Ranking and Context-awareness in Recommender Systems

Yue Shi






Ranking and Context-awareness in Recommender Systems

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op donderdag 20 juni 2013 om 15:00 uur
door

Yue SHI

Master of Engineering in Physical Electronics,
Southeast University, China

geboren te Zhenjiang, Jiangsu, China.



Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr. A. Hanjalic

Prof.dr.ir. R.L. Lagendijk

Copromotor: Dr. M.A. Larson

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr. A. Hanjalic, Technische Universiteit Delft, promotor
Prof.dr.ir. R.L. Lagendijk, Technische Universiteit Delft, promotor
Dr. M.A. Larson, Technische Universiteit Delft, copromotor
Prof.dr.ir. H.J. Sips, Technische Universiteit Delft

Prof.dr. F.M.T. Brazier, Technische Universiteit Delft

Prof.dr. M. de Rijke, University of Amsterdam, Amsterdam
Dr. A. Karatzoglou, Telefonica Research, Barcelona, Spain
Prof.dr.ir. A.P. de Vries, Technische Universiteit Delft, reservelid

Portions of the research reported in this thesis were supported by the European
Commission’s FP7 PetaMedia project.

ISBN 978-94-6186-166-5

Copyright (©) 2013 by Yue Shi

All rights reserved. No part of thematerial protected by this copyright notice
may be reprodeced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage
and retrieval system, without written permission from the copyright owner.
Printed in the Netherlands.



Summary

In this thesis we report the results of our research on recommender systems,
which addresses some of the critical scientific challenges that still remain open
in this domain. Collaborative filtering (CF) is the most common technique
of predicting the interests of a user by collecting preference information from
many users. In order to determine which items from a collection may be favored
by individual users, conventional CF approaches take the ratings previously as-
signed to items by a target user and use them together with ratings of users
with similar preferences to predict the ratings of yet-unseen items. Then, items
are recommended in a descending order according to their predicted ratings.
While CF has been investigated and improved extensively over the past years,
there is still room for substantial improvement. In this thesis we focus on im-
provement of two critical aspects of CF, namely ranking and context-awareness
of the recommendations. In addition, we analyze new developments in the field
of collaborative recommendation and elaborate on the challenges related to the
evolution of recommender systems and their increasing impact in the future.

Based on this analysis, we make recommendations for future research directions
in this field.






Samenvatting

In dit proefschrift rapporteren wij de resultaten van ons onderzoek naar aan-
bevelingssystemen, dat een aantal van de openstaande, essentiéle wetenschap-
pelijke vraagstukken in dit onderzoeksdomein behandelt. Het collaboratief fil-
teren (CF) is de meest gangbare techniek voor het voorspellen van interesses
van een gebruiker op basis van verzamelde informatie over de voorkeuren van
vele gebruikers. Om te bepalen welke items uit een collectie mogelijk worden
geprefereerd door individuele gebruikers, gebruiken conventionele CF-methoden
beoordelingen die eerder zijn toegekend aan items door een specifieke gebruiker.
Door deze informatie te combineren met beoordelingen van andere gebruikers
met vergelijkbare voorkeuren, kunnen beoordelingen voorspeld worden voor
items die de specifieke gebruiker nog niet kent. Vervolgens worden de items
aanbevolen in aflopende volgorde van voorspelde beoordelingsscore. Hoewel
CF in de afgelopen jaren uitgebreid bestudeerd en verbeterd is, is er nog steeds
ruimte voor substanti€le verbeteringen. In dit proefschrift richten wij ons op
het verbeteren van twee cruciale aspecten van CF, namelijk het rangschikken
van aanbevelingen en het in acht nemen van de context waarin de aanbevelingen
worden gedaan. Daarnaast analyseren wij nieuwe ontwikkelingen op het gebied
van collaboratieve aanbevelingen en behandelen we uitvoerig de uitdagingen
gerelateerd aan de evolutie van aanbevelingssystemen en hun toenemende im-
pact in de toekomst. Op basis van deze analyse doen wij aanbevelingen voor
toekomstige onderzoeksrichtingen in dit vakgebied.
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Chapter 1

Introduction

1.1 On Search and Recommendation

The amount of information available on the Internet has become immense and
is still growing at an unbelievably fast rate. The emergence of social networks
(e.g., Facebook! and Twitter?) and Internet-enabled mobile devices (e.g., smart
phones and tablets) has further boosted the volume of online information re-
sources, since these technologies enable online users to freely create, upload and
share information contents, i.e., media items, such as texts, images, videos. On
one hand, the abundance of online information may virtually guarantee that
users are able to find what they are looking for. On the other hand, this same
abundance also makes the useful information difficult to find, a problem referred
to as “information overload” [47].

Two major Internet technologies, namely, information search and recommenda-
tion, have been developed to help online users handle the information overload
problem. In the search case, illustrated in Fig. 1.1(a), users actively express
their information needs by submitting queries to the search system (engine),
and then the system tries to find the items (e.g., texts, images, videos, music)
in the collection that best match the queries. In the recommendation case,
the users’ information needs are expressed implicitly, which can be done in two
ways, generally referred to as content-based filtering and collaborative filtering.
In content-based filtering, features of previously selected items are extracted
and used to identify similar unseen items to be offered to the user [120]. A
typical example of a system based on this principle is Pandora3 for music rec-
ommendation, where around 400 attributes of a music piece identified in the

Thttps://www.facebook.com/
*https:/ /twitter.com/
3http://www.pandora.com
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Figure 1.1: (a) Search system: The user’s information need is indicated by a query,
which is then matched to the collection by the search algorithm to find relevant items.
(b) Recommender system based on the collaborative filtering principle: The user’s
information need is derived from the history of her interaction with the collection.
This history is then matched with interactions patterns between the users and items of
that collection to identify new items that comply with the history and to recommend
them to the user.

Music Genome project* are deployed for item matching. Collaborative filtering
(CF) [47, 129], illustrated in Fig. 1.1(b), builds on the idea that users who share
similar interests in the past may also prefer similar information items in future.
Based on this idea, the information need of the user is inferred by the system
from the history of user activities (e.g. download or rating of items, comment-
ing on items) on that system. As an example, users first rate movies with a
pre-defined scale after watching them, and then the movie recommender system
predicts which unseen movies would be interesting for an individual user. Typ-
ical examples of CF-based recommender systems are Last.fm® for music and
NetflixS for movies.

Compared to search systems, recommender systems provide the possibility for
users to discover new items or item categories that they may not initially think
of when formulating the search query. Research on recommender systems has in-
tensified substantially over the past several years, since the function and quality
of recommendation becomes more heavily in demand in a great variety of online
services. In addition, a number of real-world data sets that are made available

*http://www.pandora.com/about/mgp
Shttp://www.last.fm/
Shttps://signup.netflix.com/
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in the community, and a series of contests (e.g., Netflix Prize’, CAMRa®, Ya-
hoo Music?) that emphasize various recommendation purposes, have further
boosted the progress of research on recommender systems. In this thesis we
report the results of our research on recommender systems, which addresses
some of the critical open scientific challenges in this domain.

1.2 Collaborative Filtering

The two classes of recommender systems, i.e., based on the collaborative and
content-based filtering principles, have their respective advantages and disad-
vantages. CF may suffer from the cold start problem, i.e., missing information
on the user-item interaction history when setting up the system, based on which
recommendation can be made. However, CF can provide information to indi-
vidual users in a more personalized fashion, which is a direct consequence of
using the user’s individual activity history as input for recommendation. Com-
pared to this, content-based filtering recommenders can become operational
already based on a rather limited input (e.g., a previously seen item). However,
they are also known to limit the scope of recommendation too much, namely
to those items similar to the initial ones, through which the unique discovery
effect mentioned above may be insufficient.

The cold start problem of CF-based recommender systems can be handled by,
for instance, combining CF-based and content-based techniques into a hybrid
recommender system. This possibility, in combination with the much higher dis-
covery potential of CF, has made CF-based recommenders significantly more
popular than the recommenders using the content-based filtering principle. It
can be observed that CF has been deployed as functionalities of broader online
services, e.g., product recommendation in Amazon'© [88] or video recommen-
dation in Youtube'! [34]. However, the quality of recommendations by most
CF-based recommenders has been shown to be still far from satisfactory for
online users [57, 71, 139, 33|. This factor has made the search for the ways
to improve the effectiveness of CF-based recommendation more urgent, which
motivated us to focus on CF-based recommender systems in this thesis.

Typically, the data processed by a CF-based recommender system can be il-
lustrated as in Fig. 1.2. In order to determine which items from the collection
may be favored by individual users, conventional CF approaches take the rat-
ings of the target user on the seen items and use them to predict the ratings

"http://www.netflixprize.com/
Shttp://www.dai-labor.de/camra2010/challenge/
http://www.sigkdd.org/kdd2011 /kddcup.shtml
http://www.amazon.com/
Hhttp://www.youtube.com/
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Figure 1.2: Tllustration of the data processed by a CF-based recommender system.
Here, users express their preferences to the items (movies) by using a 5-scale rating.
The items with a question mark are unseen for the corresponding user. CF approaches
are used to predict the relevance ratings for the unseen items to an individual user.
We refer to the user for whom the item ratings are predicted as the target user.

for this user for the unseen items. Then, items are recommended in a descend-
ing order according to their predicted ratings. While CF has been investigated
and improved extensively over the past years, there is still room for substantial
improvement. In this thesis we focus on improvement of two critical aspects
of CF, namely the ranking and the context-awareness of the recommendations.
In the following, we elaborate on each of these aspects in turn and discuss re-
search questions that guided us in conducting our research. The results of our
investigation are reported in the technical chapters of the thesis.

1.3 From Ratings to Rankings

Since the ultimate output of most recommender systems takes the form of
a ranked item list, it is intuitive that the relative ranking of items inferred
from the predicted ratings is much more important than the actual predicted
ratings. In some use cases, users are even not able to express their preferences
for items by ratings, in which cases only implicit feedback from users’ behavior,
such clicking and downloading, is recorded in the system. An illustration of
such a case is given in Fig. 1.3. Such implicit feedback might only give a weak
indication of which items the user might like and is therefore less informative as
input to the recommendation algorithm than the ratings. This implies that the
conventional CF paradigm of recommending via rating prediction is essentially
not applicable in all use cases. While lots of research contributions in CF have
been devoted to rating prediction, little attention was given to improve CF by
modeling the ranking of items directly. Corresponding to this first open issue,
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Figure 1.3: Tllustration of a CF-based recommender system with implicit feedback
data. Here, we have the information about which items (fruits) each user may like.
However, no numerical or ordinal preferences were indicated by the users.

our first key research question to be addressed in this thesis is:

How to directly optimize the ranking of items for recommendation without first
predicting individual ratings?

We approach answering this question by adopting the learning-to-rank
paradigm, which is already well established in the domain of information re-
trieval, and by reformulating this paradigm in the specific case of recommender
systems. We consider two specific use scenarios, i.e., the scenario in which the
explicit feedback data (e.g., ratings) are available, and the other scenario in
which only implicit user feedback data (e.g., clicks) are available.

e Learning to rank from the ratings: Here, it is likely that one user’s ratings
on different items already indicate her preferences with respect to those
items. For example, we can interpret the observation that Bob rated
the movie “Titanic” with 5 stars and “Matriz” with 3 stars as that
Bob likes “T'itanic”’ better than “Matriz”. Following this intuition, the
known ratings of each individual user for a given set of items can be
transformed into training data used for learning of the ranking models.
In Chapter 2, we propose a unified recommendation model, in which
the major contribution lies in a ranking approach that directly models
the ranked lists of items across all the users.

o Learning to rank based on implicit feedback: Here, no ratings are avail-
able for constructing the training data for developing ranking models.
Furthermore, the implicit feedback is insufficiently informative as input
for model learning. What can be done, however, is to measure the quality
of the given list of items for a user by applying certain evaluation metrics
that are defined for ranked items with binary relevance judgments. This
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Context of the relation:
~Time: Friday evening
~Location: Home

Context of the
movie:
“*Year: 2002
“*Genre: Drama
«»*Actor: Russell Crowe
“*Awards: Oscar, ...

Context of the
user:
< Age: 21
«*Gender: Male
«+Job: Salesman
«*Facebook-friends:
Bob, Alice,...

Figure 1.4: Different types of context used to improve the effectiveness of a recom-
mender system. The information on the left and right indicates the context of the user
and item, respectively. The context of the user-item interaction is indicated on the
top.

observation motivates us to explore a new direction, namely, to directly
model and optimize the evaluation metrics defined for assessing ranked
items. In Chapter 3, we introduce collaborative “less-is-more” filtering
(CLiMF) specifically to address the problem of recommendation in the
scenarios with implicit information. CLiMF is proposed to directly model
and optimize one of the most well-known ranking metrics for ranked item
lists.

1.4 Recommendation in a Context

Conventional CF methods typically rely on the user-item interactions (e.g.,
the user-item ratings/clicks) only. In practice, various contextual information
sources beyond the user-item interactions are available and have proven to be
valuable for improving the effectiveness of recommender systems. For example,
a user may like to watch the movie “Sleepless in Seattle” around the Valentine’s
Day, but be unlikely to watch this movie on Halloween. In this example, it
is obvious that the context of time plays a crucial role for determining the
quality of movie recommendation. For this reason, the second open issue that
inspired the research reported in this thesis can be regarded as the problem
of context-aware recommendation. Accordingly, we establish our second key
research question in this thesis as:

How to effectively incorporate the contextual information into CF for improved
recommendation?

To answer this question, we first distinguish between two different types of
contextual information that are increasingly available on the platforms embed-
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ding the recommender functionality, which we focus on in this thesis. We also
illustrate them on the example in Fig. 1.4. The first type of contextual informa-
tion is the context of the users and the items themselves, which is not directly
associated with the user-item interactions, but which can be used to enrich
these interactions and improve recommendation. For example, the online so-
cial friendship links provide valuable information about the social context of the
user and might point to more or different users with similar tastes and interests
like the target user and better inform the interpretation of the links derived
from the user-item matrix in terms of their relevance for recommendation. We
investigate the mechanisms for effectively incorporating this information in two
recommendation use cases, movie recommendation and landmark recommen-
dation. We do this by formulating and evaluating the corresponding context-
aware recommender algorithms as reported in Chapter 4 and Chapter 5,
respectively.

The second type of contextual information is the context of user-item inter-
actions. For example, if a user watched a movie on Saturday evening, then
this time information is the context of the interaction between the user and
the movie and can be used to inform the recommendation of similar unseen
movies to this user (and other users who have similar interests to this user) at
this particular time in the future. With the method reported in Chapter 6
we explore the potential of this type of contextual information to improve the
effectiveness of recommendation, in a given context, but also in general.

1.5 Recommender Systems: New Developments

While the technical contributions of this thesis reported in Chapter 2-6 already
address several important open challenges in the field of collaborative recom-
mendation, many more of such challenges still wait to be pursued. Some of
them have emerged from new developments on the Internet, where, for instance,
rapidly growing social networks provide virtually endless information resources
to learn about the users and items. Optimally exploiting this knowledge for
improving the recommendation requires sophisticated new mechanisms, such
as proposed in recent works in the domain of social recommendation. Further-
more, users are omnipresent on the Internet, uploading, downloading, rating
and commenting on items simultaneously in different domains (e.g., music,
books, video, news sites, and social network sites). It is intuitive that the
information linking a user and an item in one domain could be informed by
analyzing the relations between the users and items in other domains, which
can also be referred to as cross-domain collaborative filtering. In addition, the
spread of digital technology has increased the impact of the Internet in new
societal contexts characterized by new applications, whose services may target
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specific user groups, e.g., a group of seniors in assisted living environments.
Recommender systems can play a critical role for this particular user group, if
tuned to satisfy the specific requirements characterizing these societal contexts.
For instance, they could be tailored for effective group recommendation for the
purpose of serving the users in elderly homes and stimulating their exchange of
memories.

