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1
INTRODUCTION

Federated Learning (FL) [1] is a paradigm of machine learning that enables multiple
parties to collaboratively train a model without sharing their private data. It was
first proposed by Google in 2016 [1] as a way to leverage the massive amount
of data generated by edge devices while preserving user privacy and reducing
communication costs. Since then, FL has attracted increasing attention from
both academia and industry, as it offers a promising solution to access various
domains such as healthcare [2, 3], finance [4], the Internet of Things [5], and edge
computing [6].

Despite its benefits, FL still has privacy issues since clients’ sensitive information
may be leaked through the model updates exchanged during the training process [7–
9]. Meanwhile, security issues are also notable. A fraction of clients may behave
unpredictably or maliciously during the training process to deteriorate the accuracy
of the global model [10] or inject a backdoor into the global model [11, 12].

A lot of works have been dedicated to these issues but they still pose new
technical challenges that require innovative methods and tools to address. Among
these challenges, the practicality of privacy-preserving horizontal & vertical FL and
improving the Byzantine robustness of FL (Byzantine-robust FL aims to proceed
with training properly even in the existence of malicious clients) are considered
in this thesis for the following reasons. Firstly, privacy-preserving horizontal FL
exposes many problems in terms of practicality. For example, encryption-based
solutions rely on a Trusted Third Party (TTP) to distribute keys and involve frequent
communication between a central server and multiple distributed clients, which can
be costly and unreliable. Beyond that, it introduces a significant computational
burden on FL. Secondly, in privacy-preserving vertical FL, the assumption that
only one client has all the labels for all the samples may not be practical in
some cases. For example, in a healthcare scenario, different hospitals may have
diagnoses for different patients, and there may be inconsistent labels. Thirdly, most
Byzantine-robust FL systems rely on the assumption of an honest majority of clients.
In real-world scenarios, FL is often deployed in environments where there may be
competing interests, and clients may have incentives to manipulate the learning
process. Acknowledging the possibility of a malicious majority of clients cannot be
ignored. Overall, it can be said that all three issues above must be resolved before

1
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bringing FL into real-world scenarios. This chapter is an introduction to the concept
of FL that forms the basis of the thesis. In Section 1.1, we explain the FL and
its relevance with distributed learning. Section 1.2 identifies the key challenges in
the current state-of-the-art of FL, which are addressed in this thesis. The problem
statement and research questions of this thesis are presented in Section 1.3. Finally,
Section 1.4 lists our contributions and the outline of this thesis.
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1.1. FEDERATED LEARNING
Federated Learning (FL) [1] is a specialized paradigm within machine learning that
pertains to the training of algorithms, such as deep learning, across numerous distinct
local datasets residing within individual clients. Notably, this approach circumvents
the explicit exchange of training datasets among clients. The fundamental tenet of FL
involves the iterative training of local models on datasets owned by different clients,
coupled with periodic updates exchanged with a central server. This exchange
encompasses crucial model updates, such as the parameters or gradients inherent to
a deep neural network. At defined intervals, the server aggregates updates to derive
a global model shared ubiquitously across all participating clients.

In contrast, distributed learning [13], while sharing similarities with FL in terms
of training a global model across multiple clients, diverges in its fundamental
assumptions concerning the local datasets. The focus of distributed learning is
to divide and distribute computing tasks on different devices so that they can be
completed in parallel. It assumes that local datasets are Independent and Identical
Distribution (IID) and that they have homogeneous data distributions. Unlike the
rigorous assumptions inherent to distributed learning, data distributions in FL are
more heterogeneous, namely non-IID. Figure 1.1 provides an illustration of IID and
non-IID datasets with MNIST [14]. Specifically, in the context of IID, each client
possesses all classes of labels, with an equal quantity of each class. In contrast, in
non-IID scenarios, the quantity of labels distributed varies among clients, leading
to significant distribution disparities. In an extreme case, as depicted in Figure 1.1,
each client only holds 2 out of 10 labels. Overall, the constituent datasets within
FL are typified by their dissimilarity and can exhibit substantial disparagement in
their quantities of each class. Furthermore, the clients participating in FL may
be inherently less reliable, owing to their susceptibility to failures and dropout
events. This fragility comes from their reliance on weaker communication methods,
exemplified by Wi-Fi, and battery-powered frameworks, like smartphones and IoT
devices. In contrast, in the realm of distributed learning, clients predominantly
comprise data centers endowed with abundant computational resources and are
interlinked via high-speed networks.

DEFINITION

Empirical Risk Minimization (ERM) [15] is a fundamental concept in machine
learning. It involves minimizing the empirical risk, also called loss, on a training
dataset by optimizing model parameters. Considering the paradigm of ERM within
FL, the primary objective is to acquire knowledge encapsulated within a global
model denoted as fθ : X →Y , which serves to map a given data instance x ∈X to
an associated label y ∈Y . Note that the FL server is intentionally precluded from
directly accessing the underlying training dataset. Instead, it orchestrates a process
of aggregating local updates (weights or gradients), collected from local clients, each
of which undertakes autonomous training on their respective local datasets.

The prevalent operational approach for synthesizing these updates is commonly
termed as Federated Averaging (FedAvg) [1]. The overarching training objective
revolves around the attainment of the global parameters θ by means of addressing
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Figure 1.1: An illustration of IID and non-IID for MNIST dataset, where the
distributions of the quantity of labels are more evenly in the case of IID
compared to the cause of non-IID.

the finite-sum optimization challenge formulated as follows:

argmin
θ

fθ =
1

n

n∑
i=1

fθi , (1.1)

where n signifies the count of participating clients. Under FL setting, each client
i holds its training data Xi and labels Yi . Within each round indexed by t , the
server S identifies n clients for participation in the update aggregation endeavor.
Then the server broadcasts the global model θt to the selected clients. Subsequently,
each client i proceeds to train an independent local model fθi : Xi →Yi , employing
its localized dataset Di = {(x j , y j ) : x j ∈ Xi , y j ∈ Yi , j = 1,2, ..., |Di |} for a designated
number of training epochs. This training is executed via an optimization algorithm,
most commonly Stochastic Gradient Descent (SGD) [16].

The main goal of client i is to develop a refined local model, captured by the
optimization task as expressed below:

θ∗i = argmin
θt

∑
(x j ,y j )∈Di

L ( fθt (x j ), y j ). (1.2)

Within this expression, L symbolizes the employed loss function, often exemplified
by the cross-entropy loss in the classification task. Subsequent to this optimization,
client i generates local updates denoted as δt

i = θ∗i −θt , which is subsequently sent
back to the server. Finally, the server aggregates the diverse updates and forges an
updated global model via averaging, which is succinctly represented as:

θt+1 = θt + η

n

∑
i∈[n]

δt
i . (1.3)

Herein, η embodies the global learning rate. Once the global model θ achieves
convergence or the training protocol reaches a prescribed iteration limit, the
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aggregation process is terminated, yielding the final global model. The overview of
the training process is summarized in Figure 1.2.

(a) The Server selects
n clients for FL
training.

(b) The Server sends
the initial model
to the clients.

(c) Clients conduct
local training with
local datasets.

(d) Clients upload up-
dates aggregated
by the server.

Figure 1.2: Overview of Federated Learning training process. The boxes stand for
participants of FL. The yellow line and white points represent model and
training data, respectively. The model fits the data as much as possible to
achieve the minimal loss.

CATEGORIES OF FEDERATED LEARNING

In this section, we explore the categorization of FL, focusing on the distribution
characteristics of the data.

Given that the feature (X ), label (Y ), and sample ID (I ) space of data owned by
clients may differ, the FL can be categorized into three types: horizontal FL, vertical
FL, and Federated Transfer Learning (FTL). These classifications are based on how
data is distributed among various clients in both the feature and sample ID space.
Figure 1.3 illustrates the different frameworks for a two-party scenario in FL.

(a) Horizontal Federated
Learning

(b) Vertical Federated Learn-
ing

(c) Federated Transfer
Learning

Figure 1.3: Categorization of Federated Learning. The xi and y stand for different
features and labels respectively, showing as different colors. The numbers
on the left side of the features represent sample IDs.

• Horizontal FL: In this category, different clients possess the same features but
have different sample IDs of data, which can be summarized as:

Xi =X j ,Yi =Y j , Ii 6= I j ,∀Di ,D j , i 6= j . (1.4)
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Each client trains its local model on its unique subset of data. Horizontal FL is
suitable when the overall goal is to aggregate knowledge about a common set
of features across decentralized data sources.

• Vertical FL: It is employed when clients have different features, but there is an
overlap or correlation between them. Each client holds specific information
about a subset of features, and the FL process involves collaboratively training
a model across these complementary feature sets. This type is particularly
useful in scenarios where combining diverse data sources enhances the model’s
performance. Therefore, the vertical FL is defined as:

Xi 6=X j ,Yi 6=Y j , Ii = I j ,∀Di ,D j , i 6= j . (1.5)

• Federated Transfer Learning: It involves the scenarios in which the two data
sets differ not only in sample IDs but also in feature space. We have:

Xi 6=X j ,Yi 6=Y j , Ii 6= I j ,∀Di ,D j , i 6= j . (1.6)

The goal is to train a model on a source domain and then adapt it to perform
well on a target domain. This is especially valuable when there is a scarcity
of labeled data in the target domain. The model is initially trained on one or
more source domains, and the knowledge gained is transferred and fine-tuned
on the target domain while respecting data privacy constraints.

These categories provide a framework for understanding how FL can be applied in
various scenarios, depending on the nature of the data distribution and the specific
goals of the learning process. The choice of category depends on factors such as the
similarity of features across clients, the availability of labeled data, and the desired
outcome of the FL tasks.

UNSOLVED PRIVACY ISSUES WITHIN FL

The goal of proposing FL is to preserve the privacy of the training data of clients by
allowing models to be trained across local clients without sharing raw data. However,
it’s essential to recognize that while FL enhances privacy compared to traditional
centralized approaches, it may not provide absolute privacy guarantees.

Within the domain of FL, adversaries can engage in activities like parameter
analysis or gradient-matching attacks, endeavoring to reverse-engineer private data
from seemingly harmless updates [8, 17–19]. This risk highlights the importance
of using methods that protect privacy. Therefore, it’s crucial to be watchful in
safeguarding not just the data itself but also the metadata and additional information
that might accidentally expose sensitive details, like model updates. For example,
deep leakage from gradients [8] is a privacy attack that can recover the private
training data from the publicly shared gradients in FL. Specifically, the attack is based
on the assumption that the gradients are computed from a single data point or a
small batch of data points and that the attacker has access to the model architecture
and parameters. The basic idea is to use the gradients as guidance to iteratively
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update a dummy data sample until it converges to the raw data. The attack works
as follows: 1) The attacker generates a dummy data sample and a target label with
the same shape as the training data and then derives the dummy gradients. 2) The
attacker computes the Euclidean distance between clients’ gradients and dummy
gradients as a reconstruction loss. 3) The attacker updates the dummy data by
applying the gradient descent rule. 4) The attacker repeats steps 2) and 3) until the
loss is minimized or the dummy data stops changing significantly. 5) The attacker
obtains the recovered data sample, which is close to the training data point in terms
of pixel-wise or token-wise precision.

This attack is much stronger than the approaches that can only infer some
statistical information or membership information from the gradients [20]. The
attack poses a serious threat to the privacy of the clients in the FL system.

Therefore, one of the paramount concerns revolves around preserving privacy,
a challenge that manifests itself in multifaceted dimensions. To address these
privacy concerns in FL, privacy-preserving algorithms are essential. However, the FL
setting imposes unique constraints on these algorithms. Firstly, they must exhibit
practicality and efficiency, avoiding dependence on unrealistic assumptions and
excessive computational and communication burdens on the FL system. Secondly,
these methods must do so without unduly sacrificing the accuracy of the global
model, as FL’s efficacy relies on the quality of the model learned.

UNSOLVED ROBUST ISSUES WITHIN FL

Byzantine robustness within the context of FL becomes a critical concern. As FL
uses the combined knowledge of many decentralized clients to train a shared model,
the risk of some clients trying to take advantage of the cooperative system for
malicious purposes becomes clear [21–24]. Such clients, also known as Byzantine
clients, endeavor to subvert the learning process by employing a diverse array of
tactics (i.e., poisoning attacks), thereby posing multifaceted threats to the overall
integrity, security, and efficacy of the FL system.

Untargeted attacks [10, 25], emblematic of the first facet of this issue, involve
Byzantine clients engaging in disruptive behavior with the primary aim of causing
harm to the accuracy and performance of the FL model, without having a specific
objective or target in mind. These tactics encompass uploading incoherent, spurious,
or corrupted local updates to the server, thereby introducing significant discord
into the training procedure. Furthermore, such adversarial entities may deliberately
introduce perturbations or anomalies to their local datasets, thereby propagating
noise and divergence into the global model [25]. Consequently, the outcomes of
untargeted attacks manifest in the degradation of the global model’s accuracy, a
perturbation in its stability, and a hindered convergence rate, thereby hampering the
overall efficacy of the FL ecosystem.

The second facet of this problem is represented by targeted attacks [11, 12, 26–28],
where Byzantine clients adopt a purposeful approach by aiming their adversarial
actions toward specific objectives. These malicious objectives often involve the
introduction of maliciously crafted local updates into the global model, leading to
the injection of erroneous patterns or the creation of subtle triggers, often referred
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to as backdoors [28]. Additionally, manipulation of the local dataset to carry hidden
vulnerabilities or exploit points further exacerbates the security compromise.

1.2. CHALLENGES IN SECURITY OF FEDERATED LEARNING

Given the expansive scope of the field of FL, it becomes evident that a great
number of challenges necessitate resolutions to push the current state-of-the-art
in FL towards greater advancement. In this dissertation, we take the first step to
enhance the security of FL in various real-world situations. This section succinctly
enumerates the predominant challenges in the realm of secure FL. We will delve into
the intricate challenges entailing matters of the practicality of privacy-preserving
horizontal & vertical FL and improving the Byzantine robustness of FL. Nonetheless,
the non-inclusion of challenges, such as fairness considerations within FL, within
the scope of this study does not imply their significance is diminished.

PRACTICALITY OF PRIVACY-PRESERVING HORIZONTAL FL

Differential Privacy (DP) [29] and Homomorphic Encryption (HE) [30–33] have
been incorporated into FL as supplementary privacy-preserving mechanisms. DP
introduces Gaussian [34] or Laplacian [35] noise to each uploaded model gradient [36,
37], a cost-effective and lightweight approach. Nevertheless, the introduction of noise
adversely affects model performance in terms of accuracy and does not address
potential data reconstruction attacks on the model gradients [38].

HE also plays a pivotal role in the preservation of privacy within the landscape
of FL since it allows the server to do aggregations under ciphertext. Specifically,
the process involves encrypting the model parameters or updates on the client side
before uploading to the server. The server can perform aggregations on ciphertext
without decrypting it, obtaining the encrypted results. Once the server transmits the
encrypted result back to the clients, they can decrypt it to reveal the final model
update. This entire process ensures that the server never accesses the raw data,
preserving the privacy of individual client contributions throughout the FL process.
However, the HE-based FL [39–41] is marked by a salient drawback that requires
close attention. This drawback arises because it necessitates the participation of
a Trusted Third Party (TTP) in the crucial tasks of creation and distribution of
cryptographic key pairs. While HE plays a crucial role in privacy-preserving FL,
adding a TTP brings a complex set of challenges that may impact FL frameworks in
terms of efficiency and security.

Primarily, incorporating a TTP increases the attack surface and overall complexity
of the topology within the FL system. The involvement of an additional entity,
responsible for key management and distribution, introduces an inherent hierarchical
structure that deviates from the decentralized essence characterizing FL systems.
This departure from the fundamental tenets of FL can lead to intricate network
configurations. Consequently, the incorporation of a TTP in HE-based FL systems
brings about additional communication complexity, heightened communication costs,
and the potential for bottlenecks during key distribution. These factors collectively
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impact the efficiency and scalability of the FL process, potentially diminishing the
advantages offered by HE for secure and privacy-preserving computations.

Furthermore, in the context of HE-based FL, a notable distinction arises when
compared to other areas such as banking that inherently operate with TTP. Unlike
these domains, HE-based FL faces a unique challenge the need to introduce a new
TTP. In traditional sectors like banking, the TTP is an integral part of the system,
and the ecosystem itself functions as a TTP. However, in HE-based FL, establishing
trust becomes even more critical. In the event of a compromise of the TTP, whether
through external breaches or insider collusion, the integrity of the cryptographic
keys is easily compromised. This further exposes the confidential model updates
and aggregated knowledge shared by participating clients to potential interception
and manipulation by attackers. The gravity of such an occurrence is particularly
pronounced in scenarios where FL is deployed in security-sensitive domains such as
medical research, financial analysis, and industrial innovation, where privacy and
integrity of data are paramount.

Beyond that, cryptographic methodologies [42–45] substantively enhance both
the confidentiality and integrity of the model updates as well as the locally held
data, thereby finding frequent application within the realm of FL. However, the
incorporation of HE concurrently brings in a set of challenges with regard to
the optimization of communication and computation procedures. This arises due
to the inherent need for supplementary computational and communicative steps
involved in encryption, decryption, and aggregation tasks inherent to cryptographic
computations.

One illustrative example pertains to HE, which facilitates arithmetic operations on
encrypted model updates without necessitating their prior decryption. Nevertheless,
the utilization of HE in FL induces an augmentation in terms of computational
complexity [41]. This enhancement in complexity can lead to escalated computational
overheads, as the mathematical operations performed over ciphertext inherently
demand a more substantial amount of computational resources than their plaintext
counterparts. Consequently, the increased computational load contributes to taking
a longer time to complete training, which can ultimately lead to a severe slowdown
in the FL process [38].

Furthermore, the utilization of HE in the context of FL introduces an urgent
need for elevated communication resources [41]. As the encryption and decryption
procedures are executed on ciphertexts, the requisite exchange of encrypted model
updates between clients and the server leads to an enlargement in the volume of
data transmitted through the communication channels. This inflation in the data size
can impede the efficiency of data transfer, leading to not only delays in transmitting
updates but also an increase in the overall communication overheads. This is
particularly pronounced in scenarios where network bandwidth is constrained, as
the data transmission rate may become a limiting factor in the FL workflow.

PRACTICALITY OF PRIVACY-PRESERVING VERTICAL FL

Another problem in the practicality of privacy-preserving FL is label distribution
for Vertical Federated Learning (VFL) [4, 46–50], where features of training data
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are vertically partitioned. The prevailing methodologies presuppose a sole client’s
control over the management and processing of all training labels. However, practical
cases underscore the necessity for a VFL scheme that accommodates the distributed
nature of these labels.

To illustrate, consider the context where multiple medical establishments such as
hospitals, clinics, and health centers are designated as COVID-19 testing facilities.
Their collective objective is to collaboratively train a predictive model. This model
seeks to provide informed predictions about the infection status of individuals
in different geographic locations, relying on their personal health records and
symptoms.

In this real-world scenario, the labels denoting specific outcomes, such as the
test results, are apt to be spread among distinct health authorities. Moreover,
the feature space exhibits vertical partitioning, meaning that each authority retains
dominion over a subset of attributes. For example, a specialized cardiac hospital
exclusively maintains cardiac-related data, whereas a psychiatric center exclusively
houses mental health records. Each authority tends to collect and manage the labels
associated with their registered patients locally.

Another illustrative context pertains to the financial sector, where diverse branches
of banks and e-commerce enterprises seek to build a global predictive model.
This model aims to predict the likelihood of timely payments for certain services,
such as automobile loans, extended to their customers. The banks contribute a
subset of customer-related features, encompassing metrics like account balances and
transaction history. Conversely, the e-commerce entities augment the feature pool
with data pertaining to payment preferences and behaviors. Given that customers
may avail of the same services from different authorities, the importance of
assumption of distributed labels, rather than centralized ones, becomes self-evident.

IMPROVING BYZANTINE ROBUSTNESS OF FL

Defending against malicious clients [10–12, 25–28] is the main goal of Byzantine-
robust FL. The predominant paradigms in Byzantine-robust FL [21, 23, 51], primarily
depend on the fundamental assumption of a majority of honest clients. This basic
idea posits that the proportion of Byzantine clients is limited, ensuring a scenario
wherein a substantial portion of participating clients can be relied upon to provide
genuine and reliable updates. These conventional mechanisms are meticulously
designed to perform well under these ideal circumstances.

To clarify this further, the Krum and Multi-Krum algorithms [10] serve as examples
of such methodologies. These algorithms follow a philosophy based on finding the
most similar local updates. They perform malicious identifications by using the
distance between pair-wise updates. Subsequently, they exclude outliers that deviate
significantly from all the rest of the updates. In a parallel vein, the coordinate-wise
median algorithm [10] adopts a per-coordinate approach to computing the median
value of local updates, thereby offering protection against the undue influence of
extreme values.

While these frameworks have proven to be effective within the realms of
conventional FL, they do exhibit vulnerabilities when confronted with the reality of
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a malicious majority of clients. If more than half of the participating clients manifest
Byzantine behavior, the entire FL system stands at the precipice of a significant
crisis. In such a scenario, the server becomes considerably challenged in its ability
to discriminate between benign and malicious updates. Consequently, the final
global model is highly compromised to the point of being inaccurate. These factors
collectively underscore the urgent needs for the formulation and deployment of
novel strategies in the domain of Byzantine-robust FL.

1.3. PROBLEM STATEMENT
FL has been evolving in the interdisciplinary research community of machine
learning, security, and distributed systems. This thesis aims to address highly
impactful problems regarding circumventing the dependency on TTP for HE-based
FL, improving the efficiency of HE-based FL, decentralized labels in vertical FL, and
defending against the malicious majority of clients. Here, we present the research
question of the thesis, which can be explained in two parts: the practicality of
privacy-preserving FL and the improving Byzantine robustness of FL.

PRACTICALITY OF PRIVACY-PRESERVING FL

The practicality of privacy-preserving FL refers to deploying FL in real-world
scenarios without leaking clients’ privacy. The current paradigms based on HE,
while effective in preserving privacy, introduce a TTP. Therefore, their complexities
compromise the decentralization, efficiency, and security of FL, which brings the
first research question:

Q1: What developments and considerations are involved in designing a homomorphic
encryption-based federated learning system without relying on a trusted third party?

Another problem in the practicality of privacy-preserving FL is the computational
and communication overheads of integration of cryptographic methodologies,
particularly HE, leading to potential bottlenecks in FL processes. Specifically,
the exchange of encrypted model updates introduces heightened communication
requirements, impacting data transfer efficiency. Addressing these challenges
is crucial for optimizing the performance of FL systems, ensuring the delicate
balance between privacy preservation and computational efficiency in cryptographic
calculations. Regarding these, we present our second research question:

Q2: How to optimize cryptographic calculations to reduce computational and
communication overheads?

Apart from the horizontal FL, existing privacy-preserving vertical FL methods
still have a significant gap from being applied in the real world. The identified
problem revolves around the decentralized nature of labels in vertically partitioned
datasets, a scenario often overlooked by current approaches. Illustrative contexts
in healthcare and finance underscore the practicality and urgency of developing
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VFL schemes capable of accommodating such label distribution. The existing
works are limited to centralized labels in VFL, which brings the third research question:

Q3: How to preserve the privacy of clients in the vertical federated learning system if
the labels are decentralized?

IMPROVING BYZANTINE ROBUSTNESS OF FL

The challenge of achieving Byzantine robustness in Federated Learning becomes
particularly pronounced when the majority of participating clients exhibit malicious
behavior. While existing methodologies like Krum and Multi-Krum demonstrate
effectiveness under the assumption of a majority of honest clients, their vulnerability
in the face of a malicious majority is evident. The current paradigms struggle
to distinguish between authentic and malicious updates in such scenarios, leading
to compromised global models with significant inaccuracies. Addressing this issue
is paramount for the advancement of Byzantine-robust Federated Learning, which
brings our fourth question:

Q4: How to capture the Byzantine robustness of honest clients in federated learning if
the majority of clients are malicious?

1.4. CONTRIBUTION OF THE THESIS
The thesis is structured such that each technical chapter comprises a self-contained
replication of a research paper. These chapters are designed to be autonomously
comprehensible, allowing for standalone reading. We have endeavored to retain the
technical details of the original publications, albeit with possible minor modifications.
Consequently, readers may encounter various notations, overlapping introductions,
and literature review sections across different chapters. The outline of the thesis is
given as follows:

CHAPTER 2

DISTRIBUTED ENCRYPTION FOR PRIVACY-PRESERVING FEDERATED LEARNING

In this chapter, we address the research questions Q1 and Q2 and present our
contributions to the practicality of privacy-preserving horizontal FL regarding getting
rid of TTP and improving computational and communication efficiency. Firstly,
we introduce an efficient threshold encryption framework featuring federated key
generation and model quantization, tailored for deployment within federated deep
learning systems. This innovation results in notable reductions in the number
of model parameters requiring encryption and the communication overheads
associated with transmitting local models. Furthermore, the need for an additional
TTP is rendered obsolete. Secondly, to facilitate the secure aggregation of model
updates, an approximate aggregation method is devised for the server. This method
segregates the uploaded ciphertexts and quantized gradients, thereby enabling the
server to transmit aggregated ciphertexts to only those clients who meet a predefined
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threshold value for distributed partial decryption. Consequently, our proposed
approximate aggregation mechanism significantly diminishes the computational and
communication costs incurred during the threshold decryption process. The chapter
is an integral copy of the paper "Distributed Additive Encryption and Quantization
for Privacy Preserving Federated Deep Learning" by Zhu, H., Wang, R., Jin, Y., Liang,
K., and Ning, J. Neurocomputing, 463, pp.309-327.

CHAPTER 3

SECURE VERTICAL FEDERATED LEARNING FOR DECENTRALIZED LABELS

In this chapter, we address the research question Q3 that concerns the privacy
breach when labels are decentralized in VFL. We have undertaken the task of defining
VFL within a practical context, particularly when confronted with the distribution of
training labels across multiple clients. In addition to this conceptual groundwork,
we have introduced a novel approach for secure and efficient XGBoost training. This
approach elegantly integrates secure aggregation techniques, which are rooted in the
principles of Diffie-Hellman key exchange and key derivation function, as well as
global differential privacy. Furthermore, we conducted an extensive security analysis
of the designed protocol, which serves to illustrate its efficacy in preserving the
confidentiality of label values and feature data privacy within the semi-honest setting.
Notably, it exhibits resilience, even in scenarios where collusion is exhibited by n −2
out of n clients. The chapter is an integral copy of the paper "FEVERLESS: Fast
and Secure Vertical Federated Learning based on XGBoost for Decentralized Labels" by
Wang, R., Ersoy, O., Zhu, H., Jin, Y. and Liang, K. IEEE Transactions on Big Data.

CHAPTER 4

TAMING MALICIOUS MAJORITY OF CLIENTS IN FEDERATED LEARNING

In this chapter, we address the research question Q4, and we propose the
first Byzantine-robust FL system that can defend against the malicious majority
of clients. We present a novel aggregation strategy designed to enhance the
Byzantine robustness of FL by effectively mitigating poisoning attacks originating
from a majority of malicious clients, all while obviating the necessity for servers
to possess an auxiliary dataset. This approach asserts that the deployment of
intricate algorithms for the detection of malicious updates is redundant. Instead, it
advocates implementing measures aimed at preventing the coexistence of malicious
and semi-honest clients within a single aggregation. We introduce a novel technique
tailored to augment the accuracy of updates clustering, particularly in non-IID
scenarios. Instead of directly employing the updates for clustering, we adopt a
two-step process. Initially, we calculate the pairwise adjusted cosine similarity
of updates, taking into account dissimilarity in both directions and magnitudes
between updates from any two clients. Subsequently, these results are input into
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm.
Furthermore, we verify the security claims for the framework within the universal
composability framework, offering formal security proof. This proof accommodates
dynamic security requirements, rendering the protocol not only theoretically sound
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but also practically robust.

1.4.1. LIST OF EXCLUDED PUBLICATIONS

In the following, we list the papers published during Ph.D. but not included in the
thesis since they only present partial elements of the chapters.

• Tjiam, K., Wang, R., Chen, H. and Liang, K., 2021, November. Your smart
contracts are not secure: investigating arbitrageurs and oracle manipulators in
Ethereum. In Proceedings of the 3rd Workshop on Cyber-Security Arms Race
(pp. 25-35).

• Sun, L., Du, R., He, D., Zhu, S., Wang, R. and Chan, S., 2021, December.
Feature Engineering Framework based on Secure Multi-Party Computation
in Federated Learning. In 2021 IEEE 23rd Int Conf on High Performance
Computing & Communications; 7th Int Conf on Data Science & Systems; 19th
Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big
Data Systems & Application (HPCC/DSS/SmartCity/DependSys) (pp. 487-494).
IEEE.

• Zhu, H., Wang, R., Jin, Y. and Liang, K., 2021. Pivodl: Privacy-preserving vertical
federated learning over distributed labels. IEEE Transactions on Artificial
Intelligence.

• Liu, A., Li, B., Li, T., Zhou, P. and Wang, R., 2022. AN-GCN: An
Anonymous Graph Convolutional Network Against Edge-Perturbing Attacks.
IEEE transactions on neural networks and learning systems.

• Tian, Y., Wang, R., Qiao, Y., Panaousis, E. and Liang, K., 2023, April. FLVoogd:
Robust And Privacy Preserving Federated Learning. In Asian Conference on
Machine Learning (pp. 1022-1037). PMLR.

• Xu, J., Wang, R., Koffas, S., Liang, K. and Picek, S., 2022, December. More is
better (mostly): On the backdoor attacks in federated graph neural networks.
In Proceedings of the 38th Annual Computer Security Applications Conference
(pp. 684-698).

• Ghavamipour, A.R., Turkmen, F., Wang, R. and Liang, K., 2023, May. Federated
Synthetic Data Generation with Stronger Security Guarantees. In Proceedings
of the 28th ACM Symposium on Access Control Models and Technologies (pp.
31-42).
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2
DISTRIBUTED ENCRYPTION FOR

PRIVACY-PRESERVING FEDERATED

LEARNING

Homomorphic encryption is a very useful gradient protection technique used in
privacy-preserving federated learning. However, existing encrypted federated learning
systems need a trusted third party to generate and distribute key pairs to connected
participants, making them unsuited for federated learning and vulnerable to security
risks. Moreover, encrypting all model parameters is computationally intensive,
especially for large machine learning models such as deep neural networks. In order
to mitigate these issues, we develop a practical, computationally efficient encryption
based protocol for federated deep learning, where the key pairs are collaboratively
generated without the help of a trusted third party. By quantization of the model
parameters on the clients and an approximated aggregation on the server, the proposed
method avoids encryption and decryption of the entire model. In addition, a threshold
based secret sharing technique is designed so that no one can hold the global private
key for decryption, while aggregated ciphertexts can be successfully decrypted by a
threshold number of clients even if some clients are offline. Our experimental results
confirm that the proposed method significantly reduces the communication costs and
computational complexity compared to existing encrypted federated learning without
compromising the performance and security.

This chapter is based on the paper Distributed Additive Encryption and Quantization for Privacy
Preserving Federated Deep Learning by Zhu, H., Wang, R., Jin, Y., Liang, K., and Ning, J.
Neurocomputing, 463, pp.309-327.
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2.1. INTRODUCTION

Federated learning (FL) [1] enables different clients to collaboratively train a global
model by sending local model parameters or gradients to a server, instead of the
raw data. Compared to traditional centralized learning, FL cannot only address
the problem of isolated data island, but also play an important role in privacy
preservation. Consequently, FL has been deployed in an increasing number of
applications in mobile platforms, healthcare, and industrial engineering, among
many others [2, 3].

However, FL consumes a considerable amount of communication resources.
Model parameters or gradients need to be downloaded and uploaded frequently
between the server and clients in each communication round, resulting in a longer
operational stage especially for those large and complex models such as deep
convolutional neural networks [4]. Much research work has been proposed to reduce
the communication costs in the context of FL, including layer-wise asynchronous
model update [5], reduction of the model complexity [6], optimal client sampling [7],
and model quantization [8, 9] based on the trained ternary compression [10]. It
has been empirically and theoretically shown that using quantization in FL does
not cause severe model performance degradation [8, 11, 12], and under certain
conditions, quantization can even reduce weight divergence [9].

Although FL can preserve data privacy to a certain degree, recent studies [13–17]
have shown that local data information can still be breached through the model
gradients uploaded from each client. Under the assumption that the server
is honest-but-curious, differential privacy (DP) [18] and homomorphic encryption
(HE) [19] have been introduced into FL as additional privacy-preserving mechanisms.
DP injects Gaussian [20] or Laplacian [13] noise into each uploaded model
gradients [21, 22], which is cost-effective and light-weighted. But the added noise
has a negative impact on the model performance and cannot deal with data
reconstruction attacks upon the model gradients [15].

Similar to FL, privacy preservation in distributed optimization [23, 24] is also an
intrinsic issue. Mao et al. [25] propose a privacy preserving distributed optimization
algorithm over time-varying directed communication networks by adding conditional
noise to the exchanged states. Besides, Lu and Zhu [26] adopt HE to privately
execute a distributed projected gradient-based algorithm on a set of agents. Different
from the above work, Xu et al. [27] construct a federated data-driven evolutionary
optimization framework to perform data-driven optimization without centrally
storing the training data on the server.

Similar ideas that use HE in FL have also been presented in [28, 29], which,
however, incur a considerable increase in communication costs. More recently,
Zhang et al. [30] proposed a batchcrypt scheme for batch gradients encoding and
encryption without increasing the communication costs, but this method consumes
huge amount of local computational resources.

Using HE and DP [31–33] together in FL has become a popular research topic
nowadays, which can defend against attacks upon the shared global model on the
server side. Nevertheless, DP protection in this framework has limited effect against
inference attacks from the client side, since local data has been already “masked" by
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HE.
Besides HE and DP based protection methods, other techniques like secure

masking has also been used. Bonawitz et al. [34] proposed a secure aggregation
protocol by double masking uploaded local models with random numbers. In this
scheme, keys are generated to do Diffle-Hellman key exchange without the help of
a TTP. However, this method applies the Diffle-Hellman key exchange and Shamir
secret sharing for every client, which requires a large amount of communication
resources. Similarly, Kursawe et al. [35] proposed a single masking method for secure
aggregation in smart grids without a TTP, assuming that grid collusion and party
dropout do not exist, making it inapplicable to the FL environment.

Existing HE-based FL systems have the following two major drawbacks. First, most
methods require a trusted third party (TTP) to generate and distribute key pairs,
increasing topological complexity and attack surfaces of FL systems. In case the TTP
is compromised, the secret messages will be revealed. Second, existing HE-based
FL designs do not scale well to deep learning models containing a large number
of parameters, because encryption and decryption of all trainable parameters are
computationally prohibitive and uploading the entire encrypted model consumes a
huge amount of communication resources.

In addition, privacy protection techniques used in distributed optimization are
usually unsuited for federated deep learning. The main reason is that the number
of model parameters in distributed optimization is much less than that in federated
deep learning. Therefore, there is no high demand for secure computation in
distributed optimization. Take the method used in [26] as an example, each agent
(client) generates its own key pairs to encrypt its state for n times without the help
of TTP, where n is the number of agents. The payload of n times encryption is
acceptable, since the state is just a scalar in distributed optimization. However, this
becomes intractable in federated deep learning, as deep neural networks contain
millions or even billions of model parameters.

To address the above challenges, this work aims to propose a practical and efficient
privacy-preserving federated deep learning framework on the basis of additive
ElGamal encryption [36] and ternary quantization of the local model parameters,
DAEQ-FL for short. In DAEQ-FL, the global key pairs are collaboratively generated
between the server and clients, and quantization makes it practical to encrypt deep
neural networks in federated learning. The main contributions of the work are:

• We propose, for the first time, an efficient threshold encryption system with
federated key generation and model quantization for federated deep learning
systems. As a result, the number of model parameters to be encrypted and the
communication costs for uploading the local models are considerably reduced,
and an extra TTP is no longer required.

• An approximate model aggregation method is developed for the server to
separately aggregate the uploaded ciphertexts and the quantized gradients,
making it possible to download the aggregated ciphertexts to T (threshold value)
qualified clients only for distributed partial decryption. Thus, the proposed
approximate aggregation can further dramatically reduce the computational
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and communication cost for threshold decryption.

• Extensive empirical experiments are performed to compare the proposed
method to threshold Paillier [31] with respect to the learning performance,
communication cost, computation time and security. Our results confirm that
even encoded with 10 bits, the proposed method can significantly decrease the
computation time and communication cost with no or negligible performance
degradation.

The remainder of the paper is structured as follows. Section II introduces the
preliminaries of federated learning, deep neural network models, and the ElGamal
encryption system. Details of the proposed methods, including federated key
generation, encryption and decryption, ternary quantization, and model aggregation
are provided in Section III. Experimental results and discussions are given in Section
IV. Finally, conclusion and future work are presented in Section V.

