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Summary

Unique records of historic, artistic, and cultural developments of every aspect of the 20th cen-
tury are stored in huge stocks of archived moving pictures. Many of these historically signifi-
cant items are in a fragile state and are in desperate need of conservation and restoration.
Preservation of visual evidence of important moments in history and of our cultural past is not
only of purely scientific value. Digital broadcast will make many channels available to the
home viewer in the near future. These channels require programming, and the huge collection
of movies, soaps, documentaries, and quiz shows currently held in store provides a cheap
alternative to the high costs of creating new programs. However, re-using old film and video
material is only feasible if the visual and audio quality meets the standards expected by the
modern viewer.

There is a need for an automated tool for image restoration due to the vast amounts of archived
film and video and due to economical constraints. The tautomatedshould be stressed
because manual image restoration is a tedious and time-consuming process. A project named
AURORA was initiated in 1995, stimulated by the European Union ACTS program. The acro-
nym AURORA stands for AUtomated Restoration of ORiginal film and video Archives. The
objective of this 3-year project was to create state-of-the-art algorithmesistime hardware

for the restoration of old video and film sequences. Such restoration system had to allow for
bulk processing, and had to reduce the high costs of manual labor by requiring a minimum of
human intervention. At that time, existing commercial restoration tools required much user
intervention, and they did not allow for automatic restoration of most common artifacts.

The Delft University of Technology was a partner in the AURORA consortium. This thesis
describes the research carried out in Delft in the context of the AURORA project. At Delft,
algorithms were developed for correcting three types of artifact common to old film and video
sequences, namely intensity flicker, blotches and noise. Intensity flicker is a common artifact
in old black-and-white film sequences. It is perceived as unnatural temporal fluctuations in
image intensity that do not originate from the original scene. This thesis describes an original,
effective method for correcting intensity flicker on the basis of equalizing local intensity mean
and variance in a temporal sense.

Vil



viii Summary

Blotches are artifacts typically related to film that are caused by the loss of gelatin and dirt par-
ticles covering the film. Existing techniques for blotch detection generate many false alarms
when high correct detection rates are required. As a result, unnecessary errors that are visually
more disturbing than the blotches themselves can be introduced into an image sequence by the
interpolators that correct the blotches. This thesis describes techniques to improve the quality
of blotch detection results by taking into account the influence of noise on the detection pro-
cess and by exploiting the spatial coherency within blotches. Additionally, a new, fast,
model-based method for good quality interpolation of blotched data is developed. This method
is faster than existing model-based interpolators. It is also more robust to corruption in the ref-
erence data that is used by the interpolation process.

Coring is a well-known technique for removing noise from still images. The mechanism of
coring consists of transforming a signal into a frequency domain and reducing the transform
coefficients by the coring function. The inverse transform of the cored coefficients gives the
noise-reduced image. This thesis develops a framework for coring image sequences. The
framework is based on 3D (2D space and time) image decompositions, which allows temporal
information to be exploited. This is preferable to processing each frame independently of the
other frames in the image sequence. Furthermore, a method of coring can be imbedded into an
MPEG2 encoder with relatively little additional complexity. The MPEG2 encoder then
becomes a device for simultaneous noise reduction and image sequence compression. The
adjusted encoder significantly increases the quality of the coded noisy image sequences.

Not only does image restoration improve the perceived quality of the film and video
sequences, it also, generally speaking, leads to more efficient compression. This means that
image restoration gives better quality at fixed bitrates, or, conversely, identical quality at lower
bitrates. The latter is especially important in digital broadcasting and storage environments for
which the price of broadcasting/storage is directly related to the number of bits being broad-
cast/stored. This thesis investigates the influence of artifacts on the coding efficiency and it
evaluates how much is gained by restoring impaired film and video sequences. It shows that
considerable savings in bandwidth are feasible without loss of quality.
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Chapter 1

Introduction

1.1 Background

Unique records of historic, artistic, and cultural developments of every aspect of the 20th cen-
tury are stored in huge stocks of archived moving pictures. Many of these historically signifi-
cant items are in a fragile state and are in desperate need of conservation and restoration.
Preservation of visual evidence of important moments in history and of our cultural past is not
only of purely scientific value. Digital broadcast will make many channels available to the
home viewer in the near future. These channels require programming, and the huge collection
of movies, soaps, documentaries, and quiz shows currently held in store provides a cheap
alternative to the high costs of creating new programs. However, re-using old film and video
material is only feasible if the visual and audio quality meets the standards expected by the
modern viewer.

If one considers that archived film and video sequences will be preserved by transferring them
onto new digital media, there are a number of reasons why these sequences should be restored
before renewed storage. First, restoration improves the subjective quality of the film and video
sequences (and it thereby increases the commercial value of the film and video documents).
Second, restoration generally leads to more efficient compression, i.e., to better quality at
identical bitrates, or, conversely, to identical quality at lower bitrates. The latter is especially
important in digital broadcasting and storage environments for which the price of broadcast-
ing/storage is directly related to the number of bits being broadcast/stored.
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There is a need for an automated tool for image restoration due to the vast amounts of archived
film and video and due to economical constraints. The tautomatedshould be stressed
because manual image restoration is a tedious and time-consuming process. A project named
AURORA was initiated in 1995, stimulated by the European Union ACTS program. The acro-
nym AURORA stands for AUtomated Restoration of ORiginal video and film Archives. The
objective of this 3-year project was to create state-of-the-art algorithmesisime hardware

for the restoration of old video and film sequences. Such restoration system had to allow for
bulk processing, and had to reduce the high costs of manual labor by requiring a minimum of
human intervention. At that time, existing commercial restoration tools required much user
intervention, and they did not allow for automatic restoration of most common artifacts.

1.2 Scope

Detecting and restoring selected artifacts from archived film and video material with real-time
hardware places constraints on how that material is processed and on the complexity of the
algorithms used. It is stressed here that these constraints do not restrict the complexity of the
methods for image restoration presented in this thesis, with the exception of the work pre-
sented in Chapter 3. Even though much of the work described in this thesis is too complex
(meaning too expensive) to be implemented in hardware directly, it gives good insight into the
nature of the investigated artifacts. The work presented here gives an upper bound on the qual-
ity that can be achieved under relaxed constraints.

The work in this thesis is restricted to black-and-white image sequences for two reasons. First,
a large proportion of the films that require restoration is in black and white. Second, most of
the algorithms can easily be extended to color, though perhaps in a suboptimal manner. An
example of this would be a situation in which a color image sequence is restored by applying
the restoration algorithms to the R, G, and B channels separately. Multi channel approaches
[6,7] could be taken from the start, at the cost of increased complexity and at the risk of
achieving little significant gain compared to what single channel processing already brings.

An inventory of impairments found in old film and video sequences was compiled by
AURORA. A list resulted with over 150 entries that indicate the nature of the defects and the
frequency of their occurrence. From this list, a number of impairments to be addressed by the
AURORA project were selected. The most importantrasese[1,5,13,22,23,35,46, 69,70,85],
blotches[26,29,45,47,48,49,63,64,80,82,96he scratched47,62], film unsteadines§98],
andintensity flickef{26,63,77,83,84]. Figure 1.1 shows some examples of these artifacts. This
figure shows frames that are corrupted by multiple artifacts. This is often the case in practice.

Not only the quality of video has been affected by time, audio tracks often suffer degradations
as well. However, restoration of audio is beyond the scope of AURORA and of this thesis.

Even though a single algorithm for restoring all the artifacts at hand in an integral manner is
conceivable, a modular approach was chosen to resolve the various impairments. A
divide-and-conquer strategy increases the probability of (at least partial) success. Furthermore,
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(b)

© | M

Figure 1.1 (a,c,e) Three consecutive frames from a Charlie Chaplin film impaired by noise,
blotches, and line scratches. There are also differences in intensity, which are less visible in
print than on a monitor though. Zooming in on (b) noise, (d) a blotch, and (f) a scratch.
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p| Flicker 1 | Blotch Scratch Noise Image | »
Correction Removal™|Removal™ |Reduction| ™| Stabilization
Impaired Corrected
Digital Sequence Notion Sequence
Estimation Motion Vectors

[ 1 Investigated in this thesis.
[ ] Outside scope of this thesis.

Figure 1.2 Schematic overview of a modular system towards image restoration.

real-time systems for video processing require very fast hardware for the necessary computa-
tions. Modular systems allow the computational complexity to be distributed. Figure 1.2
shows a possible system for image restoration using a modular approach that was largely
implemented for the purposes of this thesis.

The first block in Figure 1.2Jicker correction removes disturbing variations in image inten-

sity in time. Intensity flicker hampers accurate local motion estimation; therefore, it is appro-
priate to correct this artifact prior to applying any restoration technique that relies on local
motion estimates. Next, local motion is estimated. Instead of designing (yet another) motion
estimator that is robust to the various artifacts, this thesis uses a hierarchical block matcher
[11,31,93] with constraints on the smoothness of the motion vectors. Where the motion vec-
tors are not reliable, due to the presence of artifacts, a strategy of vector repair is applied when
necessary [16,32,47,54,65]. Nektptch removaldetects and removes dark and bright spots
that are often visible in film sequencescratch removalwhich is not a topic of research in

this thesis, removes vertical line scratchésise reductiomeduces the amount of noise while

it preserves the underlying signal as well as possible. Finatigge stabilizatiormakes the
sequence steadier by aligning (registering) the frames of an image sequence in a temporal
sense. Image stabilization is not a topic of research in this thesis.

In Figure 1.2 blotches and scratches are addressed prior to noise because they are local arti-
facts, corrections thereof influence the image contents only locally. Noise reduction is a global
operation that affects each and every pixel in a frame. Therefore, all processes following noise
reduction are affected by possible artifacts introduced by the noise reduction algorithm. Image
stabilization, for which very robust algorithms exist, is placed at the back end of the system
because it too affects each and every pixel by compensating for subpixel motion and by zoom-
ing in on the image. Zooming is required to avoid visible temporal artifacts near the image
boundaries. As already mentioned, intensity flicker correction is an appropriate front end to
the system. It is applied prior to the algorithms that require local motion estimates.

At the starting point in Figure 1.2 are digital image sequences instead of physical reels of film
or tapes containing analog video. Rather than investigating the large number of formats and
systems that have been used in one period or another over the last century, it is assumed that
the archived material has been digitized by skilled technicians who know best how to digitize
the film and video from the various sources. When the source material is film, digital image
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sequences are obtained by digitizing the output of the film-to-vidiezine It must be kept in

mind that the earlier telecines have their limitations in terms of noise characteristics and reso-
lution. Sometimes a copy on video tape obtained from an earlier telecine is all that remains of
a film.

The output of the system in Figure 1.2 forms the restored image sequence. Subjective evalua-
tions using test panels assess the improvement in perceived quality of the restored sequence
with respect to the impaired input sequence.

1.3 Thesis outline

Chapter 2 commences with general remarks on model selection, parameter estimation, and
restoration. The key to an automatic restoration system lies in automatic, reliable parameter
estimation. Models for noise, blotches, line scratches, film unsteadiness, and intensity flicker
are reviewed. Motion estimation is an important tool in image sequence restoration, and its
accuracy determines the quality of the restored sequences. For this reason, the influence of
artifacts on motion estimation is investigated. It is likely that archived material selected for
preservation is re-stored in a compressed format on new digital media. To appreciate the possi-
ble benefits of image restoration with respect to compression, the influence of artifacts on the
coding efficiency of encoders based on the MPEG2 video compression standard is investi-
gated.

Chapter 3 develops a method for correcting intensity flicker. This method reduces temporal
fluctuations in image intensity automatically by equalizing local image means and variances in

a temporal sense. The proposed method was developed to be implemented in hardware; there-
fore, the number of operations per frame and the complexity of these operations have been
kept as low as possible. Experimental results on artificially and naturally degraded sequences
prove the effectiveness of the method.

Chapter 4 investigates blotch detection and removal. Existing methods, both heuristic and
model based, are reviewed. Improved methods are developed. Specifically, the performance of
a blotch detector can be increased significantly by postprocessing the detection masks result-
ing from this detector. The postprocessing operations take into account the influence of noise
on the detection process; they also exploit the spatial coherency within blotches. Where
blotches corrupt the image data, the motion estimates are not reliable. Therefore, benefits of
motion-vector repair are investigated. Finally, a new, relatively fast model-based method for
good-quality interpolation of missing data is presented.

Chapter 5 investigates coring. Coring is a well-known technique for removing noise from
images. The mechanism of coring consists of transforming a signal into a frequency domain
and reducing the transform coefficients by the coring function. The inverse transform of the
cored coefficients gives the noise-reduced image. This chapter develops a framework for cor-
ing image sequences. The framework is based on 3D image decompositions, which allows
temporal information to be exploited. This is preferable to processing each frame indepen-
dently of the other frames in the image sequence. Furthermore, this chapter shows that coring
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can be imbedded into an MPEG encoder with relatively little additional complexity. The
adjusted encoder significantly increases the quality of the coded noisy image sequences.

Chapter 6 evaluates the image restoration tools developed in this thesis. First, it verifies exper-
imentally that the perceived quality of restored image sequences is better than that of the
impaired source material. Second, it verifies experimentally that, for the artifacts under con-

sideration, image restoration leads to more efficient compression. Chapter 6 concludes this
thesis with a discussion.



Chapter 2
Modeling and coding

Summary.This chapter models the most common artifacts in old film and video sequences.
The influence of these artifacts on motion estimation, which is an important tool for digital
image sequence restoration, is investigated both qualitatively and quantitatively. Archived film
and video that are preserved on new digital media are likely to be stored in compressed form.
To assess the possible benefits of restoring impaired image sequences prior to encoding, the
influence of artifacts on the coding efficiency is examined for the case of an MPEG2 encoder.

2.1 Modeling for image restoration

Model selection and parameter estimation are key elements in the design process of an image
restoration algorithm. Section 2.1.1 reviews these key elements so that their presence can be
recognized clearly in subsequent chapters. It is argued that robust automatic parameter estima-
tion is essential to an automatic image restoration system. Section 2.1.2 models common deg-
radations that affect old film and video sequences. These models form a basis for the
restoration techniques developed in this thesis. They are also used for evaluation purposes.
Section 2.1.3. investigates the influence of artifacts on the accuracy of motion estimation.



8 Chapter 2 Modeling and coding

2.1.1 Model selection and parameter estimation

Image model. Many models that define various aspects of natural images and of image
sequences are described in literature. For example, for still images, the magnitude of the Fou-
rier spectrum has &/f characteristic [88], and local pixel intensities depend on each other via
markov random fields [28,86,104,105]; for image sequences, there is a very high correlation
between frames in time for image sequences [33].

The choice of the image model to be used depends on the problem at hand. In the case of
image restoration, it is appropriate to select image models with ordinary parameter values that
are affected as much as possible by the degradations under investigation. The reason for this is
apparent. Suppose the model parameters of the assumed image model are not affected at all by
a certain degradation. Then that image model provides no information that can be used for
determining the severity of that degradation, nor does it provide any indication of how to cor-
rect the degradation.

Degradation model. Degradation models describe how data are corrupted; they imply how

the model parameters for unimpaired images are altered. Models for specific degradations are
obtained through a thorough analysis of the mechanisms generating the artifacts. The analysis
is not always straightforward because the physical processes that underlie an impairment can
be very complex and difficult to qualify. Often there is a lack of detailed knowledge on how a
signal was generated. In practice, approximations and assumptions that seem reasonable have
to be made. For example, in Section 2.1.2, the overall influence of the various noise sources
affecting pictures in a chain of image capture, conversion, and storage is approximated by a
single source instead of taking into account all the individual noise contributions explicitly.

Restoration model. Ideally, restoration would be modeled as the inverse operation of the deg-
radation with its model parameters. Unfortunately, “the inverse” does not exist in many cases
due to the singularities introduced by the degradation and due to the limited accuracy with
which the model parameters are known. There are many solutions to a restoration problem that
give identical observed signals when the degradation model (though be it with different
parameters) is applied to them. For example, image data corrupted by blotches can be restored
by a number of methods (Chapter 4), each of which gives a different solution. However, none
of the solutions conflict with the degradation process and with the observed data that result
from the degradation process.

The restoration problem is ill posed in the sense that no unique inverse to the degradation
exists. A unique solution can be found only by reducing the space of possible solutions, by set-
ting constraints in the form of criteria that must be fulfilled as well as is possible: the charac-
teristics of the restored image are required to fit an image model. The goal of image restoration
is to restore an image so that it resembles the original scene as closely as possible. Therefore,
an often used additional criterion is that, in the spatial domain, the mean squared error
between the restored image and the original, uncorrupted image must be as small as possible.

Estimating modelparameters.Figure 2.1 shows how the image, degradation, and restoration
models relate to each other. The central element that links the models is parameter estimation
(system identification)The quality of a restored image sequence is determined by the quality
of the estimated model parameters. Indeed, the quality of a restored image sequence can be
worse than that of the degraded source material if poor choices are made for the values of the
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Figure 2.1 Relationships between model selection and parameter estimation.
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model parameters. Therefore, the level of automation for which model parameters can be esti-
mated in a robust manner and with sufficient accuracy determines the extent to which a resto-
ration system performs its function without user intervention. For this reason, automatic
parameter estimation from the observed signals is an important part of each of the methods for
image restoration presented in this thesis.

Automatic parameter estimation is a non-trivial task in many cases due to the fact that insuffi-
cient numbers of data are available and due to the presence of noise. Theoisehas a

broad meaning in this context, and often it includes the signal to be restored from the observed
data themselves. For example, estimating the noise variance (as a parameter for some algo-
rithm) is hampered by the fact that it is very difficult to differentiate between noise and texture

in natural images. Again, approximations and assumptions that seem reasonable have to be
made.

Note that the quality of the estimated model parameters, e.g., determined by means of a direct
numerical comparison to the true parameters, is not necessarily a good indication of the qual-
ity of the restoration result. This is because the quality of the restoration result varies in a dif-
ferent way for estimation errors in each of the parameters [52].

2.1.2 Impairments in old film and video sequences

Chapter 1 mentions the most common impairments in old film and video sequences, and
Figure 1.1 shows some examples of these artifacts. This subsection gives models for the vari-
ous impairments. Figure 2.2 indicates the sources of the artifacts in a chain of recording, stor-
age, conversion, and digitization.

Noise.Any recorded signal is affected by noise, no matter how precise the recording appara-
tus. In the case of archived material, many noise sources can be pointed out. There is granular
noise on film, a result of the finite size of the silver grains on film, that can be modeled by sig-
nal-dependent random processes [12,42,70,73]. There is photon or quantum noise from plum-
bicon tubes andcharged coupled device€CDs) that is modeled as a signal-dependent
Poisson process [18]. There is also thermal noise, introduced by electronic amplifiers and elec-
tronic processing, that is modeled as additive white gaussian noise [17,73]. There is impulsive
noise resulting from disturbances of digital signals stored on magnetic tape [44]. Finally, in the
case of digital signal processing, the digitizing process introduces quantization noise that is
uniformly distributed [78].
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Figure 2.2 Sources of image degradation in a chain of recording, storage, conversion and
digitization.
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Many historical (and modern) film and video documents contain a combination of all the types

of noise mentioned. For instance, such is the case for material originating on film that has been
transferred to video. Modeling noise is often complicated by the band-limiting effects of opti-

cal systems in cameras and by the nonlinear gamma correction that makes the noise dependent
on the signal [46]. Quantitative analysis of the contributions of each individual noise source to

a recorded image is extremely difficult, if not impossible. In practice, it is often assumed that
the Central Limit Theorenf55] applies to the various noise sources. This implies the assump-
tion that the various noise sources genetattiependent and identically distribut€di.d.)

noise.

Unless mentioned otherwise, this thesis assumes that the combined noise sources can be repre-
sented by a single i.i.d. additive gaussian noise source. Hence, an image corrupted by noise is
modeled as follows. Ley(i) with = (i, j,t) be an image with discrete spatial coordinates

(i, ) recorded attime¢ . Letthe noiseip) . The observed srgnal is then given by:

z(i) = y(i) +n(i). (2.1)

Many very different approaches to noise reduction are found in the literature, including opti-
mal linear filtering techniques, (nonlinear) order statistics, scale-space representations, and
bayesian restoration techniques [1,5,13,20,21,22,23,35,46,69,70,85].

Blotches.Blotches are artifacts that are typically related to film. In this thesis, the éstoh

is used to indicate the effects that can result from two physical degradation processes of film.
Both degradations lead to similar visual effects. The first degradation process is a result of dirt.
Dirt particles covering the film introduce bright or dark spots on the picture (depending on
whether the dirt is present on the negative or on the positive). The second degradation process
is the loss of gelatin covering the film, which can be caused by mishandling and aging of the
film. In this case, the image is said toldbetched A model for blotches is given in [47]:

z(i) = (1-d(i)) By(i) +d(i) (i), (2.2)

wherez(i) andy(i) are the observed and the original (unimpaired) data, respectively. The
binary blotch detection magk(i) indicates whether each individual pixel has been corrupted:
d(i) O{0, 1} . The values at the corrupted sites are giverchy (i) £ y(i) . A prop-
erty of blotches is that the intensity values at the corrupted sites vary smoothly; that the vari-
ancec(i) within a blotch is small. Blotches seldom appear at the same location in a pair of
consecutive frames. Therefore the binary mdéiy will seldom be set to one at two spatially
co-sited locations in a pair of consecutive frames. However, there is spatial coherence within a
blotch; if a pixel is blotched, it is likely that some of its neighbors are corrupted as well.

Films corrupted by blotches are often restored in a two-step approach. The first step detects
blotches and generates binary detection masks that indicate whether each pixel is part of a
blotch. The second step corrects pixels by means of spatio-temporal interpolation
[26,29,45,48,49,63,64,80,82,94]. Sometimes an additional step of motion estimation is
included prior to interpolation because motion vectors are less reliable at corrupted sites. An
alternative approach is presented in [47], where blotches are detected and corrected simulta-
neously.
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and approximated intensities (dashed line) horizontal scratch on a two-inch video tape.

from a cross section of the vertical scratch in  (Photo by courtesy of the BBC).
Figure 1.1e

Line scratches A distinction can be made between horizontal and vertical line scratches. Ver-
tical line scratches are impairments that are typically related to[#f62]. They are caused

by sharp particles scratching the film in a direction parallel to the direction of film transport
within the camera. Line scratches are often visible as bright or dark vertical lines. The fact that
vertical lines appear in nature frequently makes it difficult for an algorithm to distinguish
between scratches and real-image structures. A one-dimensional cross-section of a scratch can
be modeled by a damped sinusoid (Figure 2.3):

1(i) = ACKc-Il Ek:osDC—v_vi—'%+ for (2.3)

whereA depends on the dynamic range of the intensities over the cross-section of a kcratch,
is the damping coefficient;  indicates the central position of the scratch, indicates the
width of the scratch, and, is an offset determined by the local mean gray level. Once
detected, line scratches can be restored by spatial or spatio-temporal interpolation.

In the case of video, horizontal scratches disturb the magnetic information stored on the tape.
As a result of the helical scanning applied in video players, a horizontal scratch on the physi-
cal carrier does not necessarily give a single horizontal scratch in the demodulated image. For
example, a horizontal scratch onvao-inchrecording results in local distortions all over the
demodulated image. Figure 2.4 is an example.

Film unsteadiness.Two types of film unsteadiness are defined, namely interframe and
intraframe unsteadiness. The first and most important category is visible as global
frame-to-frame displacements caused by mechanical tolerances in the transport system in film
cameras and by unsteady fixation of the image acquisition apparatus. A model for interframe
unsteadiness is:
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z(i) = y(i-q;(1), j—q;(1), 1). (2.4)

Hereq;(t) andqj(t) indicate the global horizontal and vertical displacement of ftame  with
respect to the previous frame. Intraframe unsteadiness can be caused by transfers from film to
video where the field alignment is off (many older telecines used separate optical paths for the
odd and even fields). This leads to interference patterns that are perceived as variances in lumi-
nance. Unsteadiness correction is estimated from the displacements and misalignments by
maximizing temporal and spatial correlation, followed by resampling of the data. See [98], for
example.

Intensity flicker. Intensity flicker is defined as unnatural temporal fluctuations in the per-
ceived image intensity that do not originate from the original scene. There are a great number
of causes, e.g., aging of film, dust, chemical processing, copying, aliasing, and, in the case of
the earlier film cameras, variations in shutter time. This thesis models intensity flicker as:

z(i) = a(i) Oy@i) + B(0), (2.5)

where fluctuations in image intensity variance and in intensity mean are represented by the
multiplicative a (i) and additive3(i) . It is assumed thafi) apd) are spatially smooth
functions. Histogram equalization has been proposed as a solution to intensity flicker
[26,63,77]. This thesis presents a more robust solution [83].

Other artifacts are line-jitter [47,50], color fading, blur [8,52], echoes, drop-outs and moiré
effects. These are beyond the scope of this thesis.

2.1.3 Influence of artifacts on motion estimation

For image sequence restoration, temporal data often provide additional information that can be
exploited above that which can be extracted from spatial data only. This is because natural
image sequences are highly correlated in a temporal sense in stationary regions. In nonstation-
ary regions, object motion reduces the local temporal correlation. Therefore, increasing the
stationarity of the data via motion estimation and compensation is beneficial to the restoration
process. Many motion estimation techniques have been developed in the context of image
compression. Examples are (hierarchical) block matchers, pel-recursive estimators, phase cor-
relators, and estimators based on bayesian techniques [10,11,31,51,71,93].

This thesis uses a hierarchical motion estimator with integer precision and some constraints on
the smoothness of the motion vectors. The constraints on smoothness are imposed by increas-
ingly restricting the allowed deviation from the local candidate vectors passed on from lower
resolution levels to higher resolution levels. Appendix A describes the details of this motion
estimator. A motion-compensated frame representing a frafe recorded dt time com-
puted from a reference frame recorded at timdk will be denoted &5 t + k)

The scheme depicted in Figure 2.5 was used for some experiments to get some feeling for the
influence of various artifacts on the accuracy of this motion estimator. In this scheme, two con-
secutive frames from a sequence are degraded and the motion between the objects in the
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Figure 2.5 Scheme for measuring the influence of image degradations on the accuracy of
estimated motion vectors.

degraded frames is estimated. Tinean squared erro(MSE) between the original (unim-
paired) frames is then computed. One of these frames is compensated for motion with the esti-
mated vectors. LeN indicate the number of pixels per frame. Then, the MSE between the
current frame and the motion-compensated next frame is defined as:

Zlr-

MSE(}(i),ymC(i,t+1)): ZZ(y(i,j,t)—ymCi,j,t,t+1))2. (2.6)
]

The rationale behind this scheme is the following. In the case that the motion estimator is not
influenced much by the degradations, the correct vectors are found and the MSE is low. As the
influence of the degradations on the estimated motion vectors becomes more severe, the MSE
increases.

The scheme in Figure 2.5 was applied to three test sequences to which degradations of various
strength are added. The first sequence, cdllathe] shows a toy train driving into a tunnel.

The background is steady. The second sequeModCal has slow, subpixel motion over

large image regions. The third sequendanege shows a spinning carousel and contains a lot

of motion. Table 2.1 indicates the severity of the impairments for various levels of strength.
Strength zero indicates that no degradation has been added, strength four indicates an extreme
level of degradation. The latter level does not occur frequently in naturally degraded image
sequences.

Figure 2.6 plots the MSE for each of the test sequences as a function of the strength of the
impairments. Before going into the details of the results, a few details are noted from this fig-
ure. First, in the absence of degradations, the MSE is relatively large fMdhegesequence.

The reason for this is that the motion estimation, which was computed on a frame basis, was
hampered by the strong interlacing effects. Second, the trends of the results are identical for all
test sequences, i.e., the results are consistent.

Noise. Block-matching algorithms estimate motion by searching for maximal correlation
between image regions in consecutive frames. If the signal-to-noise ratio is low, there is a risk
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Strength O | Strength 1 | Strength 2 | Strength 3 | Strength 4
Noise (variance) 0 14 56 127 225
Blotches (% corrupted) 0 0.41 0.62 1.04 1.90
Number of Scratches 0 2 5 8 11
Flicker (MSE) 0 19 72 161 281

Table 2.1  Average strength of various impairments added to test sequences. For noise
the measure is the noise variance; for blotches, the measure is the percentage of pixels
corrupted; for scratches, the measure is the number of scratches; and for intensity flicker,

the measure is the MSE between original and corrupted frames.