Another category of new challenges for recommender systems can be derived
from the increasing convergence between different knowledge and technology
domains. The challenges building, for instance, on the synergy between search
and recommendation, or between user interaction and recommendation, have a
large potential not only to improve the quality of recommendation, but also to
lead to new exciting paradigms of multimedia content access.

In Chapter 7, we analyze the new developments addressed above and elaborate
in more depth on the above and other challenges related to the evolution of
recommender systems and their increasing impact in the future. Based on this
analysis, we make recommendations for future research directions in this field.

1.6 List of Publications

The author has published the following work during his Ph.D.. The remaining
chapters in this thesis are based on the publications, as indicated.

Journals

1. Shi, Y., Larson, M. and Hanjalic, A. Collaborative Filtering beyond the
User-item Matrix: Opportunities for Exploiting Context in Recommender
Systems. ACM Computing Surveys, under review. (Chapter 7)

2. Shi, Y., Larson, M. and Hanjalic, A. Exploiting Social Tags for Cross-
domain Collaborative Filtering. ACM Transactions on the Web, under
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3. Shi, Y., Serdyukov, P., Hanjalic, A. and Larson, M. Non-trivial Land-
mark Recommendation Using Geotagged Photos. ACM Transactions on
Intelligent Systems and Technology, 4(3), 2013. (Chapter 5)

4. Shi, Y., Larson, M., and Hanjalic, A. Unifying Rating-oriented and
Ranking-oriented Collaborative Filtering for Improved Recommendation.
Information Sciences, Elsevier, 229 (20), 29-39, 2013. (Chapter 2)

5. Shi, Y., Larson, M. and Hanjalic, A. Mining Contextual Movie Sim-
ilarity with Matrix Factorization for Context-aware Recommendation.
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Chapter 2

Unified Recommendation
Model

We propose a novel unified recommendation model, URM, which combines
a rating-oriented collaborative filtering (CF) approach, i.e., probabilistic ma-
trix factorization (PMF), and a ranking-oriented CF approach, i.e., list-wise
learning-to-rank with matrix factorization (ListRank). The URM benefits from
the rating-oriented perspective and the ranking-oriented perspective by sharing
common latent features of users and items in PMF and ListRank. We present
an efficient learning algorithm to solve the optimization problem for URM. The
computational complexity of the algorithm is shown to be scalable, i.e., to be
linear with the number of observed ratings in a given user-item rating matrix.
The experimental evaluation is conducted on three public datasets with dif-
ferent scales, allowing validation of the scalability of the proposed URM. Our
experiments show the proposed URM significantly outperforms other state-of-
the-art recommendation approaches across different datasets and different con-
ditions of user profiles. We also demonstrate that the primary contribution to
improve recommendation performance is contributed by the ranking-oriented
component, while the rating-oriented component is responsible for a significant
enhancement.

This work was first published as “List-wise learning to rank with matrix factorization for
collaborative filtering” by Y. Shi, M. Larson, and A. Hanjalic, in Proc. of the fourth ACM
conference on Recommender systems (RecSys ’10), Barcelona, Spain, 2010 [144]. This chapter
is an extended version that has been published as “Unifying rating-oriented and ranking-
oriented collaborative filtering for improved recommendation” in Information Sciences, 229
(20), Elsevier, 2013.
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2.1 Introduction

Recommender systems attract research attention because they are able to con-
nect users directly with consumable items, supporting them in handling the
unprecedentedly large amounts of content, e.g., movies, music and books cur-
rently available online by providing personalized recommendations [2, 39]. Col-
laborative filtering (CF) is widely acknowledged as one of the most successful
recommender techniques. Compared to content-based approaches, CF enjoys
the advantage of being content-agnostic. In other words, it can recommend
items without the additional computational expense or copyright issues involved
with processing items directly. One of two different types of approaches can
be taken by a recommender system in order to generate recommendation lists
for users. Under one approach, the system predicts ratings for individual items
first and then generates the ranked recommendation list. We refer to this type
of CF-based recommendation as rating-oriented [55, 75, 134]. Under the other
approach, the system predicts rank scores, that are not necessarily related to
ratings, but rather used directly to generate the recommendation list. We refer
to this type of approach as ranking-oriented [90, 92, 144, 182, 183].

To illustrate the difference between rating- and ranking-oriented CF, we con-
sider two specific toy examples. The first example involves the ratings of a user
on items ¢ and 5. We assume that the user has rated item ¢ with a 4 and item
J with a 3; these are the reference values that we use to judge the quality of
the predictions of the recommender system. If two recommendation approaches
give rating predictions of (3, 4), and (5, 2) on items (4, 7), the rating prediction
error, e.g., measured by mean absolute error or root mean square error [57] will
be the same for both approaches. However, only the ranking-oriented perspec-
tive identifies the second approach as faithfully reflecting the users relatively
higher preference for item ¢ over item j. This example should not lead to the
conclusion that working with absolute ratings is detrimental to recommenda-
tion performance. Quite to the contrary, successful recommender systems do
use a rating-oriented approach to generate recommendation lists for users, e.g.,
MovieLens [55] and Netflix [75]. Our second example illustrates the usefulness
of absolute ratings in capturing users preference strength. If user u and v have
ratings (5, 3) and (4, 3) on items (i, j), user u is more explicit about his pref-
erence for item ¢ over item j than user v. This information holds the potential
to help resolve possible ambiguities in generating a ranked item list for the user
u. Further, predicted ratings can provide the user with additional information
used to inform the decision of whether or view, purchase or download the item.
Taken together, these examples serve to motivate our standpoint that ranking-
oriented approaches have high potential and that combining rating-oriented
and ranking-oriented approaches holds promise for designing more successful
recommendation algorithms.
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Another source of motivation derives from the recent recommender system lit-
erature, which demonstrates a growing awareness that under ranking-oriented
recommendation, the ability of the system to predict ratings is also important.
This awareness is based on the insight that although users find it important to
receive a high quality ranked list from the recommender system, the list will
be less useful or less acceptable to the user if the ratings assigned by the sys-
tem to the items fail to approximate those that the user would have assigned.
The increasing emphasis on providing the user with both a high quality ranked
list and accurate ratings is reflected in the recent adoption of the Normalized
Discounted Cumulative Gain (NDCG) evaluation metric [90, 92, 182, 183]. As
discussed in more detail in Section 2.4.2, NDCG simultaneously takes into ac-
count both the rank ordering of a list as well as the graded relevance, i.e.,
the magnitude of the scores of the items in the list. Somewhat unexpectedly,
although recommender system research is increasingly taking both rank and
rating prediction into account for evaluation, up until this point, no concerted
research effort has been devoted to developing algorithms that produce rec-
ommendation lists that simultaneously optimize both rank and ratings of the
recommended items. The contribution of this chapter is to combine the two
types of recommendation, ranking-oriented and rating-oriented, in order to ar-
rive at a system that generates recommendations that are more completely
suited to satisfy user needs.

We accomplish the goal of generating recommendations optimized not only for
ranking, but also for rating by proposing a novel unified recommendation model
(URM) that enhances ranking-oriented recommendation using a rating-oriented
approach. The model combines probabilistic matrix factorization (PMF) [134],
i.e., rating-oriented CF, and ListRank [144], i.e., ranking-oriented CF, by ex-
ploiting common latent features shared by both PMF and ListRank. In fact,
by incorporating PMF we enable ListRank to benefit from rating predictions,
which contributes another basis for generating the recommendation list. We
demonstrate experimentally that the URM achieves significant improvement of
recommendation performance over the state-of-the-art CF approaches on vari-
ous data sets. Furthermore, we analyze and empirically demonstrate that URM
maintains linear complexity with the number of observed ratings in the given
user-item matrix, which means that it can scale up with the increasing amount
of data.

The approach presented in this chapter builds on and expands the basic finding
of the effectiveness of list-wise learning-to-rank, demonstrated in [144], where
we first introduced ListRank, a ranking-oriented matrix factorization approach.
The expansions that are presented here extend along two dimensions. First, we
combine the advantages of ranking-oriented and rating-oriented recommenda-
tion by combining ListRank with a rating-oriented component, resulting in
URM, a new recommendation model. Second, we conduct experimental eval-
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uations on multiple datasets of various scales to validate the usefulness of the
proposed URM approach, and demonstrate its specific contributions to the state
of the art.

The remainder of the paper is structured as follows. In the next section, we
summarize related work and position our approach with respect to it. Then,
we present the URM and validate it experimentally. Finally, we sum up the
key aspects of URM and address possible directions for future work.

2.2 Related Work

Our work builds on the foundation of the large body of work that has been
carried out on CF. CF approaches are generally considered to fall into one of
two categories, i.e., memory-based CF and model-based CF [2, 39]. In general,
memory-based CF uses similarities between users (user-based CF) or similar-
ities between items (item-based CF) to make recommendations. User-based
CF [55, 129] recommends items to a user on the basis of how well similar
users like those items. Item-based CF [38, 88, 136] recommends items to a
user based on the similarity between the user’s favored items and the items
to be recommended. Recently, various studies have been devoted to the mod-
ification and enhancement of memory-based CF, e.g., to specifically improve
user-based CF [142, 194], to specifically improve item-based CF [191], and to
combine user-based CF and item-based CF [95, 176]. Although substantial im-
provements have been achieved, memory-based CF approaches still suffer from
high computational complexity, i.e., computing similarities among the typically
enormous number of users or items in recommender system applications is ex-
pensive.

In comparison, model-based CF approaches first fit prediction models based on
training data and then use the model to predict users’ preferences on items.
These models include latent semantic models [58], mixture models [66, 152]
and fuzzy linguistic models [105]. Matrix factorization (MF) [75, 134] has been
recognized as one of the most successful model-based CF approaches, due to
its superior accuracy and scalability. Generally, MF models learn low-rank
representations (latent features) of users and items from the observed ratings
in the user-item matrix, which are further used to predict unobserved ratings.
MF can also be formulated from a probabilistic perspective, i.e., PMF [134],
which models the conditional probability of latent features given the observed
ratings, and factors for complexity regularization encoding prior information
on user and item ratings. In this chapter, we adopt PMF as the rating-oriented
CF component of our proposed URM.

Compared to the large volume of research on rating-oriented CF, the research
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on ranking-oriented CF is limited. The first mature ranking-oriented CF ap-
proach is CofiRank [182, 183], which introduces structured ranking losses and
various other extensions to MF. Further studies mainly focus on exploiting
pair-wise preference between items for users, e.g., EigenRank [90], probabilistic
latent preference analysis [92] and Bayesian personalized ranking [126]. How-
ever, all these existing pair-wise approaches [90, 92, 126] require deriving pair-
wise training examples from individual ratings, thus, in general all suffer from
high computational complexity of pair-wise comparisons, which scale quadrat-
ically to the number of rated items in a given data collection. In contrast,
ListRank [144] is designed to incorporate a list-wise learning-to-rank concept
with MF, which is characterized by a low complexity, i.e., complexity is linear
with the number of the observed ratings in a given user-item rating matrix.
Preliminary experiments [144] also show ListRank to be competitive for recom-
mendation in comparison to other state-of-the-art approaches, represented by
CofiRank. One of the latest contributions on exploiting other learning-to-rank
methods for CF [9] shares the same motivation of ListRank, and also envisioned
the potential of list-wise approach for CF, which is represented by ListRank.
The established performance and value of ListRank makes it a natural choice
as our ranking-oriented approach, to be extended within the proposed URM.

Our work in this chapter unifies a rating-oriented CF, i.e., PMF and a ranking-
oriented CF, i.e., ListRank in terms of the same latent features shared by
PMF and ListRank. In view of the comparison of ranking-oriented and rating-
oriented CF in the previous section, and also considering the target of generating
a ranked list of recommendations for the user, we chose the ranking-oriented
approach as the basis of our unified recommendation model (URM) and deploy
rating-oriented PMF to expand it.

2.3 Unified Recommendation Model

In this section, we first briefly present the basic formulation of PMF and Lis-
tRank. Then, we combine PMF and ListRank by means of the URM and,
finally, we present an efficient learning algorithm for solving the optimization
problem in the URM and analyze the complexity of the algorithm.

2.3.1 PMF: Matrix Factorization for Rating

If we denote by R a user-item rating matrix consisting of M users ratings on
N items, PMF [134] seeks to represent the matrix R by two low-rank matrices,
U and V. A d-dimensional set of latent features is used to represent both users
(in U) and items (in V). Note that we use U; to denote a d-dimensional column
feature vector of user 7, V; to denote a d-dimensional column feature vector of
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Figure 2.1: The input-output diagrams of PMF and ListRank

item j , and R;; to denote the user ¢’s rating on item j. Usually, the rating
scale is different from one dataset (application scenario) to another. To achieve
generality, the ratings are normalized to the range from [0, 1] . The objective of
PMF is now to fit each rating R;; with the corresponding inner product UiT Vi,
which can be formulated as follows:

M N
)1 2 Ay Av
UV =argming 55 % L (Rij = 9(UIVi))" + S 0+ - IVIE ¢ (21)
’ i=1 j=1

Here, I;; is an indicator function that equals 1 when R;; > 0, and 0 otherwise.
The parameters Ay and Ay are regularization coefficients used to reduce over-
fitting, while ||U||r and ||V || are the Frobenius norms of the matrices U and V.
For simplicity, we set Ay = Ay = A. The g(z) is a logistic function serving to
bound the range of UI'V; to be also in the range [0, 1], i.e., g(z) = 1/(1 +e~%).
The input-output diagram of PMF is illustrated in Fig. 2.1(a).

2.3.2 ListRank: Matrix Factorization for Ranking

In order to model the user’s preference from her ranked list of rated items, we
need to transform the user’s ratings on different items to ranking scores, which
are required to maintain two properties. First, for a given user, the ranking
score of item 4 should be higher than (or lower than, or equal to) item j, if
she rates item 4 higher than (or lower than, or equally to) item j. Second,
the ranking scores of all the users should share the same scale/space. For this
reason, we exploit the top one probability [123] for the transformation from
ratings of each user to ranking scores. From the probabilistic point, the top one
probability indicates the probability of a graded item being ranked in the top
position from all the graded items. Note that top one probability and its similar
variants are usually used to map graded scores into a probability space in the
literature [22, 25]. Specifically, the top one probability (the ranking score) for
item j that is rated R;; by user i can be expressed as:

exp(Ri;)

= "=V 2.2
Sl exp(Rir) 22)

p(Rij)
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in which exp(z) denotes the exponential function of x.

As opposed to PMF that aims at reproducing and extrapolating the ratings
from R, the ListRank [144] has the objective to fit each user’s ranked list of
items with a factorization model. A regularized loss function that models the
cross-entropy of top-one probabilities of the items in the training ranked item
lists and the lists from the factorization model can be formulated as follows:

V)= {— > Ligp(Ris) logp(g(U?‘G))} + % (o1 + 1viiz,)

i=1 j=1

M N
3 { Sy o) e (oUf) }

i—1 =1 Zk 1 Lik exp(Rix) Zk:l I, exp (g(UlTV}))
A
2

<

+5 (I01F + 1) (2:3)

Note that in ListRank we also adopt the same simplification strategy as used
in PMF (see Section 2.3.1), i.e., setting an equal regularization parameter A
for penalizing the magnitudes of both U and V. While the training lists are
derived from the profiles of the users, the loss function reflects the uncertainty in
predicting the output lists from the factorization model using the training lists.
Note that minimizing the regularized loss function 2.3 results in a factorization
model, i.e., U and V that is not optimized for rating prediction, but for ranking
positions of items in the users lists. This key difference between ListRank and
PMF is also shown in Fig. 2.1.

