T ′
j(λi)

‖λi − λj‖2νs

≈ N

Ñ

∫

Ṽ (λi)

‖λi − x‖2 dx

≈ N

Ñ
ν̃1+2/LLG(SL)

(b)
= Nνsν̃

2/LLG(SL),

(H.41)

where(a) follows by assuming (see the discussion below for the case ofK = 3)
that#λj

= N/Ñ for all λj ∈ Tj(λi) and(b) follows sinceν̃ = Ñνs. Hence, with
ν̃ = Ñνs = ψN1/(K−1)νs andνs = Nν, we have

1

L

∑

λj∈Tj(λi)

‖λi − λj‖2νs ≈ Nνsψ
2
Lν

2/LN2/LN2/L(K−1)G(SL)

= νsψ
2
LN

1+2K/L(K−1)ν2/LG(SL),

which is independent ofλi, so that

1

L

∑

λi∈T ′
i

∑

λj∈Tj(λi)

‖λi − λj‖2 ≈ N

L

∑

λj∈Tj(λi)

‖λi − λj‖2

≈ ψ2
LN

2+2K/L(K−1)ν2/LG(SL).

In (H.41) we used the approximation#λj
≈ N/Ñ without any explanation. For

the case ofK = 2 and asN → ∞ we have thatT ′
i = Ti andN = Ñ , hence the

approximation becomes exact, i.e.#λj
= 1. This proves the Proposition forK = 2.

We will now consider the case ofK = 3 and show that asymptotically, asL → ∞,
the following approximation becomes exact.

1

L

∑

λj∈Tj(λi)

‖λi − λj‖2 ≈ Nν̃2/LG(SL). (H.42)
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To prove this we use the same procedure as when deriving closed-form expressions
for ψL leads to the following asymptotic expression

∑

λj∈Tj(λi)

‖λi − λj‖2 =

r∑

m=1

ambmm
2, (H.43)

where we without loss of generality assumed thatλi = 0 and used the fact that we
can replace‖λj‖2 by m2 for theλj points which are at distancem from λi = 0. It
follows that we have

1

L

∑

λj∈Tj(λi)

‖λi − λj‖2 = 2
ωLωL−1

ν2
s

1

L+ 1
β′

Lr
2L+2, (H.44)

where

β′
L =

L+1
2∑

n=0

(L+1
2

n

)

2
L+1

2 −n(−1)n

L−1
2∑

k=0

(
L+1

2

)

k

(
1−L

2

)

k
(

L+3
2

)

k
k!

×
k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j

(
1

4

)j
1

L+ n+ j + 2
.

(H.45)

Sinceν̃ = ωLr
L = ψL

L

√
Nνs we can rewrite (H.44) as

∑

λj∈Tj(λi)

‖λi − λj‖2 = 2
ωLωL−1

ν2
s

1

L+ 1
β′

Lν̃
2+2/L 1

ω
2+2/L
L

= 2
ωL−1

ω
1+2/L
L

1

L+ 1
β′

Lν̃
2/Lψ2L

L N

(a)
= 2

ωL−1

ω
1+2/L
L

1

L+ 1
β′

Lν̃
2/LN

(
ωL

ωL−1

)(
L+ 1

2L

)
1

βL

=
1

ω
2/L
L

1

L
ν̃2/LN

β′
L

βL
,

(H.46)

where(a) follows by inserting (H.29). Dividing (H.46) by (H.42) leads to

1

ω
2/L
L

1

L

1

G(SL)

β′
L

βL
=
L+ 2

L

β′
L

βL
. (H.47)

Hence, asymptotically asL→ ∞ we have that

lim
L→∞

L+ 2

L

β′
L

βL
= 1, (H.48)

which proves the Proposition.

RemarkH.4.1. Proposition 5.4.1 considered the asymptotic case ofL → ∞. Exact
distortion expressions for the case ofK = 3 and finiteL follow by replacing (H.41)
with (H.43).
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RemarkH.4.2. ForK > 3 it is very likely that similar equations can be found for
ψL which can then be used to verify the goodness of the approximations for anyK.
Moreover, in Appendix H.5 we show that the rate of growth of (H.41) is unaffected
if we replace#λj

by eitherminλj
{#λj

} or maxλj
{#λj

} which means that the error
by using the approximationN/Ñ instead of the true#λj

is constant (i.e. it does not
depend onN ) for fixedK andL. It remains to be shown whether this error term tends
to zero asL→ ∞ forK > 3. However, based on the discussion above we conjecture
that Proposition 5.4.1 is true for anyK asymptotically asN,L → ∞ andνs → 0.
In other words, the side distortion of aK-channel MD-LVQ system can be expressed
through the normalized second moment of a sphere as the dimension goes to infinity.

H.5 Proof of Proposition 5.4.2

Before proving Proposition 5.4.2 we need to lower and upper bound#λj
(see Ap-

pendix H.4 for an introduction to this notation). As previously mentioned theλj

points which are close (in Euclidean sense) toλi occur more frequently thanλj points
farther away. To see this observe that the construction ofK-tuples can be seen as
an iterative procedure that first picks aλ0 ∈ Λs ∩ Vπ(0) and then anyλ1 ∈ Λs is
picked such that‖λ0 − λ1‖ ≤ r, henceλ1 ∈ Λs ∩ Ṽ (λ0). The set ofλK−1 points
that can be picked for a particular(K − 1)-tuple e.g.(λ0, . . . , λK−2) is then given by
{λK−1 : λK−1 ∈ Λs ∩ Ṽ (λK−2)∩· · · ∩ Ṽ (λ0)}. It is clear that‖λi −λj‖ ≤ r where
(λi, λj) = (αi(λc), αj(λc)), ∀λc ∈ Λc and anyi, j ∈ {0, . . . ,K − 1}.

Let Tmin(λi, λj) denote the minimum number of times the pair(λi, λj) is used.
The minimumTmin of Tmin(λi, λj) over all pairs(λi, λj) lower boundsN/Ñ . We
will now show thatTmin is always bounded away from zero. To see this notice that the
minimum overlap between two spheres of radiusr centered atλ0 andλ1, respectively,
is obtained whenλ0 andλ1 are are maximally separated, i.e. when‖λ0 − λ1‖ =

r. This is shown by the shaded area in Fig. H.3 forL = 2. For three spheres the
minimum overlap is again obtained when all pairwise distances are maximized, i.e.
when‖λi − λj‖ = r for i, j ∈ {0, 1, 2} and i 6= j. It is clear that the volume of
the intersection of three spheres is less than that of two spheres, hence the minimum
number ofλ2 points is greater than the minimum number ofλ3 points. However,
by construction it follows that when centeringK spheres at the set of pointss =

{λ0, . . . , λK−1} = {α0(λc), . . . , αK−1(λc)} each of the points ins will be in the
intersection∩s of theK spheres. Since the intersection of an arbitrary collectionof
convex sets leads to a convex set [117], the convex hullC (s) of s will also be in∩s.
Furthermore, for the example in Fig. H.3, it can be seen thatC (s) (indicated by the
equilateral triangle) will not get smaller forK ≥ 3 and this is true in general since
points are never removed froms asK grows. ForL = 3 the regular tetrahedron [25]
consisting of four points with a pairwise distance ofr describes a regular convex
polytope which lies in∩s. In general the regularL-simplex [25] lies in∩s and the
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λ0 λ1

λ2

C (s)

Figure H.3: Three spheres of equal radius are here centered at the set of points s =

{λ0, λ1, λ2}. The shaded area describes the intersection of two spheres.The equilateral
triangle describes the convex hullC (s) of s.

volume Vol(L) of a regularL-simplex with side lengthr is given by [13]

Vol(L) =
rL

L!

√

L+ 1

2L
= cLr

L, (H.49)

wherecL depends only onL. It follows that the minimum number ofK-tuples that
contains a specific(λi, λj) pair is lower bounded by Vol(L)K−2/νK−2

s . Since the
volumeν̃ of Ṽ is given byν̃ = ωLr

L we get

(
Vol(L)

νs

)K−2

=

(
cL
ωL

)K−2(
ν̃

νs

)K−2

. (H.50)

Also, by construction we have thatN ≤ (ν̃/νs)
K−1 and thatÑ = ν̃/νs so an upper

bound onN/Ñ is given by

N

Ñ
≤
(
ν̃

νs

)K−2

, (H.51)

which differs from the lower bound in (H.50) by a multiplicative constant.
We are now in a position to prove Proposition 5.4.2.