160+
140
1201

1001

80

(a)
160r | ——  Tunnel
--- Mobile -
w0l | Manege | oo T

120

1001

80

60

Tunnel
Mobile
Manege

o= 160+

140

Tunnel
- Mobile
--  Manege

1201

100

80

700

600

Tunnel
- Mobile
- Manege

500

4001

300

(€)

(d)
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15



16 Chapter 2 Modeling and coding

that the maximum results largely from correlating noise. In the case the noise spectrum is
white, hierarchical motion estimators are more robust to noise than full-search block matchers.
Most of the signal energy of natural images is concentrated in the low frequencies. For a hier-
archical block matcher this means that at the lower resolution levels, which are obtained by
low-pass filtering the data, the signal-to-noise ratio is higher than at the higher resolution lev-
els. Therefore, the probability of spurious matches is reduced. The influence of noise at the
higher resolution levels is reduced by the constraints placed on the smoothness of the candi-
date motion vectors. Figure 2.6a shows the MSE computed for the three test sequences to
which various amounts of white gaussian noise have been added.

Blotches.A hierarchical block matcher will find the general direction in which data corrupted

by blotches move, provided that the sizes of the contaminated areas are not too large. Because
of the subsampling, the sizes of the blotches are reduced and they will have little influence on
the block-matching results at the lower resolution levels. At the higher resolutions, the
blotches cover larger parts of the blocks used for matching, and blotches will therefore have
great influence on the matching results. However, if the number of candidate vectors is limited
(e.g., in case the motion is identical in all neighboring regions) the correct motion vector may
yet be found. Figure 2.6b shows the MSE computed for the three test sequences to which vari-
ous numbers of blotches have been added.

Line scratches.The temporal consistency of line scratches is very good. As a result, motion
estimators tend to lock onto them, especially if the contrast of the scratches is great with
respect to the background. If the background motion is different from that of the line
scratches, considerable errors result. Figure 2.6¢ shows the MSE computed for the three test
sequences.

UnsteadinessMeasuring the influence of unsteadiness on motion estimates with the scheme
in Figure 2.5 is not meaningful. Estimating motion between frames from an unsteady
sequence is not unlike estimating motion between frames from a sequence containing camera
pan. A motion estimator that performs its function well does not differentiate between global
and local motion. In practice, unsteadiness (and camera pan) does have some influence. First,
there are edge effects due to data moving in and out of the picture. Second, motion estimators
are often intentionally biased towards zero-motion vectors. Third, the motion estimation can
be influenced by aliasing if the data are not prefiltered correctly. This third effect is not of
much importance because natural images have relatively little high-frequency content.

Intensity Flicker. Many motion estimators, including the hierarchical motion estimator used

in this thesis, assume tlednstant luminance constraif@3]. This constraint, which requires

that there be no variations in luminance between consecutive frames, is not met in the presence
of intensity flicker. Figure 2.6d shows the MSE computed for the three test sequences to which
varying amounts of intensity flicker have been added. The dramatic influence of this artifact on
the quality of the estimated motion vectors compared to the other the artifacts examined
becomes clear when the scale in Figure 2.6d is compared to those in Figures 2.6a-c.

In conclusion, artifacts can have a considerable impact on the accuracy of estimated motion
vectors. In some cases, this leads to a chicken-and-egg problem: in order to obtain good
motion estimates, the artifacts should be restored; and in order to restore the artifacts, good
motion estimates are required. This problem can often be overcome by applying iterative solu-
tions where estimates of the motion vectors and of the restored image are obtained in an alter-
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Figure 2.7 Subdivision of an image sequence into groups of pictures (GOPS). In this exam-
ple, the GOP has length 7 and it contains |, P and B frames. The arrows indicate the predic-
tion directions.

I = INTRACODED
P = PREDICTED
B = BIDIRECTIONALLY PREDICTED

nating fashion. Alternatively, restoration methods that do not rely on motion estimates might
be devised (Chapter 3) or a strategy of motion-vector repair can be applied after the severity of
the impairments has been determined (Chapter 4).

2.2 Image restoration and storage

Restoration of archived film and video, as is the title of this thesis, implies that the restored
sequences will once again be archived. It is very likely that the restored documents are stored
in new digital formats rather, than in analog formats similar to those from which the material
originated. Most restored material will be re-archived in a compressed form due to the high
costs associated with renewed storage of the vast amounts of material being held in store cur-
rently. This section investigates the effects of various impairments on the coding efficiency
and uses the MPEG2 compression standard as a reference. The results of this investigation
indicate the possible benefits that can be obtained by applying image restoration prior to
encoding.

2.2.1 Brief description of MPEG2

The ISO/IEC MPEG2 coding standard developed by the Motion Pictures Expert Group is cur-
rently the industry standard used for many digital video communication and storage applica-
tions. As a result of the requirements on its versatility, it has become a very complex standard
with a description that fills several volumes [37,38,39]. The following describes only the
basics of MPEG2 that are relevant to this thesis.

To achieve efficient compression, the MPEG2 encoding scheme exploits spatial and temporal
redundancy within elementary units of pictures. Such an elementary unit is cajledia of
pictures(GOP) (Figure 2.7). MPEG2 defines three types of pictures that can be used within a
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Figure 2.8 Schematic overview of the hybrid coding scheme used in MPEG2.

GOP, namelyntra frames(l frames) predicted frame¢P frames)andbi-directionally inter-

polated frame$B frames). A GOP cannot consist of a random collection of I, B, and P frames.
There are some rules that must be adhered to, e.g., the first encoded picture in a GOP is always
an | frame. Figure 2.8 gives a schematic overview of the hybrid coding scheme that forms the
heart of the MPEG2 coding system.

| frames. To encode | frames, spatial information is used only. Therefore, temporal informa-
tion for decoding | frames is not required. This is important because it allows random access to
the image sequence (on the level of GOPs anyhow) and it limits error propagation in the tem-
poral direction resulting from possible bit errors in a stream of encoded data.

Efficient compression of | frames requires reduction of spatial redundancy. The MPEG2 stan-
dard reduces the spatial redundancy by subdividing | frames into 8 by 8 image blocks and
applying thediscrete cosine transforfioCT) to these blocks. The decorrelating properties of

the DCT concentrate much of the signal energy of natural images in the lower-frequency DCT
coefficients. A quantizer Q quantizes the transform coefficients and thereby reduces the num-
ber of representation levels and sets many coefficients to zero. Note that, as the eye is less sen-
sitive to quantization of high frequencies, the high-frequency components can be quantized
relatively coarsely. Entropy coding codes the remaining coefficients efficiently by applying
run-length codingollowed by variable length codindVLC) to each 8 by 8 block of quan-

tized DCTs. The result forms the encoder output.

The decompression of | frames is straightforward: the inverse DCT is applied to 8 by 8 blocks
in which the quantized coefficients are ordered after the entropy-coded data are decoded.

B and P frames. Efficient compression of P frames and B frames is achieved by exploiting
both temporal and spatial redundancy. P frames are predicted from single | frames or P frames
coded previously, for which motion estimation and compensation is often used. The prediction
error signals, which contain spatial redundancy, are encoded as are the | frames, i.e., by means
of the DCT and quantization. B frames are predicted from two coded | frames or P frames and
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Figure 2.9 Experimental setup for evaluating the influence of artifacts on the
coding efficiency.

are encoded like the P frames. The motion vectors are transmitted as well; these are encoded
with differential coding. Note that, in the case of P frames and B frames, the encoder may well
decide that it is more efficient to encode the original contents of an image region instead of
encoding the prediction error signals.

Decompression consists of decoding the error signal and adding it to the motion-compensated
prediction made in the decoder.

2.2.2 Influence of artifacts on coding efficiency

Figure 2.9 shows an experimental setup used for evaluating the quantitative influence of arti-
facts on the coding efficiency of an MPEG2 encoder. Coding efficiency is defined as the
amount of distortion introduced by a codec under the condition of a limited bitrate, or, vice
versa, as the bitrate required by a codec under condition of limited distortion. The scheme in
Figure 2.9 measures thgeak-signal-to-noise-ratigPSNR) of a degraded image sequence
after encoding and decodirgy(i) . The degraded sequence prior to enading serves as
the reference. The PSNR is defined as:

O

. . O 2242
PSNR z(i), z.(i)] = 1O[I_og[j1 _ N
EDACIORLED)

. 2.7)

I

The numerator in (2.7) is a result of the dynamic range of the image intensities. In this thesis
the allowed range of intensities is restricted to values between 16 and 240. If the degradations
have little influence on the coding efficiency, the differeneg§) —z.(i) will be small and
the PSNR will be large. As the influence of the degradations on the coding efficiency
increases, the PSNR decreases.

The degradations are introduced by applying the models for the artifacts in Section 2.1.2.
Figure 2.10 plots the PSNR as a function of the bitrate of the encoder and of the strength of the
impairments (Table 2.1) for thelobCal sequence. From this figure it can be seen that, if the
strength of the impairments is held constant, the PSNR increases with increasing bitrate. This
is to be expected, of course, because a signal can be encoded more accurately if more bits are
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Figure 2.10 Peak-signal-to-noise ratio (PSNR) between input image and MPEG2
encoded/decoded result as a function of bitrate and strength of artifacts: (a) noise, (b)
blotches, (c) line scratches, (d) unsteadiness, (e) intensity flicker and (f) all artifacts
combined.
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Figure 2.11 (a) Variance of DCT coefficients (in zig-zag scan order) of a clean frame from the
MobCal sequence, (b) variance of DCT coefficients from same frame but now with white
gaussian noise with variance 100.

available. When the bitrate is kept constant, it can been seen that the coding efficiency
decreases with an increasing level of impairment. The reason for the latter is explained for
each impairment in the qualitative analysis that follows.

Noise.A property of white noise is that the noise energy spreads out evenly over all the trans-
form coefficients when an orthonormal transform is applied to it. The DCT is an orthonormal
transform. Therefore, in MPEG2, the presence of additive white gaussian noise leads to fewer
transform coefficients that are zero after quantization. Furthermore, on average, the amplitudes
of the remaining coefficients are larger than in the noise-free case. See Figure 2.11. Both these
effects lead to a decrease in coding efficiency; more coefficients must be transmitted and, on
average, the codewords are longer. Similar arguments hold for the encoding of the error sig-
nals of the P frames and B frames. Note that the noise variance in the error signal is larger than
that in | frames. This is so because the error signal is formed by subtracting two noisy frames.
The benefits of noise reduction prior to MPEG2 encoding are shown by [77,79,81].

Blotches. Blotches replace original image contents with data that have little relation to the
original scene. Large prediction errors will result for P frames and B frames at spatial loca-
tions contaminated by blotches. Large prediction errors imply nonzero DCT coefficients with
large amplitudes, they therefore imply a decrease in coding efficiency. The overall influence of
blotches on the coding efficiency is usually less than that of noise because blotches are local
phenomena that often affect only a small percentage of the total image area.

Line scratches.Scratches are image structures that, depending on their sharpness, have high
energy in the frequency domain in orientations perpendicular to that of the scratch in question.
For | frames this implies nonzero coefficients with large amplitudes, i.e., a decrease in coding
efficiency. The situation is slightly better for P frames and B frames if the spatial locations of
the scratches do not vary too much from frame to frame. In such cases, the prediction errors
are small.
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Unsteadinesslin principle, the influence of film unsteadiness on prediction errors for P frames
and B frames is countered by motion compensation. At first glance, the overhead due to non-
zero motion vectors is neglible because of the differential coding: adjacent regions affected by
global motion have only zero differential motion. However, because the codeword for no
motion takes fewer bits than that for zero differential motion [25], unsteadiness influences the
coding efficiency in a negative sense. Furthermore, near the image edges, the prediction errors
can be large due to data moving in and out of the picture.

Intensity flicker. Intensity flicker decreases the coding efficiency of P frames and B frames
for two reasons. First, the prediction error increases due to the fluctuations in image intensi-
ties. Thus the entropy of the error signal increases. Second, in the presence of intensity flicker
the constant luminance constraif®3] under which many motion estimators operate is vio-
lated. The result is that the motion vectors are more erratic, which leads to larger differential
motion. The larger the differential motion, the more bits are required for encoding. The posi-
tive effects of reducing intensity flicker prior to compression are shown by [77,79].

The analysis given here shows that artifacts have a negative influence on the coding efficiency
of MPEG2. Therefore removing artifacts prior to encoding is beneficial. It is difficult to quan-
tify the benefits beforehand because they depend strongly on the nature of the unimpaired sig-
nal, the strength of the impairments, and the effectiveness of the restoration algorithms. It
should be noted that not all impairments decrease the coding efficiency. For example, image
blur [8,52] is beneficial to compression because removes high frequency contents and thus
nullifies the high-frequency transform coefficients.



Chapter 3

Intensity flicker correction

Summary.Intensity flicker is a common artifact in old black-and-white film sequences. It is
perceived as unnatural temporal fluctuations in image intensity that do not originate from the
original scene. This chapter presents a method for correcting intensity flicker on the basis of
equalizing local intensity mean and variance in a temporal sense. The main problem in inten-
sity flicker correction is concerned with estimating the model parameters in a robust fashion.
This is easy enough for temporally stationary sequences. However, where local object motion
hampers the estimation process measures have to be taken to avoid incorrect parameter esti-
mates. Therefore, a motion detector that is robust to intensity flicker is developed. Where
motion is detected, the model parameters are spatially interpolated from model parameters
computed from stationary regions. The intensity-flicker correction system has been applied
successfully to artificially and naturally degraded image sequences.

3.1 Introduction

Intensity flicker is a common artifact in old black-and-white film sequences. It is perceived as
unnatural temporal fluctuations in image intensity that do not originate from the original
scene. Intensity flicker has a great number of causes, e.g., aging of film, dust, chemical pro-
cessing, copying, aliasing, and, in the case of the earlier film cameras, variations in shutter
time. Neither equalizing the intensity histograms nor equalizing the mean frame values of con-
secutive frames, as suggested in [26,63,77], are general solutions to the problem. These meth-

23
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ods do not take changes in scene contents into account, and they do not appreciate the fact that
intensity flicker can be a spatially localized effect. This chapter describes a method for equal-
izing local intensity means and variances in a temporal sense to reduce the undesirable tempo-
ral fluctuations in image intensities [83].

Section 3.2 models the effects of intensity flicker, and derives a solution to this problem for
stationary sequences that is robust to the wide range of causes of this artifact. The derived
solution is optimal in dinear mean square errosense. The sensitivity to errors in estimated
model parameters and the reliability of those parameters are analyzed. Section 3.3 extends the
applicability of the method to include nonstationary sequences by incorporating motion. In the
presence of intensity flicker, it is difficult to compensate for motion of local objects in order to
satisfy the requirement of temporal stationarity. A strategy of compensating for global motion
(camera pan) in combination with a method for detecting the remaining local object motion is
applied. The model parameters are interpolated where local motion is detected. Section 3.4
shows the overall system of intensity-flicker correction and discusses some practical aspects.
Section 3.5 describes experiments and results. This chapter concludes with a discussion.

3.2 Estimating and correcting intensity flicker in stationary
sequences

3.2.1 A model for intensity flicker

It is not practical to find explicit physical models for each of the mechanisms mentioned that
cause intensity flicker. Instead, the approach taken here models the effects of this phenomenon
on the basis of the observation that intensity flicker causes temporal fluctuations in local inten-
sity mean and variance. Since noise is unavoidable in the various phases of digital image for-
mation, a noise term is included in the model:

z(i) = o(i) Oy(i) + B(i) + n(i). (3.1)
The multiplicative and additive intensity-flicker parameters are denoteul(by pand .In
the ideal case, when no intensity flicker is preser(t) = 1 gd = 0 forall .Itis
assumed thatt(i) an@(i) are spatially smooth functions. Noteyitat does not necessar-

ily need to represent the original scene intensities; it may represent a signal that, prior to the
introduction of intensity flicker, may already have been distorted. The distortion could be due
to signal-dependent additive granular noise that is characteristic of film [12,70], for example.

The intensity-flicker-independent noise, denoted rixy) , models the noise that has been
added to the signal after the introduction of intensity flicker. It is assumed that this noise term
is uncorrelated with the original image intensities. It is also assumed){iat IS a zero-mean
signal with known variance. Examples are quantization noise and thermal noise originating
from electronic studio equipment (VCR, amplifiers, etc.).

Correcting intensity flicker means estimating the original intensity for each pixel from the
observed intensities. Based on the degradation model in (3.1), the following choice for a linear
estimator for estimating(i) is obvious:
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Y(i) = a(i) (i) + b(i). (3.2)

If the error between the original image intensity and the estimated original image intensity is
defined as:

e(i) = y(i)-¥(@). (3.3)

then it can easily be determined that, givefi) #(d) , the optimal values(fpr and
b(i) in alinear minimum mean square errffitMMSE) sense are given by:

. _ var[z(i)]—var[n(i)] 4 1
a(i) = var[z(i)] T10} (34)

o = _Ba)  var[n()] E[Z(i)]

o) = = 3@ " varin] EEa(i) ! (3-5)
whereE[-] stands for the expectation operator aad| -] indicates the variance. It is inter-
esting that it follows from (3.4) and (3.5) thati) = 1/a(i) abdi) = —B(i)/a(i) in the
absence of noise. In such a case, it follows from (3.1) and (3.2)ythat= y(i) . That is to
say, the estimated intensities are exactly equal to the original intensities. In the extreme case
that the observed signal variance equals the noise variance, we find(hat O and

9(i) = b(i) = E[y(i)]; the estimated intensities equal the expected values of the original
intensities.

In practical situations, the true values fa(i) afifl) are not known and estiragigs
and (i) are made from the observed data (this is the topic of Section 3.2.2). Because these

estimates will never be perfect, the effects of errors (in) gad  y@n is investigated.
To simplify the analysis, the influence of noise is discarded. For ease of notation, the following
analysis leaves out the spatial and temporal indicesdlLet o + Aa BardB + AP . The

reconstruction errofy is then given by:

Ay = y-¥
_ Do, AR (36)
o+ Aa o+ Aa
Figure 3.1 plots the reconstruction error as a functioAof AAd wthlp =0 and
y = 100. Now, if |Aa| «a, then it can be seen that the sensitivity/of to errors {in) is
linear iny , and that the sensitivity Ay  to error3i(i) IS constant:
98y _ y and98Y = ¢ 3.7)

dAa dAp
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Equation (3.7) shows thdty is much more
sensitive to errors iii(i) than to errors in
B(i). It also shows that the sensitivity due
to errorsAa can be minimized in absolute
terms by centering the range of image
intensities around 0. For example, consider
a noiseless case in which = a +0.1  and
B = B.If yranges between 0 and 255 with
a =1 and B = 0, then it can be seen
from (3.6) thatAy is maximally 23.2. After
the range of image intensities is centered
around 0,y ranges between -127 and 128.
The maximal absolute error is halved and,
Figure 3.1  Error Ay in a reconstructed  unlike the previous case, the sensitivity to

image as a function of errors Aa and AR errors in Gi(i) for the mid-gray values is
computed for y = 100. relatively small.

3.2.2 Estimating intensity-flicker parameters in stationary scenes

In the previous section, a LMMSE solution to intensity flicker is derived on the assumption
that the intensity-flicker parametecsi) afdi) are known. This is not the case in most
practical situations, and these parameters will have to be estimated from the observed data.
This section determines how the intensity-flicker parameters can be estimated from temporally
stationary image sequences, i.e., image sequences that do not contain motion. It was already
assumed thatx (i) anf(i) are spatially smooth functions. For practical purposes it is now
also assumed that the intensity-flicker parameters are constant locally:

gai, j,t) =ag 1)

0 " nijoa, (3.8)
O PR _ d

0 B(I!J!t) - Bm, n(t)

WhereQm, n indicates a small image region. The image reg(@msn can, in principle, have
any shape, but they are rectangular blocks in practice,nana indicate their horizontal and
vertical spatial locations. Thamy (1) ar(% At correspondigﬂg]’ n are considered
frame-dependent matrix entriesiaf n . The sMex N of the matrix depends on the total
number of blocks in the horizontal and vertical directions.

Keep in mind the assumption that the zero-mean naj$g is signal independent. The
expected value and variance ofi) taken from (3.1) in a spatial sensejferQ . . is
given by: '

E[Z(i)] = ap, o) LE[Y(D] + B, (1), (3.9)

var[z(i)]:arzn, o) Drar[y(i)] + var[n(i)]. (3.10)
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Rewriting (3.9) and (3.10) gives exact analytical expressionsafar (t) Bpd,(t) for
i 0Qp o ’ ’
B n(t) = E[Z()] —ap, (1) CE[Y()], (3.11)
_ |var[Z(i)] —var[n(i)]
O n(t) = J varly()] : (3.12)

Equations (3.11) and (3.12) must now be solved in a practical situation. The means and vari-
ances ofz(i) can be estimated directly from the observed data of re@igng . The noise
variance is assumed to be known or estimated. What remains to be estimated are the expected
values and variances g{i) in the various regifmﬂ% N

Two methods for estimating the mean and variancg(of  i,fpE1 Q. are discussed here.
The first method estimategi) by averaging the observed data in a temporal sense. In this
case the underlying assumption is that the effects of flicker will be averaged out:

q
By J.0] = 5o 03 Bl j t+ D], (3.19
|l =—p
. 1 d .
var[y(i, j,t)] = p+q+1D > var[z(i, j, t+D]. (3.14)
l=—p

The second method takes the frame corrected previously as a reference:

E[y(i, j, )] = E[¥(,],t -1)], (3.15)

var[y(i, j, t)] = var[¥(i, j,t —=1)]. (3.16)

The latter approach is adopted here because it has the significant advantage that the require-
ment of temporal stationarity is more likely to be fulfilled when a single reference frame,
rather than multiple reference frames, is used. This approach is also more attractive in terms of
computational load and memory requirements. Hencej,fpf] Qm, n , the estimated inten-
sity-flicker parameters are given by:

B, n(t) = E[Z(i, }, )] =Gy () CELF( j,t - 1)], (3.17)
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A _ Ivar[Z(i, j, )] —var[n(i, |, t)]
% ol _A/ var[¥(i, j,t —1)] (3.18)

3.2.3 Measure of reliability for the estimated model parameters

Note that, by using (3.15) and (3.16), recursion is introduced into the method for flicker cor-
rection. As a result, there is a risk of error propagation leading to considerable distortions in a
corrected sequence. A source of errors lies in the estimated model paramrgtcﬁ(s) and
Bm n(t), which may not be exact. Therefore, it is useful to have a measure of reliability for

O A(t) and Bm n(t) that can be used to control the correction process by means of weight-
ing and smoothing the estimated model parameters as is done in Section 3.3.3.

The am n(t) and[3m n(t) are not very reliable in a number of cases. The first case is that of
uniform image intensities. For any original image intensity in a uniform region, there are infi-
nite combinations ofi(i) an@(i) thatlead to the same observed intensity. The second case
in which am A(t) andBp, n(t) are potentially unreliable is caused by the fact that (3.15) and
(3.16) discard the noise ifi(i)  originating from(i) . This leads to valuesxmr (1) that
are too small. Considerable errors result in regnﬁl}ﬁ n in which the signal variance is
smaller than the noise variance.

The signal-to-noise ratio, defined aar(y)/var(n) , determines the variance of the errors in
the estimated model parameters. Figure 3.2 illustrates this by plotting the reciprocal values of
the error variancesrga andg as a function of signal-to-noise ratio. These values were
obtained experimentally by synthesizing 100 000 textured are&6 ®f30 pixels with a 2D
autoregressive model to which gaussian noise and flicker were added. The flicker parameters
were then determined with (3.11) and (3.12). Figure 3.2 shows that the variance in the esti-
mated model parameters is inversely proportional to the signal-to-noise ratio.

In Section 3.3.3, the model parameters that are estimated over an image are smoothed and
weighted using a 2D polynomial fit. The weighted least-squares estimate of the polynomial
coefficients is optimal if the weights are proportional 1o, , afh’drAB [92], i.e., if the
weights are proportional to the squared root of the signal-to-noise ratio. Hence, the following

measure of reliabilityv . (t) , for, j O Q_ , ,is defined:

E 0 O var[z(i)] <T,
O
Wi ) = 0 Narzn7-T, | : (3.19)
Y S— otherwise
O T
whereT  is a threshold depending on the varianceg @) . Large valueW'frpr (1) indi-

cate rellable estimates; small values indicate unreliable estimates.
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Figure 3.2 (a) Plot of 1/0&0( vs. signal-to-noise ratio, (b) plot 1/0£B vs. signal-to-noise

ratio. Note that the relationships are linear.

3.3 Incorporating motion

The previous sections model the effects of intensity flicker and derive a solution for temporally
stationary sequences. The necessity of temporal stationarity is reflected by (3.15) and (3.16),
which assume that the mean and variancey@f j,t) afidj,t —1) are identical. Real
sequences, of course, are seldom temporally stationary. Measures will have to be taken to
avoid estimates ofxi(i) an@(i) that are incorrect due to motion. Compensating motion
betweenz(i, j,t) and(i, j,t —1) helps satisfy the assumption of temporal stationarity. This
requires motion estimation.

Robust methods for estimating global motion (camera pan) that are relatively insensitive to
fluctuations in image intensities exist. Unfortunately, the presence of intensity flicker hampers
the estimation of local motion (motion in small image regions) because local motion estima-
tors usually have a constant luminance constraint. This includes pel-recursive methods and all
motion estimators that make use of block matching in one stage or another [93]. Even if
motion can be well compensated, a strategy is required for correcting flicker in previously
occluded regions that have become uncovered.

For these reasons, the strategy presented here for estimating the intensity-flicker parameters in
temporally nonstationary scenes is based on local motion detection. First, a pair of frames are
registered to compensate for global motion (Section 3.3.1). Then the intensity-flicker parame-
ters are estimated as outlined in Section 3.2.2. With these parameters, the remaining local
motions is detected (Section 3.3.2). Finally, the missing model parameters in the temporally
nonstationary regions are spatially interpolated from surrounding regions without local motion
(Section 3.3.3).
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3.3.1 Estimating global motion with phase correlation

In sequences with camera pan, applying global motion compensation helps satisfy the require-
ment of stationarity. Let the global displacement vectOI(tm(eq-)T . Global motion compen-
sation can be applied to the model parameter estimation by replacing (3.17) and (3.18) with:

Bm n(t) = E[(i, |, O] =G (OENi -0, j—a; t=1)], (3.20)
A _ |var[Z], j, t)] —var[n(i, j,t)]
o) = | varl3(i—a, —a;, t-1)] 821

Global motion compensation is only useful if the global motion vectors (one vector to each
frame) are accurate: i.e., if the global motion estimator is robust against intensity flicker. A
global motion estimator that meets this requirement is one that is based on the phase correla-
tion method applied to high-pass-filtered versions of the images [71,93].

The phase correlation method estimates motion by measuring phase shifts in the Fourier
domain. This method is relatively insensitive to fluctuations in image intensity because it uses
Fourier coefficients that are normalized by their magnitude. The direction of changes in inten-
sity over edges and textured regions is preserved in the presence of intensity flicker because
the amount of intensity flicker was assumed to vary smoothly in a spatial sense. This means
that the phases of the higher-frequency components will not be affected by intensity flicker.
However, the local mean intensities can vary considerably from frame to frame, and this gives
rise to random variations in the phase of the low-frequency components. These random varia-
tions are disturbing factors in the motion estimation process that can be avoided by removing
the low-pass frequency components from the input images.