2.2. PRELIMINARIES

2.2.1. FEDERATED LEARNING

Unlike the centralized cloud model training that needs to collect raw data from
different parties and store the data on a server, FL [3] is able to distributively learn
a shared global model without accessing any private data of the clients. As shown
in Fig. 2.1, at the t-th round of FL, K connected clients download the same global
model θt from the server and update it by training with their own data. After that,
trained local models or gradients will be uploaded back to the server for model
aggregation. Therefore, the global model can be learned and updated while all the
training data remain on edge devices.

…
 

…
 

Figure 2.1: Flowchart of federated learning. θt are the global model parameters
in the t-th communication round, nk is the data size of client k, and
K is the total number of clients. The global model parameters are
randomly initialized at the beginning of the training and will be updated
by aggregating the uploaded local models in each round.
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FL aims to optimize a distributed loss function ℓ(θ) as shown in Eq. (2.1),

min
θ

ℓ(θ) =
K∑

k=1

nk

n
Lk (θ),Lk (θ) = 1

nk

∑
i∈Pk

ℓi (θ, xi ) (2.1)

where k is the index of K total clients, Lk (θ) is the loss function of the k-th local
client, nk equals to the local data size, and Pk is the set of data indexes whose size
is nk , i.e., nk = |Pk |. Note that the training data xi on each client k may not satisfy
the independent and identically distributed assumption, i.e., non-IID.

Although the data on the clients do not need to be shared, FL is still subject to
security risks, since the model gradients naturally contain information of the training
data. It has been theoretically proved in [15] that only a portion of the gradients may
lead to the leakage of private information of the local data. If we assume the cost
function to be a quadratic function, the corresponding gradients can be calculated
in Eq. (2.2).

J (θ, x)
def= (hθ(x)− y)2

gk = ÇJ (θ, x)

Çθ
= 2(hθ(x)− y)σ

′
(

d∑
i=1

xi wi +b) · xk

(2.2)

where gk and xk are the k-th feature of gradient g ∈ Rd and the input data x ∈ Rd ,
respectively. Since the product 2(hθ(x)− y)σ

′
(
∑d

i=1 xi wi +b) is a real scalar number,
the gradient is in fact proportional to the input data. As a result, uploading model
gradients cannot completely prevent local data from being revealed and enhanced
protection techniques are required for secure FL systems.

2.2.2. DEEP LEARNING

Deep learning has been deployed in the fields of computer vision, speech recognition
and many other areas [37–41]. The word deep means that neural network (NN)
models, such as convolutional neural networks (CNNs) [42] and recurrent neural
networks (RNNs) [43], used in deep learning always contain multiple hidden layers.

For a typical supervised learning [44], the training purpose is to minimize the
expected distance between a desired signal y (e.g., a label in classification) and a
predicted value ŷ , which is often represented by a so-called loss function ℓ(y, ŷ) as
shown in Eq. (2.3), where θ is the trainable model parameters we want to optimize.

min
θ

ℓ(θ) = 1

N

∑
i
ℓ(y, ŷ |θ, xi ) xi ∈ {x1, x2..., xN } (2.3)

The stochastic gradient descent (SGD) algorithm is the most widely used
optimization method that calculates the partial derivatives of the loss function (2.3)
with respect to each model parameter in θ. The model parameters will be updated
by subtracting scaled calculated gradients as shown in Eq. (2.4),

g t =∇θℓ(θ, x)

θt+1 = θt −ηg t
(2.4)
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where η is the learning rate and g t is the expected gradient over data samples x at
the t-th iteration. The model update based on SGD in (2.4) is repeatedly performed
until the model parameters converge.

DNNs often contain a large number of layers and training very deep models on
big datasets is extremely time-consuming. Therefore, DNNs will incur excessive
communication and computation costs when they are adopted in FL.

2.2.3. HOMOMORPHIC ENCRYPTION AND SECRET SHARING

HE is the most widely used data protection technology in secure machine
learning as it supports algebraic operations including addition and multiplication
on ciphertexts. An encryption method is called partially HE if it supports addition
or multiplication operation, and fully HE if it supports an infinite number of
addition and multiplication operations. Without loss of security and correctness,
additive HE fulfills that multiple parties encrypt message Ci = Encpk (mi ) and decrypt∑n

i=1 mi = Decsk (
∏n

i=1 Ci ) using public key and secret key, respectively.
Among those well-studied HE techniques, ElGamal[36] is a multiplicative

mechanism while Paillier [45] provides additive operations, which are based on
discrete logarithm and composite degree residuosity classes, respectively. The former
needs 256-bit key length to achieve the 128 bit security level, whereas the latter costs
3072 bits [46], implying that ElGamal is a computationally more efficient encryption
and decryption method [47]. However, additional Cramer transformation [48] needs
to be applied to ElGamal encryption so as to extend it to support additive operations.

Conventional HE is not well suited for distributed learning systems such as FL
systems, since the ciphertexts on the server can be easily inferred, as long as one
client uploads its private key to the server. In order to mitigate this issue, Adi
Shamir [49] proposed Shamir Secret Sharing (SSS) which splits a secret into n
different shares. Consequently, T -out-of-n shares are needed to recover the secret.
Based on the SSS and DiffieHellman (DH) security definition, Feldman proposed
verifiable secret sharing (VSS) [50], which adds a verification process during sending
shares. The followings are the security definition.

Definition 1 (Discrete Logarithm Hard Problem - DLHP) Discrete Logarithm is
considered to be hard if

Pr [DLogG ,A (α) = 1] ≤ neg l (α)

Definition 2 (Computational Diffle-Hellman - CDH) CDH is considered to be hard
if

Pr [A (g , g a , g b) = (g ab)] ≤ neg l (α)

Definition 3 (Decisional Diffie-Hellman - DDH) DDH is considered to be hard if

|Pr [A (g , g a , g b , g c ) = 1]−Pr [A (g , g a , g b , g ab) = 1]|
≤ neg l (α)

Definition 4 Indistinguishability - Chosen plaintext attacks (IND - CPA)
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Consider a following game between an adversary A and a challenger:
Set up: Challenger generates public parameters < g , p, q >, public key h and secret

key s, then sends public parameters and pk to the A .
Challenge: A chooses two plaintexts m0, m1 with same length, then sends them

to the challenger. Challenger randomly selects b ∈ {0,1}, encrypts mb

C = Enc(pk,mb)

and sends challenge ciphertext C to A . Finally, A would compute b
′
.

A scheme is security against CPA if the advantage

AdvC PA
A (α) =

∣∣∣∣Pr (b = b
′
)− 1

2

∣∣∣∣
is negligible.

• Parameters generation: server runs a polynomial-time G (1α) to generate public
parameters <G, g , p, q >, where g is a generator of G which is a cyclic group
with prime order q , p is a large prime number satisfying q |p−1, y is a random
element in G and α corresponding to security level is bit length of q . Given a
polynomial-time algorithm A and a negligible function neg l , the security of
key generation and encryption are based on following definitions.

• Key generation: x
$←−Z∗

q , h = g x (mod p).

• Encryption: g m ∈Z∗
p , r

$←−Z∗
q , < c1 = g r (mod p),c2 = g m ·hr (mod p) >.

• Decryption: c2
cx

1
= mhr

(g r )x = g m ·g xr

g r x = g m (mod p)

Additive ElGamal is CPA-secure against chosen ciphertext attacks if the advantage
of A is negligible in α satisfying as follows:

AdvC PA
A (α) =

∣∣∣∣Pr (b = b
′
)− 1

2

∣∣∣∣
Proof. Ciphertexts under additive ElGamal:

C = (c1,c2) = (g r , g mb ·hr ) = g mb+x·r

A computes:

C
′ =C · g

m−1

b
′ = g x·r i f f b = b

′

Besides, A wants to determine whether C
′

is DH agreement. A could "win" this
game with a probability:

AdvElG
A (α) = ||Pr [A (g , g x , g r , g x·r+mb−m

b
′ ) = 1]

−Pr [A (g , g x , g r , g x·r ) = 1]|− 1

2
|

≤ neg l (α)

Theorem 1 The exponential ElGamal and distribute key generation are CPA-secure
and correctness-satisfying according to [48] and [51].
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But Feldman VSS only allows trusted clients to share secrets and it will fail to
generate correct key pairs if there are adversaries in the system. To address this limit,
Perdersen [52] proposed a novel VSS that is able to detect and exclude adversarial
clients. On the basis of the above two VSS methods, Gennaro et al. [51] introduced a
secure distributed key generation (DKG) for discrete logarithm based crytosystems.

We propose a federated key generation (FKG) based on DKG for model parameter
encryption in FL and the details of FKG will be given in Section III.

2.3. OUR PROPOSED SYSTEM
The motivation of the proposed privacy preserving system is to remove the
requirement of a TTP commonly used in FL for generating key pairs for encryption,
and the whole system should be robust to malicious clients. A key component for
the proposed system is federated key generation (FKG) that allows the server and
clients collaboratively generate key pairs without a TTP. To this end, additive discrete
logarithm based encryption is adopted to achieve secure model aggregation. In
addition, a fixed point encoding method is implemented to encode the plaintext.
In order to decrease computational and communication resources, ternary gradient
quantization and approximate model aggregation are further introduced. In the
following, we elaborate each of our main components and present a description of
the proposed overall DAEQ-FL system. Finally, a brief discussion is given to compare
our DAEQ-FL with existing encryption based FL systems.

2.3.1. THREAT MODEL

The potential threats considered in this work include those from the server, clients
and outsiders in the FL proposed DAEQ-FL system. Specifically, in key generation
period, we assume that at least T -out-of-n clients generate key pairs honestly. The
remaining clients could be malicious and might try to steal keys from the honest
parties or make the generated keys incorrect for encryption and decryption. In the
training period, we consider the server and clients are honest-but-curious, which
means they strictly follow the FL algorithm but try to infer extra information from
received information. Our main goal is to prevent clients data from being leaked,
but the situation in which malicious clients attempt to deteriorate global model
performance [53, 54] is not considered here. Besides, we assume that outsiders are
passive attackers who could eavesdrop communication channels during the whole
FL process.

2.3.2. FEDERATED KEY GENERATION

The proposed FKG is a variant of DKG [51], which is based on Pedersen VSS
and Feldman VSS that can verify key shares in a secure way for successful key
generations. The main steps of FKG are described in Algorithm 1.

Assume that the server in DAEQ-FL is honest-but-curious, and there are at least
T -out-of-n (T > n/2) honest clients. Before key pair generation, the server needs
to generate and distribute four public parameters p, q , g and y , where q is the
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Algorithm 1: Federated Key Generation. G is a cyclic group, p and q are large
prime numbers, g is a generator, y ∈G, N is the number of total clients, C is
the fraction of clients participating the current round, i is the client index,
and T is the threshold value.

1 Server distributes public parameters < p, q, g , y >
2 for Each FL round t = 1,2, ... do
3 n =C ∗N
4 Select threshold value T > n/2
5 Client i ∈ {1, · · · ,n} perform Pedersen VSS
6 Collect the number of complaints cpti for client i
7 for Client i ∈ {1, · · · ,n} do
8 if cpti > T then
9 Mark client i as disqualified

10 else
11 Client i uploads fi ( j ) and
12 if Eq. (2.6) is satisfied then
13 Mark client i as qualified (QUAL)
14 else
15 Mark client i as disqualified
16 end
17 Mark client i as QUAL
18 end
19 end
20 Client i ∈ QUAL perform Feldman VSS
21 Collect complained client index in O,
22 for Each client i ∈O do
23 Set counter = 0
24 for Each client j ∈ QUAL but j ∉ m do
25 Client j uploads f j (i ) and f

′
j (i )

26 if Eq. (2.7) is satisfied then
27 counter = counter +1
28 end
29 if counter ≥ T then
30 Break
31 end
32 end
33 Retrieve fi (z) and Ai 0

34 end
35 Generate global public key h =∏

i∈QU AL Ai 0 = g x

36 end

prime order of cyclic group G, p is a large prime number satisfying p −1 = r q , r is a
positive integer, g and y are two different random elements in G.
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For Pedersen VSS executed in line 5 of Algorithm 1, each participating client i in
the t-th round generates two random polynomials fi (z) and f

′
i (z) over Z∗

q of order
T −1 as shown in Eq. (2.5).

fi (z) = ai 0 +ai 1z + ...+ ai T−1zT−1 (mod q)

f
′

i (z) = bi 0 +bi 1z + ...+ bi T−1zT−1 (mod q)
(2.5)

Let zi = ai 0 = fi (0) be the locally stored private key. Client i broadcasts Ci k = g ai k ybi k

(mod p) and sends shares si j = fi ( j ), s
′
i j = f

′
i ( j ) to client j ( j ∈ n), then client j

verifies the received shares by Pedersen commitment:

g si j y
s
′
i j =

T−1∏
k=0

(Ci k ) j k
(mod p) (2.6)

Due to the hiding and binding properties of Pedersen commitment [52], it is
impossible for adversaries, if any, to guess the real ai k and bi k through Ci k or to
find another a pair of si j and s

′
i j that can satisfy Eq. (2.6). In addition, based on our

previous security assumption and the principle of SSS, it is infeasible to reconstruct
the private keys of any honest clients even if the system contains n −T malicious
clients.

Each client sends a complaint of client i to the server if any shares si j and s
′
i j

received from client i do not satisfy Eq. (2.6). Once the server receives more than T
complaints against client i (line 6 in Algorithm 1), this client will be immediately
disqualified. Besides, as long as client i is complained by any client j , where
j ∈ {1, · · · ,n}, the corresponding shares si j and s

′
i j are required to upload to the

central server for Pedersen commitment (Eq. (2.6)) verification. If any verification
fails, client i would be marked as disqualified.

However, Pedersen VSS cannot guarantee correct global public key generation,
since malicious clients can still corrupt the generation process by broadcasting fake
Ai 0 (line 33 in Algorithm 1). Therefore, Feldman VSS is used in addition to Pedersen
VSS to ensure that all the QUAL clients broadcast correct Ai 0 for in the proposed
FKG.

Similarly, to implement Feldman VSS (line 20 in Algorithm 1), each client j ( j ∈
QUAL) broadcasts Ai k = g ai k (mod p) and verifies Eq. (2.7).

g si j =
T−1∏
k=0

(Ai k ) j k
(mod p) (2.7)

If shares of client i satisfy Eq. (2.6) but not Eq. (2.7), client j will send a complaint
to server. Then the server requires T QUAL clients to upload their shares fi ( j ), j ∈ t
to retrieve the random polynomial fi (z) of client i by Lagrange interpolation
function [55] as show in Eq. (2.8).

λ j =
∏
k 6= j

z −k

j −k
,k ∈ T, j ∈ QUAL

fi (z) = ∑
j∈QUAL

λ j fi ( j )
(2.8)
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Finally, the server can generate the global public key through broadcasting Ai 0 from
all QUAL clients in Eq. (2.9), where x is in fact the global private key. And then, the
public key h will be shared to all QUAL clients.

hi = Ai 0 = g zi (mod p)

h = ∏
i∈QUAL

hi = g
∑

i∈QUAL zi = g x (mod p) (2.9)

Pedersen’s VSS and Feldman’s VSS for FKG require at most 768N T +64N (N −1)
bytes of communication, where N is the total number of clients and T is the
threshold.

2.3.3. ADDITIVE DISCRETE LOGARITHM BASED ENCRYPTION

To be fully compatible with FKG, which is adapted from DKG to the FL environment,
additive discrete logarithm based encryption is employed based on ElGamal
encryption [36].

The original ElGamal encryption works as follows:

• Parameters generation: Generate three parameters p, q and g , where q is the
prime order of a cyclic group G, p is a large prime number satisfying q |p −1,
and g is a generator of G.

• Key generation: Select a random number x, x ∈Z∗
q as the secret key, and then

compute h = g x (mod p) to be the public key.

• Encryption: To encrypt a message m ∈ Z∗
p , choose a random number r ∈ Z∗

q
as a ephemeral key, calculate two ciphertexts as < c1 = g r (mod p),c2 = mhr

(mod p) >.

• Decryption: The plaintext message m can only be decrypted if the private key
x is available by computing Eq. (2.10)

c2

cx
1

= mhr

(g r )x = mg xr

g r x (mod p) ≡ m (2.10)

Therefore, the original ElGamal is a multiplicative HE satisfying: Enc(m1)∗
Enc(m2) = Enc(m1∗m2), because m1hr1 ∗m2hr2 = m1m2hr1+r2 (mod p). Since model
aggregation on the server in FL performs the addition operation, we can apply
Cramer transformation [48] on ElGamal encryption by simply converting the plaintext
m into m

′ = g m (mod p). Consequently, the original ElGamal encryption becomes a
discrete logarithm based additive HE, as shown in Eq. (2.11).

Enc(m1)∗Enc(m2) = g m1 hr1 ∗ g m2 hr2

= g m1+m2 hr1+r2 (mod p)
(2.11)

A security analysis is described in the following.
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• Parameters generation: server runs a polynomial-time G (1α) to generate public
parameters <G, g , p, q >, where g is a generator of G which is a cyclic group
with prime order q , p is a large prime number satisfying q|p−1, y is a random
element in G and α corresponding to security level is bit length of q . Given a
polynomial-time algorithm A and a negligible function neg l , the security of
key generation and encryption are based on following definitions.

• Key generation: x
$←−Z∗

q , h = g x (mod p).

• Encryption: g m ∈Z∗
p , r

$←−Z∗
q , < c1 = g r (mod p),c2 = g m ·hr (mod p) >.

• Decryption: c2
cx

1
= mhr

(g r )x = g m ·g xr

g r x = g m (mod p)

Additive ElGamal is CPA-secure against chosen ciphertext attacks if the advantage
of A is negligible in α satisfying as follows:

AdvC PA
A (α) =

∣∣∣∣Pr (b = b
′
)− 1

2

∣∣∣∣
Proof. Ciphertexts under additive ElGamal:

C = (c1,c2) = (g r , g mb ·hr ) = g mb+x·r

A computes:

C
′ =C · g

m−1

b
′ = g x·r i f f b = b

′

Besides, A wants to determine whether C
′

is DH agreement. A could "win" this
game with a probability:

AdvElG
A (α) = ||Pr [A (g , g x , g r , g x·r+mb−m

b
′ ) = 1]

−Pr [A (g , g x , g r , g x·r ) = 1]|− 1

2
|

≤ neg l (α)

Theorem 1 The exponential ElGamal and distribute key generation are CPA-secure
and correctness-satisfying according to [48] and [51].

2.3.4. FIXED POINT ENCODING METHOD

Note that HE can be applied to integers only, however, model parameters or
gradients are normally real numbers. Therefore, the real-values model parameters
must be encoded before encryption.

The encoding method used in this work is straightforward, as shown in Eq. (2.12),
where st is the maximum absolute of the gradients (will be introduced in Section
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2.3.6), b is the encoding bit length, q is the above mentioned prime order of G and
m is the encoded integer number.

m̂ = round(st ∗2b), |m̂| ≤ i ntmax

Encode(st ) = m̂ (mod q) = m

Decode(m) =
{

m ∗2−b , m ≤ i ntmax

(m −q)∗2−b , m > q − i ntmax

(2.12)

i ntmax is the maximum positive encoding number defined by the server, which
is one-third of q . If m > q − i ntmax (m̂ is negative), it should subtract q before
multiplying 2−b , because m̂ (mod q) = q +m̂,m̂ < 0. Since the bit length of i ntmax is
always set to be much larger than the encoding bit b, sufficient value space can be
reserved for encoding number summations (additive HE).

2.3.5. BRUTE FORCE AND LOG RECOVERY

Using Cramer transformation needs to recover the desired m from m
′

to solve the
so-called discrete logarithm hard problem after decryption. Here, we propose two
techniques, namely brute force and log recovery, to solve this problem.

Brute force recovery simply tries different m from 0 to q −1, and the correct m is
found only if m

′ = g m (mod p). Thus, a maximum of q trials are needed to solve
DLHP in the worst case. Fortunately, the absolute values of all the model gradients
in DNNs are always less than 0.1, and therefore, they can be encoded with a b
bit-length fixed point integer number. It takes about 2b times to find the correct m
if m̂ is positive. Note that the quantization method we employ can guarantee that m̂
is positive, which will be introduced later.

The log method consumes almost no additional recovery time by calculating
logg (g m) = m directly. However, this only works when g m < p. In order to ensure the
best encoding precision (the encoded m should be as large as possible), we minimize
g to g0 = 2. And the encoded number m must be less than the bit length of a large
prime number p, which means the encoding precision is restricted by the security
level. Besides, the security level will not be reduced by selecting a small fixed g0.

Both the brute force and log recovery are described in Algorithm 2

2.3.6. TERNARY GRADIENT QUANTIZATION

Encrypting and decrypting all elements of the model gradients have several
shortcomings. First, performing encryption on local clients is computationally
extremely expensive, causing a big barrier for real world applications, since
usually the distributed edge devices do not have abundant computational resources.
Second, uploading model gradients in terms of ciphertext incurs a large amount
of communication costs. Finally, the first two issues will become computationally
prohibitive when the model is large and complex, e.g., DNNs.

In order to tackle the above challenges, we introduce ternary gradient quantization
(TernGrad) [56] to drastically reduce computational and communication costs for
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Algorithm 2: Plaintext Recovery. q is a prime order of the cyclic group G, p is
a large prime number satisfying p −1|q , g is a random element in G, m is the
message to be recovered, i ntmax is the maximum positive encoded number.

1 Brute Force Recovery:
2 g0 = g

3 Given decrypted plaintext m
′ = g m

0 (mod p), m ≤ i ntmax

4 for j from 0 to q −1 do

5 if g j
0 (mod p) == m

′
then

6 m = j Break
7 else
8 Continue
9 end

10 end
11 Return m
12 Log Recovery:
13 g0 = 2

14 Given decrypted plaintext m
′ = g m

0 (mod p), g m
0 ≤ p

15 m = logg0
(g m

0 )

16 Return m

encryption of DNNs. TernGrad compresses the original model gradients into ternary
precision gradients with values ∈ {−1,0,1} as described in Eq. (2.13),

g̃ t = st · sign(g t ) ·bt

st = max(abs(g t ))
(2.13)

where g t is the full precision model gradients at the t-th iteration, g̃ t is the quantized
gradients, st (a scalar larger than 0) is the maximum absolute element among g t ,
and the si g n function transfers g t into binary precision with values ∈ {−1,1}. Finally,
bt is a binary tensor whose elements follow the Bernoulli distribution [57].

Pr (btk = 1|g t ) = |g tk |/st

Pr (btk = 0|g t ) = 1−|g tk |/st
(2.14)

where btk and g tk is the k-th element of bt and g t , respectively, and the product
of sign(g t ) and btk is a ternary tensor ({−1,0,1}) representing the model training
direction. According to Eq. (2.4), the full precision model parameters in TernGrad is
updated as shown in Eq. (2.15).

θt+1 = θt −η(st · sign(g t ) ·bt ) (2.15)

Since st is a random variable depending on input xt and the model weights θt ,
Eq. (2.14) can be re-written into Eq. (2.16).

Pr (btk = 1|xt ,θt ) = |g tk |/st

Pr (btk = 0|xt ,θt ) = 1−|g tk |/st
(2.16)
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The unbiasedness of the ternary gradients can be proved as shown in Eq. (2.17).

E(st · sign(g t ) ·bt ) = E(st · sign(g t ) ·E(bt |xt ))

= E(g t )
(2.17)

The TernGrad algorithm is adopted in the proposed DAEQ-FL to significantly reduce
the computational cost for encryption on local devices and the communication
costs for passing the encrypted model parameters between the clients and the
server. Before performing encryption on the local clients, the model gradients are
decomposed into two parts: one is the positive scalar st and the other is the ternary
model gradients sign(g t ) ·bt ). And only one scalar st in each layer of the model
needs to be encrypted, thereby dramatically decreasing the computation costs and
encryption time.

The ternary gradients do not need to be encrypted, because adversaries, if any,
can only derive parts of gradients sign information from them. It should be noted
that existing popular attacks [15, 58–63] on FL do not have ability to retrieve the
original data from ternary gradients. In addition, separately uploading encrypted st

and ternary gradients reduce the total amount of uploads to 16 times smaller than
the original. Another advantage is that it can make brute force recovery much faster,
since the scalar st in Eq. (2.12) can never be negative.

2.3.7. APPROXIMATE MODEL AGGREGATION

For model aggregation on the server, the received encrypted st (t-th round in
FL) should multiply its corresponding ternary gradients before weighted averaging
(Eq. (2.18)).

g i
(t ,tern) = sign(g i

t ) ·bi
t

Enc(g global
t ) =∑

i

ni

n
(Enc(si

t )∗ g i
(t ,tern))

(2.18)

Decryption of the aggregated global gradients Enc(g global
t ) requires to traverse

each single ciphertext, which is extremely time-consuming, making it less practical
even if the server often possess abundant computation resources. Therefore, this
work proposes an approximate aggregation method (Fig. 2.2) so as to reduce the
decryption time. The basic idea is to separately aggregate the encrypted scalar and
related ternary gradients, as shown in Eq. (2.19).

Enc(sglobal
t ) =∏

i
Enc(si

t ∗
ni

n
) = Enc(

∑
i

si
t ∗

ni

n
)

g global
(t ,tern) =

∑
i

g i
(t ,tern)

(2.19)

where i is the client index, ni is the local data size and n is the global data size.

And Enc(g global
t ) = Enc(sglobal

t )∗ g global
(t ,tern), if s1

t = s2
t = ... = sn

t . However, this condition is

hard to satisfy and the bias g global
t − sglobal

t ∗ g global
(t ,tern) is difficult to estimate due to the
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… … … … 
… … … 

s

Figure 2.2: Encryption with TernGrad and model aggregation approximation. The

Enc(sglobal
t ) is aggregated over the uploaded Enc(si

t ) from the participating
clients.

random property of SGD. In reality, each client’s local scalar satisfies s1
t ≈ s2

t ≈ ... ≈ sn
t ,

and our experimental results (Section II.B in the Supplementary material) confirm
that the values of st of different clients are very similar, making this approximation
reasonable.

Note that a small implementation trick used here is to do weighted averaging
upon st before encryption, which helps reduce the differences between si

t and avoid
overflow of the encrypted gradients during model aggregations on the server.

To update the global model, only two ciphertexts Enc(sglobal
t ) of each layer need to

be decrypted, which will be multiplied by the global ternary gradients afterwards as
shown in Eq. (2.20)

sglobal
t = Dec(Enc(sglobal

t ))

θ
global
t+1 = θ

global
t −ηsglobal

t ∗ g global
(t ,tern)

(2.20)

2.3.8. OVERALL FRAMEWORK: DAEQ-FL
The overall framework, distributed additive ElGamal encryption and quantization
for privacy-preserving federated deep learning, DAEQ-FL for short, is depicted in
Algorithm 3. Note that our algorithm generates key pairs at the beginning of each
round, considering that in practice the keys are often frequently changed. This is,
however, not a mandatory requirement.

Note that the server can determine the threshold value T based on the number of
participating clients n in each FL round (T > n/2). If the number of QUAL clients are
less than T , the disqualified clients will be kicked out of the system and then the
process is aborted and FKG is restarted. After FKG, each QUAL client i downloads
the global model parameters θt and the public key pk for local training. Then
the model gradients, obtained by subtracting the received global model θt from the
local updated model θi

t , are converted into a real-valued coefficient si
t and a ternary

matrix ∆θi
(t ,tern) before performing ElGamal encryption. Two ciphertexts c i

(t ,1) and

c i
(t ,2) together with a ternary gradient ∆θi

(t ,tern) are then uploaded to the server for
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Algorithm 3: DAEQ-FL. p, q , g , y are key parameters introduced in Algorithm
1, pk is the global public key, Qual are qualified clients, N is the total
number of clients, C is the fraction of connected clients, E is the number of
local epochs, B is the local batch data, θt is the global model parameters at
the t-th FL round, T is the threshold value, and η is the learning rate.

1 Server:
2 Generate and distribute p, q , g , y and global model parameters θ0

3 for each FL round t = 1,2, ... do
4 Select n =C ×N clients, C ∈ (0,1)
5 Select T > n/2
6 Generate pk by FKG among n clients in Algorithm 1
7 for each client i ∈Qual in parallel do
8 Download θt

9 Do local Training
10 Upload c i

(t ,1), c i
(t ,2) and ∆θi

(t ,ter n)

11 end
12 c(t ,1) =∏

i c i
(t ,1) (mod p)

13 c(t ,2) =∏
i c i

(t ,2) (mod p)

14 ∆θ(t ,ter n) =∑
i ∆θ

i
(t ,ter n)

15 Randomly select T Qual clients
16 for each client j ∈ T in parallel do
17 Download c(t ,1) and c(t ,2)

18 Do Partial Decryption
19 end

20 g Tmt
0 =∏

j∈T pd j = g Tmt
0 g (x−∑

j λ j xi )T (mod p)
21 Recover Tmt by Algorithm 2
22 θt+1 = θt −∆θ(t ,tern) ∗Tmt /T
23 end
24 Client i :
25 // Training:
26 θi

t = θt

27 for each iteration from 1 to E do
28 for batch b ∈ B do
29 θi

t = θi
t −η∇Li (θi

t ,b)
30 end
31 end
32 ∆θi

t = θi
t −θt

33 Quantize ∆θi
t into si

t and ∆θi
(t ,tern) in Eq. (2.13) and (2.18)

34 Encode mi
t = round(si

t ∗Dk /D ∗2l ) (mod q) in Eq. (2.12)

35 Encrypt c i
(t ,1) = g ri (mod p), c i

(t ,2) = g
mi

t
0 pkri (mod p)

36 Return c i
(t ,1), c i

(t ,2) and ∆θi
(t ,ter n) to server

37 // Partial Decryption:
38 xi =∑

j s j i = f j (i ), i , j ∈ QUAL

39 Partial decrypt pdi = c(t ,2)/cλi xi T
(t ,1) (mod p)

40 Return pdi
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model aggregation as described in Section 2.3.7.
For decryption (Fig. 2.3), only two aggregated ciphertexts need to be downloaded

to T QUAL clients for partial decryption and T partial decrypted ciphertexts pdi are
uploaded back to the server (line 16-20 in Algorithm 3). The server can easily get
the plaintext g Tmt

0 by multiplying all received ciphertexts pdi . s j i is a share f j (i )

… … … … 

… … 

… 

Figure 2.3: The encrypted sglobal
t is downloaded to T qualified clients for partial

decryption, and then the partial decrypted ciphertexts are uploaded back
to the server to retrieve the final plaintext.

(introduced in Algorithm 1) from client j to client i , λi =∏
j 6=i

j
j−i is the Lagrange

coefficient and x =∑
j∈QUAL z j is the global private key. According to the property of

SSS, at least T (threshold value) different fi ( j ), j ∈ T shares are needed to retrieve
the local private key zi . The reason why x −∑

i λi xi = 0 is proved below:∑
i∈T

λi xi =
∑
i∈T

λi
∑

j∈QUAL
f j (i )

= ∑
j∈QUAL

∑
i∈T

λi f j (i )

= ∑
j∈QUAL

z j = x

(2.21)

One of the advantages of DAEQ-FL is that no parties within the FL system,
including the server, can know the global private key x, which significantly enhances
system security level. In addition, the extra communication resources are negligible,
and only three ciphertexts c(t ,1), c(t ,2) and pdi are transmitted between the server
and each client i with the help of the TernGrad algorithm. Finally, DAEQ-FL is
robust to possible disconnection of individual clients, since the ciphertext can be
successfully decrypted so long as a minimum of T QUAL clients upload their pdi .

2.3.9. DISCUSSION

We list the general differences between our proposed system and four popular
existing approaches in Table 2.1. From the table we can see that our DAEQ-FL
has remarkable superiority, being a threshold based encryption system without an
extra TTP and tolerating the existence of malicious clients. We here note that Truex
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et al. [31] also proposed a threshold based Paillier encryption system in FL, but it
still requires a TTP for key generation. Some quantization technique is introduced
in [30] for efficient encoding and encryption, but it is totally different from our
ternary quantization methods.

Compared to LWE [64, 65] causing excessive message expansion and functional
encryption [66, 67] with large computaional complexity, Paillier is a relatively
lightweighted encryption scheme. Therefore, we compare Paillier with our system in
the next section. It is worth considering that in the real world scenario, outsiders
could tamper the messages communicating between server and clients, a signature
scheme could be used here [36] based on keys generated by FKG. In addition, the
double masking method proposed by Bonawitz et al. [34] needs to recover masking
values as long as one client is offline which is not computationally efficient. Our
threshold based encryption scheme is more efficient and robust to this drop out
problem, since it only require T-out-of-n clients to be online during decryption
period.

Table 2.1: Comparison of encryption based privacy preserving FL systems

Proposed systems
Threat model

Encryption scheme Without TTP Threshold Based
Server Client

Phong et al. [15] honest but curious honest Paillier, LWE % %

Truex et al. [31] honest but curious majority honest Paillier % "

Xu et al. [68] honest but curious majority honest functional encryption % %

Batchcrypt[30] honest but curious honest Paillier " %

Ma et al. [69] honest but curious honest ElGamal " %

DAEQ-FL(our system) honest but curious majority honest ElGamal " "

2.4. EXPERIMENTAL RESULTS
In this section, we first introduce the datasets and models used in the experiments,
together with all settings of the FL and encryption. We also present the
communication and computation cost resulting from encryption, as well as the time
consumption of the brute force recovery, followed by the analysis of approximate
aggregation and a description of results on the model performances. Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz and NVIDIA Quadro RTX 6000 GPU are used in our
experiments.

2.4.1. DATASET AND MODEL INFORMATION

In our simulations, we use CNN for MNIST [70] digit number classifications, ResNet
for CIFAR10 [71] image classifications and stacked LSTM [72] for Shakespeare [73]
next word prediction task. All three datasets are non-iid among different clients.

MNIST is a 28x28 grey scale digit number image dataset containing 60,000 training
images and 10,000 testing images with 10 different kinds of label classes (0∼9). All
the clients’ training data are distributed according to their label classes and most
clients contain only two kinds of digits for non-iid partition.
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CIFAR10 contains 10 different kinds of 50,000 training and 10,000 testing 32x32x3
images. Similar to MNIST, the whole training data are horizontally sampled and each
client owns five different kinds of object images.

The Shakespeare dataset is built from the whole work of Wailliams Shakespeare. It
has in total 4,226,073 samples with 1129 role players and the data samples of each
role player represent the dataset on each client. Additionally, 90% of the user’s data
are randomly divided as the training data and the rest are testing data. This dataset
is naturally non-iid and unbalanced, with some clients having few lines and others a
large number of lines. In order to reduce the training time, we follow the method
used in [74] to randomly select 5% of the total users and remove those containing
less than 64 samples.

Note that we do not apply any data augmentation techniques [75, 76] to boost the
final global model performances to reduce local computational complexity, since the
main purpose of this work is not to achieve the state of the art model performances
in FL; instead, we aim to present a distributed encryption method for better
privacy preservation in FL without considerably increasing the computational and
communication costs.

A CNN model is adopted to train on MNIST in the FL framework, which contains
two 3x3 convolution layers with 32 and 64 filter channels, respectively, followed by a
2x2 max pooling layer. And then, a hidden layer with 128 neurons is fully connected
to the flattened output of the max pooling layer. Thus, the whole CNN model has
1,625,866 learnable parameters.

CIFAR10 dataset is to be learned by a ResNet model. The input images firstly
pass through a 3x3 convolutional layer with 64 channels, followed by a batch
normalization layer [77] with the Relu [78] activation function. Its output is
connected to four sequentially connected block layers with 64, 128, 256, 512 filter
channels, respectively. Each block layer contains two residual blocks containing two
convolutional layers, each followed by a batch normalization layer and a shortcut
connection. All the trainable parameters of the batch normalization layers are
disabled, because they are observed to perform poorly with small batch sizes and
non-iid data [77, 79]. The full ResNet model has 11,164,362 trainable parameters.

The Shakespeare dataset is trained by a stacked LSTM model which contains two
LSTM layers, each with 256 neurons. Since we use the module cudnnLSTM of
Tensorflow [80] , the layer bias is twice as large as the original LSTM layer. Thus, the
full model contains 819,920 parameters.

2.4.2. FEDERATED LEARNING AND ENCRYPTION SETTINGS

In the experiments for image classification using CNN and ResNet , the FL system
consists of total 20 clients, each containing 3000 and 2500 data samples for MNIST
and CIFAR10, respectively. The total number of communication rounds is set to be
200 and all the clients are connected to the server in each communication round. In
the experiments for language modeling using the LSTM, we randomly sample 5% of
the entire role players (36 role users containing at least 64 samples) in Shakespeare
dataset. Therefore, only 10 out of the 36 clients are randomly chosen to participate
the training, following the settings in [74]. The total number of communication
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rounds is set to be 100.
We use SGD algorithm for all model training. For the CNN models, the number of

local epochs is set to 2, the batch size is 50, and the learning rate is 0.1 with a decay
rate of 0.995 over the FL rounds. We do not use any momentum for training the
CNNs, while the momentum is set to be 0.5 for the ResNet. For the LSTM, the local
epoch is set to 1, the batch size is 10, and the learning rate is 0.5 with a decay rate
of 0.995.