Proposition 5.4.2ForN → ∞ and2 ≤ K <∞ we have

∑

λc∈Vπ(0)

∥
∥
∥λc − 1

K

∑K−1
i=0 λi

∥
∥
∥

2

∑

λc∈Vπ(0)

∑K−2
i=0

∑K−1
j=i+1 ‖λi − λj‖2

→ 0. (H.52)

Proof. The numerator describes the distance from a central latticepoint to the mean
vector of its associatedK-tuple. This distance is upper bounded by the covering
radius of the sublatticeΛs. The rate of growth of the covering radius is proportional
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to ν1/L
s = (Nν)1/L, hence

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
λc −

1

K

K−1∑

i=0

λi

∥
∥
∥
∥
∥

2

= O
(

N2N2/Lν2/L
)

. (H.53)

Since the approximationN/Ñ used in Proposition 5.4.1 is sandwiched between the
lower and upper bounds (i.e. Eqs. (H.50) and (H.51)) we can write

∑

λc∈Vπ(0)

K−2∑

i=0

K−1∑

j=i+1

‖αi(λc) − αj(λc)‖2

=

K−2∑

i=0

K−1∑

j=i+1

∑

λc∈Vπ(0)

‖αi(λc) − αj(λc)‖2

≈ L

2
K(K − 1)G(SL)ψ2

LN
2N2K/L(K−1)ν2/L,

(H.54)

so that, sinceλi = αi(λc),

∑

λc∈Vπ(0)

K−2∑

i=0

K−1∑

j=i+1

‖λi − λj‖2 = O
(

N2N2K/L(K−1)ν2/L
)

. (H.55)

Comparing (H.53) to (H.55) we see that (H.52) grows asO
(
N−K/(K−1)

)
→ 0 for

N → ∞ andK <∞. �



Appendix I
Proofs for Chapter 6

For notational convenience we will in this appendix use the shorter notationsL ,Li

andLi,j instead ofL (K,κ),L
(K,κ)
i andL

(K,κ)
i,j .

I.1 Proof of Theorem 6.2.1

To prove Theorem 6.2.1 we need the following results.

Lemma I.1.1. For1 ≤ κ ≤ K and anyi ∈ {0, . . . ,K − 1} we have

K−1∑

j=0
j 6=i

p(Lj) = κp(L ) − p(Li).

Proof. Since |Lj| =
(
K−1
κ−1

)
the sum

∑K−1
j=0 p(Lj) containsK

(
K−1
κ−1

)
terms.

However, the number of distinct terms is|L | =
(
K
κ

)
and each individual term occurs

κ times in the sum, since

K
(
K−1
κ−1

)

(
K
κ

) = κ.

Subtracting the terms forj = i proves the lemma. �

Lemma I.1.2. For1 ≤ κ ≤ K and anyi, j ∈ {0, . . . ,K − 1} we have

K−1∑

j=0

p(Li,j) = κp(Li).

197
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Proof. It is true thatLi,i = Li and since|Li| =
(
K−1
κ−1

)
and |Li,j | =

(
K−2
κ−2

)
the

sum
∑K−1

j=0 p(Li,j) contains(K − 1)
(
K−2
κ−2

)
+
(
K−1
κ−1

)
terms. However, the number of

distinctl ∈ Li terms is|Li| =
(
K−1
κ−1

)
and each term occursκ times in the sum, since

(K − 1)
(
K−2
κ−2

)
+
(
K−1
κ−1

)

(
K−1
κ−1

) = κ.

�

Lemma I.1.3. For1 ≤ κ ≤ K we have

∑

l∈L

p(L )

〈

λc,
1

κ

∑

i∈l

λi

〉

=

〈

λc,
1

κ

K−1∑

i=0

λip(Li)

〉

.

Proof. We have that

∑

l∈L

p(L )

〈

λc,
1

κ

∑

i∈l

λi

〉

=

〈

λc,
1

κ

∑

l∈L

p(l)
∑

i∈l

λi

〉

=

〈

λc,
1

κ

K−1∑

i=0

λip(Li)

〉

,

where the last equality follows sinceLi denotes the set of alll-terms that contains the
indexi. �

Lemma I.1.4. For1 ≤ κ ≤ K we have

K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)‖λi − λj‖2 =

K−1∑

i=0

p(Li) (κp(L ) − p(Li)) ‖λi‖2

− 2

K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)〈λi, λj〉.

Proof. We have that

K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)‖λi − λj‖2 =
K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)(‖λi‖2 + ‖λj‖2)

− 2

K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)〈λi, λj〉.

Furthermore, it follows that

K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)(‖λi‖2 + ‖λj‖2)
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=

K−2∑

i=0

p(Li)‖λi‖2
K−1∑

j=i+1

p(Lj) +

K−1∑

j=1

p(Lj)‖λj‖2

j−1
∑

i=0

p(Li)

=

K−1∑

i=0

p(Li)‖λi‖2
K−1∑

j=i+1

p(Lj)

︸ ︷︷ ︸

0 for i=K−1

+

K−1∑

j=0

p(Lj)‖λj‖2

j−1
∑

i=0

p(Li)

︸ ︷︷ ︸

0 for j=0

=

K−1∑

i=0

p(Li)‖λi‖2





i−1∑

j=0

p(Lj) +

K−1∑

j=i+1

p(Lj)





=

K−1∑

i=0

p(Li)‖λi‖2
K−1∑

j=0
j 6=i

p(Lj)

=

K−1∑

i=0

p(Li)‖λi‖2 (κp(L ) − p(Li)) ,

where the last equality follows by use of Lemma I.1.1. �

Lemma I.1.5. For1 ≤ κ ≤ K we have

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)‖λi − λj‖2 = (κ− 1)

K−1∑

i=0

p(Li)‖λi‖2

− 2
K−2∑

i=0

K−1∑

j=i+1

p(Li,j)〈λi, λj〉.

Proof. We have that

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)‖λi − λj‖2 =

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)(‖λi‖2

+ ‖λj‖2) − 2

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)〈λi, λj〉.

Furthermore, it follows that

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)(‖λi‖2 + ‖λj‖2)

=

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)‖λi‖2 +

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)‖λj‖2

=

K−2∑

i=0

‖λi‖2
K−1∑

j=i+1

p(Li,j) +

K−1∑

j=1

j−1
∑

i=0

p(Li,j)‖λj‖2
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=

K−1∑

i=0

‖λi‖2
K−1∑

j=i+1

p(Li,j)

︸ ︷︷ ︸

0 for i=K−1

+

K−1∑

j=0

‖λj‖2

j−1
∑

i=0

p(Li,j)

︸ ︷︷ ︸

0 for j=0

=

K−1∑

i=0

‖λi‖2





i−1∑

j=0

p(Li,j) +

K−1∑

j=i+1

p(Li,j)





=

K−1∑

i=0

‖λi‖2





K−1∑

j=0

p(Li,j) − p(Li)





(a)
=

K−1∑

i=0

‖λi‖2 (κp(Li) − p(Li))

= (κ− 1)

K−1∑

i=0

‖λi‖2p(Li),

where(a) follows by use of Lemma I.1.2. �

Lemma I.1.6. For1 ≤ κ ≤ K we have

∑

l∈L

p(l)

∥
∥
∥
∥
∥

∑

i∈l

λi

∥
∥
∥
∥
∥

2

= κ
K−1∑

i=0

p(Li)‖λi‖2 −
K−2∑

i=0

K−1∑

j=i+1

p(Li,j)‖λi − λj‖2.

Proof. The set of all elementsl of L that contains the indexi is denoted byLi.
Similarly the set of all elements that contains the indicesi andj is denoted byLi,j .
From this we see that

∑

l∈L

p(l)

∥
∥
∥
∥
∥

∑

i∈l

λi

∥
∥
∥
∥
∥

2

=
∑

l∈L

p(l)




∑

i∈l

‖λi‖2 + 2

κ−2∑

i=0

κ−1∑

j=i+1

〈λli , λlj 〉





=

K−1∑

i=0

p(Li)‖λi‖2 + 2

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)〈λi, λj〉.

By use of Lemma I.1.5 it follows that

∑

l∈L

p(l)

∥
∥
∥
∥
∥

∑

i∈l

λi

∥
∥
∥
∥
∥

2

=
K−1∑

i=0

p(Li)‖λi‖2 + (κ− 1)
K−1∑

i=0

p(Li)‖λi‖2

−
K−2∑

i=0

K−1∑

j=i+1

p(Li,j)‖λi − λj‖2

= κ

K−1∑

i=0

p(Li)‖λi‖2 −
K−2∑

i=0

K−1∑

j=i+1

p(Li,j)‖λi − λj‖2

�
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We are now in a position to prove the following result.