The phase correlation technique estimates phase shifts in the Fourier domain as follows:

Ci i 1(wg, ) (3.22)

) ||Zt(°°1’ wy) [Z¢_4 (g, ‘*’2)”,

whereZ,(w,, w,) stands for the 2D Fourier transformagi, j,t) and denotes the com-
plex conjugate. Ifz(i, j,t) andz(i, j,t—1) are spatially shifted, but otherwise identical
images, the inverse transform of (3.22) produces a delta pulse in the 2D correlation function.
Its location yields the global displacement vedimy qj)T

3.3.2 Detecting the remaining local motion

It is important to detect the remaining local motion after compensating for global motion.
Local motion causes changes in local image statistics that are not due to intensity flicker. This
leads to incorrect estimates of(i) afi{i) ; to visible artifacts in the corrected image
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. IESE

Figure 3.3 Example of part of a frame subdi-
vided in blocks Qm n that overlap each other by
one pixel. '

sequence. First, two obvious approaches to motion detection are discussed. It is concluded that
these are not appropriate. Next, a robust alternative strategy is described.

Two methods for detecting local motion are (1) detecting large local frame differences
between the corrected current and_previous frames and (2) comparing the estimated inten-
sity-flicker parametersxm At an(im n(t)  to threshold values and detect motion when
these thresholds are exceeded. These methods have disadvantages that limit their usefulness.
The first method is very sensitive to film unsteadiness; slight movements of textured areas and
edges lead to large frame differences and thus to “false” detections of motion. The second
method requires threshold values that detect motion accurately without generating too many
false alarms. Good thresholds are difficult to find because they depend on the amount of inten-
sity flicker and the amount of local motion in the sequence.

To overcome problems resulting from small motion and hard thresholds, a robust
motion-detection algorithm that relies on the current frame only is developed here. The under-
lying assumption of the method is that motion should only be detected if visible artifacts
would otherwise be introduced. First, the observed image is subdivided into tm?ﬁlg.? that
overlap their neighbors both horizontally and vertically (Figure 3.3). The overlapping bound-
ary regions form sets of reference intensities. The intensity-flicker parameters are estimated
for each block by (3.20) and (3.21). These parameters are used with (3.2), (3.4), and (3.5) for
correcting the intensities in the boundary regions. Then, for each pair of overlapping blocks,
the common pixels that are assigned significantly different values are counted:

Y ()] > T4l (3.23)

Hereq andr indicate two adjacent image blo » indicates the set of boundary pixels,
T4 is a threshold above which pixels are considered to be significantly different and
boolearj-] is a boolean function that is one if its argument is true and is zero otherwise.
Motion is flagged in both regiong and if too many pixels are significantly different, that is,
if:
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(@) (b) (€) (d)

Figure 3.4 Interpolation process using dilation: (a) initial situation, (b),
(c), (d) results after 1, 2 and 3 iterations.

Ng, r>D (3.24)

q,r max’

whereDmaX IS a constant.

3.3.3 Interpolating missing parameters

Due to noise and motion, the estimated intensity-flicker parameters are unreliable in some
cases. These parameters are referred tmiasing The other parameters are referred to as
known The goal is to find estimates of the missing parameters by means of interpolation. It is
also necessary to smooth the known parameters to avoid sudden changes in local intensity in
the corrected sequence. The interpolation and smoothing functions should meet the following
requirements. First, the system of intensity-flicker correction should switch itself off when the
correctness of the interpolated values is less certain. This means that the interpolator should
incorporate biases fcu(m o(t) arfih, n(t) towards unity and zero, respectively, that grow as
the smallest distance to a region with known parameters becomes larger. Second, the reliabil-
ity of the known parameters should be taken into account.

Three methods that meet these requirements are investigated. Each of these methods uses the
(1) determined by the measure of reliability as defined in (3.19). The interpolation and

smoothlng algorithms_are described for the case of the multiplicative paranm%eﬁﬁt)

The procedures for th@,, (t) are similar and are not described here.

Inter polation by dilation. With each iteration of this iterative dilation approach, regions of
known parameters grow at the boundaries of regions with missing parameters. Consider the
matrix containing the knowrdr,, (t) corresponding to the regltﬂﬁ for a frame
Figure 3.4a graphically deplcts such a matrix that can be divided |nto two areas: the black
region indicates the matrix entries for which the multiplicative parameters are known, and the
white region indicates the missing entries. Each missir}lg (1) and its corresponding
weighth, (1) at the boundary of the two regions is interpolated by:

W, (1) BB ()
{a,1} DS, & ar

~ k k
a. (t) = — p +1-p, (3.25)
m, n Wq, r(t)
{a.r}US, |,
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Wy, r(D)
{a.r}US, |,

S

W, (1) = (3.26)

where S, , indicates the set of known parameters adjacent to the missing parameter being
mterpolated,p (withO< p<1 ) determines the trade-off between the interpolated value and
the bias value as a function of iteration numlker . After the first iteration, Figure 3.4b results.
Repeating this process assigns estimates 6% () to all missing parameters
(Figure 3.4c,d).

Next, a postprocessing step smooths all the matrix entries wifirxd gaussian kernel.
Figure 3.5(a,b) shows respectively, an original set of known and missing parameters and the
interpolated, smoothed parameters.

Inter polation by successie overrelaxation (SOR). SOR is a well-known iterative method

based on repeated low-pass filtering [75]. Unlike the dilation technique, this method interpo-
lates the missing parameters and smooths the known parameters simultaneously. SOR starts
out with an initial apprOX|mat|ornx0 (t) .Ateach iteratidn , the new solultixi?ﬁ]’ln(t) is
computed for all(m, n) by computlng a residual tem*ﬁ,}ln and subtracting this from the
current solution:

ot = Win o) 0 () =y (D) +

k k k k

‘ (3.27)
A E(A'Gm, n(t) - o(m—l, n(t)_am+ 1, n(t)_am, n- 1(t)_a m, n+ 1(t))’

k+1

i
ak*l(t) = ak ()- m%. (3.28)

Here W, (t) are the weights\  determines the smoothness of the solutiompand s the
SO- caIIed overrelaxatlon parameter that determines the rate of convergenaz? ml &) are
initialized to the known multiplicative intensity-flicker parameterq at, n) , and to the bias
value for the missing parameters.

The first term in (3.27) weighs the difference between the current solution and the original
estimate, and the second term measures the smoothness. The solution is updated in (3.28) so
that where the Welghtwm A(t) are great, the original estlma%,sﬁ(t) are emphasized. In
contrast, when the measurements are deemed less reliable, i.e. 2\\Nhﬁsﬁa1 (1) , emphasis
is laid on achieving a smooth solution. This allows the generation of complete parameter fields
where the known parameters, depending on their accuracy, are weighted and smoothed.
Figure 3.5¢ shows results of this method.
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Figure 3.5 (a) Set of original measurements with variable accuracy; the missing measure-
ments have been set to 1, (b) parameters interpolated and smoothed by repeated dilation,
(c) parameters interpolated and smoothed by SOR (250 iterations), (d) parameters interpo-
lated and smoothed by polynomial fitting (D, = D_ = 2). Note the differences in scale.

Inter polation by 2D polynomial fitting . By fitting a 2D polynomialP(m n 1) to the known
parameters, the missing parameters can be interpolated and the known parameters are
smoothed simultaneously. The 2D polynomial is given by [34]:

D. D,

PMnd= 3y 3 G mn, (3.29)
k=01=0

whereD, andD, determine the degree of the polynomial surface and the coeffigjents
shape the function. Polynomial fitting entails finding the coefficiegys so that the
weighted mean squared differenceRgin n §  ang (1) is minimized for a given
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Figure 3.6  Global structure of the intensity-flicker correction system.

min 5 Wy, () JP(m n )&, (t)%H (3.30)
Ck,l,t mn

The complexity of solving (3.30) is typical of a weighted least squares problem that requires
computation of a pseudo inverse of a square matrix [92]. The number of columns (and rows)
depends on the order of the polynomial and is determined by the number of coefﬁz;j,q,r}ts

at an instant.

Biases are applied by setting the missing parameters to their bias value; the weights corre-
sponding to these parameters are set to a fraction (e.g., one tenth) of the largest weight found
for the known parameters. This will have little effect on the shape of the polynomial surface if
only a few parameters are missing locally. Where many parameters are missing, the combined
influence of the biased parameters will shape the polynomial locally towards the bias value.

The range of the results obtained by the dilation and SOR interpolation methods is limited to
the range of the data. This is not the case for 2D polynomial fitting. The higher-order terms
cause spurious oscillations if the order of the polynomial is taken too high, which leads to
incorrect values for the interpolated and smoothed parameters. In practice, taking
D. = D, = 2 gives the best results. Figure 3.5d shows a result of this interpolation and
smoothing method.

3.4 Practical issues

Figure 3.6 shows the overall structure of the system of intensity-flicker correction. Some oper-
ations have been added in this figure that have not yet been mentioned. These operations
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Image Blocks Motion | 2D Polynomial Successive Miscellaneous
Detection OverRelaxation
Size:30x 20 Tg4=5 D, =D, =2 _ K = 0.85
Overlap: 1 pixel w=1 var[n(x, y, ] = 5
Diax = ° A=5 ¥
T,=25

Table 3.1 Parameter settings of intensity-flicker correction system for the experiments.

improve the system’s behavior. First, the current input and the previous system output (with
global motion compensation) are low-pass filtered with a5 gaussian kernel. Prefiltering
suppresses the influence of high-frequency noise and the effects of small motion. Then, local
meangu and variances®®  are computed to be used for estimating the intensity-flicker param-
eters. The estimated model parameters and the current input are used to detect local motions.
Next, the missing parameters are interpolated and the known parameters are smoothed. Bilin-
ear interpolation is used for upsampling the estimated parameters to full spatial resolution.
The latter avoids the introduction of blocking artifacts in the correction stage that follows.

As mentioned in Section 3.2.3, the fact that a recursive structure is used for the overall system
of intensity-flicker correction introduces the possibility of error propagation. Errors certainly
do occur, for example, as a result of the need to approximate the expectation operator and from
model mismatches. Therefore, it is useful to bias corrected intensities towards the contents of
the current frame to avoid possible drift due to error accumulation. For this purpose, (3.2) is
replaced by:

9(i) = k da(i) (i) + b(i)) + (1 —«k) (i), (3.31)

wherek is the forgetting factor. Ik = 1 , the system relies completely on the frame cor-
rected previously, and it tries to achieve the maximal reduction in intensity flicker4f0 ,
we find that the system is switched off. A practical valuefor is 0.85.

3.5 Experiments and results

This section applies the system of intensity-flicker correction both to sequences containing
artificially added intensity flicker and to sequences with real (non-synthetic) intensity flicker.
This first set of experiments takes place in a controlled environment and evaluates the perfor-
mance of the correction system under extreme conditions. The second set of experiments veri-
fies the practical effectiveness of the system and forms a verification of the underlying
assumptions of the approach presented in this chapter. The same settings for the system of
intensity-flicker correction were used for all experiments to demonstrate the robustness of the
approach (see Table 3.1).

Some thought should be given to what criteria are to be used to determine the effectiveness of
the proposed algorithm. If the algorithm functions well and the image contents does not
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Figure 3.7 Top row: original frames 16, 17, and 18 of the MobCal sequence. Central row:
degraded frames. Bottom row: frames corrected by the intensity-flicker correction system
with successive overrelaxation.

change significantly, then the equalized frame means and variances should be similar from
frame to frame. Indeed, the converse need not be true, but visual inspection helps to verify the
results. Therefore, the temporal smoothness of frame means and frame variances measures the
effectiveness of intensity-flicker correction system.

A sliding window approach is adopted here: the variance in frame mean and frame variance is
computed locally over 24 frames (which corresponds to 1 second of film) and the estimated
local variances are averaged over the whole sequence. There is a reason for using this sliding
window. If the variation in frame means and variances are computed over long sequences,
there are two components that determine the result: (1) variations due to flicker, and (2) varia-
tions due to changes in scene content. This thesis is only interested in the first component,
which can be isolated by computing the variations over short segments.

3.5.1 Experiments on artificial intensity flicker
For the first set of experiments tiMobile sequence (40 frames), containing moving objects
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MobCal Soldier Mine Charlie
Mean Var.| Mean  Var.| Mean Var.| Mean \Var.
Degraded 19.8 501 2.7 44 2.3 61 8.5 135
Dilation 5.5 110 0.8 29 1.0 37 5.6 319
SOR 5.2 86 0.8 31 1.0 40 4.9 235
2D Polynomial| 5.8 105 0.9 27 1.2 41 6.3 333

Table 3.2  Standard deviation of averaged frame mean and frame variance of
degraded and sequences corrected by various interpolators in the intensity flicker
correction system.

and camera panning (0.8 pixels/frame), is used. Artificial intensity flicker was added to this
sequence according to (3.1). The intensity-flicker parameters were artificially created from 2D
polynomials, defined by (3.29), with degrée = D, = 2 . The coefﬁcie‘r&tﬁt are drawn
from the normal distributiorN (0, 0.1) , and frorN(1, 0.1) fmo, ot l0generate the)

and fromN(0, 10) to generate th@(i) . Visually speaking, this leads to a severe amount of
intensity flicker (Figure 3.7).

The degraded sequence is corrected three times, and each time a different interpolation and
smoothing algorithm is used, as described in Section 3.3.3. Figure 3.7 shows some corrected
frames. Figure 3.8 plots the frame means and the frame variances of original, degraded and
corrected sequences. It can be seen from these graphs that the variations in frame mean and
variance have been strongly reduced. Visual inspection confirms that the amount of intensity
flicker has been reduced significantly. However, residues of local intensity flicker are clearly
visible when the dilation interpolation method is used. The SOR interpolation method gives
the best visual results.

Table 3.2 lists the standard deviation of the frame means and frame variances computed over
short segments by the sliding window approach and averaged as mentioned before. This table
shows that the artificial intensity flicker severely degraded the sequence. It also shows that the
intensity-flicker correction system strongly reduces fluctuations in frame mean and frame vari-
ance. The SOR interpolation method gives the best numerical results.

3.5.2 Experiments on naturally degraded film sequences

Three sequences from film archives were used for the second set of experiments. Table 3.2
lists the results. The first sequence, calladdier is 226 frames long. It shows a soldier enter-

ing the scene through a tunnel. There is some camera unsteadiness during the first 120 frames,
then the camera pans to the right and up. There is film-grain noise and a considerable amount
of intensity flicker in this sequence. The total noise variance was estimated to be 8.9 by the
method described in [58]. Figure 3.9 shows three frames from this sequence, original and cor-
rected. Figure 3.10 indicates that the fluctuation in frame means and variances have signifi-
cantly been reduced by the intensity-flicker correction system. Visual inspection shows that all
three methods significantly reduce the intensity flicker without introducing visible new arti-
facts. The best visual results are obtained with the SOR interpolation method.
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Figure 3.8 (a) Frame means and (b) variances of original MobCal
sequence, MobCal sequence with artificial intensity flicker, and
sequences corrected by various interpolation and smoothing methods
within the system for intensity-flicker correction.
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Figure 3.9 Top: frames 16, 17, and 18 of the naturally degraded Soldier sequence. Bottom:
frames corrected by the intensity-flicker correction system using the 2D polynomial interpola-
tion method.

The second naturally degraded sequence, cMliee, consists of 404 frames. This sequence
depicts people in a mine. It contains camera pan, some zoom, and it is quite noisy (estimated
noise variance 30)7 The intensity flicker is not as severe as in tBeldier sequence.
Figure 3.11 shows the frame means and variances of the degraded and the corrected
sequences. Visually, the results obtained from the dilation interpolation method show some
flickering patterns. The 2D polynomial interpolation leaves some flicker near the edges of the
picture. The SOR method shows good results.

The third sequence is a clip of 48 frames from a Charlie Chaplin film, célleatlie. Some
frames have so much intensity flicker that it looks as if the film has been overexposed and the
texture is lost completely in some regions. Besides intensity flicker, this sequence is character-
ized by typical artifacts occurring in old films, such as blotches, scratches, and noise (esti-
mated variance 5.0). Figure 3.12 shows that the fluctuations in frame means and variances
have diminished. Again, from a subjective point of view, the SOR interpolation technique
gives the best result, but a slight loss of contrast is noted in the corrected sequence.

Table 3.2 indicates that the intensity-flicker correction system significantly reduces the fluctu-
ations in frame mean and frame variance of all the test sequences. The SOR interpolation
method gives the best numerical results: in all cases it gives the largest reduction in variation
of the mean image intensity and it gives a reduction in variation of image variance that is sim-
ilar or better than that obtained by the other interpolation methods.
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Figure 3.10 Frame means (a) and variances (b) of the naturally
degraded Soldier sequence and sequences corrected by the system for
intensity-flicker correction with various interpolation and smoothing meth-
ods.
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Figure 3.11 Frame means (a) and variances (b) of the naturally
degraded Mine sequence and sequences corrected by the system for
intensity-flicker correction with various interpolation and smoothing meth-
ods.
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3.6 Discussion

This chapter introduced a novel method for removing intensity flicker from image sequences
that significantly reduces the temporal fluctuations in local image mean and variance. The sys-
tem is based on simple block-based operations and motion detection. Therefore the complex-
ity of the system is limited. This is advantageous for real-time implementation in hardware.

Improvements to the system are certainly conceivable. For instance, effort could be put into
reducing the sizes of the image regions for which estimated flicker parameters are discarded
due to local motion. In the current scheme, data in whole image blocks are discarded even
though large parts of those blocks may not have been affected by motion. Alternatively,
instead of detecting motion, an approach that incorporates robust motion estimation into the
flicker correction system could be developed. This would result in a system for simultaneous
motion and parameter estimation and intensity-flicker correction.

A hardware implementation based on the system described in this chapter was realized by the
AURORA project. The system proved capable of restoring a large number of flickering image
sequences successfully.



Chapter 4

Blotch detection and correction

Summary.Blotches are common artifacts in old film sequences. The first part of this chapter
reviews existing methods for blotch detection and correction. The second part concentrates on
developing improved techniques for blotch detection. Such techniques take into account the
influence of noise on the detection process; they also exploit the spatial coherency inherent to
blotches. The third part of this chapter presents a new, fast, model-based method for
good-quality interpolation of blotched data. This method is faster than existing model-based
interpolators. It is also more robust to corruption in the reference data that is used by the inter-
polation process. The performance of the resulting system for blotch detection and correction
is evaluated with test sequences.

4.1 System for blotch detection and correction

Blotches are artifacts typically related to film. The loss of gelatin and dirt particles covering
the film cause blotches. The original intensities corrupted by blotches are lost and will be
referred to asnissing dataCorrecting blotches entails detecting the blotches and interpolating
the missing data from data that surround the corrupted image region. The use of temporal
information often improves the quality of the results produced by the interpolation process.
This means that reference data from which the missing data are interpolated, need to be
extracted from frames preceeding and/or following the frame currently being restored. Motion
estimation and compensation is required to obtain optimal interpolation results.

45
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The methods for blotch detection presented in this chapter assume the degradation model from
(2.2), either implicitly or explicitly [47]:

z(i) = (1-d(i)) Oy(i) + d(i) Le(i), (4.1)

wherez(i) andy(i) are the observed and the original (unimpaired) data, respectively. The
binary blotch detection maskd(i) indicates whether each pixel has been corrupted:
d(i) O{0, 1} . The values at the corrupted sites are giverc@y i Z y(i) . One prop-
erty of blotches is the smooth variation in intensity values at the corrupted sites; the variance
c(i) within a blotch is small. Blotches seldom appear at the same location in a pair of consec-
utive frames. Therefore the binary maski) will seldom be set to one at two spatially
co-sited locations for a pair of consecutive frames. However, there is spatial coherence within
a blotch; if a pixel is blotched, it is likely that some of its neighbors are corrupted as well, i.e.,
if d(i) = 1itlikely that some othed(ix1, j+1,t) = 1 also.

The following sections use various models for the original, uncorrupted image data. The com-
mon element is that these models do not allow large temporal discontinuities in image inten-
sity along the motion trajectories. This constraint results from the factafiatt y(i) in the
degradation models, which implies that blotches introduce temporal discontinuities in image
intensity. Temporal discontinuities in image intensity are also caused by moving objects that
cover and uncover the background. There is a difference between the effects of blotches and
the effects of motions. Motion tends to cause temporal discontinuities in either the forward or
the backward temporal direction, but not in both directions at the same time. Blotches cause
discontinuities simultaneously in both temporal directions.

The estimated motion vectors are unreliable at image locations corrupted by blotches because
they are determined with incorrect, corrupted data. Models for motion vector repair and for
blotch correction assume a relationship between the original image data at the corrupted sites
and the data surrounding those sites (temporally and/or spatially). For example, for motion
vector repair, this relationship can be smoothness of the motion vector field. For blotch correc-
tion, this relationship can be definedduytoregressivéAR) image models.

Figure 4.1 illustrates two possible approaches for detecting and correcting blotches. The first
approach computes the locations of the blotches, the motion vectors, and the corrected intensi-
ties simultaneously within a single bayesian framewdflaximum a posterior{MAP) esti-

mates for the true image intensitiegz) , the motion vectdr} , the blotch detection mask
d(i) and the intensities of the blotche@) are computed from the observed figges

arg max P[§(i), v(i), d(i), c(i)|z(i)].
(i), v(i), d(i), c(i) (4.2)

This is an elegant framework because it defines an optimal solution that takes dependencies
between the various parameters into account. It was applied successfully in [47]. A disadvan-
tage of this method, besides its great computational complexity, is the difficulty of determining
what influence the individual assumptions for the likelihood functions and priors have on the
final outcome of the overall system. Hence, it is difficult to determine whether the assumed
priors and likelihood functions give optimal results.
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Figure 4.1 (a) Simultaneous approach for blotch detection and correction vs. (b) modular
approach.

The second approach towards resolving blotches is a modular approach, as shown in
Figure 4.1b. Thenotion estimatenodule estimates motion between consecutive frames in the
forward and backward directions (fromn  tor1 and fram ttel respectively). On the
basis of motion estimates and the incoming degraded dathldtol detectioomodule detects
blotches. Themotion vector repaimodule corrects faulty motion vectofSinally, theblotch
correction module corrects blotches using the corrected motion vectors, the binary blotch
detection mask, and the degraded image sequence.

This chapter concentrates on the modular approach for blotch detection and correction. This
approach has the advantage that the modules can be designed and evaluated independently of
each other. Furthermore, the modular approach has the advantage of being computationally
much less demanding than the simultaneous bayesian approach.

This chapter is structured as follows. Section 4.2 reviews existing techniques for blotch detec-
tion, motion vector repair and blotch correction. Section 4.3 introduces a new technique for
improving the detection results by postprocessing blotch detection masks. The postprocessing
operations significantly reduce the number of false alarms that are inherent to any detection
problem. Section 4.4 shows that increasing the temporal aperture of a detector gives signifi-
cant gains in some cases. Section 4.5 presents a new, fast model-based method for excellent
guality of missing data interpolation. Section 4.6 evaluates the performance of the complete
blotch removal system and concludes this chapter.
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4.2 Overview of existing techniques

4.2.1 Blotch detection techniques

The parameter estimation problem for the degradation model consists of determining the

binary blotch detection masi(i) for each frame. If required) can easily be found once
d(i) is known. The blotch detectors presented in this section all apply the same principle: they
check whether the observed da@) fit an image modeyfor . If this is not the case, the

image is assumed to be corrupted and a blotch is flagged.

SDla detector. The spike detection index48Dla) is a simple heuristic method for detecting
temporal discontinuities in image intensity [47,48]. It compares each pixel intensity of the cur-
rent framez(i) to the corresponding intensities in the forward and backward temporal direc-
tions by computing the minimum squared differe&d2la(i)

SDIa(i) = min[(Zi) -z, (i, t + 1))2, (2(i) - (i, t—1))2]. (4.3)

Large values foiSDIa(i) indicate discontinuities in image intensity in both the forward and
backward temporal directions. A blotch is detecte8Lifla(i) exceeds a thregold

01 if SDla(i)>T,
d i) = with T, >0, 4.4
soia!) E 0 otherwise 1 (4-4)

whereT, is a threshold selected by the user. If a small value is chosen for this threshold, the
detector is very sensitive and will detect a large percentage of the blotches corrupting an
image. However, due to the great sensitivity, many false alarms will result as well. Increasing
the value of T, reduces the sensitivity; it reduces both the number of false alarms and the
number of correct detections.

A variation on the SDla detector is the SDIp detector. SDIp has an additional constraint that
requires the signs og(i) -z, (i,t+1) andz(i)-z,J(i,t-1) to be identical before a
blotch can be detected. This constraint reduces the number of false alarms resulting from erro-
neous motion estimates. In the case of correct motion estimation, the reference pixels in the
previous and next frames are assumed to be identical, and therefore the intensity differences
with the corrupted data in the current frame should have the same polarity. Note that this is not
necessarily true in the case of occlusion and noisy data.

ROD detector. Therank-ordered differencedROD) detector is a heuristic detector based on
order statistic§OS) [64]. Letp, withk = 1,2, ...,6 be a set of reference pixels relative to a
pixel from z(i) . These reference pixels are taken from the motion compensated previous and
next frames at locations spatially co-sited with pixél) and its two closest vertical neighbors
(see Figure 4.2a). Lat . be the reference pixg|s ordered by rankrwitr, < ... <r¢ .
The rank order meam ..., and rank-order differené@®D(i, ) with 1, 2, 3 are
defined by (see Figure 4.2b):
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Figure 4.2 (a) Selection of reference pixels p, from motion compensated previous and
next frames, (b) computation of ROD(i, I) based on pixels p, ordered by rank: r ..

ra+r
-3 4
mean= — 5 - (4.5)
Erl—z(i) if z(i)<rpean
ROD(G,I) = [ with | = 1,2 3 (4.6)
Hz)-ry_p i Zi)>Tean

A blotch is detected if at least one of the rank-order differences exceeds a specific threshold
T,. TheT, are set by the user and determine the detector’s sensitivity:

0l if ROD(,1)>T,

drop(i) = %0 with 0sT,;<T,<Tgand 1=1,2% (4.7)

else

MRF detector. In [48] an a posteriori probability for a binary occlusion map, given the cur-
rent frame and a motion-compensated reference frame, is defined. The occlusion map indi-
cates whether objects in the current frame are also visible in a reference franpgobability

mass functiorfpmf) for the a posteriori probability of the occlusion map is given by:

P[dk(i)|z(i), Z (i, t+K)] O PLZ(1)[d (1), z, (i, t + K)] TP[d, (1)], (4.8)

where the symboll means proportional to,andk indicates which reference frame is used.
Maximizing (4.8) gives the MAP estimate for an occlusion mask.
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Blotches are detected where occlusions are detected both in forward and backward temporal
directions;k = 1 ank = -1 :

Ol if (dy(i)=1) O (d_y(i)=1)

dyre(i) = EO (4.9)

otherwise

The likelihood function in (4.8) is defined by:

PLZ(i) [\ (i), Zpn (i, t+K)] O exp gs[(l—dk(i)) [z(i) ~ zp i t+K)ZE,  (4.10)

whereS indicates the set of all spatial locations within a frame. This likelihood function indi-
cates that, in the absence of occlusidp(i) = 0 , the squared difference between the current
pixel i and the corresponding pixel from the motion-compensated reference frame is likely to
be small. The prior in (4.8) is given by:

PLd(i)] O exp 5 [By OF (dy (i) + By (1) 15 with B, 8,20,  (4.11)
igs
|

where the functionf (d,(i)) counts the number of neighbors i) that are different from
d,(i). The termB, OJf (d,(i)) in (4.11) constrains the occlusion map to be consistent locally.
If an occlusion mask is locally inconsister}, [f (d,(i)) is large and the probability of
P[d,(i)] is made smaller. The terf, [d, (r) in (4.11) is a penalty term that suggests that it
is unlikely that many pixels are occluded. The user controls the strength of the self-organiza-
tion and the sensitivity of the detector by selecting valueBfor and

Combining (4.8), (4.10), and (4.11) gives:

PLA (1) 2(1), Zpn(i, t+K)] O

exlog—i gs[(l—dk(i)) (1) =z (i, t+K))2 + By OF (di (1)) + B, Ty ()15

(4.12)

Equation (4.12) can be maximized weimulated annealingSA) [28]. It is maximized once
for k = 1 and once fok = —1 . The resulting occlusion masks are combined by (4.9) to give
the binary blotch detection mask (i)

AR detector The assumptions that underlie the AR detector are that uncorrupted images fol-
low AR models and that the images can be predicted well from the motion compensated pre-
ceeding and/or following frames [48]. If the motion-compensated frane+&t is used as a
reference, the observed current frar(g is given by:
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n

lglal [, (i +4d,, t+k)+e(i,t+k) (4.13)

2,(i) + (i, t +K),

2(i)

where thea, are the AR model coefficients estimated from the observed data (see, for
example, [94]) g, give the relative positions of the reference pixels with respect to the current
pixel ande(i, t + k) denotes the prediction error.