2.3.3 Combining PMF and ListRank

As introduced above, PMF and ListRank learn the latent features of users and
items by taking different views on the known data, i.e., PMF exploiting the
individual ratings, and ListRank exploiting the ranked lists. Our motivation
of URM is then straightforward so that the two different views can be ex-
ploited simultaneously, by which the knowledge encoded in individual ratings
is expected to improve the latent features of users and items from ListRank to
achieve better ranking performance, as the example mentioned in Section 2.1.
The illustration diagram of URM is shown in Fig. 2.2. Since both the PMF and
the ListRank are based on matrix factorization, we link the two by imposing
common latent features for both models. Then, the URM can be formulated
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Figure 2.2: The input-output diagram of URM

by means of a new regularized loss function F'(U, V) as follows:

M N

(UV—ax%ZZ(U i — 9(UIv;)’)

=1 j=1

N T
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The trade-off parameter « is used to control the relative contribution from PMF

and ListRank. As stated in the introduction, we bias the loss function towards
ranking. Consequently, the value of o should be relatively small. We justify
this choice in Section 2.4.3, where we experimentally investigate the impact of
« on the recommendation performance. Minimizing the loss function Eq. (2.4)
results in the matrices U and V that are not only optimized for item ranking,
but also enhanced by the information used to predict each item’s rating. This
result can be used to produce a ranked recommended items list for each user
1 and is generated by ordering items in the collection in the descending order
according to the value UiT V. Note that items already rated by a user will be
removed from the list.

2.3.4 Learning Algorithm and Complexity Analysis

Since the loss function (2.4) is not convex jointly over U and V, we choose to
deploy a gradient descent method by alternatively fixing U and V' and searching
for local minima. The gradients of F'(U,V) with respect to U and V' can be
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computed as:
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¢'(z) denotes the derivative of g(z). An overview of the algorithm deploying
Eq. (2.5) and (2.6) for solving the minimization problem in the URM is given
in Algorithm 1. The stopping parameter € is used to indicate the desired level
of the convergence of the algorithm. In our experiments, the value of € is set
to 0.01. Our experiments showed that the algorithm usually converges after no
more than 200 iterations. Unlike the constant learning step size 1 as used for
ListRank [144], we allow 7 in the URM to be as large as possible (maximally 1)
in each iteration, as long as it leads to a decrease in the loss funcion Eq. (2.4).
Setting n in this flexible way helps to speed up the convergence of the algorithm.

It can be easily shown that the complexity of the loss function for URM is in the
order of O(dS+d(M+N)), where S denotes the number of observed ratings in a
given user-item matrix and where d is the dimensionality of latent features. The
complexity of the gradients in Eq. (2.5) and (2.6) is of the order O(dS + dM)
and O(dS + pdS + dN), respectively, where p denotes the average number of
items rated per user and usually is substantially smaller than S. Considering
we also often have S >> M, N, the total complexity in one iteration has the
order of O(dS), which is linear with the number of observed ratings in the
matrix. This analysis indicates the computational efficiency and scalability of
URM. This will also be illustrated quantitatively in Section 2.4.4.

2.4 Experiments and Evaluation

In this section we present a series of experiments that evaluate the proposed
URM. We first give a detailed description of the setup of our experiments. Then,
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ALGORITHM 1: Learning algorithm for URM
Input: Training data R, tradeoff parameter a, regularization parameter A, stopping
threshold e.
Output: Complete user-item relevance matrix R.
Initialize U,V (©) with random values;
Initialize f; with a large value and f5 a small value;
t=0;
repeat
fr = F(U(t),V(t));
n=1
Compute 8‘?]121), 8?/1:,,) as in Eq. (2.5) and (2.6);
repeat
n=n/2;
until F(U® — n 20 v® — 00 < f:
Ut — g — 77%7 vt — @) na?/f(’t) :
fo= F(U(t“),V(t“));
t=t+1;
until f; — fo <e¢
R=UWOTy®),

we investigate the impact of tradeoff parameters in URM and demonstrate the
effectiveness and efficiency of URM. Finally, we compare the recommendation
performance of URM with some other baseline and state-of-the-art approaches.

We designed the experiments in order to be able to answer the following research
questions:

1. Could URM as a combination of a rating-oriented and a ranking-oriented
CF approach outperform each of the individual approaches? (Section 2.4.3
and 2.4.5)

2. Does the recommendation performance increase with the minimization of
the loss function Eq. (2.4)7 (Section 2.4.4)

3. How efficient and scalable is URM? (Section 2.4.4)

4. How does URM compare to alternative state-of-the-art approaches across
different data sets and across users with different profiles? (Section 2.4.5)
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Table 2.1: Statistics of datasets used in the experiments

# users # items # ratings Sparseness Scale Ave. # ratings/user Ave. rating

ML1 943 1682 100000 93.7% 1-5 106.0 3.53
ML2 6040 3706 1000209 95.5% 1-5 165.6 3.58
EM 61265 1623 2811718 97.2% 1-6 45.9 4.04

2.4.1 Datasets

Our experiments are conducted on three publicly available datasets, i.e., two
datasets from MovieLens', and the EachMovie? dataset. All of them are widely
used in the field of recommender systems. The first MovieLens dataset [55],
denoted as ML1, contains 100K ratings (scale 1-5) from 943 users on 1682
movies. The second MovieLens data set, denoted as ML2, contains 1M ratings
(scale 1-5) from ca. 6K users on ca. 3.7K movies. Each user in both ML1 and
ML2 has rated at least 20 movies. The EachMovie dataset contains ca. 2.8M
ratings (scale 1-6) from ca. 61K users on ca. 1.6K movies. Note that in all of the
used datasets we excluded the items (i.e., movies) that are never rated. Thus,
the aforementioned statistics of the datasets may be slightly different from those
in other literature. Some detailed statistics of the datasets are summarized in
Table 2.1.

2.4.2 Experimental Setup and Evaluation Metrics

We choose to conduct our experiments following a standard protocol as widely
used in related work [144, 182, 183]. Note that our experimental protocol is
designed to demonstrate the effectiveness of URM under different conditions of
user profiles. We create variants of the datasets in order to test experimental
conditions involving three different user profile lengths (UPLs), i.e., 10, 20 and
50. For example, in the case of UPL=10, we randomly select 10 rated items for
each user for training, and use the remaining user ratings for testing. Per UPL,
users with less than 20, 30, or 60 rated items are removed in order to ensure we
can evaluate on at least 10 rated items per user. For each UPL, we create 10
different versions of the dataset by sampling the user profiles to arrive at the
targeted number of items in the training set. Note that in the case of UPL=50
for each dataset, we create an additional version that is used as a validation
set to tune the tradeoff parameter and investigate the impact of this parameter
as shown in Section 2.4.3. The data from the validation sets have not been
used for the test runs, which are used to evaluate the algorithm. We report the

"http://www.grouplens.org/node/73
2http:/ /kumpf.org/eachtoeach /eachmovie.html
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average performance attained across all users and 10 test runs in Section 2.4.5.

Following the standard evaluation strategy applied to recommender sys-
tems [90, 92, 182, 183], we measure the recommendation performance only
based on the rated items from each user. We consider the performance of a
recommender algorithm to be good if it ranks items with high ratings in the
test set to higher positions in the ranked list than those having low ratings.
The algorithm should also emphasize the accuracy of highly ranked items,
since users usually expect highly relevant items to be recommended as early
as possible. The evaluation metric Normalized Discounted Cumulative Gain
(NDCG) satisfies the two requirements and is widely used in recommender sys-
tems research [90, 92, 182, 183]. Note that since we are not interested in rating
prediction performance, metrics, such as mean average error (MAE), root mean
square error (RMSE), are not considered. Also notice that since the datasets in
our experiments contain graded relevance, NDCG should be more appropriate
that other metrics, such as precision, recall, mean average precision (MAP), for
which artificial thresholds need to be assumed to convert graded relevance to
binary case. For those reasons, NDCG could be the best choice among all the
metrics for our experimental evaluation. The definition of NDCG at the top-K
ranked items for a user u can be given as:

K

NDCG,QK = Z, —
kZ:l log, (1 + k)

2" 1
(2.8)

Here, Y, (k) denotes the grade of relevance of the item that is ranked in the k-th
position for user u. Note that in this setting the rating is regarded as the grade
of relevance. Z, is a normalization factor securing that the perfect ranking list
will have NDCG, QK equal to 1. In other words, 1/7, is equal to NDCG, QK
when the ranked list is created by sorting the ground truth items of the users in
the test set in descending order by their ratings. In this chapter, we report the
recommendation performance by NDCG@5 and NDCG@10, which are averaged
across all users.

We did not formally tune the dimensionality d of latent features and the regu-
larization parameter A\ for the URM in the experiments. The dimensionality d
is set independent of the user-item matrix, and usually a small value of d is suf-
ficient for acceptable recommendation performance [183]. In this work, we fix d
as 10, which we adopted from the recently proposed CofiRank approach [183].
The regularization parameter A is usually set large enough to avoid over-fitting,
as demonstrated in ListRank [144]. We fix A as 0.1 for all the experiments on
different data sets, a setting from which we did not observe over-fitting.

2.4.3 Impact of Tradeoff Parameter

In this subsection we investigate the impact of tradeoff parameter « on the per-
formance of the proposed URM. For each dataset, we conduct an experiment
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Figure 2.3: Impact of the tradeoff parameter in URM on NDCG@10

on a validation set under the condition of UPL=50, i.e., in the validation set we
randomly select 50 rated items for each user for training and use the remaining
rated items for testing. By varying the tradeoff parameter in the URM, we
can evaluate its influence on the recommendation performance, i.e., NDCG@10
here, as shown in Fig. 2.3. Note that the URM is equivalent to ListRank if
the tradeoff parameter a = 0 and to PMF if « = 1. The diagrams in Fig. 2.3
indicate that different optimal values of tradeoff parameters can be selected
for different datasets. Selecting this optimal value per dataset leads to an im-
provement in the recommendation performance compared to either ListRank
or PMF taken individually. This observation suggests the promise of combin-
ing rating-oriented and ranking-oriented approaches, providing initial evidence
that our first research question can be answered positively. Additional exper-
iments in Section 2.4.5 make further contribution to this issue. Furthermore,
it can also be observed that the optimal tradeoff parameter in each dataset is
below 0.5, which means that the major contribution to the recommendation
performance comes from the ranking-oriented CF. This observation confirms
the achievements by the recent progress in ranking-oriented CF approaches,
e.g., [90, 92, 182], which usually outperform rating-oriented CF approaches,
and also justifies our choice to bias the URM towards ranking prediction, as
stated in Section 2.3.3. The optimal tradeoff parameters obtained from analyz-
ing the validation sets are used subsequently on the three datasets for the test
runs in all test cases as reported in Section 2.4.5.

2.4.4 Effectiveness and Efficiency

In this subsection, we investigate whether minimizing the loss function of URM
in Eq. (2.4) indeed leads to an increase in recommendation performance, and
whether the proposed URM is empirically an efficient algorithm. These ex-
periments were also conducted on the validation sets. We adopt the optimal
tradeoff parameters obtained from previous subsection for this investigation.
The diagrams in Fig. 2.4 demonstrate the development of the loss function and
NDCG@10 during the iterations of the minimization process. Here, we normal-



24 Chapter 2. Unified Recommendation Model

» P . 2 08 - Z2os ossrssssererese
Zos - - o o4 2 08 PR
S8 e e - = seee® = *
3 { g o6 Boe
Bos] he X 3 EN R
= g 044 204
S04 0.6 £ £ 2
£ Loss (=) 5 Loss g g
5 10680 2 - = Loss 10700
Sq, . o z Z 0o -+ NDCG@10 | Zo. .
zo21 | + NDCG@10 | | | "y 0.710 g + NDCG@10 + 0.690
S 0 =9 0.700 O6aanane o
0 0.660 0 - 0.680
0 o @ © 0 20 40 6 S0 100 120 o 5 100 150
N;mecr of iterations Number of iterations Number of iterations
(a) ML1 (b) ML2 (c) EM

Figure 2.4: The variation of NDCG@10 and the loss in URM during the minimization
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Figure 2.5: The relationship between the average iteration time in the URM and the
scale of the data

ized loss for the demonstration purposes. We can see that the NDCG@10 grows
steadily and converges in all of the datasets in parallel with the loss function
being minimized. These observations indicate that the approach proposed in
this chapter is effective in achieving improved recommendation performance,
thus addressing our second research question and allowing us to give it a posi-
tive answer. Additionally, they provide evidence that URM is indeed a model
of the phenomenon that it was designed to capture.

Furthermore, we can also observe in Fig. 2.4 that the NDCG@10 already be-
comes close to optimal after 10 iterations on ML1 dataset, after 50 iterations
on ML2 dataset and EM dataset. This observation indicates that the proposed
URM is efficient in reaching convergence, even for a large scale data set. We
also demonstrate the relationship of average iteration time against the scale
(i.e., the number of ratings) of each data set, as shown in Fig. 2.5. Note that
for the smallest dataset ML1 one iteration only takes around 1 second, and for
the largest data set (EM) one iteration only takes around 20 seconds in our
MATLAB implementation on a PC with 1.59 GHz CPU and 2.93 GB memory.
Moreover, the runtime of a single iteration increases almost linearly with the
increase of the data scale, which empirically verifies that the URM can eas-
ily scale up to address datasets of any size. The conclusions from this section
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lead to an answer to our third research question, namely, they demonstrate the
efficiency and scalability of URM.

2.4.5 Performance Comparison

In this subsection, we compare the performance of URM and a number of rep-
resentative alternative CF approaches that we list and briefly describe below.
Our selection of alternative approaches covers various aspects in recommenda-
tion area, including a non-personalized approach, a widely-used memory-based
approach and two state-of-the-art model-based approaches.

e ItemAvRat: This is a naive non-personalized recommendation ap-
proach, that recommends items to users according to the average item
rating. In other words, the item that has the highest average rating in
the training data will be the top recommended item for every user. Using
this method, every user will get offered the same recommendation list.

e ItemCF: This is a traditional and widely used item-based CF ap-
proach [38, 88, 136]. Our implementation of ItemCF is based on [38].

e PMF: This is a state-of-the-art rating-oriented CF approach [134], which
is equivalent to the proposed URM when « is set to 1. Note that we use

the same dimensionality of latent features and regularization parameter
as used in URM.

e ListRank: This is a state-of-the-art ranking-oriented CF approach [144],
which is equivalent to the proposed URM when « is set to 0. Note that
we also use the same dimensionality of latent features and regularization
parameter as used in URM.

e CofiRank: This is another state-of-the-art ranking-oriented CF ap-
proach. We implemented it using publicly available software3. Regarding
the parameter setting, we adopted the optimal values of most parameters
from [183], and we tuned the rest of them for optimal performance using
the same validation sets as for URM. Since our experimental setting is
exactly same as the work of CofiRank and its extensions [183], we can
compare our results directly to the best of theirs among various parame-
ter settings if available, i.e., the CofiRank performance of NDCG@10 on
ML1 and EM data sets in Table 2.2 and Table 2.4 are directly adopted
from [183].

3http:/ /www.cofirank.org/downloads
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Table 2.2: Performance comparison in terms of NDCG between URM and other
recommendation approaches on ML1 dataset.

UPL=10 UPL=20 UPL=50
NDCG@5 NDCG@10 | NDCG@5 NDCG@10 | NDCG@5 NDCG@10
ItemAvRat| 0.345 0.400 0.313 0.357 0.274 0.309
ItemCF 0.552 0.578 0.556 0.580 0.546 0.571
PMF 0.603 0.630 0.588 0.610 0.597 0.616
CofiRank | 0.600 0.678 0.633 0.681 0.664 0.701
ListRank | 0.672 0.693 0.682 0.691 0.687 0.684
URM 0.673* 0.694* | 0.699*" o0.708*f | o.717*t  0.718*%

Table 2.3: Performance comparison in terms of NDCG between URM and other
recommendation approaches on ML2 dataset.

