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Chapter 1 
INTRODUCTION 
 
1.1. Digital watermarking and its challenges 

 
The use of digital media as the primary means by which to distribute 

material such as images, audio material and video is becoming more and more 
common [1]. Digital media offers ease of use for both users and those involved 
in the creation of the material. For example, digital audio players are generally 
more compact than their analog counterparts. Also, such devices can offer extra 
capabilities, by, for example, serving as a removable storage device, which 
further increases their appeal. For content creators, digital media offers a more 
convenient way of creating and manipulating images, audio material and video. 
Another advantage of digital media is the higher quality they offer compared to 
analog media. Additionally, the quality of the material stored in a digital 
medium will not decay with time as is the case with analog storage. Finally, 
with the advent of broadband internet use for home users, digital media offer a 
new distribution model for content providers. Using this model, the content 
provider distributes its product digitally through the internet, thus reducing the 
overhead costs related to product duplication and distribution. Recent examples 
of such models are Apple’s iTunes and Napster 2.0.  

 
However, all the advantages offered by digital media can also be 

abused, for example by unauthorized reproduction or alteration of the digital 
content. The ease with which digital content can be reproduced without loss of 
quality forms a potential loss of revenue for content providers. The availability 
of broadband internet to many users also facilitates the illegal distribution of 
copyrighted material. This is evident in the current popularity of various peer-
to-peer file-sharing networks on the internet. The ease with which digital image 
or video can be manipulated or altered also gives rise to another concern. For 
example, someone can alter or create faked images in order to damage the 
reputation of a person or institution. Another example is the alteration of 
images or video (for example, taken from a security camera) which are being 
used as evidence in a court of law. The alteration can influence the court’s 
decision in favor of one or more of the parties involved in the case. 

 
Digital watermarking techniques were born in reaction to the 

aforementioned misuse of digital media. For example, a content provider which 
wants to prevent unauthorized use of its copyrighted material can embed a 
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watermark carrying a copyright notice in the material. When an unauthorized 
copy of the material is found, the content provider can assert its copyright using 
the embedded watermark. Alternatively, a content provider may want to prevent 
this unauthorized reproduction in the first place. In this scenario, the embedded 
watermark carries information that will disable copying operations in compliant 
devices. In another scenario, a content provider may want to track down the 
parties responsible for unauthorized copying. In this case, the content provider 
can embed a unique watermark associated with each user. When an 
unauthorized copy is found, the content provider can then track down and 
prosecute the user whose watermark is found in the illegal copies. Finally, 
watermarks can also be used to ensure the authenticity of a digital image or 
video. Take, for example, the image depicted in Figure 1.1. Is this a real picture 
or is this a tampered (“doctored”) picture? For this scenario, the watermark can 
be designed such that it can identify the portions of the image that have been 
tampered with. A user receiving a tampered image will then be able to detect 
the tampering as well as identify the parts of the image that have been tampered 
with.  

 

 
Figure 1.1. Is this an authentic image of Mars?  
Or has it been “doctored”? (Picture © NASA) 

 
Digital watermarking systems, in particular watermarked data, may 

encounter a lot of types of distortions collectively known as attacks. Such  
attacks may either be intentional or non-intentional. A non-intentional attack 
refers to common operations performed by a legitimate user without any 
intention to actually harm the watermark. For example, a user may want to 
resize an image to fit the desktop of his/her computer. Another example is a 
user who compresses an image to save disk-space. On the other hand, 
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intentional attacks are expressly performed to remove the watermark or disable 
watermark detection. Such attacks are usually very elaborate and may employ 
advanced techniques. Robustness against attacks, among other things, is thus a 
very important factor to be taken into account in the design of a watermarking 
system.  
   
1.2. Focus of the thesis 
 
 As suggested by its title, this thesis discusses mainly the challenges of 
dealing with geometric distortion in image and video watermarking. However, 
this is not the only topic explored in this thesis. Another topic that we also  
discuss is the challenge of embedding watermarks in video data compressed at a 
low bit-rate. 
 
1.2.1. Low bit-rate compression and watermarking 
 
 Data compression schemes work by removing redundancy from the 
data. The part of the data that is considered to be redundant is usually the part 
that does not affect the perceptual quality of the data. The lower the 
compression bit-rate, the larger the amount of redundant data that will have to 
be removed. This part of the data is the logical place to embed the watermark 
for perceptibility reasons. Thus the removal of this part of the host data by the 
compression scheme may not leave enough space in which the watermark can 
be embedded. Therefore, the watermarking system must be carefully designed 
in order to maintain watermark imperceptibility, while achieving acceptable 
watermark capacity and robustness. One possible solution is to reduce the 
energy of the watermark signal while maintaining watermark capacity. The 
consequence of this solution is that the robustness of the watermark will suffer. 
Alternatively, the watermark signal can be spread more widely over the host 
data. The consequence of this solution is that the watermark capacity will be 
reduced. In some cases, both solutions may have to be implemented, as in the 
case of the watermarking algorithm discussed in this thesis.  
 
1.2.2. The geometric distortion problem 
 

Geometric distortion is one of the most challenging problems in 
watermarking. Geometric distortion can happen due to the deliberate 
application of a geometric transformation or operation to a (digital) image or 
video. Such an operation can be simple, for example, rotating an image by a 
few degrees. It can also be very sophisticated, for example, by applying 
complex combinations of several geometric transformations. Figure 1.2 shows 
an example of geometric distortion caused by applying geometric 
transformations to an image. Geometric distortion can also happen as a by-
product of other operations performed on the image or video. For example, the 
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process of scanning or printing an image can introduce geometric distortions 
due to the imperfections of the scanner or printer. Another example is the 
Digital Cinema Attack [7]. In this scenario, an attacker uses a hand-held video 
camera to record a movie being shown in a digital cinema. The overhead view 
of this scenario is shown in Figure 1.3. In this example, we see that the attacker 
is recording the movie from an angle α relative to the center of the cinema 
screen.  
 

   
Figure 1.2. Example of geometric distortion:  

(a) Original image and (b) Image distorted using random bending 
 
Due to the relative position of the camera to the movie screen, the 

recorded video will suffer geometric distortion. This is shown in Figure 1.4. In 
this example, we assume that the attacker is making the recording from a 
position to the lower left side of the cinema screen. Figure 1.4(a) shows the 
original image shown on the cinema screen while Figure 1.4(b) shows the 
image recorded by the attacker. If the attacker wants to sell this recording, he 
can remove the annoying black portions of Figure 1.4(b) by cropping them, 
giving him the image shown in Figure 1.4(c). 

 
Figure 1.3. Digital Cinema Attack 

 

Cinema Screen

Hand-held camera

α 
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(a) 

 
(b) 

 
(c) 

Figure 1.4. Results of the Digital Cinema Attack: 
(a) Original image, (b) Recorded image and (c) Cropped recorded image 

© 1999 Warner Brothers  
 
Geometric distortion forms a problem for the designers of watermarking 

systems because it is relatively easy to perform while it is difficult to combat. 
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Geometric distortion can prevent the proper detection of the watermark while 
preserving the perceptual quality of the attacked data. For example, the 
geometric distortion applied to the image shown in Figure 1.2(a) can prevent 
watermark detection in most watermarking systems. However, the attacked 
image, shown in Figure 1.2(b), still has very high perceptual quality. In other 
words, most people will not find the distortion objectionable. Many people may 
not even notice the distortion at all. 

 
Geometric distortion in watermarking systems has two aspects, namely 

the watermark desynchronization aspect and the perceptual quality aspect. 
These two aspects are briefly discussed as follows: 

 
• Watermark desynchronization aspect. Geometric distortion does not 

actually remove the embedded watermark. It prevents the detection of the 
watermark by disturbing the synchronization between the watermark and 
the watermark detector. Applying geometric operations to the watermarked 
data is equivalent to changing the sampling grid of the watermark and thus 
making it different from the sampling grid of the watermark detector. Upon 
detection, the detector will fail to detect the watermark properly, not 
because the watermark has been removed, but because the detector can no 
longer find the location of the watermark. This aspect of geometric 
distortion has been widely studied in the literature. Research in this area has 
resulted in watermarking schemes that are invariant to geometric distortions 
or schemes that can resynchronize the watermark after a geometric 
distortion. Watermark resynchronization can be done either by using the 
host data as a reference or by inserting synchronization patterns into the 
watermark. The first approach is called a non-blind approach while the 
second approach is referred to as a blind approach. In this thesis, we discuss 
the design of a non-blind approach to resynchronize a watermark after a 
geometric distortion. We also propose another approach to the 
synchronization problem by designing a watermarking system for image 
and video that does not rely on strict spatial synchronization between the 
watermark and the watermark detector. This system is based on structured 
noise patterns and offers a better robustness to geometric distortions 
compared to conventional noise-based watermarking systems. 

• Perceptual quality aspect. This aspect of the geometric distortion problem 
is a challenging issue that has not been widely studied in the literature. The 
main consequence of this fact is that we do not have any suitable objective 
system to measure the perceptual impact of geometric distortion on a human 
observer. Existing objective quality measurement schemes, for example the 
widely used PSNR measurement, are not suitable for measuring the impact 
of geometric distortion on the perceptual quality of the image or video. For 
example, the PSNR value between the original image shown in Figure 
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1.3(a) and the distorted image shown in Figure 1.3(b) is very low, but most 
people will not find the distortion disturbing. The lack of objective 
measurement systems gives us two problems. In the first place, we cannot 
determine the level of distortion that humans can still tolerate. If we could 
determine this level, we would be able to optimize the performance of the 
watermarking system so that the watermark would survive this level of 
distortion. The second problem is that without an objective quality 
measurement system, it is very difficult to compare the robustness of 
various watermarking systems against geometric distortions. With an 
objective quality measurement system, we would be able to set a common 
standard with which to measure the performance of the watermarking 
systems. In this thesis, we propose a new system that enables us to perform 
objective perceptual quality measurement on geometrically distorted 
images.     

 
1.3. Overview of Chapters 
 
 Most chapters in this thesis have been previously published as 
conference papers. Consequently, a slight overlap between chapters, especially 
in the introductory sections of the chapters, is inevitable.  
 

In Chapter 2, we present a more detailed discussion of the basic 
principles of watermarking techniques. In this chapter, we will also discuss the 
various attacks typically encountered by watermarking systems.  

 
In Chapter 3, we discuss the challenge of embedding watermarks into 

low bit-rate video data by presenting our Extended Differential Energy 
Watermarking (XDEW) algorithm [2].  

 
In Chapter 4, we discuss the first aspect of the geometric distortion 

problem, namely the watermarking desynchronization aspect. In this chapter, 
we propose two approaches to deal with watermark desynchronization. The first 
approach is a watermarking algorithm for image and video that does not require 
strict spatial synchronization [3]. The second approach we present in this 
chapter is a watermarking system that allows us to re-synchronize the 
embedded watermark after a geometric distortion is applied [4].  

 
In Chapters 5 and 6, we discuss the second aspect of the geometric 

distortion problem, namely the perceptual quality measurement of 
geometrically distorted images. In Chapter 5, we propose a numerical 
measurement system to characterize geometric distortions applied to images 
[5]. In this chapter, we discuss the hypothesis underlying the measurement 
algorithm and the details of its implementation. In Chapter 6, we describe the 
design and implementation of a user test to obtain subjective perceptual quality 
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scores of geometrically distorted images [6]. The results of this test are further 
used to validate the measurement scheme presented in Chapter 5.  

 
Finally, in Chapter 7, we summarize our results and provide our 

conclusions. Furthermore, we also provide an outlook for future research in this 
area. 
 
1.4. Main contributions 
 
 The main contributions of this thesis can be summarized as follows: 

• A watermarking scheme, the XDEW, suitable for MPEG1 and 
MPEG2 video encoded in low bit-rate (128 – 768 kbps) has been 
proposed and evaluated [2]. 

• A new approach to the watermark synchronization aspect of the 
geometric distortion problem has been presented. This new approach 
removes the need for strict spatial synchronization between the 
watermark and the detector by using colored noise patterns [3]. This 
scheme has higher robustness to geometric distortion compared to 
classic noise-based watermarking systems. 

• A new complexity-scalable strategy to re-synchronize the watermark 
after a geometric attack has been presented [4]. Implementation of 
this strategy on top of an existing watermarking scheme can increase 
its robustness to geometric distortion. 

• A new algorithm to provide a numerical measure to characterize the 
geometric distortion applied to an image has been presented [5]. To 
validate the algorithm, a user test to study human perception of 
geometric distortion in images has been implemented and analyzed 
[6]. The results show that the new algorithm has a much better 
correspondence to human perception of geometric distortion in 
images compared to the commonly used PSNR measurement. 
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Chapter 2 
DIGITAL WATERMARKING: 
PRINCIPLES AND ATTACKS 
 
2.1. Introduction 
 

This chapter provides a short overview of the basic principles of digital 
watermarking, its applications and a summary of the basic requirements that a 
watermarking scheme should fulfill. To illustrate the implementation of the 
basic principles of digital watermarking, this chapter also provides a simple 
image watermarking scheme as an example. Finally, attacks are an ever-present 
concern for the designers and users of digital watermarking schemes. These 
attacks can take various forms and are targeted at various components of a 
digital watermarking system. In this chapter, we present a classification of 
attacks commonly encountered by current digital watermarking systems. 
 

This chapter is organized as follows. In Section 2.2, we present the basic 
principles of digital watermarking. In Section 2.3, we present some applications 
of digital watermarking. The requirements of a digital watermarking scheme is 
presented in Section 2.4. A simple example of a digital image watermarking 
technique is presented in Section 2.5. In Section 2.6, we present common digital 
watermarking attacks. In Section 2.7, we present the information-theoretical 
approach to digital watermarking. Finally, in Section 2.8, we present our 
concluding remarks. 
 
2.2. Digital watermarking: Basic principles 
 
 Digital watermarking is a method of embedding information into digital 
data, for example, digital images, audio or video data. The data into which the 
watermark is to be embedded is usually referred to as the host data. The 
information is embedded into the host data by performing alterations to the 
content of the host data. A generic watermarking system is shown in Figure 2.1. 
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Figure 2.1. Generic watermarking system 

 
 The information to be embedded, m, is encoded and embedded into the 
host data I by the watermark embedder. A secret key K can be used if 
necessary, so that unauthorized parties cannot read the embedded message. 
After the embedding process, we have the watermarked data Iw. For visual data 
(images, video or documents) the embedded information can be embedded such 
that humans can see it without requiring any special processing of the 
watermarked data Iw. Such a watermark is called a visible watermark. 
Alternatively, when the watermark is designed so that humans cannot see it, we 
have an invisible watermark. In most cases, an invisible watermark is more 
preferable than a visible one since a visible watermark is considered to interfere 
with the content of the host data. 
 
 The watermarked data then goes through a transmission channel that 
may introduce distortions due to attacks, producing the received data Iw’. The 
watermark can be designed to be able to withstand these distortions; such a 
watermark is called a robust watermark. Alternatively, some scenarios may 
require that any distortions applied to the watermarked data should destroy the 
watermark. In this case we have a fragile watermark. The watermarked data is 
then passed to the watermark detector. The detector declares the presence or 
absence of the watermark or extracts the (probably distorted) embedded 
message m’. If the detector requires the presence of the original host data I in 
the watermark detection process, we call the watermarking system a non-blind 
watermarking system. Alternatively, if the original host data is not needed for 
watermark detection we have a blind watermarking system. Generally, the 
watermark will not be removed from the watermarked data after detection. 
However, an emerging class of watermarking techniques called reversible 
watermarking [1] is designed to enable removal of the watermark. In effect, this 
technique allows retrieval of the original data I. 
  

In this thesis, we restrict our discussion to a particular class of 
watermarking systems in which the embedded data is designed to be 
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imperceptible, the watermark is required to be robust to attacks and the 
watermark is not removed after detection. We call this a robust invisible 
watermark. 
 
2.3. Digital watermarking: Applications 
 
 In the past decade, there has been an explosion in the use and 
distribution of digital multimedia data. Personal computers with (broadband) 
internet connections have become more and more common, and have made the 
distribution of multimedia data and applications much easier and faster. 
Electronic commerce applications and on-line services are rapidly being 
developed. Even the analog home audio and video equipment are rapidly being 
replaced by digital successors. As a result, digital mass recording devices for 
multimedia data are entering today’s consumer market. Digital data has many 
advantages over analog data. However, it also opens the possibility of 
unrestricted duplication and manipulation of copyrighted material.  
 

To prevent the unauthorized access or manipulation of digital 
multimedia data, two complementary techniques can be used, namely  
encryption and watermarking [2]. Encryption techniques can be used to protect 
digital data during the transmission from the sender to the receiver [3]. 
However, after the receiver has received and decrypted the data, the data is 
identical to the original data and no longer protected. Watermarking techniques 
can complement encryption by embedding a secret imperceptible signal, a 
watermark, directly into the original data in such a way that it always remains 
present. Such a watermark can, for instance, be used for the following purposes 
[7]: 
 
• Copyright protection: A watermark is used to carry copyright information 

as a proof in case of a copyright or ownership dispute.  
• Fingerprinting: Unique information, directly coupled to user identification, 

is embedded in the data as a watermark. In case of copyright violation, this 
watermark can be used to trace the source of illegal copies. 

• Copy protection: A watermark is used to carry information prohibiting 
copying of protected data on compliant hardware.  

• Broadcast monitoring: A watermark is embedded into data, for example, 
commercials or copyrighted materials [4], to allow automatic monitoring of 
the data in the broadcasting channels. The results of this monitoring can be 
used for royalty or copyright protection purposes.  
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 Digital watermarking can also be used in other applications not dealing 
with copy or copyright protection:  
 
• Indexing: Indexing of video mail, where comments can be embedded in the 

video content; indexing of movies and news items, where markers and 
comments can be inserted that can be used by search engines. 

• Medical safety: Embedding the date and the patient’s name in medical 
images could be a useful safety measure. 

• Data embedding: Watermarking techniques can be used to embed 
messages in the data. The data can be secret or private, but it can also be 
public. An example of the latter is Digimarc’s Smart Images [5]. 

• Error detection: In [8], the authors presented an error detection scheme in 
video coding using a fragile watermark. The authors show that this 
proposed scheme performs significantly better than a syntax-based error 
detection scheme. Similar approaches are also presented in [23, 24]. 

• Compression: The authors in [9] use watermarking techniques to improve 
the compression rate of color images. In this scheme, the color information 
of the image is embedded as a watermark into the luminance data to reduce 
the data storage requirements. 

 
2.4. Digital watermarking: Requirements 
 
 The exact requirements of a watermarking system strongly depend on 
the particular applications in which it will be deployed. However, the general 
requirements for a robust, invisible watermark can be summarized as follows 
[7]: 
 
• Imperceptibility: In most applications, the watermarking algorithm must 

embed the watermark such that this does not affect the quality of the 
underlying host data. The watermark is truly imperceptible if humans 
cannot distinguish the host data from the watermarked data. However, since 
users of watermarked data normally do not have access to the host data, 
they cannot perform this comparison. Therefore, it is sufficient that the 
modifications in the watermarked data go unnoticed as long as the data are 
not compared with the original data. 

• Capacity: The term watermark capacity (payload) refers to the amount of 
information that can be stored in a watermark. In other words, the capacity 
refers to the amount of information carried by the message m (see Figure 
2.1). The payload requirements for a watermarking system depend on the 
specific application. For copy protection purposes, a payload of one bit is 
usually sufficient. For other applications, up to 70 bits [6] of information 
may have to be embedded in the host data, the image, video-frame or audio 
fragment. Another important concept regarding watermark payload for 
digital audio and video data is watermark granularity. Watermark 
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granularity represents how much data is needed to embed one unit of 
message m. Using the example above, the message m contains 70 bits. The 
watermarking system could be designed such that m is embedded in a single 
frame of video. Alternatively, it can also be spread over 100 frames of video 
(or similarly for audio, m could be embedded in a one-second fragment or 
spread over five seconds of audio data). Spreading the message in this way 
may not be desirable because when someone takes just 80 frames from the 
watermarked video, the message m can no longer be completely retrieved. 
For digital videos, one second of video is considered to be the smallest 
copyrighted entity. Therefore, the watermark information has to be 
embedded in a less than one one-second fragment of the video stream 
(approximately 25 frames). Again using the example above, the watermark 
bit rate should then be more than 70 bits/s. 

• Robustness: A robust watermark should remain in the host data, even if the 
quality of the host data is degraded (i.e., attacked) either intentionally or 
unintentionally. A more detailed discussion of attacks on watermarking 
systems is provided in Section 2.6. 

 
These requirements are not independent of each other and in the 

implementation of watermarking system trade-offs have to be made between 
the requirements. For example, increasing the payload of the watermark usually 
means that the robustness or the imperceptibility of the watermark will have to 
be reduced. 
 
2.5. Digital watermarking: An example 
 

To illustrate how a watermarking system works, we present in this 
section an image watermarking technique as an example. More examples of 
state-of-the-art watermarking techniques are presented in [7] and [10].  

 
The watermarking scheme presented in this section is one of the oldest 

and most straightforward ways to add a watermark to an image. In this method, 
the watermark is embedded spatially as a pseudo-random noise pattern to the 
luminance values of the host image pixels (see Figure 2.2). Many methods are 
based on this principle [7, 10]. In general, the pseudo-random noise pattern 
consists of the integers {-1,0,1}; however, floating-point numbers can also be 
used. The pattern is generated based on a key using, for instance, seeds, linear 
shift registers or randomly shuffled binary images. The only constraints are that 
the energy in the pattern is more or less uniformly distributed and that the 
pattern is not correlated with the host image content. To create the watermarked 
image IW(x,y) the pseudo-random pattern W(x,y) is multiplied by a small gain 
factor k and added to the host image I(x,y). In other words, we have  
 

IW(x,y)= I(x,y)+ k ⋅ W(x,y)     (2.1) 
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W(x,y): Pseudo Random Pattern {-1,0,1}

k
Multiply by gain

factor k

I(x,y) IW(x,y)

 
Figure 2.2. Watermark embedding procedure. 
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Figure 2.3 Correlation values for a pseudo-random pattern  

generated with seed=10 correlated with pseudo-random patterns 
generated with other seeds 

 
To detect a watermark in a possibly watermarked image I’W(x,y) we 

calculate the correlation between the image I’W(x,y) and the pseudorandom 
noise pattern W(x,y). Pseudo-random patterns generated using different keys 
have very low correlation with each other. Therefore, during the detection 
process the correlation value will be very high for a pseudo random pattern 
generated with the correct key, and would be very low otherwise. As an 
example, we have watermarked the Lena image by adding a pseudo-random 
pattern generated using seed = 10 to the image. Figure 2.3 shows the correlation 
values between some pseudo-random patterns generated using seeds varying 
between 0 and 15 and the watermarked image. It can be seen that the correlation 
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when the correct seed (10) is used is very high, while the correlation when the 
wrong seeds are used is very low. 

 
During the detection process, it is common to set a threshold T to decide 

whether the watermark is detected or not. If the correlation exceeds a certain 
threshold T the watermark detector determines that image I’W(x,y) contains 
watermark W(x,y). Otherwise, the watermark detector determines that the image 
is not watermarked.  
 

The watermarking method described above carries a payload of only 1 
bit. This method can be extended to increase the capacity of the watermark. The 
most straightforward way to do this is by dividing the image into multiple 
blocks. A pseudo-random pattern is then added to each image block, each 
representing one bit of the watermark data. This extension is presented for 
example in [11].  
 

The techniques described above can also be applied to transformed 
image data. Each transform domain has it own advantages and disadvantages. 
For example, the author in [12] used the phase of the Discrete Fourier 
Transform (DFT) to embed a watermark, because the phase is more important 
than the amplitude of the DFT values for the intelligibility of an image. Putting 
a watermark in the most important components of an image improves the 
robustness of the watermark, since tampering with these important image 
components to remove the watermark will severely degrade the quality of the 
image. The second reason to use the phase of the DFT values is that it is well 
known from communication theory that phase modulation often possesses 
superior noise immunity in comparison with amplitude modulation. 
 

The Discrete Cosine Transform (DCT) domain can also be used to 
embed watermarks [7,10]. Using the DCT, an image can easily be split up into 
pseudo frequency bands, so that the watermark can conveniently be embedded 
in the most important middle band frequencies. Furthermore, the sensitivity of 
the human visual system (HVS) to the DCT basis images has been extensively 
studied, which resulted in the recommended JPEG quantization table. These 
results can be used for predicting and minimizing the visual impact of the 
distortion caused by the watermark. Finally, the block-based DCT is widely 
used for image and video compression. By embedding a watermark in the same 
domain as the compression scheme used to process the image (in this case, in 
the DCT domain), we can anticipate lossy compression because we are able to 
anticipate which DCT coefficients will be discarded by the compression 
scheme. Furthermore, we can exploit the DCT decomposition to make real-time 
watermark applications. 
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 Another interesting domain that can be used to embed watermarks in 
images is the Discrete Wavelet Transform (DWT). This transform is very 
attractive, because it can be used as a computationally efficient version of the 
frequency models for the Human Visual System (HVS) [13] to improve 
watermark imperceptibility. For instance, it appears that the human eye is less 
sensitive to noise in high resolution DWT bands and in the DWT bands having 
an orientation of 45° (i.e. HH bands). Furthermore, DWT image and video 
coding, such as embedded zero-tree wavelet (EZW) coding, is included in the 
state-of-the-art image and video compression standards, such as JPEG2000 
[14]. By embedding a watermark in the same domain (DWT domain), we can 
anticipate lossy EZW compression because we can anticipate which DWT 
bands are going to be affected by the compression scheme. Furthermore, we can 
exploit the DWT decomposition to make real-time watermark applications.  
 