In the absence of blotches and occlusion, the prediction egfors+ k) are small. A blotch is
detected if the squared prediction error exceeds a user defined thrdshold in both the for-
ward k = 1) and backwarck(= —1 ) directions:

) = %1 if (e2(i,t+1)>T,) O (e2(i,t-1)>T,)

JO0  otherwise with T, 20. (4.14)

Evaluation. To compare the effectiveness of the detectors described in this section, Figure 4.3
plots theirreceiver operator characteristiqROCs) for four test sequences. An ROC plots the
false alarm rate versus the correct detection rate of a detector. Ideally, the ratio of correct
detections to false alarms is large. For the SDla, ROD, and AR detectors, the curves were
obtained by lettingl; vary so thdt< T, <35 (for the ROD detecidy, = 39 dng55

were used). For the AR detector, the image was subdivided into block& 28 pixels, and
a set of AR coefficients was computed for each block. The support consisted of five pixels as
in [48] (see Figure 4.4). For the MRF detec®x 3, <8 a3, < 1369 were used.

The detectors were applied to four test sequences, naWiesgernwhich was also used in
[48], Mobcal Manege andTunnel To avoid problems caused by the combination of interlac-
ing and fast motion, only the odd fields from the last two sequences wete used

All sequences were degraded by adding artificial blotches. Each artificial blotch had a fixed
gray value that was drawn uniformly between 16 and 240, which is the allowed range for pixel
intensities in this thesis. Th@/esternsequence originates from film and therefore contains
granular noise. ThlobCal Manege andTunnelsequences, which were recorded by modern
cameras, have little noise. To let them resemble real film data more closely, white gaussian
noise with variance 10 was added after the blotches were added. Therefore, for these
sequences, unlike for thé/esternsequence, the blotches are no longer completely smooth.
Motion was estimated by an hierarchical motion estimator (Appendix A).

Figure 4.3 shows that the performance of the detectors strongly depends on the sensitivity to
which they are set and on the sequences themselves. The best detection results are obtained for
the Westernsequence, which has relatively low local contrasts. The poorest results are
obtained for thdvlanege sequence which contains fast motion and sharp local contrasts.

1 This is reasonable because blotches are artifacts that are typically related to film with no interlacing.
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Figure 4.3 Receiver operator characteristics for various blotch detectors for (a) Western
sequence, (b) MobCal sequence, (c) Manege sequence, (d) Tunnel sequence.

Figure 4.4 Support (circles) from reference frame at t + k used for
AR detector. The center of the support is aligned with pixel being
processed in the current frame t.
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Figure 4.5 Three frames from the Manege sequence with a single blotch (black) in the cen-
tral frame and a bounding box. The regions within the dashed boxes in the outermost frames
indicate the search region for the block matcher.

The experiments show that no detector consistently outperforms any other. In some instances,
the AR detector shows the best performance; in other instances, it shows the poorest perfor-
mance. It can been seen from the ROCs that greater complexity does not necessarily lead to
better results. The SDla detector requires only a fraction of the number of computations
required by the MRF detector, and both give a similar performance for all sequences. The
ROD detector performs well for most sequences. However, it breaks down imutieel
seqguence. This is because many false alarms are generated in this sequence as a result of the
fixed settings chosen fdr, arfd,

4.2.2 Techniques for motion vector repair

Estimated motion vectors are less reliable when an image is blotched. Hence, the reference
data extracted from the motion-compensated reference frames and used for interpolating the
missing data may be erroneous. Motion vector repair can improve the likelihood of obtaining
correct reference data. Motion vector repair has been investigated in the context of error con-
cealment in (compressed) digital video transmission where &acid 166r16 image
block has one motion vector assigned to it.

Two basic approaches to motion vector repair are found in literature. The first approach
re-estimates the unreliable motion vectors by interpolating them from the surrounding reliable
motion vectors. In [32,65], median filtering and averaging are proposed for this purpose. The
second approach re-estimates the motion vector on basis of the image intensities. The methods
in [16, 54] exploit the correlation between pixels along the boundaries between adjacent image
blocks. An erroneous motion vector is replaced by a new vector so that the mean squared dif-
ference in image intensity over the boundaries with the neighboring blocks is minimized. The
approach in [47], which was developed in the context of blotch correction, re-estimates the
motion of corrupted image blocks. The motion estimation process discards the corrupted pix-
els and constrains the smoothness of the motion vectors.

This section gives an indication of how well either approach can be expected to perform. Two
algorithms are evaluated for this purpose. The first algorithm interpolates the unreliable
motion estimates by applying the dilation interpolation technique described in Chapter 3 to the
horizontal and vertical components of the motion vector fields independently. All weights
W, , are set to one, and no biases are applied.
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Figure 4.6 Scheme for measuring the effectiveness of motion vector repair.

The second algorithm re-estimates motion vectors on the basis of the observed image intensi-
ties, as illustrated by Figure 4.5. First, a bounding box is computed around each blotch with an
additional (small) horizontal and vertical margin. Motion is estimated between the region con-
tained by the box and the previous/next frames by block matching. To avoid biases resulting
from blotched data, the block matcher discards the corrupted pixels in the current frame and in
the reference frames. To limit the computational effort, the search range is limittDto pix-
els for both horizontal and vertical directions.

Additionally, a third algorithm is evaluated. This algorithm simply replaces the motion vectors
at blotched sites with vectors that indicatero motion Large parts of images tend to be tem-
porally stationary and, therefore, assuming no motion is correct in a large number of cases.

The effectiveness of the three methods is evaluated by applying the scheme in Figure 4.6 to the
same four test sequences used in the previous section. In this scheme, the motion vectors are
estimated between pairs of consecutive frames that are corrupted by artificial blotches. Next,
the motion vectors are repaired at locations indicated by the blotch detection masks. The
blotch masks are made available to the motion vector repair block in Figure 4.6, though this is
not shown explicitly in the figure. Then, one of the original, uncorrupted input frames is com-
pensated for motion, and the MSE with the other original, uncorrupted input frame is com-
puted. The MSE is computed only over the locations indicated by the blotch mask. If the
motion vectors are accurate, the MSE will be small.

Two sets of experiments are carried out. The first set uses the true locations of the pixels cor-
rupted by blotches. The second set uses detection masks resulting from the SDla detector set
to a detection rate of approximately 70%. The first set of experiments shows the improvements
that are obtained under ideal circumstances. The second set of experiments shows the
improvements obtained under realistic circumstances where false alarms influence the results.
In this second set of experiments, 30% of the blotched pixels are not detected. These are the
so-calledmisses Motion vector repair does not influence the motion vectors assigned to
misses because the motion vectors are only re-estimated at locations when blotches are
detected.
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Blotch Mask | Vector Repair V\(/I\ejlsstgr)n l\(/:\(/l)ggl I\/(Iargeg)e Iltj/lr;nEe)l
Exact None 94 338 1027 396
Exact Block Matching 32 58 215 82
Exact Dilation 62 218 656 122
Exact Zero Motion 63 190 748 97

Estimated None 157 721 2136 1044
Estimated Block Matching 103 538 2138 693
Estimated Dilation 140 594 2658 908
Estimated Zero Motion 126 496 2841 847

Table 4.1 Evaluation of quality of motion vectors before and after motion vector repair. The
MSE is computed only at sites indicated by the blotch mask. Both the true blotch mask and
an estimated blotch mask, estimated with the SDla detector set to a detection rate of
approximately 70%, are used.

Western Mobcal Manege Tunnel

Blotch Mask |~ 15y (MSE) (MSE) (MSE)
Exact 21 35 113 18
Estimated 72 343 1925 689

Table 4.2 MSE computed with the motion vectors estimated from the orig-
inal, unimpaired image sequences. The MSE is computed only at sites
indicated by the blotch mask.

Table 4.1 gives the experimental results. This table indicates that applying vector repair signif-
icantly increases the accuracy of the corrupted motion vectors if the locations of the corrupted
sites are known exactly. When the estimated blotch mask is used, the MSE increases and the
gains are smaller. This is not surprising. Because of false alarms, motion vectors are re-esti-
mated at locations that are not corrupted. The new motion estimates for the false alarms are
suboptimal because correct image data are discarded in the motion estimation process.

The lowest MSEs are obtained with motion vectors repaired by the block matching technique,
and, therefore, this method is to be preferred to the other methods for vector repaerdhe
motiontechnique shows good results for those test sequences that contain large areas without
motion, i.e., all test sequences except i@negesequence. The dilation method has a rela-
tively poor performance, yet it is to be preferred to no vector repair at all.

Table 4.2 shows the MSEs obtained from motion vectors computed from the original, unim-
paired test sequences. These form the lower bound for the MSEs that can ideally be achieved.
The conclusion is that the block-matching vector-repair technique bridges the gap between the
MSE obtained from the corrupted vectors and the “true” vectors to a large extent.
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4.2.3 Blotch correction techniques

MMEF interpolator. A multistage median filtefMMF) is a concatenation of median filtering
operations. The ML3Dex MMF is a heuristic method for interpolating missing data [49].
ML3Dex first applies five subfilters centered around the pixel being processed. Figure 4.7
shows the subfilter masks. In this figure, the top plane of each subfilter refers to data in the
motion-compensated next frame, the center plane refers to data in the current frame, and the
bottom plane refers to data in the motion-compensated previous frame. Next, the output of all
the subfilters are combined and give the interpolated value according to:

m, = mediarf W] with 1<1<5, (4.15)

ML3Dex = mediafp m m,, ms, my, mg]. (4.16)

Note that ML3Dex does not necessarily fulfill any of the image models used by the detectors
described in Section 4.2.1. In other words, if a detector is applied again to a corrected image,
the corrected data may well be flagged as being blotched. In such instances, there is no objec-
tive reason to prefer the corrected data to the observed data and, from an engineering point of
view, it may actually be better to stick to the observed data. This reduces the risk of introduc-
ing corruption at locations at which blotches were mistakenly detected.

MRE interpolator. A MRF formulation towards interpolating missing data is given in [49].

This approach tries to find the MAP estimate of the missing d4t3, , given the locations of
the corrupted sites and the observed (motion-compensated) previous, current and next frames
by maximizing:

PL§(i)[d(i), z, (i, t 1), (i), z, (i, t + 1)] O

il
exp- [ %S (§()—9(s))2 +
Oi:d(1y = 1/ s 0°S4(i)

(4.17)

; ?\E[?(i)—ZmC(S,t—l))2+(9(i)—2mc(5,t+1))2]}
sO'S.(i)

[

where S; andS; indicate the spatial and temporal neighborhoodsAand s the relative
weight for the temporal neighborhood. Equation (4.17) is optimized only over blotched image
locations. The tern(§(i) —9(s))2 on the right hand side of (4.17) indicates the assumption
that the interpolated values are likely to be smooth spatially. The other quadratic terms indi-
cate the assumption that it is unlikely that the interpolated values introduce temporal disconti-
nuities in image intensity along the motion trajectories. Equation (4.17) can be maximized
with SA [28].
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Figure 4.7 Subfilter masks for ML3Dex. Gray elements indicate the included data, white
elements indicate excluded data.

AR inter polator.

A method for interpolating missing data based on a 3D AR model is described in [49]. For
each region of an image with missing data a set of AR parameters is determined. It is assumed
that the data in this region are stationary. The AR parameters are computed from data of the
(motion-compensated) previous, current, and next frames. Note that the blotched data in the
current framet are discarded so that they do not bias the estimates of the AR parameters.
Next, the missing data are interpolated so that the linear-mean-squared-prediction-error, com-
puted with the estimated AR parameters, is minimized.

Consider the data to be ordered in a lexicographic fashion [74]JeLet indicate a vector of pre-
diction errors, letz, indicate a vector containing the observed data from the current frame
plus that from the motion-compensated previous and next frames, aAd let  be a matrix with
the AR coefficients placed at suitable locations. The prediction errors are denoted compactly

by:

» (4.18)

The prediction errors consist of two parts. One part depends on the product of the known data
z,., (data that are not to be interpolated)zp  with a number of columns #om , these col-
umns will be denoted b, . The other part consists of the product of unknowrzgata (data
that are to be interpolated) im,  and the remaining column& of , which will be denoted by
INE

u:

e= Az, +AZ,. (4.19)

The unknown data are interpolated so that the mean-squared-predictioreberor IS mini-
mized. Taking the derivative af'e  with respect I, , setting itto zero and solving for
gives the required result:

2, = -IATA AT A 2, (4.20)

Variations on this 3D AR method are described in [29, 45]. In [29] it is pointed out that the
assumption of stationarity is not met for occluded regions that have become uncovered (and



58 Chapter 4 Blotch detection and correction

vice versa). The authors suggest estimating the AR model parameters and interpolating the
missing data with two frames only. One frame is the current frame that contains the missing
data. The other frame is either the preceeding or the following frame. This depends on which
(motion-compensated) frame gives the smallest mean squared difference with the current
frame in the region of the missing data. This method is referred to as the BSDAR method. In
[45] this approach is refined by subdividing regions with missing data into multiple regions
and interpolating the missing data for each region. This is done because a single set of AR
coefficients may not be able to model a block of pixels adequately when the missing data
cover a large region.

Drawbacks. There are a number of drawbacks to the methods for interpolating missing data
described in this section. The multistage median filter has no model for the corrected image.
Therefore the interpolation results are not necessarily consistent, either with the data sur-
rounding the corrupted region or within the corrected region itself. The MRF interpolator
gives an overly smooth result because it interpolates the data so that the differences between
an interpolated pixel and its spatio-temporal neighbors are minimized. The MRF interpolator
takes no measures for resolving the effects resulting from occlusion.

The AR interpolators can also smooth the data, and therefore the fidelity of the interpolated
data in textured regions and in noisy film sequences is not that of their surroundings. As men-
tioned before, the problem of occlusion can, in principle, be solved with the method in [29].
However, unlike the method described in [29], the direction of interpolation should be deter-
mined pixelwise instead of blockwise. Because occlusion can vary on a pixel-by-pixel basis,
the optimal direction of interpolation should be allowed to vary on a pixel-by-pixel basis. Fur-
thermore, by subdividing missing data into a number of regions, as suggested in [45], mis-
matches may well occur within the interpolated results near the region boundaries.

Finally, all the approaches described in this section assume that the reference regions in the
motion-compensated previous/next frames do not contain missing data in the regions of inter-

est. This assumption is not always correct and can lead to incorrect interpolated data, as will

be shown in Section 4.5.

4.2.4 Discussion

Existing techniques for blotch detection show good performance, though even better perfor-
mance is desirable in an automated environment for image restoration. For example, consider
the ROC curves in Figure 4.3. These indicate that the false alarm rate varies between 0.5 and
15% for a correct detection rate of 85%. With other words, not only are many blotches
removed, which is good, but also two thousand to sixty thousand pixels are also interpolated
unnecessarily for each frame of a PAL image, which has a resolutiof20k 576 pixels.
Because the interpolators are fallible, false alarms can lead to artifacts in the corrected
sequence that are visually more disturbing than the blotches themselves.

The development of improved methods for blotch detection and correction is the topic of the
remaining sections of this chapter. Sections 4.3 and 4.4 investigate how to improve the detec-
tors. Section 4.5 develops an interpolator for correcting blotches that is robust to errors in the
reference data obtained from motion-compensated frames.
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Figure 4.8 (a) Place of postprocessing in a system of blotch detection and correction, (b)
chain of postprocessing operations for increasing the ratio between correct detections and
false alarms.

4.3 Improved blotch detection by postprocessing

The goal of this section is to improve the ratio of correct detections to false alarms of existing
blotch detectors. The approach taken here is not one of designing yet another detector. Instead,
a strategy of postprocessing that removes possible false alarms and that finds parts of blotches
missed by the detector is developed. Figure 4.8a shows how postprocessing fits in the scheme
of Figure 4.1b. Figure 4.8b shows the proposed set of postprocessing techniques.

What is the idea behind the postprocessing operations? Blotches are not just random sets of
individual pixels, but that they are spatially coherent regions and can be manipulated as such.
How these regions can be extracted from the blotch detection masks is discussed in
Section 4.3.2. Because it is not certain at this point that the extracted regions are true blotches,
rather than something that resulted from false alarms made by the detector, tloanelidate
blotchess used to refer to the extracted regions.

Section 4.3.3 follows a probabilistic approach towards identifying and eliminating candidate
blotches as a result of false alarms due to noise. The other candidate blotches, resulting from
correct detections, have been detected only partially. Applying techniques bgléstesis
thresholdingand constrained dilationcan make the detections more complete. These tech-
niques are explained in Section 4.3.4 and Section 4.3.5. Section 4.3.6 concludes with experi-
mental evaluations that demonstrate the effectiveness of the postprocessing approach applied
to a simplified version of the ROD detector, which is described next.

4.3.1 Simplified ROD detector
By letting T, - « andT5 - « , the output of the ROD detector is completely determined by
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T,.Inthis caseT, and; canremoved from the equations asithplified ROD(SROD)
detector results. The SROD detector is computationally much more efficient than the ROD
detector because it no longer requires the reference pixels to be ordered by rank:

O min( ) —z(i) if min(p)—-2z(i)>0
SROHD=:EzUyﬂaﬂqJ if z(i)-max(p)>0  withk=1,..6.. (4.21)

0o otherwise

A blotch is detected if:

01 if SROOi)>T,

dsrodi) = O

. with T, =20 (4.22)
10 otherwise

The SROD detector looks at a range of pixel intensities obtained from motion-compensated
frames and compares this range to the pixel intensity under investigation. Blotches are
detected if the current pixel intensity lies far enough outside the range. What is considered “far
enough” is determined by,

4.3.2 Extracting candidate blotches

The SROD detector is a pixel based detector. If the spatial coherence within blotches is to be
exploited, regions consisting of pixels with similar properties will have to be extracted from
the available data. Adjacent pixels within a blotch tend to have similar intensities. A pair of
pixels are considered to be similar if their difference is smaller than twice the standard devia-
tion of the noise. This means at least 96% of the pixels will be labeled as belonging to the
same candidate blotch if additive white gaussian noise is assumed to be corrupting the image.

Therefore, adjacent pixels with similar intensities that have been flagged by the blotch detector
are considered to be part of the same candidate blotch. To differentiate between the various
candidate blotches, a unique label is assigned to each of them.

4.3.3 Removing false alarms due to noise

After the labelling procedure, a candidate blotch is an object with spatial support and it con-
sists ofK pixels, each of which has a specific detector ougRIO (i) . By selecting a small
value forT, , the detector is set to a great degree of sensitivity. In this case, it is not only sensi-
tive to blotches, but also to noise. An example of this is given in Figure 4.9, which shows a
frame from the originalWesterntest sequence, the same frame degraded with artificial
blotches, and the blotch mask used for adding the artificial blotches. The estimated blotch
mask, estimated with the SROD detector With= 0 , Shows many false alarms.

Figure 4.9d also zooms in on a candidate blotch. The question for this candidate blotch is
whether it is likely that it was detected purely as a result of false alarms due to noise. If so, the
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Figure 4.9 (a) Frame from Western test sequence, (b) same frame with artificially added
blotches, (c) true blotch mask, (d) blotch mask estimated with the SROD detector with
T, = 0 and a zoom in on a candidate blotch, (e) estimated blotch mask after possible false
alarms due to noise are removed.

complete candidate blotch should be removed from the blotch detection mask. Figure 4.9(e)
shows a result of this approach, for which the details follow, applied to Figure 4.9(d). Many
false alarms have been removed.

The probability of a candidate blotch being detected purely due to false alarms is equal to the
probability of the detector giving specific set of valuleRO i) , all of which are larger than

T . This probability can be computed in two steps. The first step determines the probability of
a specific detector response for an individual pixel under the influence of noise. The second
step determines the probability that a collection of such pixels belong to a single object. The
details of these two steps are given now.

For the first step, it is assumed that the reference piggls  and the currenz(jxel are iden-
tical except for the additive noise in the absence of blotches, 2@), = y+n; and
Py = Y+n,wheren, andy, indicate a specific noise realization. It is also assumed that the
noise is i.i.d., has zero mean, and is symmetrically distributed around the mean. The probabil-
ity that the SROD detector generates a false alarm due to noise is:
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P[SROMi) > T,]
= P[z(i)—max R)>0,z(i)—-max ) >T,] +
P[min( g)—2z(i) >0, min(p ) —2z(i) >T,]
= P[Z(i) —max( ) >0|z(i) —max R) >T,] (P[z(i) —max ) >T4] +
P[min( g) —z(i) >0lmin( p ) —z(i) >T,] (P[min( ) —z(i) > T,]
Plz(i) —maxp)>T,] + P[min( ) —2z(i) >T,]
2[P[Z(i)—max p)>T,]
2[P[n; —maxn,)>T,],

(4.23)

where the last but one line follows from symmetry. Using the fact tigtmax(n,) > T,
requires thatn; —n, >T, foralk gives:

P[SROMi) > T,]

ZI P[nj—n,;>T{n;—-n,>T4, ..., ni—n6>T1|ni] [(P[n;] dn;

—00

00

=2] |;|P[ni—nk>T1|rli] [Pn;] dn; (4.24)

o0

2 [ P°[n;—n>Tyn;] (P[n;] dn,

—00

o N()=Tg 6
2][ i P[n]dn} [P[n;] dn;.

—00

The step from the second to the third line in (4.24) is obtained by applying the theorem on
total probability [55]. The fourth and the fifth lines in (4.24) are obtained by considering that
the n, are independent of each other. This is indicated by dropping ikdex rfom . Equa-
tion (4.24) gives the probability that the SROD detector generates a false alarm for an individ-
ual pixel due to noise and can be evaluated numerically once the parameters of the noise have
been determined.

In the case that the pixels of an image sequence are represented by integer values, the output of
SROD also consists of integer values. The probabiRty . [ SROL(I) = x] that the SROD
detector gives a specific response , withO , for an individual pixel is given by:
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SRODOi)| Probability SRODOI) Probability
1 0.091921 7 0.002224
2 0.060748 8 0.000892
3 0.036622 9 0.000304
4 0.020492 10 0.000108
5 0.010353 11 0.000028
6 0.005168 12 0.000007

Table 4.3  Probability of a specific detector response
SROMi) computed for a constant signal corrupted by
additive white gaussian noise with variance 9.6.

Pasd SROMI) = x] = P[SROMi)>x—-1/2] —-P[SROMi)>x+1/2].  (4.25)

Table 4.3 lists the computed probabilities of specific detector responses in the case of white
gaussian noise with a variance of 9.6. (The method described in [58] was used to estimate a
noise variance of 9.6 for thiesterrsequence).

For the second step, it is assumed that the individual pixels within a blotch are flagged inde-
pendently of their neighbors. Strictly speaking this assumption is incorrect because, depending
on the motion vectors, sets of reference pixg|s can overlap. The effects of correlation are
ignored here. LeH; denote the hypothesis that an object is purely the result of false alarms
and that each of the sets of reference pixels were identical to the true image intgn¥ity
except for the noiseP[Hy] is then the probability that a collectioKof  individual pixels are
flagged by the SROD detector, each of which with a specific respér)se

P[Hg] = |'|D SPmaS;SROE(i) = x(1)], (4.26)
i

where S is the spatial support of the candidate blotch. Those objects for which the probability
that they are solely the result of noise exceeds &Risk are removed from the detection mask:

P[H,] > R. (4.27)

The result of this approach, as mentioned before, is indicated in Figure 4.9e.

4.3.4 Completing partially detected blotches

The technique for removing possible false alarms due to noise can be applied to any value of
T, . When a blotch detector is set to a low detection rate, not much gain is to be expected from
this technique because the detector is insensitive to noise. A second method for improving the
ratio of correct detections to false alarms is described here.
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Figure 4.10 Example of hysteresis thresholding. Detection masks from (a) detector set to
low sensitivity (T, = 30) with removal of possible false alarms due to noise, (b) detector set
to high sensitivity (T, = 0) with removal of possible false alarms due to noise, (c) hysteresis
thresholding.

Many blotches are not detected at all and others are detected only partially at lower detection
rates. The strategy is now to make the partial detections more complete. This is achieved by
noting from Figure 4.3 that the probability of false alarms decreases rapidly as the correct

detection rate is lowered. Therefore, detections resulting from a blotch detector set to a low

detection rate are more likely to be correct and can thus be used to validate the detections by
the same detector set to a high detection rate.

The validation can be implemented by applying hysteresis thresholding [15]; see Figure 4.10.
The first stage computes and labels the set of candidate blotches with a user-defined setting for
T,. Possible false alarms due to noise are removed as already described. The second stage
sets the detector to a very high detection rate, iTg.,= 0 , and again a set of candidate
blotches is computed and labeled. Candidate objects from the second set can now be validated,;
they are preserved if corresponding candidate objects in the first set exist. The other candidate
blotches in the second set, which are more likely to have resulted from false alarms, are dis-
carded. Effectively blotches detected with the operator settings are preserved and are made
more complete.

4.3.5 Constrained dilation for missing details

There is always a probability that a detector fails to detect elements of a blotch, even whenitis
set to its most sensitive setting. For example, the large blotch on the right hand side in
Figure 4.9c is not completely detected in Figure 4.9d. In this final postprocessing step, the
detected blotches are refined by removing smalésin the candidate blotches and by adding
parts of the blotches that may have been missed near the edges.

For this purpose, a constrained dilation operation is suggested here. Dilation is a well known
technique in morphological image processing [57]. The constrained dilation presented here
applies the following rule: if a pixel's neighbor is flagged as being blotched and its intensity

difference with that neighbor is small (e.g., less than twice the standard deviation of the noise)
then that pixel should also be flagged as being blotched. The constraint on the differences in
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Figure 4.11 Example of constrained dilation: (a) image with blotches, (b) initial detection
mask, (c) detection mask after one iteration, (d) detection mask after two iterations, (e) result
of constrained dilation applied to Figure 4.10(c).

intensity reduces the probability that uncorrupted pixels surrounding a corrupted region are
mistakenly flagged as being blotched. It uses the fact that blotches tend to have gray values
that are significantly different from their surroundings. Figure 4.11a-c illustrates the proce-
dure, Figure 4.11e shows the result of this method when applied to the blotch mask in
Figure 4.10c.

It is important not to apply too many iterations of the constrained dilation operation because it
is always possible that the contrast between a candidate blotch and its surrounding is small.
The result would be that the candidate blotch grows completely out of its bounds and many
false alarms occur. In practice, if the detector is set to a great sensitivity, applying two itera-
tions favorably increases the ratio of the number of correct detections to false alarms. When
the detector is set to less sensitivity, the constrained dilation is less successful and should not
be applied. In the latter case, the blotches that are initially detected by the SROD detector must
have sharp contrast with respect to the reference data. Because of the sharp contrast, the
blotches are made fairly complete by the hysteresis thresholding. The dilation therefore adds
little to the number of correct detections, yet it significantly increases the number of false
alarms.

4.3.6 Experimental evaluation

Figure 4.12 summarizes the effects of the consecutive postprocessing operations. Visually
speaking, the final result in this figure compares well to the true blotch mask in Figure 4.9(c).
Now the effectiveness of the postprocessing operations is evaluated objectively.

Figure 4.13 plots the ROCs for ROD detector, SROD detector, and the SROD detector with
postprocessing. The results from either the MRF or the AR detector, depending on which
showed the best results in Figure 4.3, are also plotted for comparison. Figure 4.13 makes it
clear that the SROD detector has a performance similar to that of the ROD detector for small
values of T, (high detection rates). When set to a lesser sensitivity, the SROD detector shows
performance either similarly to or better than the ROD detector. This is explained by the fact
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Figure 4.12 Summary of postprocessing: (a) initial detection, (b) result after removal of false
alarms, (c) result after hysteresis thresholding, (d) final result after constrained dilation.
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Figure 4.13 Receiver operator characteristics for (a) Western sequence, (b) MobCal

sequence, (c) Manege sequence, (d) Tunnel sequence.
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that detection mask of the SROD detector is a subset of the detection mask of the ROD detec-
tor; each detection made by the SROD detector is also made by the ROD detector. However,
the SROD detector generates not only fewer correct detections, but also (significantly) fewer
false alarms.