The threshold rate is set to be 0.6 and the corresponding threshold value T is
0.6n, where n is the number of connected clients in each communication round.
Note that threshold T can be set to any value so long as it satisfies the condition
T > n/2 so that the assumption that the number of benign clients is larger than that
of malicious clients holds. The key size and group size of the distributed additive
ElGamal encryption are set to 256 and 3072, respectively, to offer a 128-bit security
level. Besides, the bit length b for encoding is chosen to be from 2 to 15. Due to the
limited computation resources, a very large encoding bit length (b > 15) is not used
here, since it will consume much more time for brute force recovery. Besides, for
the log recovery, g0 is set to 2 for fast encryption and the condition g m

0 ≤ p must be
satisfied as described in Algorithm 2. Since the group size of p is 3072, the encoded
number m must satisfy the condition 2m ≤ 3072 and the corresponding encoding
bit length satisfies the condition b ≤ 11.6. Also considering the overflow problem
previously discussed, the largest encoding bit length for log recovery is set to 10. As
a result, the log recovery is used when the encoding bit length ranges from 2 to 10,
while the brute force recovery method is adopted when the bit length is larger than
10.

2.4.3. ENCRYPTION COST AND BRUTE FORCE RECOVERY TIME

At first, we compare the communication costs between the proposed DAEQ-FL and
a threshold based Paillier method in terms of encryption and recovery costs.

Table 2.2: Communication costs of one connected client for both encryption and
partial decryption with 128-bit security level, # of ciphertexts means
the number of transmitted ciphertexts for encryption and decryption,
respectively.
Models Enc Uploads (MB) Dec Downloads (MB) Dec Uploads (MB) # of Ciphertexts

CNN (DAEQ-FL) 0.3876+0.0059 0.0059 0.0029 16+24
ResNet (DAEQ-FL) 2.6618+0.0161 0.0161 0.0081 44+66
LSTM (DAEQ-FL) 0.1955+0.0066 0.0066 0.0033 18+27

CNN (Paillier) 595.4099 595.4099 595.4099 1625866+3251732
ResNet (Paillier) 4088.5115 4088.5115 4088.5115 11164362+22328724
LSTM (Paillier) 300.2637 300.2637 300.2637 819920+1639840

We experiment with three different models (CNN, ResNet and LSTM) in our
DAEQ-FL system and compare them with the Paillier-based variants. As shown in
Table 2.2, the communication cost of our system is dramatically less than those
Paillier-based systems. The best case has been achieved in the LSTM, where each
client consumes only 0.212MB of communication costs in one round, whereas
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the Paillier system takes 900.7911MB, which is about 4249x of our system. For
training the CNN and ResNet, the proposed DEAQ-FL costs 0.4023MB and 2.7021MB,
respectively, which accounts for approximately 0.023% and 0.022% of the Paillier
based variants.

Next, we compare the runtime of the ElGamal encryption used in our system and
the conventional Paillier method under the same security level. The runtimes of
the two encryption methods for encrypting and decrypting one number are listed in
Table 2.3, where both the key size of Paillier and the group size of ElGamal are 3072.

Table 2.3: Runtime for encryption and decryption of one number using ElGamal and
Paillier

Algorithm Enc Time (s) Dec Time (s)

ElGamal 0.0029 0.0015
Paillier 0.0501 0.0141

From the results in Table 2.3, we can observe that ElGamal is approximately 17
times and 10 times faster than Paillier for encryption and decryption, respectively.
However, since the Cramer transformation needs extra brute force recovery time, in
the following, we explore the brute force recovery time corresponding to different
encoding bit lengths for CNN, ResNet18 and stacked LSTM, respectively. The
comparative results are plotted in Fig. 2.4.
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Figure 2.4: Brute force recovery time with different encoding bit lengths for different
learning models.

Because the larger the encoding bit length is, the more time the brute force
recovery will consume. Here, we experiment with the encoding bit length starting
from 15 bits to 2 bits. The results clearly show that the difference in computation
times goes bigger with rising of encoding bit. Specifically, CNN, ResNet and LSTM
spend at most 18.0467s, 42.2203s and 55.2088s on recovery, respectively.

The CNN and ResNet show similar recovery time profile over the communication
rounds. Their brute force recovery time are very large in the beginning, and
quickly drop over the communication rounds. This is attributed to the fact that the
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gradients of the model parameters of the SGD decrease quickly as the global model
parameters converge. It is surprisingly to see that the recovery time for the ResNet
becomes almost zero, which is smaller than that of the CNN after approximately 100
communication rounds. This means the model gradients of the ResNet become very
small at the end of federated model training.

By contrast, the recovery time of the LSTM does not drop to zero and keeps
fluctuating at a relatively high level, especially for the 15-bit length encoding. There
are two reasons for the above observations. First, training of the LSTM involves large
gradients of recurrent connections, and those values are determined by the length of
sequence. Second, the setting of the FL environment for the LSTM is very different
from that of the CNN and ResNet, where only ten clients randomly participate global
model aggregation in one communication round.

Table 2.4 presents the time consumption of the brute force recovery for 15-bit
encoding length. From Fig. 2.5(a) we can find that the average brute force recovery
time accounts for a great proportion of the total elapsed time in each communication
round, especially for the LSTM.

Table 2.4: Brute force recovery time for 15 encoding bit length

Models Max (s) Min (s) Avg (s)

CNN 18.0467 1.0717 1.9786
ResNet 42.2203 0.0474 2.6491
LSTM 55.2088 12.6166 23.8876
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Figure 2.5: Ratio of consumed time for model training, encryption and decryption,
and brute force recovery for the 15-bit encoding length (a), and for the
log recovery for the 10-bit encoding length (b) in one communication
round.

Therefore, we can use the log recovery instead of the brute force recovery when
the encoding bit length is smaller than or equal to 10 so that the recovery time
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and the encryption time become negligible (Fig. 2.5(b)). Since the group size of p
is 3072 bit and g0 is 2, the log recovery is not recommended when the plaintext
message is larger than 3072 bit (11-bit encoding length). In order to avoid overflow,
the maximum encoding bit length is set to be 10 in our simulations and the global
performance drop caused by a low encoding bit length will be discussed in the next
section.

2.4.4. ANALYSIS OF APPROXIMATE MODEL AGGREGATION

For approximate aggregation analysis, we vary the degrees of data skew among
each client, since the local gradient differences mainly come from different local
data distributions. More specifically, there are three kinds of different local data
distributions: 1) independent and identical distributed (iid): the training data is
randomly allocated to each client, 2) non-iid with 5 classes: each client owns five
different kinds of object images, 3) non-iid with 2 classes: each client owns two
different kinds of images.

ResNet is adopted for this analysis, since it is the most complex model containing
the largest trainable parameters in our experiments and the results derived from
ResNet are more representative. In addition, we just display the maximum absolute
elements st of the first convolutional layer and the last fully connected layer, because
it is redundant and unnecessary to show total 22 st values of all 20 layers in one
client. Except that, these experiments are performed under the federated encryption
environment with our DAEQ-FL algorithm and two kinds of encoding bit length (10
and 15) are used here.

The purpose of this ablation study is to observe whether the values of st of

different clients are similar. And if s1
t ≈ s2

t ≈ ...sn
t holds, the bias between g global

t and

sglobal
t ∗ g global

(t ,tern) in Eq. (2.19) of the original paper would be very small.
All experimental results with three different kinds of data distributions are shown

in Fig. 2.6, 2.7 and 2.8, respectively. It is clear to see that, st values from different
clients do not show big differences with each other over communication rounds.
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Figure 2.6: st values of all connected clients with iid data.

More specifically, for iid cases, the curves of different st values are nearly located
at a single line. In other words, different st values have almost the same value and
our proposed approximate aggregation algorithm has extremely small performance
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Figure 2.7: st values of all connected clients with non iid data that each client
contains only 5 different kinds of object images.
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Figure 2.8: st values of all connected clients with non iid data that each client
contains only 2 different kinds of object images.
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biases for iid data compared to original weighted averaging method.
For non iid cases with 5 kinds of local images, the curves show more variations

than those of iid cases. However, even for the scenarios of 10 bit encoding length,
the observed maximum distance between two st values of the first convolutional
layer is less than 0.003 in Fig. 2.7(a), and the approximation biases caused by these
small differences can be negligible.

The results of very extreme non iid cases with only 2 kinds of local images are
also presented in Fig. 2.8. This case has an obvious difference that the st values
of the last fully connected layer show more variations than those of two previous
situations. And it is also clear to see that the maximum distance between two st

values is around 0.005 in Fig. 2.8(d), thus, even for this extreme case, our proposed
approximate aggregation algorithm would not bring in large performance biases and
is still valid in DEAQ-FL algorithm.

2.4.5. LEARNING PERFORMANCE

In this section, we empirically examine influence of the TernGrad quantization,
approximate aggregation and encoding length on the learning performance of the
proposed DAEQ-FL system. Fig. 2.9 shows the test accuracy of the three models with
or without encryption operations. For non encryption cases, ‘Original’ represents
standard FL, ‘TernGrad’ means only quantization is used and ‘TernGrad+Approx’
uses both quantization and approximated aggregation technique. And for encryption
cases, brute force recovery is used for 15 encoding bit length cases and log recovery
is adopted for 10 bit length scenarios.

From these results, we can see that the test accuracy of the models of the original
FL and four variants of the DEAG-FL have achieved almost the same performance
(in particular the CNN, with 98.97% test accuracy). These results indicate that both
the quantization and approximated aggregation have negligible impact on the test
performance of the global model. Besides, neither the quantization or encryption has
considerably slowed down the convergence speed over the communication rounds.
It also can be seen that, the CNN and ResNet converge around the 25th round, while
the LSTM is convergent around the 50th round.
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Figure 2.9: The test accuracy of the global model for CNN, ResNet and LSTM in five
different settings.
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More specifically, when the CNN trained on the MNIST dataset, the model
performance does not degrade when the encoding bit length is decreased to 10.
However, For the ResNet trained on CIFAR10, the test accuracy of the global model
is reduce to 74.96% by using 10-bit encoding, which is approximately 1% lower than
models without using encryption. The test accuracy of the LSTM models fluctuates
between around 48% and 52%, regardless whether quantization or encryption are
used or not. This can be due to the same reasons as discussed above.

Now we take a closer look at the learning performance of the global model of the
proposed DAEQ-FL when the encoding bit length further decreases. The results for
all models are shown in Fig. 2.10. It can be noticed that the convergence speed of
the CNN and ResNet starts to decrease when the encoding bit length is smaller than
9. Besides, the model performance reduces dramatically when the encoding length is
reduced to 7 bits or lower for CNN and to 8 bits or lower for the ResNet, respectively.
Reduction of the encoding bit length does not cause clear model degradation for the
LSTM until when only 2 bits are used for encoding and the accuracy is reduced to
43.15%. Nevertheless, we can still observe a slight drop in the convergence speed in
the beginning of the communication rounds. The possible reason for this is that the
model gradients of LSTM are large.
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Figure 2.10: The test accuracy of the global model with different encoding lengths.

To take a closer look at the relationship between the model performance and
computation time (related to the encoding length if the bit size is larger than 10),
the test performances over different brute force recovery time are listed in Table 2.5.
It is clear to see that the model test accuracy on three datasets does not have big
variations with the increase of the brute force recovery time. On the CIFAR10 and
MNIST datasets, however, the model performances have a significant drop from 7
bit encoding length. In this case, the log recovery method is adopted to alleviate the
brute force recovery time. And all runtimes should be the same without considering
the error in calculating the system computation time and other interference noise.

Overall, both TernGrad quantization and the approximate global model aggregation
have little impact on the model performance, so long as the encoding bit length is
not less than eight. Therefore, the proposed DEAQ-FL using the log recovery and
an encoding length of 9 or 10 can achieve 128 bit security level with negligible
degradation in performance and little increase in computational and communication
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Table 2.5: Model test performance over different brute force recovery time on three
datasets.

Encoding bit 6bit 7bit 8bit 9bit 10bit 11bit 12bit 13bit 14bit 15bit
CIFAR-10

Accuracy (%) 29.1 46.71 62.4 74.87 74.96 76.03 75.31 75.68 75.54 75.89
Average Time (s) \ \ \ \ \ 0.1006 0.2508 0.5360 1.2207 2.6491
Maximum Time (s) \ \ \ \ \ 1.4608 3.9389 7.5755 16.1956 42.2203

MNIST
Accuracy (%) 14.25 81.18 97.79 98.53 98.75 98.97 98.91 98.92 98.98 99
Average Time (s) \ \ \ \ \ 0.1267 0.2312 0.5585 1.1146 1.9786
Maximum Time (s) \ \ \ \ \ 1.2942 1.6247 6.3499 9.0804 18.0468

Shakespeare
Accuracy (%) 50.80 516.65 51.04 50.11 50.33 50.42 51.67 51.15 50.47 51.26
Average Time (s) \ \ \ \ \ 1.4180 2.5906 5.4531 10.8060 23.8876
Maximum Time (s) \ \ \ \ \ 3.2861 7.0456 11.9095 31.8851 55.2088

costs for the CNN, ResNet and LSTM on the corresponding datasets studied in this
work.

2.5. CONCLUSION AND FUTURE WORK
In this paper, we propose a privacy-preserving solution that makes use of distributed
key generation and additive ElGamal encryption to protect gradients in the federated
learning framework. To reduce computational and communication costs, we also
introduce ternary quantization of the local models and approximate aggregation
of the global model, making our solution practical in complex machine learning
models, such as deep neural networks, in the context of gradient encryption. The
proposed DAEQ-FL system does not rely on a TTP for key pair generations, which
enables the system to tolerate a certain number of malicious clients.

DEAQ-FL can adopt the computationally efficient log recovery when the encoding
bit length is less than eleven, and there is no noticeable learning performance
degradation when ten bits are used for encoding (note only about 1% accuracy loss
for ResNet compared to the results without doing any encryption on the Shakespeare
dataset). However, the model learning performance starts to clearly deteriorate when
the encoding length is less than eight. Thus, brute force recovery must be adopted
when the encoding length is larger than eleven. Although a large encoding length
can enhance the coding precision, the amount of recovery time will considerably
increase. According to our experimental results, the global models trained with a
maximum of fifteen bits can perform comparably to the non-encrypted FL, while
the recovery time is still acceptable. Since the model gradients tend to decrease
to zero during training, the brute force recovery time is expected to become much
smaller as the global model converges.

Although the proposed method shows highly promising performance for encrypted
federated deep learning, it may need to balance a trade-off between model
performance and computation time needed for plaintext recovery when a small
model (e.g., a logistic regression) is adopted. This is mainly because a smaller model
will require a much longer encoding length (e.g., more than fifteen), making the
brute force based recovery intractable. Therefore, our future work will be dedicated
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to the development of a distributed additive homomorphic encryption without
recovery that can be used in federated learning systems.
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3
SECURE VERTICAL FEDERATED

LEARNING FOR DECENTRALIZED

LABELS

Vertical Federated Learning (VFL) enables multiple clients to collaboratively train a
global model over vertically partitioned data without leaking private local information.
Tree-based models, like XGBoost and LightGBM, have been widely used in VFL to
enhance the interpretation and efficiency of training. However, there is a fundamental
lack of research on how to conduct VFL securely over distributed labels. This work is
the first to fill this gap by designing a novel protocol, called FEVERLESS, based on
XGBoost. FEVERLESS leverages secure aggregation via information masking technique
and global differential privacy provided by a fairly and randomly selected noise leader
to prevent private information from being leaked in the training process. Furthermore,
it provides label and data privacy against honest-but-curious adversaries even in the
case of collusion of n −2 out of n clients. We present a comprehensive security and
efficiency analysis for our design, and the empirical results from our experiments
demonstrate that FEVERLESS is fast and secure. In particular, it outperforms the
solution based on additive homomorphic encryption in runtime cost and provides
better accuracy than the local differential privacy approach.

This chapter is based on the paper FEVERLESS: Fast and Secure Vertical Federated Learning based
on XGBoost for Decentralized Labels by Wang, R., Ersoy, O., Zhu, H., Jin, Y. and Liang, K. IEEE
Transactions on Big Data.
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3.1. INTRODUCTION

Traditional centralized deep learning models, demanding to collect a considerable
amount of clients’ data to maintain high accuracy, to some degree, may increase the
risk of data breaches. Data may not be easily shared among different entities due
to privacy regulations and policies. To tackle this “Data Island" problem [1], Google
proposed Federated Learning (FL) [2] to allow multiple clients to train a global
model without sharing private data. The basic paradigm of FL is that all clients train
local models with their own data, and then the information of local models, e.g.,
gradients, may be exchanged to produce a global model.

Based on different types of data partition [1], FL can be mainly categorized into
Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL). The
former focuses on training with horizontally partitioned data where clients share the
same feature space but differ in data index set. Several research works [3–6] have
found that training data of HFL is still at high risk of leakage although private data is
kept locally. Other studies [7–11] have been dedicated to enhancing the security of
HFL. On the contrary, VFL is mainly applied in the scenario of training with vertically
partitioned data [12, 13] where clients share the same data index set but differ in
feature space. In this paper, our principal focus is to achieve privacy-preserving
training on VFL.

To the best of our knowledge, many existing studies [12–18] have proposed
innovative approaches to prevent private information breaches in the context of VFL.
Specifically, [14] introduced encryption-based privacy-preserving logistic regression
to safeguard the information of data indexes. [15] gave a comprehensive discussion
on the impact of ID resolution. [17] introduced a scheme without using a coordinator
for a limited number of clients. Recently, [16] proposed an asymmetrically VFL
scheme for logistic regression tackling privacy concerns on ID alignment.

Unlike the training models used in the aforementioned works, XGBoost [18], which
is one of the most popular models applied in VFL, can provide better interpretation,
easier parameter tuning, and faster execution than deep learning in tabular data
training [19, 20]. These practical features and advantages draw academia and
industry’s attention to the research on XGBoost, especially in the privacy-preserving
context. [12] introduced an approach for tree-based model training through a hybrid
method composing homomorphic encryption and secure Multi-Party Computation
(MPC) [21, 22]. After that, [13] proposed a similar system to train XGBoost
[18] securely over vertically partitioned data by using Additively Homomorphic
Encryption (AHE). By applying Differential Privacy (DP) [23], [24] designed a VFL
system to train GBDT without the need of encryption/decryption.

However, most of the above solutions based on AHE and MPC do not scale well
in terms of efficiency on training XGBoost. Beyond that, all the existing schemes
basically assume that training labels are managed and processed by a sole client.
In practice, a VFL scheme supporting distributed labels is necessary. For instance,
multiple hospitals, clinics and health centers currently may be set to COVID-19 test
spots and aim to train a model, e.g., XGBoost, to predict with good interpretation if
citizens (living in various locations) are infected based on their health records and
symptoms. In this context, the labels (and their values), e.g., the test results, are
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likely distributed among different health authorities - even targeting to the same
group of patients, and feature space is vertically portioned. For example, a cardiac
hospital only maintains heart data for the patients, while a psychiatric center holds
the mental records, in which both authorities may collect and manage each of its
registered patient’s label locally. Another common scenario could be in the financial
sector where multiple bank branches and e-commerce companies prefer to build
a global model to predict if their customers may pay for some service (e.g., car
loan) on time. The banks have part of features about the customers (e.g., account
balance, funding in-and-out records), while the companies may obtain other features
(e.g., payment preference). Since the customers may get the same service, e.g.,
loan, from different institutions, it is clear that labels must be distributed rather
than centralized. In addition to efficiency and functionality aspects, one may also
consider capturing stronger security for VFL. Training an XGBoost usually should
involve the computation of first and second-order derivatives of the loss function
(note gradients and hessians contain labels’ information), and the aggregation of
them is required in each round. In the context where the labels (and their values)
are held by different clients, if the gradients and hessians are transmitted in the form
of plaintexts and the summations of them are known to an aggregator (who could
be one of the clients engages in training), inference and differential attacks (Section
3.3.3) will be easily conducted by the aggregator, resulting in information leakage.

To tackle these problems, we propose a fast and secure VFL protocol, FEVERLESS,
to train XGBoost on distributed labels without disclosing both feature and label
value. In our design, privacy protection is guaranteed by secure aggregation (based
on a masking scheme) and Global Differential Privacy (GDP). We leverage masking
instead of heavy-cost multiparty computation and we guarantee a “perfect secrecy"
level for the masked data. In GDP, we use Verifiable Random Function (VRF) to
select a noise leader per round (who cannot be predicted and pre-compromised in
advance) to aggregate noise from “selected" clients, which significantly maintains
model accuracy.

Our contributions can be summarized as follows.
(1) We define VFL in a more practical scenario where training labels are distributed
over multiple clients. Beyond that, we develop FEVERLESS to train XGBoost securely
and efficiently with the elegant combination of secure aggregation technique (based
on Diffie-Hellman (DH) key exchange and Key Derivation Function (KDF) and GDP.
(2) We give a comprehensive security analysis to demonstrate that FEVERLESS is
able to safeguard label value and feature privacy in the semi-honest setting, but also
maintain robustness even for the case where n−2 out of n clients commit collusion.
(3) We implement FEVERLESS and perform training time and accuracy evaluation
on different real-world datasets. The empirical results show that FEVERLESS can
maintain efficiency and accuracy simultaneously, and its performance is comparable
to the baseline - a "pure" XGBoost without using any encryption and differential
privacy. Specifically, training the credit card and bank marketing datasets just takes
1% and 6.5% more runtime than the baseline and meanwhile, the accuracy is only
lower than that of the baseline by 0.9% and 3.21%, respectively1.

1For banknote authentication dataset, FEVERLESS takes 13.96% more training time than the baseline,
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3.2. PRELIMINARIES

3.2.1. XGBOOST

XGBoost [18] is a popular tree-based model in tabular data training that can provide
better interpretation, easier parameters tuning and faster execution speed than deep
learning [19, 20]. It also outperforms other well-known boosting tree systems in
terms of accuracy and efficiency, like Spark MLLib [25] and H2O [18], especially
for large-scale datasets. Therefore, in this paper, we consider using XGBoost as a
building block for classification tasks.

Assume that a training set with m data points composing with feature space
X = {x1, · · · , xm} and label space Y = {y1, · · · , ym}. Before training starts, every feature
will be sorted based on its values, and split candidates will be set for features.
XGBoost builds trees based on the determination of defined split candidates and
some pruning conditions. Specifically, computing gradients and hessians first
according to Eq.(3.1) and Eq.(3.2) for each data entry, where y (t−1)

i denotes the
prediction of previous tree for i -th data point, and yi is the label of i -th data point:

gi = 1

1+e−y (t−1)
i

− yi = ŷi − yi , (3.1)

hi = e−y (t−1)
i

(1+e−y (t−1)
i )2

. (3.2)

For splitting nodes, the XGBoost algorithm determines the best split candidate from
all others based on maximum Lspl i t in Eq.(3.3), where λ and γ are regularization
parameters:

Lspl i t =
1

2
[

∑
i∈IL gi∑

i∈IL hi +λ
+

∑
i∈IR gi∑

i∈IR hi +λ
−

∑
i∈I gi∑

i∈I hi +λ
]−γ. (3.3)

The current node will be the leaf node if the following conditions are fulfilled:
reaching the maximum depth of tree, the maximum value of impurity is less than a
preset threshold. The calculation of the leaf value follows Eq.(3.4):

w =−
∑

i∈I gi∑
i∈I hi +λ

. (3.4)

3.2.2. DIFFIE-HELLMAN KEY EXCHANGE

Based on Decision Diffie-Hellman (DDH) hard problem [26] defined below, Diffie-
Hellman key exchange (DH) [27] provides a method used for exchanging keys
across public communication channels. Without losing generality and correctness,
it consists of a tuple of algorithms (Param.Gen, Key.Gen, Key.Exc). The algorithm
(G, g , q) ← Param.Gen (1α) generates public parameters (a group G with prime order
q generated by a generator g ) based on secure parameter α. (ski , pki ) ← Key.Gen(G,

g , q) allows client i to generate secret key (ski
$←− Zq ) and compute public key

and the accuracy is 30.4% lower. This is because the model is trained by a small-scale dataset, so
that the robustness is seriously affected by noise.
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(pki ← g ski ). Shared key is computed by (pk
sk j

i , pk ski
j ) ← Key.Exc(ski , pki , sk j , pk j ).

Inspired by [22, 28], we utilize shared keys as maskings to protect the information
of labels against inference attacks during transmission in public channels. The

correctness requires pk
sk j

i = pk ski
j . The security relies on the DDH problem [26],

which is defined as:

Definition 3.2.1 (Decision Diffie-Hellman). Let G be a group with prime order q
and g be the fixed generator of the group. The Probabilistic Polynomial Time
(PPT) adversary A is given and g a and g b where a and b are randomly chosen.
The probability of A distinguishing (g a , g b , g ab) and (g a , g b , g c ) for a randomly
chosen c is negligible:∣∣∣Pr

[
a,b ←$Zq : A (g , g a , g b , g ab) = true

]
−

Pr
[

a,b,c ←$Zq : A (g , g a , g b , g c ) = true
]∣∣∣< neg l (α).

3.2.3. PSEUDO-RANDOM GENERATOR AND HASH FUNCTION

Pseudo-Random Generator (PRG) [29] is an algorithm that is able to generate
random numbers. The ”pseudo-random" here means that the generated number
is not truly random but has similar properties to a random number. Generally,
the pseudo-random numbers are determined by given initial values a.k.a seeds.
In cryptographic applications, a secure PRG requires attackers not knowing seeds
can distinguish a truly random number from an output of PRG with a negligible
probability. Similar to PRG, the hash function allows mapping arbitrary sizes of
data to a fixed bit value. For reducing the communication cost of FEVERLESS, we
use SHAKE-256 [30], one of the hash functions in SHA-3 [31] family, to generate the
customized size of maskings.

3.2.4. KEY DERIVATION FUNCTION

Key Derivation Function (KDF) [32] is a kind of hash function that derives multiple
secret keys from the main key by utilizing Pesudo-Random Function (PRF) [33]. In
general, KDF algorithm DK ← K DF (mai nke y, sal t ,r ound s) derives keys DK based
on the main key, a cryptographic salt and the current round of processing algorithm.
The security requires a secure KDF that is robust for brute-force attacks or dictionary
attacks. Inspired by [34] where key shares generated by DH key exchange are
converted to AES keys, in this paper, we use KDF to generate maskings for every
round to reduce communication costs. The main key we use is generated by DH key
exchange.

3.2.5. VERIFIABLE RANDOM FUNCTION

Verifiable Random Function (VRF) [35] is a PRF providing verifiable proof of the
correctness of outputs. It is a tool widely used in cryptocurrencies, smart contracts
and leader selection in distributed systems [36]. Basically, given an input x, a
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signature scheme and a hash function, a practical leader selection scheme with VRF
[36] works as:

Sleader ←H(Signski
(x)) (3.5)

where ski is the secret key for i -th client, and the maximum leader score Sleader

is used to determine leader. The security and unforgeability of VRF require that
the signature scheme has the property of uniqueness, and the hash function is able
to map the signature to a random string with a fixed size. The correctness of this
Sleader is proved by the signature of x.

3.2.6. DIFFERENTIAL PRIVACY

Differential Privacy (DP) [37, 38] is a data protection system targeting on the
publishing of statistical information of datasets while keeping individual data private.
The security of DP requires that adversaries cannot distinguish statistical change
between two datasets where an arbitrary data point is different.

The most widely used DP mechanism is called (ϵ,δ)-DP requiring less noise
injected than originally proposed ϵ-DP but with the same privacy level. The formal
definition is given as follows.

Definition 3.2.2. ((ϵ,δ) - Differential Privacy) Given two real positive numbers
(ϵ,δ) and a randomized algorithm A : Dn → Y , the algorithm A provides (ϵ,δ) -
differential privacy if for all data sets D, D

′ ∈Dn differing in only one data sample,
and all S ⊆Y :

Pr [A (D) ∈S ] ≤ exp(ϵ) ·Pr [A (D
′
) ∈S ]+δ. (3.6)

Note the noise N ∼ N (0,∆2σ2) will be put into the output of the algorithm, where
∆ is l2 - norm sensitivity of D and σ=p

2ln(1.25/δ) [39].

3.3. PROBLEM FORMULATION

3.3.1. SYSTEM MODEL

We here make some assumptions on our system. We suppose that a private set
intersection [40, 41] has been used to align data IDs before the training starts, so
that each client shares the same data index space I . But the names of features are
not allowed to share among clients. As for the relationship of label tagging (indexes
indicating a label belongs to which client, e.g., the label a is held by client A,B), we
will consider that this can be known to the public in advance. But this assumption
does not mean that the label “value" is leaked. For instance, client C knows that
client A,B have a, but it does not know the specific value of a.

We also consider that the training is conducted on a dataset with m samples
composing with feature space X = {x1, · · · , xm}, each containing f features, and label
set Y = {y1, · · · , ym}. Besides, features {X (c)

j | j ∈ {1, · · · , f }} and labels {y (c)
i | i ∈ {1, · · · ,m}}

are held among n clients where each client has at least one feature and one label.
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Table 3.1: Notations summary

Notation Description
X feature space

X (c)
j j -th feature owned by c-th client

xi i -th data point with d features
Y label space

y (c)
i the label of i -th data point owned by c-th client

I data index space
C clients set

g (c)
i the gradient of i -th data point owned by c-th client

h(c)
i the hessian of i -th data point owned by c-th client

G summation of gradients
H summation of hessians
m number of data entries
n number of clients
f number of features
d the maximum depth of tree
ϵ,δ parameters of differential privacy
∆g sensitivity of gradients
∆h sensitivity of hessians
Lspl i t impurity score
w leaf value
pkc public key generated by c-th client
skc secret key owned by c-th client
g generator of multiplicative group

B j
z z-th bucket of j -th feature

X (c)
j and y (c)

i refer to j -th feature and i -th label owned by c-th client, respectively.

Note we summarize the main notations in Table 3.1.
Considering a practical scenario wherein training labels are distributed among

clients, we propose a new variant of VFL, named VFL over Distributed Labels
(DL-VFL). The concrete definition is given as follows.

Definition 3.3.1 (DL-VFL). Given a training set with m data samples consisting of
feature space X , label space Y , index space I and clients set C , we have:

X c ∩X c
′
=;,

∣∣∣Y c ∩Y c
′ ∣∣∣< m,I c =I c

′
,∀c,c

′ ∈C ,c 6= c
′
.

Remarks. Different clients hold the subset of X sampled from feature space.
A client c participating DL-VFL shares the same sample ID space I with the
corresponding labels, where a single label may be tagged to multiply clients
(1-to-many case), for example, the label a → cl i ent A, B . One may easily see the

special case where a single label is assigned to only one client (i.e. Y c ∩Y c
′
=;),
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1-to-1 case. Recall that the “tagging" relationship between label and client can be
publicly known. Based on this assumption, our experiments are conducted in 1-to-1
cases for simplicity. We state that the designed experiments are also compatible
with 1-to-many cases. This is so because the assumption allows the source client
(which is defined below) to have knowledge of label holders, so that it can request
“distinct" and missing labels from those holders, e.g., requesting a from either client
A or B . Note as for 1-to-many, the size of missing labels, |mI Ds|, could be smaller
than 1-to-1, which may require less communication cost and runtime.

We will further require the participation of the source client and noise leader in
our design. And they are defined as follows.

Definition 3.3.2 (Source client). A source client with split candidates wants to
compute the corresponding Lspl i t based on Eq.(3.3). But some labels are missing so
that

∑
gi and

∑
hi are unable to derive.

For the case that a source client does not hold all labels in the current split
candidates, we propose a solution based on secure aggregation and global differential
privacy to help the source client to compute Lspl i t while safeguarding other clients’
privacy. Note each client may have a chance to act as a source client because all
the labels are distributed, where the source client leads the Lspl i t computation, and
clients provide missing label values to the source client.

To achieve GDP, we define a noise leader who is selected fairly and randomly from
all clients (except for the source client) - preventing clients from being compromised
beforehand.

Definition 3.3.3 (Noise leader). By using VRF, a noise leader is responsible for
generating the maximum leader score , aggregating differentially private noise from a
portion of clients and adding the noise to the gradients and hessians.

3.3.2. THREAT MODEL

We mainly consider potential threats incurred by participating clients and outside
adversaries. We assume that all clients are honest-but-curious, which means they
strictly follow designed algorithms but try to infer the private information of others
from the received messages. Besides, we also consider up to n −2 clients’ collusion
to conduct attacks, and at least one non-colluded client adds noise per round.
Through authenticated channels, DH key exchange can be securely executed among
clients. Other messages are transmitted by public channels, and outside attackers
can eavesdrop on these channels and try to reveal information about clients during
the whole DL-VFL process. Note this paper mainly focuses on solving privacy issues
in training DL-VFL based on XGBoost. Thus, other attacks, like data poisoning and
backdoor attacks deteriorating model performance, are orthogonal to our problem.

3.3.3. PRIVACY CONCERN

Since we assume feature names are not public information for all clients, and the
values of features never leave clients, privacy issues are mainly incurred by the
leakage of label information.
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INFERENCE ATTACK

During the training process, gradients and hessians are sent to the source client
for Lspl i t computation. For the classification task, the single gradient is in the
range (−1,0)∪ (0,1) for binary classification. According to Eq.(3.1), a label can be
inferred as 1 and 0 if the range is (−1,0) and (0,1), respectively. Besides, hessian
illustrated in Eq.(3.2) can leak a prediction of the corresponding data sample. With
training processing, the prediction is increasingly closer to a true label. The source
client and outside attackers can infer the true label with high probability. Gradients
and hessians cannot be transmitted in plaintext. We thus use a secure aggregation
scheme to protect them from inference attacks.

DIFFERENTIAL ATTACK

The differential attack can happen anytime and many times during the calculation
of gradients and hessians. Figure 3.1 describes an example of a differential
attack taking place in a single node split. After sorting feature1, the semi-honest
source client defines 2 split candidates and further computes G{2,5} = g2 + g5 and
G{1,2,3,5} = g2 + g5 + g1 + g3 for the candidates 1 and 2, respectively. Since the source
client holds label 2, even if G{2,5} is derived by secure aggregation, the g5 still can be
revealed by G{2,5} − g2.

Figure 3.1: A differential attack on single node split

Another example of differential attack is shown in Figure 3.2. Assume split
candidate 1 is the one for splitting the root node. In the current tree structure,
the source client may split the right node by computing Lspl i t of split candidate 2.
In this case, G{1,3} should be aggregated by the source client. And the g5 can be
revealed by G{1,2,3,5} −G{1,3} − g2, where G{1,2,3,5} is computed in the previous node.

Figure 3.2: A differential attack on multiply node splits
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3.4. A PRACTICAL PRIVACY-PRESERVING PROTOCOL

3.4.1. FEVERLESS PROTOCOL DESCRIPTION

To prevent a source client from knowing gradients and hessians sent by other
clients, one may directly use MPC [42] based on AHE [12, 43]. But this method
yields expensive computation costs. Getting rid of the complex mechanism like
MPC, we leverage secure aggregation protocol via masking scheme based on DH key
exchange [22, 24, 28]. By further using KDF and Hash Function, our masking (for
gradients and hessians) can be derived without exchanging keys per training round.
Our approach significantly reduces the communication cost but still maintains the
robustness up to n −2 colluded clients. Meanwhile, the secure aggregation can
provide “perfect secrecy" for broadcast messages. After receiving the broadcast
messages, the masking will be canceled out at the source client side. But only using
the masking is unable to defend against differential attacks. One may consider using
Local Differential Privacy (LDP) [44] to make sure that each client may add noise per
send-out message, barely consuming any extra computation cost. The accumulated
noise, from all clients, may seriously affect the model’s accuracy. To tackle this
problem, we use a GDP [45] approach with noise leader selection. A hybrid method
is finally formed based on a masking scheme and GDP, so that per client’s sensitive
information can be protected by the “masks" and the aggregated values are secured
by the noise which is injected by the chosen clients.

We here briefly introduce our design. Assume each client c ∈ [1,n] generates
respective secret key skc and computes gradients g (c)

i and hessians h(c)
i locally, where

{i | yi ∈Y c }. FEVERLESS works as follows.
1. Broadcast missing indexes. The source client broadcasts the mI Ds= {i | yi ∉Y c }.

Regardless of 1-to-1 or 1-to-many cases, the source client will need to send out the
missing indexes (with knowledge of tagging relationships).

2. Key exchange computation. Each client c computes public key pkc = g skc using
secret keys skc , sends pkc to other clients and computes the corresponding shared

keys2 {Sc,c ′ = pk skc

c ′
= g skc sk

c
′ | c,c

′ ∈C ,c 6= c
′
} based on secret key skc received public

keys {pkc ′ | c
′ ∈C }.

3. Data masking. Each client c runs the masking generation algorithm to compute
the maskings for protecting gradients and hessians. Specifically, based on KDF, clients’
indexes and the number of queries, the masking generation algorithm is conducted

by mask(c)
g ←∑

c 6=c ′

∣∣∣c−c
′ ∣∣∣

c−c ′
·
(
H(Sc,c ′ ‖0‖query

)
, mask(c)

h ←∑
c 6=c ′

∣∣∣c−c
′ ∣∣∣

c−c ′
·
(
H(Sc,c ′ ‖1‖query

)
3.