Proposition I.1.1. For1 ≤ κ ≤ K we have

∑

l∈L

p(l)

∥
∥
∥
∥
∥
λc −

1

κ

∑

i∈l

λi

∥
∥
∥
∥
∥

2

= p(L )

∥
∥
∥
∥
∥
λc −

1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2

+
1

κ2

K−2∑

i=0

K−1∑

j=i+1

(
p(Li)p(Lj)

p(L )
− p(Li,j)

)

‖λi − λj‖2.

(I.1)

Proof. Expansion of the norm on the left-hand-side in (I.1) leads to

∑

l∈L

p(l)

∥
∥
∥
∥
λc −

1

κ

∑

i∈l

λi

∥
∥
∥
∥

2

=
∑

l∈L

p(l)



‖λc‖2 − 2

〈

λc,
1

κ

∑

i∈l

λi

〉

+
1

κ2

∥
∥
∥
∥
∥

∑

i∈l

λi

∥
∥
∥
∥
∥

2




(a)
= p(L )‖λc‖2 − 2

〈

λc,
1

κ

K−1∑

i=0

p(Li)λi

〉

+
1

κ2

∑

l∈L

p(l)

∥
∥
∥
∥
∥

∑

i∈l

λi

∥
∥
∥
∥
∥

2

= p(L )

∥
∥
∥
∥
∥
λc −

1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2

− 1

κ2p(L )

∥
∥
∥
∥
∥

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2

+
1

κ2

∑

l∈L

p(l)

∥
∥
∥
∥
∥

∑

i∈l

λi

∥
∥
∥
∥
∥

2

= p(L )

∥
∥
∥
∥
∥
λc −

1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2

+
1

κ2

∑

l∈L

p(l)

∥
∥
∥
∥
∥

∑

i∈l

λi

∥
∥
∥
∥
∥

2

− 1

κ2p(L )





K−1∑

i=0

p(Li)
2‖λi‖2 + 2

K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)〈λi, λj〉





(b)
= p(L )

∥
∥
∥
∥
∥
λc −

1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2

+
1

κ

K−1∑

i=0

p(Li)‖λi‖2

− 1

κ2

K−2∑

i=0

K−1∑

j=i+1

p(Li,j)‖λi − λj‖2 − 1

κ2p(L )

K−1∑

i=0

p(Li)
2‖λi‖2

+
1

κ2p(L )

(K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)‖λi − λj‖2

−
K−1∑

i=0

p(Li)(κp(L ) − p(Li))‖λi‖2

)

= p(L )

∥
∥
∥
∥
∥
λc −

1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2
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+
1

κ2

K−2∑

i=0

K−1∑

j=i+1

(
p(Li)p(Lj)

p(L )
− p(Li,j)

)

‖λi − λj‖2,

where(a) follows by use of Lemma I.1.3 and(b) by use of Lemmas I.1.4 and I.1.6.
�

Theorem I.1.1. For1 ≤ κ ≤ K we have

∑

λc

∑

l∈L

p(l)

∥
∥
∥
∥
∥
λc −

1

κ

∑

i∈l

λi

∥
∥
∥
∥
∥

2

=
∑

λc

(

p(L )

∥
∥
∥
∥
∥
λc −

1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2

+
1

κ2

K−2∑

i=0

K−1∑

j=i+1

(
p(Li)p(Lj)

p(L )
− p(Li,j)

)

‖λi − λj‖2

)

.

(I.2)

Proof. Follows trivially from Proposition I.1.1. �

I.2 Proof of Proposition 6.3.1

Proposition 6.3.1ForK = 2 and asymptotically asNi → ∞, νi → 0 as well as
for K = 3 and asymptotically asNi, L → ∞ andνi → 0, we have for any pair of
sublattices,(Λi,Λj), i, j = 0, . . . ,K − 1, i 6= j,

1

L

∑

λc∈Vπ(0)

‖αi(λc) − αj(λc)‖2 = ψ2
Lν

2/LG(SL)Nπ

K−1∏

m=0

N2/L(K−1)
m .

Proof. Let Ti = {λi : λi = αi(λc), λc ∈ Vπ(0)}, i.e. the set ofNπ sublattice points
λi ∈ Λi associated with theNπ central lattice points withinVπ(0). Furthermore,
let T ′

i ⊆ Ti be the set of unique elements ofTi. Since (for largeNi) all the lattice
points ofΛi which are contained withinVπ(0) are used in someK-tuples, it follows
that |T ′

i | ≈ ν̃/νi = Nπ/Ni. Finally, let Tj(λi) = {λj : λj = αj(λc) andλi =

αi(λc), λc ∈ Vπ(0)} and letT ′
j(λi) ⊆ Tj(λi) be the set of unique elements. That

is, Tj(λi) contains all the elementsλj ∈ Λj which are in theK-tuples that also
contains a specificλi ∈ Λi. We will also make use of the notation#λj

to indicate the
number of occurrences of a specificλj in Tj(λi). For example forK = 2 we have
#λj

= 1, ∀λj whereas forK > 2 we have#λj
≥ 1. We will show later that using

the approximation#λj
≈ Ni/Ñj is asymptotically good forK = 3, L → ∞ and

Nn → ∞, ∀n. Furthermore, we conjecture this to be the case forK > 3 as well.
For sublatticeΛi andΛj we have

∑

λc∈Vπ(0)

‖αi(λc) − αj(λc)‖2 =
∑

λi∈T ′
i

∑

λj∈Tj(λi)

‖λi − λj‖2.
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Givenλi ∈ T ′
i , we have

∑

λj∈Tj(λi)

‖λi − λj‖2νj =
∑

λj∈T ′
j(λi)

#λj
‖λi − λj‖2νj

≈ Ni

Ñj

∑

λj∈T ′
j(λi)

‖λi − λj‖2νj

≈ Ni

Ñj

∫

Ṽ (λi)

‖λi − x‖2 dx

=
Ni

Ñj

ν̃1+2/LLG(SL)

= Niνj ν̃
2/LLG(SL)

(I.3)

sinceÑj = ν̃/νj. Hence, withν̃ = ψL
Lν
∏K−1

m=0 N
1/(K−1)
m , we have

1

L

∑

λj∈Tj(λi)

‖λi − λj‖2νj ≈ Niνjψ
2
Lν

2/LG(SL)

K−1∏

m=0

N2/L(K−1)
m ,

which is independent ofλi, so that

1

L

∑

λi∈T ′
i

∑

λj∈Tj(λi)

‖λi − λj‖2 ≈ 1

L

Nπ

Ni

∑

λj∈Tj(λi)

‖λi − λj‖2

≈ ψ2
Lν

2/LG(SL)Nπ

K−1∏

m=0

N2/L(K−1)
m ,

which completes the first part of the proof. We still need to show that forK = 3

andL → ∞ as well asNm → ∞, ∀m the approximation#λj
≈ Ni/Ñj is good.

That this is so can be deduced from the proof of Proposition 5.4.1 (the last part where
K = 3) by using the fact that̃ν = ψL

Lν
∏
N

1/(K−1)
m in order to prove that

1

L

∑

λj∈Tj(λi)

‖λi − λj‖2 = Niν̃
2/LG(SL), (I.4)

which shows that (I.3) is asymptotically true forK = 3, L→ ∞ andNn → ∞, ∀n.
�

I.3 Proof of Proposition 6.3.2

Proposition 6.3.2ForNi → ∞ we have

∑

λc∈Vπ(0)

∥
∥
∥λc − 1

κp(L )

∑K−1
i=0 p(Li)λi

∥
∥
∥

2

∑

λc∈Vπ(0)

∑K−2
i=0

∑K−1
j=i+1

(
p(Li)p(Lj)

p(L ) − p(Li,j)
)

‖λi − λj‖2
→ 0. (I.5)
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Proof. The numerator describes the distance from a central latticepoint to the
weighted centroid of its associatedK-tuple. Let us chooseΛ0 such thatN0 ≤ Ni, ∀i.
Then, since by construction there is no bias towards any of the sublattices, the
weighted centroids will be evenly distributed aroundλ0 points. Hence, the distance
from central lattice points to the centroids can be upper bounded by the covering radius
of Λ0. This is a conservative76 upper bound but will suffice for the proof. The rate of
growth of the covering radius is proportional toν1/L