2.6. Attacks on digital watermarking systems 
 
 Watermarking systems are susceptible to many kinds of attack. These 
attacks could be performed intentionally or unintentionally. Watermarking 
systems utilized in copy protection or data authentication schemes are 
especially susceptible to intentional attacks. Unintentional attacks usually come 
from common signal processing operations done by legitimate users of the 
watermarked materials, for example a user might want to compress a bitmap 
image using JPEG compression simply to conserve disk space. Intentional 
attacks are usually done by more competent people with more knowledge of 
watermarking systems and more resources to make the attack. The discussion in 
this section is limited to the watermarking system applied to digital images and 
video data. 
  
 The general classification of attacks on watermarking systems is shown 
in Figure 2.4. The distinction between Type I and II attacks is in the target 
which each attack class focuses and is shown in Figure 2.5. Since “Type I” 
attacks operate on the watermarked data, these attacks usually involve some 
signal processing operations. As illustrated in Figure 2.4, this type of attack is 
further divided into two categories. The first category attacks the embedded 
watermark and aims to make a corresponding watermark detector unable to 
detect the embedded watermark. The second category tries to modify or 
otherwise tamper with the data in which the watermark is embedded, without 
destroying the watermark itself. We will call the first category “Type I-A” 
attacks and the second category “Type I-B” attacks. 
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Figure 2.4. General Classification of Watermark Attacks 

 
 “Type II” attacks may be performed without regard of the watermarked 
data or the original (unwatermarked) data. Therefore, a signal processing 
operation might not be needed. Instead, intimate knowledge of programming 
languages, operating systems or hardware is usually needed. This attack is 
usually referred to as “hacking” when it deals with software or “hardware 
tampering” if it deals with hardware.  
 

  
Figure 2.5. Distinction between Type I and Type II attacks 

 
2.6.1. “Type I-A” attacks 
 
 The Type I-A attack category is further divided into 3 sub-categories, 
with their own distinctive characteristics. The authors in [17] divided this 
category into four sub-categories, differentiating between simple and removal 
attacks. However, this author thinks that these two attacks have a nearly 
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identical aim, but a different strategy. Therefore, they are classified as different 
members of the “Removal Attack” sub-category.  
 
2.6.1.1. Removal attacks  

 
The main distinctive characteristic of the Removal Attacks sub-category 

is that they aim to remove or severely reduce the energy of the watermark 
embedded in the host data so that a detector can no longer positively detect it. It 
is further divided into “Simple” and “Analysis” attacks to show the different 
strategies adopted to reach this common goal.   

 
Simple attacks do not involve analysis of the watermarked data in order 

to remove the watermark. A simple attack operates directly on the watermarked 
data and tries to reduce the energy of the watermark signal until it disappears 
from the host data or until it is no longer detectable. Because these attacks 
operate on the watermarked data, both the data and the watermark are 
purposefully degraded during the attack. These attacks rely on the fact that the 
watermark signal is of much lower energy than the host data signal, and 
therefore an attacker hopes that the watermark energy can be reduced beyond 
detection before the quality of the host data is severely degraded. It should be 
noted that the term “simple” in simple attacks stems from the fact that an 
attacker does not try to analyze the watermark embedded in the image/video 
material. It should not be inferred that simple attacks are in fact simple or trivial 
to execute. For example, a decoding and re-encoding process of MPEG video 
material might be an enormous task, demanding high disk and computational 
capacity. Examples of simple attacks include: 

 
• Lossy Compression: Lossy compressions, for example JPEG and MPEG, 

purposefully discard some portions of the image/video data that are deemed 
unimportant. The amount of data removed depends on the quality 
factor/compression factor used. The watermark is usually embedded in this 
unimportant portion of the data in order to give the smallest impact on the 
quality of the watermarked material. Therefore, it could be removed or 
severely impaired during the process. 

• Digital-to-Analog and Analog-to-Digital conversion: Certain watermark-
ing techniques, for example LSB manipulation of the digital data [21], will 
not be able to survive this attack. When the data is converted into an analog 
signal, for example when viewing an MPEG movie, the watermark is lost. 
An attacker could record the movie into an analog video tape, and he will 
get an unwatermarked video. If needed, he could always re-encode the 
unwatermarked video back into a digital format.  

• Transcoding: Watermarks applied to digital video data, for example an 
MPEG stream, might also be removed when the video is re-encoded with a 
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lower bit-rate [21]. The process is similar to re-compressing a JPEG 
compressed image using JPEG compression with a lower quality factor. 

• General filtering: General filtering operations could be used to attack   
watermarked data. Low pass filtering, for example, can be used to remove a 
pseudo-random noise watermark, since the watermark is essentially a high 
frequency noise.  

 
In the other category of removal attacks, namely the “analysis” removal 

attacks, an attacker tries to analyze (using some statistical analysis) the 
watermarked data in order to find (or estimate) the watermark or the host data. 
This information is then used to remove the watermark. These attacks are 
usually quite elaborate and are usually done intentionally. Unlike simple 
attacks, watermark removal using analysis attacks usually does not severely 
affect the quality of the data. Attacks belonging to this category include: 

 
• Non-linear filtering: Using a non-linear filter, an attacker could estimate 

the watermark embedded in an image. This estimate is then used to remove 
the watermark. An example of this attack is the WRS attack [20]. 

• Statistical averaging: In this scenario, an attacker possesses N different 
images (or frames of a video sequence) all embedded with the same 
watermark. By statistically averaging these images/frames, the attacker 
would be able to estimate the watermark applied to them. This information 
is then used to remove the watermark embedded in each individual image or 
video frame. This attack will be particularly successful if the watermark is 
not significantly dependent on each image. 

• Collusion attack: A collusion attack could be seen as the complement of the 
statistical averaging attack mentioned above. In this attack, each member of 
a group of attackers possesses one copy of an image I. However, each 
individual copy is watermarked with different watermarks (or fingerprints). 
By averaging these copies, these attackers would be able to estimate and 
produce a copy of the original, non-watermarked, host data.  

• Embedder/Detector Observation: This approach is different from the 
hacking attack belonging to the “Type II” attacks. In this scenario, the 
attacker possesses the watermark detector device. He then proceeds to 
modify the properties of the watermarked data (changing pixel luminance, 
etc.) and observes how the detector/embedder responds. His objective is to 
find the smallest possible modification to the watermarked data such that 
the watermark detector will fail to detect the presence of the watermark. 
This modification is then applied to all materials watermarked with a 
similar scheme. If the attacker possessed the watermark embedder device, 
for example a DVD player/recorder capable of changing the watermark 
from “copy-once” to “no more copies”, he would be able to observe the data 
before and after the watermark embedding process. He could then compute 
the difference image, which is equal to the watermark embedded. All he 
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need do is pre-distort the unwatermarked material by subtracting this 
difference. If this pre-distorted material is then run through the watermark 
embedder, the result should be approximately identical to the original 
unwatermarked material. 

 
2.6.1.2. Synchronization attacks 
 
 The main characteristic of this class of attacks is that an attacker does 
not attempt to remove the watermark from the watermarked data, but to remove 
the synchronization of the watermark so that it cannot be detected properly by a 
watermark detector. The watermark itself (or a major part thereof) is still 
physically present in the data. As in simple removal attacks, the attacker does 
not have to analyze the watermarked data to identify the watermark. However, 
unlike in a simple removal attack where the energy of the watermarked signal is 
reduced, in synchronization attacks the watermark loses only its 
synchronization with the detector. A synchronization attack is done by 
performing geometric operations to the watermarked data. When these 
operations are performed on the watermarked data spatially, we have spatial 
synchronization attacks. We encounter spatial synchronization attacks in image 
and video watermarking. Examples of spatial synchronization attacks include: 
 
• Geometric transformation. Performing geometrical transformations, for 

example rotation, translation, scaling or slight bending can disturb the 
synchronization of the watermark and the watermark detector. 

• Pixel deletion/substitution: An example of this attack is the removal of a 
row/column of pixels from an image. If the image size is to be preserved, 
another row/column could be duplicated and inserted. This operation 
usually does not give perceptible degradation of the watermarked data. 

• Mosaic attack: A mosaic attack is performed by dividing an image into 
smaller portions. When used in web pages, a browser will reconstruct the 
image with no apparent quality loss or time delay (sometimes loading a 
complete image is slower than reconstructing the pieces). This attack is 
primarily done to prevent web-crawlers designed to check watermarks from 
completing their job because the smaller pieces contain no recognizable 
watermark. It is possible, of course, to embed individual copies of the 
watermark into smaller blocks of the original picture. However, many 
watermarking methods are generally unable to embed watermarks into small 
pieces of image (smaller than 100 × 100 pixels) [22]. Therefore, by dividing 
the original image into blocks smaller than 100 × 100 pixels an attacker can 
prevent the web-crawlers from detecting the watermark.  

 
 On the other hand, when the geometric operations are performed on the 
temporal axis we have a temporal synchronization attack. These types of 
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synchronization attacks are encountered in audio and video watermarking. 
Examples of temporal synchronization attacks include: 
 
• Temporal scaling. Increasing or decreasing the playback speed of audio or 

video data is equivalent to performing a scaling operation on the temporal 
axis. Like spatial scaling, this operation can also disturb the temporal 
synchronization of the watermark and the detector. 

• Sample deletion or duplication. This attack is the temporal equivalent of 
spatially removing rows or columns from an image. In the case of audio  
watermarking, this attack is performed by removing or duplicating audio 
samples. In the case of video watermarking, this attack is performed by 
removing or duplicating video frames. 

 
2.6.1.3. Ambiguity attacks 
 
 One form of ambiguity attack is a scenario in which an attacker tries to 
embed another watermark into watermarked data, thus making it difficult (or 
impossible) to determine the first embedded watermark (and thus the real 
legitimate watermark). One way to do this is simply to insert another watermark 
into already watermarked data. This could be countered by embedding a time-
stamp, or by keeping the original watermarked data as a reference in the event 
of a dispute. A more sophisticated variant of this attack is to claim part of the 
original watermarked data as counterfeit host data and insert a second 
watermark derived from the legitimately watermarked data. For example, 
assume that I is the original, unwatermarked image, W is the legitimate 
watermark, E(I, W) is a function to embed the watermark W into I and IW is the 
watermarked version of I. It has been demonstrated [15] that for some 
watermarking algorithms, an attacker could compute a pattern W’, a counterfeit 
original I’ and a function E’(I’, W’) such that E’(I’, W’) = IW and claim that I’ is 
his original, unwatermarked data and W’ is his watermark, thus creating an 
ownership dispute over IW. This attack will work only on so-called invertible 
watermarking algorithms. A more sophisticated attack that does not impose 
such limitations is discussed in [16]. 
 
 Another form of ambiguity attack is the copy attack, described in [33]. 
In this attack, an attacker copies a valid watermark from watermarked data Iw 
(containing a valid watermark W) and embeds it into another host data, X, 
producing Xw. The attacker can do this without any knowledge of the original 
embedding algorithm or of the key used to embed the original watermark. The 
watermark detector will declare that both Iw and Xw contain the watermark W. 
This attack can lead to an ambiguous situation. For example, the attacker may 
claim that the original owner of the watermark has stolen his data, X, and use 
the copied watermark as proof.  
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2.6.2. “Type I-B” attacks 
 
 This category of attacks is aimed to modify or tamper with the data in 
which the watermark is embedded, without destroying the watermark itself. 
Such an attack is performed, for example, to discredit an institution by 
tampering with material bearing its watermark (for instance, by blurring part of 
the image or changing the color of some area of the image). This might prove 
very disturbing if, for example, the image is going to be used as evidence before 
a court of law. This attack is only effective against robust watermarks and not 
against fragile watermarks or watermarks that are specifically designed to 
detect tampering.  
 
2.6.3. “Type II” attacks  
 
 In “Type II” attacks, an attacker attempts to defeat the watermarking 
system not by attacking the watermarked data. Instead, the attacker performs his 
attacks on the software components or the hardware components of the 
watermarking system. Examples of “Type II” attacks are:  
 
• Software tampering (hacking). If the watermark embedder and detector are 

implemented in software and are widely available, they are especially 
susceptible to these attacks. Attacks of this kind are usually performed as 
follows: an attacker (hacker) obtains the watermark embedder/detector 
software and proceeds to either decompile the software or use debugging 
software to dig deep into the code. The attacker might then be able to find 
the specific portion of the code that generates or detects the watermark. 
Once this is accomplished, this information is used to accomplish the 
attacker’s goal. For example, if the aforementioned attacker found the 
portion of the code used to generate the watermark, he could use this 
information to generate counterfeit watermarks. Alternatively, if he found 
the portion of the code used to check for the presence of a watermark in the 
detector code, he could modify the code to bypass the security scheme 
routine implemented in the detector.  

• Hardware tampering. These attacks are performed on the hardware 
components of the watermarking system, for example a DVD player. Here 
an attacker will actually disassemble the hardware, study the inner workings 
of the hardware and modify it to suit his needs. For example, an attacker can 
alter the circuitry of a DVD player to disable its watermark detection 
capability. 
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2.6.4. Counter measures against watermark attacks 
 
 So far we have discussed some possible forms of attacks against the 
watermarking system. There are some counter measures that could be taken to 
deal with these attacks. Attempts to defeat an attacker should always consider 
that an attacker also has a certain set of criteria when performing the attack. The 
main criteria are the cost-effectiveness of the attack and the distortion caused by 
the attack. Therefore the main goal to defeat watermark attacks is to make the 
attack as difficult as possible or to make the attack degrade the quality of the 
watermarked data as much as possible. 
 
 To deal with simple removal attacks, basically we have to come up with 
a watermarking algorithm that could put a watermark with a higher power into 
the image/video. By properly exploiting HVS properties, a higher watermark 
signal power could be embedded without affecting the visual quality of the 
image/video. A stronger watermark signal means that the watermarked data 
must be degraded more in order to render the watermark undetectable. This 
might not be possible since the resulting image quality might not be acceptable. 
This measure might not work against analysis removal attacks though, 
especially if the attacker can observe the non-watermarked data as well as the 
watermarked data. To combat a collusion attack, a proposed method is to 
embed a watermark that has dynamic and static components [17]. The dynamic 
component varies for each user, and might average to zero when attacked using 
a collusion attack. The static component will not average to zero, and therefore 
will remain present in the attacked image. Furthermore, in [25], a mathematical 
framework of collusion attacks in video watermarking and another robust 
watermarking scheme are described. 
 
 By their nature, synchronization attacks do not actually remove the 
watermark from the watermarked data. One approach to counter this attack is to 
design the watermarking system such that it is invariant to synchronization 
attacks. An example of such a scheme is given in [26]. Another, more popular 
approach is to make the watermark re-synchronizable after an attack. This can 
be achieved by embedding a synchronization pattern into the watermark. 
Examples of this approach are given in [27]. Invariant features of the host data 
can also be used for this purpose [28]. Alternatively, the watermark can also be 
re-synchronized by inverting the geometric distortion using image registration 
techniques. Examples of this approach are presented in [29, 30]. The examples 
discussed above are developed to combat spatial synchronization attacks. 
Similar approaches can also be used to combat temporal synchronization 
attacks. For example, the authors in [31] present a watermarking scheme that 
can recover temporal synchronization by comparing the attacked data to the 
original host data. An alternative approach is presented in [32], in which the 
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temporal synchronization can be recovered blindly, i.e., without relying on the 
presence of the original host data. 
 
 Using secure time-stamping is one possible solution to counter 
ambiguity attacks, and this may be enough against simple re-watermarking 
attacks. A more sophisticated counter measure for more advanced attacks is 
presented in [17, 36]. The best counter measure against copy attacks is to make 
the watermark highly dependent on the unique characteristic of the host data. 
For example, the watermark could carry the hash value of the host data. 
Comparing the hash values computed from the received watermarked data and 
the hash value carried by the watermark is a way of  verifying the validity of the 
watermark. 
 
 Content-tampering could be defeated with watermarking algorithms 
designed to detect not only whether the image/video had been tampered with 
(e.g., by employing a fragile watermark), but also to show where the attacker 
had tampered with the material. Examples of watermarking schemes designed 
to protect data against content tampering are presented in [18, 19].   
 
 “Type II” attacks could be defeated by carefully designing the software 
or hardware components of the watermarking systems. Although there are no 
real guarantees that carefully designed software or hardware will be able to 
defeat a highly skilled and determined attacker, at least a designer should try to 
make the attack harder, and therefore more costly. 
 
2.7. Theoretical approaches to digital watermarking 
 
 The capacity of the watermarking system discussed in the example 
presented in Section 2.5 is very low, namely 1 bit of information per picture. 
This scheme can still be extended to carry more information bits and there are 
also more advanced watermarking techniques that have larger capacities. 
However, in general, the capacities of current watermarking systems are still far 
below the information-theoretical capacity limit [36].  
 
 To deal with this problem, new watermarking approaches based on 
information theory have been proposed. In these approaches, the host data is 
considered as side information, while in most other blind watermarking 
approaches, it is considered as an interfering noise. For example, the scheme 
proposed by Costa gives optimal capacity of a watermarking scheme facing 
Additive White Gaussian Noise (AWGN) attacks [34].  However, this scheme 
involves a random and very large code book. Therefore, this approach cannot 
be implemented as a practical watermarking system. The authors in [34] 
propose a practical implementation of Costa’s idea, called Scalar Costa Scheme 
(SCS), where the random code book is replaced by a structured code book. The 
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capacity of this watermarking scheme is lower than, but closely approaches, the 
theoretical capacity limit. Another approach is based on Quantization Index 
Modulation (QIM) methods which are given in [35]. 
 
 Research on watermark capacity from a game theory point of view has 
also been performed [36, 37, 38]. From a game theory point of view, the 
watermarking problem is seen as a game between the watermark embedder and 
the watermark attacker. The goal of the embedder is to maximize the amount of 
information embedded into the host data, while the goal of the attacker is to 
minimize this amount. The optimal watermark capacity for such a scenario is 
derived in [36]. The authors in [37] also propose another watermarking scheme 
based on the game-theoretical approach.  
 
 One limitation of the watermarking approaches discussed in this section 
is that they are only designed to be robust against a limited class of attacks. The 
class of attacks considered includes only attacks where the distortion incurred to 
the watermarked data can be measured using Mean Squared Error (MSE) 
metric, for example AWGN attacks. Therefore, the schemes are still very 
vulnerable to synchronization attacks.  
 
2.8. Concluding remarks 
 
 In this chapter, we have discussed the basic principles of digital 
watermarking techniques, their application and the requirements that have to be 
fulfilled by a digital watermarking scheme. We have also discussed the 
information-theoretical approaches to digital watermarking. Finally, we 
discussed the attacks that can be encountered by digital watermarking systems. 
These attacks can remove the watermark or render the watermark detector 
unable to detect the watermark. The most challenging attack is the 
synchronization attack, especially the spatial geometric distortion of images and 
video frames. To completely solve this problem, more research still has to be 
performed, not only to increase watermark robustness against 
desynchronization, but also to be able to quantify the effect of this attack on the 
perceptual quality of the attacked data.   



 

 

28 
 
2.9. References 
 
1. J. Fridrich, M. Goljan and R. Du, Invertible authentication, in the 

Proceedings of SPIE: Security and Watermarking of Multimedia Contents 
III, San Jose, CA, 2001 

2. I.J. Cox and M.L. Miller, A review of watermarking and the importance of 
perceptual modeling, in the Proceedings of SPIE: Storage and Retrieval for 
Image and Video Databases V, San Jose, CA, 1997 

3. G.C. Langelaar, Conditional access to television service, Wireless 
Communication, the interactive multimedia CD-ROM, 3rd edition 1999, 
Baltzer Science Publishers, Amsterdam 

4. T. Kalker, G. Depovere, J. Haitsma and M. Maes, A video watermarking 
system for broadcast monitoring, in the Proceedings of SPIE: Security and 
Watermarking of Multimedia Contents, San Jose, CA, 1999 

5. A.M. Alattar, Smart images using Digimarc’s watermarking technology, in 
the Proceedings of SPIE, Security and Watermarking of Multimedia 
Contents II, San Jose, CA, 2000 

6. M. Kutter and F. A. P. Petitcolas, A fair benchmark for image watermarking 
systems, in the Proceedings of SPIE: Security and Watermarking of 
Multimedia Contents, San Jose, CA, 1999 

7. G.C. Langelaar, I. Setyawan and R.L. Lagendijk, Watermarking image and 
video data: A state-of-the-art overview, IEEE Signal Proc. Magazine, Vol. 
17, No. 5, pp. 20-46, September 2000 

8. M. Chen, Y. He and R.L. Lagendijk, Error Detection by Fragile 
Watermarking, in the Proceedings of the 22nd Picture Coding Symposium 
PCS 2001, Seoul, Korea, April 2001 

9. P. Campisi, D. Kundur, D. Hatzinakos and A. Neri, Hiding-based 
Compression for Improved Color Image Coding, in the Proc. of SPIE: 
Security and Watermarking of Multimedia Contents IV, Vol. 4675,          
pp. 230 – 239, San Jose, CA, 2002 

10. I.J. Cox, M.L. Miller and J.A. Bloom, Digital Watermarking, Academic 
Press, London, 2002 

11. A. Hanjalic, G.C. Langelaar, P.M.B. van Roosmalen, J. Biemond and R.L. 
Lagendijk, Image and Video Databases: Restoration, Watermarking and 
Retrieval, Volume 8 of the series Advances in Image Communications, 
Elsevier Science, 2000 

12. J.J.K. Ó Ruanaidh, W.J. Dowling and F.M. Boland, Phase watermarking of 
digital images for copyright protection, in the Proc. of IEEE, ICIP ‘96, Vol. 
III, pp. 239-242, Lausanne, 1996 

13. M. Barni, F. Bartolini, V. Cappellini and A. Piva, Mask building for 
perceptually hiding frequency embedded watermarks, in Proc. of SPIE: 
Security and Watermarking of Multimedia Contents, San Jose, CA, 1999 



 

 

29
14. X.-G. Xia, C.G. Boncelet and G.R. Arce, A multiresolution watermark for 

digital images, in the Proc. of IEEE ICIP ‘97, Santa Barbara, CA, 1997  
15. S. Craver, N. Memon, B.L. Yeo and M. M. Yeung, Can Invisible 

Watermarks Resolve Rightful Ownerships?, IBM Technical Report RC 
20509, 1996. 

16. S. Craver, N. Memon, B.L. Yeo and M. M. Yeung, On the Invertibility of 
Invisible Watermarking Techniques, in the Proc. IEEE ICIP ’97, Vol. I, 
Santa Barbara, CA, pp. 540-543, 1997. 

17. F. Hartung, J.K. Su and B. Girod, Spread Spectrum Watermarking: 
Malicious Attacks and Counter-attacks, Proceedings of SPIE: Security and 
Watermarking of Multimedia Contents, San Jose, CA, 1999. 

18. D. Kundur and D. Hatzinakos, Digital Watermarking for Telltale Tamper 
Proofing and Authentication, Proceedings of the IEEE, Vol. 87, No. 7, July 
1999. 

19. M.U. Celik, G. Sharma, A. Murat Tekalp, E. Saber, Localized Lossless 
Authentication Watermark (LAW), in Proceedings of SPIE, Security and 
Watermarking of Multimedia Contents V, Vol. 5020, pp. 689 – 698, Santa 
Clara, CA, 2003 

20. G.C. Langelaar, R.L. Lagendijk and J. Biemond, Watermark Removal based 
on Non-linear Filtering, ASCI ’98 Conference, Lommel, Belgium, 1998. 

21. G.C. Langelaar, R.L. Lagendijk and J. Biemond, Real-Time Labeling of 
MPEG-2 Compressed Video, Journal of Visual Communication and Image 
Representation, Vol. 9, No. 4, pp. 256-270, 1998. 

22. F.A.P. Petitcolas, R. Anderson and M.G. Kuhn, Attacks on Copyright 
Marking Systems, in Lecture Notes in Computer Science, vol. 1525, D. 
Aucsmith, Ed., Second Workshop on Information Hiding, Portland, OR, 
1998, pp. 218-238. 

23. Y. Hwang, B. Jeon, Error detection in a compressed video using fragile 
watermarking, in Proceedings IEEE, ICME 2002, Vol. I, pp. 129 – 132, 
August 2002 

24. P. Campisi, G. Giunta, A. Neri, Object-based Quality of Service Assessment 
using Semi-fragile Tracing Watermarking in MPEG4 Video Cellular 
Devices, in Proceedings of IEEE, ICIP 2002, Vol. II, pp. 881 – 884, 
Rochester, NY, 2002 

25. K. Su, D. Kundur, D. Hatzinakos, A novel approach to collusion-resistant 
video watermarking, in Proceedings of SPIE, Security and Watermarking of 
Multimedia Contents IV, Vol. 4675, pp. 491 – 502, San Jose, CA, 2002 

26. J.J.K. Ó Ruanaidh, T. Pun, Rotation, scale and translation invariant digital 
image watermarking, in Proceedings of IEEE, ICIP 1997, Vol. I,              
pp. 536 – 539, Santa Barbara, CA, 1997  

27. F. Deguillaume, S. Voloshynovskiy, T. Pun, A method for the estimation 
and recovering from general affine transforms in digital watermarking 
applications, in Proceedings of SPIE, Security and Watermarking of 
Multimedia Contents IV, Vol. 4675, pp. 313 – 322, San Jose, CA, 2002 



 

 

30 
28. P. Bas, J.-M. Chassery and B. Macq, Geometrically invariant watermarking 

using feature points, IEEE Trans. on Image Proc., Vol. 11, No. 9,             
pp. 1014 – 1028, September 2002. 