Then the masked gradients G (c) and hessians H (c) are generated by G (c) =∑
i∈mI Ds g (c)

i +mask(c)
g − r (c)

g , H (c) =∑
i∈mI Ds h(c)

i +mask(c)
h − r (c)

h .
4. Noise leader selection. Each client generates the selection score selecc using the

VRF, H(SIGNskc (count,mIDs,r)), and broadcasts it, where count is the number of
times clients conduct VRF, r is a fresh random number, and SIGN is the signature
scheme. The client with the maximum score will be the noise leader. For ease of

2Shared keys are only generated once, and the KDF is used to generate the remaining maskings.
3For simplicity, we do not show the modular computations here. The full description is elaborated on

Algorithm 6-8.
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understanding, we assume client n with the largest selection score select max
n is the

leader, in Figure 3.3.
5. Noise injection. a) Noise leader selects k clients adding noise. For the

details of the selection, please see Algorithm 8. b) The selected clients send

{ñ(c)
g = N(0,∆2

gσ
2)+ r (c)

g , ñ(c)
h = N(0,∆2

hσ
2)+ r (c)

h |c ∈ k} to noise leader, in which the r (c)
g

and r (c)
h are two random values to mask noise. c) The leader aggregates the noise:

Ñg = k ·N(0,∆2
gσ

2)+Rg and Ñh = k ·N(0,∆2
hσ

2)+Rh , and further adds them to G (n)

and H (n), respectively.
6. Aggregation and computation. All clients send the masked values to the source

client. The source client computes
∑n

c=1 G (c) +k ·N(0,∆2
gσ

2),
∑n

c=1 H (c) +k ·N(0,∆2
hσ

2)
and Lspl i t .

7. Final update. The source client with maximum Lspl i t updates the model
following XGBoost [18] and broadcasts the updated model and data indexes in child
nodes as step 8.

We present an overview of FEVERLESS in Figure 3.3. Note the depicted process
can be conducted iteratively.

3.4.2. XGBOOST TRAINING OVER DISTRIBUTED LABELS

At the initial stage, we allow all clients to agree on a tree structure (maximum depth
and the number of trees) and the learning rate for updating prediction. To avoid the
overfitting problem, we should define regularization parameters. Threshold impurity
is also another vital parameter used to identify tree and leaf nodes via the maximum
impurity. After that, we should choose ϵ, δ for DP, a hash function for masking
generation, and noise leader selection. Besides, we select a multiplicative group G

with order q generated by a generator g and a large prime number p to run DH.
During the initialization process, all clients set parameters and sort their own

features based on values. Then, split candidates can be defined, and data samples
between two different candidates will be grouped as a bucket. In the end, all entries
are assigned initialized values to calculate the derivatives of the loss function. The
detailed algorithm is described as follows.

Algorithm 4: Initialization

1 Set parameters: all clients agree on the maximum depth of a tree d , the
number of trees (N T ), learning rate (η), regularization parameters (λ,γ), the
threshold of Lspl i t , ϵ, δ, p, g , selection portion (p) and hash function

2 for c ∈ [1,n] do
3 for each feature j owned by c do
4 sort(X (c)

j )

5 define buckets: B j
z

6 set initialized values: ŷi
(c)

After initialization, all clients can invoke Algorithm 5 to train the model



3

66 3. SECURE VERTICAL FEDERATED LEARNING FOR DECENTRALIZED LABELS

Figure 3.3: Overview of FEVERLESS. : Source client broadcasts missing I Ds,
aggregates gradients and hessians securely, updates model and broadcasts
nodes I Ds. : DH key exchange and maskings generation. :
Noise leader selection. ÊBroadcast missing indexes. ËKey exchange
computation. ÌData masking. ÍNoise leader selection. ÎGlobal
noise injection. ÏAggregation and computation. ÐÑ Final update and
broadcast updated model. Note sensitive data are in red. The maskings
in Ì protect data from the source client, and the noise in aggregated
gradients and hessians prevents the source client from conducting the
differential attack.

collaboratively. The inputs are from feature space consisting of features X (c)
j and

labels y (c)
i distributed on different clients, respectively; while the output is a trained

XGBoost model that can be used for prediction. Generally, trees are built one by one.
And we see from lines 4-10 in Algorithm 5 that each client can compute gradients
and hessians at beginning of a new tree construction.

Following that, clients are to split the current node. Note that XGBoost training in
DL-VFL requires each client to calculate G and H . If the labels in some buckets are
incomplete, the corresponding gradients and hessians cannot be computed. Thus,
each client should first broadcast the missing data index set mI D (see lines 15-17 in

Algorithm 5). Based on the predefined bucket B j
z , mI D can be defined if labels in

B j
z are not held by clients. In each broadcast, a client sending messages is regarded

as a source client. Then others send the corresponding g (c
′
)

i and h(c
′
)

i back to the
source client to compute Lspl i t through Algorithm 6-8. After finding a maximum
impurity Lc

spl i t_max , the current node will be split into “left" and “right" nodes if

Lc
spl i t_max > thr eshold_Lspl i t , in which the value of the split candidate is own by c.

In node splitting, clients should set a given node as "leaf" if current depth reaches
the predefined maximum depth or the maximum Lspl i t is less than the predefined
threshold of Lspl i t (see line 12, 24-32 in Algorithm 5). The derivation of leaf value is
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Algorithm 5: Protocol overview

1 Input: {X (c)
j | j ∈ f ,c ∈ |C |}: features, {y (c)

i | i ∈ m,c ∈ |C |}: labels

2 Output: XGBoost model
3 Building trees:
4 for nt ∈ [1, N T ] do
5 for c ∈ [1,n] do
6 for each data entry i owned by c do
7 g (c)

i ← Çŷi
(c) Loss(ŷi

(c), y (c)
i )

8 h(c)
i ← Ç2

ŷi
(c) Loss(ŷi

(c), y (c)
i )

9 end
10 end
11 for each node in the current tree do
12 while current depth < d do
13 for c ∈ [1,n] do
14 for each feature j owned by c do

15 for each B j
z owned by c do

16 Broadcast mI D = {i | yi ∉Y c }
17 end
18 aggregate G , H by Algorithm 6-8
19 compute Lspl i t according to Eq.(3.3)
20 end

21 find the maximum L(c)
spl i t and broadcast

22 end

23 L(c)
spl i t_max ← max({L(c)

spl i t | c ∈ [1,n]})

24 if L(c)
spl i t_max ≤ thr eshold_Lspl i t then

25 set current node as leaf node
26 c computes w and broadcast
27 Break
28 else
29 c splits the current node to the left node and right node and

broadcasts the data index of them.
30 end
31 end
32 set remaining nodes as leaf nodes
33 c computes w and broadcast

34 clients participating in calculation of w : update ŷi
(c)

35 end
36 end

followed by Eq. 3.4 where G and H are intaken. Since a leaf node is either “left"
or “right" split by one of the clients in C from its parent node, this client knows G
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and H and leaf value can be derived. Finally, this leaf value will be broadcast, and
clients who own the corresponding g (c)

i and h(c)
i can use it to update predictions.

The details for the above process are shown in Algorithm 5.

3.4.3. SECURE AGGREGATION WITH GLOBAL DIFFERENTIAL PRIVACY

In lines 15-19 of Algorithm 5, the source client is able to compute Lspl i t from the
requested missing data indexes and the aggregation of received messages. To avoid
that inference and differential attacks conducted on labels by source client and
outside adversaries, we propose a privacy-preserving approach, shown in Algorithm
6-8, to “twist" the DH key exchange, noise leader selection and secure aggregation
together. This method represents a viable alternative to train XGBoost securely in
DL-VFL without demanding excessive computational resources and affecting model
accuracy.

To generate the secure-but-can-be-canceled-out maskings, we adopt DH here. In
Algorithm 6, all clients randomly select numbers as their secret keys and generate
the corresponding public keys. For any two clients in the set C , they will exchange
the public key and compute the corresponding shared keys. For simplicity, we do not
describe the signature scheme for DH. We assume DH is conducted on authenticated
channels, which means the man-in-the-middle attack [46] should be invalid here.

Algorithm 6: Diffie-Hellman key exchange

1 for c ∈ [1,n] do
2 skc ←Z∗

p

3 end
4 for c ∈ [1,n] do
5 pkc = g skc mod p

6 for c
′ ∈ [1,n]∧ c

′ 6= c do

7 Sc,c ′ = pk
sk

c
′

c mod p

8 end
9 end

If the shared keys are used as maskings directly, our system is not robust for
clients’ collusion unless the amount of communication has been sacrificed as a cost
to updating maskings per round. But the communication complexity is exponentially
increased with the number of clients for a single node splitting. Considering the
structure of trees, the overall communication complexity will be O(2d ·N T ·n2), which
may not scale well in practical applications.

To tackle this issue, we use KDF to update maskings per round automatically.
Specifically, in lines 24-25 of Algorithm 8, shared keys are taken as main keys. 0 and
1 are salt values for gradients and hessians, respectively. Since the query in each
round varies, the generated maskings should be dynamic accordingly. Besides, the
sign of maskings is determined by the indexes of clients. In this way, we only need to
use DH once, and the communication complexity is independent of tree structure.
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To enable FEVERLESS to hold against differential attack, we use the GDP approach
allowing the chosen one to inject a global noise to aggregated values per round. The
approach is quite subtle. If the noise leader is selected by the source client, the
system will be vulnerable to collusion. Moreover, a client could be easily identified
as a target if we choose it in advance, e.g., by selecting a list of leaders before the
training. To avoid these issues and limit the probability of collusion to the greatest
extent, we use VRF to iteratively select the leader (see Algorithm 7) to securely inject
a global noise. The input of VRF includes mI Ds and a fresh random number r
(line 4 in Algorithm 7), so that this client will not be predicted and set beforehand -
reducing its chance to be corrupted in advance by outsiders and the source client.

Algorithm 7: Noise leader selection

1 count = 1
2 for each time run this algorithm do
3 for c ∈ [1,n] ∧ c 6= sour ce cl i ent do
4 selecc ← H(SIGNskc (count,mIDs,r))
5 Broadcast
6 end
7 selecmax

c ← max({selecc | c ∈ [1,n]})
8 set c as noise leader
9 count+=1

10 end

All clients can broadcast their scores and then the one who provides the “max
value" will become the leader. Then the leader re-generates a selection score as score
threshold (selecthr eshold ) and sends it to the rest of the clients. (line 2-6 in Algorithm
8). The clients send the masked noise back to the leader if the re-generated score is
larger than the threshold (lines 7-13 in Algorithm 8). Subsequently, the leader will
select k̂ clients, notify them and aggregate this masked noise to generate a global
noise with a random number. In this context, even if these selected clients are
colluded (note at least one is not) with the noise leader and source client, there is
still a noise that cannot be recovered, safeguarding the training differentially private.
Note since the noise is masked by the random number, the source client (even
colluding with the leader) cannot recover the “pure" global noise to conduct the
differential attack. And each client adds a noise with a probability p. If k out
of k̂ are non-colluded, the probability of collusion is (1− k

n )h . To cancel out the
randomness, the selected clients will subtract the same randomness from masked
messages (line 28-31 in Algorithm 8).

Considering that the source client may procrastinate the leader selection and
noise injection procedure so as to buy some time for its colluded clients to prepare
sufficient large VRF values to participate in the competition of selection and adding
noise. One may apply a heartbeat protocol [47] to prevent a newly elected leader
from intentionally halting the noise-adding stage for a long period, say 1 min. If
there is no response from the leader after for a short while, a new leader will be



3

70 3. SECURE VERTICAL FEDERATED LEARNING FOR DECENTRALIZED LABELS

randomly selected. Furthermore, the heartbeat may help to solve the problem that
the leader accidentally drops from the network. We note that the heartbeat protocol
is not our main focus in this paper.

Before replying to the source client, we have the clients with labels put maskings
on gradients and hessians, and for those without labels, they just generate and
later send out maskings, in which the noise leader (i.e. one of the maskings
generators) injects the noise. In this way, the maskings, guaranteeing perfect secrecy
of the messages, will be canceled out after the aggregation of the values, and the
differentially private noise will consolidate indistinguishability of individual data
entry.

Note that in lines 24-34 of Algorithm 8, the maskings and masked values are in
the range [0, N −1]. And N should be sufficiently large to avoid overflow, and the
summation of gradients and hessians should not exceed N .

3.4.4. THEORETICAL ANALYSIS

Computation cost: We use B and d to denote the number of buckets and the
maximum depth respectively, and f (c) here represents the number of features held
by a client c. For each client c, the computation cost can be divided into 4 parts: (1)
Performing at most f (c) ·B ·N T · (2d −1) times computation of Lspl i t and w , taking

O( f (c) ·B ·N T ·2d ) time; (2) Creating n −1 shared keys and 1 public key, which is
O(n); (3) Conducting O( f (c) ·B ·N T ·2d ) time to compute VRF outputs, select noise
leader and generate noise; (4) Generating 2 f (c) ·B ·N T · (2d −1) maskings, which
takes O( f (c) ·B ·N T ·2d ·n) time. Overall, each client’s computation complexity is
O( f (c) ·B ·N T ·2d ·n).
Communication cost: Each client’s communication cost can be calculated as
(1) Broadcasting at most f (c) ·B ·N T · (2d −1) times of missing indexes mI D ; (2)
Broadcasting 1 public key and receiving n − 1 public keys from other clients;
(3) Broadcasting 1 leader selection score and sending noise to noise leader at
most f (c) ·B · N T · (2d − 1) times; (4) Sending source client 2 masked gradients
and hessians of size 2dlog2Ne. Therefore the overall communication cost is
f (c) ·B ·N T · (2d −1) · (‖mI D‖·αI +αL +αN +n ·αK 2dlog2Ne), where αI ,αL , αN and αK

refer to the number of bits of index, leader selection score, noise and public keys,
respectively. Thus, we have the communication complexity O( f (c) ·B ·N T ·2d ).

3.4.5. SECURITY ANALYSIS

We show that FEVERLESS provides label value and data privacy against an adversary
controlling at most n −2 clients in the semi-honest setting [48]. Here, we provide a
brief summary of analysis and theorems.
Label Value Privacy: This implies that the value of a label among honest parties
should not be leaked to the adversary. We achieve this by using a secure aggregation
mechanism where the masks are created via DH key exchange and KDF. In brief, we
show that because of the Decisional DH problem (see Definition 3.2.1), the adversary
cannot distinguish the individual values from randomly chosen ones. That is why
the adversary A cannot learn the owner of the label.
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Algorithm 8: Secure aggregation with global differential privacy

1 Noise injection:
2 if c = leader then
3 selec thr eshold

c ← H(SIGNskc (count,mIDs,r))
4 Broadcast
5 count+=1
6 end
7 for c ∈ [1,n] ∧ c 6= sour ce cl i ent ∧ c 6= noi se l eader do
8 selecc ← H(SIGNskc (count,mIDs,r))
9 if selecc > selec thr eshold

c then

10 send ñ(c)
g = N(0,∆2

gσ
2)+ r (c)

g and ñ(c)
h = N(0,∆2

hσ
2)+ r (c)

h to noise leader

11 count+=1
12 end
13 end
14 if c = leader then

15 c selects k clients from clients of sending noise, k = d|{ñ(c)
g }| ·pe

16 if k < 1 then
17 redo noise injection
18 end
19 notify k clients

20 noise aggregation: Ñg = k ·N(0,∆2
gσ

2)+Rg , Ñh = k ·N(0,∆2
hσ

2)+Rh

21 end
22 Secure aggregation:
23 for c ∈ [1,n] do

24 mask(c)
g ←

(∑
c 6=c ′

∣∣∣c−c
′ ∣∣∣

c−c ′
·
(
H(Sc,c ′ ‖0‖query) mod N

))
mod N

25 mask(c)
h ←

(∑
c 6=c ′

∣∣∣c−c
′ ∣∣∣

c−c ′
·
(
H(Sc,c ′ ‖1‖query) mod N

))
mod N

26 G (c) =∑
i∈mI Ds g (c)

i +mask(c)
g mod N

27 H (c) =∑
i∈mI Ds h(c)

i +mask(c)
h mod N

28 if selecc > selec thr eshold
c ∧ received notification then

29 G (c) =G (c) − r (c)
g mod N

30 H (c) = H (c) − r (c)
h mod N

31 end
32 if c = leader then
33 G (c) =G (c) + Ñg mod N

34 H (c) = H (c) + Ñh mod N
35 end
36 send {G (c), H (c)} to source client
37 end
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Data Privacy: FEVERLESS provides data privacy, meaning that an adversary A

cannot extract the features of training data and key shares of any honest party.
Individual key shares are not separable from random values because of the secure
masking. Since the calculations of gradients or hessians are irrelevant with features
of training data, the adversary cannot infer features even if gradients are breached.
If the source client is not part of the adversary, no data information is leaked. But
we require an additional countermeasure for the case where the source client is part
of the adversary because it can collect the summation of the data values. We use
differential privacy [37, 38] to achieve data privacy. Because of the noise added
by differential privacy, the adversary cannot learn the individual data of an honest
client. Moreover, we select the noise clients by the VRF which ensures that the noise
leader cannot be predicted or compromised in advance.

Theorem 3.4.1 (A not including source client). There exists a Probabilistic Polynomial
Time ( PPT) simulator Sim for all |C | := n ≥ 3, |X | := f ≥ n, |Y | := m ≥ 1,

⋃
c∈C X (c),⋃

c∈C Y (c) and A ⊂C so that |A | ≤ n −2, the output of Sim is indistinguishable from
the output of REAL : REALC ,X ,Y

A
(X C ,Y C ) ≡ SimC ,X ,Y

A
(X A ,Y A ).

Proof. In order to prove that simulator Sim can simulate the outputs of the honest
parties in H :=C −A , we show that the distribution of the inputs belonging to the
rest of the network cannot be distinguished from a randomly generated data. In this
way, the simulator can use any dummy values as inputs of the honest parties to
simulate their outputs.

We will simulate the view of the A regarding the messages broadcast by the honest
clients. A client c, first makes a key exchange with others, then after some internal
operations, outputs G (c) and H (c) values. Let us investigate G (c) value, which is in the
form of

∑
i∈mI Ds g (c)

i +mask(c)
g , except for the noise leader who has additional noise of

N(0, (∆gσ)2). The mask values are computed as
∑

c 6=c ′
|c−c ′|
c−c ′ ·H(Sc,c ′‖0‖query) mod N .

Here, we will use a hybrid model where we modify the protocol in several steps,
and for each step, we will show that modifications are indistinguishable for the
adversary A . In the end, we will achieve a hybrid that can be simulated by Sim.
Hybrid1: The first hybrid directly follows the protocol. The distribution of the
variables and the view of A is the same as REAL.
Hybrid2: In the second hybrid, we replace the agreed keys between honest clients
Sc,c ′ for all c,c ′ ∈ H with random values rc,c ′ ∈ G where G is the group of key
exchange protocol G . In the original protocol, Diffie-Hellman key exchange is
used. The replacement is indistinguishable for the adversary because of the decision
Diffie-Hellman assumption given in Definition 2.1.

Also, note that these random values are only available to parties involved in the
key exchange unless they are corrupted by the adversary.
Hybrid3: In this hybrid, we replace the mask values of honest clients mask(c)

g for

all c ∈H with random values R(c). Note that with the replacement in the previous

step, the mask values are computed via
∑

c 6=c ′
|c−c ′|
c−c ′ ·H(rc,c ′‖0‖query) mod N where

rc,c ′ ∈ZN is a random value that is unknown to the adversary (if both c and c ′ are
honest). Because of the random oracle model, the output of the hash function will
be a uniformly random value that is also unknown to the adversary. Since there are
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at most n−2 clients in A , we have at least two honest clients c and c ′ for which the
adversary cannot know the uniformly chosen output of H(rc,c ′‖0‖query). Then, the
modular summation of these outputs includes at least one value that the adversary
does not know and is uniformly random. Thus, it cannot be distinguishable from a
random value R(c).
Hybrid4: In this hybrid, we replace gradients of honest clients g (c)

i for all c ∈H with

’0’s. This is done by replacing mask values with R(c) := R(c) −∑
i∈mI Ds g (c)

i mod N to

keep the G (c) value the same. From the adversary’s perspective, since R(c) values are
unknown and uniformly randomly chosen, the replacement is not distinguishable.

In Hybrid4, we replace the gradients of honest parties with ’0’s, and the mask

values are replaced by R(c) which is unknown to the adversary and chosen from
a uniform distribution. Thus, a simulator Sim can simulate the outputs of honest
parties G (c) without necessarily knowing their inputs.

The same can be analyzed for hessian value, H (c). Since the masking values
of G (c) and H (c) are different and the hash function is modeled as a random
oracle, the randomness in both parts of them are independent of each other and
indistinguishable by the adversary A . Overall, the simulator Sim can simulate our
protocol.

Thus, the view of the A can be simulated by replacing the inputs of the honest
parties with zeros. Thus, the adversary does not learn any information on the inputs
of the honest parties.

Theorem 3.4.2 (A including source client). There exists a Probabilistic Polynomial
Time ( PPT) simulator Sim for all |C | := n ≥ 3, |X | := f ≥ n, |Y | := m ≥ 1,

⋃
c∈C X (c),⋃

c∈C Y (c) and A ⊂ C so that |A | ≤ n −2, the output of Sim is indistinguishable
from the output of REAL:REALC ,X ,Y

A
(X C ,Y C ) ≡ SimC ,X ,Y

A
(G , H ,X A ,Y A ) where

G =∑
i∈mI Ds g (c)

i +N(0, (∆gσ)2), H =∑
i∈mI Ds h(c)

i +N(0, (∆hσ)2).

Proof. Here, we again show that Sim can simulate the outputs of the honest parties
in H without knowing their inputs. Unlike Theorem 3.4.1, Sim is also given the
summations G and H because the adversary includes the source client.

We can use the same hybrids with Theorem 3.4.1 until Hybrid4, this is because
that the inputs of the honest clients are not required yet. We need to update
Hybrid4 such that it takes into account the summation. Here are the hybrids for the
A with source client:

Hybrid1,Hybrid2,Hybrid3: The same with Theorem 3.4.1.
Hybrid4: In this hybrid, we replace gradients of honest clients g (c)

i for all

c ∈ H with ’0’s, except one c ′ which will be equal to
∑

i∈mI Ds g (H )
i mod N =

G −∑
i∈mI Ds g (A )

i mod N . The honest client c ′ is randomly chosen among H . From

the adversary’s perspective, since R(c) are unknown uniformly random chosen values,
the replacement is not distinguishable.

Overall, the view of the A can be simulated by replacing the inputs of the honest
parties with zeros, except one with

∑
i∈mI Ds g (H )

i mod N . Thus, A does not learn any

information from the honest clients, except the summation
∑

i∈mI Ds g (H )
i mod N .
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With Theorem 3.4.2, we show that even the adversary A with source client cannot
know more than the summation of gradient and hessian values, G and H . The proof
is done via Sim without requiring individual data of the honest clients except for the
summation. This implies that the adversary cannot distinguish which party provided
which gradient or hessian values. Moreover, the parties who do not have any of
the requested g or h values will send ’0’ together with the mask (and noise for the
leader). This implies that we provide label value privacy. Meaning that the adversary
cannot distinguish which label’s g or h values are coming from which honest client.

In the case when the adversary includes the source client, the summation of
gradient and hessian values can be known to the adversary. In the following theorem,
we show that these summations do not leak any individual data due to differential
privacy.

Theorem 3.4.3 (Privacy of the Inputs). No A ⊂C such that |A | ≤ n −2 can retrieve

the individual values of the honest clients with probability 1−∑k̂
i=0

(h
i

)(n−2−h
k̂−i

)
(Pt )k̂ (1−

Pt )(n−k̂)(
(k̂−i

k

)
/
(k̂

k

)
), where h and k̂ refer to the number of non-colluded clients and the

number of clients who have selection score larger than threshold, respectively; and Pt

is the probability of selection score larger than the threshold.

Proof. Note noise leader selects k clients from n clients (rather than itself and the
source client) to add noise. Suppose that there are h non-colluded clients out
of n −2 clients, the number of clients whose selection scores are larger than the
threshold is k̂. The number of events is

C k̂
n−2−h +C 1

hC k̂−1
n−2−h +·· ·+C k̂

hC 0
n−2−h ,

in which the events are that {“there are k̂ colluded clients out of k̂ clients and
0 non-colluded client",· · · ,“there are 0 colluded client out of k̂ clients and k̂
non-colluded clients"}. Therefore,

P (Ei ) =C i
h(Pt )i (1−Pt )h−i ·

C k̂−i
n−2−h(Pt )k̂−i (1−Pt )(n−h−k̂+i )

=C i
hC k̂−i

n−2−h(Pt )k̂ (1−Pt )(n−k̂),

where Pt is the probability that the selection score is larger than the threshold, and
Ei is i -th event. Then, the probability that noise leader selects k colluded clients

from k̂ clients is P0 =
C k

k̂−i

C k
k̂

. At the end, the probability of all aggregated noise coming

from colluded clients is

k̂∑
i=0

P (Ei ) ·P0 =
k̂∑

i=0
C i

h(Pt )i (1−Pt )h−i ·

C k̂−i
n−2−h(Pt )k̂−i (1−Pt )(n−h−k̂+i )

=
k̂∑

i=0
C i

hC k̂−i
n−2−h(Pt )k̂ (1−Pt )(n−k̂)

C k
k̂−i

C k
k̂

.
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Conversely, the probability of at least one non-colluded client participating in noise
injection is

1−
k̂∑

i=0
C i

hC k̂−i
n−2−h(Pt )k̂ (1−Pt )(n−k̂)

C k
k̂−i

C k
k̂

.

Note that because of the secure aggregation, the adversary cannot learn anything
but the summation. Thus, our protocol does not require the addition of noise to
each data. Instead, we only require the noise leader to add the noise, which prevents
the retrieval of the individual data from the summation.

Note for a concrete example, if we set n = 10,h = 2, k̂ = 5,k = 8,Pt = 1
2 , the

probability is 0.938. This means the source client cannot remove the noise with
0.938, which is a relatively high probability.

In Theorems 3.4.1 and 3.4.2, we show that A cannot distinguish the individual
values from randomly chosen values and can only know the summation if the
source is part of the adversary. In Theorem 3.4.3, we show that A cannot extract
the individual values of the users from the summation due to the added noise and
differential privacy. Thus, our protocol satisfies data privacy. In other words, the
adversary cannot learn the data point of an honest client.

It is important to note that since the noise leader is selected via VRF, no adversary
can guess if any honest party will be the leader in the upcoming round beforehand.
This provides additional security regarding the manipulation of the noise leader.

3.5. EXPERIMENT
We perform evaluations on the accuracy, runtime performance and communication
cost, and compare our design with two straightforward secure approaches: one is
based on LDP (for accuracy), and the other is built on AHE with GDP (for runtime).
These approaches are most-commonly-used components for privacy-preserving FL,
and they could be the building blocks for complex mechanisms, e.g., MPC. We
note the protocol should intuitively outperform those MPC-based solutions, and
one may leverage our source code to make further comparisons if interested. In
the experiments, the baseline, which is the pure XGBoots algorithm, follows the
training process of Figure 3.3 without using any privacy-preserving tools (steps Ë
- Î). And LDP does not conduct DH key exchange but each client injects noise
into the aggregation of gradients and hessians, while AHE follows Figure 3.3 except
executing DH key exchange. In AHE, each client sends (additive) encrypted messages
to the source client after step Î. We here show the performance of the best case
where there is only one (non-colluded and randomly selected) client adding noise
per round (k = 1).

3.5.1. EXPERIMENT SETUP

All the experiments are implemented in Python, and conducted on a cluster of
machines with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, with 15GB RAM in a



3

76 3. SECURE VERTICAL FEDERATED LEARNING FOR DECENTRALIZED LABELS

Figure 3.4: Comparison among the baseline, FEVERLESS and LDP under ϵ= 2. Top
row: Credit card dataset, accuracy range: [0.5, 0.9]. Middle row: Bank
marketing, accuracy range: [0.5, 1]. Bottom row: Banknote authentication,
accuracy range: [0, 1].

local area network. As for the cryptographic tools, we set the key size of DH and
Paillier as 160 bits and 1024 bits respectively(to save some time in running the
experiments). This size can reach a symmetric security level with 80 bits key length.
Note one may indeed increase the key size to obtain stronger security 4, but this will
bring a longer experiment time as a side effect. We use 1024-bit MODP Group with
160-bit Prime Order Subgroup from RFC 5114 5 for DH Key exchange. SHAKE-256
[49], a member of SHA3 [49] family, is used as a hash function in leader selection
and secure aggregation.

Intuitively, the smaller ϵ we set, the more secure FEVERLESS will be; but larger
noise will be added. We note the above statement can be seen from the experimental

4Note a stronger security level will not affect the training accuracy.
5https://tools.ietf.org/html/rfc5114
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results. To present comprehensive results on the accuracy, we set ϵ to be: 10, 5,
2 and 1, and δ is set to 10−5. In terms of accuracy and runtime, we evaluate
different situations by varying the number of clients, the number of trees, and the
maximum depth of trees (from 2 to 10). Other parameters regarding training follow
the suggestions in [18] and the library 6 of XGBoost. To deliver fair results, we
conduct each test for 20 independent trials and then calculate the average.

Datasets. We run the experiments on three datasets - Credit Card [50], Bank
Marketing [51] and Banknote Authentication7 - for classification tasks. Because the
more concentrated the distribution of labels and features, the more like centralized
learning. The entire algorithm requires less interaction among clients. This situation
is less common in practical applications. To fairly investigate the model performance
in DL-VFL, we make the features and labels as sparse as possible, and they are
uniformly distributed among clients.
• Credit Card: It is a commercial dataset used for predicting whether customers will
make payments on time. It provides 30,000 samples, and each sample composes of
23 features.
• Bank marketing: Consisting of 45,211 data points and 17 features, the goal of
bank marketing is to predict if a client will subscribe to a term deposit.
• Banknote authentication: Offering 1,372 data points and 4 features, this dataset
is used to classify authenticated and unauthenticated banknotes. Note that different
from traditional tabular data, features in the dataset are extracted from images
that are taken from genuine and forged banknote-like specimens through Wavelet
Transform [52]. Using the small-scale dataset, the trained model may not be robust
to noise, which brings a negative impact on accuracy.

Figure 3.5: Comparison of accuracy by varying ϵ in depth=10, the number of
trees=10. Left: Credit card. Middle: Bank marketing. Right: Banknote
authentication. Accuracy ranges from 0.4 to 1.

3.5.2. EVALUATION ON ACCURACY

In Figure 3.4, we present a clear picture of the accuracy performance based on the
#tree and the maximum depth in (2,10−5)−DP. We merge the #client in one tree

6https://xgboost.readthedocs.io/
7https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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Figure 3.6: Comparison of time. Top row: Credit card dataset, range: [0s, 9,500s].
Middle row: Bank marketing, range: [0s, 3,500s]. Bottom row: Banknote
authentication, range: [0s, 110s].
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Figure 3.7: Comparison of communication cost on the number of clients.

Figure 3.8: Comparison of communication cost on depth.

Figure 3.9: Comparison of communication cost on the number of trees.

structure, which means in one bar, and the value is the mean of accuracy when
conducting on different numbers. The accuracy of the baseline in credit card (about
0.82) and bank marketing (nearly 0.9) remains unchanged as the #tree and maximum
depth increases, while the accuracy in banknote authentication rises from 0.9 to
approximately 1.0. To highlight the differences and ensure all results are displayed
clearly, we set the ranges of accuracy as [0.5,0.9], [0.5,1] and [0,1] for the three
datasets, respectively.

Compared with the baseline, shown in the top and middle rows of Figure 3.4,
FEVERLESS and LDP suffer from continuously shrinking accuracy as tree structure
becomes complex. This is so because the injected noises are accumulated into the
model via the increase of query number. And the accuracy is easily affected by the
depth. In the worst case where the #tree and maximum depth are both equal to 10,
FEVERLESS decreases 10.37% (resp. 14.98% ), and LDP drops 24.78% (resp.24.59%)
in credit card (resp. bank marketing). But on average, FEVERLESS’ accuracy only
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shrinks by around 0.9% (resp. 3.21%), while LDP suffers from an estimated 3x (resp.
2x) accuracy loss. The difference in the degree of deterioration mainly comes from
how much noise is added for each query. We note the deterioration of FEVERLESS is
independent of the #client. Thus, we can maintain great accuracy even in the case
where there exists a considerable amount of clients.

Despite the fact that less noise is added in FEVERLESS, we do not predict that
the accuracy falls to the same level (around 50%, like randomly guessing in binary
classification) as LDP in the bottom row of Figure 3.4. This is so because the model
is trained by an extremely small-size dataset, which makes it hard to maintain the
robustness but relatively sensitive to noise. If setting a larger ϵ, we may see our
advantage more clearly.

To distinguish the performance between FEVERLESS and LDP more clearly, Figure
3.5 shows the comparison over different ϵ, when #depth and #tree are set to 10. The
performance of the model is decayed as the decrease of ϵ. In the left (resp. middle)
of Figure 3.5, the averaged accuracy of FEVERLESS falls from 0.7686 to 0.5967 (resp.
from 0.8517 to 0.6831), while that of LDP also decreases to 0.5299 (resp. 0.5853). We
notice that the highest values of LDP stay at the same level as those of FEVERLESS.
This is because, in the case of 2-client training, only one client needs to add the
noise in LDP (which is identical to our GDP solution). At last, the worse case can be
seen on the right of Figure 3.5 due to the weak robustness of the model obtained
from the banknote authentication. The results are far away from the baseline there.
This is because in small-scale datasets, the heterogeneity of data distribution is not
large, so the original XGBoost can achieve high accuracy. However, the model trained
in this way is less robust, which means it is more sensitive to noise. Therefore,
compared with the model trained on a large-scale dataset, it does not perform well
under the condition of differential privacy. But even in this case, FEVERLESS still
holds a tiny advantage over LDP.

Note that we did not compare the accuracy to systems using AHE. Because the
calculation process of homomorphic encryption does not change the precision of
the value, training through encryption will not affect the model. Therefore, the
accuracy of using AHE is the same as the pure XGBoost.

3.5.3. EVALUATION ON TRAINING TIME

To highlight the runtime complexity, we average the results varying by client number
into one tree structure as well. We further set the ranges of time as [0s, 9,500s],
[0s, 3,500s] and [0s, 110s] for the datasets to deliver visible results. Note since
the banknote dataset contains the least samples, it does deliver the best training
efficiency here. Figure 3.6 presents the comparison of the training time by varying
maximum depth and the number of trees among the datasets.

The training time increases exponentially and linearly with depth and the number
of tree, which is consistent with our analysis given in Section 3.4.4. In Figure
3.6, compared with the baseline, the runtime of FEVERLESS at most increases
110.3s (resp. 50s, 4.3s), while AHE requires around 70x spike (resp. 48x, 21x)
in credit card (resp. bank marketing, banknote authentication), where #depth
and #trees are equal to 10. For the average case, FEVERLESS consumes Approx.
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1%(r esp.6.5%,13.96%) more training time than the baseline, while AHE requires the
351%(r esp.155.1%,674%) extra, w.r.t. the three datasets. Its poor performances
are due to the laborious calculations in encryption, in which each client has to
conduct an encryption per query. By contrast, the masksings in FEVERLESS avoid
these excessive costs. In Figure 3.10-3.14, we show the time performance based on
various numbers of client, tree and depth. In general, the runtime of FEVERLESS is
slightly higher that that of the baseline. Compared to AHE, FEVERLESS significantly
reduces training time while preserving privacy. This advantage is clearly seen from
the cases using complex tree structures. Note that AHE can be replaced by other
more complex cartographic solutions, such as secure MPC, which can also maintain
data/label privacy. But the MPC-based solutions will consume more runtime.

Figure 3.10: Comparison of runtime in depth:10, the number of trees:10.

Figure 3.11: Comparison of runtime in depth:8, the number of trees:8.

Figure 3.12: Comparison of runtime in depth:6, the number of trees:6.
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Figure 3.13: Comparison of runtime in depth:4, the number of trees:4.

Figure 3.14: Comparison of runtime in depth:2, the number of trees:2.

3.5.4. EVALUATION ON COMMUNICATION COST

In Figure 3.7-3.9, we demonstrate the communication cost based on the number
of clients, tree and depth. For the convenience of comparison, we set #clients=4,
#tree=4 and depth=4 as default. To sum up, we see that the communication cost of
FEVERLESS is almost the same as those of the baseline and LDP. But as compared
to AHE, FEVERLESS significantly reduces the cost while maintaining privacy.

In each presented figure, we show the results executed on the datasets Credit card
(left), Bank Marketing (middle) and Banknote Authentication (right). Note that the
comparison among FEVERLESS, LDP, and AHE requires a condition that #client=2;
when #client=1, we can only show the results of the baseline.