The postprocessing applied to the detection masks obtained from the SROD detector improves
the performance considerably over the whole range of operation of the detector. Note that the
constrained dilation operation was not appliedTqr>12 . This explains the sometimes large
change in trend between the fourth and fifth measuring point of the SROD ROCSs. The postpro-
cessed results are significantly better than any results from the detectors without postprocess-
ing. For instance, before postprocessing, a correct detection rate of 85% corresponds with a
false alarm rate between 0.5 and 15%. After postprocessing a correct detection rate of 85%
corresponds with a false alarm rate between 0.05 and 3%.

4.4 Blotch detection with increased temporal aperture

Objects for which the motion cannot be tracked accurately from frame to frame pose severe
problems to blotch detectors. Incorrect motion vectors lead to incorrect sets of reference pixels
and hence to false alarms. An obvious solution to this problem would be to use a “robust”
motion estimator. Though techniques that are more robust to complex motion than the hierar-
chical block matcher used in this thesis do exist, e.g., motion estimators that use affine motion
models [67,101], it is questionable whether the increase in performance justifies the increase
in complexity. Motion in natural image sequences often involves objects of which shape, tex-
ture, illumination, and size vary in time. No motion estimation algorithm is truly capable of
dealing with this type of motion.

An alternative way to reduce the number of false alarms is to incorporate more temporal infor-
mation. False alarms result from the fact that object motion cannot be tracked to any of the ref-
erence frames. Increasing the number of reference frames increases the probability that good
correspondence to at least one of the reference frames is found. Once good correspondence is
found for an object, it is assumed that this object is not a blotch. Therefore, increasing the tem-
poral aperture of a blotch detector reduces the number of false alarms. However, increasing the
temporal aperture also increases the probability that blotches are mistakenly matched to other
blotches or to some part of the image contents. This decreases the correct detection rate. Obvi-
ously there is a trade-off.

The SROD detector can easily be extended to use four reference frames by taking into account
three extra reference pixels from each of the frames- ahd at . The extended SROD
detector is denoted by SRODex. The postprocessing operations can be applied as before, all
that is necessary is to recompute the probability of false alarms due to noise (taking into
account that there are now twelve reference pixels instead of six).

Consider two sets of candidate blotches detected by the SROD detector and the SRODex
detector, respectively. The SRODex detections form a subset of the SROD detections; the

SROD detector finds blotches everywhere the SRODex detector does, and more. The blotches
detected by the SROD detector are more complete than those detected by the SRODex detec-
tor, but the SRODex detections are less prone to false alarms. As in Section 4.3.5, hysteresis
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@) ) 0

Figure 4.14 Top row: three consecutive frames from VJ Day sequence. Second row: cor-
rected frames using SROD with postprocessing and ML3Dex. Note the distortion of the pro-
pellers in the boxed regions. Third row: corrected frames after combining the SROD
detection results with SRODex results. (Original photos courtesy by the BBC).

thresholding can be applied. The reliable, possibly incomplete SRODex detected blotches can
be used to validate less reliable, but more complete SROD detections. In case of true blotches,
the shapes and sizes of the regions flagged by both detectors should be similar. If this is not the
case, it is likely that the detections are a result of false alarms due to complex motion. Hence,

preserving SROD-detected candidate blotches that are similar to corresponding SRO-

Dex-detected blotches reduces the probability of false alarms. The other SROD-detected can-
didate blotches are discarded. Two candidate blotéhes Band are considered to be similar if
the ratio of their sizes is smaller than some congtant
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Figure 4.14a-c show frames 27-29 from W& Daysequence. Besides blotches, this sequence
contains a lot of action in the form running men and rotating propellers. Some of the propel-
lers are not visible at all in some of the frames. Figure 4.14d-f shows data restored from the
SROD detectorT; = 10 ) with postprocessing and ML3Dex for interpolation. The blotches
have been removed very efficiently, but, as an unwanted side effect, parts of the propellers
have been removed as well. Figure 4.14g-i shows restored data, but now the proposed combi-
nation of SROD and SRODex has been used With= 10 arrd 2 . Most of the blotches
have been removed and, very importantly, the propellers have been preserved.

The proposed algorithm was very successful for\tiedDaysequence because it is capable of
dealing with the periodic presence of the propellers. However, increasing the temporal aper-
ture does not necessarily always increase the performance, as can be observed from the ROC
curves for theManegesequence in Figure 4.15. In this case, the SRODex detector misses too
many correctly SROD-detected are discarded. Whether increasing the temporal aperture is
beneficial to the restoration process depends on the particular image sequence. In practice, itis
up to an operator to decide which detector is most appropriate.

4.5 Fast, good quality interpolation of missing data

Section 4.2.1 showed that model-based interpolation of missing data can be done with 3D AR
processes. This method gives good-quality interpolation results and its performance in resyn-
thesizing textures of missing data is superior to that of other interpolators. Equation (4.20)
gives a closed form solution to the 3D AR interpolation method. Unfortunately, there are a
number of drawbacks to this method. First, it is very expensive in computational terms. For
example, resynthesizing the texture for a region with a blotct2@k 20 pixels requires
inverting a matrix with400x 400 elements. Second, the method as described in Section 4.2.3
assumes that the data in the reference frames are always correct. This assumption is not always
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true. Incorrect reference data can result from erroneous motion estimates, occlusions, and cor-
ruptions due to blotches. Third, AR interpolations can be overly smooth if the interpolated
regions are large.

It is important to realize that full 3D AR restoration is not necessary in most cases. The most
common differences between the frames of an image sequence can be characterized by a rear-
rangement of the object location. Therefore, it is likely that missing data in one frame can be
restored by pasting (copying) pixels from corresponding regions in a reference frame. Reliable
motion estimates must be available for pasting. In fact, pasting can be viewed as a one-tap AR
interpolator with a coefficient of 1.0.

This section investigates the concept of interpolating missing data by pasting. Each pixel of
the missing data in a blotched frame is replaced by a pixel from the corresponding location in
either the motion-compensated previous frame or the motion-compensated next frame. A
strategy for determining the direction of interpolation (i.e., pasting from the previous frame or
pasting from the next frame) is required. The strategy used here constrains the interpolated
data to fit in well with the region surrounding the missing data. Hence, the data surrounding
the missing data define a set of boundary conditions to the solution of the interpolation prob-
lem. This constraint is enforced by requiring corrected image regions to follow 2D AR pro-
cesses as well as possible.

The question is now how to decide which reference frame should supply the pixels for pasting.
One approach is to paste complete regions from either the previous or the next frame, depend-
ing on which result fits in better according to the 2D AR process (Figure 4.16a). To get good
visual results with this approach, the motion-compensated reference data must represent the
missing data at all locations. This requirement is less likely to be fulfilled as the size of the
region to be pasted increases. The probability of some of the missing data being unavailable is
proportional to the size of the region due possible to occlusions, blotches, and erroneous
motion estimates.

A better approach is to determine the direction of interpolation for each individual pixel, as
illustrated by Figure 4.16b. The pixel intensity from the motion-compensated reference frame
with the smallest prediction error is pasted into the current frame. The advantage of pasting
single pixels from either the previous or next reference frame is evident: if the reference data
in one reference frame are inconsistent with the 2D AR model for the corrected frame, large
prediction errors will result. In which case, data can be pasted from the other reference frame.
This mechanism requires no explicit knowledge about errors in the reference data. Hence, cor-
ruptions in one of the reference frames do not influence the interpolated result negatively if the
data in the other reference frame are correct.

At this point, the direction of interpolation in the pasting method described can vary erratically
from pixel to pixel. Everything depends on which reference frame provides the pixel closest to
the value predicted by the AR model. This can lead to two possible side effects. First, AR pre-
dictors tend to give overly smooth prediction results. Because the reference pixels closest to
the AR predictions are selected, the pasted result can be overly smooth. Second, if the textures
in reference frames are different (e.g., due to uncovering/occlusion), the pasted result might be
a mixture of textures. In this case, the result is different from the true texture that underlies the
missing data. These effects can be avoided by constraining the direction of interpolation to be
consistent locally. For this purpose, a markov random field is applied.
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Figure 4.16 (a) Region-based pasting: a region from either the previous or
next frame (motion-compensated) is pasted into the current frame, (b)
pixel-based pasting: pixels are pasted from either of the reference frames.
In both cases (a) and (b), the pasting is done so that the corrected region,
indicated by the dashed box, can fit a 2D AR model as well as possible.

4.5.1 Interpolating missing data with controlled pasting

This section formulates the ideas mentioned in mathematical terms. Because the aim is to
paste pixels from either the previous or the next motion-compensated frame, adireatipn

mask o(i) is introduced. This mask indicates for each spatial location which of the
motion-compensated reference frames is most appropriate to serve as a reference for pasting,
e.g., “0" forz, (i,t—1) and “1” forz, (i, t+1) .
At this point it is assumed that the binary blotch detection nagk has already been deter-
mined. This could be done by any of the methods in the previous sections. The corrected

framey(i) , which is an estimate of the true dgtg , IS given by:
0 Zpdi, t=1) if d(i)=1,0(i) =0
y(i) = E Z, (i, t+1) if d(i) =1,0(i) = 1. (4.29)
0 z(i) otherwise

Now, the aim is to findo(i) . The reconstructed image) follows through this variable. The
image data model underlying the corrected im&ge is assumed to be a 2D AR model of
ordern with coefficientsa, , with = 1,...,n . The prediction erre(i) iSs a gaussian ran-
dom variable with zero mean and variamr&
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n

9() = ¥ a O +q,) + e(i). (4.30)

=1

The binary fieldo(i) must be found so that, on one hand, the corrected ig{ape fits the

image model in (4.30) as well as possible, i.e., so that the prediction error vau’%nce Is as
low as possible. On the other hand, as already explained, the direction of interpolation must be
a consistent one locally. Note that not only most) be found, but also the parameters that
define the AR process, namely the AR coefficiegts  and the prediction error va:@ance

To come to a tractable solution, the number of computations must be kept as low as possible.
Thereforeo(i) is not computed for the complete frame. Instedd, is computed only for
regions that contain missing data. The image regions are selected so that, at most, 20% of the
area consists of missing data. Each region is modeled by a single set of AR model parameters
a, and a single prediction error variarm:g

Proceeding in a probabilistic fashion, these requirements translate to finding the maximum of
Plo(i), a;, ..., &, o§|zmc(i,t—1), Z(i), z,, (i, t + 1), d(i), O] . Here O indicates the direc-

tion of interpolation for the pixels in the local region surroundo(g) . With Bayes'’ rule, this
can be seen to be proportional to:

Plo(i), a, og|z+(i), d(i), 0] O P[Z+(i)|0(i), a, og, d(i)] CP[o(i)|O] [P[a] EP[Og], (4.31)

where the terms,, ..., a, have been grouped together mto  zandi, t —1), z(i) , and
Z,cli, t+1) have been grouped togetherz(i) for convenience.

The first term on the right hand side of (4.3PI,Z+(i)|o(i), a, og, d(i)] ,indicates the likeli-
hood of observing the data (i) , given the direction of interpolation, the AR model parame-
ters, and the blotch mask. L&R(Y; a, i) be the prediction of the corrected iljage  at
locationi . AR(Y; a, i) is determined completely kw (i), o(i), a, og aadi) . The likeli-
hood can then be defined by (4.32).

P[z+(i)|o(i), a, Gg, d(i)] O

exp(-[(1 —d(i)) (&L —AZR(Z“M a. )2,

e
(i, t+1)—AR(} a i))2 (4.32)
+
202

e
d(i) (1 —ofiy) iomel L7 D ARG D)
202

d(i) Do(i) D(ch
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The second line in (4.32) states that at locations at which no blotches have been detected
(d(i) = 0), the likelihood of observing a specific pixel intensity in the current fraafig IS
proportional to the squared AR prediction error weighted by the prediction error variance. The
third line in (4.32) states that, at locations where a pixel frag(i, t + 1) was pasted, the
likelihood of that pixel intensity being observed is proportional to the weighted squared AR
prediction error of the restored frame. The fourth line of (4.32) makes a statement somewhat
similar to that in the third line, but then far, (i,t—1) . Equation (4.32) can be simplified to:

Plz, (|)|o(|) a, 0 ,d(i)]

5 ((1=d(i)) C(i) + d(i) (1) Ty i, t+1) + (1= 0(0)) Ty (i, t—1)) ~AR(¥ i)
XP > C
0 20'e C
e 0 (9() ~ AR(Y &, )% (4.33)
202 D
2]
O—1— 1 eXpEl—e(l)z
/2]'[0'2 U 20’ U
This means that likelihood function of the observed d@fta, (i)|...] is proportional to prob-

ability of the prediction erroe(i) of the restored frame as defined by (4.30).

The other three terms in (4.31) describe a priori knowledge related to the model parameters.
To achieve local consistency in the direction magh , the following prior is assumed:

P[o(i)|0] O expg—%mo(i)—o(i +a|8 (4.34)

where 3 is a constant that defines the strength of the self-organization. The eight-connected
neighbors ofo(i) are indicated bg(i +q,) , with = 1,...,8 . Equation (4.34) simply
states that the direction of interpolation for a pixel is likely to be similar to that of the majority

of its neighbors.

Following [47], a uniform prior is assigned &y and a Jeffreys’ prior [68] is assigned to the
prediction error varianceg

P[o2] O 1/02. (4.35)

Equation (4.31) is completely defined now. The next section describes the practical implemen-
tation for correcting blotched image sequences on the basis of maximizing (4.31) jointly for
all o(i) in a region with missing data.
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4.5.2 Practical implementation of controlled pasting

The MAP estimate for (4.31) jointly for alb(i) can be found with SA [28]. SA as described
here involves two elements. The first element is a global control pararfieter iEatipdra-

ture, which is used to shape the probability functions in (4.31). The second element is a mech-
anism for drawing random samples from conditionals, calle@ilzbs samplerSA can be
summarized by four steps:

Initialize temperatureT = Tbegin ,

Sample the unknowns with the Gibbs sampler,

Repeat step 2 until convergence is obtained,

Lower T according to a cooling schedule and goto Z # T, .,

ol oA

In [28] it is proved that if T i, is sufficiently large and that if a logarithmic cooling sched-

ule is applied, the algorithm converges to the MAP solution. The most involved part of the SA
scheme is the Gibbs sampler. The Gibbs sampler operates iteratively by drawing random sam-
ples for the unknowns in turn, which are derived in Appendix B:

aOP[a|o?, o(i), z,, d],
0?2 DP[og|a, o(i), z,, d], (4.36)

o(i) OP[o(i)|a 02, z,(i), d(i), O].

One might argue that using such heavy machinery as SA just to determine the direction of
interpolation for a set of pixels is slightly overdoing things. The goal of this section is to sim-
plify this machinery somewhat and to come to an efficient implementation.

The number of computations has to be kept small for an efficient implementation. As men-
tioned in the previous section, the controlled pasting scheme is not applied to the complete
image, but only to image regions containing missing data. The image regions are selected so
that, at most, 20% of the area consists of missing data. A single set of three AR model param-
eters ay is computed for each region. A quarter plane prediction model is used (see
Figure 4.17).

Strictly speaking, all unknowns should be sampled in the SA scheme, and this includes the
sampling the AR coefficienta and the error variaru:§ from the probability functions

Figure 4.17 Support (dots) used for AR prediction (cross).
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derived in Appendix B. Drawing samples from these distributions is costly in terms of com-
putational complexity, and it is noted here that good results are obtained by just using the least
squares estimate for the AR coefficients instead of sampling them. (In fact, this is equivalent to
sampling from (B.10) with zero variance). Similarly, it is not necessary to samplegor to
get good results. Hence:

(4.37)

<>

Here R, andr.. are the autocorrelation matrix and autocorrelation vector that are required
for solving the normal equations [53,94]. What remains are the samples to be drawa(i)for
from (B.16):

P[o(i)|a, a2, z.(i),d(i), O]

0 exp F-21(1 - d(i) Tz(i) - AR(Y &, )2+

(4.38)
d(i) (i) Tz, (i, t+ 1) + (L—0(i)) Tz, (i, t+ 1) — AR(¥ a, ))2 +

3 Blo) =i + q[15

where AR(Y; a, 1) indicates the spatial AR prediction ©fi) from its surroundings. The
reconstructed imagg , required for the AR predictions is obtained via (4.29). Drawing sam-
ples from (4.38) with the Gibbs sampler is very easy. It involves evaluating (4.38) at a specific
sitei foro(i) = 0 and foro(i) = 1 , while keeping the other values for the direction mask
and they(i) fixed. The results are assigne¢fo  epd , respectively. Next a valoig ffor
(and thereby the correspondirydi) ) is chosen at random, with a probajfiég, + c,)
thato(i) = O and with a probabilitg,/(c; +¢,) thai(i) = 1 . Asingle update of animage
region consists of applying the Gibbs sampler to each site in that region in turn, using, for
instance, a checkerboard scanning pattern.

Figure 4.18 summarizes the practicahtrolled pastingCP) scheme that results. The data put
into the system consist of the current frame and the motion-compensated previous and next
frames. The blotch detection mask, which indicates for each pixel whether it is considered to
be part of a blotch, also belongs to the input data. Initially, the direction G@ld is assigned
binary values at random, and an initial temperat@ire  is chosen. The main loop is as follows.
First a corrected fram§(i) is generated. Next, a set of AR coefficents is estimated for
each missing region. This is used for predicting the corrected image intensities. Next, the
direction of interpolation is updated by sampling from (4.38) as already described. The main
loop is repeated at each temperature level , until the solution has converged or until a fixed
number of iterations have been done. The temperature is lowered with an exponential cooling
schedule:

_ ok
Tk =Y DTbegin’ (4.39)
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l Data in

Initialize temperaturd”  and
direction of interpolatioro
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Generate corrected franygi)
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Estimate AR coefficients
a according to eq. (4.37)
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all i from eq. (4.38)

'

ReduceT

l Data out

Figure 4.18 Overview of a practical implementation of the CP
scheme.

wherey controls the rate of decrease &nd indicate&the th temperature level. The main loop
is iterated again until the final temperature has been reached.

4.5.3 Experiments with controlled pasting

The scheme in Figure 4.18 is ready to be applied now. The result it yields is the joint distribu-
tion of theo(i) within animage regioB, , asis given by (4.40). The term defined by the sum-
mation in (4.40) is known as theotential function Lower potential functions indicate better
solutions.

To get some idea about what sensible values aré'[)%rgin T tinal kand , two experiments
are carried out on a blotched frame from WWesterntest sequence. For the first experiment
Tbegin = 100.0, T4,4 = 1.0 andy = 0.9 is chosen. At each temperature level, 30 itera-
tions are applied. For the second experiment, only one temperature level
Toeain = Tiinal = 1 is assumed. Again, 30 iterations of the Gibbs sampler are applied.
Figure 4.19 plots the potential functions for both experiments as a function of the number of
iterations.
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Figure 4.19 Potential function as function of iteration number: (a) for Tbegin = 100.0,
Tfina = 1.0andy = 0.9, (b) for Tbegin = Tgpa = 1
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Figure 4.19 shows that both experiments converge. The solution found in the full SA scheme
converged to a lower potential (final potential 483) than the solution found with the Gibbs
sampler only (final potential 1307). The difference is, however, that the first experiment
required about 625 iterations to reach its optimum, whereas the second experiment required
only 25 iterations. Visually, the corrected results are not noticeably different. The conclusion
is that it is not necessary to apply an elaborate cooling schedule and that sufficiently good
results can be obtained in relatively few iterations.

It must be emphasized that the result obtained by applying the Gibbs sampler only (without a

cooling schedule) does not in general result in a MAP estimate. The reason why it is SO suc-

cessful here is probably because the distributions from which the samples are drawn are very
compact; there is not a lot of ambiguity in drawing a sample.

The top row in Figure 4.20 shows three frames from\Wessterriest sequence: (motion-com-
pensated) previous, current, and next. The second row shows three corrections of the current
frame, made with th@DAR and theML3Dexmethods, described in Section 4.2.3, and with

the CP method described in the previous section. The results from the CP method were
obtained by using just 30 iterations of the Gibbs sampler.
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Figure 4.20 (a) Motion-compensated previous frame, (b) current frame t, (c) motion-com-
pensated next frame, (d), (e), (f) restored frame t by the 3DAR, ML3Dex, and CP schemes,
respectively. Note the differences within the boxed regions. (g), (h), (i) Zoom-in to the boxed
regions of panels (d), (e), and (f), respectively.

All the corrected frames show a great improvement over the corrupted frame. However, the
3DARand theML3Dexmethods fail where the motion-compensated frames are corrupted (see
the highlighted boxes in the figures). These methods fail because they always incorporate data
from both motion-compensated frames, regardless of the fact that some of those data may be
corrupted. Tha83DARmethod, of which the results are not shown, also fails in this particular
case because a block-based approach is used to determine the direction of interpolation,
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Figure 4.21 RMSE of corrected sequences with original, unimpaired sequences: (a) West-
ern, (b) MobCal, (c) Manege, and (d) Tunnel.

Interpolator Western Mobcal Manege Tunnel
(RMSE) (RMSE) (RMSE) (RMSE)
None 113.2 81.4 86.7 90.5
ML3Dex 20.8 12.6 25.2 16.7
3DAR 20.9 12.1 24.8 15.9
CcP 16.1 8.5 22.1 12.4
Table 4.4 RMSE computed between the corrected and original, unim-

paired sequences.

79
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regardless on the validity of the data within the block. Figure 4.20g-i zooms in on the boxed
regions. Clearly, the proposed CP method outperforms the other methods in terms of visual
quality.

4.6 Results and discussion

This section evaluates the complete chain of blotch detection, postprocessing, motion vector
repair, and interpolation as depicted in Figure 4.8a. All experiments apply the SROD detector
with postprocessing because this gives the highest ratio of correct detections to false alarms.
The motion vector repair uses the block matching technique described in Section 4.2.2. Three
interpolators are evaluated, namely, the ML3Dex, the 3DAR, and the CP method (using 30
iterations per frame).

Figure 4.21 shows th@ot mean squared errqfRMSE), which is defined as the squared root

out of the MSE, for the test sequences as a function of frame number. For each sequence the
SROD detector with postprocessing was set to an overall correct detection rate of about 85%.
The RMSE was computed only at locations at which the true blotch mask or the estimated
blotch mask indicate corruptions (i.e., at locations where the original image data was altered
by blotches or by interpolating false alarms). Figure 4.21 indicates that the CP interpolation
method has the best performance. Whether the ML3Dex performs better than the 3DAR
method is difficult to determine from this figure. Table 4.4 lists RMSE computed over all
frames. It can be seen from this table that the interpolation considerably decreases the average
errors. These data confirm that the CP method gives the best performance. Furthermore, it can
be seen that the ML3Dex method, on average, performs slightly better than the AR method.

In terms of computational load, the CP method is to be preferred to the 3D AR method. The
3D AR method requires a matrix to be inverted, see (4.20), the size of which increases with
increasing blotch size. Therefore, the number of computations for this method grows exponen-
tially (order 3) [75,92] with increasing blotch size. There is also a risk that the system in (4.20)
is singular and that no unique solution exists. In such cases, singular value decomposition
[75,92] is useful. The ML3Dex interpolator is, computationally speaking, the most efficient: it

is a non-iterative method that has to be evaluated only at the locations containing missing data,
and it can be implemented efficiently with fast sorting algorithms [75].

The methods for blotch detection and correction introduced in this chapter give significantly
better results than those obtained by existing methods. However, as can be seen from the
ROCs in Figure 4.13, the ratio of false alarms to correct detection remains relatively high for
some sequences. There is room for further improvements. Nonetheless, even though too many
false alarms are generated in some cases, the methods described in this chapter are very useful
and can be applied efficiently in practical situations. Visually disturbing artifacts introduced
into a corrected sequence due to false alarms can be removed by manual intervention. Remov-
ing regions of false alarms and undoing erroneous interpolations by single mouse clicks is
much more efficient than having an operator mark and correct blotches in image sequences
manually.



Chapter 5

Noise reduction by coring

Summary Coring is a well-known technique for removing noise from images. The mecha-
nism of coring consists of transforming a signal into a frequency domain and reducing the
transform coefficients by the coring function. The inverse transform of the cored coefficients
gives the noise-reduced image. This chapter develops a framework for coring image
sequences. The framework is based on 3D image decompositions, which allows temporal
information to be exploited. This is preferable to processing each frame independently of the
other frames in the image sequence. Furthermore, this chapter shows that coring can be
imbedded into an MPEG encoder with relatively little additional complexity. The adjusted
encoder significantly increases the quality of the coded noisy image sequences.

5.1 Introduction

As computers with memories sufficiently large to store images and even short image
sequences became widespread some 25 years ago, many researchers began to investigate digi-
tal algorithms for noise reduction. The well-known theories developed by Wiener and Kalman

for optimal linear filtering were applied in the digital domain on a large scale. New types of
nonlinear filters, such as order statistics filters and switching filters, were developed. Nowa-
days many very different approaches towards noise reduction are found in the literature
[1,5,13,20,22,35,46,69,70,85]. One such approach that has gained great popularity in recent
years and that has proven to be very successful for denoising 2D imagesig This chap-

ter investigates this method for noise reduction and extends its application to image sequences
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Coring is a technique in which each frequency component of an observed signal is adjusted
according to a certain characteristic, the so-called coring function. Originally coring was
developed as a heuristic technique. It was first applied in 1951 for removing spurious oscilla-
tions in the luminance signal that were caused by a system designed to make television pic-
tures more crisp [30]. In 1968 it was recognized that this technique could also be used for
removing imperfections such as noise from signals [60]. In the 1970s and the early 1980s cor-
ing was applied in the digital domain for noise reduction [2,72,87]. The technique of
thresholdingor coring received a lot of attention after Donoho and Johnstone applied it suc-
cessfully in the wavelet transform domain [20,22] in 1994.

Section 5.2 describes techniques for optimal filtering imeimum-mean-squared-error
(MMSE) sense. An example of such an optimal filter, the Wiener filter, is derived. The Wiener
filter is a linear filter. If the constraint of linearity is dropped, more general nonlinear filters
result. The filter characteristics of these nonlinear filters are represented by coring functions.

The domain in which coring is applied determines the effectiveness of coring for noise reduc-
tion. Section 5.3 describes two spatial signal transforms. One is a bi-orthogonal wavelet trans-
form, and the other is a directionally sensitive subband decomposition. It is shown how to
extend these 2D transforms to include the temporal dimension. The spatio-temporal decompo-
sition provides a good basis for coring image sequences.

Noise-reduced signals are often stored or broadcast in a digital format. Section 5.4 investigates

how noise can be reduced and compressed simultaneously within an MPEG2 encoder by cor-
ing the DCT coefficients. Section 5.5 concludes this chapter with a discussion.

5.2 Noise reduction technigques

5.2.1 Optimal linear filtering in the MMSE sense

Any recorded signal is affected by noise, no matter how accurate the recording equipment. In

this chapter noise is modeled by a additive white gaussian sourcey(Let be an original,
unimpaired frame and let the noiserp@) . The observed fzéine is given by:
z(i) = y(i) +n(i). (5.1)

A class of linear filters are tHmite impulse respong&IR) filters, which are defined by:

n

(i) = 3 h Tz +q,). (5.2)
k=1

Hereh, ,withk = 1,...,n, are then filter coefficients and thg  define the support of the
filter. The optimal filtering coefficients in MMSE sense can be found by:
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arg  min E[(y(i) - 9())?].

1o Py (5.3)

h

The filter that results is known as the Wiener filter. The Wiener filter can be implemented effi-
ciently via the Fourier domain [53,94]. Let Fourier transform of (5.1) be given by:

Z(w) = Y(w) + N(w), (5.4)

The estimate¥ (w) are given by:

Slony — Syy(®)
U(w) = HOREWT 7 (w). (5.5)

HereSy (w) andS Ir]((u) indicate thpower spectral densit{fPSD) functions of the unim-
paired S|gnal and the noise. From (5.5) it can be seen that each frequency component of the
observed data is weighted depending on the spectral power densities of the original, unim-
paired signal and noise.