UPL=10 UPL=20 UPL=50
NDCG@5 NDCG@10 | NDCG@5 NDCG@10 | NDCG@5 NDCG@10
ItemAvRat| 0.297 0.342 0.280 0.322 0.255 0.293
ItemCF 0.594 0.589 0.603 0.616 0.589 0.607
PMF 0.645 0.653 0.644 0.653 0.680 0.686
CofiRank | 0.671 0.668 0.694 0.689 0.693 0.692
ListRank | 0.647 0.654 0.683 0.688 0.751 0.751
URM 0.732*t  0.735*t | 0.748*t 0.747*t | 0.764*t  0.760*

The performance of different approaches with respect to different user profile
length (UPL) is shown in Table 2.2-2.4. For each dataset and each UPL we
repeat experiments 10 times, i.e., with 10 random splits of training and testing
data as described in Section 2.4.2. As can be seen from Table 2.2, URM out-
performs other approaches significantly in most of the cases on ML1 dataset,
according to Wilcoxon signed rank significance test with p < 0.05. Note that
we use T to denote the significant improvement over ListRank, and * to denote
the significant improvement over all the other approaches except ListRank. For
the results directly available from CofiRank (Weimer et al., 2008), we did not
conduct the significance test for the comparison with the corresponding re-
sults from URM, since we do not have the results of CofiRank in each run. The
URM achieves large amount of improvement (ca. 20%) over the naive approach
ItemAvRat and the traditional CF approach ItemCF, and over 10% improve-
ment over PMF. Compared to the state-of-the-art CofiRank, it also achieves
ca. 3-10% improvement. Note that these improvements are consistent across
different user profiles, i.e., different conditions of UPL. We can also observe that
URM significantly improves upon ListRank by ca. 2-5% in the cases of UPL
as 20 and 50. Although the improvement over ListRank in the case of UPL
as 10 is not statistically significant, we emphasize that the tradeoff parameter
used in the testing runs is based on the validation set, which is formed in the
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Table 2.4: Performance comparison in terms of NDCG between URM and other
recommendation approaches on EM dataset.

UPL=10 UPL=20 UPL=50

NDCG@5 NDCG@10 | NDCG@5 NDCG@10| NDCG@5 NDCG@10
ItemAvRat| 0.236 0.307 0.222 0.291 0.194 0.255
ItemCF 0.534 0.579 0.545 0.592 0.552 0.598
PMF 0.608 0.643 0.606 0.646 0.690 0.714
CofiRank | 0.639 0.646 0.671 0.653 0.641 0.647
ListRank | 0.567 0.607 0.642 0.674 0.721 0.740
URM 0.668*"  0.695*T | 0.707*t 0.726*T | 0.735*1 0.747*f

condition of UPL=50. In practice, we could tune the tradeoff parameter more
tightly by considering the targeting user profile length in order to attain further
performance gain. In this chapter, we only tune tradeoff parameter based on
a certain condition of UPL, which allows us to show that the tuned tradeoff
parameter could be robust enough to be applied to other conditions of UPL.

For the performance of the URM on ML2 and EM datasets, which are much
larger than ML1, similar observations can be found, as shown in Table 2.3 and
Table 2.4. Note that on these datasets URM achieves significant improvement
over all the other approaches in all the conditions of UPL. Compared to the
second best approach in each case, the improvement attained by the URM
is of ca. 2-10%. These results allow us to give a positive answer to our first
research question, namely, they show that URM could improve recommendation
performance over state-of-the-art approaches across different datasets and for
users with different profiles. They also make it possible to give a positive answer
to our fourth and final research question: Regarding the comparison of URM
with other state-of-the-art approaches, the performance of URM is clearly and
consistently superior.

2.5 Conclusion and Future Work

In this chapter, we present a novel recommendation approach URM, which is
capable of unifying a ranking-oriented CF approach ListRank and a rating-
oriented CF approach PMF by exploiting common latent features of users and
items. We qualitatively and quantitatively demonstrate that the complexity of
URM is linear with the number of observed ratings in a given user-item matrix,
indicating that URM can be deployed in large-scale use cases. We also experi-
mentally verify that the recommendation performance of URM mainly derives
from the ranking-oriented component, i.e., ListRank, while the rating-oriented
component, i.e., PMF, contributes significant enhancement. Our experimen-
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tal results indicate that URM substantially outperforms both component ap-
proaches, i.e., ListRank and PMF, and other traditional and state-of-the-art
recommendation approaches. Performance improvements achieved by URM
are also shown to be consistent with respect to various datasets and users with
various profile lengths.

Moving forward, future work in this area will explore two interesting directions.
First, we are interested in investigating other options of item-list representa-
tion, which might influence the performance of the ranking-oriented recommen-
dation approach, thus, improve the performance of URM. Second, in this paper
we established that the latent space can mediate between the rating-oriented
approach and the ranking-oriented approach. We are interested in exploring
the shared latent space to integrate in the framework of URM with other types
of information, e.g., item content features, contextual information of users and
items. Third, we are also interested in investigating the potential to develop
recommendation models by directly optimizing the ranking measures.



Chapter 3

Collaborative Less-is-More
Filtering

In this chapter we tackle the problem of recommendation in the scenarios with
binary relevance data, when only a few (k) items are recommended to individ-
ual users. Past work on Collaborative Filtering (CF) has either not addressed
the ranking problem for binary relevance datasets, or not specifically focused
on improving top-k recommendations. To solve the problem we propose a
new CF approach, Collaborative Less-is-More Filtering (CLiMF). In CLiMF
the model parameters are learned by directly maximizing the Mean Reciprocal
Rank (MRR), which is a well-known information retrieval metric for measuring
the performance of top-k recommendations. We achieve linear computational
complexity by introducing a lower bound of the smoothed reciprocal rank met-
ric. Experiments on two social network datasets demonstrate the effectiveness
and the scalability of CLiMF, and show that CLiMF significantly outperforms
a naive baseline and two state-of-the-art CF methods.

This work has been published as “CLiMF: Learning to maximize reciprocal rank with
collaborative less-is-more filtering” by Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N.
Oliver, and A. Hanjalic, in Proc. of the sixth ACM conference on Recommender systems,
Dublin, Ireland, 2012 [141]. The paper won the Best Paper Award in the conference.

29
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3.1 Introduction

Collaborative Filtering (CF) [2] methods are at the core of most recommen-
dation engines in online web-stores and social networks. The main underlying
idea behind CF methods is that users that shared common interests in the past
would still prefer similar products/items in the future [129]. While a lot of
the CF literature has been devoted to recommendation scenarios where explicit
user feedback is present (i.e., typically ratings), CF has also shown to be very
valuable in scenarios with only implicit feedback data [60], e.g., the counts of a
user watching a TV show, the counts of a user listening to songs of an artist.
These counts can be interpreted as a measure of preference and thus a proxy
to explicit feedback.

However, in some scenarios even the “count” information is not available, while

only binary relevance data exists, e.g., the friendship between users in a Online
Social Network, the follow relationship between users (or between a user and
an event, etc.) in Twitter! or the dating history in online dating sites [122].
Specifically, in these scenarios, we use “1” for a given user-item pair to denote
that the user has an interaction (e.g., friendship, follow) with the item, and “0”
otherwise. Typically the observed interactions are regarded as positive signals
(i.e., indicating relevant items), and although not all items without observed
interactions are irrelevant it is safe to assume the vast majority of these items
will be irrelevant for the user. In other words, for a given user, the signal
“0” indicates an item set containing unobserved items that could be relevant,
but are most likely irrelevant. One of the most typical CF methods for those
scenarios is item-based CF [38, 88|, in which an item-item similarity matrix
is first computed, and users are recommended items that are most similar to
their past relevant items. However, item-based CF approaches typically require
expensive computations in order to construct the similarity matrix. They are
thus not a sound solution for large scale scenarios.

Bayesian Personalized Ranking (BPR) [126] has been recently proposed as a
state-of-the-art recommendation algorithm for situations with binary relevance
data. The optimization criterion of BPR is essentially based on pair-wise com-
parisons between relevant and a sample of irrelevant items. This criterion leads
to the optimization of the Area Under the Curve (AUC). However, the AUC
measure does not reflect well the quality of the recommendation lists, since
it is not a top-biased measure [193], i.e., the position at which the pairwise
comparisons are made is irrelevant to the contribution to the loss: mistakes at
the lower ranked positions are penalized equally to mistakes in higher ranked
positions, which is not the desired behavior in a ranked list.

"http://twitter.com/
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In view of the drawbacks of previous work, we propose a new CF approach,
Collaborative Less-is More Filtering (CLiMF), that is tailored to recommenda-
tion domains where only binary relevance data is available. CLiMF models the
data by means of directly optimizing the Mean Reciprocal Rank (MRR) [175],
a well-known evaluation metric in Information Retrieval (IR). Given the anal-
ogy between query-document search and user-item recommendation, we can
define the Reciprocal Rank (RR) for a given recommendation list of a user,
by measuring how early in the list (i.e. how highly ranked) the first relevant
recommended item is ranked. The MRR is the average of the RR across all
the recommendation lists for individual users. MRR is a particularly important
measure of recommendation quality for domains that usually provide users with
only few but valuable recommendations (i.e., the less-is-more effect [27]), such
as friends recommendation in social networks where top-3 or top-5 performance
is important.

Taking insights from the area of learning to rank and integrating latent factor
models from CF, CLiMF directly optimizes a lower bound of the smoothed RR
for learning the model parameters, i.e., latent factors of users and items, which
are then used to generate item recommendations for individual users.

Our contributions in this chapter can be summarized as:

e We present a new CF approach, CLiMF, for MRR optimization for scenar-
ios with binary relevance data. We demonstrate that CLiMF outperforms
other state-of-the-art approaches with respect to making recommenda-
tions that are few in number, but relevant.

e We introduce a lower bound of the smoothed RR measure, significantly
reducing the computational complexity of RR optimization, and enabling
CLiMF to scale for large datasets.

The paper is organized as follows. In Section 3.2 we discuss the related work
and position our paper with respect to it. Section 3.3 presents in detail the pro-
posed CLiMF model. Our experimental evaluation is described in Section 3.4,
followed by a summary and conclusions in Section 3.5.

3.2 Related Work

The work presented in this chapter closely relates to the research on ranking-
oriented CF and learning to rank. In the following, we briefly review related
work.



32 Chapter 3. Collaborative Less-is-More Filtering

3.2.1 Ranking-oriented CF

A large portion of the Recommender Systems literature has been devoted to the
rating prediction problem, as defined in the Netflix prize competition?. Latent
factor models and in particular Matrix Factorization (MF) techniques, have
been shown to be particularly effective [3, 75, 134] for this problem. The main
idea underlying MF is to extract latent factor U;, V; vectors for each user and
item in the dataset so that the inner product of these factors f;; = (U;, V;) fits
the observed ratings.

Several state-of-the-art ranking-oriented CF approaches, that extend upon MF
techniques, have been recently proposed. These approaches typically use a rank-
ing oriented objective function to learn the latent factors of users and items,
e.g., CofiRank [182], collaborative competitive filtering (CCF) [189], and Or-
dRec [76]. The CLiMF model presented in this chapter can also be regarded as
an extension to conventional MF, while it introduces several new characteristics
that are presented in Section 3.3.4, compared to the state-of-the-art.

A ranking-oriented CF that extends memory-based (or similarity-based) ap-
proaches has been proposed in EigenRank [90]. Moreover, extensions to proba-
bilistic latent semantic analysis [58] that optimize a ranking objective have been
proposed in pLPA [92]. However, these methods are all designed for recommen-
dation scenarios with explicit graded relevance scores from users to items.

For the use scenarios with only implicit feedback data, one of the first model-
based methods was introduced in [60], where an extension of MF is proposed
by weighting each factorization of user-item interaction proportionately to the
count of the interactions. A similar approach, one-class collaborative filter-
ing [114], was also proposed to exploit weighting schemes for the factoriza-
tions of missing data, which are taken as non-positive examples. However, the
computational cost of that work could be inflated due to the large number of
non-positive data. In this chapter, we study the problem of generating recom-
mendations for the scenarios with only binary relevance data, i.e., where even
the count of user-item interaction is not available. In addition, our work directly
takes into account an evaluation metric, MRR, when developing the recommen-
dation model, which is also substantially different from the work of [60, 114].

The most similar work to ours is Bayesian personalized ranking (BPR) [126],
since it also optimizes a ranking loss (AUC) and deals with binary relevance
data. The main benefits of using CLiMF lies in its performance in terms of top-
k recommendations (i.e., the fraction of relevant items at the top k positions
of the list), an issue not addressed by the BPR model. Note that we also
leave the detailed discussion of the relationship between CLiMF and BPR to

2http:/ /www.netflixprize.com/
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Section 3.3.4, after the presentation of the CLiMF model.

3.2.2 Learning to Rank

Learning to Rank (LTR) has been an active research topic in Machine Learn-
ing, Information Retrieval [93] and Recommender Systems [9, 144, 182]. The
work in this chapter is closely related to one branch of LTR that focuses on
direct optimization of IR metrics, for which the main difficulty lies in their
non-smoothness with respect to the predicted relevance scores [17]. The ap-
proaches proposed in this branch of LTR approximate the optimization of IR
measures either by minimizing convex upper bounds of loss functions that are
based on the evaluation measures [24, 182, 187], e.g., SV MMAP 193], or by
optimizing a smoothed version of an evaluation measure, e.g., SoftRank [169]
and generalized SoftRank [26].

In this chapter, we also propose to approximate the Mean Reciprocal Rank
(MRR) with a smoothed function. However, our work is different from afore-
mentioned work not only in that we target the application scenario of recom-
mendation rather than query-document search, but also in that we propose
an algorithm (CLiMF) that makes the optimization of the smoothed MRR
tractable and scalable. We also provide insights about the ability of CLiMF to
recommend relevant items in the top positions of a recommendation list.

3.3 CLiMF

In this section, we present the CLiMF, Collaborative Less-is-More Filtering, al-
gorithm. We first introduce a smoothed version of Reciprocal Rank by building
on insights from the area of learning to rank. Then, we derive a lower bound
of the smoothed reciprocal rank, and formulate an objective function for which
standard optimization methods can be deployed. Finally, we discuss the charac-
teristics of the proposed CLiMF model and its relation to other state-of-the-art
recommendation models.