29. P. Loo, and N. Kingsbury, Motion estimation based registration of 
geometrically distorted images for watermark recovery, Proceedings of  
SPIE, Security and Watermarking of Multimedia Contents III, Vol. 4314, 
pp. 606 – 617, San Jose, CA, 2001 

30. D. Delannay, J.-F. Delaigle, B. Macq, Compensation of Geometrical 
Deformations for Watermark Extraction in the Digital Cinema Application, 
in Proceedings of SPIE, Security and Watermarking of Multimedia 
Contents III, Vol. 4314, pp. 149-157, San Jose, CA, 2001 

31. D. Delannay, C. de Roover, B. Macq, Temporal alignment of video 
sequences for watermarking systems, in Proceedings of SPIE, Security and 
Watermarking of Multimedia Contents V, Vol. 5020, pp. 481 – 492, Santa 
Clara, CA, 2003 

32. E.T. Lin, E.J. Delp, Temporal synchronization in video watermarking: 
further studies, in Proceedings of SPIE, Security and Watermarking of 
Multimedia Contents V, Vol. 5020, pp. 493  – 504, Santa Clara, CA, 2003 

33. S. Craver, The return of ambiguity attacks, in Proceedings of SPIE, Security 
and Watermarking of Multimedia Contents IV, Vol. 4675, pp. 252 – 259, 
San Jose, CA, 2002 

34. J.J. Eggers, J.K. Su, Performance of a practical blind watermarking 
scheme, Proceedings of  SPIE, Security and Watermarking of Multimedia 
Contents III, Vol. 4314, pp. 594 – 605, San Jose, CA, 2001 

35. B.Chen, G.W.Wornell, Preprocessed and postprocessed quantization index 
modulation methods for digital watermarking, Proceedings of  SPIE, 
Security and Watermarking of Multimedia Contents II, Vol. 3971,            
pp. 48 – 59, San Jose, CA, 2000 

36. P. Moulin and J. A. O'Sullivan, Information-Theoretic Analysis of 
Information Hiding, in  IEEE Trans. on Inf. Theory, Vol. 49, No. 3,          
pp. 563 – 593, March 2003. 

37. J.J. Eggers, B. Girod, Informed Watermarking, Kluwer Academic 
Publishers, Dordrecht, 2002 

38. S. Voloshynovskiy, O. Koval, F. Deguillaume, T. Pun, Data hiding capacity 
analysis for real images based on stochastic non-stationary geometrical 
models, in Proceedings of SPIE, Security and Watermarking of Multimedia 
Contents V, Vol. 5020, pp. 580 – 593, Santa Clara, CA, 2003 



The work presented in this chapter is an expanded version of Low bit-rate video watermarking 
using temporally extended Differential Energy Watermarking (DEW) algorithm, by  
I. Setyawan and R.L. Lagendijk, first published in Proc. SPIE, Security and Watermarking of 
Multimedia Contents III, Vol. 4314, San Jose, CA, 2001 
 

 
 
 

Chapter 3 
WATERMARKING LOW BIT-RATE 

VIDEO 
 
3.1. Introduction 

Digital video data distribution through the internet is becoming more 
common [1]. The rapid growth of the internet and the increasing number of 
internet users make it a very strong marketing medium with which to reach 
potential customers for various products. When Hollywood studios release new 
movies, it is now common for them to set up an official website for the movies 
in which they put multimedia materials, such as the movie trailers, interviews 
with the cast, etc. Most recording artists nowadays have their own official 
websites, where they can also put their video clips to promote their new albums. 
The same goes for big music publishing companies, because such promotion 
can also boost the sales of the albums of the artists under their label. The 
interactive entertainment industry, i.e., video and computer games industry, also 
sees the internet as a medium not only to distribute demos or preview versions 
of their games for potential customers to download, but also as a medium to 
distribute video materials of their games, such as in-game video sequences, the 
opening cinematics of their games or dedicated “game trailers” in which they 
show off the exciting parts of their game in a similar manner as that used in 
movie trailers. All these marketing efforts, especially for the last case, may 
make or break the sales of the products.  

These multimedia materials share an important feature, namely they 
must be compressed at low bit rates to facilitate distribution through the 
internet. Furthermore, these materials need to be protected in order to prevent 
copyright infringement issues. Digital watermarking is one of the possible 
solutions for this copyright protection problem [2,5,7]. However, most of the 
existing video watermarking algorithms are more geared towards high bit rate 
environments suitable for DVD or television broadcasting [3,6]. Low bit rate 
(below 1 kbps) video watermarking utilizing MPEG-4 facial animation 
parameters has been investigated [4], and is suitable for video telephony 
application. However, low bit-rate watermarking for other applications, such as 
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the one mentioned in the previous paragraph, has received little attention in the 
literature.  

Low bit-rate environments present new challenges to the watermarking 
operation which are not found in watermarking operations at high bit-rate 
environments. Video encoded at low bit-rates inherently possesses low 
redundancy and small visual degradation tolerance. This brings forward three 
important issues. The first issue is the watermark capacity, i.e. the number of 
watermark bits we can embed into the data. The second issue is the visual 
impact. The low visual degradation tolerance of the original video 
sequence/stream means that we must take special care before embedding the 
watermark, which essentially adds more distortion into the data. On the other 
hand, the coding artefacts are also more visible in streams encoded at low 
bitrates. Therefore, it is possible for the watermarking artefact to be dominated 
by the coding artefact. The third issue is the robustness of the watermark. These 
three issues are closely interrelated and adjusting one of these performance 
aspects will affect the performance of the others.   

In our previous work, we developed a video watermarking scheme 
suitable for MPEG-1/-2 video streams encoded at high bit-rates (1.4 to 8 Mbps), 
called the Differential Energy Watermarking (DEW) algorithm [7,9]. This 
method has been shown to have relatively low complexity, high capacity and 
low visual impact. We consider this technique to have the potential to be 
extended for use in low bit-rate environments, and in this paper we present the 
extension scheme and an evaluation of its performance in order to investigate 
the behavior of this technique in low bit rate environments.  

This chapter is organized as follows. In Section 3.2, the DEW algorithm 
is briefly described and the extension scheme is explained in detail. In Section 
3.3, the experiment setup and results are presented. In Section 3.4 we present 
the conclusions of our experiments. Finally, in Section 3.5 we present brief 
discussion on recent developments in low bit-rate video watermarking 
techniques. 

3.2. The Extended DEW algorithm 

3.2.1. The DEW algorithm 

The DEW algorithm embeds watermark bits into an MPEG stream (or 
any other block DCT based video compression system) by enforcing energy 
difference between certain groups of 8 × 8 DCT blocks of the I-frames to 
represent either a ‘1’ or a ‘0’ watermark bit. The energy difference is enforced 
by selectively removing high frequency components from the DCT blocks. The 
8 × 8 DCT blocks of an I-frame are first randomly shuffled using a secret seed. 
This process serves two purposes. In the first place, the seed serves as a secret 
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key without which one cannot extract the watermark properly. In the second 
place, the process is performed to avoid having a group of blocks in which there 
is an unbalanced energy content. If this happens, then the watermarking artefact 
may become visible. As mentioned above, the energy difference is enforced by 
removing high frequency DCT components. If too many high-frequency 
components are removed in order to enforce this difference, then the 
watermarking artefacts, in the form of blurred edges, will be visible. This may 
happen, for example, when one group of blocks has no high frequency 
component (i.e., contains only flat areas) while the other group of blocks 
contains edges. If the energy content of the second group of blocks has to be 
reduced to enforce the energy difference, then too many high frequency 
components would have to be removed and the edges will be blurred as a 
consequence. The fundamental terms of the DEW algorithm are illustrated in 
Figure 3.1. 
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Figure 3.1. The Differential Energy Watermarking 

The DEW algorithm has several adjustable parameters. By adjusting 
these parameters, we can adjust the watermarker to optimise it either for 
capacity, robustness or visual impact [9]. The parameters are as follows: 

• Number of 8 × 8 blocks per watermark bit: This parameter is represented by 
n in Figure 3.1. It influences the capacity and the robustness of the 
watermark. The more blocks are used to embed a single watermark bit, the 
less capacity is achieved, but the more robust the watermark would be and 
the less degradation would be introduced because the required energy 
difference is “spread” among the blocks, and the more blocks we use the 
less energy in the region S(c) has to be removed from each DCT block.  
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• Enforced energy difference: This is the minimum allowed value of EA-EB in 
Figure 3.1. This parameter influences the robustness and visual impact of 
the watermark. The larger the energy difference enforced, the more robust 
the watermark would be. The disadvantage could be worse visual quality 
because more DCT coefficients have to be discarded. Furthermore, due to 
the limitation imposed by the next parameter, it is possible that some 
watermark bits cannot be correctly embedded. 

• Minimal cut-off point: This parameter is represented by c in Figure 3.1, and 
denotes the index of the particular DCT coefficient number in an 8 × 8 
block (zigzag scanned). Any coefficient with index i < c may not be 
removed to enforce the energy difference. Thus it can be seen as a limiter to 
the previous parameter because this parameter determines how many DCT 
coefficients may be removed to enforce the energy difference. If this 
parameter is set too high, then the watermark robustness would suffer and 
there is a possibility that some watermark bits cannot be properly embedded 
because the proper energy difference could not be enforced. However, the 
visual quality degradation introduced by the watermarking would be lower 
than the degradation introduced when a lower minimal cut-off is set because 
fewer DCT coefficients are removed.  

 
The DEW algorithm also has several interesting properties. It is 

relatively uncomplicated because it embeds the watermark at the DCT 
coefficient level and thus only VLC decoding is needed for the watermark 
embedding and detection process, and no full decoding and re-encoding of the 
stream is needed. This scheme also has sufficient robustness because a full 
decoding and re-encoding is needed to completely remove the watermark from 
the stream. It has been shown that even transcoding a watermarked 8 Mbps 
MPEG stream down to 6 Mbps only introduce a 7% Bit Error Rate (BER) [7]. 
The capacity of the watermarking scheme is also sufficiently high, up to 0.42 
kbps for a stream encoded at 8 Mbps. The visual impact of the watermarking 
process is also negligible.  

3.2.2. Extending the DEW algorithm  

The primary motivation of extending the DEW algorithm is to “spread” 
the watermark bits more in the temporal dimension. Spreading the watermark 
data in the temporal dimension offers potential improvements to the original 
DEW algorithm, especially for implementation in low bit-rate environments. 
The potential improvements are discussed below: 

• Improved capacity: One of the main issues when we move to a lower bit-
rate environment is the watermark capacity. The spatial resolution of the 
frames plays a very important role for the watermark capacity of the DEW 
algorithm. Videos in the application scenarios mentioned in the 
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introduction are usually of CIF or lower spatial resolution, while the video 
used in the applications for which the DEW algorithm was originally 
designed usually has as much as four times the spatial resolution (4CIF). 
Thus, one of the main problems here is to find a way to compensate this 
capacity limitation imposed by the video resolution. One possible solution 
to this problem is to reduce the number of 8 × 8 DCT blocks that are used 
to embed each watermark bit. However, reducing the number of blocks also 
reduces the robustness of the embedded watermark. The other solution we 
investigate here is to use more frames to embed the watermark, thus 
spreading the watermark in the temporal dimension. To achieve this, we 
will use not only the I-frames of the stream to embed the watermark, but 
also the P-frames. The challenges here are:  
• The much lower energy content of the P-frames compared to the I-

frames means that this solution will require a more delicate approach in 
order to balance the capacity, robustness and visual impact 
requirements.  

• The drift effects [3]. This is the result of error accumulation because the 
watermarked frames are used to reconstruct the frames and they are 
also being used as a prediction reference for other frames. Over time, 
this error accumulation may become visible. Even worse, the error may 
spatially spread.  

• Improved robustness: The next issue concerns the robustness of the 
watermark. In this respect, the extension offers two possible advantages. 
The first advantage is derived directly by the extra space we can use when 
we use the temporal dimension. By using this extra space, we can embed 
fewer bits in each frame (thus increasing the watermark robustness) but still 
achieve the same watermark payload. Another possible advantage is that if 
an attacker wants to remove the watermark in a video stream watermarked 
using the original DEW algorithm, he has only to deal with the I-frames, 
which are relatively few in a sequence. If the algorithm is extended so that 
the watermark data does not reside only in the I-frames, then the attacker 
would have to deal with more frames. This does not eliminate the 
possibility of an attacker successfully removing the watermark, but this will 
make the attack more cumbersome.  

• Improved visual quality: The next possible improvement concerns the 
visual quality of the watermarked stream. This issue is related to the 
previous issues, because if we embed fewer watermark bits per frame then 
the degradation to the data is reduced. The extra space provided by the 
extension would compensate the decrease of watermark payload per frame.   

 
The extension to the original DEW algorithm is achieved by modifying 

the watermark embedder so that it embeds the watermark not only in the I-
frames, but also the P-frames. As noted above, the energy content of an I-frame 
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and a P-frame is very much different. In an I-frame, the whole image data from 
that frame is intra-encoded. A P-frame, on the other hand, is predicted from a 
previous I-frame. Only the prediction error is encoded into a P-frame. This 
prediction error carries much less energy than an intra-coded frame. As an 
example, one I-frame of the Claire MPEG stream (CIF resolution, encoded at 
700 kbps) has a total signal variance of 2057.7, while a P-frame predicted from 
this I-frame has a total signal variance of only 59.8. This value varies widely 
from P-frame to P-frame, depending on the amount of activity (movements) in 
the sequence. When there are a lot of movements in the sequence, the P-frame 
will contain more energy than when the amount of movements is small. For 
this particular sequence, the average variance of the P-frames is 40.223. The 
variance of the I-frames also varies from I-frame to I-frame, but the variation is 
less significant. The average variance of the I-frames in this particular 
sequence is 2034.6. In Figure 3.2, we show the variance of the DCT 
components of one I- and one P-frame predicted from the I-frame. 

Figure 3.2(a) is clipped at variance values of 40 in order to show the 
variance of the higher DCT coefficients, and also to allow a somewhat easier 
comparison between the two figures. Other than the obvious difference in 
scale, the two figures show very similar behavior. Although the variance of 
each individual P-frame is different, depending on the level of activity found in 
the sequence, the behavior is similar to that observed in Figure 3.2(b). This 
behavior suggests that, with proper parameter adjustments, the DEW algorithm 
can be applied directly to the P-frames. The parameters that need to be adjusted 
are either the enforced energy difference, which should be lower due to the 
lower energy content of the P-frame, the minimal cut-off point, which should 
also be lower due to how the energy is distributed in the frame, or both.  

On the average, the variance of the I-frames is larger by a factor of 
approximately 50 compared to the variance of the P-frames. Therefore, we will 
need approximately 50 times as many 8 × 8 DCT blocks to embed one 
watermark bit in one P-frame to be able to achieve the same level of 
performance as when we embed the watermark in an I-frame, all other 
parameters being equal. If we can properly embed watermarks into an I-frame 
using 32 DCT blocks per watermark bit, we would need approximately 1600 
DCT blocks in a P-frame. Since a sequence with CIF resolution only has 1584 
DCT blocks per frame, this means that there is a maximum of 1 watermark bit 
that can be reliably embedded in a P-frame on average. Therefore, instead of 
only increasing the number of blocks, we also reduce the level of energy 
difference that has to be enforced. In this way, we should not need 50 times as 
many blocks to be able to properly embed the watermark bits, which means 
that we should be able to embed more than one watermark bit per P-frame. The 
price we have to pay here is the lower robustness of the watermark. 
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Figure 3.2. DCT component variance of  
(a) an I-frame and (b) a P-frame taken from the 
Claire sequence, MPEG encoded at 700 kbps 

It is also possible to extend the algorithm by embedding the watermark 
into the B-frames. Most of the frames in an MPEG sequence are B-frames. 
This large number of frames offers even more capacity increase than if we 
extend the algorithm to use the P-frames. Furthermore, from a robustness point 
of view, this will make the attack even more cumbersome. The B-frames are 
not used to predict other frames, which means we do not have to deal with drift 
effects. However, the B-frames contain even less energy than the P-frames. We 
have discussed above that even the P-frames may not contain enough energy to 
properly accommodate the watermark, and thus we choose not to extend the 
algorithm to embed the watermark in the B-frames. 

The watermark bits are embedded in the P-frames in the same manner as 
they are embedded in the I-frames. First, the 8 × 8  DCT blocks of the P-frames 
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are shuffled pseudo-randomly using a random key. The same key is used for 
both the I-frames and the P-frames in our experiments. However, technically 
there is no problem if a different key (independent of the key used to shuffle 
the I-frames blocks) is used. After the blocks are shuffled, the DEW algorithm 
is performed to embed the watermark bits. Each watermark bit is embedded 
into a certain number of 8 × 8 DCT blocks. From the watermarking point of 
view, the operations on the I-frame and the P-frame are independent, i.e. the 
watermark in the I-frame can be detected independently from the watermark in 
the P-frame (and vice versa) and the BER of the watermark embedded in the I-
frame is not affected by the BER of the watermark embedded in the P-frame 
(and vice versa).  

The BER of the watermark embedded in either the I- or P-frames can be 
introduced either due to: 

• Insufficient energy content in the I- or P-frames which means that certain 
energy differences cannot be enforced. This happens during embedding, 
and we will call this the eBER. 

• Distortion of the watermarked frame due to attacks, for example due to re-
encoding. We will call this the aBER. 

 
  Both BERs are calculated as follows: 

%100×=
bitsembeddedtotal

errorsbitBER    (3.1) 

In Equation (3.1), the total embedded bits refers to the total amount of bits the 
watermarker software attempts to embed in the sequence. Due to the parameter 
settings chosen, it may not be able to properly embed some of these bits.  

Furthermore, the watermark embedded in the P-frames also has the 
same adjustable parameters as the watermark embedded in the I-frames. These 
parameters are adjusted independently from the parameters of the I-frame 
watermark. This allows us to use either identical settings or different settings 
that are more appropriate for the P-frames due to their different characteristics.  

3.3. Experiment setup and results 

3.3.1. Experiment setup 

We test the extended DEW algorithm to see its performance in terms of 
watermark capacity, watermark robustness and visual quality impact. We use 
MPEG-2 sequences encoded at 256, 384, 512 and 700 kbps with a frame rate of 
25 fps. All sequences are encoded using the same group of pictures (GOP) 
structure. We use the commonly used GOP structure, i.e., IBBPBBPBBPBB. 
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The sequences are encoded as a progressive sequence and therefore the use of 
MPEG-1 coded sequences would also have been possible. The extended DEW 
algorithm itself is compatible with MPEG-1 stream. The spatial resolution of 
the sequences is 352 × 288 pixels (CIF). The sequences used in our experiments 
are: “Claire” (78 frames), “Trevor” (150 frames) and “Akiyo” (250 frames). 
The sequences are watermarked using the new version of our DEW 
watermarker software that can operate in both “default” and “extended” mode. 
In default mode, the software essentially operates identically to the original 
watermarking software. In extended mode, the watermarker embeds the 
watermark using the extended DEW algorithm.  

Two parameters are fixed during the experiments, i.e. the enforced 
energy difference and the minimal cut-off point. For the I-frames (both in 
“default” and in “extended” modes) the enforced energy difference is set at 20 
and the minimal cut-off point is set at 6. For the P-frames, the enforced energy 
difference is set at 4. This much lower value is chosen due to the lower energy 
content of the P-frames compared to the I-frames. We have pointed out in 
Section 3.2.1 that this parameter (for a fixed number of DCT blocks per 
watermark bit and a certain minimal cut-off point) influences the probability 
that a watermark bit can be properly embedded. If this parameter is set at the 
same value as the one used for the I-frames, there is a high possibility that the 
watermark bits cannot be properly embedded because the P-frames contain 
much lower energy. Furthermore, as discussed in Section 3.2.2, choosing lower 
value for this parameter will allow us to use fewer DCT blocks per watermark 
bit and thus enable us to embed more watermark bits in the P-frame. Since the 
average variance of the P-frames in our test sequences is lower by a factor of 
approximately 50, by choosing an enforced energy difference of 4 (which is 
20% of the value chosen for the I-frames), we expect that we would need as few 
as around ten times as many DCT blocks to embed one watermark bit in a P-
frame, with similar performance as embedding the watermark in an I-frame, 
instead of 50. The minimal cut-off point is set at 6 for both cases, in order to 
avoid too much image degradation due to the watermarking process. 

3.3.2. Watermark capacity 

As noted in Section 3.2, the watermark capacity is determined by the 
number of 8 × 8 DCT blocks that are used to embed one watermark bit. The 
number of watermark bits that can be embedded in one frame can be computed 
as follows:  









×

=
64B

F
W p

b   bits                   (3.2) 
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In the equation above, Wb is the number of watermark bits in the frame, 
Fp is the total number of pixels in the frame and B is the number of 8 × 8 DCT 
blocks per watermark bit. The watermark bit-rate is computed simply as the 
total number of embedded watermark bits divided by the length of the sequence 
in seconds. 

When 4CIF-sized sequences and the default parameter (64 blocks per 
bit) are used, a label rate of 0.21 kbps is achieved [7]. By reducing this number 
to 32 blocks per bit, a capacity of 0.42 kbps is achieved. The sequences used in 
our experiment are in CIF format, which is a quarter as large as the 4CIF 
sequence. Therefore, using the default parameter a label rate of 50 bps can be 
achieved. We call this watermark bit-rate the base capacity. In the following 
sub-sections, we investigate the performance of the original and the extended 
DEW algorithms in two areas, namely below and above this base capacity.  

3.3.2.1. Performance below base capacity   

In order to investigate the behavior of both algorithms below base 
capacity, we use various settings yielding watermark bit-rates ranging from 2 
bps to 50 bps. For the I-frames, we use various numbers of DCT blocks per 
watermark bit, ranging from 128 to 1024 blocks. For the P-frames, we use 512 
or 1024 DCT blocks per watermark bit. The settings we use, the achieved 
watermark bit-rates and the achieved eBER are presented in Table 3.1. 

Table 3.1. Settings, Watermark Bit-rate and eBER of the original 
and extended DEW algorithm below base capacity (Claire, 256 kbps) 

P-frame settings 
No  watermark bits in 

P-frames (DEW) 
1024 DCT blocks/  

watermark bit (XDEW) 
512 DCT blocks/  

watermark bit (XDEW) 

 
DCT 

blocks/water
mark bit  
(I-frame) 

Watermark 
bitrate 
(bps) 

eBER 
(%) 

Watermark 
bitrate 
(bps) 

eBER 
(%) 

Watermark 
bitrate 
(bps) 

eBER 
(%) 

1024 2.2 0 8.6 0 21.5 0 
512 6.7 0 13.1 0 26 0 
256 13.5 0 19.9 0 32.7 0 
128 27 0 33.3 0 46.2 0 

 
Table 3.1 only shows the eBER of a sequence encoded at 256 kbps, but 

the results for sequences encoded at other bit-rates are identical. We can 
observe from the results that both the original and the extended DEW algorithm 
performs well for watermark bit-rates below the base capacity. Furthermore, the 
results show that the P-frames contain enough energy to accommodate the 
watermark if we use 512 or 1024 DCT blocks to embed one watermark bit.  

 

 



 

 

41

3.3.2.2. Performance above base capacity 

The base capacity of 50 bps may not be sufficient for all applications, as 
some applications may require that the watermark bit-rate is at least 70 bps [8]. 
We compare two approaches to increase the capacity. The first approach is to 
use the original DEW algorithm but reduce the number of blocks used to 
encode each watermark bit and the second approach uses the extended DEW 
algorithm (with various numbers of blocks to encode each watermark bit in the 
P-frame) using the default parameter for the I-frames (64 blocks/bit). In the first 
approach, we can achieve various bit-rates of 50 to 870 bps. In the second 
approach, we achieve bit-rates of 50 to 370 bps. The relation of the number of 
blocks per watermark bit and the achieved watermark bit-rate is presented in 
Table 3.2.  

Table 3.2. Relation between number of blocks/watermark bit 
and watermark bit-rate 

Original DEW Extended DEW  
(64 DCT blocks/I-frame) 

DCT Blocks/bit 
(I-frame) 

Watermark 
Bitrate (bps) 

DCT Blocks/bit 
(P-frame) 

Watermark 
Bitrate (bps) 

64 50 1024 60 
32 110 512 70 
16 210 256 90 
8 430 128 130 
4 870 64 200 
  32 370 

 
We compare the two approaches by evaluating the watermark eBER 

produced by each approach as we increase the number of bits embedded in the 
streams. The results of this experiment are presented in Figure 3.3. 

From Figures 3.3(a) to 3.3(d), we can see that for all encoded bit-rates, 
except 256 kbps, it is much more attractive to use the original DEW algorithm 
and reduce the number of blocks used to encode each watermark bit rather than 
using the P-frames to gain extra space to embed more watermark bits. For a 256 
kbps encoded bit-rate, both approaches seem to yield the same performance. 
This is because the I-frames in such a stream have already lost much of the 
high-frequency DCT components due to the nature of MPEG quantization. As 
an example, a comparison of the variance of the DCT coefficients between two 
matching I-frames, one taken from a sequence encoded at 700 kbps and the 
other from a sequence encoded at 256 kbps, is shown in Figure 3.4.  
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eBER vs Watermark Payload Comparison 
Claire, 700 kbps
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eBER vs Watermark Payload Comparison 
Claire, 512 kbps
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eBER vs Watermark Payload Comparison 
Claire, 384 kbps
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(c) 

Figure 3.3. Watermark eBER for sequences encoded at various bit rates, 
watermarked using the DEW algorithm and the Extended DEW (XDEW) 

algorithm with various payloads 
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eBER vs Watermark Payload Comparison 
Claire, 256 kbps
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 (d) 

Figure 3.3 (continued) 

Figure 3.4 shows only the variances of the DCT coefficients with 
indices 6 up to 63, because the coefficients with lower index (indices lower than 
5) have relatively similar variance and also these coefficients do not play an 
important role in the enforcement of the energy difference. As we can see, the 
energy content of the I-frame of the sequence encoded at 256 kbps is lower than 
the one of the sequence encoded at 700 kbps. As the discussion in Section 3.2.2 
points out, this means that in order to enforce the same energy difference with 
the same number of DCT blocks per watermark bit, a lower minimal cut-off 
point should be chosen. And since in our experiments this parameter is fixed, 
there are some watermark bits that cannot be properly embedded. It should also 
be noted that the variances plotted in Figure 3.4 are from the collection of 
blocks and the condition of individual DCT blocks might be worse (i.e., there is 
less energy available to enforce the energy difference).  