Via the experiments, we elaborate that how the communication cost varies with
the increasing number of clients, depth and the number of trees among the baseline,
FEVERLESS, AHE and LDP.

In general, adding noise has no clear impact on communication costs. The
performance of FEVERLESS and LDP is on par with that of the baseline. The AHE
approach does harm communication costs, which can be seen from the continuously
and significantly increasing bars in the figures. Naturally, when more clients engage
in the training, more communication costs should be added to the model. Especially,
in the number of clients equal to 4, the communication costs of AHE is around 6*1e6
Bytes in Banknote Authentication dataset, which is about 3x than other methods.
Similar situations can be observed when training with complex tree structures. In
depth (resp. the number of trees) equals 10, the communication costs of AHE
reaches about 1.3*1e7 Bytes (resp. 1.5*1e7 Bytes), which is 2.6x (resp. 2.4x) than other
methods. AHE generates such a large amount of communication costs because it
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requires transmitting ciphertexts during interactions among clients.

3.6. DISCUSSION

To reduce the negative impact brought by noise, according to infinity divisibility
of Gaussian distribution [53], one may split global noise (N (0, (∆σ)2)) into n parts

(N (0, (∆σ)2

n )). But a drawback is that the privacy budget will increase linearly as an
increasing number of colluded clients appear. For example, if GDP achieves ϵ-DP ,
in the worst case where there are n−1 colluded clients, the privacy budget will raise
to n ×ϵ.

Hiding label tagging information. In the semi-honest setting, if the source client
sends the missing indexes consistently, adversaries may figure out which labels are
distributed (on the source clients) by statistical analysis. We show that this issue
can be tackled in 1-to-1 case. In the proposed protocol, source client broadcasts
the missing data indexes mI D). Under the semi-honest setting, if source client
sends missing indexes consistently, the adversaries will figure out which labels are
distributed on source clients by statistic analysis. We note that FEVERLESS can be
expanded to avoid this type of leakage by yielding extra communication overheads.
Specifically, during broadcasting period, source client should send indexes of one
bucket instead of mI D , and the rest of protocol remains constant. In this way,
others cannot distinguish the distribution of labels because all clients share the same
index set I . If we assume labels are uniformly distributed on each client, the extra
overheads are restricted to |I |/|C |. This cost is clearly noticeable in those datasets
with a large number of data points.

Note that the solution described above does not work for the 1-to-many case. If
the source client does not know the label tagging relationship, other clients holding
the same labels will be all required to send their masked gradients and hessians
after receiving the mI Ds. These repeated values may lead to incorrect calculations
of Lspl i t . We leave this as an interesting open problem.

Other security tools. The masking scheme realizing secure aggregation may be
replaced with an MPC [12, 42] or additively homomorphic encryption [43]. However,
the major defect of these tools is that they entail labor-intensive calculation with
regard to encryption, which may not scale well in large-scale datasets. Due to
this concern, we only put light-weight computation in FEVERLESE and further, we
enhance the security to “perfect secrecy".

In our design, the selection of noise leader is captured by VRF. We note that
there may be other options to fulfill the goal. For example, Proof of Elapsed Time
(PoET) [54, 55] is an interesting and effective mechanism which is used to maintain
the consensus of distributed peers in Hyperledger Sawtooth. It provides a fair and
trusted lottery strategy to select a block winner (per consensus round). Sharing
the same philosophy with the VRF, it may be deployed in our protocol to yield
leader. And building a more efficient noise leader selection algorithm could be an
interesting open problem.
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3.7. CONCLUSION AND FUTURE WORK
We consider a practical scenario where labels are distributedly and maintained by
different clients for VFL. By leveraging secure aggregation and GDP, we present a
novel system, FEVERLESS, to train XGBoost securely. FEVERLESS can achieve perfect
secrecy for labels and data, and adversaries cannot learn any information about the
data even if the source client is corrupted. With DP against differential attack, the
source client knows nothing more than summation. Our design is also robust for
the collusion of n −2 out of n clients. FEVERLESS is about the same speed and
accuracy as the pure XGBoost, taking 1% extra runtime, and sacrificing 0.9% accuracy.
Although our system achieves great performance in terms of security and efficiency,
its accuracy still does not work well in small-scale datasets. This remains an open
problem. We will also consider secure solutions against malicious adversaries.



REFERENCES

[1] Q. Yang, Y. Liu, T. Chen and Y. Tong. ‘Federated Machine Learning: Concept
and Applications’. In: ACM Trans. Intell. Syst. Technol. 10.2 (Jan. 2019).

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson and B. A. y Arcas.
‘Communication-efficient learning of deep networks from decentralized data’.
In: Artificial Intelligence and Statistics. PMLR. 2017, pp. 1273–1282.

[3] R. Shokri and V. Shmatikov. ‘Privacy-Preserving Deep Learning’. In: CCS ’15,
pp. 1310–1321.

[4] T. Orekondy, S. J. Oh, Y. Zhang, B. Schiele and M. Fritz. ‘Gradient-Leaks:
Understanding and Controlling Deanonymization in Federated Learning’. In:
NeurIPS Workshop on Federated Learning for Data Privacy and Confidentiality.
2019.

[5] J. Geiping, H. Bauermeister, H. Dröge and M. Moeller. ‘Inverting Gradients
- How easy is it to break privacy in federated learning?’ In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan and H. Lin. Vol. 33. Curran Associates, Inc., 2020,
pp. 16937–16947. URL: https://proceedings.neurips.cc/paper/2020/
file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf.

[6] H. Li and T. Han. ‘An end-to-end encrypted neural network for gradient
updates transmission in federated learning’. In: arXiv preprint arXiv:1908.08340
(2019).

[7] L. T. Phong, Y. Aono, T. Hayashi, L. Wang and S. Moriai. ‘Privacy-Preserving
Deep Learning via Additively Homomorphic Encryption’. In: IEEE Transactions
on Information Forensics and Security 13.5 (2018), pp. 1333–1345. DOI:
10.1109/TIFS.2017.2787987.

[8] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang and
Y. Zhou. ‘A Hybrid Approach to Privacy-Preserving Federated Learning’. In:
the 12th ACM AISec. London, United Kingdom: Association for Computing
Machinery. ISBN: 9781450368339. DOI: 10.1145/3338501.3357370. URL:
https://doi.org/10.1145/3338501.3357370.

[9] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar and H. Ludwig. ‘HybridAlpha: An
Efficient Approach for Privacy-Preserving Federated Learning’. In: The 12th
ACM AISec. 2019.

[10] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan and Y. Liu. ‘BatchCrypt: Efficient
Homomorphic Encryption for Cross-Silo Federated Learning’. In: 2020 USENIX
ATC. ISBN: 978-1-939133-14-4. URL: https://www.usenix.org/conference/
atc20/presentation/zhang-chengliang.

85

https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.1145/3338501.3357370
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang


3

86 REFERENCES

[11] H. Zhu, R. Wang, Y. Jin, K. Liang and J. Ning. ‘Distributed Additive Encryption
and Quantization for Privacy Preserving Federated Deep Learning’. In: arXiv
preprint arXiv:2011.12623 (2020).

[12] Y. Wu, S. Cai, X. Xiao, G. Chen and B. C. Ooi. ‘Privacy Preserving Vertical
Federated Learning for Tree-Based Models’. In: Proc. VLDB Endow. (2020),
pp. 2090–2103.

[13] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos and Q. Yang.
SecureBoost: A Lossless Federated Learning Framework. 2021. arXiv: 1901.08755
[cs.LG].

[14] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith and B. Thorne.
‘Private federated learning on vertically partitioned data via entity resolution
and additively homomorphic encryption’. In: arXiv preprint arXiv:1711.10677
(2017).

[15] R. Nock, S. Hardy, W. Henecka, H. Ivey-Law, G. Patrini, G. Smith and B. Thorne.
‘Entity resolution and federated learning get a federated resolution’. In: arXiv
preprint arXiv:1803.04035 (2018).

[16] Y. Liu, X. Zhang and L. Wang. ‘Asymmetrically vertical federated learning’. In:
arXiv preprint arXiv:2004.07427 (2020).

[17] S. Yang, B. Ren, X. Zhou and L. Liu. ‘Parallel distributed logistic regression for
vertical federated learning without third-party coordinator’. In: arXiv preprint
arXiv:1911.09824 (2019).

[18] T. Chen and C. Guestrin. ‘XGBoost: A Scalable Tree Boosting System’. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California, USA:
Association for Computing Machinery, 2016, pp. 785–794. ISBN: 9781450342322.
DOI: 10.1145/2939672.2939785. URL: https://doi.org/10.1145/2939672.
2939785.

[19] I. Goodfellow, Y. Bengio, A. Courville and Y. Bengio. Deep learning. Vol. 1. MIT
Press, Cambridge, 2016.

[20] Y. LeCun, Y. Bengio and G. Hinton. ‘Deep learning’. In: Nature 521.7553 (2015),
pp. 436–444.

[21] O. Goldreich. ‘Secure multi-party computation’. In: Manuscript. Preliminary
version 78 (1998).

[22] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S.
Patel, D. Ramage, A. Segal and K. Seth. ‘Practical Secure Aggregation for
Privacy-Preserving Machine Learning’. In: CCS ’17. 2017.

[23] C. Dwork. ‘Differential Privacy: A Survey of Results’. In: Theory and Applications
of Models of Computation. Ed. by M. Agrawal, D. Du, Z. Duan and A. Li. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–19. ISBN: 978-3-540-79228-4.

[24] Z. Tian, R. Zhang, X. Hou, J. Liu and K. Ren. FederBoost: Private Federated
Learning for GBDT. 2020. arXiv: 2011.02796 [cs.CR].

https://arxiv.org/abs/1901.08755
https://arxiv.org/abs/1901.08755
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/2011.02796


REFERENCES

3

87

[25] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen et al. ‘Mllib: Machine learning in apache spark’. In:
The Journal of Machine Learning Research 17.1 (2016), pp. 1235–1241.

[26] D. Boneh. ‘The Decision Diffie-Hellman Problem’. In: ANTS. Vol. 1423. Lecture
Notes in Computer Science. Springer, 1998, pp. 48–63.

[27] W. Diffie and M. Hellman. ‘New directions in cryptography’. In: IEEE
transactions on Information Theory 22.6 (1976), pp. 644–654.

[28] G. Ács and C. Castelluccia. ‘I Have a DREAM! (DiffeRentially privatE smArt
Metering)’. In: Information Hiding. 2011.

[29] J. Håstad, R. Impagliazzo, L. A. Levin and M. Luby. ‘A pseudorandom generator
from any one-way function’. In: SIAM Journal on Computing 28.4 (1999),
pp. 1364–1396.

[30] N. Sha. standard: Permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication 202, 2015. 2015.

[31] J.-P. Aumasson, L. Henzen, W. Meier and R. C.-W. Phan. ‘Sha-3 proposal blake’.
In: Submission to NIST 92 (2008).

[32] H. Krawczyk and P. Eronen. HMAC-based extract-and-expand key derivation
function (HKDF). Tech. rep. RFC 5869, May, 2010.

[33] B. Kaliski. ‘Pseudorandom Function’. In: Encyclopedia of Cryptography and
Security. Ed. by H. C. A. van Tilborg. Boston, MA: Springer US, 2005,
pp. 485–485. ISBN: 978-0-387-23483-0. DOI: 10.1007/0-387-23483-7_329.
URL: https://doi.org/10.1007/0-387-23483-7_329.

[34] J. Zdziarski. Hacking and securing iOS applications: stealing data, hijacking
software, and how to prevent it. " O’Reilly Media, Inc.", 2012.

[35] S. Micali, M. Rabin and S. Vadhan. ‘Verifiable random functions’. In: 40th
annual symposium on foundations of computer science (cat. No. 99CB37039).
IEEE. 1999, pp. 120–130.

[36] S. Micali. ‘ALGORAND: The Efficient and Democratic Ledger’. In: CoRR
abs/1607.01341 (2016). arXiv: 1607.01341. URL: http://arxiv.org/abs/
1607.01341.

[37] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov and M. Naor. ‘Our data,
ourselves: Privacy via distributed noise generation’. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2006, pp. 486–503.

[38] C. Dwork, F. McSherry, K. Nissim and A. Smith. ‘Calibrating noise to sensitivity
in private data analysis’. In: Theory of cryptography conference. Springer. 2006,
pp. 265–284.

[39] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar and
L. Zhang. ‘Deep learning with differential privacy’. In: The 2016 ACM CCS.

https://doi.org/10.1007/0-387-23483-7_329
https://doi.org/10.1007/0-387-23483-7_329
https://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341


3

88 REFERENCES

[40] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek and N. Trieu. ‘Practical multi-
party private set intersection from symmetric-key techniques’. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2017, pp. 1257–1272.

[41] B. Pinkas, T. Schneider and M. Zohner. ‘Faster private set intersection based
on {OT} extension’. In: 23rd {USENIX} Security Symposium ({USENIX} Security
14). 2014, pp. 797–812.

[42] I. Damgård, V. Pastro, N. Smart and S. Zakarias. ‘Multiparty computation
from somewhat homomorphic encryption’. In: Annual Cryptology Conference.
Springer. 2012, pp. 643–662.

[43] P. Paillier. ‘Public-key cryptosystems based on composite degree residuosity
classes’. In: TAMC. Springer. 1999.

[44] P. Kairouz, S. Oh and P. Viswanath. ‘Extremal mechanisms for local differential
privacy’. In: Advances in neural information processing systems 27 (2014),
pp. 2879–2887.

[45] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek
and H. V. Poor. ‘Federated learning with differential privacy: Algorithms and
performance analysis’. In: IEEE Transactions on Information Forensics and
Security (2020).

[46] A. S. Khader and D. Lai. ‘Preventing man-in-the-middle attack in Diffie-
Hellman key exchange protocol’. In: 2015 22nd international conference on
telecommunications (ICT). IEEE. 2015, pp. 204–208.

[47] S. Nikoletseas and J. D. Rolim. Theoretical aspects of distributed computing in
sensor networks. Springer, 2011.

[48] N. P. Smart. Cryptography Made Simple. Information Security and Cryptography.
Springer, 2016.

[49] M. J. Dworkin. ‘SHA-3 standard: Permutation-based hash and extendable-
output functions’. In: (2015).

[50] I.-C. Yeh and C.-h. Lien. ‘The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients’. In: Expert
Systems with Applications 36.2 (2009), pp. 2473–2480.

[51] S. Moro, P. Cortez and P. Rita. ‘A data-driven approach to predict the success
of bank telemarketing’. In: Decision Support Systems 62 (2014), pp. 22–31.

[52] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies. ‘Image coding using
wavelet transform’. In: IEEE Transactions on image processing 1.2 (1992),
pp. 205–220.

[53] J. Patel and C. Read. Handbook of the Normal Distribution, Second Edition.
Statistics: A Series of Textbooks and Monographs. Taylor & Francis, 1996. ISBN:
9780824793425. URL: https://books.google.nl/books?id=ey61Zm0f0qoC.

[54] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu and W. Shi. ‘On security analysis
of proof-of-elapsed-time (poet)’. In: International Symposium on Stabilization,
Safety, and Security of Distributed Systems. Springer. 2017, pp. 282–297.

https://books.google.nl/books?id=ey61Zm0f0qoC


REFERENCES

3

89

[55] A. Corso. ‘Performance analysis of proof-of-elapsed-time (poet) consensus in
the sawtooth blockchain framework’. PhD thesis. University of Oregon, 2019.





4
TAMING MALICIOUS MAJORITY OF

CLIENTS IN FEDERATED LEARNING

Byzantine-robust Federated Learning (FL) aims to counter malicious clients and
train an accurate global model while maintaining an extremely low attack success
rate. Most of the existing systems, however, are only robust when most of the
clients are honest. FLTrust (NDSS ’21) and Zeno++ (ICML ’20) do not make the
honest majority assumption but can only be applied to scenarios where the server is
provided with an auxiliary dataset before training to filter malicious updates. FLAME
(USENIX ’22) and EIFFeL (CCS ’22) maintain the semi-honest majority assumption
but instead guarantee both robustness and updates confidentiality. It is therefore
currently impossible to ensure Byzantine robustness without assuming a semi-honest
majority and provide updates confidentiality. To tackle this problem, we propose a
novel Byzantine-robust and privacy-preserving FL system, called MUDGUARD, to capture
malicious minority and majority for server and client sides. Specifically, based on
DBSCAN, we design a new method via extracting features of updates by pairwise
adjusted cosine similarity to boost the clustering accuracy. To thwart attacks of a
malicious majority, we develop a method called Model Segmentation, where local
updates in the same cluster are aggregated together, and the aggregations are sent
back to corresponding clients correctly. We also leverage multiple cryptographic
tools to conduct clustering tasks without sacrificing training correctness and updates
confidentiality. We present detailed security proof and empirical evaluation along
with a convergence analysis for MUDGUARD. Our experimental results demonstrate
that the accuracy of MUDGUARD is practically close to the FL baseline using FedAvg
without attacks (≈0.8% gap on average). Meanwhile, the attack success rate
is around 0%-5% even under adaptive attack tailored to MUDGUARD. We further
optimize our design by binary secret sharing and polynomial transformation so that
the communication overhead and runtime can be decreased by 67%-89.17% and
66.05%-68.75%, respectively.
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4.1. INTRODUCTION
Thanks to its privacy properties, Federated Learning (FL) [1] has been widely applied
in real-world applications, e.g., prediction of the future oxygen requirements of
symptomatic patients with COVID-19 [2]. Despite its attractive benefits, FL is
vulnerable to Byzantine attacks. For example, attackers may choose to deteriorate
the testing accuracy of models in an untargeted attack. Alternatively, they might fool
models to predict an attack-chosen label without downgrading the testing accuracy
in a targeted attack. Many research works [3–5] have proved the vulnerability of
FL via well-designed attack methods, e.g., poisoning training data or manipulating
updates. Other studies [6–13] have been dedicated to strengthening FL assuming
that a minority of the clients can be malicious and that the server is honest.

Beyond Byzantine attacks, FL could put clients at high risk of privacy breach [14,
15] even if clients’ datasets are maintained locally. Several studies [10, 12, 16] have
applied secure tools, e.g., Additive Homomorphic Encryption (AHE) [17], Differential
Privacy (DP) [18, 19], and Secure Multiparty Computation (MPC), to protect clients’
updates1. However, these works only guarantee security when all servers are
(semi-)honest and when a minority of the clients are malicious.

To the best of our knowledge, there does not exist any FL system that is capable
of withstanding the presence of a majority of Byzantine clients, as well as malicious
servers, while also guaranteeing the confidentiality of updates. One may think
that existing Byzantine-robust solutions could be trivially extended to address the
above challenge. However, that is not the case because they either violate privacy
preservation requirements or are only effective in the honest majority scenario.
For example, FLTrust [9] and Zeno++ [11] require an auxiliary dataset that is
independently and identically distributed (iid) with the clients’ training datasets
to rectify malicious updates, which evidently violates the clients’ privacy. As for
FLAME [10], it clusters updates and considers the smallest cluster as a malicious
group, which makes sense in the malicious minority context. However, in the
case of a malicious majority, it is difficult to assert if a given large/small-size
cluster is malicious. EIFFeL [12] shows similar infeasibility, since it combines
existing Byzantine-robust methods (e.g., FLTrust [9] and Zeno++ [11]) with secure
aggregation [20].

Contributions. We propose a practical and secure Byzantine-robust FL system,
MUDGUARD, that defends against malicious entities (i.e., malicious minority for servers
and malicious majority for clients) with privacy preservation. Specifically, we perform
feature extraction on the client updates by calculating the pairwise adjusted cosine
similarity. These extracted features are taken to the DBSCAN clustering, which
calculates the pairwise L2 distance between the inputs and determines clusters
based on density. Subsequently, a new method, Model Segmentation, aggregates the
updates based on their assigned cluster labels. The aggregated results are returned
to clients in the respective clusters. Moreover, the integration of cryptographic tools
with the aforementioned calculations allows for the establishment of both Byzantine
robustness and privacy preservation within the MUDGUARD system. In spite of the

1Note AHE and MPC require onerous computation over ciphertexts so that the computational
complexity could naturally increase.
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Aggregation
strategy

Threat model
Byzantine
robustness

Updates
confidentiality

No requirement for
an auxiliary dataset

Computation
complexity

Communication
complexityMalicious

server(s)
Malicious

majority clients

Zeno++ [11] % " " % % O(d) O(nd)

FLTrust [9] % " " % % O(n) O(nd)

FLAME [10] % % " " " O(d(S2 +n2)) O(d 2 +Sn2)

EIFFeL [12] %1 % " " " O((n +d)n log2 n loglogn +md min(n,m2)) O(n2 +md min(n,m2))

MUDGUARD(Ours) " " " " " O(d +n3) O(S(d +n2))

d stands for the dimension of a model. n,m, and S represent the number of clients, malicious
clients, and servers, respectively.

1 EIFFeL considers a malicious server to be one that infers privacy information from other parties,
which is equivalent to a semi-honest server in our context.

Table 4.1: Comparison of FL systems

utilization of clustering for Byzantine robustness in [10], its approach relies on
the assumption that only less than half of clients are malicious, since updates are
directly incorporated into HDBSCAN clustering. In contrast to [10], our proposed
methodology involves preliminary feature extraction of updates before sending them
to the clustering algorithm and separate aggregation, accommodating non-iid and
malicious majority clients. We stress that [10] is vulnerable to the non-iid and
majority of malicious clients problems due to the absence of pre-processing of
updates and cluster detection. To the best of our knowledge, MUDGUARD is the first
Byzantine-robust FL system that is able to defend against malicious majority clients
without sacrificing clients’ privacy. We also are the first to provide detailed security
and privacy analysis under Universal Composability (UC) in FL. In the literature on
centralized learning, a few MPC-based solutions [21–23] were proposed for model
training and malicious servers under UC. Note that the key differences between
these works and ours are the required computing functionalities for clustering and
model training, as well as the required security properties of the solution. The
impact of these works on performance and security is unknown when applied to FL.

We summarize the advantages of MUDGUARD on the SOTA FL systems in Table 4.1.
For a theoretical and empirical analysis of complexity, please refer to Section 4.4.7
and Section 4.5.2. Our main contributions can be described as follows.
• We formulate a new aggregation strategy, Model Segmentation, for Byzantine-robust
FL to effectively avoid poisoning attacks from a majority of malicious clients without
requiring the servers to own an auxiliary dataset. It posits that the utilization of
complex algorithms for the detection of malicious updates is not necessary. Instead,
it only suggests implementing measures to prevent the co-existence of malicious and
semi-honest clients in one aggregation.
• We propose a new method to improve the accuracy of updates clustering under
non-iid scenarios. Instead of using the updates directly for clustering, we first
compute the pairwise adjusted cosine similarity of updates (featured by different
directions and magnitudes of updates between every two clients). Then we input the
results to DBSCAN.
• We design a secure FL system to be compatible with the cryptographic tools under
the malicious context. To protect the updates on the server side and guarantee
all clients receive correct aggregations, we construct a secure DBSCAN clustering
that leverages cryptographic tools and secure aggregation with Homomorphic Hash
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Function (HHF) [24]. We further optimize the secure computations on the server
side based on binary secret sharing and polynomial transformation.
• We provide a formal security proof for MUDGUARD in the UC framework. This
proof captures dynamic security requirements, making MUDGUARD more practical
than theoretical in security. MUDGUARD is the first UC-secure type in the research line
of privacy-preserving FL.
• We implement MUDGUARD and perform evaluations on (F)MNIST and CIFAR-10 to
quantify its accuracy under untargeted attacks, the Attack Success Rate (ASR) under
targeted attacks or under an adaptive attack tailored to MUDGUARD, as well as its
runtime and communication costs. Our experimental results show that the model
trained by MUDGUARD maintains comparable testing accuracy with the FL baseline
- a “no-attack-and-protection" FL with only honest parties (≈0.8% gap on average
under untargeted attacks). The ASR under the targeted attacks is as low as 0%-5%.
After optimizing the cryptographic computations, the runtime and communication
costs are reduced by about 66.05%-68.75% and 67%-89.17%, respectively. For
example, in the training of ResNet-18 using CIFAR-10, our optimization strategy can
reduce training time from 95 seconds to 48 seconds and communication costs from
16331 MB to 5909 MB, whereas a vanilla FL takes nearly 24 seconds and 758 MB per
round.

4.2. BACKGROUND AND RELATED WORK

4.2.1. ATTACKS AGAINST FEDERATED LEARNING

Byzantine Attacks. Malicious clients may attempt to deteriorate the testing accuracy
of the global model by intentionally uploading poisoned updates (i.e., untargeted
attacks). Instead of harming the accuracy, the attackers may also intentionally use
samples with triggers to launch attacks that make the model misclassify (i.e., targeted
attacks). In the following, we review some classical and SOTA untargeted attacks
(Gaussian Attack [3], Label Flipping Attack [25], Krum Attack and Trim Attack [3])
and targeted attacks (Backdoor Attack [26] and Edge-case Attack [27]).
• Gaussian Attack (GA). Malicious clients degrade the model accuracy by uploading
local updates randomly sampled from a Gaussian distribution.
• Label Flipping Attack (LFA). Malicious clients flip the local data labels to generate
faulty gradients. In particular, the label of each sample is flipped from y to
L−1− y, y ∈ [L], where L is the total number of classes.
• Krum and Trim Attacks. These two untargeted local model poisoning attacks
are optimized for Krum [6] and the Trim-mean/Median [7] aggregation strategies,
respectively. They aim to pull the global model towards the opposite direction of
the honest gradient when it is updated. Besides, they also have attack efficacy on
FedAvg.
• Backdoor Attack (BA). Byzantine clients embed triggers to training samples and
change their labels to targeted labels. Their goal is to make the global model
misclassify the correct labels to the targeted ones when testing samples with triggers.
• Edge-case Attack (EA). The attack aims to misclassify seemingly similar inputs
that are unlikely to be part of the training or testing data. For example, by labeling
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Ardis2 7 images as 1 and adding them to training data, EA can easily backdoor an
MNIST classifier. Similarly, the attack can use a Southwest airplanes dataset labeled
truck to inject a backdoor into a CIFAR-10 classifier. Note that the attack relies on
a restricted assumption that an extra dataset resemblance to the training dataset
should be given.

To defend against these attacks, we propose a new approach called Model
Segmentation in conjunction with feature-extracted DBSCAN. Different from other
Byzantine-robust FL, our proposed method generates multiple global models and
does not require servers to detect whether a particular group is benign or not. It
aggregates only updates with the same cluster labels and returns the aggregations
to the corresponding clients. This ensures that updates with similar directions
and magnitudes are aggregated together (i.e., benign updates are not aggregated
with malicious updates), providing a guarantee of Byzantine robustness in the case
of malicious majority clients. Different from FLAME, MUDGUARD first uses pairwise
adjusted cosine similarity to perform feature extraction on updates, then clusters
through DBSCAN. The advantage of this is that it can reduce the false positive
rate and be effective in non-iid situations. For detailed explanations, please refer
to Section 4.4.2 and Section 4.6. The experimental results show that the Byzantine
robustness and clustering accuracy of MUDGUARD is better than that of FLAME as will
be shown later in Section 4.5.1.
Inference Attacks. Although local datasets are not directly revealed during the FL
training process, the updates are still subject to privacy leakage if the server is
semi-honest or even malicious [14, 28, 29]. For instance, Zhu et al. [14] investigated
a method of training data reconstruction via optimizing the L2 distance between
uploaded gradients and gradients trained from dummy samples using an L-BFGS
solver. This approach allows servers to easily reconstruct the local datasets and
achieves even pixel-wise accuracy for images and token-wise matching accuracy
for texts. To defend against such attacks, we use Secret Sharing (SS) [30] to split
client updates into s shares before sending them to servers. This way, updates are
safeguarded from malicious servers since they do not get sufficient shares to perform
update reconstruction. Even if malicious servers collude with malicious clients, no
extra benefit can be achieved towards compromising the update shares belonging to
semi-honest clients.
Differential Attack. We use DBSCAN in conjunction with Model Segmentation to
separate benign and malicious updates. Features extraction with adjusted cosine
similarity greatly descends the likelihood of false positives. However, we cannot
guarantee that the clustering results are 100% correct. A semi-honest client could
be clustered together with other malicious clients by a small probability as it could
have a smaller similarity from semi-honest clients than that from malicious clients.
In particular, this case happens more frequently in SignSGD, where only taking signs
of gradients to update the model because the algorithm computing adjusted cosine
similarity disregards the magnitude of the gradients, resulting in the same effect
as calculating cosine similarity. The above phenomenon triggers the differential

2A dataset extracted from 15,000 Swedish church records written by different priests with various
handwriting styles in the nineteenth and twentieth centuries.
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attack in the following cases. Assuming that, at t-th round, a semi-honest client
is misclustered to a malicious group. After returning aggregation to the group,
the benign updates can be easily revealed by subtracting those malicious updates,
and the inference attack can be launched further. Another more common case
is that a malicious adversary A compromises m clients and then makes one
of them perform correct operations, i.e., acting as a semi-honest client. This
malicious-but-act-semi-honest client, being assigned to a semi-honest group, can get
benign aggregation from each round and then conduct an inference attack. In this
work, we apply DP to make aggregations obtained by malicious clients statistically
indistinguishable from those containing benign updates, guaranteeing that benign
updates cannot be easily identified from aggregations.

4.2.2. DEFENSES

Byzantine-robust Federated Learning. Blanchard et al. [6] proposed Krum to
select 1 out of n (local updates) as a global update for each round, where the
selected updates should have the smallest L2 distance from others. Yin et al. [7]
introduced Trim-mean and Median to resist Byzantine attacks. The former uses a
coordinate-wise aggregation strategy. The server calculates n −2z values for each
model parameter as the global model update, wherein the largest and smallest
z values are filtered. Unlike FedAvg [1] computing the weighted average of all
parameters, the latter calculates the median of parameters. This median serves as an
update to the global model. A major drawback of the aforementioned mechanism is
that it is effective only under a majority of honest clients working with an honest
server. In Median [7], the median calculated by the server can easily be malicious if
malicious clients control a large/overwhelming proportion of updates. This similarly
applies to Trim-mean and Krum. Cao et al. [9] proposed FLTrust to protect against
a malicious majority at the client side, assuming an honest server holds a small
auxiliary dataset. The server treats the gradients trained from this small dataset as
the root of trust. By comparing these trusted results with the updates sent by clients,
the server can easily rule out malicious updates. Under the same assumption,
Zeno++ [11] uses an auxiliary dataset to calculate the loss value of each local model.
A client is determined to be honest if the loss value is beyond the preset threshold.
While using an auxiliary dataset could be intriguing, such approaches are not feasible
in the context of FL as they violate the fundamental premise of FL in which local
datasets are not to be shared with any parties.
Privacy-preserving Federated Learning. Truex et al. [16] proposed a solution
enabling clients to use AHE and DP to secure gradients in the semi-honest context
(for both clients and the server). Since DP noise is applied on gradients, the
accuracy of the global model is deteriorated. In the scenario of honest majority
clients with two semi-honest servers, Thien et al. [10] proposed FLAME using an MPC
protocol to protect gradients from the servers and enabling the servers to perform
clustering for Byzantine robustness. Specifically, the clients can securely share their
updates to the servers cryptographically, e.g., via secret sharing, and the servers can
filter out malicious updates without knowing their concrete values. By expressing
existing Byzantine-robust solutions (e.g., FLTrust) as arithmetic circuits, EIFFeL [12]
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enables secure aggregation of verified updates. Although FLAME and EIFFeL capture
both Byzantine robustness and privacy preservation (i.e., update confidentiality), the
accuracy of the global model could become equivalent to a random guess if the
proportion of malicious clients is ≥50%.

4.2.3. TOOLS

FEDERATED LEARNING

Federated Learning (FL) enables n clients to train a global model w collaboratively
without revealing local datasets. Unlike centralized learning, FL requires clients to
upload the weights of local models ({wi | i ∈ n}) to a parametric server. It aims to

optimize a loss function: argmin
w

n∑
i=1

ki
K Li (w,Di ), where Li (·) and ki are the loss

function and local data size of i -th client. At t-th round, the training of FL can
usually be divided into the following steps.
• Global model download: The server selects partial clients engaging in training. All
connected clients download the global model wt−1 from the server.
• Local training: Each client updates its local model by training with its own dataset:

gi
t−1 ← ÇL (wt−1,Di )

Çwt−1
.

• Aggregation: After the local updates {gi
t−1 | i ∈ n} are uploaded, the server updates

the global model by aggregation: wt ← wt−1 −η
n∑

i=1

ki
K gi

t−1, where η refers to the

learning rate.

DBSCAN

Unlike traditional clustering algorithms (e.g., k-means, k-means++, bi-kmeans),
which need to pre-define the number of clusters, Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [31] is proposed to cluster data points
dynamically. Based on density-based clustering, DBSCAN guarantees that clusters of
any shape can always be identified. Besides, it can recognize noise points effectively.
Basically, after setting the density parameter (α) and the minimum cluster size
(mP t s), DBSCAN can conduct effective clustering. We note HDBSCAN [32] could be
also used for clustering. Its main difference from DBSCAN is the multiple densities
clustering. In this work, we assume that malicious clients may only conduct one
kind of attack during the whole training, e.g., a group of malicious clients conducting
a Label Flipping Attack together. The malicious updates could only derive one
density. Like [10], we may apply HDBSCAN in the clustering. But DBSCAN,
in general, requires less computational complexity than HDBSCAN in algorithmic
constructions. And further, we will conduct the clustering with cryptographic
operations. Considering efficiency, we choose DBSCAN over HDBSCAN.

CRYPTOGRAPHIC TOOLS

The secure Multiparty Computation (MPC) framework aims to enable multiple
parties to evaluate a function over ciphertexts securely. The parties conducting MPC
can access inputs via protection approaches, e.g., in a secret-shared format. It does
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not leak any information besides the final output unless these shares are combined
to derive plaintexts.

Secret Sharing (SS). It refers to a type of tool for splitting a secret among multiple
parties, each of whom is assigned a share of the secret. The security of an SS
scheme guarantees that one can distinguish shares and randoms with a negligible
probability. Apart from that, no one can reconstruct the secret unless holding all (or
a subset) of shares. Let us consider Shamir Secret Sharing (SSS) [30] (t ,n)-threshold
scheme as an example. Assume one chooses a polynomial f (x) = ∑t−1

i=0 ai · xi over
Zq and a secret a0 = f (0). The secret can be split into n shares by randomly
selecting n values: {r j ←Z∗

q | j ∈ n}, and then calculating shares { f (r j ) | j ∈ n}. Given
a subset of any t out of n shares, the secret can by reconstructed by Lagrange
interpolation [33]: f (0) =∑t−1

j=0 f (r j ) ·∏t−1
z=0,z 6= j

rz
rz−r j

. Except for SSS, other schemes like

additive SS and replicated SS are used in the MPC framework [34, 35]. Note these
schemes have a linear property. Even if each party performs linear combinations
locally with shares, the combined secret matches the result obtained by these linear
calculations. This saves significant communication costs in the FL context, where
servers are only required to aggregate shares of gradients.
Homomorphic Hash Functions (HHF). Given a message x ∈Zq , a collision-resistant

HHF [24] H: G1×G2 ←Zq can be indicated as H(x) = (g
H′

δ,ϕ(x)
,h

H′
δ,ϕ(x)

), where δ and ϕ

are secret keys randomly and independently selected from Zq . H′
is a hash function,

and G1 and G2 are two different groups. Similar to other one-way hash functions, the
security of the HHF requires that one can find a collision with a negligible probability.

Based on additive homomorphism: H(x1 +x2) ← (g
H′

δ,ϕ(x1)+H′
δ,ϕ(x2)

,h
H′

δ,ϕ(x1)+H′
δ,ϕ(x2)

), in
this work, we will use this tool as a verification of the correctness of aggregation.

Homomorphic Encryption (HE). This tool is an interesting privacy-preserving
technology enabling users to evaluate polynomial computations on ciphertexts
without revealing underlying plaintexts. An encryption scheme is called partial HE if
it only supports addition [17] or multiplication [36], while fully HE [37] can support
both. An HE scheme usually includes the following steps.
• Key Generation: (pk,sk) ← KGen (1λ), where based on security level parameter λ,
public key pk and secret key sk can be generated.
• Encryption: (c1,c2) ← Enc(pk,m1,m2). By using pk, the probabilistic algorithm
encrypts messages m1,m2 to ciphertexts c1,c2.
• Homomorphic evaluation: Eval(c1,c2) = c1 ◦ c2 = Enc(pk,m1) ◦ Enc(pk,m2) =
Enc(pk,m1 ◦m2), where ◦ refers to an operator, e.g., addition or multiplica-
tion.
• Decryption: m1 ◦m2 ←Dec(sk,Enc(pk,m1 ◦m2)). Using sk, the operational results of
m1 and m2 can be derived.