3.3.1 Smoothing the Reciprocal Rank

The definition of reciprocal rank of a ranked list for user ¢, as defined in infor-
mation retrieval [175], can be expressed as:

N oy N
RR; = *J 1—-Y, (R, < R;; 3.1
;sz kl;[l( KI(Rik < Rij)) (3.1)
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in which N is the number of items, Y;; denotes the binary relevance score of

item j to user 4, i.e., Y;; = 1 if item j is relevant to user ¢, 0 otherwise. I(z) is
an indicator function that is equal to 1, if x is true, otherwise 0. R;; denotes
the rank of item j in the ranked list of items for user i. Note that the items
are ranked in a descending order according to their predicted relevance scores
for user i. Clearly, RR; is dependent on the rankings of relevant items. The
rankings of the relevant items change in a non-smooth way as a function of
the predicted relevance scores and thus, RR; is a non-smooth function over the
model parameters. The non-smoothness of the RR measure makes it impossible
to use standard optimization methods —such as gradient-based methods— to
directly optimize RR;. Inspired by recent developments in the area of learning
to rank [26], we derive an approximation of I(R;, < R;;) by using a logistic
function:

I(Rix < Rij) = g(fix — fij) (3.2)

where g(x) = 1/(1 + e™™), fij denotes the predictor function that maps the

parameters from user ¢ and item j to a predicted relevance score. The predictor
function that we use in our model is the basic and widely-used factor model,
expressed as:

fij = (Ui, Vj) (3.3)

where U; denotes a d-dimensional latent factor vector for user i, and V; a
d-dimensional latent factor vector for item j. Even though a sophisticated
approximation for the item rank was proposed in [26], it has not been deployed
in practice. Notice that in the case of RR; in Eq. (3.1), only 1/R;; is actually
in use. We thus propose to directly approximate 1/R;; by another logistic
function:

1 ~

9(fij) (3.4)

which makes the basic assumption that the lower the item rank, the higher
the predicted relevance score, i.e., 1/R;; would approach to 1. Substituting
Eq. (3.2) and (3.4) into Eq. (3.1), we obtain a smooth version of RR;:

N
RRz ~ Z}/ljg fl] H 1 - l]i)g lec fzj)) (35)

j=1 k=1

Notice that although Eq. (3.5) is a smooth function with respect to the pre-
dicted relevance scores and thus the model parameters U and V', optimizing this
function could still be practically intractable, due to its multiplicative nature.
For example, the complexity of the gradient of Eq. (3.5) with respect to Vj (i.e.,
only for one item) is O(N?): the computational cost grows quadratically with
the number of items IV and for most recommender systems N is typically large.
In the following, we present a lower bound of an equivalent variant of Eq. (3.5),
for which we derive a computationally tractable optimization procedure.
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3.3.2 Lower Bound of Smooth Reciprocal Rank

Suppose that the number of relevant items for user 7 in the given data collection
is nj Given the monotonicity of the logarithm function, the model parame-
ters that maximize Eq. (3.5) are equivalent to the parameters that maximize
ln(n%rRRi). Specifically, we have:

1
Ui,V = argmax{RR;} = argmax{In(—RR;)}

U;,V Ui,V n;
N Y, N
:ar(%;,rxlfaX{ln(;W 9(fij) 1;[ (1= Yieg(fix — fij)))} (3.6)

Based on Jensen’s inequality and the concavity of the logarithm function, we
derive the lower bound of ln(n%rRRi) as below:

Yi;
le il

Mz

1
ln(n—_ﬁ_RRi) =In (

v Jj=

N
ij H 1_ ikd fzk_fzj)))
k=1

—
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>

Yuln( (fij) ﬁ 1 —Yirg(fix — fz])))
k=1
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—
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Y, <lng fij) + Z 1— kg (fir — fij))) (3.7)
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Note that in the derivation above we make use of the definition of nf, ie.,

= Z{il Y;. We can neglect the constant 1/n; in the lower bound, and
obtain a new objective function as:

N
L(U;, V) = ZYM Ing(fi) + Y (1= Yirg(fix = fij))] (38)
j=1 k=1

We can take a close look at the two terms within the first summation. The
maximization of the first term contributes to learning latent factors that pro-
mote relevant items. However, given one relevant item, e.g., item j, maximizing
the second term contributes to learning latent factors of all the other items (e.g.,
item k) in order to degrade their relevance scores. In sum, the two effects come
together to promote and scatter the relevant items at the same time, the main
characteristic of the proposed CLiMF. In other words, CLiMF will lead to a
recommendation where some but not all relevant items are at the very top of
the recommendation list for a user. We notice that this behavior of CLiMF
corresponds to the analysis of MRR optimization for a search result list [179],
i.e., optimizing MRR results in diversifying ranked documents.

Taking into account the regularization terms that usually serve to control the
complexity of the model (i.e. in order to avoid overfitting), and all the M users
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in the given data collection, we obtain the objective function of CLiMF'

M N N
=33V [mg(UIV) + Y I (1 - Yig(UT Vi — UTV;))]

i=1 j=1 k=1
A
- §(IIUII2 +VI?) (3.9)

in which X denotes the regularization coefficient, and |U|| denotes the Frobenius
norm of U. Note that the lower bound F(U, V') is much less complex than the
original objective function in Eq. (3.5), and standard optimization methods,
e.g., gradient ascend, can be used to learn the optimal model parameters U
and V.

3.3.3 Optimization

We use stochastic gradient ascent to maximize the objective function in
Eq. (3.9), i.e., for each user i, we optimize F(U;,V). The gradients of the
objective for user ¢ with respect to U; and V; can be computed as below:

ZYW —fii)V; +Z - _““‘Zk;l;lk f})J) (V; = Vi)] = AU (3.10)

N 1 1
=Yiglo(—fis) + 2 Yind (fi - fik)(l —Yug(fir — fis) 1= Yi9(fij — fik)ﬂUi

—\Y (3.11)

oF
ov;

where ¢'(z) denotes the derivative of g(x). Note that we have used a property
of g(x), namely, g(—z) = ¢'(x)/g(z), in the derivation of Eq. (3.10) and (3.11)
above to simplify the computation.

The learning algorithm for the CLiMF model is outlined in Algorithm 2. We
analyze the complexity of the learning process for one iteration. By exploit-
ing the data sparseness in Y, the computational complexity of the gradient
in Eq. (3.10) is O(dn?M + dM). Note that 7 denotes the average number of
relevant items across all the users. The complexity of computing the gradient
in Eq. (3.11) is O(dn?M + diM). Hence, the complexity of the learning algo-
rithm in one iteration is in the order of O(dn?M). In the case that 7 is a small
number, i.e., 72 << M, the complexity is linear to the number of users in the
data collection. Note that we have nM = S, in which S denotes the number
of non-zeros in the user-item matrix. The complexity of the learning algorithm
is then O(dn.S). Since we usually have n << S, the complexity is O(dS) even
in the case that n is large, i.e., being linear to the number of non-zeros (i.e.,
relevant observations in the data). In sum, our analysis shows that CLiMF
is suitable for large scale use cases. Note that we also empirically verify the
complexity of the learning algorithm in Section 3.4.4.
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ALGORITHM 2: Learning Algorithm for CLiMF
Input: Training set Y, regularization parameter A, learning rate -y, and the
maximal number of iterations itermax.

Output: The learned latent factors U, V.
fori=1,2,...,M do

% Index relevant items for user i;

Ni={jlYi; >0,1<j < N}
end
Initialize U©® and V(© with random values, and ¢ = 0;
repeat

fori=1,2,...,M do

% Update Uy;

gt — g +,ya?jfgj) based on Eq. (3.10);

for j € N; do
% Update Vj;
v = Vj(t) + ~v-2F- hased on Eq. (3.11);

7 avj(t)
end
end
t=t+1;

until ¢t > itermax;
U=U® v =y®

3.3.4 Discussion

We discuss the relationship between the proposed CLiMF and other state-of-
the-art recommendation models, and present the insights that highlight the
contribution of CLiMF to the area of CF when compared to other models.

Relation to CofiRank: CofiRank [182] was the first work that introduced
learning to rank to address CF as a ranking problem. CofiRank makes use
of structured estimation of a ranking loss based on NDCG, and learns the
recommendation model by minimizing over a convex upper bound of the loss
function. The major differences between CLiMF and CofiRank lie in two as-
pects: First, due to its foundation on the measure of NDCG, CofiRank suits
scenarios where graded relevance data, e.g., ratings, are available from users to
items, but it might not be appropriate for the scenarios with only binary rele-
vance data, for which CLiMF is tailored. Second, CofiRank and CLiMF root
in different classes of methods to achieve learning to rank [93, 187], such as the
difference between SV MMAP [193] and SoftRank [169]. CofiRank exploits a
convex upper bound of the structured loss function based on the evaluation
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metric NDCG, and then optimizes the upper bound. However, CLiMF first
smooths the evaluation metric RR, and then optimizes the smoothed version of
the metric via a lower bound.

Relation to CCF: Collaborative competitive filtering (CCF) [189] was pro-
posed as an algorithm that not only exploits rated items from users, but also the
candidate items (or opportunities) that were available for the users to choose.
The key constraint introduced in CCF is that the utility (or relevance) of a
rated item should be higher than any items that are in the candidate set but
not rated/selected. CLiMF is similar to CCF in the sense that it also considers
the relative pair-wise constraints in learning the latent factors, as shown in the
second term with the summation in Eq. (3.8). However, CLiMF only requires
relevant items, while CCF requires all the items in the candidate set, which are
not usually available. In practice, CCF needs to include some unrated items
together with the rated items to form the candidate set. In addition, CCF is
not directly related to any evaluation metrics, while CLiMF is designed for
MRR optimization.

Relation to OrdRec: OrdRec [76] is an ordinal model that formulates the
probability that a rating predictor (a function of the model parameters, such
as the latent factors) is equal to a known rating as the probability that the
rating predictor falls in the interval of two parameterized scale thresholds cor-
responding to two adjacent rating values. OrdRec has a point-wise nature,
i.e., it does not require any pair-wise computation between any rated/unrated
items. Hence, it enjoys the advantage of a computational complexity that is
linear to the data size, the same advantage attained by CLiMF. However, al-
though OrdRec generally suits to scenarios with implicit feedback data, “count”
information is necessary to extract the ordinals, i.e., the ordered preferences of
users. For this reason, OrdRec may not be suitable for the scenarios with
only binary relevance data. In addition, OrdRec has no direct relation to the
ranking-oriented evaluation metrics.

Relation to BPR: BPR [126] models the pair-wise comparisons between pos-
itive and negative feedback data (in the scenarios with binary relevance data),
and optimizes an objective that corresponds to Area Under Curve (AUC) opti-
mization. BPR is similar to CLiMF in the sense that it also directly optimizes
a smoothed version of an evaluation metric for binary relevance data, there are
though two main differences. First, BPR requires a sampled set of negative
feedback data, i.e., a set of unobserved items to be assumed as irrelevant to the
users. However, CLiMF only requires the relevant items from the users. Sec-
ond, while BPR aims at promoting all the relevant items, CLiMF particularly
focuses on recommending items that are few in number, but relevant at top-k
positions of the recommendation list, a goal which is attained by promoting
and scattering relevant items at the same time, as shown in Eq. (3.8). Since
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BPR shares a close relationship with CLiMF in terms of modeling and applica-
tion scenarios, we choose BPR, as the main baseline to compare against in the
experiments.

3.4 Experimental Evaluation

In this section we present a series of experiments to evaluate CLiMF. We first
describe the datasets used in the experiments and the setup. Then, we compare
the recommendation performance of CLiMF with two baseline approaches in
terms of providing only a few but relevant recommendations at the top posi-
tions of the recommendation list. Finally, we analyze the effectiveness and the
scalability of the proposed CLiMF model.

We designed the experiments in order to address the following research ques-
tions:

1. Does the proposed CLiMF outperform alternative state-of-the-art algo-
rithms, particularly when recommending just a few but relevant items at
top-ranked positions?

2. Is the learning algorithm of CLiMF effective for increasing MRR to a
local maximum?

3. Is CLiMF scalable for large-scale use cases?

3.4.1 Experimental Setup

Datasets. We conduct experiments using two social network datasets from
Epinions? and Tuenti?. The Epinions dataset is publicly available®, and it con-
tains trust relationships between 49288 users. The Epinions dataset represents
a directed social network, i.e., if user ¢ is a trustee of user j, user j is not
necessary a trustee of user i. Most microblogging social networks are also di-
rected, such as Twitter. For the purpose of our experiments, we exclude from
the dataset the users who have less than 25 trustees. The second dataset col-
lected from Tuenti, one of the largest social networks in Spain, represents an
undirected social network, containing friendship between 50K users. Similar
to the Epinions dataset, we also exclude the users with less than 25 friends.
Note that in these two datasets, friends or trustees are regarded as “items” of
users. The task is to generate friend or trustee recommendations for individual
users. Statistics on the two datasets used in our experiments are summarized
in Table 3.1.

3http://www.epinions.com
“http://www.tuenti.com
Shttp:/ /www.trustlet.org/wiki/Downloaded_Epinions_dataset
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Table 3.1: Statistics of the datasets.

Dataset Epinions Tuenti
Num. non-zeros 346035 798158
Num. users 4718 11392
Num. friends/trustees 49288 50000
Sparseness 99.85% 99.86%

Avg. friends/trustees per user 73.34 70.06

Experimental Protocol and Evaluation Metrics. We separate each
dataset into a training set and a test set under various conditions of user pro-
files. For example, the condition of “Given 5” denotes that for each user we
randomly selected 5 out of her trustees/friends to form the training set, and
use the remaining trustees/friends to form the test set. The task is to use the
training set to generate recommendation lists for individual users, and the per-
formance is measured according to the holdout data in the test set. We repeat
the experiment 5 times for each of the different conditions of each dataset, and
the performances reported are averaged across 5 runs. Again, we emphasize
that in this work we only consider the observed items as being relevant to the
user. Although this setting would underestimate the power of all the recom-
menders, the comparative results are still useful, since they can be regarded as
the approximation of the lower limit of each recommender.

The main evaluation metric that we use in our experiments to measure the
recommendation performance is MRR, the measure that is optimized in our
model. In addition, we also measure the performance by precision at top-ranked
items, such as precision at top-5 (P@5), which reflects the ratio of the number
of relevant items in the top-5 recommended items. In order to emphasize the
value of “less-is-more” recommendations, we also use the measure of 1-call at
top-ranked items [27]. Specifically, 1-call at top-5 recommendations (1-call@5)
reflects the ratio of test users who have at least one relevant item in their top-5
recommendation lists.

Finally, as revealed in recent studies from different recommender domains, it is
possible that popular items could heavily dominate the recommendation per-
formance [33, 149, 161]. We also notice this effect in our experiments, namely,
recommending the most popular friends or trustees (i.e., those have the most
friends or trusters) could already result in a high performance. For this rea-
son, in our experiments we consider the top three most popular items as being
irrelevant in order to reduce the influence from the most trivial recommenda-
tions [33, 149]. In other words, recommending any of the top three popular
friends/ trustees has no contribution to any of the evaluation metrics.

Parameter Setting. We use one fold of randomly generated training-test sets
of each dataset under the condition “Given 5” for the purpose of validation,
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Table 3.2: Performance comparison of CLiMF and baselines on the Epinions dataset.

Given 5 Given 10 Given 15 Given 20
MRR P@5 1-call@5| MRR Pas 1-call@5| MRR Pas 1-call@5| MRR Pas 1-call@5
PopRec | 0.142 0.035 0.166 0.127 0.032 0.134 0.117 0.032 0.136 0.131 0.048 0.210
iMF 0.154 0.059 0.225 0.143 0.059 0.236 0.155 0.063 0.231 0.153 0.059 0.226
BPR-MF| 0.241 0.148 0.532 0.167 0.072 0.334 0.177 0.098 0.380 0.216 0.096 0.422
CLiMF |0.292 0.216 0.676 |0.233 0.092 0.392 |0.248 0.127 0.496 |0.239 0.110 0.448

which is used to tune parameters in CLiMF. The values of the parameters
that yield the best performance on the validation set are: the regularization
parameter A = 0.001, the latent dimensionality d = 10 and the learning rate
~v = 0.0001.

3.4.2 Performance Comparison

We compare the performance of CLiMF with three baselines, PopRec, iMF and
BPR, which are described below:

e PopRec. A naive baseline that recommends a user to be a friend or
trustee in terms of her popularity, i.e., the number of friends or trusters
she has in the given training set. The more friends or trusters the user
has, the higher her position in the recommendation list. Note that it is
a non-personalized recommendation approach: for any target user, the
recommendations are always the same.

o iMF: A state-of-the-art matrix factorization technique for implicit feed-
back data by Hu et al. [60], as discussed in Section 3.2. The regularization
parameter is tuned to 1, based on the performance on the validation sets.

e BPR-MF. Bayesian personalized ranking (BPR) represents the state-
of-the-art optimization framework of CF for binary relevance data [126].
BPR-MF represents the choice of using matrix factorization (MF) as the
learning model with BPR optimization criterion. Note that the imple-
mentation of this baseline is done with the publicly available software
MyMediaLite [42]. The relevant parameters, such as the regularization
coefficients and the number of iterations, are tuned on the validation sets,
which are the same sets that were used for tuning the CLiMF model.

The recommendation performances of CLiMF and the baseline approaches on
the Epinions and the Tuenti datasets are shown in Table 3.2 and Table 3.3,
respectively.