5.2.2 Optimal noise reduction by nonlinear filtering: coring

The Wiener filter imposes a FIR structure onto the solution of the MMSE problem. The opti-
mal solution to the MMSE problem that is obtained when no constraints are placed on the fil-
ter structure is often a nonlinear function. Défw) be a general function of the observed data
Z(w) . The optimal estimat&(w) , given a single observaifio) , Is found with the condi-
tional expectation [55]:

E[(Y(w) - Y())?]

ELE[(Y(w) - ¥())?|Z(w)]]

= X (5.6)
[ EL(Y(0) = Y(w))?]Z(w)] CPIZ(w)]dZ(0).

—00

The integrand in (5.6) is positive for al(w) ; therefore, the integral is minimized by mini-
mizing E[(Y(w) —Y(oo))2|Z(oo)] for eachw . This minimum is given by:

Y(w) = E[Y(w)|Z(w)]. (5.7)

The general solution given by (5.7) yields the smallest possible mean square error for estimat-
ing Y(w), given a single observatioA(w) . In general, the Wiener solution will have larger
mean square errors. Further development of (5.7) gives:
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Y(w) = E[Y(w)|Z(w)]

* (5.8)
= [ Y(w) [PY(w)‘Z(w)[Y(wNZ(w)]dY(oo).

—00

Here PA‘ glA[B] indicates the pdf A , giveB . If the distributions 6fw) a () are
known, thenPY(w)‘Z(w)[Y(w)|Z(w)] can be determined via Bayes’ rule:

PZ(w)\Y(w)[Z((O”Y((*))] Epy(w)[Y(w)]
Pz(w)[z(w)]
PU(OIZ(@)-Y(@)] PyY@] (59

Py(w)‘z(w)[Y(wNZ(w)] =

[ PR(@)Z(w)-Y ()] Py [ Y (2)]dY (0)

—00

In (5.7), (5.8), and (5.9), the interpretation givenswo is that of frequency. Note that this fre-
guency need not necessarily be obtained by applying a Fourier transform to a signal. Other
transforms, such as the DCT, wavelet transforms, and subband transforms, may well be used.

Figure 5.1a shows a typical characteristic that results from (5.8). This characteristic is called a
coring function. Sometimes this characteristic is also referred ®aggsian optimal coring
because of the relationship in (5.9) [90]. In general, coring functions leave transform coeffi-
cients with high amplitudes unaltered, and the coefficients with low amplitudes are shrunk
towards zero. Intuitively speaking, this is appealing. Coefficients with high amplitudes are
reliable because they are influenced relatively little by noise. These coefficients should not be
altered. Coefficients with low amplitudes carry relatively little information and are easily
influenced by noise. Therefore, these coefficients are unreliable, and their contribution to the
observed data should be reduced.

5.2.3 Heuristic coring functions

Originally, coring was developed as a heuristic technique for removing noise. Three
well-known heuristic coring functions are described here.

Soft thresholding Soft thresholding is defined by [20,72]:

. 0 sgn((Z(w)) HIZ(w) =T)) if [Z(w)|>T
Y(w) = O , (5.10)
1 0 otherwise

where thesgn(Z(w)) gives the sign (or phase)&fw) . Figure 5.1b plots this coring func-
tion.
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Figure 5.1 Coring functions: (a) Bayesian optimal coring, (b) soft thresholding, (c) hard
thresholding, (d) piecewise linear coring.

Natural signals tend to have weak high-frequency components. Therefore, soft thresholding
nullifies the high-frequency transform coefficients obtained from a signal. The result is that,
besides the noise being removed, the slopes of edges are reduced and their rise time increases.
For images this is perceived as blurring of edges in images. Soft thresholding has another
effect, namely, it reduces contrast because it shrinks the magnitudes of all AC transform coef-
ficients indiscriminately.

Hard thr esholding Hard thresholding is defined by [20,72]:

% Z(w) if |Z(w)>T
Y(w) = . (5.11)
% 0 otherwise

Figure 5.1c plots this coring function. A disadvantage of hard thresholding is that it introduces
spurious oscillations or so-called ringing patterns. These occur because hard thresholding not
only removes noise energy at selected frequencies, but also signal energy. The removal of sig-
nal energy can be viewed as adding impulses to the original, unimpaired signal. The ampli-
tudes of these impulses are equal to those of the original signal contents, but the signs are
opposite. In the synthesis stage, where the signal is transformed back from the frequency
domain to the spatial domain, the impulse responses of the synthesis filters are superimposed
on the result. These superimposed filter responses are perceived as ringing.

Piecewiselinear coring. A compromise between soft thresholding and hard thresholding is
piecewise linear coring:

% Z(w) if [Z(w) >T,
0
0 1Z(w)| -To .
Y(w) =[O ? DTl (sgn(Z(w)) if TOS |Z((.0)| < T]. (5.12)
O 1~ '0
0
0 .
0 0 Otherwise
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Figure 5.1d plots this function. Piecewise linear coring is intended to reduce the ringing arti-
facts resulting from hard thresholding on one hand and to preserve low-contrast picture detail,
which is lost by soft thresholding, on the other hand, [72].

5.3 Coring image sequences in wavelet and subband
domains

The frequency domain implementation of the Wiener filter as described in Section 5.2.1 can be
viewed as an implementation of coring: each observed frequency component is adjusted
according to a characteristic that is determined by the PSDs of signal and noise. However, the
use of the Fourier transform as a decorrelating transform has the disadvantage of forfeiting
knowledge of the spatial locations of dominant signal components. This implies that the cored

signal is not adapted to local statistics, but depends on global statistics only. Clearly, this is

suboptimal because local statistics can be very different from the global statistics.

The objective of transforming data prior to coring is to separate the signal from the noise as
well as possible. To get optimal separation of the signal and the noise, it is advantageous to use
transforms that compact the signal energy as much as possible [22,66]. Unlike the Fourier
transform, scale-space representations [14, 56, 100] allow local signal characteristics at differ-
ent scales to be taken into account. In the case of noise-reducing image sequences, adaptation
to local statistics is advantageous due to the nonstationary, scale-dependent nature of natural
images.

This section describes two 2D scale-space decompositions. The first is a nondecimated wave-
let transform known as thalgorithm a troug36,97]. The second is a subband decomposition
based on directionally sensitive filters that is known as the Simoncelli pyramid [91]. Next, it is
shown how these decompositions can be extended to three dimensions by adding a temporal
decomposition step. The 3D decompositions provide good separation of the signal and the
noise. Which of the two scale-space-time decompositions is most suited for noise reduction by
coring is investigated.

5.3.1 Nondecimated wavelet transform

Thediscrete wavelet transforfDWT) is a popular tool for obtaining scale space representa-
tions of data. A popular implementation of the DWT is the decimated DWT in which the
transformed data have the same number of coefficients as the input data. A problem with this
transform, however, is that shifting of the input image spatially, may lead to entirely different
distributions of the signal energy over the transform coefficients [91,97]. This is caused by the
critical subsampling applied in decimated wavelet transforms. Therefore, shifting the input
image can lead to significantly different filtered results. This is undesirable because it can lead
to temporal artifacts when in the processing of image sequences.

Shift invariance is obtained by nondecimated DWTs. An algorithm that generates nondeci-
mated DWTs is the algorithm a trous (“algorithm with holes”) [36]. Because no subsampling
is applied in this scheme, the decomposition is significantly overcomplete. For example, a
three-level decomposition of an image wWiNh  pixels giv/@hl transform coefficients.
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Figure 5.2 Overview of the algorithm a trous: a 2D wavelet analysis/synthesis scheme. The
total decomposition is obtained by inserting the complete filter bank into the white spot near
the bottom of the figure recursively. At each recursion level, index K is incremented.

Figure 5.2 gives a schematic overview of the algorithm a trous. First the input image is filtered
twice in horizontal direction; once with the high-pass analysis filter and once with the
low-pass analysis filter. Next, the filtered data are filtered again with the same high-pass and
low-pass analysis filters, but now in a vertical direction. The data that result from low-pass
analysis in both the horizontal and vertical directions are decomposed again with the same
analysis filter banks. However, this time the analysis filters are dilated by inseking zeros
between each of the filter coefficients at recursion lével , \ith 1, 2, ... for the recursion
levels. Initially, the algorithm starts out witk = 0 , and no zeros are inserted between the fil-
ter coefficients. For the synthesis part of the filter bank, agin! zeros are inserted
between each of the coefficients of the high-pass and low-pass synthesis filters at each recur-
sion levelk .

The algorithm a trous uses bi-orthogonal wavelet pairs. This means that synthesis filters used
in the reconstruction phase are not identical to the analysis filters. Table 5.1 gives the filter

coefficients for the analysis and synthesis filters. These are symmetric FIR filters, therefore

they are linear phase filters. This is a useful property in image processing because nonlinear
phase filters degrade edges [4].

Figure 5.3 gives the transform coefficients of the 2D algorithm-a-trous image decomposition
of a testimage. One half of this image consists of a frequency sweep, the other half shows half
a disc that is partially contaminated by additive white gaussian noise. Figure 5.3 shows a num-
ber of things. First of all, the signal energy is concentrated in different “frequency” bands,
depending on the orientation and the frequency of the local signal components. Furthermore,
the spatial location of signal components is preserved; the spatial location of various signal
components are clearly visible in Figure 5.3. This is in contrast to the Fourier transform,
which indicates the presence of specific frequencies within a signal, but their localization is
not known. Finally, the noise energy is spread out over all frequency bands and orientations.
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Original

Figure 5.3 Top three rows: transform coefficients from decomposed image at levels 0, 1, and
2. Bottom right: low-pass residual. Bottom left: original input image. To improve visibility, the
contrast has been stretched for all images.
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Low-Pass | ;.a | 55 | 6/8 | 2/8 | -1/8
Analysis

Low-Pass

Synthosis 14| 12 | 14
High-Pass 1/8 | -2/8 | 1/8
Analysis

High-Pass | 1 o4 | 64 | 214 | 114
Synthesis

Table 5.1 Coefficients for the bi-orthogonal
wavelet pairs used by the algorithm a trous.

The filter banks used by the algorithm & trous are quite short and they are therefore not ideal in
terms of cut-off frequency and signal suppression in the stop bands. The repdtisal leak-

age Figure 5.3 shows that energy from high-frequency signal components are visible in
low-pass subbands and vice versa.

5.3.2 Simoncelli pyramid

The Simoncelli pyramid is a subband decomposition scheme based on directionally sensitive
filters [91]. This means that the distribution of signal energy over frequency bands depends on
the orientation of structures within the image. Shift invariance is accomplished by avoiding
aliasing effects by ensuring that no components with frequencies largerdRan are present
before 2:1 subsampling. The Simoncelli decomposition is significantly overcomplete; the
number of transform coefficients is much larger than the number of pixels in the original
image. For example, a four-level pyramid decomposition with four orientations (four times
four sets of high-pass coefficients and one set of low-pass coefficients) of an imagd with
pixels gives aboud.3N  coefficients.

Figure 5.4 shows the 2D Simoncelli pyramid (de)composition scheme. The filigs) ,
H(w), andF (w) are the 2D low-pass, high-pass, and directional (fan) filters, respectively.
The filters Ly(w) ,Hy(w) ,L4(w) , andH,(w) are self-inverting, linear-phase filters. Self
inverting-filters have the pleasant property that the analysis and the corresponding synthesis
filters are identical.

The following constraints apply thj(w) Hgy(w) Li(w) ,and;(w) :the aliasing in the
low-frequency (subsampled) bands is minimized (5.13), all radial bands have a bandwidth of
one octave (5.14), and the overall system has unity response, requiring that low and high-pass
filters are power complementary (5.15):

Ly(®) - 0 for w > g (5.13)

Lo(®) = Ly(2w), (5.14)



90 Chapter 5 Noise reduction by coring
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Figure 5.4 The Simoncelli analysis/synthesis filter bank. The total
decomposition is obtained by recursively inserting the contents of
the dashed box into the white spot near the bottom of the figure.

|Li(@)]%+ H;(w)|? = 1. (5.15)

The 2D filters can be obtained from 1D linear phase FIR filters by means of the McCLellan
transform [59]. Equation (5.14) can be used to obtain the 2D filfgw) frq o) .Acon-
jugate gradient algorithm was used to find the filtelrg( w) ehdw) under the constraints
set by (5.15) [75].

For practical purposes, the high-pass filtétg(w) &hw) are directly combined with
the fan filtersF (w), F5(w), F5(w) , and=,(w) . Taking the 2D Fourier transform

and H, , multiplying the transform coefficients with©6—-6_) in (5.16), and taking the
inverse Fourier transforms gives the required combination. In (5€6), is the center of the
orientation of the filter.

i 0 |6-8,, <1—Té
O T 31
f(6—6_) = Ocos(406-6_]) 0 —<|0-6_|<=: (5.16)
i 18 =6 16100 <15

10 otherwise
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Figure 5.5 Top: pyramid decomposition of the
input image showing the output of the direction-
ally sensitive fan filters and the residual
low-pass image. The contrast has been
stretched to improve visibility. Note that the local
signal energy is concentrated in one or two ori-
entations, whereas the noise energy is spread
out over all orientations. Bottom: test image that
was also used in Figure 5.3.

91
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The first filtering stage with filterd j(w) anHy(w) is omitted for the experiments in this
chapter to reduce the number of computations. This also reduces the number of transform
coefficients bydN , wherd is the number of pixels in a frame. Figure 5.5 shows an example
of a decomposition using a pyramid with three levels and the same test image as in the previ-
ous section. The 2D filter used banks consistinglof 21 taps.

The 2D pyramid decomposition with four orientations has a number of advantages over a 2D
nondecimated DWT. First, the local separation between signal and noise is better for the pyra-
mid decomposition than for the DWT. At each level of the pyramid decomposition, the noise
energy is distributed over four frequency bands, and the energy of the image structures, such
as straight lines, is distributed over one or two frequency bands. In contrast, at each decompo-
sition level of the DWT, the energy of the image structures is distributed over two or three fre-
guency bands, and the noisy energy is also distributed over three frequency bands. Exceptions
are horizontal and vertical image structures; their energy is concentrated in one frequency
band only. Improved separation between signal and noise means removing more noise and dis-
torting the signal less.

The second advantage of the 2D pyramid decomposition is that the three-level pyramid
decomposition give®.3N  coefficients; this is less overcomplete than a shift invariant non-
decimated DWT that givesON  coefficients for the same number of levels.

Finally, for the particular implementation of the Simoncelli pyramid in this chapter, there is
much less leakage than for the algorithm & trous. This is a result of the constraint set by (5.13)
in combination with the relatively large filter banks.

5.3.3 An extension to three dimensions using wavelets

The 2D decorrelating transforms described in the previous sections spatially separate signals
from noise. It will be made apparent that this separation can be improved by including
motion-compensated temporal information. If the signals are stationary in a temporal direc-
tion, the motion-compensated frames frémn, ..., t+m should all be identical to ftame
except for the noise terms. The (linear) pyramid decompositions of these images should also
be identical, again except for the noise terms. This means that a set of transform coefficients at
scale-space locations corresponding in a temporal sense should consist of a 1D DC signal plus
noise. This signal can be separated into low-pass and a high-pass terms, e.g., by the DWT.

Note that, ideally speaking, one would use long analysis filters to obtain good separation of the
signal and noise components in the temporal decomposition step. However, inaccuracies of the
motion estimator and the fact that areas become occluded or uncovered form a limiting factor
to the length of temporal filter used.

The steps to a 3D spatial-temporal decomposition/reconstruction scheme are summarized by
Figure 5.6. Large reductions in computational effort can be obtained for steps 4a and 5a by
realizing that, for the purposes of this chapter, it is only necessary to reconstruct the current
framet . Reconstructions of decomposed motion-estimated frames are not of interest here, and
therefore they need not be computed.
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Analysis:

la. Calculate the motion compensated frames from frantesrgt..., t + m

2a. Calculate a 2D decomposition for each (motion compensated) frame.

3a. Apply the DWT in the temporal direction to each set of coefficients at correspongding
scale-space locations.

Synthesis:
4a. Apply the inverse DWT in the temporal direction to each set of wavelet coefficients to

reconstruct the coefficients of the spatially decomposed fraie at
5a. Apply the synthesis stage of the 2D filter bank.

Video In Motion [ B~ 2D 3D Spatio-Temporal
——p» Compensat¢—»~| Decomposition—®  Decomposition
(Step 1a) [ ; (Step 2a) (Step 3a)
Frame Out 2D 3D Spatio-Temporal
- Reconstructione—  Reconstruction
(Step 5a) (Step 4a)

Figure 5.6 Summary of 3D sighal decomposition scheme.

5.3.4 Noise reduction by coring

The structure of the proposed decomposition/reconstruction algorithm offers several possibili-
ties for coring transform coefficients by inserting the steps summarized in Figure 5.7. This fig-
ure represents a framework for 3D scale-space noise reduction by coring.

The generally nonlinear nature of coring makes it difficult to determine the combination of
coring characteristics for steps 2b, 3b, and 4b required for optimal noise reduction. Another
guestion is whether optimal coring requires coring in all steps 2b, 3b, and 4b. To exploit the
temporal decomposition, coring is certainly necessary in step 3b. However, this alone cannot
be optimal as is explained in a moment. The conclusion is that spatial noise reduction is
required as well.

Coring the spatio-temporal transform coefficients only (step 3b) is suboptimal because this
coring operation can be viewed as\witching filter[46] that turns itself on and off automati-

cally, depending on the accuracy of the data. Suppose coring is applied to the spatio-tempo-
rally decomposed signal, and suppose there is an error in the motion estimation process that
results in large frame differences. In such a case, all the coefficients resulting from the spa-
tio-temporal decomposition have high amplitudes. The spatio-temporal coring function tends
to keep high amplitudes intact and will not remove a lot of noise in such circumstances; the fil-
ter is effectively switched off locally.
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Coring:
2b. Core the spatial transform coefficients (except those in the DC band) for all frames.

3b. Core the high-pass spatio-temporal transform coefficients.
4b. Core the spatial transform coefficients (except those in the DC band) of the current

frame.
. - - Core r :
Video In Motion | p 2D | Spatial ] 3D Spatio-Temporal
Compensate—p| Decomposition—p Coefs. Deggmpcgs%mn
Step 1a) —»| (Step2a) | . tep 3a
(Step 1a) e _’(Stepr__» ¢
Core
Spatio-Tempor
Coefficients
(Step 3b)
: Core .
Noise Reduced Frame Out 2D Spatial 3D Spatio-Tempora|
- Reconstruction--— Coefs. [ Recgnstrxctlon
; tep 4a
(Step 5a) (Step 4b (Step 4a)

Figure 5.7 Representation of the 3D scale-space system for noise reduction.

Step 2b applies optimal coring functions that are computed by (5.8) for each subband of a 2D
decomposition. This requires estimating or assuming distributions for the signal and noise
coefficients in each subband. In step 3b, hard thresholding is used for coring the spatio-tempo-
ral coefficients because it fits in nicely with the switching filter idea. If a spatio-temporally
decomposed coefficient is small, it is likely to be noise and it should be removed completely. If
the coefficient is large, it is likely that the data were not stationary in a temporal sense and the
coefficient should not be altered.

The optimal coring functions in step 4b are much harder to determine because they depend on
the spatial coring applied in step 2b and on the spatio-temporal coring applied in step 3b. The
effect of the latter is particularly difficult to model due to its dependency on the quality of
motion-compensated images. Therefore, rather arbitrarily, soft thresholding is applied in step
4b. Note that soft thresholding is preferred over hard thresholding because the latter tends to
give disturbing ringing patterns as discussed earlier.

Thresholdselection.A good value for the hard thresholding in the spatio-temporal threshold

is Tg, = 3o, wherecr2 is the estimated variance of the noise in the high-pass coeffi-
C|ents The motlvatlon for PhIS is the following. If the noise corrupting the image sequence is
assumed to be additive, white, and gaussian, and if the motion compensation is perfect, then
the high-pass coefficients contain noise energy only. In fact, the high-pass coefficients follow a
zero-mean gaussian distribution. Setting all observed coefficients that lie wighib, to
zero effectively means that noise is removed from 99.7% of the high-pass coefficients. It is
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assumed that the variance of the high-pass coefficients is much greater than that of the noise, if
the motion compensation is not perfect. Therefore, if the temporal intensity differences are
large due to imperfect motion compensation, the signal will hardly be affected by the temporal
coring.

The thresholdr' ¢ for soft thresholding the spatial decomposition coefficients in step 4b is cho-
sen so that the PSNR of the corrected sequence is maximal. In practical situ@tions, cannot
be chosen to give the maximum PSNR due to the absence of an unimpaired original to serve as
areference. In this case, the value Ty that gives the best visual quality of the noise reduced
sequence is selected.

Note that no threshold selection is required for the coring of spatial decomposition coefficients
in step 2b because the coring functions are completely determined by the signal and noise dis-
tributions in each subband.

5.3.5 Perfect reconstruction?

One of the characteristics of wavelets is that they allow for perfect reconstruction. Hence, the
algorithm a trous gives perfect reconstruction. Unfortunately, this is not the case for the Simo-
ncelli pyramid. The Simoncelli pyramid is a linear phase function, self-inverting and power
complementary in the ideal case. In practice, self-inverting linear-phase FIR filters with more
than two taps cannot possess both the power-complementary property gretfeéet recon-
struction(PR) property [95]. If the power-complementary property is retained, the absence of
PR is reflected by ringing near sharp edges in reconstructed images. The errors introduced due
to the lack of PR is represented by the difference between the original and reconstructed
images.

The following investigates how the effects of lack of PR can be minimized.Z.et ‘and
denote a decomposed noisy image before and after coring, respectively. If the (linear) recon-
struction operator is denoted Bf:] , the noise reduced ifpage is given by:

= R[Y]

R[Z+ Y-2Z]

R[ Z- N(Z)]
R[Z] -R[N(2)].

<

(5.17)

whereN(Z) = Z-Y can be regarded as an estimate of the noise realization that corrupts the
original data. Ideally speakin®[ Z] equals , therefore:

J = z- R NZ)] (5.18)

This result shows that reconstructing an image of the noise realization and subtracting it from
the noisy input image reduces the effects of lack of PR. This is done instead of directly recon-
structing the noise-reduced image from the cored transform coefficients. Hence, the problem
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Nois a trous a trous Pyramid Pyramid
y Spatial | Temporal+Spatial | Spatial | Temporal+Spatial
Sequence | Sequence . . . .

(dB) Coring Coring Coring Coring
(dB) (dB) (dB) (dB)
Plane 25 33.0 3.6 4.1 3.8 4.8
Plane 100 27.0 4.8 6.1 5.7 6.7
Plane 225 23.5 6.0 8.3 7.0 8.5
MobCal 25 33.0 1.8 2.6 1.6 2.9
MobCal 100 27.0 3.4 4.7 3.5 4.9
MobCal 225 23.5 4.6 5.9 4.9 6.1

Table 5.2 PSNR of test sequences and increase in PSNR of noise reduced sequences
using the Pyramid and Wavelet decomposition schemes with and without coring of spa-
tio-temporal subband coefficients.

of lack of PR for the original image is shifted to lack of PR for the noise realization. This
approach, however, introduces no artifacts, such as ringing, that are associated with image
structures if the noise is independent of the image contents. Furthermore, because the noise
has a lower variance than that of the image contents, the effects of lack of PR for the recon-
structed noise signal are much less (or not) visible.

5.3.6 Experiments and results

This section evaluates the noise-reduction capabilities of the wavelet and pyramid
noise-reduction schemes described in Section 5.3.4. In both cases, the 2D decompositions are
extended to three dimensions by the same bi-orthogonal wavelet used by the algorithm a trous
(Table 5.1). To get some indication of the gains achieved by 3D filtering over 2D filtering, the
test sequences are processed twice by each filter: once with coring of the spatio-temporal
decomposed coefficients (step 3b) and once without. To reduce the computational complexity,
no coring is applied to the spatially decomposed motion-compensated frames, i.e., step 2b is
omitted.

Two test sequences are evaluated in this section. The first sequence iPtatiednd shows

a plane flying over a landscape. It contains fine detail, sharp edges, uniform regions, and a lot
of motion. The sequence was originally recorded with a high-definition camera, and the
images are very crisp. There are strong interlacing effects due to motion. The second test
sequence is the well-knowrobCal sequence, which does not display noticeable interlacing
effects. Ideally, to avoid the effects of interlacing, one would apply motion-compensated
de-interlacing [19]. The noise-reduction filters would be applied to the de-interlaced frames.
However, motion-compensated de-interlacing adds a lot of complexity to the noise-reduction
system. Therefore, thRlane sequence is processed on a field-by-field basis instead of on a
frame-by-frame basis.
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Figure 5.8 Top: noisy field from Plane sequence with noise variance 225 (PSNR = 23.5 dB).
Bottom: filtered result from the 3D pyramid filter. (Sequence available by courtesy of the
BBC).

White gaussian noise, with variances 25, 100, and 225, has been added to the test sequences.
Figure 5.8 shows an example of a noisy field from FHane sequence and the filtered result
obtained by 3D pyramid with both spatio-temporal and spatial coring. Table 5.2 lists the
PSNRs of the test sequences and the increase in PSNR for the filtered results.

Considerable amounts of noise reduction are achieved by the filters. The best results are
obtained by coring both the spatio-temporal coefficients and the spatial coefficients (step 3b
and step 4b in Section 5.3.4), which gives an improvement ranging from 0.5 to 2.3 decibels
over spatial filtering only. The magnitude of the improvements depend on the sequence, the
amount of noise, and the spatio-temporal decomposition used. The performance of the pyra-
mid filter is similar or better than that of the shift invariant wavelet filter in terms of PSNR in

all cases. Visually speaking, the results given by the pyramid filter are better than those of the
wavelet filter; the results are a bit sharper, and artifacts that result from filtering in the form of
“low-frequency spatial patterns” are less visible.
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Figure 5.9 MPEG2 encoding of noisy image sequences.

Figure 5.10 Example of
quantization of AC DCT
coefficients with a dead-
zone around zero.

5.4 MPEG2 for noise reduction

Consider a broadcasting environment in which noisy film and video sequences are digitally

broadcast with an MPEG2 encoding system, as illustrated by Figure 5.9. It is assumed that no
channel errors are introduced. MPEG2 encoding systems try to minimize the coding errors
between inpuiz(i) and outp@i) .However, inthe case of noisy image sequences, what they
should be doing is minimizing the errors between the original, noise-free iy@gye and the

output z(i) . When doing so, the MPEG2 encoding systems can be considered devices for
simultaneous noise reduction and image compression.

Let (i) denote the error betweey(i) aizdi) . The aim of this section is to adjust an
MPEG2 encoding system to minimize the error variance. The error variance can be expressed
in terms of DCT coefficients:

E[e2())] = EL(¥(1)-2(1))?]
o4 P (5.19)
= Y ELOY()-Zk(i)%].
k=1

HereY,(i") ande(i') ,withk = 1, ..., 64 , represent the 64 DCT coefficients of eagh8
data block within a frame. The column, row, and frame number of a data block is indicated by
i".

Two basic approaches can be followed to minimize (5.19). In theory, these approaches give the
same results. The first approach directly minimigg$y(i)—2(i))?] . As is shown in Appen-
dix C, this approach is equivalent to determining optimal quantizers for the DCT coefficients
of a noisy signal. The second approach is based on the fact that the problem of minimizing the
overall error variance can be split into two parts for a communication system in which a signal
is distorted prior to (lossy) channel encoding [103]. The first part consists of computing the
conditional expectation for the true signal given the observed noisy data. The second part con-
sists of designing an encoder that is optimal for the original, noise-free signal.
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Figure 5.11 Coring of the DCT coefficients of | frames in an MPEG2 encoder.