From Figure 3.3, we can also see that for the original DEW algorithm 
relatively low eBER (2.5% bit error or less, which is roughly equal to a BER of 
10-3) is achieved only for watermark payloads below 110 bps, which means that 
the number of blocks used to embed each watermark bit is halved (from 64 
blocks/watermark bit to 32 blocks/watermark bit). For a sequence encoded at 
700 kbps, this number can still be achieved at a payload of 210 bps. Meanwhile, 
for the sequence encoded at a bit-rate of 256 kbps, even a watermark payload of 
110 bps produces more than 10% eBER. For the Extended DEW algorithm, the 
numbers are even lower. For the sequence encoded at 700 kbps, a payload of up 
to 90 bps can be achieved, while for other bit-rates, this number drops to around 
70 bps.  
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DCT coefficient variance comparison
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Figure 3.4. Comparison of the variance of theDCT coefficients from 2 I-frames  
Taken from sequences encoded at different bit-rates 

 
These numbers show that for the I-frames a proper energy difference 

can no longer be enforced when less than 32 DCT blocks are used to encode 
one watermark bit (16 DCT blocks, in the case of sequences encoded at 700 
kbps), while for the P-frames the minimum number of DCT blocks that should 
be used to embed one watermark bit is 512 blocks (256 DCT blocks for 
sequences encoded at 700 kbps). 

3.3.3. Watermark robustness 
 

We test the watermark robustness by re-encoding the watermarked stream at 
a lower bit-rate and then seeing whether the watermark survives the operation. 
Watermark survival is measured by the aBER of the watermark. The 
reencoding operation we performed is illustrated in Figure 3.5. 

MPEG
Reencoding at
lower bit rates

Conversion to
RAW YUV
sequence

Watermarked MPEG
Stream

Reencoded
Watermarked MPEG

Stream

YUV Sequence of
Watermarked MPEG

Stream  

Figure 3.5. Re-encoding procedure 

The aBER is computed from a re-encoded sequence previously 
watermarked using the Extended DEW algorithm, and is presented in Figure 
3.6 for the I-frames and the P-frames separately. Since the watermarks 
embedded in the I-frames and the P-frames are detected independently, the 
watermark aBER for the I-frames can be interpreted as the watermark aBER of 
the original DEW algorithm after re-encoding. The behavior observed in Figure 
3.6 is typical for all sequences in our experiments.  

As can be observed in Figure 3.6, the watermark embedded in the I-
frames performs quite well after re-encoding to a lower bit-rate. However, the 
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watermark embedded in the P-frames is severely damaged by the re-encoding 
operation. The reason for this phenomenon is twofold. In the first place, the P-
frames are predicted from a different version of the I-frame (i.e., an already 
watermarked I-frame) during MPEG compression which yields a different error 
signal from the one originally contained in the watermarked MPEG stream. 
Since this error signal is where the watermark is embedded, this difference will 
introduce errors in the watermark detection. Furthermore, the re-quantization 
process introduces further differences in the P-frames, which in turn introduce 
errors in the watermark detection process. We measure the difference between 
the original and the re-encoded watermarked P-frames by computing the 
average correlation value of the matching P-frames of the original watermarked 
sequence (Claire, encoded at 512 kbps) and the sequence re-encoded at 428 
kbps. The average correlation value is 0.57, which is quite low and shows that 
there are indeed significant differences between the original and the re-encoded 
P-frames. The effects of re-encoding to the I-frames are caused by the re-
quantization process, but the effects are not very significant due to the high 
energy content of the I-frames. 
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aBER due to Re-encoding (Claire, 512 kbps)
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(b) 

Figure 3.6. Watermark aBER due to reencoding at lower bit rates for sequences 
encoded at 700 and 512 kbps. The sequences are watermarked using 

the Extended DEW algorithm with a watermark payload of 70 bps 
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Applying pre-quantization to the data prior to watermarking has been 

shown to increase the watermark robustness against re-encoding [7]. Pre-
quantization is done using a standard MPEG quantization procedure with a 
certain Q factor. The watermark embedded in the I-frames does indeed have 
higher robustness when pre-quantization is used. But pre-quantization does not 
seem to have any positive effect on the robustness of the watermark embedded 
in the P-frames. Actually, pre-quantization with low Q value seems to have a 
negative effect on the watermark embedded in the P-frames because in many 
cases the DCT blocks do not have enough energy to enforce the energy 
difference determined by the selected pre-quantization Q factor. The end result 
is an actually higher watermark eBER.  

3.3.4. Visual quality impact 

The visual quality is assessed objectively and subjectively. The 
objective assessment is done by measuring the PSNR value of the video stream 
watermarked using both the original and the extended DEW algorithm 
compared to the unwatermarked stream. The subjective assessment is done by 
visually judging the quality of the watermarked material. The behavior of the 
PSNR curves of the extended and the original DEW algorithm is different, 
because in the original algorithm we only process the I-frames directly while in 
the extended algorithm we process the I- and the P-frames. This is apparent at 
higher watermark bit-rates (i.e., when 256 DCT blocks or fewer are used to 
encode one watermark bit in the P-frames). An example of such behaviour of 
the PSNR curves is shown in Figure 3.7.  

The different behavior may seem to indicate that it is unfair to simply 
compare the time-averaged PSNR values produced by the algorithms, and that 
it is more appropriate to compare only the quality of the processed 
(watermarked) frames. However, despite the difference in this curve behavior, 
we decide to use the time-averaged PSNR value to compare the performance of 
the two algorithms because we consider this to be a better representation of the 
overall quality of the watermarked material, and this will be the main concern 
of somebody who is viewing the watermarked material.  

The results of the objective visual quality assessment are presented 
separately for watermark bit-rates below and above the base capacity. The 
results for watermark bit-rates below the base capacity are shown in Table 3.3. 
In this table, the values in the brackets below the PSNR values are the 
difference between the PSNR values of the watermarked sequence and the 
unwatermarked sequence, which is 37.57 dB. The results for watermark bit-
rates above the base capacity are presented in Figure 3.8. The results in both 
cases are presented only for sequences encoded at 256 kbps, but the results for 
other encoded bit-rates show similar behavior, except as noted below.  
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Frame by frame PSNR Measurement,
Claire at 256 kbps, DEW (110 bps payload)
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Frame by frame PSNR Measurement,
Claire at 256 kbps, XDEW (90 bps payload)
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Figure 3.7. Frame by frame PSNR measurements of a sequence 
 encoded at 256 kbps, watermarked using:  

(a) the original algorithm (DEW, watermark payload=110 bps)  
and (b)the extended algorithm (XDEW, watermark payload=90 bps)  

Table 3.3 shows that the performances of both the original and extended 
DEW algorithms are very similar when the watermark bit-rate is below the base 
capacity. Furthermore, we can see from this table that both algorithms incur 
virtually no visual degradation to the sequence being watermarked. This means 
that for these watermark bit-rates, the required energy difference can be 
enforced without removing too many DCT coefficients. 

However, Figure 3.8 shows the much sharper decrease in visual quality 
of the sequences watermarked using the extended algorithm compared to the 
one watermarked using the original algorithm as the watermark payload is 
increased. We can also observe that at 256 kbps and low payload (up to 70 bps), 
the performance of both algorithms is similar, but the visual quality of the 
sequence watermarked using the extended DEW algorithm rapidly deteriorates 
as the payload is increased above this level. This is not observed at the other 
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encoded bit-rates, where the performance of the two algorithms is very different 
for all watermark bit-rates. In both cases, the visual degradation introduced by 
both the original and the extended DEW algorithms is much higher than the one 
introduced when the watermark bit rates are below base capacity. This means 
that more DCT coefficients have to be removed to enforce the energy difference 
for watermark bit-rates above the base capacity.  

Table 3.3. Visual quality impact assessment for the original and extended 
DEW algorithm, below base capacity 

P-frame settings 
No  watermark bits  
in P-frames (DEW) 

1024 DCT blocks/  
watermark bit 

(XDEW) 

512 DCT blocks/  
watermark bit 

(XDEW) 

 
DCT 

blocks/water
mark bit  
(I-frame) Watermar

k bitrate 
(bps) 

PSNR 
(dB) 

Watermar
k bitrate 

(bps) 

PSNR 
(dB) 

Watermar
k bitrate 

(bps) 

PSNR 
(dB) 

1024 2.2 37.57  
(0) 

8.6 37.56  
(-0.01) 

21.5 37.56  
(-0.01) 

512 6.7 37.56  
(-0.01) 

13.1 37.56  
(-0.01) 

26 37.55  
(-0.02) 

256 13.5 37.54  
(-0.03) 

19.9 37.54  
(-0.03) 

32.7 37.54  
(-0.03) 

128 27 37.52  
(-0.05) 

33.3 37.52  
(-0.05) 

46.2 37.52  
(-0.05) 

 
Our experiments also show that the visual quality degradation is sharper 

at higher bit-rates. This is observed in sequences watermarked using both 
algorithms. This means that at lower bit-rates, the MPEG coding artefacts start 
to play a bigger role in the overall visual quality of the sequences, which is not 
the case in higher bit-rates. In other words, the watermarking artefacts are 
dominated by the coding artefacts at lower bit-rates. 

The subjective quality assessment reveals that no watermarking artefacts 
are visible when the watermark bit-rate is below the base capacity. However, 
some artefacts become visible at high payloads, albeit only in some frames. The 
artefacts are visible as blurred edges in some blocks and blotches. The blotches 
appear due to the drift effect, and are sometimes visible in the sequences 
watermarked using the extended DEW algorithm, especially at higher 
watermark payloads and lower bit-rates. These blotches appear (and disappear 
again) gradually over time, except when the blotches appear in a frame directly 
preceding an I-frame, in which case the blotches disappear completely when the 
I-frame is displayed. These blotches are the reason why for some frames the 
PSNR of the sequence watermarked using the extended algorithm drops to a 
low value, as can be seen in Figure 3.7 (b).  
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PSNR Comparison for Claire at 256 kbps
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Figure 3.8. Visual quality impact comparison between the DEW algorithm and 
the extended DEW (XDEW) algorithm for watermark bit rates above base 

capacity. 
 
3.4. Conclusions 

We have presented in this chapter the results of our investigation on the 
performance of the DEW and Extended DEW algorithm in a low bit-rate 
environment according to three performance criteria, namely payload, 
robustness and visual quality. The results can be summarised as follow:  

1. From the payload point of view, both the original DEW and the extended 
DEW algorithms perform similarly when the watermark bit-rate is low 
(below base capacity) for all encoded video bit-rates. However, the 
extended algorithm generally performs worse than the original DEW as the 
watermark capacity is increased beyond the base capacity. This is observed 
in all encoded video bit-rates, except for the bit-rate of 256 kbps, where the 
performance of the two algorithms is comparable. 

2. From the robustness point of view, the watermark embedded in the P-
frames is very vulnerable to re-encoding. This is true for all sequences used 
in this experiment.  

3. From the visual quality point of view, both the original and the extended 
DEW algorithms perform similarly when the watermark bit-rate is below 
base capacity, and both incur virtually no visual degradation to the data. 
However, the extended DEW algorithm shows rapid visual quality 
degradation as the watermark payload is increased. Furthermore, drift 
effects are visible in the sequences watermarked using the extended 
algorithm. We also observe that the visual quality curves for the DEW 
algorithm become less steep as the encoded bit-rates become lower. This is 
apparent from the fact that, as the encoded bit-rate decreases, encoding 
artefacts play a larger role to determine the overall quality of the sequence. 
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In other words, the watermarking artefacts become less significant or 
dominated by the coding artefacts. For the Extended DEW algorithm, the 
same can be said, but only for lower watermark payloads (less than 70 bps). 
For higher payloads, the watermarking artefacts are still more significant 
than the coding artefacts. 

 
Based on these results we draw the following conclusions: 

1. The original DEW algorithm scales well to lower bit-rates/smaller spatial 
resolution for watermark payloads of up to 110 bps, except for the sequence 
encoded at 256 kbps.  

2. The extension scheme to the DEW algorithm we have presented works 
reasonably for low payloads (up to watermark payload of 70 bps). This is 
especially true for watermark bit-rates below base capacity. For this payload 
level, the eBER is still relatively low while the introduced watermarking 
artefacts are either negligible or dominated by the coding artefacts.  

3. From these two preceding statements, we can conclude that the Extended 
DEW algorithm should not be used to pursue higher payloads. To achieve 
higher watermark payload it is better and easier to adjust the number of 
blocks used to encode each watermark bit. Even then, the watermark 
capacity can not be pushed beyond 110 bps without incurring severe eBER.  

4. Finally, at low bit-rates, the limitations of the MPEG-1/-2 encoder become 
more obvious. The coding artefacts become visible and at very low bit-rates 
the specified encoding bit-rate cannot be achieved due to the overhead 
associated with MPEG-1/-2 stream. Therefore, further developments in low 
bit-rate video watermarking should be focused on formats more suitable to 
such bit-rates, like MPEG-4 or H.263. 

 
3.5. Final remarks 

Further research on watermarking techniques of low bit-rate video has 
been performed since the work presented in this chapter was originally 
published in 2001. Two examples of recent works on low bit-rate video 
watermarking found in the literature are briefly discussed below. 

The first example, presented in [10], uses semi-fragile watermarks to 
assess the Quality of Service (QoS) of the communication link between cellular 
video communication devices. The QoS of the communication link is evaluated 
by measuring the distortion suffered by the embedded watermarks due to a 
noisy communication channel. Due to the inherent limitations of cellular 
devices, the size and bit-rate of the video are limited. In their experiments, the 
authors used QCIF sequences encoded using an MPEG-4 encoder at bit rates of 
200 – 1000 kbps. The proposed scheme uses spread spectrum watermarking 
technique. The watermark message w is embedded in each Video Object (VO) 
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of the MPEG4-coded video. The VO is first transformed into DCT domain, 
then the watermark pattern is added to the mid-band frequency DCT 
coefficients of the VO. On the detection side, wi’ is estimated from each VO, 
where i = 1,…, n is the number of VO’s in one video frame. An estimate of the 
embedded watermark, w’, is then computed by averaging all wi’ in one frame.  
By calculating the Mean Square Error (MSE) between the original watermark 
message w and the estimated watermark message w’, the quality of the 
communication link can be estimated. In [10], the authors introduce random bit 
errors (with adjustable BER’s) to simulate a noisy channel. Their experiments 
show that the increase of the measured MSE corresponds well to the increase of 
the introduced BER. Therefore, the proposed technique demonstrates that semi-
fragile watermarks can be used to estimate the quality of the communication 
link in an additive noise environment.   

The second example is a spread-spectrum based watermarking scheme 
for low bit-rate (128 – 768 kbps) MPEG-4 video proposed in [11]. The 
proposed scheme is an extension of the scheme proposed in [5]. The watermark 
is embedded in DCT domain, so that full decoding of the compressed MPEG-4 
bit stream is not necessary. The detection process, however, is performed in 
spatial domain. This gives the advantage of enabling watermark detection even 
when the watermarked MPEG-4 video is re-encoded using another compression 
algorithm. However, the disadvantage is that the proposed scheme cannot use 
MPEG-4-specific properties in the detection process.  

Robustness against synchronization attacks (rotation, translation and 
scaling (RTS) transform of the video frame) is provided by using 
synchronization templates. The first template is constructed in an approach 
similar to the one used in [6], namely by tiling the message-carrying watermark 
pattern periodically over the video frame. In the autocorrelation domain these 
tiles will produce periodic peaks that can be used to recover watermark 
synchronization. The second template is a purely synchronization signal. The 
signal is constructed in a similar manner to that proposed in [12]. In the 
frequency domain, this signal is composed of peaks in the mid-frequency band. 
Each peak occupies one frequency coefficient with pseudo-random phase. This 
synchronization signal provides additional synchronization capability especially 
in low bit-rate environment where a large part of the watermark is lost due to 
the compression process [11]. Estimation of the RTS transform parameters is 
performed in log-polar domain. After the parameters are estimated, the RTS 
transform is reversed, thus re-synchronizing the watermark. The approach used 
to increase watermark robustness against geometric distortion limits the amount 
of watermark bits that can be embedded. In [11], the total number of 
information embedded (excluding error-correcting code bits) is 31 bits.  
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To improve watermark imperceptibility, the authors use an adaptive 
gain control mechanism that adjusts watermark signal strength based on the 
local “activity” of the original video. Small gain is applied to low-activity, i.e., 
smooth areas and larger gain is applied to high-activity (textured) areas. 
Furthermore, since the proposed scheme is similar to the one described in [5], 
drift compensation is also implemented to prevent error propagation when a 
watermarked frame is used to predict another frame. Finally, the authors also 
implement a heuristic-based optimization approach to control bit-rate. In this 
approach, the bit-rate control tries to balance the increase in bit-rate due to the 
watermarking process and bit allocation based on the local gain factor. The 
details of this optimization approach are provided in [11]. Bit-rate control is 
needed to prevent the size of the watermarked video from consuming 
substantially more bits compared to the original video stream. This type of bit-
rate control mechanism is not needed for the DEW or XDEW algorithms since 
the watermark is embedded by discarding DCT coefficients, thus guaranteeing 
that the resulting watermarked video data will be smaller than the original video 
data. If the size of the watermarked video data is to be maintained, dummy bits 
can be added to replace the discarded DCT coefficients.     

The results of the experiments show that the watermark detection rate is 
quite high even when the watermarked video is attacked using filtering, scaling, 
rotation and transcoding. The performance of the adaptive gain control is not 
yet optimal for video segments with a lot of movements since it has not taken 
the temporal properties of the watermarked video into account. The bit-rate 
control implemented is shown to be able to limit the increase of the video 
bitstream size to under than 5%. The complete description of the test setup and 
results are provided in [11]. 
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Chapter 4 
GEOMETRIC DISTORTION AND 

WATERMARK SYNCHRONIZATION  
 
4.1. Introduction 

One of the most difficult tasks faced by image and video digital 
watermarking algorithm developers is resistance to geometrical attacks. 
Geometrical transformations may take simple forms such as rotation, translation 
and scaling. They could also take much more complex forms, for example 
rubber-sheet stretching. A famous example of the latter is the StirMark software 
package that can perform a wide range of minor, unnoticeable geometrical 
transformations on an image, including slight stretching, bending or shifting 
[1]. Another example of geometrical attack is the Digital Cinema Attack [2]. In 
this scenario, the geometrical attack is not actually performed on the 
watermarked data directly. Instead, the attacker records a (watermarked) movie 
being shown on the cinema screen using a camera. The result of this recording 
is then illegally distributed on video CD’s or put on the internet for 
downloading. The quality of the recording is influenced by numerous factors, 
e.g., the position of the camera with respect to the cinema screen, the (usually 
low) quality of the lenses in the camera and the fact that the cinema screen itself 
is not perfectly flat. All these factors contribute to the complex combination of 
geometrical transformations applied to the recorded video. 

Geometrical transformation attacks do not actually remove the 
watermark from the data. Instead, they work by exploiting the fact that most 
watermarking techniques rely on the synchronization between the watermark 
and the watermark detector. If this synchronization is destroyed, the detector 
can no longer correctly detect the presence of the watermark in the data, 
although the watermark itself (or a major part thereof) might still remain in the 
data. As a simple example, let us take a simple image watermarking algorithm 
that embeds a pseudo-random noise pattern all over the image and detects the 
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embedded watermark by correlating the watermarked image with an identical 
pseudo-random noise pattern [3]. A high correlation value signifies the presence 
of the watermark. If this watermarked image is now cropped by removing 5% 
of the pixels, the correlation value produced by the detector would be very low 
although most of the embedded noise pattern itself is still present in the image. 

Some approaches have been developed in the literature to deal with 
attacks that destroy the synchronization between the watermark and the 
detector. In this chapter, we propose two approaches designed to deal with this 
synchronization problem. The first approach we present is a new watermarking 
approach that is less sensitive to synchronization. The basic idea underlying our 
approach is to remove the requirement for strict synchronization between the 
watermark and the detector. The second approach we present is an approach 
that allows the synchronization of the watermark to be recovered by inverting 
the geometric distortion.  

This chapter is organized as follows. In Section 4.2, an overview of the 
existing approaches to combat attacks that destroy the synchronization between 
the watermark and the detector are discussed. In Section 4.3, we present a 
watermarking scheme that does not rely on the rigid spatial synchronization 
between the watermark and the watermark detector. We present the basic ideas, 
design considerations and our basic implementation of this idea. We also 
present the evaluation of this basic implementation. In Section 4.4, we present 
the second proposed approach to the synchronization problem. In this approach, 
we invert the geometric distortion to recover the spatial synchronization. We 
present the details of this approach and the evaluation of its performance. 
Finally, in Section 4.5, we present our conclusions. 

4.2. Existing techniques to combat geometrical transformation 

Existing techniques found in the literature to combat geometrical 
transformation generally belong to the following categories of approaches, each 
with its own strengths and weaknesses: 

1. Performing the watermarking operation in a domain that is invariant 
to geometric transformation. In this category, watermark embedding and 
detection is performed in a domain that is resistant to geometric 
transformation. Thus, the original data is first transformed into this domain, 
the watermark is embedded in this domain and then the data is transformed 
back to its original domain. On the detection side, the received data is again 
transformed into the domain invariant to geometric transformation. A 
watermark detection operation is then performed in this domain. An 
example of this approach is given in [4]. In this scheme, the log-polar map 
domain is used. This domain is invariant to rotation, translation and scaling 
operations. The advantage of this approach is that if the correct invariant 
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domain could be found, then the watermark would be resistant to the 
geometric transformations for which this domain is invariant. In the 
previous example, the watermark would be highly resistant to rotation, 
translation and scaling operations. However, finding a domain that would be 
resistant to all possible geometrical transformations is very difficult, if at all 
possible.  

2. Using re-synchronizeable watermarks. The second category consists of 
approaches that embed a watermark that can be re-synchronized after a 
geometrical transformation. One implementation of this approach is to 
embed identifiable marker signals in the watermark with certain relative 
positions [5]. After an attack, the absolute positions of the markers are 
likely to change. However, since the correct relative position is known, it is 
possible to recover the original positions and thus re-synchronize the 
watermark. Another example is to use watermark synchronization points 
based on the invariant features of the watermarked data. Using these points, 
the synchronization can be recovered after an attack [6]. There is a security 
issue with this approach, namely that an attacker can also detect the marker 
signal. It is therefore possible that he can remove or jam it. To prevent this, 
measures must be taken to hide or secure this signal [17, 18]. 

3. Reversing or compensating the distortions caused by the geometrical 
transformation. The third category consists of approaches that attempt to 
reverse or compensate the effects of the geometrical transformation and 
restore the data to its original state. One way to do this is to compare the 
attacked data to the original undistorted data. Based on this comparison, a 
restoration to the data’s original state is then attempted. If the restoration is 
successful, then the probability of correctly detecting the watermark would 
be high since the data processed by the detector would be very similar to the 
original watermarked data. An example of this technique is given in [7]. 
The advantage of this approach, when it works, is obvious. The watermark 
detection problem becomes virtually identical to the problem of detecting a 
watermark in non-attacked data. The second approach we propose in this 
chapter belongs to this category. 

Another possible approach that is not widely used in the literature, is 
exhaustive search. In this approach, the watermark detector exhaustively 
searches the space of all possible geometric transformations. This approach is 
not widely used primarily due to the fact that the search space is very large, and 
thus the computational cost of searching the correct geometric distortion will be 
unfeasibly high. Another, and more important, reason is that this approach can 
produce an unacceptable rate of false positive in the watermark detection as 
shown in [8].  
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All of the approaches discussed above have one common objective, 

namely to resist or recover from attacks that disturb the synchronization 
between the watermark and the detector. These approaches aim to achieve this 
objective by either making the synchronization of the watermark robust (i.e., 
hard to destroy) or making the synchronization retrievable after an attack. 
However, all of these methods are still dependent on the synchronization (i.e., 
dependent on the proper phase information) in order to function properly. The 
first approach we propose in this chapter deals with this problem from a 
different point of view, i.e., by removing the synchronization requirement. In 
order to achieve this objective, we must remove the dependence of the 
watermark on phase information. This approach is discussed further in the next 
section. 

4.3. Structured noise pattern watermarking 

4.3.1. Basic idea 

Our new watermarking approach is based on two new central ideas. 
First, the watermark payload is embedded in the geometrical structure of the 
embedded (invisible) watermark patch. An example of such a structure is the 
presence of a hole in the patch (representing watermark bit “0”) or the absence 
of such a hole (representing watermark bit “1”). The choice of the geometrical 
structure of the watermark patch to embed depends on which watermark bit is 
to be embedded. Second, the watermark patch is embedded as a colored noise 
pattern. This colored noise can be discriminated on the detection side by a 
properly designed filter sensitive to such noise. Both the filter used to color the 
noise and the filter used to detect it depends on a secret key. Using this 
technique, we embed the information not in the phase of the watermark signal, 
but in its frequency distribution. Figure 4.1 presents an overview of our 
approach. 