Three main observations can be drawn from the results: First, the proposed
CLiMF model significantly outperforms the three baselines in terms of MRR
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Table 3.3: Performance comparison of CLiMF and baselines on the Tuenti dataset.

Given 5 Given 10 Given 15 Given 20
MRR PQ@5 1-call@5| MRR PaQs 1-call@5| MRR Pas 1-call@5 | MRR PQs 1-call@5
PopRec | 0.096 0.029 0.138 0.074 0.017 0.080 0.074 0.019 0.088 0.074 0.019 0.086
iMF 0.064 0.020 0.090 0.065 0.017 0.076 0.065 0.021 0.098 0.076 0.023 0.108
BPR-MF | 0.096 0.030 0.142 0.075 0.025 0.116 0.075 0.020 0.090 0.076 0.021 0.106
CLiMF [0.100 0.039 0.190 |(0.077 0.027 0.124 |0.077 0.022 0.104 |0.083 0.024 0.116

across all the conditions and the two datasets. Note that in our experiments,
the statistical significance is measured based on the results from individual test
users, according to a Wilcoxon signed rank significance test with pj0.01. This
result corroborates that CLiMF achieves the goal that was designed for and
optimizes the value of the reciprocal rank for the recommendations to the indi-
vidual users. Notice that it is not possible to compare the results in Table 3.2
and Table 3.3 across conditions, since different conditions involve a different
set of test items, containing different numbers of items. Second, CLiMF' also
achieves a significant improvement over the baselines in terms of P@5 and 1-
call@5 across all the conditions and the two datasets. The improvement of
P@5 indicates that by optimizing MRR, CLiMF also improve the quality of
recommendations among the top-ranked items. In addition, the improvement
of 1-call@5 supports that CLiMF particularly contributes to providing valu-
able recommendations at the top-k positions, i.e., raising the chance that users
would receive at least one relevant recommendation among just a few top-
ranked items. Compared to BPR, where AUC is optimized, CLiMF succeeds
in enhancing the top-ranked performance by optimizing MRR, the top-biased
metric. As can be also seen from the results, iMF performs worse than both
BPR and CLiMF in all the conditions of the Epinions dataset and in most of
the conditions of the Tuenti dataset. The reason might be that iMF is partic-
ularly designed for implicit feedback datasets with the “count” information as
mentioned in Section 3.2, while it may not be suitable for the scenarios with
only binary relevance data. Third, in cases in which users have a lower number
of friends/trustees (i.e., the case of ”Given 5”) the improvement achieved by
CLiMF over the alternative approaches is relatively larger than the improve-
ment achieved in cases in which users have a higher number of friends/trustees
(i.e., the case of ”Given 20”). This result suggests that CLiMF’s key mecha-
nism of scattering relevant items could be particularly beneficial for scenarios
under very high data sparseness. Hence, we give a positive answer to our first
research question.

3.4.3 Effectiveness

The second experiment investigates the effectiveness of the proposed learning
algorithm for CLiMF, as presented in Section 3.3.3. Figures 3.1 (a) and (b)
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Figure 3.1: Effectiveness of the learning algorithm for CLiMF under the “Given 5”
condition for both datasets.

show the evolution of MRR with each iteration —as measured in both the train-
ing and the test sets— under the “Given 5” condition for the Epinions and
Tuenti datasets, respectively. We can see that both MRR measures gradually
increase with each iteration and convergence is reached after a few iterations,
i.e., nearly after 20 iterations on the Epinions dataset and 30 iterations on
the Tuenti dataset. This observation indicates that CLiMF effectively learns
from the training set latent factors of users and items that optimize reciprocal
rank, which consequently also contributes to improving MRR in the test set.
With this experimental result, we give a positive answer to our second research
question.

3.4.4 Scalability

The last experiment investigates the scalability of CLiMF, by measuring the
training time that is required for the training set at different scales. First, as an-
alyzed in Section 3.3.3, the computational complexity of CLiMF is linear in the
number of users in the training set when the average number of friends/trustees
per user is fixed. To demonstrate the scalability, we use different numbers of
users in the training set under each condition: we randomly select from 10% to
100% users in the training set and their known friends/trustees as the training
data for learning the latent factors. The results on the Epinions dataset and
the Tuenti dataset are shown in Fig. 3.2(a) and 3.2(b), respectively. We can
observe that for both datasets, the computational time under each condition
increases almost linearly to the increase of the number of users. Second, as also
discussed in Section 3.3.3, the computational complexity of CLiMF could be
further approximated to be linear to the amount of known data (i.e., non-zero
entries in the training user-item matrix). To demonstrate this, we examine the
runtime of the learning algorithm against different scales of the training sets
under different “Given” conditions. For example, under the “Given 5” condi-
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Figure 3.2: Scalability analysis of CLiMF' in terms of the number of users in
the training set

tion of the Epinions dataset, there are 5x4718=23590 non-zeros in the training
set. The result is shown in Fig. 3.2, from which we can observe that the average
runtime of the learning algorithm per iteration increases almost linearly as the
number of non-zeros in the training set increases. The observations from this
experiment allow us to answer our last research question positively.

3.5 Conclusions

In this chapter we have presented a new CF approach, CLiMF, that learns latent
factors of users and items by directly maximizing MRR. CLiMF is designed to
improve the performance of top-k recommendations for usage scenarios with
only binary relevance data. We have demonstrated in our experiments that
CLiMF offers significant improvements over a naive and two state-of-the-art
baselines in two social network datasets. We have also experimentally validated
that CLiMF’s learning algorithm is effective for MRR optimization, and has
linear computational complexity to the size of the known data, and thus is
scalable for large scale use cases.

Future work involves a few interesting directions. First, we would like to extend
our CLiMF model to suit domains with explicit feedback data, e.g., ratings.
Second, it is also interesting to experimentally investigate the impact of CLiMF
on the recommendation diversity, by exploiting external information resources,
such as the categories of items. Third, we are also interested in investigating
recommendation models that optimize other evaluation measures, such as mean
average precision [140], and in exploring the impact of optimizing different
measures on various aspects of recommendation performance [179].



Chapter 4

Mood-specific Movie
Recommendation

Context-aware recommendation seeks to improve recommendation performance
by exploiting various information sources in addition to the conventional user-
item matrix used by recommender systems. We propose a novel context-aware
movie recommendation algorithm based on joint matrix factorization (JMF).
We jointly factorize the user-item matrix containing general movie ratings and
other contextual movie similarity matrices to integrate contextual information
into the recommendation process. The algorithm was developed within the
scope of the mood-aware recommendation task that was offered by the Moviepi-
lot mood track of the 2010 context-aware movie recommendation (CAMRa)
challenge. Although the algorithm could generalize to other types of contex-
tual information, in this work, we focus on two: movie mood tags and movie
plot keywords. Since the objective in this challenge track is to recommend
movies for a user given a specified mood, we devise a novel mood-specific movie
similarity measure for this purpose. We enhance the recommendation based on
this measure by also deploying the second movie similarity measure proposed in
this chapter that takes into account the movie plot keywords. We validate the
effectiveness of the proposed JMF algorithm with respect to the recommenda-
tion performance by carrying out experiments on the Moviepilot challenge data
set. We demonstrate that exploiting contextual information in JMF leads to

This work was first published as “Mining mood-specific movie similarity with matrix fac-
torization for context-aware recommendation” by Y. Shi, M. Larson, and A. Hanjalic, in ACM
RecSys Challenge on Context-aware Movie Recommendation, 2010 (CAMRa 2010). The pa-
per won the Overall Winner Award in the challenge [145]. This chapter is an extended version
that has been published as “Mining contextual movie similarity with matrix factorization for
context-aware recommendation” in ACM Transactions on Intelligent Systems and Technology,
4(1), 2013 [148].

45
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significant improvement over several state-of-the-art approaches that generate
movie recommendations without using contextual information. We also demon-
strate that our proposed mood-specific movie similarity is better suited for the
task than the conventional mood-based movie similarity measures. Finally, we
show that the enhancement provided by the movie similarity capturing the
plot keywords is particularly helpful in improving the recommendation to those
users who are significantly more active in rating the movies than other users.



4.1.  Introduction 47

4.1 Introduction

Recently, context-aware recommendation has experienced an upsurge of interest
in the recommender systems community [131]. The interest has been spurred by
a growing awareness of the potential of contextual information, if available, to
improve the quality of recommendations [1, 18]. Such information can include,
e.g., relationships among users in social media sites, tags of products, introduc-
tion about products or timestamps of user actions. One of the most promising
potential contributions of contextual information is its ability to alleviate the
problem of data sparseness in the original user-item matrix. Contextual infor-
mation can be exploited to more reliably estimate relationships between items
compensating for cases in which the information in the original user-item matrix
is insufficient.

In addition to relying on information sources beyond the conventional user-item
matrix, context-aware recommendation also differs from traditional recommen-
dation in the sense that its purpose is more specific, e.g., movies are recom-
mended specifically for the week of Christmas [43, 89], or for a specific mood
that they should elicit in the user [145]. Accordingly, the research challenge in
the area of context-aware recommendation involves two aspects. It is expected
that the new recommendation technique/model retains the benefits of conven-
tional recommender approaches, such as collaborative filtering (CF) [2], which
infers the recommendation from a user-item matrix, while also allowing contex-
tual information to steer the recommendation process towards results suitable
for a given use case (purpose).

In this chapter, we address the recommendation task formulated in the Moviepi-
lot mood track of the context-aware movie recommendation (CAMRa) chal-
lenge [131], henceforth referred to as the Moviepilot challenge, in which the
task is to recommend movies to a user given a specific mood. For this purpose,
not only the user-item matrix is provided, capturing general preferences of the
users for different movies, but also the contextual information consisting of var-
ious movie metadata, such as mood tags, plot keywords, movie locations and
intended audience.

In order to maximize the benefit of the given contextual information and opti-
mally address the two aspects of context-aware recommendation defined above,
we propose a novel recommendation model, based on a joint matrix factorization
(JMF), that factorizes the user-item (user-movie) matrix, while also exploiting
the contextual information as additional regularization terms. Specifically, for
generating context-based links between movies, we propose a set of contextual
movie similarities, each of which steers the recommendation process and con-
tributes to JMF in a specific fashion. From the contextual information available
within the setting of our task, we deploy mood tags and plot keywords (PK).
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The potential of plot keywords to improve mood-based recommendation lies
in the assumption that if mood-based movie similarity is difficult to infer reli-
ably from the mood tags, then movies with similar moods might still be linked
together if they have similar plots. Although we focus only on two types of
contextual information, the proposed JMF model could be easily expanded to
integrate other contextual information.

The novel contribution of this chapter can be summarized as follows. We pro-
pose a novel context-aware movie recommendation algorithm that extends the
basic matrix factorization (MF) model to take into account context-induced
links between movies. Furthermore, we propose a set of contextual movie sim-
ilarities that evaluate the relationships between movies in view of specific con-
textual information, i.e., mood-specific movie similarity and PK-based movie
similarity, and integrate these similarities in our recommendation model. Fi-
nally, we apply these in the setting of the Moviepilot challenge for evaluation,
demonstrating that the proposed algorithm outperforms a wide range of state-
of-the-art approaches for context-aware recommendation.

The remainder of the paper is structured as follows. In the next section, we
present an overview of the Moviepilot challenge. Then, in section 4.3, we sum-
marize related work and position our approach with respect to it. The pro-
posed contextual movie similarities and JMF model are described in detail in
section 4.4, after which, in section 4.5, we present experimental evaluation on
the Moviepilot challenge dataset. The last section sums up the key aspects of
the proposed algorithm and briefly addresses the direction for future work.

4.2 Overview of the Moviepilot Challenge

4.2.1 Problem Statement

The task of the Moviepilot challenge can be defined as follows: Based on both
the user-mowvie rating matrix and other provided contextual information, rec-
ommend a list of movies that have a specific mood property to each target/test
user [131]. In other words, the task is to design a model that takes the user-
movie rating matrix, the contextual information and a specific mood as input,
and outputs a list of movies with the specific mood for each target user. The
recommendation list should contain as many relevant movies as possible, which
are also ranked as high as possible. Note that within this challenge a movie is
considered to be “relevant” to a user if it has been rated by that user and if it
is characterized by the pre-specified mood. In addition to user-movie ratings,
the data set provided for this challenge contains various types of contextual
information, e.g., movie-emotion (mood) assignments, movie-PK assignments
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and the release date of each movie. Note that all the data are provided in
the form of identifiers and the real identities of the underlying entities are not
made known to the public due to privacy considerations. For example, we do
not have access to direct knowledge concerning the identity of the movie with
identifier 10, or the mood with identifier 5.

4.2.2 Characteristics of the Challenge

In this section we discuss the characteristics of this challenge that make it
distinctive from the traditional CF problem.

First, the evaluation of the recommendation performance is not based
on the rating prediction error rate, e.g., as done in the Netflix contest
(www.netflixprize.com), but on the recommendation list, the quality of which
is assessed using metrics for the evaluation of ranked results lists, e.g., precision
at N and mean average precision. As recently suggested in [Liu et al. 20009;
Shi et al. 2010b], these evaluation criteria are more sensible, since the ultimate
goal of a recommender system is to generate a list of recommended items for a
user, rather than only provide the predictions of relevance scores for different
items.

Second, the evaluation focuses on the recommended movies characterized by
the pre-specified mood, which requires a different approach to designing recom-
mendation mechanisms, compared to the traditional, mainly CF-based practice.
In view of such a focus, one could namely first apply a known recommenda-
tion approach based on an analysis of the user-item matrix to generate the
initial recommendation and then remove those movies not having the desired
mood. This approach is, however, likely lead to a recommendation perfor-
mance being far short of what is targeted, as is demonstrated later during our
experiments. A priori, a basis for this expectation could also be drawn from
the distribution of ratings in the data set, shown in Fig. 4.1. The distribution
reveals that many movies in the provided validation set (i.e., a set provided
for tuning the parameters) have low ratings. Note that low-rated movies are
significant in the Moviepilot challenge, since if the number of movies of the
target mood is limited, these movies come into consideration as the most ap-
propriate ones to recommend to the user. As a consequence of this discrepancy
between the rating predictions generated by the user-item matrix and the con-
textual information, the number of movies resulting from an initial traditional
recommendation step and having the proper mood characteristics may be too
small. Instead, one should conceptualize the recommendation process as not
only involving the movies that the user would generally be interested in, but
also simultaneously emphasizing the movies with the specified mood. In other
words, context awareness of the recommendation is not likely to emerge from
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Figure 4.1: The distribution of ratings in the validation set of Moviepilot challenge.

a simple filtering step of the initial recommended item list, but rather through
letting the contextual information actively steer the recommendation process.

Finally, other alternatives for approaching collaborative recommendation, such
as the ranking-oriented approaches [92, 126, 144], are also expected not to
perform well within this challenge, since both a pair-wise ranking approach and
a list-wise ranking approach require training examples annotated with explicit
or implicit item ratings. However, the value of ratings would not influence the
evaluation according to the challenge setting.

4.3 Related Work

This section briefly summarizes the existing related research in CF, context-
aware recommendation and tag-aware recommendation, in order to position
the recommendation approach we propose in this chapter.

4.3.1 Collaborative Filtering

CF approaches are usually categorized as memory-based or model-based [2,
16, 57]. Memory-based approaches can be further categorized as user-based
or item-based, depending on whether the recommendation for a user is aggre-
gated from users with similar preference, e.g., the work of [55, 142, 194], or from
items that are similar to those he already liked, e.g., the work of [38, 88, 136].
The key drawback of memory-based CF approaches lies in the expensive com-
putation for similarities among all users or items, which does not scale with
the typically large numbers of users and items in real-world recommender sys-
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tems. Compared to memory-based approaches, model-based approaches first
employ statistical and machine learning techniques to learn a prediction model
from a training set of user-item matrix data and then apply that model to
generate recommendations, such as Gaussian mixture model [66] and latent
semantic model [58]. Among different model-based approaches, matrix factor-
ization (MF) techniques have attracted much research attention, due to the
advantages of scalability and accuracy [75, 134], especially for large-scale data,
as exemplified by the Netflix contest. Generally, MF techniques learn latent
features of users and items from the observed ratings in the user-item rating
matrix. These latent features are further used to predict unobserved ratings.
Rather than targeting the rating prediction problem, recent research started
to exploit possibilities for ranking-oriented CF approaches that focus on the
quality of recommendation lists, e.g., EigenRank [90], CoFiRank [182], proba-
bilistic latent preference analysis [92], Bayesian personalized ranking [126], and
ListRank [144].