0 = (N0ν)
1/L, hence

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
λc −

1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2

= O
(

NπN
2/L
0 ν2/L

)

. (I.6)

By use of Proposition 6.3.1 we have77

1

L

∑

λc∈Vπ(0)

K−2∑

i=0

K−1∑

j=i+1

(
p(Li)p(Lj)

p(L )
− p(Li,j)

)

‖αi(λc) − αj(λc)‖2

=
1

L

K−2∑

i=0

K−1∑

j=i+1

(
p(Li)p(Lj)

p(L )
− p(Li,j)

)
∑

λc∈Vπ(0)

‖αi(λc) − αj(λc)‖2

≈ ψ2
Lν

2/LG(SL)Nπ

K−1∏

m=0

N2/L(K−1)
m

K−2∑

i=0

K−1∑

j=i+1

(
p(Li)p(Lj)

p(L )
− p(Li,j)

)

,

so that, sinceλi = αi(λc), we get by use of Proposition 6.3.178

∑

λc∈Vπ(0)

K−2∑

i=0

K−1∑

j=i+1

(
p(Li)p(Lj)

p(L )
− p(Li,j)

)

‖λi − λj‖2

= Ω

(

Nπν
2/L

K−1∏

m=0

N2/L(K−1)
m

)

.

(I.7)

Comparing (I.6) to (I.7) we see that (I.5) grows asΘ
(

N
2/L
0 /N

2/L(K−1)
π

)

→ 0 for

Ni → ∞. �

76The number of distinct centroids per unit volume is larger than the number of points ofΛ0 per unit
volume.

77The approximation of#λj
in Proposition 6.3.1 does not influence this analysis. To seethis we refer

the reader to Appendix H.5.
78In this case we actually lower bound the expression and as such the order operatorO is in factΩ. Recall

that we say thatf(n) = O(g(n)) if 0 < f(n) ≤ c1g(n) andf(n) = Ω(g(n)) if f(n) ≥ c0g(n), for
c0, c1 > 0 and some largen. Furthermore,f(n) = Θ(g(n)) if c0g(n) ≤ f(n) ≤ c1g(n), cf. [56].
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Vπ(0)

Ṽ

r0

r1

A
B

Figure I.1: The complete sphere consisting of the regionsA andB describeVπ(0). The radius
of Vπ(0) is r0. The small bright sphere describẽV . WhenṼ is centered atλ0 points within the
sphereA of radiusr1 it will be completely contained withinVπ(0).

I.4 Proof of Lemmas

Proof of Lemma 6.2.2.For simplicity (and without any loss of generality) we assume
thatVπ(0) forms the shape of a sphere, see Fig. I.1. TheK-tuples are constructed by
centering a spherẽV of volumeν̃ around eachλ0 ∈ Vπ(0) and taking all combinations
of lattice points within this region (keepingλ0 as first coordinate). From Fig. I.1 it
may be seen that anyλ0 which is contained in the region denotedA will always be
combined with sublattice points that are also contained inVπ(0). On the other hand,
any λ0 which is contained in regionB will occasionally be combined with points
outsideVπ(0). Therefore, we need to show that the volumeVA of A approaches
the volume ofVπ(0) asNi → ∞ or equivalently that the ratio ofVB/VA → 0 as
Ni → ∞, whereVB denotes the volume of the regionB.

Let ωL denote the volume of anL-dimensional unit sphere. ThenVA = ωLr
L
1

andVB = νπ − VA , whereνπ is the volume ofVπ(0). The radiusr1 of A can be
expressed as the difference between the radiusr0 of Vπ(0) and the radius of̃V , that is

r1 = (νπ/ωL)1/L − (ν̃/ωL)1/L. (I.8)

Since,νπ = ν
∏
Ni = νNπ and ν̃ = ψL

Lν
∏
N

1/(K−1)
i = ψL

LνN
1/(K−1)
π we can

write VA as

VA = ωLr
L
1

= ωL





(
νNπ

ωL

)1/L

−
(

ψL
LνN

1/(K−1)
π

ωL

)1/L




L

= ν
(

N1/L
π − ψLN

1/L(K−1)
π

)L

.

(I.9)

The volume ofB can be expressed through the volume ofA as

VB = νπ − VA , (I.10)
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so that their ratio is given by

VB

VA

=
Nπ

(

N
1/L
π −N

1/L(K−1)
π

)L
− 1. (I.11)

Clearly, forK > 2 we have

lim
Nπ→∞

Nπ
(

N
1/L
π −N

1/L(K−1)
π

)L
= 1, (I.12)

which proves the claim. �

Proof of Lemma 6.2.3.We only need to prove Lemma 6.2.3 forΛ0 andΛ1. Then by
symmetry it must hold for any pair. LetSλ0 denote the set ofK-tuples constructed
by centeringṼ at someλ0 ∈ Vπ(0) ∩ Λ0. Hence,s ∈ Sλ0 hasλ0 as first coordinate
and the distance between any two elements ofs is less thanr, the radius ofṼ . We
will assume79 thatSλ0 6= ∅, ∀λ0.

Similarly, define the setSλ1 6= ∅ by centeringṼ at someλ1 ∈ Vπ(0) ∩ Λ1.
Assume80 all elements of theK-tuples are inVπ(0). Then it must hold that for anys ∈
Sλ1 we haves ∈ ⋃λ0∈Vπ∩Λ0

Sλ0 . But it is also true that for anys′ ∈ Sλ0 we have
s′ ∈ ⋃λ1∈Vπ∩Λ1

Sλ1 . Hence, we deduce that
⋃

λ0∈Vπ∩Λ0
Sλ0 ≡ ⋃

λ1∈Vπ∩Λ1
Sλ1 .

Furthermore,|Vπ(0) ∩ Λ0| = Nπ/N0, |Sλ0 | = N0, ∀λ0 ∈ Vπ(0) ∩ Λ0 andSλ′
0
∩

Sλ′′
0

= ∅, λ′0 6= λ′′0 , which implies that|⋃λ0∈Vπ∩Λ0
Sλ0 | = Nπ. �

I.5 Proof of Theorem 6.5.1

Before proving Theorem 6.5.1 we need the following results.

Lemma I.5.1. For1 ≤ κ ≤ K and anyl ∈ L we have

∥
∥
∥
∥
∥
∥

∑

j∈l

λj

∥
∥
∥
∥
∥
∥

2

= κ
∑

j∈l

‖λj‖2 −
κ−2∑

i=0

κ−1∑

j=i+1

‖λlj − λli‖2.

79This is always the case ifr ≥ maxi r(Λi) wherer(Λi) is the covering radius of theith sublattice.
The covering radius depends on the lattice and is maximized if Λi is geometrically similar toZL, in which
case we have [22]

r(Λi) =
1

2

√
2ν1/LN

1/L
i .

Sincer = ψLν
1/LN

1/L(K−1)
π /ω

1/L
L it follows that in order to make sure thatSλ0

6= ∅ the index
values must satisfy

Ni ≤ (
√

2ψL)LωLN
1/(K−1)
π , i = 0, . . . ,K − 1. (*)

Throughout this work we therefore require (and implicitly assume) that (*) is satisfied.
80This is asymptotically true according to Lemma 6.2.2 since we at this point do not consider the cosets of

theK-tuples. Furthermore, the cosets are invariant to which lattice is used for the construction ofK-tuples
as long as all elements of theK-tuples are withinVπ(0).
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Proof. We can write

∥
∥
∥
∥
∥
∥

∑

j∈l

λj

∥
∥
∥
∥
∥
∥

2

=
∑

j∈l

‖λj‖2 + 2
κ−2∑

i=0

κ−1∑

j=i+1

〈λlj , λli〉,

which by use of Lemma H.1.3 leads to

∥
∥
∥
∥
∥
∥

∑

j∈l

λj

∥
∥
∥
∥
∥
∥

2

=
∑

j∈l

‖λj‖2 + (κ− 1)
∑

j∈l

‖λj‖2 −
κ−2∑

i=0

κ−1∑

j=i+1

‖λlj − λli‖2

= κ
∑

j∈l

‖λj‖2 −
κ−2∑

i=0

κ−1∑

j=i+1

‖λlj − λli‖2.