Oblivious Transfer (OT). OT [38] is one of the crucial building blocks for MPC. In an
OT protocol (involving two parties), a sender holds n different strings si , i = 1 · · ·n,
and a receiver has an index (i nd) and wants to learn si nd . At the end of the protocol,
the receiver cannot get information about strings rather than si nd , while the sender
learns nothing about i nd selected by the receiver. For example, a 1-out-of-2 OT
protocol only inputs two strings and a 1-bit index.
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Garbled Circuits (GC) [39]. The protocol is run between two parties called the
garbler and evaluator. The garbler generates the GC corresponding to the Boolean
circuit to be evaluated securely by associating two random keys per wire representing
the bit values 0, 1. The garbler then sends the GC together with the keys for the
inputs to the evaluator. The evaluator obliviously obtains the keys for his inputs via
OT and evaluates the circuit to obtain the output key. Finally, the evaluator maps
the output key to the real output.

DIFFERENTIAL PRIVACY

Differential Privacy (DP) [18] is a data protection approach enabling one to publish
statistical information of datasets while keeping individual data private. The security
of DP requires that adversaries cannot statistically distinguish the changes between
two datasets where an arbitrary data point is different. The most widely used DP
mechanism is called (ϵ,δ)-DP defined below, requiring less injection noise than the
ϵ-DP but standing at the same privacy level.

Definition 4.2.1 ((ϵ,δ) - Differential Privacy [18]). Given two real positive numbers
(ϵ,δ) and a randomized algorithm A : Dn → Y , the algorithm A provides (ϵ,δ) -
DP if for all data sets D,D

′ ∈Dn differing in only one data sample, and all S ⊆Y :
Pr [A (D) ∈S ] ≤ exp(ϵ) ·Pr [A (D

′
) ∈S ]+δ.

Note that the Gaussian noise N ∼ N (0,∆2σ2) should be added to the output of the
algorithm, where ∆ is L2 sensitivity of D and σ=

p
2ln(1.25/δ) [40]. The robustness

of post-processing guarantees for any probabilistic/deterministic functions F , if A

satisfies (ϵ,δ)-DP, so does F (A ).

4.3. PROBLEM FORMULATION

4.3.1. SYSTEM MODEL

Before proceeding, we provide some assumptions about MUDGUARD. We assume
training is conducted on a dataset D with K data samples composed with
feature space X (each sample containing all features) and a label set
Y . Additionally, D is horizontally partitioned among n clients, indicated as
Xi =X j ,Yi =Y j ,Ii ∩Ij =;,∀Di ,D j , i 6= j , where all clients share the same feature
space and labels but differ in sample index space I . FL aims to optimize a loss

function: argmin
w

n∑
i=1

ki
K Li (w,Di ), where Li (·) and ki are the loss function and local

data size of i -th client.
For reasons that relate to the versatility of the FL system, we also consider S (> 2)

servers to carry out clustering and aggregation (e.g., FedAvg). This allows us to
protect from malicious servers who cannot reconstruct the secrets so long as their
number is less than S/2 by using cryptographic tools, in which clients send updates
in secret-shared format. We state that our Byzantine solution can also be executed
by only one server. In this case, considering privacy, we have to assume that the
server must be fully trusted or semi-honest. Note that our focus here is on the
existence of malicious servers. In this research line [21, 41], secure computation is
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considered among multiple servers. Due to page limit, we summarize frequently
used notations in Table 4.2.

4.3.2. THREAT MODEL

We mainly consider potential threats incurred by participating clients, servers, and
outside adversaries.
• Attackers’ goal. We assume that two different entities are involved in the training:
semi-honest and dynamic malicious parties (including servers and clients), in which
both try to infer the privacy (updates) information of others from the received
messages. Unlike the former, strictly following the designed algorithms, the malicious
clients additionally aim to deteriorate the performance or boost the ASR of the
global model through untargeted or targeted poisoning attacks, respectively.
• Attackers’ capabilities. The malicious servers (in a minority proportion) and
clients (in a majority proportion) can deviate from the designed protocols. For
example, the malicious servers can perform an incorrect aggregation and send it
back to the semi-honest group. Moreover, malicious parties (servers and clients) can
collude with each other to infer benign aggregations and maximize the efficacy of
poisoning attacks (e.g., the Krum attack). To resist outside adversaries, secret-shared
messages are transmitted by private communication channels. Other messages are
transmitted through public communication channels, where outsiders are allowed to
eavesdrop on these channels and try to infer clients’ (updates) privacy during the
whole training phase.
• Attackers’ knowledge. We assume that the loss function, data distributions,
Byzantine-robust aggregation strategy, and public parameters (including training and
security parameters) are revealed to all parties. The malicious clients can exploit this
information to design and cast adaptive attacks tailored to MUDGUARD. For privacy
reasons, the local updates and datasets of semi-honest clients are not revealed to
malicious parties.

4.4. MUDGUARD OVERVIEW AND DESIGN

4.4.1. OVERVIEW

In a traditional FL system, clients send updates to the servers for global model
aggregation. Considering there exist malicious clients, we should maintain the
Byzantine robustness such that malicious updates should be excluded properly. To
do so, the servers must separate the malicious clients from the semi-honest clients.
DBSCAN helps the servers to perform clustering. Since the main difference between
the malicious and the benign is in the direction and magnitude of the updates, we
use the adjusted cosine similarity of updates as feature extraction to obtain better
clustering accuracy. Under the (semi-)honest majority, the clustering result directly
links to the group size. However, for a dynamic malicious majority, we cannot
judge if a cluster is malicious only based on its size. To address this issue, we
propose Model Segmentation. Unlike traditional FL generating “a unique" global
model, our proposed algorithm can yield multiple aggregation results. It does not
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Notation Description

gi
t gradients of i -th client at t-th round

wi
t weights of i -th client at t-th round

T the number of rounds
n the number of clients
S the number of servers
m the number of malicious clients
ki the number of data instances of i -th client
c the number of clusters
l the cluster labels
E the number of epochs
Di the dataset of i -th client
η learning rate

Gz the aggregation of gradients of z-th cluster
[n] a set of numbers ranging from 1 to n
[[·]] secret shared format

CosM pairwise adjusted cosine similarity matrix
EudM pairwise L2 distance matrix
IndM indicator matrix
δ,ϕ secret keys of homomorphic hash function
∆,σ,ϵ parameters of differential privacy

N Gaussian noise
α density parameter

ECD(·) encoding algorithm
DCD(·) decoding algorithm

Table 4.2: Notation summary

require the servers to know whether a given group is malicious or not. Moreover,
it only aggregates the updates within the same cluster and then returns the results
to the corresponding clients. We thus guarantee that the semi-honest will not be
aggregated with the malicious.

As far as fighting against inference attacks is concerned, we should protect the
confidentiality of the updates. For this, we use SS to wrap the updates into
a secret shared format in the sense that individual secret shares cannot reveal
the underlying information of the updates. By doing so, we guarantee that the
updates are secured from eavesdroppers, semi-honest, or even malicious servers
and further can be used on secure multiplication, comparison, and aggregation via
cryptographic tools. However, using SS alone is not sufficient to defend against
differential attacks. To thwart the attack, we apply DP to prevent the attackers
from extracting benign updates from the semi-honest group. Since injecting noise
brings a negative influence on the accuracy of the training model, we enable clients
to perform denoising before wrapping the results into shares. Note that this does
not invalidate DP due to the post-processing nature [18]. We also consider the
malicious minority servers and thus leverage HHF to prevent malicious servers from
performing incorrect aggregation, e.g., merging the gradients from two different
groups.
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4.4.2. BYZANTINE-ROBUST AGGREGATION STRATEGY WITH

CRYPTOGRAPHIC COMPUTATIONS

Our workflow of the Byzantine-robust aggregation strategy is as follows. Firstly,
the clients upload the gradients of the local models to the server side. Secondly,
servers extract features of gradients and split gradients into multiple clusters via
DBSCAN. Finally, servers aggregate the gradients in the clusters separately and send
aggregations to the corresponding clients. In the following, we complete the strategy
over secure cryptographic computations.
Gradients Upload. The use of the pairwise adjusted cosine similarity matrix (CosM)
as a method for extracting features is motivated by the fact that it measures both the
difference in directions and magnitudes of updates. This is particularly useful when
dealing with clients exhibiting various behaviors and non-iid cases. In this context,
CosM and L2 distance are used as input and the metric of DBSCAN, respectively.
The most direct method of computing CosM is as follows. We first subtract updates
with their mean values. For the updates of each client, we compute the pairwise
dot product and L2 norm to derive the numerator and denominator, respectively,
and then we can calculate CosM from the division (of numerator and denominator).
The above operations become inefficient if the processing is carried out using
cryptographic tools. The servers are required to perform the computations of shared
mean, numerator, denomination, and then division to finally get the shared adjusted
cosine similarity matrix [[CosM]].

To improve efficiency and optimize the above method, we consider the denoised
gradients of client i at t-th round ĝi

t as updates and perform binary secret sharing
via SignSGD. Note that SignSGD only takes the signs of gradients to the update
model, resulting in benign and malicious having the same magnitudes. Thus, in
this case, we can easily compute the adjusted cosine similarity via simple bit-wise
XORing. Figure 4.1 depicts this optimization procedure.

Therefore, in each training round (of the optimization), client i derives the
gradients using SGD [42]. Considering the upcoming cryptographic clustering,
one needs to compute the signs of gradients sign(ĝi

t ) ∈ {−1,+1} as SignSGD [43]
and then encodes to Boolean representation, which is compatible with binary SS
and XOR operations. Without loss of generality, we implement a widely used
encoding/decoding method as

ECD(sign(ĝi
t )) =

{
1, sign(ĝi

t ) =+1

0, other wi se
,

DCD(ECD(sign(ĝi
t ))) = 2ECD(sign(ĝi

t ))−1.

This method guarantees DCD(ECD(sign(ĝi
t ))) = sign(ĝi

t ). Each client sends the
encoded updates to the servers via binary SS and broadcasts the hash results of
unencoded updates for future verification. Although SignSGD is lightweight, it
brings a negative impact on the accuracy of clustering. Section 4.5.1 provides a
detailed analysis of this impact. Note that SignSGD has the natural capability of
defending against scaling attacks [26] since it only takes signs as updates and clips
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Figure 4.1: Optimization on the calculation of adjusted cosine similarity. :
optimized process: by binary SS, [[CosM]] is computed via bit-XOR.
: unoptimized process: taking gradients or weights as updates to compute
[[CosM]].

the magnitude of gradients. An attacker still can easily deteriorate the global model
by constructing updates in the opposite direction of benign updates.

Clustering. As a crucial variable in FL, updates determine the directions and
magnitudes of updating in the model, while Byzantine attackers introduce abnormal
updates. Traditional clustering approaches directly use updates as inputs, and cosine
similarity as metric [10], causing informative redundancy and blurring obvious
features, especially in deep models (e.g., ResNet [44]), thereby producing frequent
false positives and negatives. Since the adjusted cosine similarity measures the
difference in directions and magnitudes of updates at the same time, we use
the pairwise adjusted cosine similarity CosM as a method for extracting features,
i.e., CosM and L2 distance, used as the input and the main metric of DBSCAN,
respectively. We find that this method is effective in distinguishing the updates
because 1) calculating CosM (feature extraction) is equivalent to reducing the
informative redundancy of updates to improve the clustering accuracy. 2) Using
it to calculate the pairwise L2 distance can expand the pairwise differences which
are not clearly computed by CosM. Thus there is a more clear density difference
between honest and malicious updates. 3) By subtracting the mean updates,
CosM helps to account for reducing the influence of non-iid, allowing for a more
accurate comparison of clients’ updates. 4) When the model converges, using
cosine similarity is inappropriate because even semi-honest clients have updates in
different directions. For example, under a Gaussian Attack (GA), the malicious and
semi-honest clients become indistinguishable. The accuracy of the global model
drops sharply to the level of the initial training. We provide concrete examples in
Section 4.6 to demonstrate the advantages of using CosM. Note that this advantage
is more notable when the cryptographic tools are not optimized. Since the proposed
optimization uses SignSGD to align the magnitudes of updates, computing cosine
similarity on it naturally provides the same effect on clustering as adjusted cosine
similarity.

Next, we describe the process of our clustering. We first extract features (different

updates directions with magnitudes) - calculating the CosM ← gi
t ⊕g j

t , i , j ∈ [n], and
then use it as the input for clustering, thereby reducing the rate of false positives.
Commonly, the adjusted cosine similarity of two vectors is obtained by first
calculating the dot product of the vectors and then dividing them by the product of
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their respective L2 norm. Since encoding updates ĝi
t ∈ {−1,+1}d to gi

t ∈ {0,+1}d is

inspired by [45], we compute XOR of gi
t with d −2p bits, which is equivalent to the

result of the dot product of ĝi
t , where p is the counted number of set bits.

After that, the servers collaboratively compute pairwise L2 distance matrix
EucM using secure multiplications (vectori j ← CosMi −CosM j , i , j ∈ [n], xi j ←
vectori j · vectori j , and EucMi j ← 1+ xi j −1

2 − (xi j −1)2

8 + (xi j −1)3

16 ) and compare with
density α to derive an indication matrix IndM, where IndM= 1 if EucM≤α, otherwise
IndM = 0. Then by applying the DBSCAN, one can derive cluster labels. Note that
the main focus of this paper is not on optimizing DBSCAN, we thus do not describe
how to retrieve cluster labels from IndM. We refer interested readers to [31].

We see that α has a crucial influence on clustering accuracy. According to
the conclusion of Bhagoji et al. [46], benign and malicious updates follow normal
distributions. We formally derive its upper bound of selection (see Theorem 4.4.1).

Theorem 4.4.1 (Density Selection). Suppose the distribution of benign and malicious
updates obeys the normal distribution, setting α < p

2 guarantees that malicious
clients conducting a poisoning attack will not be grouped together with benign clients.

Proof. We denote a = (a1, · · · , ad ) and b = (b1, · · · ,bd ) are two vectors uploaded by
malicious clients, where np refers to the number of model parameters:

Pr (ai ,bi = sign) =
{

1
2 , sign=+1
1
2 , sign=−1

, ∀i ∈ [d ].

The adjusted cosine similarity can be computed as:

COS_si mi l ar i t y = a1b1 +·· ·+ad bd√
a2

1 +·· ·+a2
d ·

√
b2

1 +·· ·+b2
d

= a1b1 +·· ·+ad bd

d
.

Since ai and bi are relatively independent, we have:

Pr (ai ·bi = sign) =
{

1
2 , sign=+1
1
2 , sign=−1

, ∀i ∈ [d ].

According to the Law of large numbers, E(COS_si mi l ar i t y) ∼ E(ai bi ) = 0. This
conclusion can be generalized to any two malicious clients, and malicious clients
have the same distance as a semi-honest client. Therefore, if we calculate the
adjusted cosine similarity vector of two malicious clients, there should be only two
elements of difference. The L2 distance of these two vectors is

p
2.

Note that taking α <p
2 only allows malicious clients to be identified as noise

points, which is not a 100% guarantee that all semi-honest clients are clustered
together. Due to the difference in training data, it could happen that the distances
between a semi-honest client and other semi-honest clients are greater than

p
2 by

chance, resulting in the semi-honest client being identified as a noise point.
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Model Segmentation. To deal with Byzantine-majority attacks, after obtaining the
cluster labels, the servers aggregate the updates within the same cluster and return
the results (and their hash values) to the corresponding clients. In our design, unless
a malicious client acts honestly, then it will not be grouped into a cluster with the
semi-honest clients, with a relatively large probability. This protects benign clients by
keeping poisonous updates from global model updates computed for benign clusters.
Note here we do not further explore the case in which malicious clients choose to
act honestly during training. In fact, if malicious clients behave semi-honestly, we
will obtain a more accurate global model. In a sense, this is a bonus for semi-honest
clients. After all, in the context of Model Segmentation, it is not required to identify
malicious groups via any verification algorithms, which is a positive thing since it
removes the processing burden from the servers as the latter do not need to run
verification over “encrypted-and-noised" updates. Compared with the method of
FLAME, Model Segmentation does not need to assume that most clients in the FL
system are (semi-)honest. When integrated with an optimized clustering method,
Model Segmentation can also enhance the Byzantine robustness of the MUDGUARD.
Resistance against Malicious Servers. To further prevent malicious servers from
casting and sending incorrect aggregation, we use HHF so that every client can verify
if the received aggregation is correct. Specifically, the proposed method involves
a pre-upload step in which client i broadcasts hash values of signs of gradients
Hδ,ϕ(sign(ĝt i )) to the remaining parties before uploading secret-shared updates to
the server side. The servers use additive homomorphism of HHF to calculate

hash values of aggregations
∏

i∈c j
Hδ,ϕ(sign(ĝt i )) = Hδ,ϕ(G j

t ) based on the clustering
results, where c j refers to a cluster j containing client indexes. After receiving the

aggregations G j
t , the clients can calculate Hδ,ϕ(G j

t ) and
∏

i∈c j
Hδ,ϕ(sign(ĝi

t )) based on
the cluster labels and the received hash values, and subsequently verify whether
these two values are equal or not. Note that this method considers the possibility of
malicious servers that may send incorrect aggregations and IndM to the semi-honest
clients. However, since only a minority of servers are assumed to be malicious, the
semi-honest clients take the most consistent results as the real results.

4.4.3. SYSTEM DESIGN

Assume client i ∈ [n] holds a horizontally partitioned dataset Di satisfying D =
n⋃

i=1
Di ,

at t-th round, MUDGUARD works as follows.

Protocol MUDGUARD

Ê Local Training. For each local minibatch, each client conducts SGD and takes
gradients gi

t as updates.
Ë Noise Injection. Each client adds noise into gi

t to satisfy DP:
g̃i

t ← gi
t /max(1, ||gi

t ||2/∆)+N (0,∆2σ2).
Ì Denoising. To improve accuracy, each client denoises g̃i

t by ĝi
t ←KS(g̃i

t ,N ) · g̃i
t ,
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where KS(·) is the KS distance.
Í SS. Each client splits gi

t ←ECD(sign(ĝi
t )) into S shares by binary SS with Tiny

Oblivious Transfer (OT) and sends the shares to S servers: [[gi
t ]]

SS←− gi
t . Besides,

by running HHF, all clients broadcast Hδ,ϕ(sign(ĝi
t )).

Î Feature Extraction. After receiving n shares, each server locally computes a

pairwise adjusted cosine similarity matrix by bit-XOR: [[CosMi j ]] ← [[gi
t ]]⊕ [[g j

t ]],
i , j ∈ [n]. To further compute L2 distance, all servers convert Boolean shares to
arithmetic shares by correlated randomness.
Ï L2 Distance Computation. After conversion, deriving multiplicative SS, each
server uses HE or OT to produce a triple, satisfying further multiplications.
Therefore, each server takes [[CosM]] as the inputs of DBSCAN and then computes
[[EucM]] by (a) pairwise subtraction: [[vectori j ]] ← [[CosMi ]]− [[CosM j ]], i , j ∈ [n],
(b) dot product: [[xi j ]] ← [[vectori j ]] · [[vectori j ]], and (c) approximated square

root: [[EucMi j ]] ← 1+ [[xi j ]]−1
2 − ([[xi j ]]−1)2

8 + ([[xi j ]]−1)3

16 .
Ð Element-wise Comparison. By comparing each element of EucM with
density parameter α, each server can derive shares of indicator matrix [[IndM]],
{IndMi j = 1 |EucMi j ≤α}.
Ñ Reconstruction. All servers run a reconstruction algorithm to reveal IndM:

IndM recon←− [[IndM]] and broadcast it to the client side. By DBSCAN, one can
derive cluster labels. Based on these labels, the clients learn about clustering
information to perform aggregation verification in step Ó.
Ò Model Segmentation. The servers aggregate shares (based on the number of

labels c) with the same labels after decoding: {[[G j
t ]] ←∑

i∈c j
DCD([[gi

t ]]) | c j = {i |
i ∈ [n]}, j ∈ [c], } and send to the corresponding clients.
Ó Aggregation Verification. After reconstructing aggregation, according to cluster

labels, each client verifies aggregation by
∏

i∈c j
Hδ,ϕ(sign(ĝi

t ))
?= Hδ,ϕ(G j

t ). If the
equation holds, clients accept the aggregation results; otherwise, reject and
abort.

We note that the corresponding implementation-level algorithms of MUDGUARD are
given in the following (Algorithms 9 and 10) and will be used in the experiments.

4.4.4. PRIVACY PRESERVATION GUARANTEE

Differential attack resistance. As shown in step Ë and Ì of Protocol 4.4.3, each
client i can add differentially private noise into gradients and perform denoising
later. Like [47], we use KS distance (of noised gradients and noise distribution) as a
metric to denoise by multiplying noised gradients. Differentially private updates are
first denoised, taken signs, and encoded before being secretly shared.
Binary SS. Unlike arithmetic SS in domain Z2b , binary SS works with b = 1, where b
is the bit length. To resist malicious clients deviating from SS specifications, we apply
OT in our design (step Í of Protocol 4.4.3). However, this brings a considerable
increase in communication costs. Furukawa et al. [48] used TinyOT to generalize
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Algorithm 9: MUDGUARD.

Input: training dataset D =
n⋃

i=1
Di

Output: global models {wi | i ∈ [n]}
1 ServerAggregation:
2 Initialize global model w0
3 for each global epoch t = 1,2,· · · ,T do
4 for client i ∈ n in parallel do
5 [[gi

t ]] ← ClientUpdate(i ,wi
t−1)

6 end

7 [[G
j
t ]] ←Algorithm 10

8 return [[G
j
t ]],Hδ,ϕ([[G

j
t ]]) to clients

9 end

10 ClientUpdate(i , wi
t−1):

11 B ←(split Di into batches of size b)
12 IndM←MajorityVote({IndMi | i ∈ [s]})
13 l ←DBSCAN(IndM)

14 reconstruct Gi
t−1 by [[Gi

t−1]]

15 if
∏Hδ,ϕ(ĝi

t−1) =Hδ,ϕ(Gi
t−1) then

16 accept and continue
17 else
18 refuse and break
19 end

20 wi
t ← wi

t−1 −η · sign(Gi
t−1)

21 gi
t ←LocalTraining(wi

t ;batch; loss)

22 g̃i
t ← gi

t /max(1, ||gi
t ||2/∆)+N (0,∆2σ2)

23 ĝi
t ←KS(g̃i

t ,N ) · g̃i
t

24 gi
t ←ECD(sign(ĝi

t ))

25 send [[gi
t ]] to servers

26 broadcast Hδ,ϕ(sign(ĝi
t ))

multi-party shares with communication complexity linear in the security parameter.
We follow this method so that each client i binary shares its updates to S servers.
The SS scheme guarantees that a malicious server cannot reconstruct the secret even
if colluding with the rest of the servers under a malicious minority setting.

XOR. In step Î of Protocol 4.4.3, after receiving shares, each server can compute
the pairwise dot product independently. Assume a server s has [[gi

t ]]s , where s ∈ [S].

Since gi
t = [[gi

t ]]1⊕·· ·⊕[[gi
t ]]S , we have gi

t ⊕g j
t = [[gi

t ]]1⊕[[g j
t ]]1 · · ·⊕[[gi

t ]]S ⊕[[g j
t ]]S ,∀i , j ∈ n.

Therefore, in this case, each server s can compute [[dot_pr oduct ]] by

{[[dot_pr oducti j ]]s = [[gi
t ]]s ⊕ [[g j

t ]]s | ∀i , j ∈ [n]} locally and without interactions with
other servers. By multiplying a constant, one can derive shares of adjusted cosine
similarity. Using binary SS can help us to save element multiplication and division
operations.
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Algorithm 10: Secure clustering.

Input: shares of gradients: {[[gi
t ]] | i ∈ [n]}

Output: shares of aggregation {[[Gz
t ]] | z ∈ c}

1 for each i , j ∈ n do

2 [[dot_pr oducti j ]] ← [[gi
t ]]⊕ [[g

j
t ]]

3 convert binary sharing ([[dot_pr oducti j ]], [[gi
t ]]) to arithmetic sharing by B2A

4 [[CosMi j ]] ← 1− 2
np

∑
[[dot_pr oducti j ]]

5 end
6 for each i , j ∈ n do
7 [[xi j ]] ← ([[CosMi ]]− [[CosM j ]])2

8 [[EucMi j ]] ← 1+ [[xi j ]]−1
2 − ([[xi j ]]−1)2

8 + ([[xi j ]]−1)3

16
9 if EucMi j ≤α then

10 [[IndMi j ]] == [[1]]

11 else
12 [[IndMi j ]] == [[0]]

13 end
14 end
15 reconstruct IndM
16 each server broadcasts IndM
17 l ← DBSCAN(IndM)
18 for each z ∈ c all servers in parallel do
19 [[Gz

t ]] ←∑
li=z DCD([[gi

t ]]), i ∈ n

20 return [[Gz
t ]] to clients {i | li = z}

21 end

Bit to Arithmetic Conversion. The servers also need to convert the shares in
Z2 to arithmetic shares (Z2b ) to support the subsequent linear operations and
multiplications. We implement the conversion by following [49]. A common method
is to use correlated randomness in these two domains (doubly-authenticated bits)
and extend them. After this, the servers can derive arithmetic shares of the dot
product. Note some works [50, 51] leverage straightforward transformation under
the cases with only semi-honest parties.

Multiplication. As shown in step Ï of Protocol 4.4.3, multiplications are necessary
in DBSCAN. If we consider the semi-honest majority setting on the server side,
the replicated SS and SSS can be applied here since both satisfy the multiplicative
property, in which two shares multiplications can be computed locally without
any interaction. For the existence of malicious servers, we consider the protocol
proposed by Lindell et al. [52], modifying SPDZ [53] to the setting of multiplicative
secret sharing modulo a prime (including replicated SS and SSS). Furukawa et al. [48]
also proposed a similar variant for TinyOT. Both are based on the observation that
the optimistic triple production using HE or OT can be replaced by producing a
triple using multiplicative secret sharing instead.

Secure Comparison with Density α. With arithmetic shares, the comparison (step
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Ð of Protocol 4.4.3) requires extra correlated randomness, especially secret random
bits in the larger domains. For the semi-honest majority servers, we follow the
protocol [54] with Z2 to implement comparison efficiently. Under the malicious
minority, we should check if the output is actually a bit. We follow [35] to
multiply a secret random bit with comparison output and then reconstruct it. If the
reconstructed value is a bit, it proves that the malicious servers do not deviate from
the comparison protocol.

4.4.5. SECURITY ANALYSIS

MUDGUARD achieves security properties under malicious majority clients and malicious
minority servers. Malicious parties may arbitrarily deviate from the protocol, while
the rest of the parties are semi-honest, trying to infer information as much as
possible (but following the protocol). We assume malicious clients and servers may
collude with each other.

A secure FL system satisfies correctness, privacy, and soundness. The latter two
are security requirements. Informally, the requirements are: (1) the adversary learns
nothing but the differentially private output; (2) the adversary cannot provide an
invalid result accepted by a benign client. We first define the ideal functionality
FMUDGUARD to execute a byzantine-robust privacy-preserving FL, and then show
that the proposed protocol ΠMUDGUARD securely realizes the functionality. Our
security is based on the random oracle model where the homomorphic hash
function outputs a uniformly random value for a new query and the same value for
a previously answered query, hence we prove the UC security in FRO-hybrid model.
Besides, the security is also based on the existence of a secret sharing protocol where
the clients derive shares indistinguishable with randoms which securely realizes FSS
(a combination of Ftriples,Fshare,Freconst [48]), and a bit-to-arithmetic conversion
protocol that securely realizes FB2A (noted as FPREP in [49]).

Ideal Functionality Fshare

The functionality Fshare interacts with a dealer party P j , and a corrupted party
Pi .

Upon receiving (ti , si ) from the corrupted party Pi , and receiving v from the
dealer P j , the functionality Fshare computes (t j+1, s j+1) and (t j+2, s j+2) from
(ti , si ) and v , and sends the honest Pi−1 and Pi+1 their respective shares.

Ideal Functionality Freconst

The functionality Freconst interacts with an adversary Sim and a corrupted
party Pi , and receives information from Pi+1 and Pi+2.
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Upon receiving (ti+1, si+1, j ) from Pi+1 and (ti+2, si+2, j ) from Pi+2, Freconst
computes v = si+2⊕ ti+1 and sends v to P j . In addition, the functionality Freconst
sends (ti , si ) to the adversary Sim, where (ti , si ) is Pi ’s share as defined by the
shares received from the honest parties.

Ideal Functionality Ftriples

The functionality Ftriples interacts with a corrupted party Pi , and receive
information from P1,P2,P3.

Upon receiving N triples of pairs {(t j
ai

, s j
ai

), (t j
bi

, s j
bi

), (t j
ci

, s j
ci

)}N
j=1 from Pi , the

functionality first Ftriples chooses random a j ,b j ∈ {0,1} and computes a j b j , and
then defines a vector of sharings d = ([a j ], [b j ], [c j ]), for j = 1, ..., N . The sharings

are computed from [(t j
ai

, s j
ai

), (t j
bi

, s j
bi

), (t j
ci

, s j
ci

)] provided by Pi and the chosen
a j ,b j ,c j . Next, Ftriples sends the generated shares to each corresponding party.

Ideal Functionality FPrep (FB2A)

Independent copies of FMPC are identified via session identifiers sid. For each
instance, FPrep maintains a dictionary Dicsid. If a party provides input with an
invalid sid, the FPrep outputs reject to all parties and await another message.

Upon receiving (Init, F, sid) from all parties, initialize a new database of
secrets Dicsid indexed by a set Dicsid.Keys and store the field Fas Dicsid.Field, if
sid is a new session identifier. Set the flag Abortsid = FALSE.

Upon receiving (Input, i , id, x, sid) from a party Pi and (Input, i , id, ⊥, sid)
from all other parties, if id ∉Dicsid.Keys then insert it and set Dicsid[id] = x. Then
execute the procedure Wait.

Upon receiving (Add, idx , idy , id,sid), set Dicsid[id] = Dicsid[idx ]+Dicsid[idy ] if
idx , idy ∈Dicsid.Keys.

Upon receiving (Mult, idx , idy , id,sid), set Dicsid[id] = Dicsid[idx ] ·Dicsid[idy ], if
idx , idy ∈Dicsid.Keys. Then execute the procedure Wait.

Upon receiving (RanEle, id,sid), set Dicsid[id] to a random element in
Dicsid.Field, if id ∉Dicsid.Keys. Then execute the procedure Wait.

Upon receiving (RanBit, id,sid), set Dicsid[id] to a random bit if id ∉Dicsid.Keys.
Then execute the procedure Wait.

Upon receiving (Open, i , id,sid) from all parties, if id ∈Dicsid.Keys: 1) if i = 0,
send Dicsid[id] to the adversary and executes Wait. If the answer is (OK,sid),
await an error ϵ from the adversary. Send Dicsid[id]+ ϵ to all honest parties.
If ϵ 6= 0, set the flag Abortsid = TRUE. 2) if i ∈ A, then send Dicsid[id] to the
adversary. Then execute Wait. 3) if i ∈ [n]\A, execute Wait. If not already halted,
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then await an error ϵ from the adversary. Send Dicsid[id]+ϵ to party Pi . If ϵ 6= 0,
set the flag Abortsid = TRUE.

Upon receiving (Check,sid) from all parties, execute the procedure Wait. If
not already halted and Abortsid = TRUE, send (Abort,sid) to the adversary and
all honest parties, and ignore further messages to FMPC with the same sid.
Otherwise, send (OK,sid) and continue.

Upon receiving (daBits, id1, ..., idl ,sid1,sid2) from all parties where idi ∉
Dicsid.Keys for all i ∈ [l ], await a message OK or Abort from the adversary. If
OK is received, sample a set of random bit {b j } j ∈ [l ], and for each j ∈ [l ] set
Dicsid1 [id j ] = b j and Dicsid2 [id j ] = b j , and insert the set {idi }i∈[l ] into Dicsid1 .Keys
and Dicsid2 .Keys. Otherwise, send (Abort,sid1) and (Abort,sid2) to the adversary
and all honest parties, and ignore all further messages to FMPC) with the same
sid1 and sid2.

Procedure Wait: Await a message (OK,sid) or (Abort,sid) from the adversary. If
OK is received, then continue. Otherwise, send (Abort,sid) to all honest parties,
and ignore all further messages to FMPC with the same sid.

Remark 4.4.2. We use Fshare as the secret share generating algorithm, Freconst as the
reconstructing algorithm, Ftriples as the secret share multiplication algorithm, and
FB2A (see FPREP in [49]) as the bit to arithmetic conversion algorithm.

We formally define FMUDGUARD as follows.

Ideal Functionality FMUDGUARD

The functionality FMUDGUARD is parameterized with a DBSCAN algorithm with
corresponding parameters, a local training SGD algorithm with appropriate
variables, Gauss noise parameters ∆ and σ, and the density parameter α. The
functionality FMUDGUARD interacts with n clients P1, ...,Pn , s remote servers
S1, ...,Ss , and an ideal adversary Sim.

Upon receiving (Init, {w i
0}i∈[n], {Gi

0}i∈[n]) from the adversary Sim, send
(Init, w i

0,Gi
0) to each Pi .

Upon receiving (Update, t , w i
t−1,Di ) from each honest client Pi , calculate

w i
t , gi

t , g̃i
t , ĝi

t , ḡi
t , and store (t , [[ḡi

t ]]) for each server, and notify Sim with
(Update, t ,Pi ). If t = T , terminate the protocol. Later, when Sim replies with
(Update-data, t ), send (Update, t ) to each server S j for each j ∈ [s]. Upon

receiving (Update, t , {[[ḡ′it ]]}i∈I ) from Sim for all corrupted client index i , where

I ⊂ [n], store (t , [[ḡ′it ]]) for each honest server.
Upon receiving (Update, t ) from a server S j , if (t , [[ḡi

t ]]) is stored for each
i ∈ [n] and for each server, calculate IndM and {[[Gz

t ]]}z∈[c] for each server. Then
send (Model, t , IndM, {[[Gz

t ]]}z∈[c]) to each server. If S j is honest, upon receiving
(Update-model, t ) from the simulator Sim, send (Update-model, t , [[Gz

t ]]) to the
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corresponding client. Otherwise, upon receiving (Update-model, t , {[[G
′z
t ]]}) from

the simulator Sim, send (Update-model, t , [[G
′z
t ]]) to corresponding client.

Upon receiving (Abort) from either the adversary or any client, send ⊥ to all
parties and terminate.

Remark 4.4.3. According to the ideal functionality, we could capture not only privacy
but also soundness against malicious corruption of servers. However, the differential
attack is based on the output of each epoch, which is published roundly and could be
obtained legally. Hence, the discussion on differential privacy is not included in this
security definition. Detailed proof for differential privacy will be given later. Moreover,
soundness against malicious corruption of clients is also not captured by the previous
definition since such security is protected by the clustering technique, which is not the
concern of cryptography.

Definition 4.4.4 (Universally Composable security). A protocol Π UC-realizes ideal
functionality F if for any PPT adversary A there exists a PPT simulator S such
that, for any PPT environment E , the ensembles EXECΠ,A ,E and EXECIDEALF ,S ,E are
indistinguishable.

Definition 4.4.5 (UC security of MUDGUARD). A protocol ΠMUDGUARD is UC-secure if
ΠMUDGUARD UC-realizes F , against malicious-majority clients and malicious-minority
servers, considering arbitrary collusion between malicious parties.

Theorem 4.4.6 (UC security of MUDGUARD). Suppose the existence of a homomorphic
hash function in a random oracle model, our protocol is UC-secure in
(FRO,FSS,FB2A)-hybrid world.

Proof. We show the validity of the theorem by proving that the protocol ΠMUDGUARD
securely realizes F in the (FRO,FSS,FB2A)-hybrid world against any corruption
pattern. We construct a simulator Sim for any non-uniform PPT environment E such

that EXECFRO,FSS,FB2A
ΠMUDGUARD ,A ,E ≈EXECFMUDGUARD ,Sim,Z . The Sim is constructed as follows.

It writes on A ’s input tape upon receiving an input value from E , as if coming
from E , and writes on Z ’s output tape upon receiving an output value from A , as if
from A .
Case 1: If all clients and servers are not corrupted. Since we assume private channels
between client and server, Sim could just simply randomly choose all intermediate
values. There is no distinguisher who could tell the difference between random
values and real transcripts.
Case 2: If corrupted clients exist. We note the corrupted subset as I ⊂ [n]. We need
to simulate the adversary’s view, which is the secret share and its corresponding

hash value. For t ∈ [T ] and i ∈I , the simulator randomly chosen ḡ′it ← {0,1}, and

internally executes FSS to obtain [[ḡ′it ]]. Then, Sim internally executes FRO to obtain
Hi

t . Because of the UC security of FSS and FRO, there is no distinguisher that could

tell the difference between ([[ḡ′it ]],Hi
t ) and ([[ḡi

t ]],Hδ,ϕ(sign(ĝ i
t ))).
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Case 3: If corrupted servers exist. We not the corrupted subset as I ⊂ [T ]. We need
to simulate the adversary’s view, including all secret shares in the protocol. It is
worth noticing that we should not only guarantee the indistinguishability between
two groups of shares but also the relationship among elements within each group.
After obtaining IndM, the Sim executes DBSCAN protocol on IndM and acquires
cluster labels l , and executes the functionality FSS to obtain [[IndMi j ]] for each

i , j ∈ [n]. Then, Sim randomly chosen |l | secret sharing values [[ḡ′it ]] such that

the summation Σli=zDCD([[ḡ′it ]]) equals to the given share [[Gz
t ]]. This procedure

could be easily achieved by first randomly choosing the first |l |−1 values and then
calculating the last value. For each i ∉ c, the simulator Sim simply chooses the shares
of gradients randomly since those values are irrelevant to the calculation. After

acquiring all the shares of gradients [[ḡ′it ]], the simulation Sim pairwisely calculate
[[dot_pr oduct ′i j ]], and convert it to arithmetic sharing by executing the functionality

FB2A, and then calculate the adjusted cosine similarity matrix share [[CosM′
i j ]].