The joint matrix factorization (JMF) is an extension of MF. The designation
“joint” makes reference to the simultaneous factorization of more than one
matrix. JMF is formulated similarly to relational learning, as defined by [155],
which also factorizes multiple matrices from related domains. It has been widely
applied e.g., for fusing document content and graph link information for doc-
ument retrieval or web page classification [37, 202], or for fusing geographical
location features and people activity correlation for location-based recommen-
dation [197]. In this chapter, we exploit JMF to fuse contextual movie similar-
ities, i.e., the mood-specific movie similarity and the plot-keyword-based movie
similarity, with the user-movie rating matrix. The difference between our work
and the aforementioned previous work on JMF is two-fold. First, compared
to the work of [37, 155, 202] , we exploit the available contextual information
in the form of contextual movie similarities rather than original movie con-
textual information. By this means, we maintain the advantage of using con-
textual information for learning latent movie features, namely alleviating data
sparseness in the user-movie rating matrix, while at the same time eliminating
unnecessary learning for additional latent features representing other entities,
e.g., movie mood and plot keywords. Second, above and beyond this body of
existing work, i.e., [37, 155, 197, 202], we propose a new mood-specific movie
similarity that explicitly addresses the recommendation bias of the Moviepi-
lot challenge and propose a method to integrate this similarity into the JMF
framework. We note that our work is consistent with the contemporary trend of
new work in the area, falling into the category of approaches extending matrix
factorization [43, 89].
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4.3.2 Context-aware Recommendation

Some of the earliest work on context-aware recommendation was done by Ado-
mavicius et al. [1], who deployed contextual information, e.g., time and place,
to generate additional dimensions in the user and item rating vectors. Anand
and Mobasher [6] exploited users’ preference information from both long-term
memory and short-term memory in the recommendation process. Baltrunas
and Ricci [11] proposed to take into account the context, e.g., user age and
gender, to split item ratings as a pre-processing step for CF approaches, in
order to improve CF accuracy. Application of context-aware recommendation
approaches in specific use cases has been explored in work exploiting contex-
tual information for travel recommendation [23], news recommendation [21],
and music recommendation [163]. Compared to this previous work, our pro-
posed approach has the advantages of being adaptive to any application domain
and being able to handle large-scale data sets.

Specifically concerning the context-aware movie recommendation tasks in the
Moviepilot challenge, in addition to the mood-specific recommendation task
other tasks have been addressed as well, such as recommending movies for a
specific week (such as a holiday week) and recommending movies by exploiting
social relationships [131]. For week-based movie recommendation, timestamps
of users ratings have been made available as the contextual information. Ap-
proaching this task, [43] extended a pair-wise interaction tensor factorization
model [128], which was originally designed for tag recommendation, to factor-
ize the {user, time, movie} ternary data for movie recommendation in a given
week. [89] investigated both tensor factorization and sequential matrix factor-
ization to integrate time-dependent characteristics of users and items into the
recommendation process. In addition to the work presented in the Moviepilot
challenge, [74] has proposed to include temporal dynamics into neighbor-based
CF and matrix factorization for improved performance in the Netflix contest.

On the other hand, regarding the task targeting the integration of social rela-
tionships into recommendation, [89] investigated both collective matrix factor-
ization (equivalent to the work of [98]) and network-regularized matrix factor-
ization (equivalent to the work of [97]) for this purpose. However, they found
that including social relationships into MF leads to only a small improvement
compared to basic matrix factorization.

4.3.3 Tag-aware Recommendation

We also point out that our work on context-aware recommendation is related to
tag-aware recommendation. [170] proposed a fusion method to incorporate tags
into traditional user-based CF and item-based CF for item rating prediction.
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[184] proposed exploiting probabilistic latent semantic analysis [58] to unify
user-item relations and item-tag relations into one model, resulting in improved
item recommendation performance. A similar principle was presented by [178],
but from a more fundamental perspective.

More recently, another group of state-of-the-art approaches has emerged that
makes use of tensor factorization techniques, e.g., the work of [70]. Un-
der such approaches, latent features are learned from the {user, tag, item}
triplet/ternary data directly for item recommendation [65], tag recommenda-
tion [125, 128, 165], or both [166]. However, tensor factorization is known to
be computationally expensive, i.e., usually being cubic in the number of latent
dimensions. However, in the Moviepilot challenge, where the mood tags and
plot keywords of movies are not associated with users, there is no ternary data
actually available for either exploiting or comparing with tensor factorization
techniques.

Another way of benefiting from the relations among users, tags and items for the
purpose of recommendation is to deploy a graph-based approach. For instance,
[72] proposed a recommendation framework that infers the item preferences of
the users from a hyper-graph including different types of nodes and links, which
captures user-user, tag-user, tag-item and user-item relations. Preferences are
inferred using a random-walk-with-restarts method. While the method was
proved effective conceptually, it requires the availability of rich contextual in-
formation in order to result in significant recommendation benefits in a practical
use case. Graph-based approaches are not suitable for our task, which mixes
binary information (mood-movie relation) with scale information (user ratings).
In [72], the links in the hyper-graph are assumed to be binary, which represents
a radical simplification of the relationships between the nodes. For integrating
user-item ratings and other contextual information into a hyper-graph, it would
also be necessary not only to impose this simplification, but also to impose it in
a way that retains the balance between the mix of different information types
without information loss, which could be introduced during the simplification
step. For this reason, graph-based approaches are not an obvious choice for
application in our work.

4.4 The Proposed Algorithm

In this section, we introduce our proposed algorithm for the context-aware
movie recommendation task of the Moviepilot challenge. The flow chart of
the proposed algorithm is given in Fig. 4.2. While the use case and rationale
behind our general approach have been discussed in Section 4.1, we focus in
this section on the analysis of three key components of the algorithm, namely
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Figure 4.2: The flow chart of the proposed algorithm.

the mood-specific movie similarity and the similarity based on plot keywords,
and the joint matrix factorization model. Then, we also perform a complexity
analysis of the proposed algorithm.

4.4.1 Mood-specific Movie Similarity

According to the traditional item-based CF, item-to-item similarity can be com-
puted as the cosine similarity between two item rating vectors [38]. Similarly,
given the movie-mood (binary) matrix M (consisting of N movies and K; mood
tags), we can compute mood-based similarity between movie j and movie n as:

S(Mov—mood) _ Zf:ll Mjank:
Jjn K, K,
\/Zk:l Mj2k \/Zk:l Mv%k

Here, Mj; = 1 indicates that the movie j has the mood tag k, otherwise
M = 0. The mood-based similarity in Eq. (4.1), however, only indicates
general closeness of two movies in terms of all their mood properties. For
example as shown in Fig. 4.3, two movies (A and B) sharing different mood
properties could be equally similar to another movie (D). If the required mood
of a movie is specified, this similarity fails to differentiate between movies A

and B.

(4.1)

In view of the above, we expect that an accurate approach would involve ad-
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Figure 4.3: An illustrative example of mood-specific movie similarity.

justing the movie-to-movie similarity in a way to make it more biased towards
a particular mood in case movies with that mood need to be recommended.
We therefore propose a novel mood-specific similarity measure to address this
issue. Although we focus on the Moviepilot challenge that targets mood-specific
movie recommendation, the concept of mood-specific similarity can easily be
generalized for recommendation with different contextual constraints.

Instead of evaluating the consistency of mood tags between two movies, like in
Eq. (4.1), we can also compute the normalized co-occurrence of the mood i and
mood k in the movie collection as:

N
(Mood) _ 21 MMy, (4.2)
ik = ~ ~ :

Once the mood co-occurrence matrix SMe°9d) is obtained, we can generate a

mood-specific movie-mood matrix that is biased towards a given mood m, as
expressed in Eq. (4.3):

(Mood)
M](Ln—spec) _ SJM k,k_# m (43)
jky R =M

While preserving the original movie-mood matrix values in the column corre-
sponding to the mood m, the values in the matrix as in Eq. (4.3) for any other
mood k are replaced by the values of the similarities in Eq. (4.2), implicitly in-
dicating to which extent mood k is informative about mood m. Note that the
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mood-specific movie-mood matrix M™—SPe) js not binary. Then, we define

the mood-specific movie similarity biased towards a given mood m as:

K1 M(m spec)M('rI: spec)

\/E MGrore) \/E (m—spec)2

In order to illustrate the effect of this similarity, we again focus on the example
in Fig. 4.3 and assume that there is specific demand for movies corresponding
to the mood “anxious”. In the search for all movies satisfying this recommen-
dation criterion, we can derive the mood-specific movie similarity for the mood
“anxious”. In contrast with the case where general mood-based similarity in
Eq. (4.1) is computed, the mood-specific movie similarity now indicates movie
D to be more similar to movie A than to movie B. This is because movie
A has mood tags (“sad” and “upset”) that are more informative about “anx-
ious” than the mood tags of the movie B. In this way, the movie-specific movie
similarity steers the movie comparison towards the target mood and helps the
context-aware recommendation.

(m—spec)
Sin

(4.4)

4.4.2 Plot Keyword -based Movie Similarity

Similar to the mood-based movie similarity, we also define the similarity be-
tween movies in terms of movie plot keywords (PKs). Since PKs represent
the movie content, this similarity can improve the mood-based links between
movies. Since both PKs and moods potentially reflect the underlying movie
content, it is reasonable to expect that movies having similar plots could evoke
similar emotions in users. We first create a binary movie-PK matrix P consist-
ing of N movies and K> PKs, where Pj; = 1 if the movie j has the PK &, and
Pji, = 0 otherwise. Then, the PK-based similarity between movie j and movie
n can be defined as:

P,
S;;\(JOU PK) Zk 1 ch k (4'5)

\/EK2 Pg \/ZK2 P2,

4.4.3 Joint Matrix Factorization

The basic MF [75] can be formulated as in Eq. 4.6:

K N
. 1 R T 2 )\U 2 )\V 2

U,V = argmin | 3 ;;zuj (Ruj = Uy V5)" + 5 [0l + - IVIE (4.6)
Given the user-item rating matrix R consisting of K users and N items, the

MF represents the user-item rating matrix R by two low-rank matrices, U and
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V. A d-dimensional set of latent features is deployed to represent both users (in
U) and items (in V). Note that we use U, to denote a column d-dimensional
feature vector of user u, Vj is a column d-dimensional feature vector of movie
J, and R,; denotes the user u’s rating on movie j. Ifj denotes an indicator
function that is equal to 1 when R,; > 0, and 0 otherwise. |[|[U|p and ||V]F
are the Frobenius norms of U and V, that contribute to alleviating overfitting.
AU, Ay are regularization parameters for which we set Ay = Ay = A to simplify
the model in this chapter.

In view of the discussion in the previous section, we now require that the movies
being similar to each other with respect to the mood-specific similarity criterion
in Eq. (4.4) share similar latent movie features. For this purpose, we formulate
a context-aware loss function L;(V) as shown in Eq. (4.7).

1 N N 2
V)= L LB (s - (47

where %S denotes an indicator function that is equal to 1 when Sj(.zl_‘gp )

and 0 otherwise.

> 0,

Furthermore, we also assume that the movies similar to each other with respect
to the PK-based similarity as in Eq. (4.5) should also share similar latent movie
features, implying that the similarity of the plots is informative for mood-
specific movie recommendation. Therefore, we formulate another context-aware
loss function L2(V) as shown in Eq. (4.8).

1 Al (Mov—PK) 2
522 ( VjTVn) (4.8)

(Mov—PK)

Here, I ﬁf( denotes an indicator function that is equal to 1 when S >

0, and 0 otherwise.

Taking into account the context-aware loss functions as regularization terms in
the basic MF model, a joint matrix factorization (JMF) model can be formu-
lated as:

2
I] _UZ"V'])

Mz

1 K
V)=52_.
u=1 1

<.
Il

( (m spec) VTV)2
i Vn

M\Q

i Mz H'MZ

N
N PK (Mov—PK) T 2 2 2
ZI (s ~ViVa) AU+ IVIE)  (49)

I\D\Tb

In this model, a and S are the tradeoff parameters for weighting the con-
tributions of regularization by the mood-specific movie similarity and by the
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PK-based movie similarity, respectively. Note that when both « = 0 and 8 =0,
the JMF model converges to the basic MF model. For notation convenience,
we use JMF-MS-PK to indicate the case that both a > 0 and § > 0 and
JMF-MS to indicate the model with @ > 0 and 8 = 0. Furthermore, we use
JMF-MB to indicate the model with o« > 0 and 5 = 0 that exploits general
mood-based movie similarity instead of the mood-specific movie similarity. A
more elaborate investigation of the variations of the proposed JMF model is
given in Section 5.

In summary, the advantage of the JMF model is two-fold: First, the addi-
tional contextual information, i.e., mood-specific movie similarity and PK-based
movie similarity, alleviate the usual deficiencies of the rating matrix R, i.e.,
data sparseness, since latent features of movies could be learned from contex-
tual movie similarity matrices as well as from the rating matrix. Second, the
mood-specific movie similarity could contribute to biasing recommendations
towards movies with the specific mood.

Minimization of the objective function in Eq. (4.9) can be solved by gradient
descend with alternatively fixed U and V. This process results in a local
minimum solution. The gradients of L(U, V) with respect to U and V can be
computed as:

ZIR (ULV; — Ryj)Vj + AU, (4.10)

= ZIR (UTV; — Ry; Uu+2aZIMS VIV, — Sim=reoyy,

+283 Z IPEWVEV, — SRy, 1y, (4.11)

Note that in Eq. (4.11) we exploit the symmetry of S(m—sPec) anJ §(Mov—PK),

The JMF-MS-PK algorithm is described in detail in Algorithm 3.

4.4.4 Complexity Analysis

The complexity of computing the contextual movie similarity matrices is nor-
mally quadratic to the number of movies, i.e., O(N?). In the case that a
new movie appears, the complexity of updating each contextual movie sim-
ilarity matrix is linear in the number of current movies, i.e., O(N). How-
ever, this computation could be carried out completely offline, since it is in-
dependent of learning latent features in JMF. By exploiting the data sparse-
ness, the computation of the objective function in Eq. (4.9) is of complexity
O(d|R| + d|S(m—spec)| 1 q|sMov—PK)| 1 4(K + N)), where |R| denotes the
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ALGORITHM 3: JMF-MS-PK
Input: User-movie rating matrix R, mood-specific movie-to-movie similarity
S(m-—spec) PK_hased movie-to-movie similarity SMoV—PK) tradeoff

parameters «, 3, regularization parameter A\, stop condition e.