In the particular case of Figure 5.9, the advantage of the second approach is that, in principle,
the encoder is already optimized for encoding noise-free signals. Therefore, it is not necessary
to design new quantization tables as is required for the first approach. All that needs to be done
for the second approach is to core the DCT coefficients following (5.8) prior to quantization,
i.e., by replacing the observed DCT coefficients with the conditional expectation for the true
DCT coefficients. This second approach is investigated further in this section.

In fact, MPEG2 encoders implicitly core noisy DCT coefficients to some extent by incorporat-
ing a so-calledlead zonen the quantizers for the coefficients of the non-intra-coded frames
(Figure 5.10) [61]. As a result of the dead zone, DCT coefficients with small magnitudes are
mapped to zero. However, note that the use of dead zones is suboptimal for noise reduction
because they are not applied to all frames and because they do not address the noise on DCT
coefficients with larger amplitudes.

5.4.1 Coring |, P, and B frames

I-frames. The MPEG2 system defines three frame types; namely, | frames and predicted P and
B frames. The | frames are encoded by dividing the frames»8 blocks, applying the DCT
to the blocks and quantizing the DCT coefficients (Chapter 2). Two basic approaches can be
followed towards coring the DCT coefficients of | frames. The first is to estimate the pdf for
each DCT coefficient from the observed data for each frame, compute the conditional expecta-
tion for each coefficient according to (5.8), and replace the observed coefficients by these val-
ues. Computing optimal coring functions for each | frame of an image sequence is expensive
in terms of computational complexity, and therefore it is expensive to implement in real-time
hardware.

The second approach does not optimize the coring functions for each frame. Instead, fixed sets
of coring functions are computed off-line and stored in the encoder as lookup tables
(Figure 5.11). The coring functions are computed from a large set of images, so that on aver-
age the encoder gives the best results that can possibly be achieved under the condition of
static lookup tables. This approach can be implemented in an MPEG2 encoder easily. Section
5.4.2 gives the details of this second approach.

B and P frames. The B and P frames are predicted from frames coded previously. The frame
differences between the predicted and current frames are encoded like | frames, i.e., by using
DCTs and quantization. Finding the ideal coring coefficients is more difficult now because the
signal and noise distributions of the frame differences are not known. These depend on the
nonlinear coring and quantization of the frames coded earlier and on the quality of the motion
estimation and compensation.
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Figure 5.12 (a) Coring function applied to DCT of frame differences, (b) illustration of how,
by sliding the DCT and the coring function in front of the subtraction, B and P frames can
be cored as the | frames are. Note that the predicted frame is extracted from a coded
frame that has already been noise reduced and need not be cored again.

Instead of coring the DCTs of the frame differences, as illustrated in Figure 5.12a, an alterna-
tive strategy is preferred in which the DCT and coring operation are performed prior to sub-
tracting the current and predicted frames from each other. Figure 5.12b illustrates this
alternative strategy. Note that the coring functions in Figure 5.12a,b are different from each
other and that also the results given by the two approaches generally speaking are not identi-
cal.

Two points about the scheme in Figure 5.12b are noteworthy. First, the predicted frames have
already been coded and hence they have already been noise reduced earlier on. Therefore it is
not necessary to core the predicted frames again. Second, the optimal coring characteristics
are identical to those computed before for the | frames. This means that only one set of lookup
tables is required for the I, P and B frames.

5.4.2 Determining the DCT coring functions

This sections deals with computing the coring functions for the I, P, and B frames. As indi-
cated in the previous section, the coring functions are computed from a large set of images, so
that the encoder gives the best results that can be achieved on average with static lookup
tables. Computing the coring functions consists of two steps. First, the distributions of the sig-
nal and the noise have to be determined. Next, the coring functions can be computed from
(5.8) and (5.9).
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Figure 5.13 (a) Shape parameters and (b) standard deviations estimated for the DCT coeffi-
cient.

The noise corrupting the image sequences is assumed to be additive, white, and gaussian with
known variance. The distributions of each of the 63 AC DCT coefficients are sometimes mod-
eled by laplacian distributions [43,76]. In practice, the generalized gaussian is more accurate
[9,89]. The DC coefficients are not cored because their conditional expectation depends too
much on the specific sequence. The generalized gaussian distribution is given by:

P(x) = alexp(-b[]X©), (5.20)
with:
_ b _ 1 @)
= 3raig 2P = SR (5.21)

wherel () is the gamma function armd is the standard deviation of the distribution. It can
be seen from (5.20) and (5.21) that the generalized gaussian is completely determined by the
shape parametec  and the noise variaoce . The well-known gaussian distribution is
obtained by lettingg = 2 ; the laplacian distribution is obtained by letting 1

An efficient method for estimating the shape parameter from a set of data based on sec-
ond-order statistics is given in [89]. Lat,  denote DCT coefficients with coefficient number

k =1,2...,64. The mean and the varianpg an@ of a set of observed DCT coefficients
with coefficient numbek can be estimated directly from the observed dag, Let  be:
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The shape parametef  for the distribution of DCT coeffidient is found by solving:

r(l/c) T (3/c)
r2re,)

Py (5.23)

Equation (5.23) can be solved efficiently with a lookup table that is generated by lefting
vary over the range of values that could possibly be expected for this parameter in small steps.
Let ¢, vary from 0.1 to 2.5 with a step size of, say, 0.01 for these steps. Then the generalized
gaussian approximations to the distributions of the observed DCT coefficients are readily
obtained from the, and tma& with (5.21) and (5.20).

Figure 5.13 shows the, and tlog, ~ that are estimated from the DCT coefficients obtained
from a set of 18 different images. The scanning order in a 2D block of DCTs is taken from left
to right (increasing horizontal frequency) and from top to bottom (increasing vertical fre-
guency); see Figure 5.14. Except for the first DCT coefficient, the DC component, it can be
seen that, is a bit smaller than 0.5. The standard deviation of the coefficients decreases with
increasing frequency, which is consistent with the well-known fact that natural images contain
less energy in high frequencies than in low frequencies.

Figure 5.15 shows the coring function computed for DCT coefficient number 8 for noise with
variance 100 corrupting the image. In this figure, small values are cored towards zero; larger
values are altered less. This confirms the intuitive assumption that data with small amplitudes
are noisy and unreliable, and they should therefore be discarded. Figure 5.16 plots the coring
functions for all 64 DCT coefficients, again with noise with variance 100 corrupting the
image. As already mentioned, the DC terms are not cored; hence the 45 degree line for this
DCT coefficient. It can be seen that coefficients representing higher spatial frequencies are
cored towards zero more strongly than coefficients representing lower spatial frequencies.
This, again, matches well with the fact that natural images contain less energy in high frequen-
cies than in low frequencies.

The coring functions depend on the noise variance. A number of lookup tables are computed
for different noise variances in a practical situation. The MPEG2 encoder selects the lookup
table that corresponds best with the actual noise variance in an image sequence.

5.4.3 Experiments and results

For the experiments, the standdaedt model §TM5) MPEG2 encoder [40] was adjusted so

that the DCT coefficients are cored using lookup tables, as described in the previous sections.
This section describes two sets of experiments. The same test sequences are used in
Section 5.3.6.
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Figure 5.16 Plot of part of the coring functions for all 64 DCT coefficients,
computed for noise with variance 100 corrupting the image.

The first set of experiments evaluates the performance of the adjusted TM5 encoder in terms
of the PSNR when applied to test sequences with varying amount of noise. Figure 5.16a shows
the scheme used for measuring the PSNR of the corrected sequences. Figure 5.16b,c plots the
PSNRs for bitrates ranging from 2 Mbit/s to 15 Mbit/s. The results show that the PSNRs of the
filtered and coded sequences are considerably higher at the higher bitrates than those of the
noisy input sequences.

The PSNRs of the corrected sequences increase more rapidly with increasing bitrate at low
bitrates than at high bitrates. Specifically, the curves for test sequence with noise variance 100
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Figure 5.16 (a) Scheme for measuring PSNRs of coded noisy test sequences. Results for
(b) Plane and (c) MobCal sequences with the adjusted MPEG2 encoder and coring. The
noise variance in the noisy sequences were 25, 100, and 225, which correspond to PSNRs
of 33.0, 27.0, and 23.5 dB, respectively.

and 225 are quite flat over the range from 4 Mbit/s to 15 Mbit/s. This contrasts to the PSNRs
for noise free sequences, which increase steadily with increasing bitrate. This implies that
there is an “early”saturation pointor the bitrate in noisy image sequences. Encoding with
bitrates above the saturation point gives only marginal improvements in image quality.

By comparing the results in Figure 5.16, at for instance 8 Mbit/s, to those in Table 5.2, it can
be seen that the 3D pyramid and wavelet filters outperform the adjusted MPEG2 encoder in
terms of PSNR. However, the adjusted MPEG2 encoder is basically a 2D filter. It can be seen
that its performance is similar to that of the 2D pyramid and 2D wavelet filters.

The second set of experiments investigates whether the adjusted TM5 encoder performs better
than the standard encoder in combination with prefiltering, e.g., with the 3D pyramid
noise-reduction system. It could be imagined that even though the 3D pyramid filter and the
3D wavelet filter on their own outperform the adjusted MPEG2 encoder, their superior quality
may be lost due to quantization errors introduced by the standard encoder. Another question is
how the performance of the adjusted MPEG2 encoder compares to the standard TM5 MPEG2
encoder with a dead zone when it is applied to a noisy sequence.
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Figure 5.17 (a) PSNR vs. bitrate for the original Plane sequence, noisy Plane sequence
(noise variance 100), and noise-reduced Plane sequence (filtered by the 3D pyramid filter)
encoded by the standard TM5 MPEG2 encoder. Also shown is the PSNR of the noisy Plane
sequence that was encoded and noise reduced simultaneously by the adjusted MPEG2
encoder with coring. (b) As before, but now for the MobCal sequence.

These questions are investigated, usingRtameandMobCalsequences to which a moderate
amount of noise (variance 100) was added. Figure 5.17 plots the PSNRs as a function of the
bitrate of the noisy test sequences after encoding by the standard TM5 with and without prefil-
tering by the 3D pyramid filter. The PSNRs that result from applying the adjusted TM5 coder
to the noisy sequences are also shown. Finally, the PSNRs of the coded original, noise-free
sequences are plotted as a reference of what can maximally be obtained.

Figure 5.17 indicates that prefiltering sequences with a moderate amount of noise prior to
encoding with the standard TM5 encoder gives a PSNR that is maximally one decibel higher
than when simultaneous filtering and encoding is done by the adjusted TM5 MPEG2 encoder.
It can also be seen from Figure 5.17 that the standard TM5 encoder (without prefiltering) also
functions as a noise reducer at low bitrates. At 3 Mbit/s, the PSNR of the codedRlarsy
sequence is about 3.5 dB higher than that of the noisy original. This number is 1.5 dB for the
MobCal sequence. The PSNRs decrease for these sequences at higher bitrates. This behavior
IS not surprising. The encoder applies a coarse quantization at low bitrates and much noise
energy is removed by the dead zone. The encoder is capable of encoding the signal and the
noise more accurately at higher bitrates, so that the noise part of the signal is preserved better.
In the limiting case, at very high bitrates, the noisy sequence is encoded without errors, and the
PSNR equals 23.5 dB.

5.5 Discussion

This chapter shows that coring is a powerful technique for noise reduction. A 2D shift invari-
ant wavelet filter and the 2D Simoncelli pyramid were introduced. These filters were extended
in the temporal dimension so that temporal information, as well as spatial information, in
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image sequences could taken into account in the noise reduction process. The spatio-temporal
decomposition allows temporal filtering of the DC bands of the 2D Simoncelli pyramid and
the 2D DWT transforms without introducing severe blur or other artifacts. Two-dimensional
scale-space noise reduction filters have no way of filtering the DC bands by means of coring.

The noise reduction capabilities of the Simoncelli pyramid outperforms those of the shift
invariant DWT due to the minimal aliasing and its enhanced directional sensitivity. However,
the difference in performance in terms of increase in PSNR can be considered marginal if one
takes into account the increase in complexity for the pyramid filter compared to the wavelet
filter.

Even though the 3D pyramid filter as presented in this chapter is a complex and expensive fil-
ter to implement, it is nevertheless a useful one. Visually speaking, the results obtained by the
pyramid filter are better than those obtained from the shift invariant wavelet filter. It can be
applied when good quality noise reduction is absolutely necessary, i.e., when processing time
is less important than image quality. It can also be used as a benchmark for the results obtained
by other filters.

This chapter also shows that the MPEG2 scheme can easily be adapted to perform simulta-
neous noise reduction and compression. The extra costs of the adapted scheme, compared to a
standard MPEG2 encoder, consist of implementing lookup tables and an extra DCT operation
for the B and P frames. This is a cheaper solution than the pyramid filter or the wavelet filter
and it gives reasonable performance. In fact, the experiments indicate that, if a noisy image
sequence is to be encoded, the difference between encoding the prefiltered sequence and
encoding the noisy sequence with the adapted encoder is less than one decibel over a large
range of bitrates. In this case, whether or not prefiltering is a cost-effective solution depends
on the required quality of service.



Chapter 6

Evaluation of restored image seguences

6.1 Introduction

Chapter 1.1 explains the motivation for restoration of archived film and video. It is stated there
that image restoration improves the perceived (subjective) quality of film and video sequences
and that restoration also leads to more efficient compression. This chapter experimentally ver-
ifies the validity of these two assertions.

Section 6.2 describes the methodology that is used in two sets of experiments for validating
the assumptions mentioned. The first set of experiments is aimed at verifying that image resto-
ration indeed improves the perceived quality of impaired image sequences. These experiments
are done with test panels. The second set of experiments is aimed at verifying that image resto-
ration indeed improves the coding efficiency. This can be done with test panels, or, as is done
in this chapter, by numerical evaluation. Section 6.3 describes and discusses the experimental
results. Section 6.4 concludes this chapter, and, thereby, this thesis. It gives some pointers to
future research.

107
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Figure 6.1 Overview of 2AFC testing.

6.2 Assessment of restored image sequences

6.2.1 Influence of image restoration on the perceived image quality

An important reason for image restoration is that it improves the image quality as perceived by
humans. Whether the underlying assumption is indeed true can only be determined by having
human observers compare restored sequences to the corresponding impaired sequences. So
far, automatic validation (without human beings) is not possible: there are no mathematical
models that can adequately model human perception of images in all their aspects.

Thelnternational Telecommunication UnighlTU) has standardized a number of methods for
evaluating image sequences by test panels. For instanaggiide-stimulus continuous qual-
ity-scale(DSCQS) method is well-known [41]. This method measures the relative difference
in quality of an impaired sequence given the original, unimpaired image as a reference. The
DSCQS method is useful for comparing the performance of various restoration systems. Eval-
uations using this method have been done in the AURORA project.

The scope of the evaluations in this chapter are not as broad as those in AURORA. At this
point, the aim is not to compare the performance of different restoration systems. Here, the
central question is whether the image restoration algorithms presented in this thesis improve
the perceived image quality. A method simpler than the DSCQS method can be used for find-
ing an answer to this question. The method used here isnbelternatives forced choice
(2AFC) method [3]. The 2AFC method is often used in television broadcasting environments
to determine at what point a transmission system introduces visible distortions in the transmit-
ted images or image sequences. In the context of image restoration, this method is not used to
determine whether there are visible differences between two sequences, but to determine
which of the two sequences have the highest perceived quality.

In the 2AFC method, the members of a test panel are shown pairs of image segdiences and
B twice, as illustrated by Figure 6.1. One of the sequences is the impaired sequence, the other
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is the restored sequence. Which is which is random. The duration of each sequence is approx-
imately 10 seconds. Between showing sequenges Bind , the screen is blanked to a
mid-gray value for 2 seconds. After a pair of image sequences has been viewed for the first
time, the screen is blanked to a mid-gray value for 5 seconds. Then, seqéencesB and are
shown again. IfA was the impaired sequence in the first viewing, then it is also the impaired
sequence in the second viewing. The same is tru®for . After viewing the sequences the sec-
ond time, the assessors must indicate which sequence has the better visual quality.

For all experiments in this chapter, differences between the impaired and the corrected
sequences are clearly visible. The outcome of 2AFC testing is determined by one of two cases.
In the first case, a majority of the votes is given to either Bor . This indicates a general con-
sensus on whether the perceived quality of the corrected sequence is better than that of the
impaired sequence. In the second case, about 50% of the votes is given to each of the
sequences, and there is no general consensus on which sequence (impaired or restored) is bet-
ter. The second case can occur, for example, in the case of noise reduction. It is well known
that some people prefer a noisy image over a slightly blurred noise-free image. The noise gives
an illusion of increased sharpness. Other people prefer a noise-reduced image, even if it is
slightly blurred.

6.2.2 Influence of image restoration on the coding efficiency

This section describes experiments that can be carried out to verify that image restoration
indeed does lead to more efficient image compression. Before it can be determined how much
more efficient one image sequence is compressed with respect to another, a definition for the
increase in coding efficiendy required.

Let AQ denote the increase in coding efficiency between a corrected image sequence and an
impaired image sequencAQ  can be defined in two ways. The first definition rAlates to
the distortion introduced by a codec set to a fixed bitrate. The second definition & @tes to
the bandwidth required by a codec to compress a sequence given the allowable distortion.

AQ in terms of coding accuracy Figure 6.2 proposes an experimental setup that can be used
for measuring the increase in coding efficiency in terms of how accurately the corrected and
the impaired image sequence are coded with respect to each other.

Let y,(i) andy (i) be restored image sequences before and after coding, respectively. Simi-
larly, let z,(i) andz.(i) be impaired image sequences before and after coding, respectively.

In Figure 6.2, the restored image sequence is encoded at a constant bitrate. The PSNR com-
puted between the codec input and output is giverPIBNR "y, ¥.] . The impaired image
sequence is encoded at the same bitrate. In this case, the PSNR computed between codec input
and decoded output is given BSNR z,z.] AQ is now defined by:
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Figure 6.2 Method for measuring the difference in coding efficiency on the basis of PSNR.
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From (6.1) it can be seen thAlQ  is a function of the ratio between the energy of the coding
errors in the impaired image sequence to the energy of the coding errors in the corrected image
sequence. IfAQ >0 , the corrected sequence is coded with fewer errors than the impaired
sequence. IfAQ<0 , the corrected sequence is more difficult to code than the impaired
sequence and the compression errors are larger.

Itis emphasized here that the coding error§ i(i) a(d) are computed between the input
and output of the codec. The errors are not computed with respect to a ground truth, i.e., an
unimpaired original. In practice, no unimpaired references exist for archived film and video

material.
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Figure 6.3 Setup for measuring the increase in coding efficiency using human assessors.

AQ in terms of bandwidth. The definition ofAQ in terms of bandwidth is given by the dif-

ference in bitrate for the coded corrected image sequence and for the coded impaired image
sequence:

AQ = Bitrate] impaired — Bitrate[ correcteq. (6.2)

Here, if AQ>0, the corrected sequence requires fewer bits for coding than the impaired
sequence. IfAQ<0 , the corrected sequence is more difficult to code than the impaired
sequence and it requires more bits. Obviou&l§ can only be given a meaningful interpreta-
tion if it is measured on condition that the bitrates selected for coding the impaired and cor-
rected sequences are related in a meaningful way. The constraint set here for measuring (6.2)
requires that the codec introduces the same amount of distortion to the impaired as to the cor-
rected sequence.

This raises the question of how the distortion introduced by a codec should be measured. Ide-
ally, the measured distortion is related to the perceived image quality. This requires involving
human observers to determine (6.2) with, for instance, the setup proposed in Figure 6.3. In this
setup, the impaired image sequence is coded by an MPEG2 codec set to a fixed bitrate. The
impaired sequence is restored and coded by an MPEG2 codec of which the bitrate is con-
trolled by an assessor. The codecs are synchronized to compensate for the delay introduced by
the restoration system. Their outputs are displayed on two calibrated monitors. During the
experiment, the task of the assessor is to set the bitrate of the codec he/she controls to a level
such that the perceived quality of the coded corrected sequence is equal to that of the coded
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impaired sequence. The difference in bitrate of the two codecs gives the increase (or decrease)
in coding efficiency given by the image restoration process.

Note that the type of artifacts in the coded impaired and corrected sequences can be different
at the bitrates at which the assessor rates the perceived image quality the same. For instance,
consider a noisy image sequence coded at a bitrate at which the codec does not introduce visi-
ble distortions. The corrected, noise free sequence can be coded at a lower bitrate. At a certain
point this bitrate is so low that blocking artifacts start to appear. It is around this point that the
assessor will begin to prefer the coded noisy sequence over the coded corrected sequence.

The method for measuring the improvement in coding efficiency with human assessors
requires a fair amount of calibrated and synchronized equipment. An alternative method is to
measure the distortion with mathematical measures based on the MSE. Obviously, the results
will be different from those obtained by human assessors. In this case, a scheme similar to that
in Figure 6.2 is used for measurilyQ . First, the corrected sequence is coded at a fixed
bitrate. Next, the bitrate for coding the impaired sequence is searched S0SNR "y, V|
equalsPSNR z,z.] , i.e., so the same amount of compression errors have been introduced

into the corrected and impaired sequence. Again, as in (AQ), is given by the difference in
bitrates.
As a final remark, it should be mentioned ths) , measured either in dB or in Mbit/s, can

only be meaningful if the restored image sequence consists of sensible data that represent the
true image data in a reasonable manner. For example, it is assumed that the restored sequence
is not a collection of black frames if the original data is clearly not a collection black frames,

but, for instance, a recording of a zoo.

6.3 Experiments and results

This section experimentally verifies that the algorithms proposed in this thesis indeed improve
the perceived image quality by presenting the impaired and restored image sequences to a test
panel. The influence of image restoration on the perceived image quality is assessed in two cir-
cumstances. In the first circumstance, pairs of impaired and corrected sequences are used. In
the second circumstance, pairs of MPEG2 encoded impaired and corrected sequences are
used. The latter circumstance verifies the assumption that image restoration improves the per-
ceived image quality also holds in a digital broadcasting environment.

This section also verifies that the algorithms developed in this thesis improve the coding effi-
ciency. The increase in coding efficien&Q)  , is determined by numerical evaluation, both in
terms of PSNR and in terms Mbit/s.

6.3.1 Test sequences

To get an impression of the effects of removing different combinations of artifacts on the per-
ceived image quality and on the increase in coding efficiency, test sequences were selected
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Sequence Amc_)unt of Number of Visibi!ity of
Flicker Blotches Noise
(loopllzar;?nes) High High High
(ngh;rglri:es) Medium High Medium
(425: Ik:]?a[r“nees) High High Low
(4O4NII:irnaemes) Medium Very Low High
(4; Iirzr?:as) None Low/Medium Low
(Zzi?l:jeiies) Medium Very Low Low

Table 6.1 List of impaired sequences used for subjective
and objective evaluations with an indication of the severity
of the various degradations. Note that the Plane sequence
contains artificial degradations.

Sequence FIicke_r Blotch Noise_
Correction Correction Reduction
Plane X X X
Chaplin X X X
Charlie X X
Mine X X
VJ Day X
Soldier X

Table 6.2 Corrections applied to the test sequences.

with various combinations of impairments. The test sequences consist of one artificially
degraded sequence and five naturally degraded sequences. Table 6.1 lists the sequences and
gives an indication of the severity of the degradations that impair them. The test sequences are
also used in Chapters 3 to 5 and have already been described. An exceptiolClsafiim
sequence, which has not been used before for any experiment. Three frames from this
sequence are shown in Chapter 1, Figure 1.1.

Table 6.2 lists the artifacts that were corrected in each of the test sequences by the restoration
system depicted in Figure 1.2 with the restoration methods developed in this thesis. The vari-
ous control parameters of the restoration algorithms were set to values that give good visual
results.
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6.3.2 Experiments on image restoration and perceived quality

The subjective experiments were done in a dimly lit room. The viewing distance was six times

the height of the display used. The test panel consisted of 25 people, all of whom had good
vision with a visus of 0.8 or betteBefore the actual experiments, the assessors were trained

for their task by being shown some examples of sequences with and without flicker, blotches,
and noise. Each assessor assessed all the test sequences once. They were asked the following
question: “Which sequence do you find more pleasing to iewB?".

As already mentioned, each test sequence should be approximately 10 seconds in duration.
Because most of the test sequences are shorter than 10 seconds, they were repeated (looped) a
number times so that the duration of the looped sequence was approximately 10 seconds. Only
the first 10 seconds of the 16-secdfide sequence were shown.

Table 6.3 gives the results for the first set of experiments in which the assessors indicated
which sequence they prefer: the impaired image sequence or the restored image sequence.
This table shows that, for all test sequences, the majority of the votes is given to restored
image sequences. This proves that the image restoration algorithms presented in this thesis
increase the perceived image quality of impaired image sequences.

The restoredMine sequence received relatively fewer votes than the other restored sequences.
When questioned about this, some of the test panel members indicated they considered the
correctedMine sequence to be overly smooth, and, therefore, they preferred the flickering,
noisy original. The smoothing was caused by the noise reduction algorithm that was set to
achieve a great amount of noise reduction. It is a well-known fact that there is a trade-off
between noise reduction and introducing blur. Had the noise reducer been set for less noise
reduction, less smoothing would have been introduced, and the assessors in question might
well have preferred the corrected sequence.

Table 6.4 gives the results for the second set of experiments in which the assessors indicate
which sequence they prefer: the MPEG2 encoded impaired image sequence or the MPEG2
encoded restored image sequence. The standard TM5 MPEG2 encoder was used for all exper-
iments [40]. The coder was set to the main profile and the GOP size was 12. This table shows
that for all test sequences, the majority of the votes is given to MPEG2 encoded restored
image sequences. This proves that the increase in perceived quality, obtained from the image
restoration algorithms presented in this thesis, are not lost due to coding artifacts introduced
by an MPEG2 encoder at 4 Mbit/s. Therefore, image restoration is beneficial in digital broad-
casting environments in which films are broadcast in compressed format.

6.3.3 Experiments on image restoration and coding efficiency

This section presents the results of two sets of numerical evaluations. The first set applies the
scheme shown in Figure 6.2 to measure the increase coding efficiency iQIB. was evalu-
ated for bitrates ranging from 2 Mbit/s to 8 Mbit/s. For all experiments the standard TM5
MPEG2 encoder was used. The coder was set to the main profile and the GOP size was 12.
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Votes for Votes for Votes for Votes for
Corrected Impaired Corrected Impaired
Sequence . . Sequence . .
Sequence (in | Sequence (in Sequence (in | Sequence (in
percentages) | percentages) percentages) | percentages)
Plane 84 16 Plane 88 12
Chaplin 92 8 Chaplin 100 0
Charlie 84 16 Charlie 88 12
Mine 72 28 Mine 68 32
VJ Day 88 12 VJ Day 80 20
Soldier 92 8 Soldier 96 4

Table 6.3 Results of subjective evaluations
for the first set of experiments in which
impaired and restored sequences are com-
pared.

Table 6.4 Results of subjective evaluations
for the second set of experiments in which
impaired and restored sequences are com-
pared after MPEG compression at 4 Mbit/s

Figure 6.4 plots the results for this first set of experiments. The curves indicate that image res-
toration leads to more efficient compression over the range of investigated bitrates; at identical
bitrates, the restored image sequences can be compressed with fewer errors than the impaired
sequences. This proves that image restoration gives more efficient compression for the arti-
facts considered.

The gains are smallest for théJ Day sequence. Only the blotches were restored in this
sequence. Because the blotches cover only a small percentage of the total image area in this
sequence, removing them has little influence on the overall coding efficiency. The gains for the
Soldiersequence, which was corrected for intensity flicker, are somewhat larger. The intensity
flicker is a global effect and has a larger influence on the coding efficiency.Chaglie
sequence contained much flicker and many blotches. Restoring this sequence gives large
gains.

The restoredPlane Chaplin and Mine sequences give the largest increases in coding effi-
ciency. Unlike the other test sequences, these sequences were noise reduced. Noise is difficult
to code and removing it simplifies the coder’s task (unless, of course, the adjusted coder
described in Chapter 5is used)Q s largest forNhee sequence. As mentioned in the pre-
vious section, the correctédine sequence is quite smooth. Hence it can be coded with many
fewer errors than the impaired original.