Next, as in Algorithm 2, Sim calculates [[x ′
i j ]], [[EucM′

i j ]] for each i , j ∈ [n]. We claim

that all shares that were previously generated are interdeducible, except between
[[EucM′

i j ]] and [[IndM′
i j ]], since the latter two are the input/output pair of the

element-wise comparison algorithm computed by a secure comparison algorithm in
our protocol. Fortunately, the privacy of a secure comparison algorithm guarantees
the indistinguishability between real and ideal input/output pairs. Hence, we claim
that if there exists a distinguisher that could tell the difference between the real and
ideal world, it contradicts either the UC security of FSS or the privacy of secure
comparison protocol.
Case 4: If there exists both corrupted clients and servers. The situation, in this case,
is simply the combination of Case 2 and 3 since there is no extra view needed to
simulate.

In summary, for any PPT adversary A we could construct a Sim, so that for any PPT
environment E , the EXECΠ,A ,E and EXECFMUDGUARD ,S ,E are indistinguishable.

UC framework captures attacks on input and intermediate data. On the contrary,
differential privacy prevents the adversary from inferring about private information
from outputs or updates, and such information might also be utilized by malicious
clients. When false positives clustering exists, or malicious clients pretend to be
honest, local updates have a chance to be revealed to the adversary. The following
theorem shows that these updates do not leak any individual data due to differential
privacy.

Theorem 4.4.7. No adversary in corrupted client set A c ⊂C , where |A c | ≤ n −1, can
retrieve the individual values of honest clients.

Proof. Since we apply differential privacy [18], the local updates cannot leak
information regarding the inputs. According to Def. 4.2.1, the added differentially
private noise guarantees that the aggregation is indistinguishable whether an
individual update participates or not. Therefore, it guarantees the security of
individual local updates while aggregation can be calculated.
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We prove the security in a F -hybrid model. Our proof adopts three existing ideal
functionalities: FRO, FSS and FB2A. The first is for the random oracle model, and
the latter two are the ideal functionalities of secret sharing [48] and bit-to-arithmetic
conversion [49] respectively. We have the following theorem:

Theorem 4.4.8. MUDGUARD securely realizes FMUDGUARD in the (FRO, FSS, FB2A)-hybrid
model, against malicious-majority clients and malicious-minority servers, considering
arbitrary collusions between malicious parties.

The remaining two properties are related to data output, which is not concerned
with the cryptographic view. Specifically, DP is provided by adding noise, and
soundness against malicious clients is provided by Model Segmentation.

Note our well-designed functionality captures as many attacks as possible. In
other words, soundness against malicious clients and DP cannot be achieved under
the UC model. On the one hand, recognizing malicious clients is quite a subjective
task since they do not deviate from the protocol in cryptographic ways. There
might be a benign client providing similar inputs that seem to be malicious, with a
non-negligible possibility. On the other hand, the output with DP can be obtained
by the adversary in our definition. Hence differential attacks should not be captured
in the functionality.

4.4.6. CONVERGENCE ANALYSIS

Let M be the total number of clients in a semi-honest majority client cluster. Semi-
honest clients and malicious clients are indexed by {1, · · · ,h} and {h +1, · · · ,h +m},
respectively, where M = h+m and h > m if TNR is greater than 50%. The component
j of stochastic gradient and of true gradient are denoted as {g̃i , j }M

i=1 and g j

respectively. An error probability is shown as follows.

Lemma 4.4.9 (The bound of error probability with malicious clients). If the
TNR (h/M) of the clustering is relatively high, then we have the error probability
P

[
Sign

[∑M
i=1 Sign(g̃i , j )

] 6= Sign(g j )
] ≤ Ph ·O (

p
M/h), where Ph is the bound for the

error probability without malicious clients.

Proof. Every client is a Bernoulli trial with success probability ph for semi-honest
clients and pm for malicious clients, respectively, to receive the true gradient signs.
Let Zh be the number of semi-honest clients with true signs, which therefore equals
the sum of h independent Bernoulli trials, so we know Zh follows the binomial
distribution B(h, ph). Similarly, we know the number of malicious clients with
correct signs Zm follows the binomial distribution B(m, pm). Denote qh = 1−ph and
qm = 1−pm .

Let Z be the total number of clients with true gradient signs, so Z =
Zh + Zm . We use the Gaussian distribution to simplify the analysis. Notice
that B(h, ph) ∼ N (hph ,hph qh) and B(m, pm) ∼ N (mpm ,mpm qm), so we get
Z ∼ N

(
hph +mpm ,hph qh +mpm qm

)
. The event Sign

[∑M
i=1 Sign(g̃i , j )

] 6= Sign(g j ) is
equivalent to event Z ≤ M/2. Then the error probability equals P(Z ≤ M/2). By using
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Cantelli’s inequality, we know

P [Z ≤ M/2] =P[Z ≥ 2(hph +mpm)−M/2]

=P[Z − (hph +mpm) ≥ (hph +mpm)−M/2]

≤ 1

1+ [(hph+mpm )−M/2]2

hph qh+mpm qm

≤
√

hph qh +mpm qm

2|(hph +mpm)−M/2|

=
√

M ph qh

2M(ph −1/2)
·

√
h/M +m/M ·pm qm/ph qh

(h/M ·ph +m/M ·pm −1)/(ph −1/2)

=Ph ·O (
p

M/h)

(4.1)

where the second inequality holds since 1
x2+1

≤ 1
2x for x > 0, and the last two

equalities hold since ph > 1/2 by [43] and we assume hph > M/2 with overwhelming
probability for a sufficient large TNR. The assumption is reasonable because
hph = M ph > M/2 if T N R = 100%. The first factor in Eq. (4.1) is the bound for the
error probability without malicious clients, so we get the error probability less than
a O (

p
M/h) factor of that in the case of without malicious clients.

Let L and σ be non-negative losses and standard deviation of stochastic gradients
g̃ respectively. ∀x, the objective values f (x) are bounded by constants f∗ (i.e.
f (x) ≥ f∗). The objective value of 0-th round is referred to as f0. Under the above
conditions, the results are the following.

Theorem 4.4.10 (Non-convex convergence rate of MUDGUARD). If the TNR of the
clustering is relatively high, then the global model generated in the semi-honest cluster
converges at a rate

E

[
1

T

T−1∑
t=0

∥∥g t
∥∥

1

]2

≤ 1p
N

[√
‖L‖1

(
f0 − f∗+ 1

2

)

+ 2

O (
p

h)
‖σ‖1

]2

,

where N is the cumulative number of stochastic gradient calls up to round T
(i .e., N =O (T 2)). Therefore, the higher the rate is, the closer the convergence speed is
to the case without malicious clients.

Proof. Following the results of Theorem 2 in [43], in the distributed SignSGD with a
majority vote, we can get the non-convex convergence rate without malicious clients
at

E

[
1

T

T−1∑
t=0

∥∥g t
∥∥

1

]2

≤ 1p
N

[√
‖L‖1

(
f0 − f∗+ 1

2

)

+ 2p
M

‖σ‖1

]2
(4.2)

from

|g t |P
[
Sign

[
M∑

i=1
Sign(g̃i , j )

]
6= Sign(g j )

]
≤ σip

M
. (4.3)
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As Lemma 4.4.9 proved, in the existence of the malicious clients, we get (4.3)≤
σip

M
·O (

p
M/h) = σi

O (
p

h)
. By plugging the result into (4.2), we have the convergence

rate of MUDGUARD:

E

[
1

T

T−1∑
t=0

∥∥g t
∥∥

1

]2

≤ 1p
N

[√
‖L‖1

(
f0 − f∗+ 1

2

)

+ 2p
M

‖σ‖1 ·O (
p

M/h)

]2

= 1p
N

[√
‖L‖1

(
f0 − f∗+ 1

2

)
+ 2

O (
p

h)
‖σ‖1

]2

.

(4.4)

4.4.7. COMPLEXITY ANALYSIS

We use d to denote the dimension of the model. n, S and c refer to the number of
clients, servers and clusters, respectively.
• Computation cost. Each client’s computation cost can be computed as binary
SS with Tiny OT − O(d). The server’s computation cost consists of 4 parts:
(1) computing pairwise XOR − O(n2); (2) bit to arithmetic conversion − O(d);
(3) multiplication for L2 distance − O(n3); (4) comparison with α − O(n2); (5)
calculating results of HHF based on the number of clusters c − O(nc). Thus, the
total computation complexity of each server is O(n3).
• Communication cost. For a client in MUDGUARD, the communication cost can
be divided into 2 parts: (1) sending updates to S servers with binary SS and Tiny
OT − O(Sd); (2) broadcasting hash results of updates to the rest of parties −
O(n +S). Thus, we have communication complexity − O(Sd +n) for each client.
The servers’ communication costs include (1) receiving correlated randomness and
doubly-authenticated bits for converting a boolean shared matrix to arithmetic one
− O(n2); (2) receiving triples for multiplications − O(n2); (3) receiving correlated
randomness for element-wise comparison − O(n2); (4) sending shares and a random
bit to other servers for reconstruction − O(Sn2); (5) sending aggregated shares and
values of HHF to all clients − O(nd). Overall, the communication cost for every
server is O(Sn2). For detailed experimental results, refer to Section 4.5.2.

4.4.8. ADAPTIVE ATTACK

Recall that in Section 4.3.2, a Byzantine-robust aggregation strategy is available to
attackers. Malicious clients can adapt their attacks to nullify the robustness of
the system. Note that untargeted attacks (e.g., Krum and Trim attacks) solve an
optimization problem to maximize the efficacy of attacks, meaning the strategies
of untargeted attacks are already optimal. Therefore, we design and evaluate an
adaptive backdoor attack for MUDGUARD. Specifically, the attack is formulated by
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adding a sub-task to the attack optimization problem. Given the fact that MUDGUARD
achieves Byzantine-robustness by aggregating only benign updates as much as
possible based on adjusted cosine distance, the sub-task of this attack is to try to
minimize the adjusted cosine distance of malicious updates from that of benign
updates. Formally, a malicious client i first derives benign and malicious updates
(wi

t and wi ′
t ) with owned unpoisoned and poisoned data (Di and D

′
i ), respectively,

at the t-th round:

wi
t ← wt−1 −η∇L (wt−1,Di ),wi ′

t ← wt−1 −η∇L (wt−1,D
′
i ).

Then, client i solves the optimization problem:

argmin
wi ′

t

λLi (wt−1,D
′
i )+ (1−λ)‖wi

t −wi ′
t ‖COS ,

where ‖·‖COS refers to adjusted cosine distance. λ ∈ (0,1] is a hyperparameter to
balance the efficacy and stealthiness of an attack. A smaller λ makes the attack
harder to be filtered, but its efficacy is less to be upheld. Section 4.5.1 gives a
detailed analysis.

4.5. EVALUATION
We implement MUDGUARD in C++ and Python. We use MP-SPDZ library [34] to
implement secure computations and Pytorch framework [55] for training. All the
experiments are conducted on a cluster of machines with Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10GHz and NVIDIA 1080 Ti GPU, with 32GB RAM in a local area
network. As for the cryptographic tools, all the parameters are set to a 128-bit
security level.
Datasets. We use MNIST and FMNIST datasets for the image classification task.
• MNIST [56]. It consists of 60,000 training samples and 10,000 testing samples,
where each sample is a 28×28 gray-scale image of handwritten digital (0-9).
• FMNIST [57]. It contains article images from Zalando and has the same size as
MNIST, where each image is a 28×28 gray-scale image associated with a label from
10 classes.
• CIFAR-10 [58]. It offers 50,000 training samples and 10,000 test samples, where
each is a 32×32 color image in a label from 10 different objectives, and there are
6,000 images for each class.
Classifiers. We use LeNet and ResNet-18 to perform training and classification of the
datasets.
• LeNet [59]. Containing 6 layers (including 3 convolution layers, 2 pooling layers,
and 1 fully connected layer), LeNet aims to train 44,426 parameters for image
classification.
• ResNet-18 [44]. It provides 18 layers with 11 million trainable parameters to train
color images. We use a light vision of ResNet with approx. 2.07 million parameters
and complete the experiments with the CIFAR-10 dataset.

To conduct a fair comparison against existing Byzantine-robust methods, we follow
the training settings of [9, 10]. Based on the number of classes L, the clients
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are divided into L groups. Non-iid degree q determines the heterogeneity of data
distribution. For example, if we use MNIST with 10 classes and q = 0.5, the samples
with label “0" are allocated to the group “0" with probability 0.5 (but to other groups
with probability 1−0.5

10−1 ).

Byzantine-attacks settings. We consider six poisoning attacks aforementioned in
Section 4.2.1. For GA, Krum, and Trim attacks, we adopt the default settings in [3].
Note that updates trained by data with low Poisoning Data Rate (PDR) could be
close to the benign, bringing difficulties for MUDGUARD to distinguish them. But if we
set the PDR too low, this could yield negative impacts on Attack Success Rate (ASR).
For data poisoning attacks (LFA, BA, and Adaptive Attack (AA)), we set PDR to 1,
aiming to achieve a relatively high ASR. To achieve a fair comparison, we follow
the settings of BA [10], where a white rectangle with size 6x6 is seen as a trigger
embedded on the left side of the image. Wang et al. [5] did not provide a dataset
for FMNIST. In the experiments, we do not consider launching EA to FMNIST. To
balance the main and attack tasks, we set λ as 0.5.
FL system settings. Table 4.3 gives the detailed parameters. We follow the
parameters setting of [1, 43], set the minibatch size to 128, and use the Adam
optimizer [60] for training LeNet and ResNet-18. In the experiments, all the clients
participate in the training from beginning to end. By default, we assume that there
exist 100 clients splitting the training data with non-iid degree q=0.5; the proportion
of malicious clients is set to ξ=0.6 (i.e., 60 out of 100 clients are malicious). The
testing accuracy is computed over the whole testing dataset. We inject triggers
into the whole testing dataset to inspect the ASR of BA. The Ardis and Southwest
airplanes datasets with changed labels are used to inspect the ASR of EA in MNIST
and CIFAR-10, respectively. Note that the main focus of the experiments is to
examine the complexity of MUDGUARD and to check if MUDGUARD can effectively fight
against Byzantine attacks. Thus, we do not further present details for client selection
during each round of training, which will not affect the test of Byzantine robustness.
In the clustering and robustness comparison, we define weights-MUDGUARD as a
variant of MUDGUARD, which uses SGD to update models and takes pairwise adjusted
cosine similarity of updates as inputs and L2 norm as clustering metric, without
applying any security tools.

4.5.1. EVALUATION ON ACCURACY

We set the baseline as a “no-attack-and-defense" FL, which means it excludes the
use of any cryptographic tools as well as Byzantine-robust solutions but only trains
with fully honest parties. This reaches the highest accuracy and fastest convergence
speed for FL training. We then set #clients participating in the baseline training
equal to #semi-honest clients in the malicious existence case. We conduct each
experiment for 10 independent trials and further calculate the average to achieve
smooth and precise accuracy performance. We evaluate MUDGUARD’s accuracy and
ASR by varying the total number of clients, the proportion of malicious clients, and
the degree of non-iid; and further compare the performance with the baseline.

Table 4.4 shows that, under GA, AA, BA, and EA, the testing accuracy is on par
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Dataset MNIST FMNIST CIFAR-10

#clients [10, 100, 500]
clients subsampling rate 1

non-iid degree [0.1, 0.5, 0.9]
#local epochs 1

#global epochs 250 1200

learning rate 0.01
0.01 with 1e−5

weight decay
proportion of malicious clients ξ [0.1, 0.6, 0.9]

LFA, BA, and AAs PDR 1
λ 0.5
α 1

#edge-case 300 / 300
DPs (ϵ,δ,∆) (5, 1e−5, 5)

Table 4.3: FL system settings. The parameters’ range and default values are in the
form of “[min, default, max]".

Attacks baseline GA LFA Krum Trim AA BA EA

ξ

0.5 0.975 0.973 0.967 0.955 0.965 0.979 / 0 0.972 / 0.002 0.966 / 0.03
0.6 0.977 0.975 0.974 0.952 0.96 0.979 / 0.002 0.968 / 0.001 0.968 / 0.023
0.7 0.975 0.971 0.971 0.956 0.953 0.977 / 0 0.963 / 0.002 0.953 / 0.07
0.8 0.969 0.968 0.964 0.942 0.944 0.976 / 0.003 0.961 / 0.005 0.965 / 0.085
0.9 0.969 0.968 0.968 0.943 0.937 0.971 / 0.005 0.963 / 0.002 0.963 / 0.093

n

10 0.978 0.978 0.965 0.961 0.962 0.976 / 0 0.976 / 0 0.975 / 0
50 0.975 0.97 0.958 0.96 0.949 0.975 / 0 0.975 / 0 0.967 / 0.02

100 0.977 0.975 0.974 0.952 0.96 0.979 / 0.002 0.968 / 0.001 0.968 / 0.023
200 0.962 0.962 0.948 0.951 0.943 0.963 / 0.002 0.961 / 0 0.962 / 0.042
500 0.763 0.762 0.72 0.722 0.735 0.738 / 0.004 0.762 / 0.001 0.756 / 0.007

q

0.1 0.976 0.975 0.978 0.975 0.975 0.978 / 0 0.975 / 0.003 0.976 / 0.031
0.3 0.974 0.973 0.974 0.966 0.972 0.98 / 0 0.978 / 0.002 0.978 / 0.026
0.5 0.977 0.975 0.974 0.952 0.96 0.979 / 0.002 0.968 / 0.001 0.968 / 0.023
0.7 0.898 0.894 0.872 0.887 0.906 0.89 / 0.013 0.876 / 0.011 0.883 / 0.039
0.9 0.709 0.682 0.705 0.694 0.689 0.689 / 0.017 0.707 / 0.025 0.72 / 0.06

Table 4.4: Comparison of accuracy with baseline and ASR by an increasing proportion
of malicious clients (ξ ≥ 0.5), #clients n and non-iid degree q , where
MNIST is used. The results under targeted attacks are in the form of
testing accuracy / ASR".

with the baseline (with only a 0.008 gap on average) in MNIST. However, compared
with the baseline, the results of MUDGUARD under LFA, Krum, and Trim attacks show
slight drops (on average, 0.025 in MNIST). This is so because MUDGUARD has slow
convergence and large fluctuation. This is incurred by two factors. To reduce the
overheads of secure computations, we apply binary SS in SignSGD. SignSGD could
cause negative impacts on clustering. Only taking the signs of the gradients can
ignore the effect of the magnitudes of the malicious gradients. This makes the
clustering a bit prone to inaccuracy. The other factor is the LFA and Krum/Trim
attacks either poison the training data and further poison updates or the local model
to optimize the attacks. In the early stage of training, the malicious models do not
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(a) Gaussian Attack (b) LF Attack (c) Krum Attack (d) Trim Attack

(e) Adaptive Attack (f) Backdoor Attack (g) Edge-case Attack

Figure 4.2: Comparison of testing accuracy among baseline, semi-honest, and
malicious groups under untargeted attacks (a-d) and ASR between the
groups under targeted attacks (e-f), where we train MNIST by the default
settings in Table 4.3.

perfectly fit the poisoned training data and local models yet. Thus, the semi-honest
and malicious clients could be classified into the same cluster.

Figure 4.2 presents an overview of the testing accuracy (of baseline and semi-honest
and malicious groups) and ASR (of the two groups) under Byzantine attacks in
the default settings of Table 4.3, where MNIST is used.3 We see that semi-honest
clients can obtain comparable accuracy to the baseline at the end of the training.
In Figure 4.2a-d, the accuracy of the semi-honest group and the baseline sharply
increase from 0.1 at epoch 0 to around 0.95 at epoch 25, then gradually converge
to 0.97. In the GA, since the malicious group can only receive aggregation of noise,
their accuracy always fluctuates around 0.1, equalling a random guess probability. As
for LFA, the model accuracy gradually drops from 0.1 (at the beginning) to 0. This is
because their models are trained on label-flipped datasets, while the labels of the
testing set are not flipped. If the testing set is used to detect a poisoned model,
the result should be flipped labels and failing to match the labels in the testing set,
which results in 0. Since semi-honest and malicious clients can be classified into the
same cluster at the beginning of the training, the accuracy of their models, w.r.t.
malicious clients, is larger than 0.1 in some trials.

As shown in Figure 4.2b-e, the accuracy of the semi-honest group under these
attacks converges slightly slower than the baseline. LFA, Krum, and Trim attacks aim
to either train poisoned data or optimize local poisoned models to deteriorate the
global model’s testing accuracy. Due to the attacks being relatively slow and not as
direct as GA, malicious updates cannot deviate 100% from benign updates at the
beginning of the training (which means that malicious and semi-honest clients could

3The lines refer to average cases, while the shadow outlines the max and min accuracy of each epoch.
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be clustered together). However, with more training rounds, the deviation becomes
clearer. Thus, MUDGUARD separates the two groups easily.

AA, BA, and EA have no impact on the model’s testing accuracy since their main
purpose is to improve the ASR (nearly equal to 1 without defense). Under MUDGUARD,
the final ASR is well suppressed. The ASR of AA and BA are close to 0 in MNIST
(see Figure 4.2f-g). But the ASR of EA is much higher than that of AA and BA,
reaching an average of 0.041. This is because, in EA, the edge-case training sets
owned by attackers are very similar to the training sets with the target labels. If the
discriminative capability of the model is not strong enough, the update directions
of semi-honest and malicious gradients are also very close, making it difficult for
MUDGUARD to distinguish them.

The experimental results in FMNIST and CIFAR-10 show the same trends as those
in MNIST under the tested attacks.

Attacks Baseline GA LFA Krum Trim AA BA

ξ

0.5 0.811 0.803 0.772 0.751 0.763 0.793 / 0 0.797 / 0
0.6 0.783 0.772 0.77 0.761 0.757 0.784 / 0.002 0.801 / 0
0.7 0.769 0.767 0.747 0.723 0.726 0.776 / 0.003 0.777 / 0.005
0.8 0.754 0.752 0.731 0.743 0.754 0.771 / 0.001 0.758 / 0.001
0.9 0.755 0.737 0.73 0.718 0.724 0.753 / 0.002 0.731 / 0.008

n

10 0.846 0.844 0.824 0.829 0.831 0.836 / 0 0.845 / 0
50 0.834 0.829 0.829 0.829 0.827 0.827 / 0 0.836 / 0

100 0.783 0.772 0.77 0.761 0.757 0.784 / 0.002 0.801 / 0
200 0.774 0.77 0.763 0.771 0.766 0.747 / 0.002 0.771 / 0.002
500 0.61 0.601 0.61 0.599 0.602 0.615 / 0.015 0.602 / 0.003

q

0.1 0.787 0.787 0.772 0.789 0.786 0.783 / 0 0.787 / 0.004
0.3 0.788 0.777 0.765 0.773 0.784 0.783 / 0 0.782 / 0.002
0.5 0.783 0.772 0.77 0.761 0.757 0.784 / 0.002 0.801 / 0
0.7 0.65 0.637 0.657 0.639 0.65 0.642 / 0.008 0.649 / 0.006
0.9 0.566 0.542 0.545 0.542 0.548 0.546 / 0.001 0.55 / 0.007

Table 4.5: Comparison of accuracy with baseline and ASR by an increasing proportion
of malicious clients (ξ ≥ 0.5), #clients n and non-iid degree q , where
FMNIST is used. The results under targeted attacks are in the form of
testing accuracy / ASR".

In Figures 4.3 and 4.4, we present the comparison of testing accuracy among
baseline, semi-honest and malicious groups under targeted attacks and ASR between
the groups under untargeted attacks. In addition, we also give the experimental
results by varying proportion of malicious clients (ξ≥ 0.5), #clients n and non-iid
degree q in Tables 4.5 and 4.6. We see that the results are consistent with the
analysis in Section 4.5.1: the untargeted attacks nearly have no impact on the
accuracy of the final model (only slightly decreasing the speed of convergence).
Since GA may directly upload noise, it can be easily detected from the beginning
of the training to the end, resulting in the same convergence as the baseline. For
LFA, Krum, Trim, and AA Attacks, MUDGUARD is also difficult to distinguish between
semi-honest and malicious clients at the beginning. Thus, the speed of convergence
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Attacks Baseline GA LFA Krum Trim AA BA EA

ξ

0.5 0.573 0.57 0.574 0.557 0.562 0.568 / 0.006 0.572 / 0.007 0.571 / 0.019
0.6 0.562 0.559 0.559 0.547 0.534 0.521 / 0.011 0.567 / 0 0.568 / 0.03
0.7 0.54 0.52 0.506 0.513 0.515 0.531 / 0.011 0.524 / 0 0.531 / 0.031
0.8 0.519 0.508 0.489 0.494 0.488 0.482 / 0.003 0.52 / 0.004 0.501 / 0.05
0.9 0.489 0.492 0.474 0.45 0.483 0.475 / 0.006 0.484 / 0.008 0.478 / 0.059

n

10 0.677 0.672 0.668 0.665 0.668 0.658 / 0 0.659 / 0.001 0.66 / 0.037
50 0.641 0.637 0.635 0.653 0.634 0.639 / 0 0.647 / 0.001 0.641 / 0.068

100 0.562 0.559 0.559 0.547 0.534 0.521 / 0.011 0.567 / 0 0.568 / 0.03
200 0.46 0.453 0.474 0.457 0.45 0.468 / 0.003 0.446 / 0 0.458 / 0.028
500 0.27 0.26 0.254 0.274 0.252 0.276 / 0.004 0.262 / 0 0.242 / 0

q

0.1 0.573 0.574 0.566 0.562 0.554 0.555 / 0 0.572 / 0.001 0.558 / 0.058
0.3 0.567 0.567 0.556 0.535 0.553 0.561 / 0 0.569 / 0 0.543 / 0.064
0.5 0.562 0.559 0.559 0.547 0.534 0.521 / 0.011 0.567 / 0 0.568 / 0.03
0.7 0.426 0.417 0.394 0.435 0.424 0.44 / 0.013 0.41 / 0.004 0.429 / 0.015
0.9 0.229 0.227 0.216 0.224 0.229 0.219 / 0.024 0.217 / 0.013 0.214 / 0.018

Table 4.6: Comparison of accuracy with baseline and ASR by an increasing proportion
of malicious clients (ξ ≥ 0.5), #clients n and non-iid degree q , where
CIFAR-10 is used. The results under targeted attacks are in the form of
testing accuracy / ASR".

is slightly decreased. The main difference is that: LeNet achieves around 78% in
FMNIST, while ResNet-18 provides approx. 56% accuracy in CIFAR-10.

We also provide comparisons with the state-of-the-art Byzantine-robust methods
in Figure 4.5 and 4.6 on FMNIST and CIFAR-10 respectively. Similar to Figure 4.7,
under the malicious majority of untargeted attacks, the testing accuracies of FLTrust,
MUDGUARD, and weights-MUDGUARD are maintained at the same level of the baseline.
Under the targeted attacks, FLTrust, MUDGUARD, and weights-MUDGUARD can restrain
ASR to about 0%-10%. For more detailed explanations, please refer to Section 4.5.1.

Impact of the proportion of malicious clients. We evaluate testing accuracy and
ASR when the proportion of malicious clients ξ≥ 0.5. In Tables 4.4, 4.5, and 4.6, we
can see that all accuracy results show a slightly downward trend with the increase of
ξ in three datasets. For the baseline, the accuracy on average drops 0.008, 0.057, and
0.084 in MNIST, FMNIST, and CIFAR-10, respectively. Under GA, AA, BA, and EA, this
kind of decline is on par with the baseline, whether in MNIST (0.003-0.009), FMNIST
(0.059-0.66), or CIFAR-10 (0.078-0.093). Under the LFA, Krum, and Trim attacks,
affected by the slow convergence and fluctuation, the testing accuracy of MUDGUARD
also declines a bit more than the baseline, which is 0.012-0.028, 0.035-0.055, and
0.089-0.107 in MNIST, FMINST, and CIFAR-10, respectively. Recall that malicious
clients hold a portion of the benign dataset but do not contribute to the global
model (note this equals to the case where the portion of the benign dataset is
missing). From this perspective, the accuracy should be related to the number of
semi-honest clients, where the max accuracy we achieve could correspond to the
case when the clients are all semi-honest. Beyond the accuracy, the ASR of EA
has an upward trend while the number of malicious clients is increasing, rising by
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(a) Gaussian Attack (b) LF Attack (c) Krum Attack (d) Trim Attack

(e) Adaptive Attack (f) Backdoor Attack

Figure 4.3: Comparison of testing accuracy among baseline, semi-honest, and
malicious groups under targeted attacks (a-e) and ASR between the
groups under untargeted attack (f), where we use LeNet to train FMNIST
by default settings in Table 4.3.

(a) Gaussian Attack (b) LF Attack (c) Krum Attack (d) Trim Attack

(e) Adaptive Attack (f) Backdoor Attack (g) Edge-case Attack

Figure 4.4: Comparison of testing accuracy among baseline, semi-honest, and
malicious groups under targeted attacks (a-e) and ASR between the
groups under untargeted attacks (f-g), where we use ResNet-18 to train
CIFAR-10 by the default settings in Table 4.3.

0.005 and 0.048 in MNIST and FMNIST. Since EA is not perfectly distinguished by
MUDGUARD, the ASR naturally grows with the increase in the number of malicious
clients. In conclusion, MUDGUARD is effective in maintaining accuracy even when the
proportion of malicious clients is ≥ 50%. While there is a slight decline in accuracy in
some cases, it is on par with the baseline and does not significantly affect the overall
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(a) Gaussian Attack (b) LF Attack (c) Krum Attack (d) Trim Attack

(e) Adaptive Attack (f) Backdoor Attack

Figure 4.5: Comparison with Byzantine-robust methods in FMNIST by ξ= 0.1−0.9.

(a) Gaussian Attack (b) LF Attack (c) Krum Attack (d) Trim Attack

(e) Adaptive Attack (f) Backdoor Attack (g) Edge-case Attack

Figure 4.6: Comparison with Byzantine-robust methods in CIFAR-10 by ξ= 0.1−0.9.

performance of the system.
Impact of the total number of clients. Tables 4.4, 4.5 and 4.6, show the comparable
testing accuracy of MUDGUARD under different attacks, as well as ASR of BA and EA
when the total number of clients is set from 10 to 500. We observe that the accuracy
appears to fall whilst the client number is increasing, especially when #clients =
500, it descends by about 0.2, 0.25, and 0.4 in MNIST, FMINST, and CIFAR-10,
respectively. This is caused by a relatively small number of training samples. For
example, in CIFAR-10, each client can only be assigned 100 samples, which does not
capture one minibatch size, resulting in a “bad" performance in terms of testing
accuracy. However, MUDGUARD is not affected by this factor, and it can further defend
against all untargeted attacks to maintain accuracy at the same level as the baseline.
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The ASR of AA and BA are controlled to nearly 0%. Although EA provides a higher
ASR (than AA and BA), it drops to nearly 0 when #clients = 500, which confirms
that its effectiveness relies on how well the model learns. Overall, MUDGUARD can
maintain a high level of accuracy under different attacks and across a range of client
numbers and can effectively defend against untargeted attacks. Even when against EA,
MUDGUARD can reduce its ASR to nearly 0%.

Impact of the degree of non-iid. We further present the testing accuracy and ASR for
the cases where the degree of non-iid ranges from 0.1 to 0.9 in Tables 4.4, 4.5, and 4.6.
We can see that in the presence of attacks, MUDGUARD can still remain at the same
level of performance as the baseline, dropping only 0.018 on average. The largest
decrease is 0.067 when q = 0.5, which happens under the Krum attack on training
LeNet with FMNIST. Note the accuracy and the degree of non-iid show a negative
correlation with/without attacks, which is also in line with the conclusion of [1] that
FedAvg performs not well in the case of heterogeneous data distribution. The ASR
of BA appears to have a slight growth as q ascends in (F)MNIST. This is because,
in the high degree of non-iid, the distances among semi-honest clients also raise.
For targeted attacks like AA and BA, the directions of updates are closer to those of
benign updates than those of untargeted attacks. At the beginning of training, there
are cases when the distances between malicious clients and semi-honest clients are
similar to those between semi-honest clients, making it difficult for MUDGUARD to
capture subtle differences. For the ASR of EA, as concluded in analyzing the impact
of total clients, EA performs poorly when the model’s accuracy is low. As a general
conclusion, MUDGUARD achieves a high Byzantine robustness. Semi-honest clients can
get accurate models, while malicious clients fail to attack but also are unable to get
the models.

Effectiveness of clustering. To investigate the effectiveness of our clustering
approach, we present the impact on True Positives Rate (TPR) and True Negatives
Rate (TNR) under all attacks of ξ= 0.6 in Table 4.7 and compare against the method
of FLAME. The FLAME takes updates as inputs and cosine similarity as a metric for
clustering. Note on the server side, Model Segmentation does not need to identify
which cluster is malicious/semi-honest. We consider false positives to occur if
semi-honest clients are grouped with the malicious. On average, under GA, the
TPR and TNR improve from 0.151 and 0.126 in FLAME to 1 in weights-MUDGUARD,
respectively. Since MUDGUARD is based on SignSGD, only the signs of updates are
taken. Ignoring the magnitude effect, there is a reduction in TPR (an average
reduction of 0.046 as compared to weights-MUDGUARD). Furthermore, TNR does not
drop as we set the appropriate parameters according to Theorem 4.4.1. The same
changes can be captured in the case of LFA: weights-MUDGUARD has an average
increase of 0.3 and 0.324 in TPR and TNR, respectively, as compared to FLAME.
Compared with weights-MUDGUARD, MUDGUARD drops by 0.04 and 0.05. We see that
under other attacks (LFA, Krum, Trim, AA, BA, and EA), TPR and TNR are lower than
the case under GA. Because they launch attacks on either training data or optimizing
poisoned models, all updates at the beginning of training have high similarities,
yielding those updates being clustered together and the cases of misclustering. The
true rates of CIFAR-10 are higher than those of (F)MNIST, because we can set more



4

126 4. TAMING MALICIOUS MAJORITY OF CLIENTS IN FEDERATED LEARNING

ξ=0.6
MNIST FMNIST CIFAR-10

TPR TNR TPR TNR TPR TNR

GA
FLAME 0.821 0.846 0.848 0.847 0.879 0.928

weights-
MUDGUARD 1 1 1 1 1 1

MUDGUARD 0.957 1 0.94 1 0.966 1

LFA
FLAME 0.653 0.612 0.634 0.655 0.742 0.711

weights-
MUDGUARD 0.974 0.987 0.975 0.977 0.98 0.985

MUDGUARD 0.929 0.924 0.927 0.916 0.943 0.967

Krum
FLAME 0.587 0.622 0.521 0.63 0.527 0.578

weights-
MUDGUARD 0.974 0.953 0.973 0.968 0.971 0.966

MUDGUARD 0.916 0.929 0.96 0.933 0.967 0.959

Trim
FLAME 0.691 0.679 0.699 0.664 0.646 0.615

weights-
MUDGUARD 0.976 0.964 0.975 0.965 0.973 0.988

MUDGUARD 0.938 0.944 0.927 0.913 0.964 0.958

AA
FLAME 0.591 0.573 0.612 0.625 0.766 0.719

weights-
MUDGUARD 0.998 0.982 0.99 0.982 0.984 0.982

MUDGUARD 0.971 0.943 0.941 0.935 0.943 0.96

BA
FLAME 0.777 0.763 0.794 0.83 0.856 0.897

weights-
MUDGUARD 0.957 0.969 0.965 0.97 0.963 0.979

MUDGUARD 0.936 0.928 0.926 0.931 0.947 0.928

EA
FLAME 0.313 0.32 _ _ 0.248 0.288

weights-
MUDGUARD 0.899 0.903 _ _ 0.893 0.921

MUDGUARD 0.856 0.876 _ _ 0.827 0.83

Table 4.7: Effectiveness of clustering among FLAME method, weights-MUDGUARD,
and MUDGUARD.

rounds to train ResNet-18. After the model converges, the true rates reach almost
100%. Thence, MUDGUARD obtains more correct clusters.