The watermark detector is designed so that it does not need to know 
exactly the spatial position of the watermark patch. This is needed to ensure that 
the system does not have to rely on rigid spatial synchronization. This will also 
limit the complexity of the detector, because the detector does not need to 
perform complex operations to search for the position of the patch. 
Furthermore, this will also ensure that the system can still recover the 
watermark even when a portion of the patch is missing. Another advantage of 
this design is that the watermark embedder could embed the patch virtually 
anywhere within the frame. Thus, sophisticated embedding strategies can be 
developed so that the embedder can choose the optimal embedding location in 
order to reduce its visibility (i.e., choosing areas with more masking capability) 
or to increase its robustness (i.e., choosing areas that are important to the 
legibility of the frame, thus forcing an attacker to preserve them). The system is 
also designed to work without requiring the presence of the original, 
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unwatermarked frame. This requirement is based on the fact that the original 
frame may not be available in every practical application.  

Select
geometrical
property of
watermark

patch

Watermark bit

"Fill" patch
w ith coloured
noise pattern

Key

Original image Watermarked
image

Custom Filter

Filtered w atermarked
image

Identification of
watermark patch

geometrical
properties

Watermark bit

Watermark Embedding Watermark Detection

 
Figure 4.1. Basic block diagram of the proposed approach. 

From the previous discussion, the design challenges for our approach 
can be classified into two different areas. The first one is directly related to the 
process of patch embedding and detection. The basic objectives of this part of 
the design process are as follows. In the first place, we have to design an 
identifiable pattern, i.e., pattern that could later be detected by the watermark 
detector. Thus, the pattern must possess certain properties that can be picked up 
by the filter in the watermark detector. Secondly, we have to keep the security 
of the pattern, i.e., the generation and detection of the patch should depend on a 
secret key. Without knowledge of this key one should not be able to see the 
pattern (either completely or partially). Otherwise, a potential attacker could 
generate a random key and then modify the pixel values of the frame while 
observing the response of the detector to determine what level of modification 
is sufficient to disable watermark detection. These two requirements may be 
contradictive, i.e., a highly structured pattern is easy to detect but also easy to 
guess, while a random pattern is much more difficult to guess but is also hard to 
detect. The second area of the design challenge has more to do with the actual 
classification and identification of the properties of the embedded pattern in 
order to recover the watermark bit. This problem is very similar to the problems 
of  image segmentation and pattern recognition. In this chapter, we concentrate 
on the first design challenge, namely implementing the basic idea of being able 
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to embed and detect a watermark patch constructed using a colored noise 
pattern. 

The watermark embedder performs the following operation on the 
original frame to embed a watermark patch 

( )
otherwise),,(

patch),(,),()|,(),(),( 0

jiX
jiXvunKyxPjiXjiX w

=
∈∗⋅+= γ

  (4.1) 

In Equation (4.1), Xw(i,j) represents the value of a pixel in the 
watermarked frame, X(i,j) represents the value of a pixel in the same position of 
the non-watermarked frame, P0(x,y|K) represents the filter (that depends on the 
key K) used to color the pseudo-random noise n(u,v) and γ is a constant used to 
control the gain (and thus the visibility) of the watermark patch. Without loss of 
generality, we assume that the variance of the colored noise P0(x,y|K)*n(u,v) is 
equal to 1. 

On the detection side, the received watermarked frame is filtered using a 
custom filter P1(i,j|K), thus 

),()|,(),( 1 jiXKyxPjiX wwf ∗=     (4.2) 

Substituting Xw(i,j) with the expression from Equation (4.1), we can rewrite 
Equation (4.2) as follows: 
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γ  (4.3) 

In Equations (4.2) and (4.3), Xwf(i,j) represents the value of a pixel of the 
filtered watermarked image and P1(x,y|K) represents the filter in the watermark 
detector, again depending on the same key, K. From Equation (4.3) we can 
observe that the response of the filtering operation for areas within the 
watermark patch is different from the response of areas outside the watermark 
patch.  

To detect the watermark patch, we calculate the local variances of the 
filtered watermarked frame, expressed here in the Fourier domain. For 
simplicity, we drop the K notation of the filters. The local variances of the 
watermarked frame within the watermark patch can be expressed as follows:  
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On the other hand, in areas outside the watermark patch, the local 
variances can be expressed as follows: 
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The detection of the embedded patch is based on the shift of the local 
variance in areas within the watermark patch, as shown by the presence of the 
second term in Equation (4.4). In order to get the best performance of the 
watermark detector, we would have to do some optimization. From Equation 
(4.4) we can see that optimization of the detection problem could be done in 
several ways. We will discuss here two optimization of approaches. The first 
one, C1[P1(ω1,ω2)], is to try to minimize the first term of Equation (4.4) while 
maximizing the second term, i.e., 
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The second optimization approach is to minimize the ratio between the 
first and the second terms of Equation (4.4), i.e., 
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  (4.7) 

To normalize the optimization problems, we assume (in addition to the 
aforementioned variance of the colored noise) that the variance of P1 is also 
equal to 1. These constraints are repeated below for convenience. 
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Let us first consider the first optimization approach, presented in 
Equation (4.6). We can rewrite this equation and try to minimize the following: 
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 (4.9) 

Let us assume that P1(ω1,ω2) = P1(-ω1,-ω2). We can therefore rewrite 
Equation (4.9) as follows: 
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The solution of Equation (4.10) is therefore: 
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 (4.11) 

Equation (4.11) means that the optimal P1 must be able to pick one 
single frequency pair (ω1,ω2) where the original image data has relatively low 
energy compared to the energy of the colored noise.  

Let us now evaluate the second optimization approach, presented in 
Equation (4.7). First, let us rewrite this Equation, dropping the factors γ2 (since 
it is obvious that larger γ will give a better detection) and σn

2 since it is assumed 
to be equal to 1. Furthermore, assuming that we have ℜ∈),(),,( 211210 ωωωω PP , 
we will proceed to minimize P1

2(ω1,ω2) instead of P1(ω1,ω2). For notational 
simplicity, we will drop the squares notation. Thus we have 
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To evaluate Equation (4.12), we will use its 1-D discrete 
implementation for purposes of simplicity, namely 
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In Equation (4.13), N represents the length of the DFT. 

We have performed experiments with various P0(l) and Sx(l), and in all 
of those experiments, the P1(l) solution that minimizes Equation (4.13) satisfies 
the following condition:  
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        (4.14) 

In Equation (4.14), p1
n represents the nth element of P1(l) (0 ≤ n ≤ N). In 

other words, P1 only has a response at a single frequency, namely the frequency 
in which the original data has relatively low energy compared to the colored 
noise energy.  

We can thus draw a conclusion that both optimization approaches lead 
to the same conclusion, namely that the optimal P1 must be able to pick one 
single spatial frequency, namely the frequency where the energy of the original 
image data is relatively lower compared to the energy of the colored noise. 
However, if P1 is implemented in this way, it would be very sensitive to attack 
and small variations to the data. Furthermore, we are interested in solutions that 
are spatially localized. Therefore, our choice of frequency for P1 would depend 
heavily on the spatial location we are looking at. Since image data typically has 
low-pass behavior, we can conclude that the optimal frequencies to choose for 
P1 would be the high frequencies. Furthermore, to make the system more 
robust, we will design P1 so that it detects a range of frequencies (i.e., the 
frequency range of P0) instead of just selecting one frequency. In other words, 
P1 should be constructed as a bandpass filter that can suppress the signal with 
frequencies outside the frequency range of P0, while passing a signal within this 
frequency range. 
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4.3.2. Basic practical implementation and evaluation 
 

In this section, we present a basic practical implementation of the 
proposed watermarking approach and the evaluation of this basic 
implementation. We will first describe the implementation of the watermark 
embedder and detector, then we will present the results of our experiments. We 
perform our test by watermarking raw video sequences with CIF resolution. In 
our experiments, we use P0 and P1 of size 8 × 8. Furthermore, the size of the 
pseudo-random noise pattern (and hence, the size of the watermark patch) is 
chosen to be a disc with a diameter of 120 pixels. 

4.3.2.1. Watermark embedding 

The watermark embedder follows the block diagram of the watermark 
embedding process presented in Figure 4.1. Since the video frames are treated 
as individual frames, the scheme could also be applied to still images. For the 
sake of simplicity, both still images and video frames will be referred to 
collectively as images. The watermark is embedded as a circular patch of 
structured noise pattern by modifying the luminance of the pixels of a chosen 
area of the image. In our experiment, these areas are either chosen at random or 
determined specifically by the user. In other words, we have not used any of the 
sophisticated embedding strategies mentioned in the previous section. The 
choice of a disc as the shape of the patch is made for simplicity, although 
obviously other shapes can also be used. The modification of the value of the 
luminance is done according to Equation (4.1a). We use γ equals to 7, because 
in our experiments we found that γ value of 7 or less gives an acceptable 
distortion to the watermarked image.  

   
(a)   (b) 

Figure 4.2. The watermark patches: 
 (a) Patch representing OA, (b) Patch representing OB 

 
Depending on the watermark bit to be embedded, either patch OA or OB 

is embedded. If watermark bit “1” is to be embedded, then patch OA is chosen. 
Otherwise, patch OB is chosen. In our experiments, we choose a solid disc to 
represent OA and a disc with a “hole” in it to represent OB. These patches are 
shown in Figure 4.2. For patch OA, the entirety of image pixels within the 
boundaries of the disc is modified according to Equation (4.1). For patch OB, 
only the areas between the two discs (the gray areas in Figure 4.2(b)) are 
modified. The sizes (determined by diameter of the disc) of OA and OB are user 
adjustable (within the constraints of the actual size of the image to be 
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watermarked). This adjustment can be made independently for each patch. For 
the sake of simplicity we choose to make the sizes of OA and OB identical. 
Choosing the size of the patterns is a trade-off between watermark visibility and 
reliability of detection. Smaller sizes may be less conspicuous (for an equal γ), 
but will make the patch harder to detect reliably. The “hole” (inner disc) of 
patch OB is put exactly in the middle of the outer disc in our experiments. Its 
size is user adjustable, and is expressed as a fraction of the area of the outer 
disc. The size of the inner disc will also determine the reliability of detection for 
patch OB. If the ratio is too big, then the “walls” would be too thin and the patch 
would be harder to detect reliably. On the other hand, if the ratio is too small, 
the detection performance would also suffer because the two patches may 
become not easily distinguishable. 

4.3.2.2. Watermark detection 

The watermark detector follows the block diagram of the watermark 
detection process presented in Figure 4.1. As discussed in the previous section, 
the watermark detection procedure consists of two stages and we focus only on 
the first stage of this procedure. The first stage is a processing applied to the 
image that may contain a watermark. This processing is done to “reveal” the 
watermark patch embedded in it. This stage is illustrated in Figure 4.3. In this 
Figure, Xw represents the received watermarked image. The custom filter P1 is a 
filter which depends on the same key as the one used to generate the filter 
during the watermark embedding procedure. The size of the kernel also has to 
be identical. Xwf is the filtered version of the received watermarked image.  

XW P1

XWFvar

XWF

Local
Variance

Calculation
Thresholding XWFbin

Figure 4.3. Process to reveal the watermark patch 

The processing of the watermarked image proceeds as follows. First, a 
copy of the received watermarked image is filtered using P1, resulting in Xwf. 
Then the local variances of this filtered image are calculated. The local 
variances calculation is done using a sliding window, i.e., variances are 
calculated within overlapping blocks of n × n pixels. In our experiments, we 
choose n = 3. The result of this processing is saved into Xwfvar. By examining  
Xwfvar, we observe that the values of the variances of the watermarked areas fall 
within a certain range. We then proceed to threshold Xwfvar and produce a binary 
image Xwfbin which is the final output of this procedure and would become the 
input of the second stage of the watermark bit detection process (identification 
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of the geometrical properties of the watermark patch). The thresholding is done 
as follows: 

otherwise,0
),(,255),( 21

=

<<= TjiXTjiX wfvarwfbin   (4.15) 

In other words, we designate the areas containing the watermark patch 
by assigning them a value of 255 (white) and the other areas are designated as 
non-watermarked by assigning them the value 0 (black). The choice of the 
thresholds is a trade-off between the probability of missed detection and 
probability of false alarm (i.e., designating an area outside the watermark area 
as watermarked). Choosing a narrow gap between T1 and T2 will increase the 
probability of missed detection (i.e., designating an area within the watermark 
patch as not-watermarked) but reduce the probability of false alarm and vice 
versa. 

     
(a)     (b) 

          
(c)     (d) 

Figure 4.4. Experiment results: 
 (a) Original watermarked image, 

(b) Xwfbin, with P1 constructed by convoluting P0 with a high-pass filter kernel, 
(c) Xwfbin, when Xwf is rotated by 10˚,  

(d) Xwfbin when Xwf is reduced in size by 10%. 
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In our experiments, we observe that using P1 that is identical to P0 does 
not give a satisfactory result. In other words, the shift in the variances is too 
small to be detected. Therefore, we have to perform some optimization on the 
detector. We will follow the optimization approach discussed in Section 4.3.1. 
We therefore construct P1 as a convolution of a high-pass filter and P0. The 
high-pass filter is used to suppress the influence of the original image data, 
since it has primarily low-pass behavior. This filter has the following kernel. 
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Optimizing the detector using this high-pass filter gives an improved 
detection result. The result of our experiment is presented in Figure 4.4. Figure 
4.4(a) shows the watermarked image before processing. Figure 4.4(b) shows 
Xwfbin with P1 constructed as a convolution of a high-pass filter and P0. Figure 
4.4(c) shows Xwfbin when the watermarked image is rotated by 10˚ and then 
cropped, and Figure 4.4(d) shows Xwfbin when the watermarked image is resized 
by a factor of 10%. In all of these experiments, patch OB is embedded. 

4.4. Complexity-scalable compensation of geometric distortions 

This section describes the second proposed approach to deal with the 
watermark synchronization problem. This approach is based on a strategy for 
inverting the geometrical distortion with the use of the original image. The term 
strategy refers to the choice of the transformation class, the degree of locality of 
the transformation and the method of estimating the parameters, given a set of 
correspondence vectors. These correspondence vectors can be generated by 
comparing the detected template and a reference template or, alternatively, by 
comparing the distorted image and a reference image (by using a motion vector 
field or by applying feature point detection in combination with point 
matching). An example of such a strategy is the application of an affine 
transform, first on a global scale, later on a more local scale [9]. Another 
example is the application of a translation (e.g. resulting from block matching) 
in a coarse to fine approach [10]. While in previous approaches the choice of 
the spatial transformation is fixed, the emphasis in this chapter is on a strategy 
that is scalable in terms of transformation complexity. The strategy is to choose 
a transform that is as complex as needed to enable watermark detection, but still 
as simple as possible. In the end, the goal of the strategy is not the perfect 
registration of the image, but the recovery of the spatial synchronization of the 
watermark. 
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4.4.1. Proposed strategy 

The image registration problem can be formalized as follows. The 
spatial transform is determined using corresponding points in a distorted image 
(ik, jk) and a reference image (ik’, jk’). The corresponding points can be the result 
of point matching, block matching, etc. The proposed method uses an 
approximation method, i.e., given a set of N corresponding points, the function 
F is determined such that the corresponding points from the distorted and the 
reference images map as closely as possible. In other words, 

( ) ( ) NkjiFji kkkk ,,1,',' K=≈   (4.16) 
Function F can then be used to register the distorted image. 
 

The strategy consists of the consecutive estimation of a transform that is 
more complex than the previous one. The one that fits best, according to some 
criterion, is chosen to be applied on the distorted image, prior to watermark 
detection. 

 
The scheme is shown schematically in Figure 4.5. Basically, the 

transformation complexity is progressively increased, minimising the Mean 
Square Error (MSE) between the reference and registered image coordinates, 
hereafter to be called the point error. Minimising the point error does not 
necessarily minimise the registration error, i.e., the MSE between the pixel 
values of the registered image and reference image. The transformation does 
not control what happens to points that lie in between the N corresponding 
points used to compute the transform. Therefore, we base our choice of the 
optimally registered image on the registration error. We assume that 
minimisation of the registration error yields an approximation of an optimal 
detection probability: 
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where X and Xw represent the unwatermarked and watermarked reference 
images, respectively. Xwe is the estimation of the watermarked reference image 
Xw. The function d(.) denotes the MSE function. If the registration error has 
decreased, the complexity of the transformation is increased and the procedure 
is repeated. Otherwise, the previous attempt is kept. The optimally registered 
image is used to detect a watermark. 
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4.4.2. Orthogonal polynomial mapping 

We choose to use a polynomial mapping to implement the complexity-
scalable strategy presented in the previous section. The order of the polynomial 
mapping determines the complexity of the spatial transformation and provides a 
logical ranking in the degree of complexity in subsequent transformations. 
Commonly used transformation types such as rotation, scaling and affine 
transforms, are subclasses of polynomial transformations.  

 

 
Figure 4.5. Flowchart of the proposed strategy. 

 
For the polynomial mapping, orthogonal polynomials have been used. 

This type of polynomial mapping has been used previously for image 
registration purposes [11]. Due to the orthogonality of these polynomials, the 
complexity of the transformation can be increased without the need for 
recalculation of the parameters of lower order polynomials. 
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Equation (4.16) is split into two scalar functions, which are more 

convenient to implement [12]: 
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In the following, only the transformation f mentioned in Equation (4.18) will be 
determined; g follows in the same manner.  

 
A set of M polynomials 
 

 ( ) ( ) ( )jiPjiPjiP M ,,...,,,, 21    (4.19) 
 
is orthogonal over points (ik, jk), k = 1, …, N if the following relation holds 
between them: 
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The function f using polynomials becomes: 
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The number of matched points, N, should be much larger than the 

number of parameters to be estimated, M. If M is equal to the number of non-
collinear points, these points will map exactly on top of each other. If M << N , 
there is some robustness to overcome mismatches and to increase spatial 
accuracy. The exact number of non-collinear points that is needed to yield a 
good registration result depends on the spatial accuracy of the used points and 
the presence of mismatches. 
 

Using a set of M linearly independent functions 
 

 ( ) ( ) ( )jihjihjih M ,,...,,,, 21          (4.22) 
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a set of orthogonal polynomials can be determined by the Gram-Schmidt 
orthogonalisation process. This process uses the following notation to represent   
orthogonal functions  
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To calculate the mapping f, wxy and ax have to be determined. The 

parameters wxy (x = 1, .., M; y = 1, .., x) are computed by setting the wx1 values 
to wx1 = 1 for all x, and applying the least-squares criterion and the orthogonal-
ization property to the polynomials [12]. This results in: 
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This result is used to estimate the parameters of function f in Equation 

(4.21) using the following relation: 
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In our implementation, the following functions hi(x, y) are used: 
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Thus, the complexity of the spatial transform can be iteratively 

increased, by increasing the order of the desired mapping f and evaluating all 
polynomials having equal or smaller order. Thus, there is no preference for the i 
or j directions. 
 

Performing least squares with orthogonal polynomials offers several 
advantages over ordinary polynomials. First, closed-form expressions for the 
calculation of parameters are available (Equations 4.25 – 4.27), eliminating the 
need to solve a system of equations. Further, the parameters of lower order 
terms do not have to be recalculated when a higher order polynomial mapping 
is deemed necessary. 
 

Distortions that actually are polynomial mappings themselves are likely 
to be easily corrected. Some (non-linear) distortions that can be effectively 
approached by polynomial expansion are likely to be corrected effectively, 
given enough correct matching points. On a global scale, highly non-linear 
distortions are expected not to be corrected effectively, yielding a high BER 
after distortion correction. 

 
4.4.3. Implementation and results 

In the test setting, a multibit watermark (144 bits) is embedded in a gray 
scale image. The watermarking bits are embedded in the spatial domain by 
adding pseudo-noise patterns to image pixel blocks [3]. This scheme is chosen 
because it is quite sensitive to geometrical distortion and therefore gives a good 
indication of the performance of the distortion compensation. 

 
In [13] and [14], several feature point detectors are evaluated. Both 

select the Stephens and Harris corner detector [15], among others because it 
preserves most feature points after geometrical distortion. The detector used has 
pixel accuracy in the spatial dimension. 
 
4.4.3.1. Perfect match experiments results 

In our controlled experiments, the feature points were matched 
artificially, fully exploiting the knowledge of the applied distortion, resulting in 
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a perfect match. By perfect match we mean that no matching errors are present. 
In the case of feature points, only points that are detected in both the reference 
and the distorted image are used. This was done to assess the potential of the 
strategy in a mismatch-free environment. In the image registration experiments, 
three distributions of corresponding points are evaluated: 

1. Uniformly distributed grid markers (625); 
2. A large number of matched points from a Harris detector (350-500); 
3. A smaller number of matched points from a Harris detector (50-

100); 
 

Grid markers are artificially created markers, not present in the image, 
that undergo the same distortion as the image. Besides simple RST, affine, 
projective and bilinear transforms, several bending transformations have been 
applied, including sinusoidal bending, the barrel and pincushion transform [12].  
 

The experimental setup is shown in Figure 4.6. On the left side of the 
figure, watermark m is embedded in a test image. Then, one of the distortions 
listed in Table 4.1 is applied on the image. The distorted image, Xwd, is 
registered using the strategy presented in Section 4.4.2. Watermark detection is 
performed on the registered image, Xwe. Comparison of the detected watermark, 
m’, with the original watermark m yields the BER. 
 

 
Figure 4.6. Image registration scheme 

 
In the estimation and correction block, feature points (or grid markers) 

are extracted from both the distorted and the reference image. Exploiting the 
knowledge of the applied distortion, the match between the corresponding 
points is generated. The distorted image is registered using the strategy 
described in earlier sections. 

 
The results of our experiment for the Lena image are shown in Table 

4.1. The results can be compared with the BERs of the unregistered, i.e., 
distorted, image (listed in the first column of the table). Also listed are the 
BERs for detection when the exact inverse of the distortion is applied on the 
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image. Because the exact values of the BERs depend on the interpolation 
schemes used in the distortion and the detection, not one value is listed, but the 
minimum, maximum, mean and median values are listed. The last columns list 
the mean polynomial order that was selected for each distortion type and 
distribution of corresponding points. The images were not cropped after 
distortion. The performance of the proposed scheme is lower when the images 
are cropped, but otherwise shows a similar behavior [12]. 

 
Table 4.1. Measured BERs (in %) of the experiment 

 using perfectly matched corresponding points for the Lena image. 
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4.4.3.2. Experiment results with mismatches  

To assess the performance of the system under the presence of 
mismatches, mismatches are artificially introduced in the corresponding points 
set obtained in the experiments described in the previous section. 

 
There are several ways to introduce the mismatches. For example, they 

can be introduced such that a correspondence vector is limited in length 
(complying with the constraint of limited visual distortion), but has an arbitrary 
direction. However, this is not realistic: a matching procedure can have some 
capabilities to detect and correct mismatches. Mismatches that are more 
difficult to correct, are the mismatches that have almost the same direction and 
length as some of the matching vectors. Therefore, mismatches are introduced 
based on the direction and the standard deviation of the correct matches. For 
each of the experiments and distortions listed in the previous section, an 
increasing percentage of mismatches was introduced (1%, 5%, 10%, 15 and 
20% mismatches). 
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In some cases, the degrees of freedom to introduce mismatches had to 

be increased, especially in cases when only few feature points were available in 
the correct match, in combination with a high percentage of mismatches. In 
these situations, the feature points on average are located quite far-off. This is 
an extra effect, degrading the performance when fewer correspondence vectors 
are used. 
 

Table 4.2. Measured BERs (in %) of the experiments with mismatches 
introduced. The numbers are the averaged results of the Lena image. 

Mismatches (%) 0 1 5 10 15 20 0 1 5 10 15 20 0 1 5 10 15 20
Affine 1 3 6 10 13 22 3 4 8 14 21 29 4 8 30 36 38 37
Barrel 5 11 26 33 38 38 10 16 40 38 44 43 16 25 37 46 46 47
Bending 1 3 11 19 25 29 1 2 13 22 26 30 4 7 23 35 42 43
Bilinear 1 2 6 14 24 27 1 2 5 10 16 23 2 3 11 33 33 36
Pincushion 1 8 29 37 40 40 10 13 27 36 42 44 32 36 45 44 48 50
PLM 13 11 22 26 29 29 11 16 27 31 35 37 31 30 41 45 49 48
Projective 1 3 10 19 23 29 2 4 16 21 30 34 3 8 19 36 39 45
Rotation 1 1 6 14 16 19 2 2 8 14 18 25 1 3 25 34 40 45
Scale 7 8 11 16 18 28 3 4 7 12 18 25 3 8 16 28 41 40
Sinus 4 11 23 32 32 36 5 13 29 38 40 42 29 35 44 47 47 47
Sinus+Bending 3 10 23 31 35 36 5 12 33 38 41 40 20 32 42 44 46 48
Translation 10 11 17 23 26 30 5 4 8 11 20 20 5 6 19 25 34 35Tr

an
sf

or
m

GridMarkers 500 Feature points 100 Feature points

 
Because mismatches were introduced randomly, each realization of 

mismatches for a given percentage is different. Therefore, the experiment was 
repeated six times for each distortion type. For reasons of limited available 
computational power, this experiment was only performed on the Lena image, 
using the same correspondence vectors that were used to generate the results 
listed in Table 4.2. To assist comparison with the result of the perfect match 
experiments used in Section 4.4.3.1., these results of this experiment are 
repeated in Table 4.2. As in the previous section, the images are not cropped 
after the distortions are applied.  
 
4.5. Conclusions  

In this chapter, we have presented two approaches to deal with the 
watermark synchronization problem due to the presence of geometric 
distortions. The first approach deals with this problem by removing the strict 
dependence on spatial synchronization between the watermark and the 
watermark detector. This approach has the following advantages over classic 
noise-based schemes: 

• Invariant to translations. 
• Higher robustness against rotation and scaling. 
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However, some aspects of the proposed method still have to be improved. In 
the first place, the performance of the detector should be optimized further. As 
shown in our experiments, this is critical to the performance of the system. 
Secondly, the proposed scheme suffers from some security issues. Our 
experiments suggest that relying solely on the key used to generate P0 and P1 
may not be enough to prevent an attacker from using simple detectors (e.g., a 
high-pass filter or randomly generated P1) to get some indication of the areas 
where the watermark patch has been embedded.  