The second set of experiments in this section measi(@s in terms of bandwidth, i.e., in
Mbit/s. At the time the experiments were carried out, the equipment for measiiéng with
human assessors, as described in Section 6.2.2, was not available. The numerical method, also
described in Section 6.2.2, was used.
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Figure 6.4 AQ measured in dB versus bitrate.
PSNR of ¥(i) at | Bitrate for z(i) AQ Savings in
Sequence 4 Mbit/s with same PSNR (in Mbit/s) Bandwidth by Restoration
(in dB) (in Mbit/s) (in percentages)
Plane 36.4 15.5 11.5 74,2
Chaplin 39.1 19.9 15.9 79.9
Charlie 40.1 9.0 5.0 55.6
Mine 44.3 38 34.0 89.5
VJ Day 34.0 4.2 0.2 4.8
Soldier 36.8 4.8 0.8 16.7

Table 6.5 Results of numerical evaluations of AQ measured in Mbit/s.

The experiment was set up as follows. First, the PSNR ratios were computed over the
encoded/decodegstoredimage sequences coded at 4 Mbit/s (broadcast quality). Next, the
impaired sequences were coded at bitrates so that the PSNRs over the coded/necaned
sequences were identical to those of the corrected sequences. The differences in bitrate gives
the increase in coding efficiency. The standard TM5 MPEG2 encoder was used for all experi-
ments. The coder was set to timain profile or, for bitrates greater than 15 Mbit/s, to thigh

profile, and the GOP size was 12.

Table 6.5 lists the results from the second set of experiments. Again, it is concluded that image
restoration leads to more efficient compression. Considerable savings in bandwidth can be
achieved by restoring impaired image sequences. Again, the largest gains were obtained for
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the test sequences to which noise reduction was applied. The last column in this table was
computed by:

Bitrate[Zi)] -4
Bitrate[ Zi)]

percentage= x 100 %. (6.3)

6.3.4 Discussion of experimental results

The experimental results verify that the image restoration algorithms developed in this thesis
improve the perceived image quality of impaired image sequences. The experiments also ver-
ify that image restoration improves the coding efficiency. Therefore, the benefits of restoration
of archived film and video is confirmed, and the assumptions underlying the work carried out
in this thesis are validated.

A question is how well the numerical experiments for determining the increase in coding effi-
ciency correspond to human perceptid@) , as defined in this chapter, reflects an increase in
image quality terms of PSNR or in terms of how many bits of irrelevancy have been removed.

It is well known that numerical measures do not necessarily correlate well with subjective per-
ception. For instanc&)Q is a global measure, whereas human observers are very sensitive to
local variations in image quality. An example that illustrates this is given by the experimental
results for theVJ Day sequence. This sequence was corrected for local artifacts, namely
blotches. The results from the test panel evaluation shows that a majority of 88% prefers the
corrected sequence over the impaired sequence. The large number of votes implies a clearly
visible improvement in the perceived image quality. In contrast,Ae computed for this
sequence in terms of PSNR and in terms of bandwidth are small; 0.1 dB and 0.2 Mbit/s,
respectively. Therefore, they suggest a marginal improvement only.

6.4 Discussion

This thesis presented new methods for image restoration that have proven to be very success-
ful. Is there still room for improvement? The answer is: yes. Automated image restoration is in
fact still in its infancy, for three reasons. The first reason is related to the fact that, so far, there
is no numerical measure for image quality that adequately models human perception. Human
intervention for setting key parameters in the restoration system to values that give optimal
results, visually speaking, is still necessary with the current technology. For example, the oper-
ator controls the amount of noise reduction to avoid overly smooth results. He or she detects
and corrects instances in which a blotch detection and correction system fails. The image res-
toration processes are not completely automated in the true sense of the word.

The second reason why automated image restoration can be considered to be in its infancy is
that the restoration techniques presented in this thesis are basically pixel based methods. The
restoration algorithms operate on pixels with their local temporal and spatial neighborhoods; it
is assumed that the local intensities follow certain statistical models. Often the parameters for
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this statistical model are inferred from large data sets and they do not necessarily reflect the
true local statistics anywhere in an image or image sequence. This, of course, is suboptimal.

The third reason is that image restoration techniques rely heavily on accurate motion estima-
tion and compensation. To date, motion estimators have difficulty coping with non-rigid
motion and illumination variations. This is not beneficial to the performance of image
sequence restoration algorithms.

If one tries to predict how the problems mentioned can be overcome, it is useful to draw paral-
lels with the field of image coding. Image restoration and image coding are intimately related
in the sense that they exploit temporal and spatial redundancy to isolate the essence of images
and in that they discard irrelevancy.

In the image-coding society, much attention is given to developing objective, numerical mea-
sures for the perceived quality of images and image sequences that correlate well to human
perception [99,102]. Currently, most of the research is focussed on measuring the influence of
typical coding artifacts (e.g., blocking artifacts and blur) on the perceived image quality. These
methods must be extended to artifacts common in old film and video sequences. A great chal-
lenge in this area is that, unlike for the case of video coding, no unimpaired references are
available to serve as ground truths.

The MPEGA4 standard initiates a trend towards object-based image coding. For MPEG4 to be
used to the fullest of its potential, algorithms capable of meaningful image segmentation will
have to be developed. Image restoration algorithms can exploit these segmentation results. The
image restoration problem then shifts from pixel-based to region-based processing. Spatial
and temporal correlations within corresponding regions can be exploited to get better esti-
mates of local image statistics.

In conclusion, image segmentation results can also be used by restoration algorithms for
higher level reasoning. For example, objects with large deformations from frame to frame pose
severe problems to blotch detectors. Many false alarms result, for instance, from a bird that is
flapping its wings rapidly in the process of flying. By relating the segmentation results for a
number of frames, a smooth motion trajectory may be found for segments that define that bird.
This implies temporal consistency; those segments do not represent blotches. Higher-level rea-
soning about the image contents can also be done by motion estimators to make them more
robust to object deformations and to illuminance variations. This in turn is also beneficial to
image sequence restoration.
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Hierarchical motion estimation

Full-search block matching is a well-known method for estimating motion from a source
frame to a reference frame. In this method, the source frame is subdivided into image blocks
of 8x 8 or 16x 16 pixels. An exhaustive search is performed for each image block to find the
optimal match within the reference frame. Teemmed squared differen¢8SD) and the
summed absolute differen€®AD) are often used as matching criteria. The displacement that
gives the optimal match yields the motion estimate [3]L, 93

Full search block matching is very intensive from a computational point of view. Furthermore,
the motion vectors obtained from this technique do not necessarily represent (a projection onto
two dimensions) of the true motion. They merely represent displacements that give optimal
matches.

A method that suffers less from these drawbacks is hierarchical block matching [11,31,93].
Figure A.1 shows the principle of this method. First, initial, coarse motion vectors are esti-
mated by applying (full-search) block matching to subsampled images. Next, the initial
motion estimates are propagated to the next level with higher resolution and refined. Instead of
full-search block matching, the refinements consist of doing a limited search in the region cen-
tered around the initial, coarse motion estimate. Again, the refined motion vectors are then
propagated to the next level with higher resolution. The refinement process is repeated until
the motion vectors have been computed for the source image at full resolution.

119
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Initial, coarse motion estimate

S

First refinement [

Final estimate Erame t+1

Frame t
Figure A.1 General principle of hierarchical block matching. The gray areas indicate the
search region for the block matching process.

As a result of the subsampling and the limited search strategies, hierarchical block matching
requires fewer computations than full search block matching. Therefore it is faster. Further-
more, the final hierarchical motion estimates are closer to the true motion and the motion vec-
tors are more consistent locally than the full search block matching motion estimates.

The reason for this is that the initial motion estimates are done on coarse images.gAn
image region in an image subsampled horizontally and vertically by a factor 4 corresponds to
animage region 082 x 32 in the high-resolution image. Therefore, the initial motion estimates
computed by the hierarchical block matcher take more context into account than a full-search
block matcher that usesx8 image blocks. Because motion estimates are propagated from
coarse resolution levels to finer resolution levels, the refined estimates for adjacent blocks in
the higher resolution images are made on the basis of the same initial vectors. Therefore, the
final motion estimates are consistent locally.

As is explained in Chapter 2, hierarchical motion estimators are relatively robust to common
artifacts in video and film sequences.
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Derivation of conditionals

B.1 Introduction

Section 4.5.2 stated that draws have to be taken from the conditionals:

aOP[alo?2, o(i), z,, d],
o2 DP[0§|a, o(i), z,, dl, (B.1)
o(i) OP[o(i)]|a, o2, z, (i), d(i), O].

This section shows that in the case of drawing samples from a conditional, it is not necessary
that the conditional be known exactly. It suffices that the distribution of the samples follows a
function that is proportional to the conditional. The following sections derive such functions
for the conditionals in (B.1).

Bayes'’ rule states:

P[B| Al [P[A]

= (B.2)

P[AB] =

121
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The goal is to draw samples fér , givédh , froRif A B . BecaBse is gifRRiE] can be
regarded as a normalizing constant. It is therefore only necessary that the draw for  be pro-
portional to:

P[ A B] OP[B| Al [P[A]. (B.3)

This means that, when deriving expressions for conditionals from which samples are to be
drawn, it is not necessary to compute the normalizing constant® Let indicate a collection of
random variablesy,, b,, ..., b, , and suppose that is independewt of . Then:

P[A|B] O P[by, by, ..., by|A] [P[ A
= P[by|by, ... byl CPLb,, ..., by| A] TP[A] (B.4)
OP[b,, ..., by |A] (PLA].

It can be seen from (B.4) that it is only necessary to consider terms involving  for drawing
random samples fok , giveB

Before deriving the conditionals in (B.1), first a quick word about notation. In this section,
bold faced characters describe matrices (capital letters) or vectors (small letters). For instance,
Z represents a vector into which an observed frafig has been scanned in a lexicographic
fashion. Analogous to Chapter 4,  indicates a vector containing the motion-compensated
previous, current, and next frame.

B.2 Conditional for AR coefficients

Each image region with missing data is modeled by a 2D AR process that uses a single set of
coefficientsa . The conditional fa is given by:

Pla, 02, 0|z, d]

Plajo?, o, z,,d] = (B.5)

[Pla 62 0|z, d]da’
a

At first glance this might seem to be a very complex distribution. Fortunately, as is shown in
[47], it turns out that (B.5) is proportional to a multivariate gaussian distribution. The deriva-
tion of [47] is repeated here.

First, it is noted that the denominator in (B.5) is independer&t of and hence it can be consid-
ered as a normalizing constant that can safely be ignored. Therefore:
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P[a|c?, o, z,,d] O P[a, 02, 0|z, d]

7Lz, 20,03 d) Pla ©)

2 € ppa)
exp aJ,
(2no)N2 " 02020

where the identity in (4.33) has been used. Note that (4.33) applies to single pixels whereas
(B.6) applies to image blocks witN  pixels. Hence the fadtbr in the last line of (B.6). In
this equationg is a vector with prediction errors ahd indicates the transpose operator. This
prediction error vector is given by reformulating (4.30) in vector-matrix notation:

Vv =AVy+e
: y (B.7)

Ya+e

The top line in (B.7) gives the usual vector-matrix representation of an AR image model in
which a sparse matridA that contains the prediction coefficients is multiplied with an image
vector. Here, for convenience, the definition in the bottom line in (B.7) is used where the AR
coefficients are placed m , afdi) is scanned into matrix  suclVthat AY

The termeTe in (B.6) is examined more closely now:

(y-Ya)T Oy-VYa)
§Ty—29TYa+aTYTVa (B.8)
(a— (YT YT ayYTy) Qa— (YTY) Y9 + §Ty—-9TY(YTY) YTy,

ele

Substituting those terms in (B.8) that involae into (B.6), and also keeping in mindP{lagt
has a uniform distribution assigned to it, i.e., that it is a constant, gives:

Plajo?, o, z,,d] O

D@a-(YTY)IyTy) oy Ty) Qa—(YTY) 1y Ty (B.9)
2 NIZGXPD 2 m
(2T[O-e) O 206 U

This can be recognized as proportional to a multivariate gaussian and can be denoted com-
pactly as:
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Plal¥, 02 0,2, d] ON(& c2OYTY)™), (B.10)

where & = (YTY)™1YTy is the least squares estimate for the AR coefficientsy and
YT§ can be recognized as estimates for the autocorrelation nﬁ;@x and the autocorrela-
tion vectorr.., . These are necessary for solving the normal equations [53,94]. The pdf for is
thus shown’to be proportional to a well-known distribution.

B.3 Conditional for the prediction error variance

A single error variance parameteé is associated with each image region with missing data.
The conditional forog is given by:

Pla, 02, 0|z, d] E11)

Plo|a o, z,d] = .
ofe.0 % [ Pla 02 0|z, d]do?
2

Oe

Again, the denominator can be viewed as a normalizing constant that can safely be ignored:

P[0§|a, 0, z,d] OP[a 02 0|z, d]

OP[§|a 02] (P[o?]
208 © (B.12)
el
= —1N/éexpDe—2eDEP[Gg]
(2mo2) 020200

In [47] an equation is derived that is very similar to that in (B.12) and it is noted there that the

result is proportional to an inverted gamma distributl@y x|, w) with paramdiers and
w:
IG(X|WY, w) = L—expm—&)m. (B.13)
r(lIJ) D(lp +1 0 XD

Il;] x = 02, ¢ = N/2,andw = eTe/2, then (B.12) is proportional to (B.13), which means
that:

.
Pl02]a, 0, 2, d] 0 1G5 g e (B.14)
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B.4 Conditional for the direction of interpolation

Unlike the AR model parameters, the direction of interpolation is computed on a
pixel-by-pixel basis instead of on a block-by-block basis. The conditionabfoy is derived
here. At each particular site  the conditional is given by:

P[a, 02, o(i)|z,, d, O]
[Pla 03,0z, d, O]do’
[0}

Plo(i)|a 02, 2,,d,0] = (B.15)

Here O indicates the direction of interpolation for the pixels in the local region surrounding
o(i). Collecting those terms that are proportional to the variables of interest gives:

P[o(i)|a 02, z,,d, O]
O P[z.(i)[a ofi), 02, d] (P[o(i)|O]

D_eZ(i)D [ ] . 0
O exp+—=0lkexXp—= o(i)—o(i +
pD 205 O g %B| (H=ol qk)|D

0 exp- gs[(l—d(i)) 2(i) - AR(S, i, a))2 + (B.16)

d(i) Mo(i) [z, (i, t + 1) + (L —o(r)) Iz, (i, t = 1) = AR(Y, i, a))2] +

O]
 Blo(i) —o(i +a|1

As in Chapter 4,AR(Y; a,1) denotes the prediction of the corrected injage  at lodation
AR(Y a, i) is determined completely by, (i), o(i), a, og and . The eight-connected
neighbors oo(i) are indicated (i +q,) ,wikh=1,...,8

Drawing samples from (B.16) with the Gibbs sampler is very easy. It involves evaluating
(B.16) at a specific site foo(i) = 0 andfa(i) = 1 , while keeping the other values for
the direction mask and thig(i)  fixed. The results are assigned to cand , respectively.
Next, a value foro(i) (and thereby the correspondiio ) is chosen at random, with a prob-
ability ¢,/(c, +¢,) thato(i) = 0 and with a probabilitg,/(c, +¢,) that(i) = 1 .Asin-

gle update of an image region consists of applying the Gibbs sampler to each site in that region
in turn, following, for instance, a checkerboard scanning pattern.
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Appendix C

Optimal quantizers for encoding noisy
Image sequences

This appendix shows that minimizing the error variafge2(i)] between wput and out-
put z(i) for a communication system as depicted in Figure 5.9 is equivalent to designing opti-
mal quantizers for the MPEG2 encoder. It is assumed that the channel is error free. Work
related to this topic is given in [24,27]. The equation for the optimal quantizers is derived. For
ease of notation, spatial indices are omitted in this appendix.

In the absence of channel errors, the scheme in Figure 5.9 can be simplified to that in Figure
C.1 in which the noisy signal is transformed by the DCT, quantized, inverse quantized and

inverse transformed. Figure C.2 gives an example of a quantizelyith  representation levels.
The error variance is related to the quantization error in the coded DCT coefficients:

64 )

S EL(Y—Z)?]

k=1

64

> E[(Yk—Qk[Zk])z] (C.2)
k=1

E[£?]

64 o o
2 | I(Yk_Qk[Zk])2 [PYk,Zk[ch Zk]dzkdvk.

k=1-c0—0
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Noise

y(i) 1) : Inverse 2(1)
—— > DCT —®{ Quantizg—»| Quantize_> IDCT ——»

Figure C.1 Simplification MPEG2 encoding/decoding over a noise free channel.

Iy —
ra
ds
ddy |3 d; dg dg
2 Figure C.2 Example of quantizer with representa-
tion levels ry to r5 and decisions levels d, to dg. Note
r that d; and dg lie at plus and minus infinity.

HereY, 2y andz, ,withk = 1, ...,64 , indicate DCT coefficients with coefficient number
k obtained from8 x 8 image blocks. The quantizer for DCT coefficient is indicated by
Qyl-]. The joint probability distributioﬁ’Yk Zk[Yk, Z,] s given by:

Py.z[Yie 2l = Pz [£Y\] Py [V

(C.2)
= Py [Yk - Zk] EPYk[Yk] )

whereP,[-] is the distribution of the additive noise.

Because the MPEG2 coding standard defines the representation levels of the inverse quantizer
in the decoder, the only free parameters in the chain from input to output are the decision lev-
els of the quantizers in the encoder. Minimizing (C.1) is therefore equivalent to selecting opti-
mal decision levelsd, ., in the quantizer, given the representation leygls , with
l=1,..,L,andm=1,.. L +1. '

Without loss of generality, led, ; = — and, | ,; = © . Equation (C.1) can then be bro-
ken down intoL partial integrals over the  decision intervals:
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64 o Ly 41
Ele?l = 3 [ 3 [ (M-QdZd)ZPNIY-Zd TPy [Y\]d dy,
k=1_—wl=1 d|

64 L o diyq (C.3)
= 3 3 M )? Py YO [ PLY=Z,0dz dy,
k =1 | =1 - d|

Equation (C.3) is always positive. Hence, it is minimized by minimizing each of its 64 terms,
i.e., by selecting the optimal decision levels given the representation levels for all the individ-
ual quantizersQ, . The optimal decision levels are obtained by setting the derivatives with
respect ta, | to zero. This yields the following decision Iedgil% , Ehm< L

00

[ (e me1=Yi)?= (" m=Y)?) Py [Yi] IPNLY—dy ldYy = 0. (C.4)

—00

The optimal quantizers are now defined. Some concluding remarks can now be made. First,
note that in an MPEG2 encoder, the input sigy@l) in Figure C.1 can be either a true image
or an image representing prediction errors, depending on whether an |, P, or B frame is coded.
The statistics for these images vary, and therefore different quantizers need to be computed for
each situation. Second, depending on the amount of bits that are available, an MPEG2 encoder
selects a quantizer with a certain number of quantization levels. To get minimum error vari-
ance, multiple optimal quantizers have to be computed to accommodate this freedom of the
encoder.
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Samenvatting

Restauratie van Gearchiveerde Film en Video

Wereldwijd liggen unieke verzamelingen beeldmateriaal opgeslagen in grote archieven. Vele
historische, artistieke en culturele ontwikkelingen van d& @uw zijn hierin vastgelegd.

Door verouderingsprocessen zijn veel beelddragers echter sterk aangetast. Om te voorkomen
dat visueel materiaal van belangrijke momenten in onze geschiedenis verloren gaat is conser-
vering en restauratie een eerste vereiste. Het veiligstellen van ons historisch en cultureel verle-
den is niet alleen van belang voor de wetenschap. Door het gebruik van digitale
videostandaarden zullen in de nabije toekomst nog meer zenders te ontvangen zijn in de woon-
kamer. Om de zendtijd te vullen zijn programma’s nodig. Deze kunnen uiteraard verkregen
worden door nieuwe programma’s te produceren. Een goedkoop alternatief is het hergebruik
van grote kollekties films, series, documentaires en spelprogramma’s die zich momenteel in de
archieven bevinden. Hierbij dient wel een kanttekening geplaatst te worden. De moderne Kij-
ker zal alleen dan oude programma’s accepteren indien de visuele- en audiokwaliteit daarvan
voldoen aan de eisen van deze tijd.

Vanwege de enorme hoeveelheden opgeslagen film- en videomateriaal, maar echter ook van-
wege economische motieven, is het noodzakelijk dat beeldrestauratie wordt uitgevoerd door
middel van een automatisch beeldrestauratiesysteem. De nadruk dient gelegd te worden op het
woord automatischDit omdat handmatige beeldrestauratie een tijdrovende en eentonige aan-
gelegenheid is. In 1995 werd het AURORA-projekt gestart met subsidie van het Europese
ACTS programma. AURORA staat voor AUtomated Restoration of ORiginal video and film
Archives. Het doel van dit 3 jaar durende project was omreahtimesysteem te ontwikkelen

voor restauratie van oude video- en filmbeelden. Dit systeem moest in staat zijn om grote hoe-
veelheden materiaal te verwerken met een minimum aan menselijke interaktie. De toenmalige
apparatuur vereiste veel menselijke interaktie en kon veel voorkomende soorten artefakten
(degradaties van beelden) niet volautomatisch restaureren.

De Technische Universiteit Delft nam deel aan het AURORA projekt. Dit proefschrift
beschrijft de onderzoeksresultaten die in Delft behaald werden in het kader van dit projekt. De
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volgende verstoringen werden in Delft onderzocht: knipperen van de helderheid in beelden,
vlekken en ruis. Het knipperen van de helderheid is een veel voorkomend artefakt in oude
zwart-wit films dat wordt ervaren als tegennatuurlijke temporele fluctuaties in beeldintensiteit.
Dit proefschrift beschrijft een orginele en effectieve methode om het knipperen in helderheid
te corrigeren. Deze methode is gebaseerd op het gelijktrekken van het lokale gemiddelde en de
lokale variantie van de beeldintensiteit in opeenvolgende beelden.

Vlekken zijn typisch film-gerelateerde artefakten. Ze worden veroorzaakt doordat de gelatine
van de film loslaat en doordat vuil zich aan de film hecht. Bestaande methoden voor het detec-
teren van vlekken maken veel fouten in de zin dat ze voor te veel beeldelementen ten onrechte
aangeven dat deze deel uitmaken van een vlek (loos alarm). Het gevolg is dat er in de gecorri-
geerde sequentie fouten kunnen ontstaan die, visueel gezien, nog storender zijn dan de oor-
spronkelijke viekken. Dit komt omdat de gebruikte interpolatietechnieken om beelden te
corrigeren ook fouten maken. Dit proefschrift beschrijft technieken om de detectie van viek-
ken te verbeteren. Deze technieken houden rekening met de invloed van ruis op de detector en
buiten de spati€le coherentie die eigen is aan vlekken uit. Bovendien is er een nieuwe, op
beeldmodellen gebaseerde methode voor het corrigeren van vliekken ontwikkeld die sneller en
meer robust is dan bestaande methoden.

Coring is een bekende techniek om ruis te verwijderen uit beelden. Eerst wordt het geobser-
veerde beeldsignaal naar een frequentiedomein getransformeerd. Het getransformeerde sig-
naal wordt dan aangepast volgens de zogenaamde coringkarakteristiek. Het eindresultaat (het
beeld waaruit de ruis is verwijderd) wordt verkregen door de inverse transformatie toe te pas-
sen op de aangepaste data. In dit proefschrift wordt een raamwerk ontwikkeld om deze tech-
niek te kunnen toepassen op video- en filmsequenties. Dit raamwerk is gebaseerd op
drie-dimensionale beeldtransformaties. Deze beeldtransformaties staan toe dat informatie in
de temporele dimensie uitgebuit kan worden ten behoeve van het ruisverwijderingsproces. Dit
laatste is niet mogelijk in de situatie waarin de beelden afzonderlijk van elkaar worden
bewerkt. Dit proefschrift laat tevens zien dat coring binnen het MPEG2 codeerschema
geplaatst kan worden zonder dat dit al te veel aan complexiteit toevoegt. MPEG2 wordt dan
een systeem dat simultaan ruis verwijdert en beelden comprimeert. Het aangepaste codeer-
schema levert een significante verhoging in de kwaliteit van gecodeerde, ruisige beeldsequen-
ties.

Beeldrestauratie verhoogt niet alleen de perceptuele kwaliteit van video- en filmbeelden, maar
het vergroot ook de beeldcoderingsefficiéntie. Dit betekent dat bij een gegeven vast aantal bits
beelden met hogere kwaliteit gecodeerd kunnen worden. Andersom kan met minder bits
dezelfde kwaliteit behaald worden. Dit laatste is vooral van belang in situaties waarin beeld-
data digitaal wordt uitgezonden en opgeslagen. In deze omstandigheden lopen de kosten op
met het benodigde aantal bits. Dit proefschrift onderzoekt en evalueert de invloed van artefac-
ten op de coderingsefficiéntie. Aangetoond wordt dat flink op bandbreedte bespaard kan wor-
den zonder kwaliteitsverlies.



Acknowledgements

A thesis is never the result of the work of a single person. | am indebted to many people who
contributed either directly or indirectly to this thesis. Listing everyone who made the contribu-
tions would undoubtedly fill quite a few pages and so | will restrict myself to a number of peo-
ple | would like to give special mention.

First of all, | would like to thank my parents for their support and encouragement over and for
providing me with the means to getting this far. | would also like to thank Conny for being so

patient

| would like to thank Jan Biemond for inviting me to take part in the Aurora project, for his
good advice and support over the years, and for being pleasant travel company. Furthermore, |
am also grateful to my roommate Inald Lagendijk for the technical discussions we had and for
the enormous amount of time and interest he took in carefully reading and commenting on my
thesis.

The results in this thesis are also due to the interactions that took place within the Aurora
project. The partners of the Aurora project gave birth to many interesting discussions. | would
especially like to mention Anil Kokaram, Jean-Hugues Chenot, Louis Laborelli, John Dre-
wery, Jim Easterbrook, Colin Smith, and Tomaso Erseghe for opening up my eyes towards
concepts of parallel processing, keeping things nice and simple, internet economics, Gregorian
chanting, bicycle hubs, the court of law, and Indian food.

A thesis is not only about knowledge. It is also about communication and language. Therefore,
| would like to thank my mother (again) for editing the draft version of this thesis. Nowadays,
image processing is all about computing and writing a thesis is all about desk-top publishing.
To come to a thesis that deals with image processing requires a good computer infrastructure

141



142 Acknowledgements

that is well managed. | give special thanks to Ben van den Boom for keeping my computer and
the network up and running in a smooth fashion and for readily solving problems as they
arose.

Furthermore, | would like to mention that | enjoyed the lunches very much with (in no patrtic-
ular order) Erik “There is no conspiracy”, Andre “Let’s not talk about the piano”, Alan
“Schnitzel essen?”, Gerhard “I have a problem...(sigh)” and Isabel “All the boards in the cup-
board are mine!”

Finally, 1 would like to thank all colleagues at the information and communication theory
group that | have not mentioned explicitly, such as Erik Vullings and John Schavemaker, for
making my years in Delft very pleasant ones.



Curriculum Vitae

Peter Michael Bruce van Roosmalen was born in Maastricht, the Netherlands, on July 16,
1970. In 1987, he received his HAVO diploma (general secondary education) from the Henric
van Veldeke College in Maastricht. Two years later he received his Atheneum diploma from
this college. Next, he studied Electrical Engineering at the Delft University of Technology. He
worked at Philips Medical Systems as a trainee for four months in 1993. He carried out his M.
Sc. project at the Information Theory Group (currently the Information and Communication
Theory Group), Delft University. The topic of the project was 3D modeling of dolphin CT
scans. He received his M. Sc. in September 1994.

After an extensive holiday, he became a member of the technical staff of the Information The-
ory Group in 1995. There he designed and implemented an operating system for recording and
playing back image sequences in stereo in real-time. In September of that same year, he joined
the AURORA project and became a Ph. D. student. After writing his dissertation, he did a
pilot study in favor of a sequel to the AURORA project at INA in Paris, France.

143



144 Curriculum Vitae