�

Lemma I.5.2. For1 ≤ κ ≤ K and anyl ∈ L we have

2

〈
∑

j∈l

λj ,

K−1∑

i=0

p(Li)λi

〉

= p(L )κ
∑

j∈l

‖λj‖2

+ κ

K−1∑

i=0

p(Li)‖λi‖2 −
∑

j∈l

K−1∑

i=0

p(Li)‖λj − λi‖2.

Proof.

2

〈
∑

j∈l

λj ,

K−1∑

i=0

p(Li)λi

〉

= 2
∑

j∈l

K−1∑

i=0

p(Li)〈λj , λi〉

= −
∑

j∈l

K−1∑

i=0

p(Li)‖λj − λi‖2

+
∑

j∈l

K−1∑

i=0

p(Li)
(
‖λj‖2 + ‖λi‖2

)

where by use of Lemma I.1.1 we obtain

2

〈
∑

j∈l

λj ,

K−1∑

i=0

p(Li)λi

〉

= −
∑

j∈l

K−1∑

i=0

p(Li)‖λj − λi‖2

+ κp(L )
∑

j∈l

‖λj‖2 + κ

K−1∑

i=0

p(Li)‖λi‖2.

�
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Proposition I.5.1. For0 < κ ≤ K ≤ 3,Ni → ∞, νi → 0 and anyl ∈ L we have

1

L

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj −
1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥
∥

2

= ω(K,l)ψ2
Lν

2/LG(SL)Nπ

K−1∏

m=0

N2/L(K−1)
m ,

where

ω(K,l) =
1

p(L )2κ2

(

p(L )2κ2 − p(L )2
(
κ

2

)

− p(L )
∑

j∈l

p(Lj)

−
K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)

)

,

where
(

κ
2

)
= 0 for κ = 1.

Proof. We have that

∥
∥
∥
∥

1

κ

∑

j∈l

λj −
1

κp(L )

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥

2

=
1

p(L )2κ2

(

p(L )2

∥
∥
∥
∥
∥
∥

∑

j∈l

λj

∥
∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥

2

− 2p(L )

〈
∑

j∈l

λj ,

K−1∑

i=0

p(Li)λi

〉)

,

which by use of Lemmas I.5.1 and I.5.2 leads to

∥
∥
∥
∥

1

κ

∑

j∈l

λj −
1

p(L )κ

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥

2

=
1

p(L )2κ2

(

p(L )2κ
∑

j∈l

‖λj‖2 − p(L )2
κ−2∑

i=0

κ−1∑

j=i+1

‖λli − λlj‖2

+ p(L )κ

K−1∑

i=0

p(Li)‖λi‖2 −
K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)‖λi − λj‖2

− p(L )2κ
∑

j∈l

‖λj‖2 − p(L )κ

K−1∑

i=0

p(Li)‖λi‖2

+ p(L )
∑

j∈l

K−1∑

i=0

p(Li)‖λj − λi‖2

)
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=
1

p(L )2κ2

(

p(L )
∑

j∈l

K−1∑

i=0

p(Li)‖λj − λi‖2

− p(L )2
κ−2∑

i=0

κ−1∑

j=i+1

‖λli − λlj‖2

−
K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)‖λi − λj‖2

)

. (I.13)

It follows from Proposition 6.3.1, (I.13) and Lemma I.1.1 that we can write

1

L

∑

λc∈Vπ(0)

∥
∥
∥
∥

1

κ

∑

j∈l

λj −
1

p(L )κ

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥

2

≈ 1

p(L )2κ2

(

p(L )
∑

j∈l

K−1∑

i=0
i6=j

p(Li) − p(L )2
κ−2∑

i=0

κ−1∑

j=i+1

−
K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)

)

× ψ2
Lν

2/LG(SL)Nπ

K−1∏

m=0

N2/L(K−1)
m

=
1

p(L )2κ2

(

p(L )2κ2 − p(L )
∑

j∈l

p(Lj) − p(L )2
(
κ

2

)

−
K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)

)

ψ2
Lν

2/LG(SL)Nπ

K−1∏

m=0

N2/L(K−1)
m .

This completes the proof. �

Proposition I.5.2. For any1 ≤ κ ≤ K andl ∈ L we have

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj −
1

p(L )κ

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥
∥

= O

(

ν1/LNπ

K−1∏

m=0

N1/L(K−1)
m

)

Proof. Recall that the sublattice pointsλi andλj satisfy‖λi − λj‖ ≤ r, wherer =

(ν̃/ωL)1/L is the radius of̃V . Hence, without loss of generality, we letλj = r and
λi = 0, which leads to

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj −
1

p(L )κ

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥
∥

≤ rNπ

= O

(

ν1/LNπ

K−1∏

m=0

N1/L(K−1)
m

)

,

sinceν̃ = ψL
Lν
∏K−1

m=0N
1/(K−1)
m . �
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Proposition I.5.3. For1 ≤ κ ≤ K ≤ 3, l ∈ L ,Ni → ∞ andνi → 0 we have

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj − λc

∥
∥
∥
∥
∥
∥

2

=
∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj −
1

p(L )κ

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥
∥

2

.

Proof. Let λ̄ = 1
p(L )κ

∑K−1
i=0 p(Li)λi andλ′ = 1

κ

∑

j∈l λj . We now follow [28, Eqs.
(67) – (72)] and obtain the following inequalities:

‖λ′ − λc‖2 = ‖λ′ − λ̄+ λ̄− λc‖2

= ‖λ′ − λ̄‖2 + ‖λ̄− λc‖2 + 2〈(λ′ − λ̄), (λ̄ − λc)〉,
from which we can establish the inequality

‖λ′ − λ̄‖2 + ‖λ̄− λc‖2 − 2|〈(λ′ − λ̄), (λ̄− λc)〉| ≤ ‖λ′ − λc‖2

≤ ‖λ′ − λ̄‖2 + ‖λ̄− λc‖2 + 2|〈(λ′ − λ̄), (λ̄ − λc)〉|.
Using the Cauchy-Schwartz inequality we get

‖λ′ − λ̄‖2 + ‖λ̄− λc‖2 − 2‖(λ′ − λ̄)‖‖(λ̄− λc)‖ ≤ ‖λ′ − λc‖2

≤ ‖λ′ − λ̄‖2 + ‖λ̄− λc‖2 + 2‖(λ′ − λ̄)‖‖(λ̄− λc)‖.
which can be rewritten as

‖λ′ − λ̄‖2

(

1 − ‖λ̄− λc‖
‖λ′ − λ̄‖

)2

≤ ‖λ′ − λc‖2

≤ ‖λ′ − λ̄‖2

(

1 +
‖λ̄− λc‖
‖λ′ − λ̄‖

)2

Summing overλc ∈ Vπ(0) and observing that‖λ̄− λc‖2 ≥ 0, we get
∑

λc∈Vπ(0)

(
‖λ′ − λ̄‖2 − 2‖λ′ − λ̄‖‖λ̄− λc‖

)
≤

∑

λc∈Vπ(0)

‖λc − λ′‖2

≤
∑

λc∈Vπ(0)

(
‖λ′ − λ̄‖2 + ‖λ̄− λc‖2 + 2‖λ′ − λ̄‖‖λ̄− λc‖

)
,

which can be rewritten as



∑

λc∈Vπ(0)

‖λ′ − λ̄‖2





(

1 − 2

∑

λc∈Vπ(0) ‖λ′ − λ̄‖‖λ̄− λc‖
∑

λc∈Vπ(0) ‖λ′ − λ̄‖2

)

(I.14)

≤
∑

λc∈Vπ(0)

‖λc − λ′‖2 (I.15)

≤




∑

λc∈Vπ(0)

‖λ′ − λ̄‖2





×
(

1 +

∑

λc∈Vπ(0) ‖λ̄− λc‖2

∑

λc∈Vπ(0) ‖λ′ − λ̄‖2
+ 2

∑

λc∈Vπ(0) ‖λ′ − λ̄‖‖λ̄− λc‖
∑

λc∈Vπ(0) ‖λ′ − λ̄‖2

)

. (I.16)
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By use of (I.6) and Proposition I.5.2 it is possible to upper bound the numerator of the
fraction in (I.14) by

∑

λc∈Vπ(0)

‖λ′ − λ̄‖‖λ̄− λc‖ = O

(

(Nkν)
1/LNπν

1/L
K−1∏

m=0

N1/L(K−1)
m

)

,

since the covering radius of thekth sublattice is proportional to(Nkν)
1/L, whereNk

is the minimum ofNi, i = 0, . . . ,K − 1.
By use of Proposition I.5.1 it is easily seen that the denominator in (I.14) grows as

∑

λc∈Vπ(0)

‖λ′ − λ̄‖2 = O

(

ν2/LNπ

K−1∏

m=0

N2/L(K−1)
m

)

,

hence the fraction in (I.14) go to zero forNi → ∞. By a similar analysis it is easily
seen that the fractions in (I.16) also go to zero asNi → ∞.