From the above analysis, we conclude that TNR and TPR are related to the number
of training rounds, attack type, and the values of updates. Because MUDGUARD
groups high similarity updates into one cluster and does not need to identify
malicious/semi-honest clusters, the performance of clustering is less affected by the
proportion of malicious clients. Similar results, like Table 4.7, can be captured even
in the case when ξ>0.6. Through Figure 4.2, Table 4.7, and the above discussion, we
state that although TNR and TPR are affected to a certain extent by binary SS, from
the view of testing accuracy and ASR, MUDGUARD achieves higher TPR and TNR than
FLAME.
Robustness comparison against other methods. We present a comparison among
MUDGUARD and SOTA methods (FLTrust, FLAME, Zeno++, and EIFFeL) in terms of
robustness, as shown in Figure 4.7, where MNIST is used. Several Byzantine-robust
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FL systems can easily and directly apply to EIFFeL. We select the two of them
(please refer to EIFFeL [12]) for comparison, namely FLTrust and Zeno++. For
brevity, we refer to them as EIFFeL-FLtrust and EIFFeL-Zeno++ hereafter. To
demonstrate the advantages of MUDGUARD (based on SignSGD), we also compare its
robustness with both SignSGD and FedAvg w/o defense. To investigate the impact
of the cryptographic tools on testing accuracy and ASR, we also compare MUDGUARD
with weights-MUDGUARD. One may see that MUDGUARD, countering the case of the
malicious majority on the client side, does outperform most existing approaches.

In Figure 4.7a-d, the accuracy of (weights-)MUDGUARD and EIFFeL-(FLTrust/Zeno++)
can be maintained at the same level as the baseline (about 0.97). Due to the impacts
of misclustering, weights-MUDGUARD has a 0.02 accuracy gap with EIFFeL-FLTrust.
MUDGUARD (with DP noise) commits a roughly 0.01 accuracy loss as compared
to weights-MUDGUARD. The accuracy of others decreases with the increase in
malicious clients, especially when ξ ≥ 0.5, the accuracy drops abruptly to the
same level of FedAvg without defense. For the ASR of AA and BA, apart from
EIFFeL-(FLTrust/Zeno++), MUDGUARD and weights-MUDGUARD, all the remaining
methods suddenly increase to 1 at ξ=0.4/0.5. Since EA has better attack ability (than
AA and BA), weights-MUDGUARD and MUDGUARD suffer from a nearly 0.08 gap to
EIFFeL-FLTrust. The ASR of others can raise from ξ= 0.1 and finally reach 1.0 at
ξ= 0.5. SignSGD only limits the magnitude of malicious updates rather than filtering
them out. Still, it can provide a certain level of defense (Figure 4.7) when there is a
low malicious proportion (ξ=0.1-0.2) (compared to FedAvg having an average of 0.3
higher testing accuracy under untargeted attacks, and an average lower ASR of 0.4
under targeted attacks). As the number of malicious clients rises, its robustness drop
to the level of FedAvg w/o defense.

FLAME indicates that a small-size cluster should be a malicious group. Thus, it is
easy to confirm malicious clients via clustering. In the case of the malicious majority,
it is hard to identify the malicious/semi-honest via group size. FLTrust assumes
that before training, an honest server collects and trains on a small dataset. In each
round, the server takes the updates trained by this small dataset as the root of trust.
The “trusted" results are then compared to the updates sent by the clients. If the
cosine similarity between them is too small, the updates will be filtered out. With
this approach, the accuracy of the global model remains equivalent to that of the
baseline. We state that MUDGUARD is on par with FLTrust, but it does not suffer from
the restriction that the servers need to collect an auxiliary dataset ahead of training.
We also see that when the proportion of malicious clients rises, the accuracy of
MUDGUARD shows a slight decline. When clients upload their updates, MUDGUARD can
only aggregate them with similar directions. If there is only a small percentage of
semi-honest clients in the system, we naturally have an incomplete training set,
causing a loss in accuracy. Note the same trends as those in MNIST can be seen in
FMNIST (Figure 4.5) and CIFAR-10 (Figure 4.6).

Impact of λ on Adaptive Attack. Figure 4.8 shows how the ASR varies in semi-honest
and malicious groups when we adapt BA to MUDGUARD, where (F)MNIST, CIFAR-10
and default settings in Table 4.3 are used. In MNIST (Figure 4.8a), the ASR of the
semi-honest group remains at a low level (nearly 0%) while that of the malicious
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(a) Gaussian Attack (b) LF Attack (c) Krum Attack (d) Trim Attack

(e) Adaptive Attack (f) Backdoor Attack (g) Edge-case Attack

Figure 4.7: Comparison with Byzantine-robust methods by ξ= 0.1−0.9.

group raises from 0.23 to 1 as λ grows from 0.1 to 0.3. This is so because when the
value of λ is low, the malicious clients using AA more focus on evading filtering
(i.e., inducing a drop in clustering accuracy). Even if malicious clients are grouped
with semi-honest clients, they cannot produce practical attack effectiveness. When
the value of λ gradually increases, the malicious clients will focus more on attack
performance. In this way, MUDGUARD will easily distinguish the malicious from the
semi-honest. It thus can resist AA. Note the experimental results with FMNIST and
CIFAR-10 (Figure 4.8b and c) share the same trend with MNIST (Figure 4.8a).

4.5.2. EVALUATION ON OVERHEADS

Threat Model
Server-side Client-side

Semi-honest Malicious Minority Semi-honest Malicious Majority

Traning Model LeNet ResNet-18 LeNet ResNet-18 LeNet ResNet-18 LeNet ResNet-18

Runtime(Second) 0.43±0.07/1.3±0.12 1.28±0.25/3.15±0.31 4.54±0.84/14.41±1.49 24.03±2.83/70.74±2.83 14.33±0.74 23.71±3.45 14.56±1.61 23.93 ±4.31
Communication Costs (MB) 16.20/53.46 34.82/314.45 873.23/2776.38 5151.18/15572.68 16.34 758.48 16.34 758.48

Table 4.8: Comparison of overheads among different threat models over LeNet
& ResNet-18. The results on the server side are in the form of
"optimized/unoptimized".

We conduct overheads assessment together with the evaluation of accuracy. The
overheads presented in Table 4.8 capture the runtime and communication costs
incurred by the implemented cryptographic tools on the server side and model
training on the client side. Recall that we propose an optimization in Figure 4.1
(Section 4.4). We present the average overheads of each round of training so as
to illustrate the optimized and unoptimized results in terms of different training
models and honest/malicious contexts on the server side. We use LeNet and ResNet
as models, and the overheads are related to their dimensionality (instead of the
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(a) MNIST (b) FMNIST (c) CIFAR-10

Figure 4.8: Impact of λ on Adaptive Attack, where backdoor attack and default
settings are used.

training data).
Runtime. In general, we see that providing robustness in the malicious context
should require more runtime than in the semi-honest. This is because extra
operations for verification are taken, e.g., using HHF to verify whether a received
aggregation is correct. The unoptimized ResNet-18 takes 3.15s per round in the
semi-honest context while costing 70.74s (approx. an increase of 22 times) in the
malicious minority. ResNet-18 has more model parameters than LeNet, leading to
extra computational operations on cryptographic tools, which can be seen, in the
malicious context, 70.74s v.s. 14.41s. By binary SS and polynomial transformation,
Table 4.8 shows that the runtime of LeNet and ResNet-18 are reduced by 68.75%
(4.54s) and 66.05% (24.03s), respectively, under malicious-minority servers.
Communication costs. Similar to runtime, malicious-minority servers consume
a considerable amount of communication cost compared to semi-honest ones.
Table 4.8 shows that after optimization, the communication costs drop to 33% in the
malicious minority and 10.83% in the semi-honest with ResNet-18. In the worse
case, we consume 15,572.68MB bandwidth per round under malicious minority, but
we optimize the cost to 5,151.18MB. In the semi-honest context, LeNet achieves
the best performance, requiring 16MB with optimization, which is 30.19% of the
unoptimized cost (53.46MB).

Under the same contexts, we present the overheads of the client side for FL
training in Table 4.8. Note the use of advanced FL techniques, such as those outlined
in [61, 62], can be employed to enhance computing and communication efficiency
in MUDGUARD. Since applying those is straightforward, we will not go into further
detail on this matter.

4.6. DISCUSSION
Boosting Accuracy. Intuitively, CIFAR-10 is more difficult to train than (F)MNIST.
SignSGD [43] achieves 90% accuracy with centralized learning. The reasons for the
accuracy drop in FL are (1) the number of clients: when the number increases, the
amount of data allocated to a client becomes smaller, and the local model is more
prone to overfitting; (2) Data heterogeneity: a larger degree of non-iid leads to less
information being available for the local model to learn, which harms accuracy; (3)
Malicious clients: malicious clients taking a part of the training data can be filtered
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out by MUDGUARD. This is equivalent to discarding that part of the training data.
Additional improvements in accuracy could be obtained by using different models,
e.g., ViT [63], or by performing hyperparameters grid search for FL, etc.

Comparison of Overheads with FLAME. Intuitively, systems that use clustering, like
FLAME [10], could experience efficiency problem if left without proper optimization.
In our design, MPC impacts three main phases: computation of CosM, L2 distance,
and element-wise comparison. The 1st stage is the most computationally expensive.
We, therefore, focus on its optimization. After the optimization, the servers avoid
using “heavy" tools, like HE and Beavers multiplication, to calculate cosine so
that communication and computational overheads are naturally reduced. Therefore,
MUDGUARD has much lighter complexity than FLAME.

Note that FLAME uses a 2-party semi-honest MPC scheme which is very similar
to the semi-honest situation in our design (Table 4.8). Our optimized version of
MUDGUARD is less computationally and communicationally complex than FLAME. In
MUDGUARD, CosM is calculated by doing XOR locally on servers, and the matrix size
reduces from the number of clients × the number of model updates (n ×d) to
n ×n after calculation. Then this n ×n matrix is used to calculate the pairwise-L2

distance (where only multiplication is involved). In FLAME, directly calculating cosine
similarity requires multiplication, division, and the square root of the n ×d matrix,
which are relatively intensive, expensive operations in MPC. The fact that FLAME’s
code is not publicly available prevents a code/implementation-based comparison.

We followed state-of-the-art Byzantine-robust FL [9]’s default setting on the client
number (number = 100). Table 4.8 shows overheads (the runtime and communication
costs) on the server side are acceptable; in particular, only 0.4s and 16 MB are
required with LeNet in the semi-honest case.

Defending Against Other Attacks. In the experiments, we consider SOTA (un)targeted
attacks. We say that interested readers may use other attacks to test MUDGUARD, in
which Byzantine-robustness could not be seriously affected. We take the Distributed
Backdoor Attack (DBA) [4] as an example. DBA decomposes a global trigger into
several pieces distributed to local clients. It, however, yields significant changes to
some dimensions of updates to maintain the ASR of the backdoor task. Since the
cosine distance between malicious and benign updates are distinguishable, MUDGUARD
can still work well under DBA. Note another attack, Little Is Enough [64], have not
been considered in this work because it requires attackers to have knowledge of the
gradients of semi-honest clients, which violates privacy preservation.

Advantages of Adjusted Cosine Similarity. As shown in Figure 4.9, we present
an example of the calculation of adjusted cosine similarity. It is clear to see that
adjusted cosine similarity is able to capture the magnitudes and directions of updates
by transferring updates to adjusted updates. Although m1 does not have too many
differences in directions (i.e., m1 will be clustered with h1 and h2), its differences
with h1 and h2 in magnitudes can be easily captured by CosM. Furthermore, due to
non-iid, the (h1, h2) and (h3, h4) will be clustered into two groups if cosine distance
is applied. However, by subtracting mean updates, this influence can be reduced.

We also show the experimental results in Figure 4.10, where FMNIST is used under
BA and the number of clients is set to 10 (the first six are benign clients, the rest are
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Figure 4.9: An example of calculation of adjusted cosine similarity

malicious clients). The rest of the default settings follow Table 4.3. From Figure 4.9,
we can see that if only cosine distance is calculated, honest updates will be classified
as noise due to the influence of non-iid. The adjusted cosine similarity weakens
this effect (Figure 4.9b). Calculating the L2 distance again will make the distinction
between the two groups more obvious (Figure 4.9c).

(a) Pairwise cosine distance

(b) Pairwise adjusted cosine distance (CosM)

(c) Pairwise L2 distance for CosM

Figure 4.10: Calculation results of pairwise distance.

Furthermore, we provide a comparison when MUDGUARD uses cosine similarity and
adjusted cosine similarity for clustering in Figure 4.11. It is clear to see that the
testing accuracy of MUDGUARD with cosine similarity abruptly goes down when the
model approaches convergence. On the contrary, this does not happen in MUDGUARD
with adjusted cosine similarity. The detailed explanation is given in Section 4.4.2.
Dynamic Attacks. Recall that MUDGUARD can perform well in terms of testing
accuracy under the assumption that malicious clients consistently perform one type
of attack (e.g., GA) throughout the whole training period. It can also perform well
if we allow malicious clients to perform different attacks on the epochs, e.g., GA
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Figure 4.11: Comparison of MUDGUARD with cosine similarity and adjusted cosine
similarity under GA.

to the first 10 epochs and then Krum attacks to the remaining epochs. We notice
that all the attacks (we consider in this work) except GA may require several epochs
of training (as a buffer) to produce attack effects. But these buffer epochs can
boost MUDGUARD’s clustering performance. This is so because the clustering ability
is enhanced with the increase of training rounds. On the other hand, the TNR and
TPR (of the clustering) could be relatively low in these epochs. Some malicious
clients can be clustered into a semi-honest group, but this will not seriously affect
the accuracy performance of the model.

One may think malicious clients are allowed to perform all the attacks in a single
epoch. But so far, it is unknown how to group those attacks together friendly and
meanwhile maximize their attack effects. In practice, the attacks may deliver an
update in different directions, and further, they may even yield influence on each
other. For example, GA could easily destroy the convergence of BA. We say that it
is an interesting open problem to consider launching GA, LFA, Krum, Trim, and AA
attacks together in an epoch to evaluate the accuracy and ARS.
Varying Clients Subsampling Rate. We assert that MUDGUARD can perform well
under different clients’ subsampling rates. This benefits from the proposed Model
Segmentation that can resist malicious-majority clients. Imagine that in the context
of an honest majority (e.g., 40 out of 100 are malicious), if the subsampling rate is
set relatively low (e.g., 10%), we eventually have a malicious majority case in one
training epoch with a high probability. Our experimental results have demonstrated
that MUDGUARD can still achieve Byzantine-robustness under a low subsampling rate.
Learning Rate and Local Epoch. They are subtle parameters that decide the
performance of FL training. A low learning rate can slow down the speed of
convergence, and on the other hand, a high rate hinders the model’s convergence,
harming accuracy. As for the local epoch, in the case of iid, if carefully increasing
the number of epochs, we can make the model converge fast. But under a large
degree of non-iid (e.g., q=0.5), the increase of epoch leads to updates in different
directions, making the FedAvg algorithm invalid [1]. In this work, we set these
two parameters according to the recommendations given in [1, 43]. Exploring their
impacts on training is orthogonal to the main focus of this work.
Privacy-preserving DBSCAN. This is one of the core parts we used to build
MUDGUARD. It can apply to other real-world domains, e.g., anomaly detection and
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encrypted traffic analytics, where data should be clustered securely. But we note that
the current MUDGUARD with optimization may not scale well in these applications. We
did the optimization for the sake of efficiency by using SignSGD and binary secret
sharing, which cannot support precise floating-point arithmetic.
Test Datasets. We notice that the EA is not applicable for FMINST since the research
work [27] did not provide a backdoor dataset. We leave this as an open problem.
Based on the performance of MUDGUARD on MNIST and CIFAR-10, we claim that even
in FMNIST, the ASR of EA stays low, which is consistent with our main conclusion.

In the experiments, we conduct three image datasets (MNIST, FMNIST, and CIFAR-
10). We claim that MUDGUARD can be further used to capture the Byzantine-robust
and privacy-preserving features of the models trained on text and speech datasets,
where the text dataset for the next-word prediction task can require Recurrent Neural
Networks (RNNs). To train these datasets, we can also use weights or gradients to
update the models (in the context of FL). If the models or datasets are poisoned
(by malicious clients), malicious updates have differences in updates directions from
benign ones. Then we can use MUDGUARD to protect benign clients. We could use
other types of datasets during training, but this will not affect our conclusions on
Byzantine robustness and privacy preservation.
Limitations. Using weights as updates. To provide cost-effective secure computations,
the proposed MUDGUARD only implements the update method by SignSGD. If
we use weights as updates, the secret shares sent to the servers will be in
floating-point format. In this case, we will have to downgrade the design to the
unoptimized MUDGUARD in Table 4.8, which could cause a considerable amount of
both communication costs and runtime. An interesting future work could be to
propose a more lightweight (than the current design) and secure MPC framework for
MUDGUARD.

Performance under EA. Although MUDGUARD does achieve good performance in
terms of accuracy and (to some extent) efficiency, under the EA, MUDGUARD’s ASR
cannot be eventually reduced to nearly 0%. In future work, we will improve the TNR
and TPR of the clustering algorithm so as to recognize subtle differences between
malicious and semi-honest clients.

4.7. CONCLUSION
We propose a novel Byzantine-robust and privacy-preserving FL system. To defend
against malicious majority clients, we introduce a new approach called Model
Segmentation and realize it using a modified DBSCAN algorithm in which we
improve the accuracy of clustering by using pairwise cosine similarity. Leveraging
cryptographic tools and DP, our design enables training to be performed correctly
without breaching privacy. Our experimental results demonstrate that the proposed
protocol effectively deals with various malicious settings for both the server and client
sides and outperforms most existing solutions. Our protocols introduce reasonable
overheads, which we decrease by at least 3× via appropriate optimizations.
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5
DISCUSSION

Since the advent of Federated Learning (FL), its proprieties of privacy and security
have attracted the attention of both academia and industry. In the last couple of
years, FL has become one of the exciting developments where academia and industry
jointly initiate real-life applications and implementations of cutting-edge technology.

Notwithstanding the interests and great efforts, FL is still a new and evolving
technology, and there are numerous challenges that need to be overcome. To name
a few, privacy, security, practicality, fairness, ethics, and convergence aspects with
their manifold sub-challenges can be mentioned. Among the research challenges,
we investigate three crucial ones for the long-term functionality of FL, which are
privacy, practicality, and security aspects.

FL has been at the center of research on distributed machine learning systems as
it is the first commonly accepted paradigm for legal, strategic, or economic reasons.
Beyond that, many real-world applications have utilized FL, such as self-driving cars,
digital health, and smart manufacturing. Therefore, our research and improvements
in FL can further promote the development of FL in real-world applications.

In this chapter, we present our findings together with their limitations and
potential future works. We addressed challenges listed in Section 1.2 and the
research questions introduced in Section 4.3.

5.1. PRACTICALITY OF PRIVACY-PRESERVING FL
In this section, we explain the first three research questions that are related to the
practicality of privacy-preserving FL and our solutions given in Chapter 2 and 3.
Firstly, we investigate the design of a Homomorphic Encryption (HE)-based FL
system without a TTP. Secondly, we focus on the inefficient calculations brought by
HE and propose a solution that is compatible with horizontal FL.

5.1.1. TTP
The first problem we investigate in Chapter 2 is:
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Q1: What developments and considerations are involved in designing a homomorphic
encryption-based federated learning system without relying on a trusted third party?

HE’s ability [1–3] to perform computations on ciphertext without the need for
decryption has undoubtedly positioned it as a key player in safeguarding the privacy
of clients and their datasets in FL [4] systems. The concept of encrypting model
updates before transmission, allowing secure aggregation on the server without
compromising individual data, is a powerful privacy-preserving approach.

However, the existing HE-based FL systems [5–8] reveal a significant drawback -
reliance on a TTP for key generation and distribution. This dependence introduces
complexities and potential vulnerabilities. For example, the compromise of the TTP
threatens the confidentiality of the entire system. Therefore, this realization has
prompted a critical examination of the current state of privacy-preserving FL and
the pressing need for more resilient solutions.

In our work, by introducing a threshold encryption system, federated key
generation, and model quantization techniques, we get rid of the conventional
reliance on TTP for key pair generation. Our approach, allowing collaborative key
generation between the server and clients and avoiding single-point failure, serves
as a cornerstone for building a fully decentralized FL. The use of additive discrete
logarithm-based encryption for secure model aggregation, along with verifiable secret
sharing, reinforces the robustness of our system against tampering and adversarial
actions.

The elimination of TTP in HE-based FL not only inspires a decentralized trend
but also brings numerous positive influences to FL. For example, it can contribute
to flexibility. Clients having control over their encryption keys means they have
ownership and control over the security of their data. This empowerment allows
them to participate in the FL scheme at any time, as they have the right to decide
when their data is processed. Moreover, without a central authority managing
the keys, clients can have greater confidence that their data will be used only as
agreed since the data owner is only them and the privacy of their information is
better protected. Clients also may perceive more concrete ownership of the FL
process. This perception can contribute to a positive view of the overall FL. From
the perspective of jurisdictions, privacy regulations may require explicit consent and
control over personal data. Allowing participants to manage their own encryption
keys aligns with these regulations, making it easier for FL initiatives to comply with
legal requirements and encouraging clients to participate.

For example, imagine a Vehicle-to-Everything (V2X) scenario using HE-based
FL without TTP [9]. Initially, the cars generate their encryption keys locally or
collaboratively with other vehicles. This process ensures that the keys are created
without the involvement of the TTP. When a car wants to join or exit the FL system,
it does not need to communicate with the TTP for key generation or distribution.
Instead, it can work with other vehicles that are already part of the FL network to
generate the required keys. Since the TTP is not involved in every key exchange or
communication event, the risk of a TTP compromise affecting the security of the
entire FL system is reduced. Each vehicle has more control over its encryption keys,
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enhancing the overall security and privacy of the FL process.

LIMITATIONS AND FUTURE WORK

Notwithstanding our successful resolution of the TTP problem in the context of
FL using HE, it is imperative to underscore an additional inherent limitation
in extant HE-based FL paradigms. Specifically, these designs exhibit suboptimal
scalability, particularly when confronted with deep learning models characterized by
a prodigious volume of parameters. This inherent constraint is primarily attributable
to the computational demands entailed by the encryption and decryption procedures
applied to the entirety of trainable model parameters. Furthermore, it is
essential to acknowledge that the transmission of the fully encrypted model across
communication channels engenders a considerable strain on the available network
resources. Therefore, the main direction of our future work will focus on how to
reduce the computational and communication complexity of FL based on encryption
schemes.

5.1.2. EFFICIENT CRYPTOGRAPHIC CALCULATIONS

The second problem we analyze in Chapter 2 is the following:

Q2: How to optimize cryptographic calculations to reduce computational and
communication overheads?

The exploration of preserving the privacy of FL with HE is undoubtedly an
appealing research line, but the efficiency challenges highlighted in the integration
of HE should be mentioned [10]. The computational and communication overheads
posed by HE [11] underscores the need for innovative solutions to balance the
privacy-preserving benefits of encryption with the efficiency constraints of FL
systems.

In our work, we introduced an innovative approach to enhance the efficiency
of HE-based FL. By employing ternary quantization of local model parameters,
we introduced an approximate model aggregation method. The concept of
independent ciphertext and quantized gradient aggregation, coupled with selective
distribution based on predefined thresholds, strategically minimizes computational
and communication overheads. We also proposed the notion of distributed partial
decryption, offering another approach for optimizing HE in the context of FL. This
enables subsequent research to realize that the optimization of HE-based FL extends
beyond refining the encryption algorithm itself. It necessitates a comprehensive
exploration of additional optimization approaches, like reduction of input size and
minimizing the execution of operations on the ciphertext.

Improving the efficiency of FL can further promote scalability across heterogeneous
devices in FL. Diverse workloads often involve heterogeneous devices with varying
computational capabilities. Efficient HE enables FL to scale across a wide range
of devices, from resource-constrained IoT hubs to more powerful servers. Besides,
the flexibility in handling different model complexities is important for adapting to
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the specific requirements of diverse tasks. Boosting the efficiency of HE-based FL
allows a flexible selection of training models between different devices, since diverse
data structures may require models with varying levels of computational resources.
Efficient HE allows the training of more complex models without significantly
increasing the computational burden.

LIMITATIONS AND FUTURE WORK

Although our framework demonstrates notable performance characteristics in the
realm of HE-based FL, there is a critical inflection point that manifests when the
encoding length descends below eight bits. At this juncture, the model’s learning
performance exhibits a conspicuous deterioration. Consequently, we believe that
the encoding length needs to be more than 11 bits, but this necessitates the use
of a brute-force recovery mechanism (decryption). While a greater encoding length
undeniably augments coding precision, it concurrently engenders a substantial
increase in decryption time. Our empirical analyses corroborate that global models
trained with a maximum of fifteen bits can still sustain performance levels akin
to non-encrypted FL paradigms, all while maintaining an acceptable recovery time.
It is noteworthy that this observation is underpinned by the propensity of model
gradients to asymptotically approach zero as the global model converges, thus
ameliorating the decryption time incurred during brute force recovery procedures.

Nevertheless, it is incumbent upon us to recognize that the applicability of our
proposed methodology is contingent upon the choice of the underlying model
architecture. In contexts featuring smaller models, such as logistic regression, the
inherent trade-off between model performance and computation time for plaintext
recovery assumes greater prominence. Smaller models necessitate significantly
longer encoding lengths, exceeding fifteen bits, thereby rendering brute force-based
recovery unfeasible. In light of this, our future research endeavors are poised to
concentrate on the development of a distributed additive HE framework devoid of
recovery requirements, thereby rendering it amenable for seamless integration into
FL systems.

5.1.3. DECENTRALIZED LABELS IN VFL
In Chapter 3, we address the following question:

Q3: How to preserve the privacy of clients in the vertical federated learning system if
the labels are decentralized?

The context of privacy-preserving VFL presents a compelling journey into the
intricacies of handling distributed label scenarios, a crucial but often overlooked
practical challenge in the existing methodologies [12–17]. Specifically, this research
line primarily assumes central control over label management, neglecting the
demands of real-world scenarios where labels are distributed across clients. This
necessitates the development of an innovative approach, and our endeavor focuses
on secure and efficient training of XGBoost models [18] within a VFL framework.
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The foundation of our solution lies in an elegant combination of secure aggregation
techniques rooted in cryptographic protocols, prominently featuring Diffie-Hellman
key exchange [19] and Key Derivation Function (KDF) [20]. Drawing inspiration
from the Global Data Privacy (GDP) [21] framework, our approach aimes not only to
address the label distribution challenge but also to preserve the privacy and integrity
of both labels and features. Our work represents an advancement in the realm
of privacy-preserving VFL, refining data distribution types to decentralized training
labels.

Theoretical considerations are a pivotal aspect of our research, as we conducted a
comprehensive security analysis within the semi-honest setting. This analysis aimed
to illuminate the robustness and privacy-preserving capabilities of our solution.
We also delved into the practical issue of client collusion, specifically addressing
scenarios where a subset of clients conspires to subvert the integrity of the system.

Through this research, a notable impact is the stimulation of a critical rethinking
of data distribution in VFL. Decentralized label settings make FL applicable to
a wider range of scenarios. In real-world applications, data is often distributed
across different entities, and each entity may have control over its own labels. By
accommodating decentralized labels, FL becomes more versatile and suitable for
diverse use cases, including healthcare, finance, and IoT. The successful integration
of cryptographic protocols and the careful balance between security and efficiency
in our approach underscore the viability of privacy-preserving VFL methodologies.
One may gain a profound understanding of the complexities associated with
privacy-preserving VFL and the critical importance of addressing real-world label
distribution challenges.

Furthermore, it can contribute to improved robustness of model training. In
traditional VFL with a single client holding all the training labels, the system is
susceptible to disruptions if that client experiences issues or becomes unavailable.
Decentralizing labels means that the failure or unavailability of one client has a
smaller impact since the labels are distributed across multiple entities. This reduces
the likelihood of a single point of failure and enhances the overall robustness of the
FL system. Overall, this work leads a new trend for future research based on VFL.

LIMITATIONS AND FUTURE WORK

Differential privacy, while crucial for preserving the privacy of participants in FL,
introduces a critical challenge that impacts the quality and utility of the federated
model. This challenge stems from the necessity of adding noise either to the data
or the model parameters. It is introduced to obfuscate individual contributions and
protect participant privacy. However, a consequential side effect of this noise is
its potential to distort the underlying, genuine information encoded in the data or
model parameters. Consequently, the accuracy and overall utility of the federated
model are significantly diminished. This delicate balance between safeguarding
privacy and maintaining utility necessitates a nuanced examination of the trade-off
inherent in the application of differential privacy within the context of FL.

For instance, empirical research has uncovered the tangible impact of differential
privacy on the accuracy of FL models [22]. Notably, the introduction of differential
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privacy mechanisms resulted in a substantial reduction in accuracy when compared
to models trained on plain, non-private data. In the realm of image classification
using convolutional neural networks, these mechanisms were found to decrease
accuracy by a noteworthy margin. Similarly, in the domain of natural language
processing, specifically with the employment of recurrent neural networks, the
application of differential privacy led to a significant accuracy reduction. These
empirical findings provide compelling evidence that differential privacy indeed
carries a substantial and potentially detrimental impact on the accuracy of FL.

The need for addressing this intricate balance between privacy preservation
and utility enhancement in FL underscores the critical importance of developing
advanced techniques that can mitigate the adverse effects of differential privacy
while still ensuring robust privacy protection. Consequently, it is imperative to
explore innovative methods and strategies that strike a more harmonious equilibrium
between privacy and utility in the context of FL. Such endeavors will undoubtedly
contribute to the advancement of privacy-preserving machine learning paradigms
and their real-world applicability.

One way to improve the accuracy of FL is denoising [23]. One example of denoising
is to use of a Bayesian approach with compensation to reconstruct the neural
network weights from their noisy manifestations. This approach can outperform
the maximum likelihood estimation in terms of inference accuracy and robustness.
It can also handle different types of noise, such as additive white Gaussian noise,
quantization noise, or mixed. Therefore, in the future, exploring the effectiveness of
the denoising technique is vital for privacy-preserving VFL.

5.2. IMPROVING BYZANTINE ROBUSTNESS OF FL
In Chapter 4, we address the following question:

Q4: How to capture the Byzantine robustness of honest clients in federated learning if
the majority of clients are malicious?

Reflecting on the Byzantine-robust FL [24–30], our research delved into the
pervasive challenge of mitigating the impact of malicious clients. Existing methods
often face a critical limitation when dealing with a malicious majority surpassing a
predefined threshold. This vulnerability stems from the susceptibility of conventional
consensus mechanisms to manipulation by Byzantine clients. By introducing the
innovative aggregation strategy "Model Segmentation", we depart from traditional
complex detection algorithms by emphasizing the separation of clients with different
behaviors. This not only enhances the FL system’s resilience against attacks but also
simplifies the overall algorithmic complexity.

In addressing the insufficient separation effect of non-iid data distribution
scenarios, we proposed an innovative methodology for updates clustering. By
computing pairwise adjusted cosine similarity, we introduced a preprocessing step
to enhance the accuracy of clustering. This step, seamlessly integrated into the
DBSCAN algorithm [31], proves effective in capturing variations in both directionality
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and magnitude of updates between clients.
Another pivot in this work is the incorporation of cryptographic tools to fortify FL

against malicious intent. The use of cryptographic tools, including the Homomorphic
Hash Function (HHF) [32], safeguards updates on the server side and ensures correct
aggregations received by all clients. Optimization strategies such as binary secret
sharing and polynomial transformation further enhanced the efficiency of secure
computations on the server side.

Our approach focuses on preemptive measures and leverages clustering without
the need for auxiliary datasets. By abandoning the reliance on complex detection
algorithms and proposing a strategic approach, our work paves the way for exploring
new ideas and methodologies for defending against the malicious majority of clients.

Apart from these, our work can provide extra benefits like adaptability to adaptive
attacks. The field of adversarial attacks and malicious strategies is dynamic, with
new threats emerging over time. A system that can defend against a malicious
majority is more adaptable to evolving threats, ensuring its long-term viability in the
face of changing attack vectors and strategies.

For example, consider a financial scenario [33] and clients want to join without
concerns about the behavior of other competing entities. Specifically, a financial
institution decides to participate in the FL system to enhance its predictive models
for fraud detection or risk assessment. Since there is intense competition in the
financial sector, this financial institution is aware that some competitors may have
malicious intentions. These competitors might try to manipulate or disrupt (i.e., They
might try to inject backdoors, manipulate model updates, or train with poisoning
data) the FL process to gain a competitive advantage. The beauty of our scheme is
its ability to automatically adapt to the percentage of malicious clients for defense.
Therefore, in this case, the new joining financial institution can confidently train
the mode with the FL system without being overly concerned about the potential
malicious actions of its competitors. The server overseeing the FL process also does
not need to adopt complex client detection methods. This simplifies the server’s role
and reduces the computational overhead associated with monitoring and detecting
malicious behaviors.

LIMITATIONS AND FUTURE WORK

In our work, which has been devised to optimize secure computations within FL,
a deliberate strategy has been employed to ensure cost-effectiveness. This strategy
centers on the exclusive implementation of the SignSGD [34] update method. This
judicious choice significantly ameliorates the computational and communicative
exigencies associated with secure aggregation. However, a pivotal consideration
arises in the context of utilizing weights as updates within the paradigm of our work.

Upon contemplation of employing weights as updates, a fundamental shift occurs in
the format of secret shares transmitted to the servers. Specifically, these secret shares
will manifest in floating-point notation, deviating from the original architectural
underpinnings of our work. Such a deviation carries notable ramifications, potentially
necessitating a regressive transition to an unoptimized instantiation of our work.
This transition entails a substantial outlay of communication costs and runtime,
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thus undermining the cardinal tenets of cost-effectiveness that are intrinsic to our
framework.

As an avenue for prospective scholarly inquiry, it is pertinent to explore the
prospects of engineering a more lightweight alternative, in contrast to our current
work, while upholding the rigorous security postulates. This investigative trajectory
can culminate in the development of a secure Multi-Party Computation (MPC) [35,
36] framework characterized by an equilibrium between computational efficiency
and security within our work’s context.

While our work exhibits commendable performance in terms of accuracy and,
to a certain extent, efficiency, it is incumbent upon the scholarly discourse to
acknowledge its comportment in the crucible of edge-case attack [28] scenarios.
Regrettably, under the edge-case attack, the Attack Success Rate (ASR) of our
work does not consistently converge toward a near-zero threshold. This empirical
observation underscores a focal area for enhancement within our framework.

In forthcoming scholarly pursuits, our focus shall be concentrated on the
refinement of both the True Negative Rate (TNR) and True Positive Rate (TPR)
pertaining to the clustering algorithm integrated into our current architecture. By
fortifying the discriminatory acumen of the clustering algorithm, thereby enabling
it to elucidate nuanced distinctions between malevolent and semi-honest clients,
we aspire to fortify our work’s resilience in terms of edge-case attack incursions.
This trajectory of inquiry aligns harmoniously with our overarching commitment
to iteratively enhance the robustness and security of our work in response to the
mutable adversarial landscape endemic to the FL milieu.

5.3. CONCLUSION

In conclusion, Federated Learning (FL) has emerged as a groundbreaking approach
to machine learning, enabling collaborative model training without the need to share
sensitive data, initially introduced by Google in 2016. FL has garnered substantial
attention across academia and industry for its potential to revolutionize fields such
as healthcare, finance, the Internet of Things, and edge computing. However,
this innovative paradigm presents multifaceted challenges that demand innovative
solutions. Firstly, while FL aims to safeguard client data privacy, potential leaks
through model parameters or gradients remain a concern. Secondly, it is questionable
in terms of practicality to bring FL in the real-world scenario. For example, the
substantial communication overhead, exacerbated when employing cryptographic
tools, and the computational burden imposed on FL must be mitigated. Thirdly, the
presence of unpredictable or malicious clients can threaten the accuracy and security
of the global model. In essence, these three challenges are essential prerequisites for
achieving the functionality and practicality of a secure FL ecosystem. This thesis has
focused on four pivotal challenges: privacy preservation, practicality, and Byzantine
robustness.

Our work can be divided into two parts: the practicality of privacy-preserving FL
and improving the Byzantine robustness of FL. Firstly, we proposed an innovative
threshold encryption system that integrates federated key generation and model
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quantization techniques, eliminating the need for a Trusted Third Party (TTP) and
enhancing resilience against clients who tamper information. Secondly, we introduce
a novel approach involving ternary quantization and approximate model aggregation,
significantly reducing computational and communication costs associated with
threshold decryption. Thirdly, we present a secure and efficient training framework
for XGBoost models in VFL, rooted in cryptographic protocols and evaluated for
security and practicality. Lastly, we introduce "Model Segmentation", a proactive
aggregation strategy designed to counter poisoning attacks in Byzantine-robust
FL, which streamlines FL operations and enhances security. Each contribution
is underpinned by rigorous empirical evaluations and, where applicable, formal
security proofs within the Universal Composability (UC) framework.
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