 The second approach discussed in this chapter deals with the 
synchronization problem by inverting the geometric distortion and thus 
recovering the watermark synchronization. From the experiment results shown 
in Section 4.4.3, we can draw the following conclusions: 

• There is a large improvement of the BER for distortions that actually are 
a polynomial transform. For these transformation classes the achieved 
BERs drop below or around 5% for all cases. 

• For some extremely non-linear distortions, a large improvement in BER 
performance is achievable. Depending on the correspondence vectors 
used, large improvements can be made for most highly non-linear 
distortion types. However, the BERs increase rapidly as the available 
corresponding points decrease.  

• Uniformly distributed feature points (with pixel accuracy) may give less 
improvement in BER performance than non-uniform distribution. It is 
most significant when the image was translated by ½ pixel. 

• The use of orthogonal polynomials makes the proposed approach quite 
sensitive to the presence of mismatches. Even in the case where the 
applied geometrical distortion actually is a polynomial, performance 
goes down rapidly with an increasing percentage of mismatches. This 
can be seen in Table 4.2. In particular, the presence of mismatches 
degrades the performance of the scheme when the number of 
corresponding points are low or when the geometric distortion is highly 
non-linear. 
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Chapter 5 
OBJECTIVE QUALITY 

MEASUREMENT OF 

GEOMETRICALLY DISTORTED 

IMAGES 
 
5.1. Introduction 
 

Geometric distortion has always been a problem in the development of 
watermarking systems. This distortion happens when the watermarked data 
undergoes a geometric operation. This can happen due to various reasons, but 
basically geometric distortion occurs either due to the explicit application of 
geometric transformations or as a by-product of other processes (or attacks). 
Explicit application of geometric transformation includes non-malicious 
operations performed by a user, for example resizing of an image to fit one’s 
desktop, and malicious operations for example application of random bending 
to an image using tools such as StirMark [1]. Examples of processes or attacks 
that produce geometric distortion as a by-product are the distortions incurred 
during the printing and scanning process [2] (due to the imperfections of the 
printer and/or scanner) or the distortions in video frames captured using a hand-
held camera in a theatre in the digital cinema scenario [3] (due to the position of 
the camera, lens distortions, etc.). 

We can also classify geometric distortion based on its locality. In this 
respect, geometric distortions can be classified as either global or local. In 
global geometric distortions, the underlying geometric transformation 
describing the geometric distortion applied to the whole image can be described 
using a single analytical expression and a single set of parameters associated 
with the expression. In local geometric distortions, the underlying geometric 
transformation uses different analytical expressions and/or different parameter 
sets for each part of the image.  
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There are two aspects of geometric distortion that are of interest for the 

watermarking community, namely: 

1. The watermark de-synchronizing aspect. Geometric distortion poses 
a problem for watermarking systems because it can de-synchronize the 
watermark detector, making the watermark undetectable. A lot of 
research effort has been performed in this area within the watermarking 
community. The research effort focusses on three approaches to dealing 
with this problem. The first approach is designing watermarking 
schemes that are invariant or insensitive to robust against geometric 
distortion [4,5]. The second approach involves research on methods 
(that is independent of the watermark detection) to invert the geometric 
distortion [6,7,10]. Finally, the third approach is to embed a 
synchronization signal in the watermark itself, to facilitate re-
synchronization of the watermark by the embedder in the event of 
geometric distortion [8]. 

2. The visual quality degradation aspect. Geometric distortion degrades 
the visual quality of the watermarked data. Like all other distortions that 
affect watermarking systems, distortions due to geometric 
transformation are also bounded by the maximum visual quality 
degradation it can incur before the distorted image loses any commercial 
value. It is therefore important to be able to measure such distortion. 
The result of such measurement can be fed back into the design process 
of watermarking systems robust against geometric distortions. This 
aspect of geometric distortion has not been widely discussed in the 
literature. As a result, we are currently lacking an objective measure to 
quantify such distortion. Existing objective visual quality assessment 
tools, for example PSNR, are not suitable to be used to quantify visual 
quality due to geometric distortions because they rely on the pixel-per-
pixel relationship between the original and the distorted images. An 
image distorted by geometric transformation loses most, if not all, such 
relationship to the original image. Measuring a geometrically distorted 
image using PSNR would, therefore, yield no meaningful result.  

In this chapter we address the second aspect of the geometric distortion 
problem for watermarking systems. We propose a new visual quality 
measurement method suitable for this class of image distortion. Our approach is 
based on our previous work [9]. In this paper we limit ourselves to the visual 
quality measurement of global geometric distortions on still images. This 
chapter is organized as follows. In Section 5.2, we will present the underlying 
hypothesis on which our proposed method is based. In Section 5.3, we will 
present how we test the hypothesis and quantify the geometric distortion 
applied to an image. In Section 5.4, we will present the test setup we used to 
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test our proposed method, as well as some preliminary results. Finally, in 
Section 5.5, we will present our conclusions and an outlook for further research. 

5.2. The underlying hypothesis 
 
5.2.1. Modeling global geometric transformation 

The number of possible geometric transformations that can be applied to 
an image is essentially limitless. The possibility ranges from simple 
transformations to more complex ones. An example of geometric 
transformations is the RST (rotation, scaling and translation) transform 
described by the following equation: 
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Alternatively, an example of more complex geometric transformations 
is the bilinear transform described by the following equation: 
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Due to the vast number of possible geometric transforms applied to the 
image, it is impossible to model each of them individually. There are some 
approaches that can be used to solve this problem. One approach is to use 
simpler transformation models, for example RST or affine transform, to 
approximate the underlying complex, global geometric transform [8]. The 
approach is based on the assumption that a complex geometric transformation 
applied on a global scale can be approximated by a simpler transformation 
model applied on a more local scale. Another possible approach is to use 
orthogonal polynomials to do the approximation [10]. In this chapter, we use 
local RST transform to approximate the global underlying transform. 

5.2.2. The hypothesis 

At this point, we would like to present our definition of the homogeneity 
of a global geometric distortion, as follows: A distortion is said to be 
homogenous if the underlying global transform can be approximated by one 
RST or affine transform with one set of parameters associated with it. The 
reader should note that from this definition we make a distinction between 
global and homogenous distortions. The first term refers to the locality with 
which we apply the underlying geometric transformation, while the second term 
refers to the locality of the approximation of the underlying global 
transformation using RST or affine transforms. In other words, non-
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homogenous distortions must be approximated by multiple local RST/affine 
geometric transforms. These local transforms have parameters that are varying 
from one part of the image to the other.   

The following figure presents an original image, along with two 
distorted versions of the image. The first distorted version (Figure 5.1(b)) is the 
result of rotating the original image by 3 degrees followed by cropping and 
rescaling. The second distorted version (Figure 5.1(c)) is the result of applying 
a sinusoid-based transform to the original image.  

 
(a) 

    
(b)       (c) 

Figure 5.1. Example of geometrically distorted images. 

From the visual quality point of view, it is easy to see that the first 
distortion is less disturbing compared to the second distortion. From the 
distortion homogeneity point of view, the first distortion can be classified as 
homogenous, since it can be approximated by one RST transform and its 
corresponding parameter set. The second distortion is not homogenous, because 
this distortion has to be approximated by multiple local RST transforms with 
parameter sets that are varying from one part of the image to the other. 

Based on these observations, we propose the following hypothesis 
regarding the visual quality of geometrically distorted images: The visual 
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quality of an image distorted by a global geometric distortion is determined by 
the degree of homogeneity of the geometric distortion. The less homogenous the 
distortion, the worse the visual quality would be. Furthermore, it is obvious that 
the severity of the geometric distortion itself also determines the overall visual 
quality. 

We have searched the literature to find supporting evidence for, or 
arguments against, this hypothesis. The literature we considered includes topics 
in digital watermarking, computer vision, computer graphics, image coding and 
medical sciences. However, so far we have not been able to find any related 
work on the human perceptual quality assessment for geometrically distorted 
images.  

5.3. Measuring distortion homogeneity 

 In order to be able to measure visual quality according to our 
hypothesis, we need to be able to measure distortion homogeneity. To measure 
homogeneity, we use the basic idea we presented in our previous work [9]. 
Basically, we measure distortion homogeneity by measuring the locality of the 
simple geometric transformation used to approximate the global transform.  

5.3.1. Distortion locality approximation 

 There are two approaches that we can use to find the parameters of the 
transformation which best approximate the global distortion. The first approach 
is performed using the analytical description of the underlying global distortion, 
while the second approach uses the original and distorted images directly. In 
both approaches, we first perform the approximation on a global scale and then, 
if necessary, increase the locality of the approximation to achieve the final 
result. 

5.3.1.1. Approximation using analytical description  

In this approach, we assume that we know the analytical description of 
the function D(•) that transforms the original image I into the distorted image I'. 
Therefore, the registration process can rely on the exact displacement vector of 
every pixel position in the image. Considering a field of displacement vectors 
for a given region of the image, the parameters of the simple geometric 
transformation can be computed using a least square error optimization. The 
registration criterion consists of the mean error ε of the resulting approximation.    

Let (xi,yi) be a set of original coordinates and (ui,vi) be the corresponding 
set of coordinates transformed by the function D(•). The least square error 
optimization consists of finding the set of transform parameters (p1, p2, .., pn) 
that minimizes the cost function ε. Let F(•) be the simple geometric 
transformation function used to approximate the global geometric distortion. 
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This function transforms the original coordinates (xi, yi) to the corresponding 
coordinates (xi', yi'),  
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The cost function to be minimized can then be expressed as follows: 
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where parameter bi is a weighting factor. When the simple geometric 
transformation F(•) is the RST model, this optimization yields a linear system 
whose solution can be found in [9]. 

5.3.1.2. Approximation using the original and distorted images directly  

In this approach, we do not assume knowledge of the underlying 
function describing the global distortion. Instead, only the original (I) and the 
distorted (I') images are available. We apply the simple geometric 
transformation to the original image I to produce an intermediate image I". The 
parameters of this simple geometric transform are taken within a certain range 
of parameters. There are some strategies that can be used to search the 
parameters within this set, for example exhaustive search, gradient search or 
coarse-to-fine search.  

The next step is to compute the approximation error based on pixel 
value (e.g., luminance or color) comparison. The approximation error ε is 
computed between I'' and I' as follows:  

( )2'" II −=ε      (5.6) 

where I'' and I' refers to the luminance value of the intermediate and distorted 
images (or local areas of those images), respectively. The error measurement in 
Equation (5.6) is valid if we assume that only geometric distortion has occurred 
and there are no luminance changes (e.g., brightness or contrast changes) 
between the original and the distorted images.  
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5.3.2. Comparison of the two approximation approaches 

The advantage of the first approach is that it does not involve actual 
images and the computationally expensive operations associated with them. 
This approach only compares the pixel position and is therefore faster. 
Furthermore, it enables precise characterization of a known distortion model. 
The second approach operates directly on the images. In other words, this 
approach compares actual pixel values (e.g., luminance) and is therefore 
computationally expensive. However, since the second approach deals directly 
with the image content, it has some advantages when we are trying to assess the 
quality of the distorted image. Furthermore, this approach can be used in 
scenarios where the analytical description underlying geometric distortion is not 
known. 

The second approach, as described above, is more sensitive in areas with 
texture/structure than in flat areas. As a result, the locality of the approximation 
will be less accurate in flat areas. In other words, the locality of the 
approximation in flat areas is less in areas with structure, even if both areas 
experience the same geometric distortion. Since we base our distortion 
measurement on the locality of this approximation, this means that in this case 
the flat area will be declared to have less distortion than the area with structure. 
This property can be seen as an advantage of  the second approximation 
approach over the first approach, because a human observer will also be less 
likely to notice distortion in flat areas. Using the first approach, every part of 
the image experiencing the same distortion would yield the same 
approximation. This may result in a measurement that does not correspond to 
human perception. However, if one wants to characterize the distortions 
occurring in a particular system, it might be advantageous not to depend on a 
specific content in order to measure the average (or worst case) degradation that 
the system introduces.  

In this work, we chose to use the second approach to perform the test on 
our hypothesis. Nevertheless, similar (although content-independent) results 
could be obtained using the first approach. 

5.3.3. The proposed method to measure distortion homogeneity 

The proposed methodology proceeds by iterative computations of the 
approximation error over progressively increasing approximation locality. This 
operation is repeated until either the approximation error is lower than a 
predetermined threshold or the locality of the transform reaches a 
predetermined level. We use quadtree partitioning to increase the locality of the 
approximation. The first quadtree partitioning is performed on the whole image. 
Further quadtree partitioning in subsequent iterations is performed on any 
quadtree blocks in which the approximation error is still above the 
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predetermined threshold. The block size of the quadtree structure is therefore 
dependent on the locality and accuracy of the approximation.  

The proposed procedure is illustrated in Figure 5.2. The system has two 
inputs, namely the original (I) and the distorted (I') images. Furthermore, there 
are three parameters that control the system. The parameters are the minimum 
block size Bmin, the maximum error threshold θ and the parameter set range P. 
The first parameter, Bmin, controls the precision of the locality approximation of 
the global geometric distortion. The choice of this parameter is a trade-off 
between the precision and the reliability of the approximation, as block sizes 
that are too small will make the approximation less reliable. The error threshold 
θ controls the precision of the approximation and must be traded-off with 
computation time. Finally, the choice of parameter set range (and the precision 
of its step size) in P controls the accuracy of the approximation. This parameter 
has the biggest influence on the computation time needed for the procedure, so 
one has to trade-off accuracy and computation time. As mentioned in Section 
5.3.1.2, there are some strategies that can be used to search for the correct 
parameters within the parameter set range P. For simplicity, we chose to do an 
exhaustive search in our experiments.  

 

Figure 5.2. The procedure used to measure distortion homogeneity 
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The procedure goes as follows. In the first iteration, we try to 
approximate the global underlying geometric distortion with one global RST 
transform and compute the approximation error ε. This approximation error is 
then compared to θ. If the minimum ε obtained in this process is larger than θ, 
we go to the second iteration and increase the locality of the approximation by 
performing a quadtree partitioning to both I and I'. Then we repeat the process 
described above to each corresponding block of the quadtree. In the subsequent 
iterations, we perform further quadtree partitioning for any blocks in which the 
minimum ε is larger than θ. The iterations are continued until the end condition 
is met. In our case, this means that all blocks already have ε < θ,  Bmin is reached 
or both. The result of this procedure is a quadtree partition structure showing 
the locality of the RST transform approximation. Examples of such a structure 
are shown in Figure 5.3. In this example, we set the minimal block size to be 32 
pixels. Furthermore, the parameter set of the global distortion applied to Figure 
5.3(a) is chosen to be more severe than the one applied to Figure 5.3(b). Here 
we can see that the image with the larger distortion is more finely partitioned 
than the one with less distortion. 

In order to obtain the final numerical score that will indicate the visual 
quality of the distorted image, we need to be able to quantify this quadtree 
structure. There are some possibilities to do so, including evaluating the 
average block size, the variance of the block size or the variance of the 
parameter sets associated to each block in the quadtree structure. In our 
experiments, we chose to use the average block size to quantify this structure, 
with blocks that already reach Bmin but with approximation error ε > θ being 
given a special weighting factor. The final score is computed using the 
following equation 
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and 
S = Final score 
B = Total block size 

Bo = block size of blocks where final ε < θ 
Bw = block size of blocks where final ε > θ 
N = total number of blocks 

No = total number of blocks where final ε < θ 
Nw = total number of blocks where final ε > θ 
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As a final note, we would like to point out that the quadtree structure 

examples in Figure 5.3 show how the image content influences the 
measurement procedure, as already pointed out in Section 5.3.2. In this example 
we can see that areas with a lot of texture or structure are more accurately 
approximated and finely partitioned compared to the flat areas or areas with less 
details although they undergo similar distortion. As a consequence, flat areas 
are given higher scores than more detailed areas. 

   
(a)     (b) 

Figure 5.3. Examples of the quadtree structure 

5.4. Test setup and results 
 

In order to test our hypothesis, we performed both objective and 
subjective tests. In the objective test, we performed the measurement procedure 
described in Section 5.3.3. The purpose of the subjective test is to give an 
indication of the correlation of the measurement score obtained by the objective 
test to human perception of the visual distortion. The objective test is performed 
on 8-bit grayscale images (256 × 256 pixels). The distortions applied to the test 
images are rotation, bending and swirl. For each of the last two distortions, two 
different parameter sets were used, denoted with the numbers 1 and 2 (e.g., we 
have Swirl 1 and Swirl 2). The second parameter set was chosen so that the 
transformation using this set will give more severe distortion to the image 
compared to the transformation performed using the first set. Parameter Bmin is 
set at 32 pixels. The threshold θ is determined experimentally and is chosen so 
that the measurement has enough approximation precision as well as having the 
ability to differentiate among the different distorted images. The range of 
parameter set P is as follows: rotation from -5 to 5 degrees, translation of 
maximum 10 pixels in both x and y directions, and scaling from 80% to 120% 
of the original image (or image block) size. From Equations (5.7) and (5.8), we 
can see that the maximum score that can be achieved is 256, while the 
minimum score would be 16. Some example images, along with their scores, 
are shown in Figure 5.4. The objective test scores along with the subjective test 
result for the test images are presented in Table 5.1. 
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(a)      (b) 

    
(c)      (d) 

Figure 5.4. Examples of the measurement result. 
(a) Rotated image, score=256, (b) Swirl distortion, score=21.97, 

(c) Bending distortion, parameter set 1, score=21.69,  
(d) Bending distortion, parameter set 2, score=20.08 

 
The subjective test is performed as follows. The test subjects are asked 

to look at five sets of images that are also used in the objective test. Each set 
contains the distorted versions of one test image. They are then requested to 
rank the images from the same set, starting from the one that they find the most 
distorted. Thus, we did not ask the test subjects to compare images from 
different sets. Then we compare the ranking of the images with the scores 
obtained from the objective test. This is done to get an indication of the 
correlation of the scores and the user preference. The user score shown in Table 
5.1 represents the average ranking given to a given distorted image by the test 
subjects. Thus, the lower score indicates less perceived distortion. As we can 
see from Table 5.1, the result of the subjective test can be summarized as 
follows. For images distorted using the same geometric distortion, but with 
different severity, the subjective test result is consistent with that of the 
objective test. In other words, the test subject prefers the image with the higher 
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score to the one with the lower score. However, for images distorted using 
different geometric distortions, the subjective test result is as yet inconclusive.  

Table 5.1. Objective and subjective test results 
Image Distortion Objective test 

score 
Subjective test 

score 
Rotation 256 1 
Swirl 1 29.54 4.25 
Swirl 2 27.70 3.25 

Bending 1 23.56 3.25 

F15C 

Bending 2 21.43 3.25 
Rotation 256 1 
Swirl 1 24.97 3.5 
Swirl 2 22.57 3.5 

Bending 1 20.93 3 

Baboon 

Bending 2 18.34 4 
Rotation 256 1 
Swirl 1 21.97 3.5 
Swirl 2 21.42 5 

Bending 1 18.89 2.5 

Oldcar 

Bending 2 17.91 3 
Rotation 256 1 
Swirl 1 21.42 3 
Swirl 2 20.08 4.25 

Bending 1 18.09 3 

MotoX 

Bending 2 17.14 4 
Rotation 256 1 
Swirl 1 256 3.25 
Swirl 2 37.16 4.25 

Bending 1 35.20 2.75 

Island 

Bending 2 26.09 4 
 

5.5. Conclusions and future works 

The conclusions we can draw based on the discussion in this chapter are 
as follows: 

1. We have proposed a definition of geometric distortion homogeneity, 
based on the locality of the approximation of the underlying global 
geometric transformation using RST/affine transforms. 

2. We have proposed an hypothesis of how to quantify a geometric 
distortion, based on its homogeneity. 
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3. We have proposed and tested a method to measure the perceptual 
quality of geometrically distorted images.  

The proposed system is still a work in progress and currently there are 
still some limitations that should be addressed. The improvements of these 
limitations are the topics for our future works. In particular, we think that the 
following topics should be investigated more thoroughly: 

1. Refinement of the procedure used to determine distortion homogeneity. 
In the first place, the other outputs of the approximation procedure, 
namely the parameter sets of the local transform and the approximation 
errors of each block, are also useful to measure distortion homogeneity. 
In this paper, we have not taken these into account. Secondly, as we can 
see in Table 5.1, the discriminating power of the objective test scores is 
fairly small. This could be due to the discriminating power of the 
equations we use to compute the final score being too small or due to 
the diversity in block sizes of the quadtree structure being too small. We 
would like to investigate the behavior of these factors and find a 
solution to this problem. Finally, we would like to look into other 
possible alternatives to the quadtree structure (for example, we want to 
look into the option to merge one or more blocks in the structure with 
similar distortion characteristics). 

2. Take image content more into account, since human perception of 
geometric distortion is highly influenced by the presence of certain 
structures in the image. In our experiments, this aspect has been 
indirectly taken into account due to the fact that our distortion 
homogeneity measurement procedure is influenced by image content. 
However, we would like to look into ways to explicitly involve the 
image content in the final score calculation.  

3. The subjective test described in this paper was intended to give a 
preliminary indication of the performance of the proposed method. In 
order to achieve a more reliable and representative result, we need to 
perform a more elaborate subjective test with more test images and test 
subjects. The design and implementation of such a test and the analysis 
of the test results, are discussed in the next chapter of this thesis. 
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Chapter 6 
EVALUATING THE OBJECTIVE 

QUALITY MEASUREMENT METHOD  
 
6.1. Introduction 

Research on human perception of image quality has been widely 
performed. Aspects of images considered in such research are, for example, 
color, granularity or sharpness. Another example is to test specific artifacts of a 
compression algorithm (e.g., the blocking artifact of JPEG compression) or 
watermarking system (e.g., the random noise artifact of noise-based watermark-
ing systems). Some examples of the image quality assessment for these 
distortions can be found in [1]. As a result, we already have a good 
understanding of how these aspects influence human perception of quality and 
we are able to quantify these perceptual aspects in cases where the distortion is 
near the visibility threshold. We can use the result, for example, to build a 
system to objectively measure image quality based on these aspects which 
corresponds quite well to subjective quality perception. We can also use the 
result of this research to improve the performance of various applications 
dealing with images by designing the systems such that most changes or 
distortions to the images occur in the areas that have small perceptual impact 
for human observers. The examples mentioned above, namely the compression 
algorithms and watermarking systems, are two examples of applications that 
can take advantage of this knowledge. However, the research on human 
perception of image quality has not dealt with another type of distortion that an 
image can undergo, namely geometric distortion (i.e., distortions due to 
geometric operations). As a result, we are currently unable to quantify the 
perceptual impact of geometric distortions on images.  
 

This chapter presents a study of the impact of geometric distortions on 
human perception of the quality of the affected images. The aim of this study is 
to provide both a better understanding of human perception of geometric 
distortion and a reference point with which to evaluate the performance of our 
novel objective geometric distortion measure scheme described in Chapter 5. 
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In order to perform this study we propose a user test system that is specifically 
designed to observe the impact of geometric distortion on human perception of 
image quality. The results we obtain from this test can also be useful to other 
researchers performing similar research in the fields of watermarking, image 
processing and human visual systems. Therefore, we have also made our test set 
and test results available for download on our website [3].  

 
The rest of this chapter is organized as follows. In Section 6.2, we 

present the design of our user test experiment and statistical analysis methods 
used to process the test results. In Section 6.3, we present the actual setup of our 
user test. In Section 6.4, we present and analyze the result obtained from this 
user test. In Section 6.5, we will briefly review our objective geometric 
distortion measure algorithm, present scores obtained using this method and 
evaluate its performance based on the subjective test result and compare its 
performance with other possible objective perceptual quality measurement 
systems. Finally, in Section 6.6, we present our conclusions and provide an 
outlook for further research. 
 
6.2. Test design & analysis method 

 In this section we shall discuss in more detail the test design and the 
analysis tools we use to analyze the test results. The test design and analysis 
tools we use are well known in the literature [4, 6]. They have been used, for 
example, in experiments to determine consumer preference to certain products 
or product variants (e.g., different flavors of food) [4]. However, their usage in 
evaluating perceptual impact of geometric distortions in images, to the best of 
the author’s knowledge, is novel and has never been discussed in the literature.   
 
6.2.1. Test design 

In order to evaluate the perceptual impact of geometric distortion, we 
performed a subjective test involving a panel of users, who are asked to 
evaluate a test set comprised of an original image and various distorted versions 
of it. The test subjects evaluate one pair of images at a time, comparing 2 
images and choosing the one they think is more distorted. This type of 
experiment is called the paired comparison test. There are two experiment 
designs for a paired comparison test, namely the balanced and incomplete 
designs [4, 5]. In a balanced design, a test subject has to evaluate all possible 
comparison pairs taken from the test set. In the incomplete design, a test subject 
only has to perform comparisons of part of the complete test set. The latter 
design is useful when the number of objects in the test set is very large. In our 
experiment, we used the balanced paired-comparison design. Our choice for 
this design is based on three factors. Firstly, the number of objects in our test 
set is not very large and a test subject can finish the test within a reasonable 
time frame (as a rule of thumb, we consider a test lasting 60 minutes or less to 
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be reasonable). Secondly, by asking every test subject to evaluate all objects in 
the test set we will be able to get a more complete picture of the perceptual 
quality of the images in the test set. Finally, in this design we make sure that 
each test subject evaluates an identical test set. This makes it easier to evaluate 
and compare the performance of each test subject.  
 