Based on the asymptotic behavior of the fractions in (I.14) and (I.16) we see that
(asymptotically asNi → ∞)

∑

λc∈Vπ(0)

‖λ′ − λ̄‖2 ≤
∑

λc∈Vπ(0)

‖λc − λ′‖2 ≤
∑

λc∈Vπ(0)

‖λ′ − λ̄‖2,

hence
∑

λc∈Vπ(0)

‖λc − λ′‖2 ≈
∑

λc∈Vπ(0)

‖λ′ − λ̄‖2,

which completes the proof. �

We are now in a position to prove Theorem 6.5.1.
Theorem 6.5.1The side distortionD(K,l) due to reception of descriptions{l}, where
l ∈ L for any1 ≤ κ ≤ K ≤ 3 is, asymptotically asL,Ni → ∞ andνi → 0, given
by

D(K,l) = ω(K,l)ψ2
Lν

2/LG(SL)

K−1∏

i=0

N
2/L(K−1)
i ,

where

ω(K,l) =
1

p(L )2κ2

(

p(L )2κ2 − p(L )2
(
κ

2

)

− p(L )
∑

j∈l

p(Lj)

−
K−2∑

i=0

K−1∑

j=i+1

p(Li)p(Lj)

)

,

where
(

κ
2

)
= 0 for κ = 1.
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Proof. By use of (5.16) we can write the distortion as

D(K,l) =
1

L
E

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj −X

∥
∥
∥
∥
∥
∥

2

≈ Dc +
1

L

1

Nπ

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj − λc

∥
∥
∥
∥
∥
∥

2

≈ 1

L

1

Nπ

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj − λc

∥
∥
∥
∥
∥
∥

2

,

(I.17)

where the second approximation follows from that fact that asNi → ∞, the distortion
due to the index assignment is dominating. Furthermore, by use of Propositions I.5.3
and I.5.1 in (I.17) we are able to write

D(K,l) ≈ 1

L

1

Nπ

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈l

λj −
1

p(L )κ

K−1∑

i=0

p(Li)λi

∥
∥
∥
∥
∥
∥

2

≈ ω(K,l)ψ2
Lν

2/LG(SL)
K−1∏

m=0

N2/L(K−1)
m ,

which completes the proof. �



Appendix J
Proofs for Chapter 7

This appendix contains proofs of the Lemmas and Theorems presented in Chapter 7.

J.1 Proofs of Lemmas

Proof of Lemma 7.2.1.ForK = 3, k = 1 andRs → ∞ we see from (4.39) that

σ2
q =

(

(1 − ρq)2
2Rs

(
1 + 2ρq

1 − ρq

)1/3

− 1

)−1

≈ (1 − ρq)
−2/3(1 + 2ρq)

−1/32−2Rs ,

(J.1)

where the approximation follows from the high resolution assumption which implies
that 22Rs ≫ 1. With this, we can write the optimal single-channel distortion of a
(3, 1) SCEC, which is given by (4.37), as

D(3,1) =
σ2

q

σ2
q + 1

≈ σ2
q ,

(J.2)

where the approximation follows sinceσ2
q ≪ 1. We now equalize the single-channel

distortion of three-channel MD-LVQ (or (3,1) MD-LVQ) and (3,1) SCECs (i.e. we set
(7.11) equal to (J.2)) so that we can expressρq as a function ofN ′. This leads to

1 + 2ρq =

(
3

ψ2
∞N

′

)3

(1 − ρq)
−2. (J.3)

Using (4.37) we rewrite the two-channel distortion of (3,1)SCECs as

D(3,2) =
σ2

q (1 + ρq)

σ2
q (1 + ρq) + 2

213
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(a)≈ 1

2
σ2

q (1 + ρq)

(b)
=

1 + ρq

6
ψ2
∞N

′2−2Rs

(c)≈ 1

12
ψ2
∞N

′2−2Rs (J.4)

where (a) is true at high resolution sinceσ2
q ≪ 1, (b) follows by replacingσ2

q

with (J.1) and inserting (J.3) and(c) is valid for largeN ′ sinceN ′ ≫ 1 implies that
ρq ≈ −1/2. Similarly, by using (J.3) in (4.37) the optimal three-channel distortion
can be written as

D(3,3) =
σ2

q (1 + 2ρq)

σ2
q(1 + 2ρq) + 3

≈ 1

3
σ2

q (1 + 2ρq)

= 3ψ−4
∞ (1 − ρq)

−2

(
1

N ′

)2

2−2Rs

≈
(

1

N ′

)2

2−2Rs ,

(J.5)

where the first approximation is valid whenσ2
q ≪ 1 and the second follows since

ρq ≈ −1/2. Comparing (J.4) and (J.5) to (7.12) and (7.13) shows that three-channel
MD-LVQ reach the achievable rate-distortion region of a(3, 1) SCEC in the quadratic
Gaussian case at high resolution. �

Proof of Lemma 7.3.1.LetA(L)
ǫ denote the set of epsilon-typical sequences [24] and

note thatA(L)
ǫ must have bounded support since, for anyL, fX(x0, . . . , xL−1) >

2−L(h(X)+ǫ) for x ∈ A
(L)
ǫ and
∫

A
(L)
ǫ

fX(x0, . . . , xL−1)dx ≤ 1.

Let the side quantizers of an MD-LVQ system be SD entropy-constrained lattice
vector quantizers. An SD lattice vector quantizer designedfor an output entropy of,
sayRi, for theL-dimensional uniform source with bounded support (in fact matched
to the support ofA(L)

ǫ ) has a finite number of codewords given by2LRi . The distortion
performance of a lattice vector quantizer is, under high-resolution assumptions, inde-
pendent of the source pdf [22, 86]. Therefore, using this quantizer forA(L)

ǫ instead
of a truly uniformly distributed source will not affect the distortion performance but
it might affect the rate. However, since the bounded uniformdistribution is entropy
maximizing it follows thatRi upper bounds the rate of the quantizer. �

Proof of Lemma 7.3.2.The two-channel distortion of a(3, 2) SCEC is given by

D(3,2) ≈ 1

2
σ2

q (1 + ρq), (J.6)
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where from (4.39) we see that

σ2
q = 2(1 − ρq)

−1/3(1 + 2ρq)
−2/32−4Rb . (J.7)

Inserting (J.7) into (J.6) and setting the result equal to (7.21), i.e. we normalize such
that the two-channel distortion of (3,2) SCECs is equal to that of (3,2) MD-LVQ. This
leads to

(1 + ρq)(1 − ρq)
−1/3(1 + 2ρq)

−2/3 =
1

12
ψ4
∞(N ′)2, (J.8)

from which we find that

(1 + 2ρq)
1/3 =

(
1

12
ψ4
∞(N ′)2

)−1/2

(1 + ρq)
1/2(1 − ρq)

−1/6. (J.9)

It follows that we can writeD(3,3) as

D(3,3) =
1

3
σ2

q(1 + 2ρq)

=
2

3
(1 − ρq)

−1/3(1 + 2ρq)
1/32−4Rb

=
2

3
(1 − ρq)

−1/3
√

12(1 + ρq)
1/2(1 − ρq)

−1/6ψ−2
∞ (N ′)−12−4Rb

≈ ψ2
∞
N ′ 2−4Rb , (J.10)

where the approximation follows by insertingρ ≈ −1/2. The proof is now complete
since (J.10) is identical to (7.24). �

J.2 Proof of Theorem 7.3.1

Since(3, 2) MD-LVQ is closely related to(3, 2) SCECs we can to some extent use
the proof techniques of [111]. However, there are some important differences. We
cannot rely on random coding arguments since we are not usingrandom codebooks.
For example where [111] exploit properties of the entropy ofsubsets, we need to
show that certain properties hold for all subsets and not just on average. Furthermore,
we consider the asymmetric case where the individual codebook ratesRi and binning
ratesRb,i are allowed to be unequal whereas in [111] the symmetric casewas conside-
red, i.e. only a single codebook rateRs and a single binning rateRb was taken into
account.