Let t be the number of objects in the test set. One test subject 
performing all possible comparisons of 2 objects Ai and Aj from the test set, 
evaluating each pair once, will make 
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t  paired comparisons in total. The result 

of the comparisons is usually presented in a t × t matrix. If ties are not allowed 
(i.e., a test subject must cast his/her vote for one object of the pair), the matrix 
is also called a two-way preference matrix with entries containing 1’s if the 
object was chosen and 0’s otherwise. An example of such a matrix for t = 4 is 
shown in Figure 6.1. Each entry Ai,j of the matrix is interpreted as object Ai is 
preferred to object Aj. The indices i and j refer to the rows and columns of the 
matrix, respectively. 
 

 A1 A2 A3 A4
A1 × 1 1 0 
A2 0 × 1 1 
A3 0 0 × 0 
A4 1 0 1 × 

 
Figure 6.1. An example of a preference matrix 

 
Let ai be the number of votes object Ai received during the test. In other 
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and that the average score among all objects is 
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We can extend these results to the case where we have n test subjects 

performing the paired comparison test. In this case, the test result can also be 
presented in a preference matrix similar to the one presented in Figure 6.1. 
However, each entry Ai,j of this matrix now contains the number of test subjects 
who prefer object Ai to object Aj. If again we do not allow ties, the values of Ai,j 
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will be integers ranging from 0 to n. We also note that in this case Aj,I = n – Ai,j. 
Finally, in this case, the total and average scores are expressed as )1(

2
1 −tnt  and 

)1(
2
1 −tn , respectively. 

 
6.2.2. Statistical analysis of the experiment 

After performing paired comparison tests, we obtain a preference matrix 
for each test set. Now we have to perform an analysis of this test result. We 
have two main objectives for this analysis. In the first place, we want to obtain 
the overall ranking of the test objects. The second objective is to see the relative 
quality differences between the test objects, that is, whether object Ai is 
perceived to be either similar to or very different in quality from object Aj. The 
analyses we perform on the data to achieve these objectives are the coefficient 
of consistency, the coefficent of agreement and the significance test on score 
differences. Each of these analyses is discussed in the following sections.  

 
6.2.2.1. Coefficient of consistency 

A test subject is consistent when he/she, in evaluating three objects Ax, 
Ay and Az from the test set, does not make a choice such that Ax  Ay  Az but 
Az  Ax. The arrows can be interpreted as “preferred to”. Such a condition is 
called a circular triad. While circles involving more than three objects are also 
possible, any such circles can easily be broken up into two or more circular 
triads. The preference matrix presented in Figure 6.1 has one such triad, namely 
A1  A2  A4 but A4  A1. 
 

For smaller values of t, one can easily enumerate the circular triads 
encountered. For larger t, this task becomes very tedious. However, we can 
compute the number of circular triads, c, from the scores ai using the following 
relation [4,6]: 

  

2
)1(

24
2 Tttc −−=     (6.3) 

where 

∑
=

−=
t

i
i aaT

1

2)(     (6.4) 

 
The number of circular triads c can be used to define a measure of 

consistency of the test subjects. There are different approaches to do this [4]. 
Kendall/Babington-Smith compared the number of circular triads found in the 
test to the maximum possible number of circular triads. The coefficient of 
consistency ζ is defined as follows: 
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)1(
241 2 −

−=
tt

cζ , if t odd   (6.5a) 

)4(
241 2 −

−=
tt

cζ , if t even   (6.5b) 

 
There are no inconsistencies if, and only if, ζ = 1. This number will move to 
zero as the number of circular triads, thus the inconsistencies, increases.  
 

The coefficient of consistency can be used in the following ways. In the 
first place, we can use this coefficient to judge the quality of the test subject. 
Secondly, we can use this coefficient as an indication of the similarity of the 
test objects. If, on average, the test subjects are inconsistent (either for the 
whole data set or a subset thereof), we can conclude that the test objects being 
evaluated are very similar and thus it is difficult to make a consistent 
judgement. Otherwise, if one particular test subject is inconsistent while the 
other test subjects are – on average – consistent, we may conclude that this 
particular subject is not performing well. If the consistency of this subject is 
significantly lower than average, we may consider removing the result obtained 
by this subject from further analysis. 

 
6.2.2.2. Coefficient of agreement 

The coefficient of agreement shows us the diversity of preferences 
among n test subjects. Complete agreement is reached when all n test subjects 
make identical choices during the test. From Section 6.2.1, we see that if every 
subject had made the same choice during the test (in other words, if there has 
been complete agreement), then half of the entries in the preference matrix will 
be equal to n, while the other half would be zero. Alternatively, in the worst 
case situation, all entries will be equal to n/2 (if n is even) or (n ± 1)/2 if n is 
odd.   
 

It is obvious that the minimum number of test subjects, n, that we need 
in order to be able to measure agreement is 2. Each time 2 test subjects make 
the same decision regarding a pair of test objects Ai and Aj, we say that we have 
one agreement regarding this pair. In other words, we measure the agreement 
by counting the number of pairs of test subjects that make the same decision 
about each pair of test objects. We do this by computing τ, defined as 
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In Equation (6.6), 







2

ijA
 gives us the number of pairs of test subjects 

making the same choice regarding objects Ai and Aj. Thus τ gives us the total 
number of agreements among n test subjects evaluating t objects. Obviously, 
when Ai,j = 1 we do not have any agreement among the subjects and the 
contribution of this particular Ai,j to τ would be zero. If Ai,j = 0, it means that all 
test subjects agree not to choose Ai over Aj. Although the contribution of this Ai,j 
to τ is also zero, the number of agreements regarding this pair of test objects 
will be reflected by the value of Aj,i.  
 

We have 

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


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2
t  pairs of comparisons and 
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
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
2
n  possible pairs of subjects, 

therefore the maximum number of agreements between the subjects is given by 
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Meanwhile, the minimum value of τ is given by 
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We can also express τ in a more computationally convenient way, as follows. 
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Kendall/Babington-Smith [6] defines the coefficient of agreement, u, as follows  
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The value of u = 1 if and only if there is complete agreement among the 

test subjects, and it decreases when there is less agreement among the test 
subjects. The minimum value of u is -1/(n-1) if n is even or -1/n if n is odd. The 
lowest possible value of u is -1 which can only be achieved when n = 2. This 
value of u shows the strongest form of disagreement between the test subjects, 
namely that the test subjects completely contradict each other.  
 

We can perform a hypothesis test to test the significance of the value u. 
The null hypothesis is that all test subjects cast their preference completely at 
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random. The alternative hypothesis is that the value of u is greater than what 
one would expect if the choices would have been made completely at random. 
To test the significance of u we use the following statistic, as proposed in [4] 
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which has χ2 distribution with 
2)2(
)1(

2 −
−






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
n

nnt  degrees of freedom.  

As n increases, the expression in Equation (6.11) reduces to a simpler 
form [7] 
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with 







2
t  degrees of freedom. 

It is important to note that consistency and agreement are two different 
concepts. Therefore, a high u value does not necessarily imply the absence of 
inconsistencies and vice versa.  

 
The coefficient of agreement also shows whether the test objects, on 

average, received equal preference from the test subjects. If the overall 
coefficient of agreement is very low we can expect that the score of each test 
object will be very close to the average scores of all test objects, i.e., there is no 
significant difference among the scores. As a consequence, assigning ranks to 
the objects or drawing the conclusion that one object is better (or worse) than 
the others is pointless since the observed score differences (if any) cannot be 
used to support the conclusion. On the other hand, strong agreement among the 
test subjects indicates that there exist significant differences among the scores.  

 
6.2.2.3. Significance test of the score difference 

A significance test of the score difference is performed in order to see 
whether the perceptual quality of any 2 objects from the test set is perceived as 
different. In other words, the perceptual quality of object Ai is declared to be 
different from the quality of object Aj, only if ai is significantly different from 
aj. Otherwise, we have to conclude that the test subjects consider the perceptual 
quality of the 2 objects to be similar.  
 

This problem is equivalent to the problem of dividing the obtained set of 
scores S = {a1, a2, …, at} into sub-groups such that the variance-normalized 
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range (the difference of the largest and lowest values) of the scores within each 
group,  

ia

aaR
σ

)( minmax −=     (6.13) 

is lower or equal to a certain value Rc (in other words, the difference of any 2 
scores within the group must be lower or equal to Rc), which depends on the 
value of  the significance level α. In other words, we want to find Rc such that 
the probability P[R ≥ Rc] is lower or equal to the chosen significance level α. 
We declare the objects within each group to be not significantly different, while 
those from different groups are declared to be significantly different. By 
adjusting the value of α, we can adjust the size of the groups. This in turn 
controls the probability of false positives (declaring 2 objects to be significantly 
different when they are not) and false negatives. The larger the groups, the 
higher the probability of false negatives. On the other hand, the smaller the 
groups, the higher the probability of false positives.     
 

The distribution of the range R is asymptotically the same as the 
distribution of variance-normalized range, Wt, of a set of normal random 
variables with variance = 1 and t samples [4]. Therefore, we can use the 
following relation to approximate P[R ≥ Rc]  

  ]2
12

[ , nt

R
WP

c

t

−
≥α     (6.14) 

 
In Equation (6.14), Wt,α is the value of the upper percentage point of Wt at 
significance point α. The values of Wt,α are tabulated in statistics books for 
example the one provided in [8]. 
 
The significance test for the differences between scores proceeds as follows: 

1. Choose the desired significance level α. 
2. Compute the critical value Rc using the following relation 





 +=

4
1

2
1

, ntWR tc α      (6.15) 

3. Any difference between 2 scores that is lower than Rc is declared to be 
insignificant. Otherwise, the score difference is declared significant. 

 
6.3. Test procedure 

 User test mechanism to measure the impact of geometric distortion on 
the human perception of image quality is not widely discussed in the literature. 
Therefore, we have proposed a new user test system that is specifically 
designed for this purpose. In this section we shall describe in more detail the 
design of a suitable test set and user interface for such user test system.   
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6.3.1. Test set 

We used two images, Bird and Kremlin, as a basis to build the test set 
for our experiment. These images, shown in Figure 6.2, are 8-bit grayscale 
images with 512 × 512 pixels resolution. The images are chosen primarily due 
to their content. The first image, Bird, does not have many structures such as 
straight lines. Furthermore, not every test subject is very familiar with the shape 
of a bird (in particular the species of bird depicted in the image). So in this case, 
a subject should have little (if any) “mental picture” of what things should look 
like. On the other hand, the Kremlin picture has a lot of structures and even 
though a test subject may not be familiar with the Kremlin, he/she should have 
some prior knowledge of what buildings should look like. 

 
We used 17 different versions of the images. Each version is 

geometrically distorted in a different way. Thus in our test we use t = 17. The 
geometric distortions used in the experiment are shown in Table 6.1. In this 
table, we use the notation Ai, with i = 1, 2, … 17 to identify each image. 

 
The distortions chosen for the test set range from distortions that are 

perceptually not disturbing to distortions that are easily visible. The global 
bending distortions {A6, A7, A8, A9} are chosen because these kinds of 
distortions are, up to a certain extent, visually not very disturbing in natural 
images. However, this distortion severely affects the PSNR value of the 
distorted images. The sinusoid (stretch-shrink) distortions {A10, A11, A12, A13} 
distort the image by locally stretching and shrinking the image. Depending on 
the image content, this kind of distortion may not be perceptually disturbing. 
The rest of the distortions distorts the image by shifting the pixels to the 
left/right or upwards/downwards. These distortions are easily visible, even 
when the severity is low. The distortions {A2, A3, A4, A5} apply the same 
distortion severity over the whole image, while the severity of distortions {A14, 
A15, A16, A17} is varied within the image. Some examples of the geometric 
distortions used in the experiment are shown in Figure 6.3. 
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(a)     (b) 

Figure 6.2. The 2 basis images: (a) Bird and (b) Kremlin 
 

Table 6.1. Geometric distortions used in the experiment 
Image Description 

A1 No distortion (original image) 
A2 Sinusoid, amplitude factor = 0.2, 5 periods 
A3 Sinusoid, amplitude factor = 0.2, 10 periods 
A4 Sinusoid, amplitude factor = 0.5, 5 periods 
A5 Sinusoid, amplitude factor = 0.5, 10 periods 
A6 Global bending, bending factor = 0.8 
A7 Global bending, bending factor = - 0.8  
A8 Global bending, bending factor = 3 
A9 Global bending, bending factor = -3  
A10 Sinusoid (stretch-shrink), scaling factor 1, 0.5 period 
A11 Sinusoid (stretch-shrink), scaling factor 1, 1 period 
A12 Sinusoid (stretch-shrink), scaling factor 3, 0.5 period 
A13 Sinusoid (stretch-shrink), scaling factor 3, 1 period 
A14 Sinusoid (increasing freq), amplitude factor = 0.2, starting period = 1,  

freq increase factor = 4 
A15 Sinusoid (increasing freq), amplitude factor = 0.2, starting period = 1,  

freq increase factor = 9 
A16 Sinusoid (increasing amplitude), start amplitude factor = 0.1, 5 periods, 

amplitude increase factor = 4 
A17 Sinusoid (increasing amplitude), start amplitude factor = 0.1, 5 periods, 

amplitude increase factor = 9 
 

We then proceed to make all possible comparison pairs out of the 17 
images, including the comparison of an image with itself. In each pair, we 
designate the first image as the left image and the other as the right image. This 
refers to how the images are to be presented to the subjects (see Figure 6.4). We 
then repeat each pair once, with the left-right ordering of the images reversed. 
Thus we have 306 pairs of images for each of the two images for a total of 612 
pairs of images in the test set.  
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(a)    (b) 

  
(c) 

Figure 6.3. Examples of the geometric distortions: 
 (a) Distortion A5, (b) Distortion A13 and (c) Distortion A16 
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Figure 6.4. The user interface used in the experiment 

 
6.3.2. Test subjects  

The user test experiment involved 16 subjects, consisting of 12 male 
(IL, ON, PD, AH, ES, DS, IS, JO, JK, JJ, KK and RH) and 4 female (KC, CL, 
CE and ID) subjects. The subjects have different backgrounds and levels of 
familiarity with the field of digital image processing. As discussed in Section 
6.3.1, each user will examine each pair of test images twice in one test session. 
Furthermore, subjects IL, DS and IS each perform 3 test sessions. Therefore, in 
the tables found in Section 6.4, a number will be added to the subject names to 
show different test sessions (eg., IL1 shows the result of subject IL from the 1st 
test, etc.). These repetitions are done to see the difference between test results 
for one person when the test is repeated. We assume that each repetition of the 
test (both within a single test session and between test sessions) is independent. 
Therefore, we have the total number of test repetitions n = 44.  

 
6.3.3. Test procedure 

The test is performed on a PC with a 19-inch flatscreen CRT monitor. 
The resolution is set at 1152 × 864 pixels. The vertical refresh rate of the 
monitor is set at 75 Hz. To perform the test, a graphical user interface is used. 
This user interface is shown in Figure 6.4. 
 
6.4. Test results and analysis 

6.4.1. User preference matrix 

After performing the user test, we obtain the preference matrices for the 
Bird and Kremlin images. In Figures 6.5(a) and 6.5(b), we show the preference 
matrices obtained for the Bird and Kremlin test images. These preference 
matrices are available for downloading from our website [3]. The images codes 
refer to Table 6.1. The column ai shows the sum of each row, i.e., the score of 
each image Ai. Since in our experiment the test subject is asked to choose the 
image with the most distortion, a smaller score ai means that the image is 
perceptually better. 
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6.4.2. Statistical analysis of the preference matrix 

6.4.2.1. Coefficient of consistency (ζ) 

We measured the coefficient of consistency for individual test subjects 
using Equation (6.5a) since we have t = 17. Since each test subject performs the 
user test twice per session, we use the average value of ζ as an indication of 
each subject’s consistency. The average coefficient of consistency is presented 
in Table 6.2. 

 
Table 6.2. Coefficient of consistency (ζ) 

Subject Bird Kremlin Subject Bird Kremlin 
IL1 0.83 0.93 DS1 0.67 0.87 
IL2 0.83 0.91 DS2 0.73 0.92 
IL3 0.85 0.95 DS3 0.82 0.93 
KC 0.85 0.86 IS1 0.92 0.95 
ON 0.94 0.98 IS2 0.94 0.93 
PD 0.70 0.87 IS3 0.94 0.97 
AH 0.87 0.96 JO 0.93 0.97 
CL 0.82 0.90 JK 0.90 0.96 
CE 0.83 0.94 JJ 0.85 0.88 
ES 0.89 0.94 KK 0.70 0.79 
ID 0.66 0.90 RH 0.90 0.95 

 
From Table 6.2 we can conclude that in general the test subjects are 

consistent in their decisions. We can also see that in general the values of ζ for 
the Bird image are lower than those of the Kremlin image. This is due to the 
fact that the Kremlin image contains more structure compared to the Bird 
image, which helps the test subjects to make consistent decisions. Furthermore, 
the unfamiliarity of the test subjects with the particular species of bird depicted 
in the image also makes it difficult to make consistent decisions. 

 
6.4.2.2. Coefficient of agreement (u) 

We measured two types of coefficient of agreement from the preference 
matrix. The first is the overall coefficient of agreement that measures the 
agreement among all test subjects in the experiment. The second is the 
individual coefficient of agreement that measures the agreement of a test 
subject with him-/herself during the two repetitions in a test session. A low u 
value in this case would indicate that the subject is confused and does not have 
a clear preference for the images being shown. 
 

For the overall coefficient of agreement, we have n = 44 and t = 17. For 
these values, the maximum and minimum values of u are 1 and -0.0227, 
respectively. From the preference matrices, we can calculate that the overall 
coefficient of agreements are ubird = 0.574 and ukremlin = 0.731. Performing the 
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significance test on both u values using the method described in Section 6.2.2.2 
shows that in both cases the value of u is significant at α = 0.05. Therefore, we 
can conclude that in both cases there are strong agreements among the test 
subjects. However, we can also see that the agreement in the case of the Bird 
image is much weaker than the Kremlin image, due to the image content.  

 
Table 6.3. Individual Coefficient of Agreements(u) 

Subject Bird Kremlin Subject Bird Kremlin 
IL1 0.559 0.750 DS1 0.265 0.647 
IL2 0.574 0.721 DS2 0.471 0.794 
IL3 0.677 0.779 DS3 0.559 0.750 
KC 0.662 0.691 IS1 0.721 0.882 
ON 0.779 0.868 IS2 0.809 0.721 
PD 0.485 0.677 IS3 0.735 0.838 
AH 0.559 0.794 JO 0.721 0.853 
CL 0.456 0.750 JK 0.824 0.735 
CE 0.618 0.691 JJ 0.529 0.691 
ES 0.765 0.765 KK 0.368 0.515 
ID 0.279 0.691 RH 0.691 0.765 

 
For the individual coefficient of agreement, we have n = 2 and t = 17. In 

this case, we have -1 ≤ u ≤ 1. The individual coefficient of agreements are 
presented in Table 6.3. As expected, we see that all subjects have larger u 
values for the Kremlin image. The exceptions to this are subject ES, who has 
the same u values for both images, and subjects IS2 and JK, who have larger u 
for the Bird image. After performing the significance test on the values of u, we 
can conclude that all subjects have u values that are significant at α = 0.05 for 
both the Bird and Kremlin images.  

 
6.4.2.3. Significance test of score differences 

The strong agreements among the test subjects for both images, as 
shown in the previous section, show that there exist significant differences 
among the scores of the test objects. We use the procedure described in Section 
6.2.2.4 to find the critical value for the score difference for the images, at 
significance level α = 0.05. From [8] we have Wt, α= 4.89. Substituting this 
value into Equation (6.15), we have Rc

 = 67.12 and thus we set R = 68. 
Therefore, only objects having a score difference of more than 68 are to be 
declared significantly different. 
 

In Figure 6.6, we present the grouping of the images in the test set based 
on the significance of the score differences. The images have been sorted from 
left to right based on their scores, starting from the image with the smallest 
score (i.e., perceived to have the highest quality) to the one with the largest 
score. The score for each image is shown directly under the image code. Images 
having a score difference smaller than 68 are grouped together. This is 
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represented by the shaded boxes under the image code. For example, in Figure 
6.6(a), images A14 and A13 belong to one group. 
 
A11 A1 A7 A6 A8 A10 A2 A9 A14 A13 A12 A3 A15 A4 A16 A5 A17 
105 123 157 175 188 206 261 265 326 373 403 425 497 557 577 672 674 

(a) 
 

A1 A10 A12 A6 A11 A7 A13 A8 A2 A14 A9 A3 A15 A4 A16 A17 A5 
85 94 108 113 154 202 274 315 348 381 399 489 495 579 592 675 681 

(b) 
Figure 6.6. Score grouping for: (a) Bird image and (b) Kremlin image 

   
From Figure 6.6, we can see that the images occupying the last 6 

positions of the ranking for both the Bird and Kremlin images are distorted 
using the same distortion. Furthermore, they are sorted in the same order 
(except for images A5 and A17, but the difference between their scores is not 
significant). Thus we can conclude that these distortions are perceived similarly 
by the test subjects, regardless of the image content. These distortions occupy 
the “lower quality” segment of the ranking so we can also conclude that the 
distortions are so severe that the image content no longer plays a significant 
role. For the other images, the influence of image content on the perceived 
quality of the distorted images is larger.  
 

Table 6.4. Group u values  
Bird Kremlin 

Group u  Significant? Group u  Significant? 
A11A1A7 0.006 No  A1 A10 A12 A6 0.008 No  

A1A7A6A8 0.061 Yes A10 A12 A6 A11 0.03 Yes 
A7A6A8A10 0.041 Yes A11 A7 0.011 No  
A10A2A9 0.07 Yes A13 A8 0.08 Yes 
A2A9A14 0.085 Yes A8 A2 A14 0.175 Yes 
A14A13 -0.004 No A2 A14 A9 0.054 Yes 

A13A12A3 -0.003 No A3 A15 -0.021 No 
A15A4 0.148 Yes A4A16 0.112 Yes 
A4A16 0.08 Yes A17 A5 0.011 No 
A5A17 -0.015 No - - - 

 
Table 6.4 shows the overall u values for each score group. We expect 

that when the images in a group do not have significantly different scores, there 
will not be any clear preference for any of them among the test subjects and 
therefore the u values should be low. The groups are presented in the 1st and 4th 
columns using their members as group names. The 3rd and 6th columns of the 
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table show the result of the significance test for u, as described in Section 
6.2.2.2, with significance level α = 0.05. 

 
We can conclude from Table 6.4 that the u values for each group are 

very low. Some groups even have u values that are not significantly larger than 
the u values that would have been achieved had the votes within that group 
been cast at random. This result shows that indeed the grouping of the images 
performed based on the significance of score differences has produced groups 
within which the perceived quality is difficult to distinguish. 

 
6.4.3. Conclusions 

From the analysis of the user test results, we can draw the following 
conclusions: 

1. The test objects are generally perceptually distinguishable by the test 
subjects. This is supported by the fact that the consistency of the test 
subjects is relatively high, as shown in Table 6.2. Furthermore, we also 
see that the individual u values (shown Table 6.3) are also high.   

2. There is a general agreement as to the relative perceptual quality of the 
test images among the test subjects. This is supported by both the high 
overall u values. Therefore, we can make a ranking of the images based 
on their perceived quality. 

3. For some images, the relative perceptual quality among them is not 
clearly distinguishable. We can see this from the grouping of the scores 
based on the significance test of score differences. This is further 
supported by the lack of agreement among test subjects regarding the 
relative quality of images within such groups. 

 
6.5. Evaluation of the objective perceptual quality measurement method 

6.5.1. Overview of the method 

The objective geometric distortion measurement is based on the ideas in 
our previously published work [9] and further developed and described in [2]. 
The algorithm is based on the hypothesis that the perceptual quality of a 
geometrically distorted image depends on the homogeneity of the geometric 
distortion. We call our proposed scheme the Homogeneity-based Perceptual 
Quality Measurement (HPQM). The less homogenous the geometric distortion 
is, the lower the perceptual quality of the image will be. We proposed a method 
to measure this homogeneity by approximating the underlying geometric 
distortion using simple RST approximation. We increase the locality of our 
approximation until the level of approximation error is lower than a 
predetermined threshold or until the locality of the approximation reaches a 
predetermined maximum. The locality is increased using quadtree partitioning 
of the image, where smaller block sizes indicate higher approximation locality. 
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We then determine the score (i.e., the quality) of the image based on the 
resulting quadtree structure. In the objective test, the score that can be achieved 
by an image is normalized to the range of 0 – 100. A more detailed discussion 
of the proposed objective measurement algorithm has been presented in Chapter 
5 of this thesis. 
 

We have implemented some modifications to the algorithm to improve 
its performance. We briefly discuss the modifications as follows. The first 
modification is applied to the RST/affine parameter estimation procedure. In 
Chapter 5, we use an exhaustive (brute-force) search to estimate the local 
RST/affine transformation parameters. The main drawback of this approach is 
its slow speed. In order to be able to finish the calculations within a reasonable 
time-frame we have to severely limit the range of the RST/affine parameter 
search space. Furthermore, we also have to coarsely sample this search space. 
This in turn will limit the precision of the estimation process. In this chapter we 
base our scheme on the Optical Flow Estimation (OFE) algorithm to estimate 
the RST/affine parameters [10, 11]. The use of this algorithm significantly 
improves the speed of the system and also increases the precision of the 
parameter estimation process. We performed the (OFE) algorithm in four 
resolution levels, namely 1/8 resolution, ¼ resolution, ½ resolution and the 
original full resolution. 