Theorem 7.3.1LetX ∈ RL be a source vector constructed by blocking an arbitrary
i.i.d. source with finite differential entropy into sequences of lengthL. Let J ⊆
{0, . . . ,K − 1} and letλJ denote the set of codewords indexed byJ . The set of
decoding functions is denotedgJ :

⊗

j∈J Λj → RL. Then, under high-resolution
assumptions, if

E[ρ(X, gJ(λJ ))] ≤ D(K,J), ∀J ∈ K ,
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whereρ(·, ·) is the squared-error distortion measure and for allS ⊆ J

∑

i∈S

Rb,i >
∑

i∈S

γi +
1

L
log2(|{λS |λJ−S}|), (J.11)

the rate-distortion tuple(Rb,0, . . . , Rb,(K−1), {D(K,J)}J∈K ) is achievable.

Proof of Theorem 7.3.1.Define the following error events.

1. E0 : X does not belong toA(L)
ǫ (X).

2. E1 : There exists no indices(j0, . . . , jK−1) such that(λ0(j0), . . . , λK−1(jK−1)) =

α(λc) for λc = Q(X).

3. E2 : Not all channel indices are valid.

4. E3 : For somek received bin indices there exists another admissiblek-tuple in
the same bins.

As usual we haveE =
⋃K−1

i=0 Ei and the probability of error is bounded from above
by the union bound, i.e.P (E ) ≤∑K−1

i=0 P (Ei).
BoundingP (E0): Applying standard arguments for typical sequences it can be

shown thatP (E0) → 0 for L sufficiently large [24]. We may now assume the event
E c

0 , i.e. all source vectors belong to the set of typical sequences and hence they are
approximately uniformly distributed.

BoundingP (E1): The source vectorX is encoded by the central quantizer using
a nearest neighbor rule. Since any source vector will have a closest element (which
might not be unique) inCc and by construction allλc ∈ Cc have an associatedK-tuple
of sublattice points, it follows thatP (E1) = 0 for all L.

BoundingP (E2): We only have to prove this for one of the channels. Then by
symmetry it holds for all of them. Furthermore, since the intersection of a finite
number of sets of probability 1 is 1 it follows that with probability 1 a codeword
λi givenλc can be found in some bin. In the following we assumeK < ∞. Let λc

be the codeword associated withX (i.e.X is quantized toλc), whereX ∈ A
(L)
ǫ (X).

LetA denote the event thatλ0(j0) exists in the codebookC0, i.e. the event[λ0(j0) ∈
C0, λ0(j0) = α0(λc)]. We then have that

P (f0(λ0(j0)) 6= ϑ) = P (f0(λ0(j0)) 6= ϑ|Ac)P (Ac)

+ P (f0(λ0(j0)) 6= ϑ|A)P (A),

where the first term on the right hand side is zero if we make sure that allλc’s are
assigned a (unique)K-tuple. Therefore, we only have to look at the second term as
was the case in [111]. We must show thatG = P [f0(λ0(j0)) 6= ϑ|A] → 1, i.e.

1 −G = P [λ0j
6= λ0(j0), 0 ≤ j ≤M0 − 1|A], (J.12)
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whereM0 = ξ02
LRb,0 = 2L(R0+γ0) is the total number of codewords selected for all

bins fromC0 andλ0j
indicates thejth such selected codeword. Since the codewords

λ0j
are chosen independently (uniformly) and with replacementthey all have the same

probability of being equal toλ0(j0), so we letj = 0 and rewrite (J.12) as

1 −G = [P (λ00 6= λ0(j0)|A)]M0 .

The size ofC0 is |C0| and all codewords ofC0 are equally probable so

1 −G =

(

1 − 1

|C0|

)M0

. (J.13)

Taking logs and invoking the log-inequality81, Eq. (J.13) can be rewritten as

log(1 −G) ≤ −M0

|C0|
= −2L(R0+γ0)

|C0|
,

which goes to−∞ for L → ∞ if R0 + γ0 >
1
L log2(|C0|). By use of Lemma 7.3.1

we have|C0| = 2LR0 so that1 −G→ 0 for L→ ∞ if γ0 > 0.
BoundingP (E3): Assume we receivek bin indices from the encoder. We then

need to show that there is a unique set of codewords (one from each bin) which form
an admissiblek-tuple. LetJ = {i0, . . . , ik−1}. Along the lines of [111] we define the
following error event for anyS ⊆ J :

E ′
S : ∃j′i 6= ji, ∀i ∈ S, fS(λS(j′S)) = fS(λS(jS)),

(λS(j′S), λJ−S(jJ−S)) = αJ(λc), λc ∈ Cc,

i.e. that there exist more than one admissiblek-tuple in the givenk bins. The event
E3 can be expressed asE3 =

⋃

S⊆J E ′
S . The probability of the error eventE ′

S can be
upper bounded by

P (E ′
S) ≤

∏

i∈S

(ξi − 1)P [(λ∗S , λJ−S(jJ−S)) = αJ (λc)],

for someλc, whereλ∗i is a randomly chosen vector fromCi for i ∈ S. Let{λS |λJ−S}
denote the set of admissiblek-tuples that containsλJ−S so that

P [(λ∗S , λJ−S(jJ−S)) = αJ (λc)] <
|{λS |λJ−S}|
∏

i∈S |Ci|
.

We are then able to boundP (E ′
s) by

P (E ′
S) <

∏

i∈S

ξi
|{λS |λJ−S}|
∏

i∈S |Ci|

=
∏

i∈S

2L(γi−Rb,i)|{λS |λJ−S}|,

81The log-inequality is given bylog(z) ≤ z − 1, z > 0, wherelog denotes the natural logarithm.
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which goes to zero if

∑

i∈S

Rb,i >
∑

i∈S

γi +
1

L
log2(|{λS |λJ−S}|). (J.14)

Finally, the expected distortion is bounded byP (E c)DJ + P (E )dmax, ∀J ∈ K

whereP (E ) → 0 for L → ∞ and assuming that the distortion measure is bounded,
i.e.dmax <∞, proves the theorem.82 �

82We here make the assumption, as appears to be customary, thatthe distortion measure is bounded also
for sources with unbounded support.



Appendix K
Results of Listening Test

In this appendix we present the results of the MUSHRA listening test described in
Chapter 8.
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Figure K.1: MUSHRA test results averaged over all three audio clips forp = 0.1, 0.3 and
p = 0.5. The seven signals appear in the following order: Hidden ref., 3.5 kHz, 7 kHz,K =

1,K = 2, K = 3 andK = 4.
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(b) p = 0.3
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(c) p = 0.5

Figure K.2: MUSHRA test results for the jazz fragment andp = 0.1, 0.3 andp = 0.5.
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(b) p = 0.3
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(c) p = 0.5

Figure K.3: MUSHRA test results for the speech fragment andp = 0.1, 0.3 andp = 0.5.
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(c) p = 0.5

Figure K.4: MUSHRA test results for the rock fragment andp = 0.1, 0.3 andp = 0.5.



Samenvatting

Internetdiensten zoals het voice over Internet-protocol (VoIP) en audio/video
streaming (b.v. video op verzoek en video vergaderen) worden steeds populairder
door de recente groei van breedbandnetwerken. Dit soort "real-time" diensten vereisen
vaak een lage verzendtijd, een hoge bandbreedte en een lage pakket-verlies kans om
acceptabele kwaliteit voor de eindgebruikers te leveren. De heterogene communicatie
infrastructuur van de huidige pakketgeschakelde netwerken verschaffen echter geen
gegarandeerde prestaties met betrekking tot bandbreedte of verzendtijd en daarom
wordt de gewenste kwaliteit over het algemeen niet bereikt.

Om een bepaalde mate van robuustheid te bereiken op kanalen waarop fouten
kunnen voorkomen, kan multiple-description (MD) coding toegepast worden. Dit is
een methode waar de laatste tijd erg veel aandacht aan is besteed. Het MD probleem
is in wezen een gecombineerd bron-kanaal coderingsprobleem dat gaat over (het met
verlies) coderen van informatie voor transmissie over een onbetrouwbaarK-kanalen
communicatie systeem. De kanalen kunnen falen, met als resultaat het verlies van
een pakket en daardoor een verlies van informatie aan de ontvangende kant. Welke
van de2K − 1 niet-triviale deelverzamelingen van deK kanalen falen, wordt bekend
verondersteld aan de ontvangende kant, maar niet bij de encoder. Het probleem is
dan een MD schema te ontwerpen dat, voor gegeven kanaal rate (of een gegeven som
rate), de distorsies minimaliseert die een gevolg zijn van reconstruering van de bron,
gebruik makend van informatie van willekeurige deelverzamelingen van de kanalen.

Hoewel wij ons in dit proefschrift hoofdzakelijk richten opde informatie theo-
retische aspecten van MD codering, zullen we voor de volledigheid ook laten zien
hoe het voorgestelde MD coderingsschema kan worden gebruikt om een perceptueel
robuuste audio coder te construeren, die geschikt is voor b.v. audio-streaming op
pakketgeschakelde netwerken.

We richten ons op het MD probleem vanuit een bron-codering standpunt en
bekijken het algemene geval vanK pakketten. We maken uitgebreid gebruik van
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lattice vector kwantisatie (LVQ) theorie, hetgeen een goedinstrument blijkt, in de
zin dat het voorgestelde MD-LVQ schema als brug tussen theorie en praktijk dient.
Voor asymptotische gevallen van hoge resolutie en grote lattice vector kwantisator
dimensie, tonen wij aan dat de beste bekende informatie theoretische rate-distorsie
MD grenzen kunnen worden bereikt, terwijl we, in niet asymptotische gevallen
van eindig-dimensionale lattice vector kwantisators (maar nog onder hoge resolutie
veronderstelling), praktische MD-LVQ schemas construeren, die vergelijkbaar met en
vaak superieur zijn aan bestaande state-of-the-art schemas.

In het twee-kanaal symmetrische geval is eerder aangetoonddat de zij-representa-
ties van een MD-LVQ schema zij-distorsies toelaten, die (bij hoge resolutie voorwaar-
den) identiek zijn aan die vanL-dimensionale kwantisators met bolvormige Voronoi
cellen. In dit geval zeggen wij dat de zij-kwantisators deL-bol grens bereikt. Een
dergelijk resultaat is niet eerder aangetoond voor het twee-kanaal asymmetrische
geval. Het voorgestelde MD-LVQ schema is echter in staat deL-bol grens te
bereiken, bij hoge resolutie voorwaarden, voor zowel het symmetrische geval als het
asymmetrische geval.

Het voorgestelde MD-LVQ schema schijnt een van de eerste schemas in de litera-
tuur te zijn die het grootst bekende hoge resolutie drie-kanaal MD gebied in het
kwadratische Gaussische geval bereikt. Hoewel de optimaliteit alleen voorK ≤ 3

wordt bewezen, nemen we aan dat het optimaal is voor willekeurigeK representaties.
We laten gesloten-vorm uitdrukkingen zien voor de rate en distorsie prestaties voor

algemene gladde stationaire bronnen en een kwadratische-fout distorsie criterium en
voor hoge resolutie voorwaarden (ook voor eindig-dimensionale lattice vector kwanti-
sators). Er wordt aangetoond dat de zij-distorsies in het drie-kanaal geval kan worden
uitgedrukt in het dimensieloze, genormaliseerde, tweede moment van eenL-bol, onaf-
hankelijk van het type lattice dat wordt gebruikt voor de zij-kwantisators. Dit komt
overeen met eerdere resultaten voor het geval van twee representaties.

Het rate verlies wanneer eindig-dimensionale lattice vector kwantisators gebruikt
worden is onafhankelijk van het lattice en wordt gegeven door het rate verlies van een
L-bol en een bijkomende term die de ratio van twee dimensieloze expansie factoren
beschrijft. Er wordt aangetoond dat het totale rate verliessuperieur is aan bestaande
drie-kanaal schemas. Dit resultaat lijkt te gelden voor elkaantal representaties.
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Glossary of Symbols and Terms

Symbol Description
RL L-dimensional Euclidean space (real field)
CL L-dimensional complex field
ZL L-dimensional set of all rational integers
G Gaussian integers
Q Algebraic integers
E Eisenstein integers

H0 Lipschitz integers
H1 Hurwitzian integers
xH Hermitian transposition (conjugate transposition)
x† Quaternionic transposition (Quaternionic conjugate transposition)
J J -module (J -lattice)
‖X‖ Vector norm with respect to underlying field

〈X,X〉 Inner product

Table K.1: Algebra-related symbols.
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Symbol Description
X Scalar random process orL-dimensional random vector(X ∈ RL)

x L-dimensional vector (realization ofX)
fX Distribution ofX
X̂ Reconstruction ofX
X Alphabet ofX (usuallyX = RL)
X̂ Alphabet ofX̂ (usuallyX̂ ⊂ RL)
ρ Fidelity criterion (usually squared-error)

R(D) Rate-distortion function
D(R) Distortion-rate function
I(·; ·) Mutual information
h(·) Differential entropy
h̄(·) Differential entropy rate
H(·) Discrete entropy
E Statistical expectation operator
RSLB Shannon lower bound
RLoss Rate loss
R∗

red Rate redundancy
DLoss Space-filling loss
σ2

X Variance ofX
PX Entropy power
Q(X) Quantization ofX

Table K.2: Source-coding related symbols.
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Symbol Description
Λc Central lattice (central quantizer)
Λs SublatticeΛs ⊆ Λc (side quantizer in symmetric case)
Λi SublatticeΛi ⊆ Λc (side quantizer in asymmetric case)
Λπ Product latticeΛπ ⊂ Λi or Λπ ⊂ Λs

Λc/Λπ Quotient lattice
Vc Voronoi cell ofΛc

V Voronoi cell ofΛs or Λi

ν Volume of Voronoi cell ofΛc

νs Volume of Voronoi cell ofΛs

νi Volume of Voronoi cell ofΛi

νπ Volume of Voronoi cell ofΛπ

N Index value of sublatticeΛs (N = |Λc/Λs|)
Ni Index value of sublatticeΛs (Ni = |Λc/Λi|)
Nπ Index value of product latticeΛπ (Nπ = |Λc/Λπ|)
N ′ Nesting ratio ofΛs (index per dimension)
G(Λ) Dimensionless normalized second moment ofΛ

G(SL) Dimensionless normalized second moment ofL-sphere
ζi Basis vector (lattice generator vector)
M Lattice generator matrix
A Gram matrix
Γm Multiplicative group of automorphisms of orderm

Λc/Λπ/Γm Set of orbit representatives
Z1 Scalar lattice (uniform lattice)
Z2 Square lattice
ZL Hypercubic lattice
A2 Hexagonal two-dimensional lattice
D4 Four dimensional (checker board) lattice
ξΛc Sublattice ofΛc (cyclic right submodule)
Λcξ Sublattice ofΛc (cyclic left submodule)
K(Λ) Kissing number ofΛ

Table K.3: Lattice-related symbols.
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Symbol Description
α Index assignment map (α(λc) = (λ0, . . . , λK−1))
α−1 Inverse index assignment map
αi Component function (λi = αi(λc))
K Number of descriptions
κ Number of received descriptions
Ṽ L-dimensional sphere
ν̃ Volume ofṼ
Ñi Number of lattice points ofΛi within Ṽ
ψL Dimensionless expansion factor
ωL Volume of unitL-sphere
Rs Description rate [bit/dim.] in symmetric setup
Ri Description rate [bit/dim.] ofith description
Rc Rate of central quantizer
RT Sum rate (RT =

∑
Ri)

Di Side distortion ofith description
Dc Central distortion

D(K,κ) Distortion due to reconstructing usingκ descriptions out
of K

J (K) Cost functional
p Packet-loss probability

L (K,κ) Index set describing all distinctκ-tuples out of the set
{0, . . . ,K − 1}

L
(K,κ)
i Index set describing all distinctκ-tuples out of the set

{0, . . . ,K − 1}, which contains the indexi

L
(K,κ)
i,j Index set describing all distinctκ-tuples out of the set

{0, . . . ,K − 1}, which contains the pair of indices(i, j)

p(L
(K,κ)
i,j ) Probability of the setL (K,κ)

i,j

D
(K,κ)
a Expected distortion when receivingκ out of K

descriptions based on the packet-loss probability
D(K,l) Distortion due to reconstructing using the subset of

descriptionsl ⊆ {0, . . . ,K − 1}
MD-LVQ Multiple-description lattice vector quantization

SCEC Source-channel erasure code
SPSD Sum of pairwise squared distances

WSPSD Weighted sum of pairwise squared distances

Table K.4: MD-LVQ related symbols and terms.
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[52] V. K. Goyal and J. Kovǎcevíc. Generalized multiple descriptions coding with
correlating transforms.IEEE Trans. Inf. Theory, 47(6):2199 – 2224, September
2001.
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