 
The second modification is applied to the computation of the final score 

of the distorted image. In Chapter 5, we only take into account the average 
block size of the quadtree partitioning and the residual error of the blocks to 
compute the final score. In this chapter, we further fine tune the scoring system 
by taking into account the estimated RST/affine parameters associated with 
each block. We look at these parameters to see they deviate from the 
RST/affine parameters when there is no RST/affine distortion. In our 
experiments, the deviation is expressed as the l-2 norm distance between the 2 
sets of parameters. In calculating the deviation, the parameters for Rotation and 
Scaling are given larger weights compared to the parameters for Translation 
(the weights are experimentally determined). This is done since in our 
observation, the presence of Rotation and Scaling seems to be more visually 
disturbing compared to Translation. The larger the deviation of the estimated 
parameters, the lower the score for the block. Our experimental results show 
that this modification improves the performance of the measurement algorithm 
and makes it better match the result of the subjective test results. This is 
because even when the RST/affine transformation of a block can be perfectly 
estimated (i.e., zero residual error), such a block can still heavily influence the 
overall perceptual quality of the image if the local RST/affine transformation is 
severe.  
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6.5.2. Performance evaluation  

In this section we shall evaluate the performance of our proposed 
objective quality measurement algorithm. In this performance evaluation we 
use the results of the subjective-test as a ground truth. In other words, the 
proposed algorithm will be considered to be performing well if its results have a 
good correspondence to the subjective-test results. Furthermore, in order to 
evaluate the performance of the proposed objective quality measurement 
algorithm relative to the performance of other possible measurement schemes, 
we also evaluate the performances of two other possible objective quality 
measurement schemes. The other possible measurement schemes we evaluate in 
this section are PSNR measurement and Motion-Estimation (ME)-based 
measurement scheme. 

 
The PSNR measurement is a widely used tool used to evaluate the 

objective quality of images. Although this measurement does not always  
correspond well to human perception of quality, its performance is good enough 
to evaluate the quality of, for example, images degraded by additive noise. 
However, PSNR measurement relies heavily on the pixel-per-pixel 
correspondence between the images being evaluated. Since geometric distortion 
destroys this correspondence, PSNR measurement is not well suited for 
evaluating geometrically distorted images. Therefore, in our experiments the 
results of the PSNR measurement are used to indicate the worst-case scenario 
(i.e., an ineffective measurement scheme). 
 

The second alternative objective quality measurement scheme we 
evaluate is an ME-based measurement scheme. This measurement scheme is 
inspired by the use of motion estimation techniques in image and video 
watermarking to deal with geometric distortion for example the technique 
presented in [12]. In order to use the motion estimation technique as a 
measurement scheme we take into account two outputs of the motion estimation 
process, namely the motion vector entropy and the variance of the prediction 
error. The motion vector entropy is used to indicate the “activity” of the 
distortion. A high activity means that various parts of the image are distorted in 
a different way. The higher the activity of the distortion, the lower the 
perceptual quality of the image. The variance of the prediction error shows the 
residual error after the motion estimation and compensation process. A large 
error variance indicates a heavy distortion and thus a lower perceptual quality. 
Our observations indicate that the motion vector entropy plays a more 
important role in determining the perceptual quality of the image. Therefore, we 
give this measurement parameter a larger weight than the residual error 
variance. These weights are determined experimentally. The proposed ME-
based quality measurement (MEQM) scheme is presented in Figure 6.7. In our 
experiments, we chose a block size of 16 × 16 pixels, maximum displacement 
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of 7 pixels and full-search method. This ME-based measurement approach is 
somewhat similar to the HPQM approach with two main differences. The first 
difference between the two is the simpler approximation model of the MEQM 
scheme. The MEQM scheme uses only translation instead of an RTS/affine  
model used by HPQM. The second difference is in the locality of the 
approximation. The MEQM scheme uses a fixed locality for the approximation. 
This locality is determined by the chosen block size. In other words, we can 
regard the MEQM scheme as a simpler, more restricted, version of the HPQM.  
 

 
Figure 6.7. An ME-based measurement scheme 

 
In evaluating the performance of the objective quality measurements, 

we look at the intra- and inter-distortion comparisons. For intra-distortion 
comparisons, we evaluate the scores of the images within one type of geometric 
distortion, but with different distortion parameters. For example, we perform an 
intra-distortion comparison by evaluating the scores of images A2, A3, A4 and A5 
that are distorted by the same sinusoid distortion but with different parameters 
(see Table 6.1). In this comparison, an image with a more severe distortion 
parameters should get a lower score. For inter-distortion comparisons, we 
evaluate the scores of all images in the test set. This is a more difficult test for 
the objective quality measurement schemes since they have to be able to 
indicate the relative perceptual qualities between different types of geometric 
distortions.  

 
All measurement schemes that we evaluated in our experiments, 

including PSNR measurement, perform well in the intra-distortion comparison. 
In other words, the images distorted with a more severe parameter set are 
correctly given lower scores. In order to evaluate the performance of the 
objective quality measurement schemes in performing inter-distortion 
comparisons, we plot their results against the subjective test scores. The 
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comparison plots for the Bird image set is shown in Figure 6.8. The plots for 
the Kremlin image set show similar behavior. 
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Figure 6.8. Result comparisons for the Bird image: 
(a) User test vs. HPQM, (b) User test vs. PSNR 
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(c) 

Figure 6.8. (continued):  
(c) User test vs. MEQM 

 
From Figure 6.8(b) we can see that the PSNR measurement has a very 

poor correspondence to the subjective test result. This is shown by the 
regression line that is virtually horizontal. The value of the correlation 
coefficient ρ in this case also reflects this fact, namely we have ρup = 0.14. The 
MEQM scheme performs much better than PSNR measurement as shown in 
Figure 6.8(c) and with ρum = -0.32. We can also see that the HPQM scheme 
gives the best performance among the three evaluated schemes, as shown in 
Figure 6.8 (a) and with ρuh = -0.6. The negative values of ρum and ρuh correctly 
reflect the fact that in our experiments a larger subjective test score represents a 
lower perceptual quality. 
 

If we evaluate Figure 6.8(a) we can see that image A13 does not properly 
fit the behavior of the rest of the data set and can be considered an outlier. 
Removing this image from the data set and recalculating the correlation 
coefficient, we get ρuo = -0.87. In general, we observe the HPQM scheme 
cannot handle images distorted by the sinusoid (stretch-shrink) distortion (see 
Table 6.1) well, except for image A10

1. At present, we do not yet have a 
satisfactory explanation regarding this phenomenon. In the case of image A10, 
the geometric transformation applied to this image is similar to the one 
implemented in television broadcasting when it is necessary to convert video 
frames from one aspect ratio to another. This transformation is perceptually not 
disturbing (unless there is a lot of movement, for example camera panning), and 
                                                 
1 Similarly, the MEQM scheme also seems to have difficulties in dealing with this type of 
distortions. 
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therefore, our test subjects give this image a high ranking. In this distortion, the 
image is stretched slightly in the horizontal and vertical direction. The slight 
increase in image width and height is compensated by shrinking the outer parts 
of the image. This distortion can be approximated by slightly enlarging the 
original image. Since this is a homogenous RTS approximation, the HPQM 
scheme gives this image a high score. Image A11 of the Bird test set is 
interesting since the subjects prefer this image to the undistorted image A1. This 
is probably due to the unfamiliarity of the subjects to the bird species shown in 
the picture. Apparently, the test subjects get the impression that the size of the 
bird’s head in the original image was either too large or too flat. Therefore, they 
preferred the image in which the head of the bird is slightly shrunk horizontally 
(and consequently slightly rounder). The fact that this does not happen in the 
Kremlin test set (see Figure 6.6.(b)) seems to support this conclusion. 
 
6.6. Conclusion and future works 

In this chapter, we have described the method we use to perform a 
perceptual user test for geometrically distorted images. We also described the 
statistical tools we use to analyze the results of the user test. The result of the 
user test is then used as a ground truth to validate our objective perceptual 
quality measurement scheme, the HPQM, which is based on the hypothesis that 
the perceptual quality of a distorted image depends on the homogeneity of the 
geometric transformation causing the distortion. Furthermore, in order to have a 
better assessment of the performance of the HPQM, we also compare its 
performance to the performance of the PSNR measurement and the MEQM 
scheme. In our experiments, we evaluate the performance of all three objective 
measurement schemes in two areas, namely in performing intra- and inter- 
distortion comparisons. 
 

All objective measurements evaluated in our experiments, the HPQM, 
PSNR and MEQM, give similar performance in performing intra-distortion 
comparisons. For inter-distortion comparisons, the PSNR measurement 
performs poorly. The MEQM and HPQM schemes outperform PSNR 
measurement in this category, with the HPQM giving the best performance of 
among these two schemes.  

 
While the amount of data collected in our experiments is not yet large 

enough to form firm conclusions, we observe a very strong tendency that our 
HPQM scheme has a very good overall correspondence to the results of the 
subjective test. The scheme is not yet perfect, however, and we still observe 
some discrepancies between the ranking of the images generated by HPQM to 
that generated by the subjective test result.  
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In the future, more measurements and user test experiments similar to 

the one described and analyzed in this chapter should be performed. The data 
collected from such experiments can than be used to further validate or refine 
the hypothesis and to further fine-tune the performance of the HPQM scheme. 
Finally, other objective quality measurement approaches should also be 
explored and tested.  
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Chapter 7 
CONCLUDING REMARKS 
 
7.1. Looking back: Summary of the results 

 In this thesis, we discussed two challenges in watermarking image and 
video data. In Chapter 3, we discussed the challenges of embedding digital 
watermarks in low bit-rate compressed video, where we presented a scheme to 
embed watermarks into low bit-rate MPEG2 video. As discussed in Chapter 3, 
at low bit-rates (less than 256 kbps) the main limitation to the performance of 
this scheme is the performance of the MPEG2 encoder. Further research in the 
area of low bit-rate video watermarking should therefore move to video 
encoders with better low bit-rate performance, for example MPEG4. Examples 
from the literature of low bit-rate video watermarking for standard MPEG4 
video have been discussed in Chapter 3. Furthermore, currently we have the 
popular DivX and Xvid formats which are also based on MPEG4. These 
formats are particularly popular for the production of small, but relatively high 
quality “rips” of movies distributed on DVD, which are then distributed 
illegally over the internet. Therefore, in copyright protection scenarios, the 
development of watermarking schemes robust against these compression 
schemes is very important. 
 
 Despite the continuing decline of the price of bandwidth and storage 
space today, low bit-rate images and video will continue to play an important 
role. In addition to the application discussed above, nowadays we see the 
increasing importance and popularity of devices such as mobile phones and 
PDA’s. Currently, these devices are also used to send images and video. These 
images and videos will have to be compressed in low bit-rate due to bandwidth 
and device limitations. If these images and videos are to be watermarked, a 
watermarking scheme designed for low bit-rate data will play a crucial role.  
 
 The second problem discussed in this thesis is the problem of dealing 
with geometric distortion in images and video. As discussed in Chapters 4, 5 
and 6, geometric distortion has two aspects. The first aspect deals with the 
synchronization of the watermark and the second aspect deals with the 
perceptual quality of the attacked images or videos. The main quality a 
watermarking algorithm has to posses to be able to be robust against this 
distortion is the ability to resist the desynchronizing effect of the distortion. One 
way to achieve this is by removing the dependence of the watermark on strict 
synchronization to the watermark detector. The first part of Chapter 4 discusses 
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the concept of such a watermarking system. Currently, the problem with this 
concept is the security aspect, since it is fairly easy for an attacker to detect and 
possibly remove the watermark. An alternative solution to this problem is to 
design the watermark such that it can be resynchronized with the detector after 
a geometric distortion. One way to do this is by using the features of the 
original undistorted host data as reference points to reverse the distortion 
incurred by the geometric transformation. In the second part of Chapter 4, a 
watermarking scheme employing this approach has been discussed. We show 
that this scheme can be implemented on top of an existing watermarking system 
to increase its robustness against geometric distortion. However, this solution 
still suffers from the unreliability of current feature extraction and matching 
algorithms. Such unreliability can result in the presence of mismatches of the 
feature points. Currently the watermarking approach presented is very sensitive 
to such mismatches. 
 
 Finally, we address the perceptual quality problem of geometric 
distortion by proposing a method to objectively measure the quality of 
geometrically distorted images. We test the performance of the proposed 
method by comparing it to the result of a subjective test and the result of a 
PSNR measurement and an ME-based measurement system. From this 
comparison, we conclude that the proposed hypothesis and measurement 
method show promising results. The method gives a better performance 
compared to the ME-based measurement and the PSNR measurement. 
Furthermore, it shows good correspondence to the result of the user test. The 
main limitation to the proposed method is the fact that we have not been able to 
completely take image content into account when performing the measurement. 
Modifying the system to fully take image content into account will be very 
challenging. However, this is not the only modification that can be applied to 
the system to further improve its performance. In particular, the behavior of the 
local RST transformation should be further investigated. In Chapter 6, we 
looked at how severe the individual local RST transformation is by evaluating 
its transform parameters. However, looking at the behavior of these RST 
transformation blocks individually may not be enough. In future research, we 
should also investigate how the relative behavior of a local RST transformation 
block with respect to its neighbors affects the overall perceptual quality.  
 
7.2. Looking forward: Future challenges 
 

Digital watermarking technology has achieved significant progress since 
the initial burst of research activities in the mid 1990’s and currently research 
activities to develop watermarking schemes with even better performance are 
still being performed. The research activities are not only directed at developing 
new watermarking methods, but also at establishing a stronger understanding of 
the underlying theoretical questions in watermarking. Despite the advances that 
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have been achieved there are still many unresolved problems that will keep 
digital watermarking an active and challenging research area in the future.  
 

The first main challenge in the future will be watermark robustness 
against synchronization attacks, especially the spatial geometric distortion 
applied to images and video frames.  In particular, more research effort should 
be devoted to methods to quantify the perceptual quality impact of the 
geometric distortion. While the desynchronization aspect of geometric 
distortion problem has not been completely solved yet, a lot of research efforts 
have been performed in this area and currently many approaches exist to deal 
with this problem. Examples of the existing approaches have been presented in 
Chapters 2, 4, 5 and 6 of this thesis. On the other hand, research on a method to 
quantify the perceptual quality impact of geometric distortion is still in its 
infancy. The benefits of such a method for the watermarking community have 
been discussed in the previous chapters. In addition to the benefits to the 
watermarking community, this research will also benefit other research areas 
dealing with image and video processing by giving more understanding of how 
humans perceive geometric distortion and a tool with which to objectively 
measure the distortion. The watermarking community should take up the 
challenge and spearhead the research in this area.   

 
The second main challenge in the future is the development of 

applications in which digital watermarking is not used in a copyright protection 
scenario. As stated in the beginning of this thesis, digital watermarking 
technology was originally expected to solve the copyright protection problem of 
digital media. The performance of current watermarking schemes is still 
considered to be insufficient to perform this task, particularly their robustness 
against intentional attacks. While it would be naïve to expect a watermarking 
system that is robust against any possible attack, the performance of current 
watermarking systems still leaves some room for improvements. That being 
said, researchers should not concentrate only on the copyright protection 
scenario, but should also look into other possible applications of digital 
watermarking.  

 
In order to do this, we should return to the main essence of digital 

watermarking, namely that it is a method of embedding unobtrusive 
information into host data. In other words, digital watermarking should be seen 
as a method to transmit extra information without requiring extra bandwidth or 
storage space. One scenario that can take advantage of this concept is, for 
example, a combination of text and picture messaging for a mobile device. 
Instead of sending the text and the picture separately, watermarking techniques 
can be used to embed the text into the picture. The receiving device can extract 
the text and display it separately. Another example is to use digital watermarks 
to embed additional information in pictures printed in a magazine. The user can 
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then use a scanner or a webcam to read and decode the watermark. This is 
particularly useful when the additional information cannot be printed due to 
page budget constraints or when the information needs to be updated regularly.  

 
The applications discussed above have different watermarking 

requirements compared to copyright protection scenarios, namely: 
 

• More limited attack types. Unlike in copyright protection scenarios where 
an attacker actively looks for ways to remove the watermark or hamper 
watermark detection, little gain can be achieved by deliberately attacking 
the watermark in the scenarios described above. Thus, the main types of 
attacks that will be encountered are unintentional attacks which should be 
easier to deal with. 

• More relaxed imperceptibility requirements. The requirements for water-
mark imperceptibility imposed in copyright protection are very high since 
any perceived distortion on the watermarked data may reduce its value. In 
the scenarios discussed above, this requirement is much more relaxed. 

• More emphasis on watermark payload. Since the watermark in the 
scenarios described above has a primary function as carrier of additional 
information, it is essential that the watermark has enough capacity. The 
capacity requirement for these scenarios is generally higher than in 
copyright protection scenarios where as little as 1 bit of information per 
picture is enough. 

  
The examples mentioned in the previous paragraph are by no means 

complete and there are still other applications beyond copyright protection that 
can take advantage of watermarking technology; for example, compression and 
error detection can also make use of watermarking technology. These 
applications will help to familiarize ordinary users with watermarking 
technology and give a better picture of the capabilities and limitations of the 
technology. 

 
 
 
 
 
 

 
  

 



 
 
 

SUMMARY 
 
 Digital watermarking, a technique used to embed information securely 
into digital data such as digital images, audio material and video, was born to 
anticipate the steadily increasing use of digital media. Digital media offer a lot 
of advantages for both user and content creator, including superior quality and 
ease of use. However, the ease with which digital media can be reproduced and 
manipulated is of great concern for the copyright owners of the material. Digital 
watermarking can play an important role in this situation to protect the 
copyright associated with the material. Digital watermarking can also be used in 
other applications not directly associated with copyright protection, for example 
data tracking, error detection, and correction and compression. 
 

A more complete introduction to digital watermarking techniques is 
discussed in Chapter 2, where we discuss the basic concepts of digital 
watermarking technology, the requirements for a robust, invisible watermark 
and the applications in which digital watermarking can play a role. In this 
chapter, we also discuss attacks on the watermarking systems. We present a 
classification of these attacks based on how the attacks are performed and 
which part of the watermarking system is targeted.  

  
 Chapter 3 of this thesis discusses the challenge of watermarking low bit-
rate compressed video. Low bit-rate compression severely limits the amount of 
space in which we can embed the watermark, which means that extra care has 
to be taken to ensure that the requirements for watermark imperceptibility, 
robustness and capacity are satisfied. We present in this chapter a watermarking 
system (based on our previous watermarking system, the DEW algorithm) 
suitable for low bit-rate applications.  
 
 The rest of the thesis deals with one of the most challenging problems in 
watermarking, namely geometric distortion in image and video. This distortion 
happens when geometric operations are applied to images or videos. Geometric 
distortion is relatively easy to perform, but it is very difficult to combat. 
Geometric distortion problems have two aspects. The first aspect is the 
watermark desynchronization aspect, which makes watermark detection 
impossible or very difficult. The second aspect is the perceptual quality impact 
which is very difficult to assess due to the lack of an appropriate model of 
human perception of such distortion. 
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 In Chapter 4, we deal with the first aspect of the geometric distortion 
problem. We present two approaches to solve this problem in image and video 
watermarking: 
 
• Removing watermark dependence on spatial synchronization. We propose 

a watermarking system, based on structured noise patterns, that does not 
require strict synchronization between the watermark and watermark 
detector. This system is invariant to translation and shows a better 
robustness against rotation and scaling than classic noise-based systems.  

• Using host data features as reference points to invert the distortion. We 
propose a complexity-scalable strategy to invert the geometric distortion. 
We use features from the host data as reference points to register the 
distorted watermarked data and thus invert the geometric distortion. This 
strategy can be implemented on top of existing watermarking schemes to 
improve their robustness against geometric distortion.  
 

 Finally, we discuss the problem of quantifying the perceptual quality 
impact of geometric distortion in images. This aspect of the problem has not 
been widely studied in the literature and currently we do not have an objective 
measure to assess the perceptual quality impact of geometric distortion. We 
propose a new quality measurement method based on the hypothesis that the 
perceptual quality of a geometrically distorted image depends on the 
homogeneity of the distortion in Chapter 5. We evaluate the performance of this 
system in Chapter 6 by comparing it to the results of a user test.  
 
 The results described in this thesis can be summarized as follows: 

• Development of a video watermarking scheme suitable for MPEG-1/-2 
video encoded at low bit-rate (Chapter 3). 

• Development of a watermarking scheme that does not rely on strict 
spatial synchronization for images and video (Chapter 4). 

• Development of a complexity-scalable strategy to invert geometric 
distortion in image watermarking (Chapter 4). 

• Development of an objective perceptual quality assessment method for 
geometrically distorted images (Chapters 5 and 6). 



 
 
 

SAMENVATTING 
 
 Digitaal watermerken, een techniek die gebruikt wordt om informatie 
veilig te verweven met digitale data zoals digitaal beeld, geluid en video, is 
ontstaan doordat er een sterke toename is in het gebruik van digitale media. 
Digitale media bieden vele voordelen voor zowel de gebruiker als de maker 
ervan, met name hogere kwaliteit en verbeterd gebruiksgemak. Echter, het 
gemak waarmee de digitale media kunnen worden gereproduceerd en 
gemanipuleerd vormt een grote zorg voor de rechtmatige eigenaren van het 
materiaal. Digitaal watermerken kan in deze situatie een grote rol spelen om de 
intellectuele eigendom van het materiaal te beschermen. Digitaal watermerken 
kan ook gebruikt worden in andere toepassingen, die niet direct met het 
beschermen van intellectueel eigendom te maken hebben, bijvoorbeeld het 
traceren van data, detecteren en corrigeren van fouten en compressie. 
 

Hoofdstuk 2 bevat een uitgebreide introductie op digitale watermerk-
technieken, waar de basisconcepten van digitale watermerktechnologie, de 
eisen voor een robuust, onzichtbaar watermerk en de toepassingen waarin 
digitaal watermerken een rol kan spelen besproken wordt. Hetzelfde hoofdstuk 
behandelt ook aanvallen op watermerk systemen. Er wordt een classificatie van 
deze aanvallen gebaseerd op hoe deze aanvallen zijn uitgevoerd en op welk 
gedeelte van het watermerk systeem de aanval gericht is gepresenteerd. 
  
 Hoofdstuk 3 van dit proefschrift bespreekt de uitdaging van het 
watermerken van video die op lage bit-rate gecomprimeerd is. Compressie op 
een lage bit-rate zorgt voor een sterke beperking van de ruimte waarin het 
watermerk aangebracht kunnen worden, hetgeen extra zorg vergt om te 
garanderen dat de eisen voor onzichtbaarheid van het watermerk, robuustheid 
en de capaciteit gewaarborgd zijn. In dit hoofdstuk presenteren we een 
watermerk systeem (gebaseerd op ons vorig watermerk systeem, het DEW 
algoritme) dat geschikt is voor lage bit-rate toepassingen. 
 
 De rest van dit proefschrift behandelt één van de meest uitdagende 
problemen in watermerken, te weten geometrische vervorming van beeld en 
video. Deze vervorming vindt plaats wanneer geometrische handelingen op 
beelden en video’s plaatsvinden. Geometrische vervorming treedt relatief 
eenvoudig op, maar is erg moeilijk te bestrijden. Het probleem van 
geometrische vervorming heeft 2 aspecten. Het eerste aspect betreft de 
desynchronisatie van het watermerk, waardoor detectie van het watermerk 
wordt bemoeilijkt of zelfs verhinderd. Het tweede aspect betreft het 
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waarneembare kwaliteitseffect, dat erg moeilijk te waarderen is bij gebrek aan 
een geschikt model van de menselijke perceptie van dergelijke vervormingen. 
 
 In hoofdstuk 4 behandelen we het eerste aspect van het probleem 
rondom geometrische vervorming. We presenteren 2 benaderingen om het 
probleem met beeld en video watermerken op te lossen: 
 
• Verwijdering van de afhankelijkheid van spatiële synchronisatie van het 

watermerk. Wij stellen een watermerk systeem voor gebaseerd op een 
gestructureerd ruispatroon, dat geen strikte synchronisatie tussen het 
watermerk en de watermerkdetector vereist. De werking van dit systeem is 
ongevoelig voor translatie en is meer robust tegen rotatie en schaling dan de 
klassieke op ruis gebaseerde systemen. 

• Het gebruik van kenmerken van de oorspronkelijke data als 
referentiepunten om de vervorming te inverteren. We introduceren een 
aanpak om de geometrische vervorming te inverteren die schaalbaar is in 
complexiteit. We gebruiken kenmerken van de oorspronkelijke data als 
referentiepunten om de gewatermerkte data uit te lijnen en daarmee de 
geometrische vervorming ongedaan te maken. 

  
Tenslotte bespreken we het probleem om het perceptuele kwaliteitseffect op 

geometrische vervorming in beelden te kwantificeren. Dit aspect van het 
probleem wordt nog niet uitgebreid in de literatuur bestudeerd en we hebben tot 
op heden geen objectieve maat om het perceptuele kwaliteitseffect van 
geometrische vervorming te meten. We stellen in hoofdstuk 5 een nieuwe 
methode voor om kwaliteit te meten gebaseerd op hypotheses, waarin de 
perceptuele kwaliteit van een geometrisch vervormd beeld afhangt van de 
homogeniteit van de vervorming. We evalueren de prestatie van dit systeem in 
hoofdstuk 6 door het te vergelijken met de resultaten van een gebruikerstest. 
 
 De resultaten, zoals in dit proefschrift beschreven, kunnen als volgt 
worden samengevat: 

• Ontwikkeling van een algoritme dat geschikt is om MPEG-1/-2 video 
gecodeerd als ‘low bit-rate’ van een watermerk te voorzien (Hoofdstuk 
3). 

• Ontwikkeling van een watermerk programma, dat niet afhankelijk is van 
een strikte spatiële synchronisatie van beelden en video (Hoofdstuk 4). 

• Ontwikkeling van een aanpak om geometrische vervorming in 
gewatermerkt beeld ongedaan te maken, die schaalbaar is in 
complexiteit (Hoofdstuk 4). 

• Ontwikkeling van een methode voor een objectieve bepaling van de 
perceptuele kwaliteit van geometrisch vervormde beelden (Hoofdstuk 5 
en 6). 
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