Output: Complete user-movie relevance matrix R.
Initialize U, V(©) with random values;

t=0;

f=0;

Compute L®) as in Eq. (4.9);

repeat
n=1
Compute %, % as in Eq. (4.10) and (4.11);
repeat

17 =mn/2; // maximize learning step size
until LU® — p2L v(® _p 0Ly o 1),

ou ) oV (t)
Ut =y® — 778?][(:5) ) VD — ) Tla?/%n j

Compute L) as in Eq. (4.9);
if 1 — LAY /L) < ¢ then
f =1; // indicator of convergence
end
t=t+1;
until f =1;
R=UOTy®),

number of observed ratings in a given user-movie rating matrix, |S(m—spec)|
the number of non-zero similarities in the mood-specific similarity matrix,
and [SMov—PK)| the number of non-zero similarities in the PK-based sim-
ilarity matrix. The complexity of the gradients in Eq. (4.10) and (4.11)
is O(d|R| + dK) and O(d|R| 4 d|S(m—spec)| 1 g|S(Mov—PK)| L N), respec-
tively. Considering the fact that we often have |R| >> K, N, i.e., the num-
ber of observed ratings is much larger than both the number of users and
the number of movies in a collection, the total complexity in one iteration
is O(d|R| 4 d|Stm—spec)| 4 q|S(Mov=—PK)|) " T practice, there are many more
users than movies in movie recommender systems, e.g., the Netflix data set
involves around 480K users and around 18K movies (www.netflixprize.com),
and the MovieLens data set involves around 72K users and around 11K movies
(www.grouplens.org/node/73). Therefore, the number of contextual links be-
tween movies could be much lower than user-movie links (ratings), leading
to |S(m—spec)| |gMov—PK)| ~~ |R|. The total complexity of the proposed
algorithm could approximate to O(d|R|), which is linear with the number of
observed ratings in the user-movie matrix. This analysis indicates that the pro-
posed algorithm is computationally efficient and can be applied to large-scale
cases.
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4.5 Experimental Evaluation

In this section, we present the experiments we conducted to evaluate the pro-
posed algorithm. The research questions that need to be answered through the
experiments can be formulated as follows:

1. Does minimizing the objective function in Eq. (4.9) contribute to improv-
ing recommendation performance?

2. Can the proposed algorithm JMF-MS-PK outperform other state-of-the-
art approaches?

3. How does the mood-specific movie similarity contribute to the perfor-
mance of mood-specific recommendation in the Moviepilot challenge?

4. What is the contribution of integrating the PK-based movie similarity in
addition to mood-specific movie similarity to the recommendation perfor-
mance?

4.5.1 Experimental Setup

Data set. Our experiments are conducted on the dataset of the “Moviepilot
mood track”, which consists of around 4.5M ratings (scale 0-100) assigned by
around 105K users to a collection of around 25K movies. The data sparseness
of the user-movie rating matrix is around 99.83%. Apart from the user-movie
rating matrix, various contextual information is provided, e.g., gender and age
of users, production year of movies, intended audience of movies, etc. The
detail of statistics of the dataset is presented at [131]. As mentioned in the
introduction, we only exploit the mood tags of movies and the plot keywords of
movies in this work. The movie-mood tag (binary) matrix consists of around
25K movies and 16 mood tags, which in total involves 6712 mood tag assign-
ments on movies. The movie-PK (binary) matrix consists of around 25K movies
and 5683 PKs, which in total involves 92124 PK assignments to movies.

Evaluation Metrics. We use the precision of top-N recommendation list
(P@N) and the Mean Average Precision (MAP) as the evaluation metrics for
measuring the quality of the recommendation list [50, 57]. The PQN reflects
the average ratio of the number of relevant movies over the top-N recommended
movies for all test users. The definition of MAP is given as:

Kis N, ) .
iy S (rely(j) x P,@
vap— L 3 > ¢ () ‘ 7) (4.12)
Kis u=1 Zj:ul relu(j)

where K;s is the number of users for testing, and N, denotes the number
of recommended movies for the user u. rel,(j) is a binary indicator, which
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is equal to 1 if the movie of rank j is relevant to user u, and is equal to 0
otherwise. P,@j is the precision of the top j recommended movies for the user
u, i.e., the ratio of movies in the top j recommendation that are relevant to the
user u. Since it is required that relevant movies are recommended as early as
possible, usually a small value of N is chosen for PQN. In our experiments, we
evaluated in the cases of N = 1, 5, 10. In addition, MAP reflects the quality of
the entire recommendation list by considering the positions of all the relevant
movies. Higher values for PQN and MAP indicate a better recommendation
performance.

Experimental Protocol. The Moviepilot challenge data set contains three
pre-defined subsets: a training set, a validation set and a test set. The training
set involves all users and all movies. The training set is used to generate
recommendations. The validation and test sets involve a small number of users,
i.e., 160 and 80 users, respectively, whose ratings are disjoint with their ratings
in the training set. The validation set is used to tune the parameters in the
proposed algorithm. The parameters in the baseline approaches, as discussed
in Section 4.5.4, are also tuned to the validation set. Performance is reported
based on recommendations for all the users in the test set, as demonstrated
in Section 4.5.4. Moreover, according to the requirement in the Moviepilot
challenge (cf. Section 4.2), the evaluation only concerns the movies with a
specific mood tag (i.e., the mood with identifier 16) to be potentially relevant
for the users. Recommended movies that are in the validation/test set, but do
not have the specified mood tag, are counted as irrelevant for the target users,
i.e., they do not contribute to improvement in recommendation as reflected by
the evaluation metrics.

Note that in the proposed JMF algorithm, we set the dimensionality of latent
features to be 10. Although the variation of dimensionality of latent features
could influence the performance, we notice that, just like in a common MF
technique [183], a further increase in the number of latent features would not
introduce a large improvement, while requiring more computational cost (cf.
Section 4.4.4). The regularization parameter X is set to 1 based on the ob-
servation of the performance of the basic matrix factorization, which is also
discussed in Section 4.5.4. The stopping condition € in the learning process is
set to 0.0001 in our experiments.

4.5.2 Impact of Tradeoff Parameters

The tradeoff parameters o and § in the proposed algorithm influence the relative
contributions from the contextual movie similarities. By using the validation
set, we investigate the impact of the tradeoff parameters by varying their values
and measuring the recommendation performance in terms of PQ5 and MAP.
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Figure 4.4: The impact of tradeoff parameter « on the recommendation performance
of the proposed algorithm.
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Figure 4.5: The impact of tradeoff parameter 8 on the recommendation performance
of the proposed algorithm, when a = 0.1.

We first set § = 0 and investigate the impact of «, as shown in Fig. 4.4. Tt can
be seen that for both P@Q5 and MAP, the optimal value of « lies around 0.1.
It also indicates that by only introducing the mood-specific movie similarity,
additional improvement can be achieved over the basic MF model, i.e., the case
when o = 0. Then, we further investigate the impact of 3, and keep the value
of a fixed as a = 0.1, as shown in Fig. 4.5. It can also be seen that for both PQ5
and MAP, the optimal value of 3 is nearly 0.1. This indicates that in addition to
the mood-specific movie similarity, there is still potential to further improve the
recommendation performance by incorporating the PK-based movie similarity.
Moreover, we can observe that the additional improvement stemming from the
PK-based movie similarity is only slight compared to the case when only the
mood-specific movie similarity is used, i.e., § = 0 in Fig. 4.5. This implies that
the mood-specific movie similarity makes the major contribution among the
used contextual information.
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Figure 4.6: The effectiveness of the proposed algorithm in improving the recommen-
dation performance.

4.5.3 Effectiveness

We further investigate the research question (1), namely to what extent the
minimization of the objective function in Eq. (4.9) contributes to the improve-
ment of the recommendation. To this end, we demonstrate the variation of the
output of the objective function (normalized for demonstration purposes) and
evaluation metrics, i.e., P@5 and MAP on the validation set, simultaneously
during the iterations of the optimization process, as shown in Fig. 4.6. Note
that in this experiment the tradeoff parameters used are the optimal values
from the previous section, i.e., « = 0.1 and 8 = 0.1. The results show that
the recommendation performance generally increases monotonically with the
minimization of the objective function, allowing us to give a positive answer to
the first research question.

4.5.4 Performance Comparison

In this subsection, we compare the performance of the proposed algorithm JMF-
MS-PK with a set of alternative recommendation approaches listed below. The
performance is reported based on the test set. The tradeoff parameters are the
optimal ones determined using the validation set as stated in Section 4.5.2.

e PopRec: Movies are recommended to users based on their popularity,
which is defined in terms of the number of users who rated them in the
training set. This approach constitutes a non-personalized and naive base-
line since every test user will receive the same recommendation, i.e., a list
of movies ranked in a descending order according to the number of their
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Table 4.1: Comparison of recommendation performance between the proposed algo-
rithm and other baseline approaches. “*” denotes a significant improvement of JMF-
MS over JMF-MB, and “*” denotes a significant improvement of JMF-MS-PK over
JMF-MS, according to Wilcoxon signed rank significance test with p<0.05.

P@l| P@5 (PQ10|MAP
PopRec [0.213| 0.248 | 0.251 | 0.264
RWR 0.238] 0.253 | 0.274 | 0.281
MF 0.325] 0.305 | 0.241 | 0.252
JMF-MB [0.338] 0.328 | 0.286 | 0.273
JMF-MS 0.350(0.3357|0.295" | 0.289"
JMF-MS-PK |0.363| 0.335 |0.306* | 0.290

ratings in the training set.

¢ RWR: This algorithm is a state-of-the-art recommendation approach
that uses random walk with restarts (RWR) [72] on a graph encoding
the relations between the users and items. Here, we set the restart proba-
bility to 0.8 based on the optimal performance achieved in the validation
set.

e MF': This algorithm represents a basic state-of-the-art matrix factoriza-
tion approach as in [75], which is also equivalent to Eq. (4.6). The di-
mensionality of the latent user and movie features is also set to 10. The
regularization parameter A is set to 1, which is tuned to achieve the opti-
mal performance on the validation set. Note that the same corresponding
parameters are used in the proposed algorithm as well.

o JMF-MB: This algorithm is a joint matrix factorization approach that
incorporates the general mood-based movie similarity rather than mood-
specific movie similarity. It also shares the same corresponding param-
eters as used in MF. In addition, we set the tradeoff parameter to 0.01
to again give the best performance on the validation set. The JMF-MB
is used to compare with the proposed algorithm especially for validating
the usefulness of the mood-specific movie similarity.

e JMF-MS: This algorithm is a joint matrix factorization approach that
incorporates the mood-specific movie similarity as in Eq. (4.9). Note
that in both JMF-MB and JMF-MS we do not use the PK-based movie

similarity, i.e., 5 = 0.

The results of the comparative analysis are shown in Table 4.1, from which we
can see the relative improvement achieved by the proposed algorithm JMF-MS-
PK in terms of PQ1, P@5, PQ10 and MAP.
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First, we can see that the JMF-MB approach outperforms non-context-aware
approaches, i.e., PopRec, RWR, and MF, by over 5% in terms of PQ1, PQ5
and P@10. This improvement is statistically significant (based on Wilcoxon
signed rank significance test, p<0.05) in all cases and indicates that the contex-
tual information indeed has the potential to help improve the recommendation
performance. By incorporating both the mood-specific movie similarity and
the PK-based movie similarity, the proposed algorithm JMF-MS-PK outper-
forms the non-context-aware approaches by over 10% across all the evaluation
metrics, also with constant statistical significance. This gives an affirmative
answer to the research question (2). In addition, the improvement of JMF
over the basic MF approach also empirically indicates that exploiting contex-
tual information via the JMF model could indeed contribute to alleviating data
sparseness problem in the user-movie rating matrix.

Second, we observe that the JMF-MS achieves around 3%-5% improvement
over the JMF-MB in most of the evaluation metrics, indicating that the mood-
specific movie similarity is more beneficial for the mood-specific recommen-
dation purpose compared to the general mood-based movie similarity. This
observation provides an affirmative answer to the third research question.

Third, by further incorporating the PK-based movie similarity in addition to
the mood-specific movie similarity, the JMF-MS-PK achieves around 3% sig-
nificant improvement over the JMF-MS with respect to P@Q10, which results
in an affirmative answer to the last research question. It can also be seen
that the mood-specific movie similarity makes the major contribution under
the mood-specific recommendation purpose, while other contextual movie sim-
ilarities, e.g., the PK-based movie similarity, can be exploited via the JMF
approach to make further enhancements of the recommendation performance.

Finally, we investigate the performance of the proposed algorithm with respect
to users with varying numbers of rated movies, such as the results reported for
P@10 in Table 4.2. Since the non-context-aware approaches perform generally
worse than the proposed JMF algorithm as indicated before, we only select MF
to represent the non-context-aware approaches. As can be seen from Table 4.2,
the JMF algorithms outperform the basic MF across all users with various
numbers of rated movies. We also notice that the users with relatively fewer
rated movies (i.e., with no more than 100 rated movies) benefit most from the
mood-specific movie similarity (i.e., from JMF-MS and JMF-MS-PK) compared
to the general mood-based movie similarity (JMF-MB). We conjecture that the
difference arises due to the following effect. Under mood-specific similarity less
orthogonal pairs of movies exist in the set than under mood-based similarity.
Effectively, the structure of the movie similarity space as defined by pair-wise
relationships between movies is smoothed by the use of mood-specific similarity.
Users who have rated large numbers of items do not benefit from this smoothing
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Table 4.2: Comparison of PQ10 performance between the proposed algorithm and
other baseline approaches with respect to users with various numbers of rated movies.

Num. rated movies (Num. users) | MF |[JMF-MB |JMF-MS | JMF-MS-PK
1~50 (19) 0.305 0.326 0.374 0.379
51~100 (16) 0.250 0.269 0.313 0.313
101~150 (13) 0.208 0.223 0.238 0.238
151~200 (12) 0.242| 0.317 0.250 0.267
>200 (20) 0.195 0.285 0.270 0.300

since their profiles already contain enough information for reliable estimation
of predictions. Users who have rated fewer items, however, effectively are able
to cast a wider net if more pairs of movies are similar.

In real-world systems, users with limited numbers of rated movies are usually
the majority in the community as reflected in the typically high data sparseness
encountered by recommender systems. Our results indicate that exploiting the
mood-specific movie similarity has the potential to benefit these users in par-
ticular. Compared to the JMF-MS, the JMF-MS-PK could be more beneficial
for the users who rated relatively more movies. This observation may imply
that the latent movie features that are learned from PK-based similarity can be
better leveraged if there are more available ratings on those movies. If the user
rates more movies, she could raise the chance that some of her rated movies
are similar to other movies with respect to PK-based similarity, which could be
recommended even if they are rated by few users overall within the collection.
This observation also implyies an affirmative answer to our last research ques-
tion, i.e., the additional information introduced using PKs serves to improve
recommendations in the case of users rating many movies.

4.6 Conclusion and Future Work

In this chapter, we present a novel context-aware recommendation algorithm
that integrates contextual movie similarity, i.e., mood-specific movie similarity
and PK-based movie similarity, together with the user-movie rating matrix into
joint matrix factorization for the purpose of mood-specific movie recommenda-
tion, as defined in the Moviepilot challenge. The proposed algorithm is ana-
lyzed to be scalable for large-scale use cases. Our experiments at the Moviepi-
lot challenge dataset show that the proposed algorithm outperforms several
other state-of-the-art recommendation approaches. Substantial improvement
can be achieved by exploiting contextual movie similarities, among which the
mood-specific movie similarity is shown to make the major contribution to the
recommendation performance and the PK-based movie similarity could fur-
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ther enhance contribution. In addition, we specifically validate the usefulness
of the mood-specific movie similarity compared to general mood-based movie
similarity, which indeed leads to a substantial performance improvement. We
also show the JMF with both mood-specific movie similarity and movie simi-
larity in terms of plot keywords could be the most beneficial option for users
across profiles containing different numbers of rated movies, compared to other
variants.

We note that the algorithm proposed in this chapter could be generally ap-
plicable to other recommendation purposes, e.g., recommending movies with a
specific actor, recommending music with a specific style. Exploiting contextual
item similarity that is related to the specific recommendation purpose could be
a way to make recommender systems context-aware.

Our future work will involve further exploration of the use of context-based
information for recommendation. In particular, note that the Moviepilot chal-
lenge dataset was issued in an encoded form: we do not have direct knowledge
of the identities of moods or plot keywords, rather these are represented within
the data set as codes. In the future, we would like to experiment on a data set
where we do have access to this information in order to compare our approach
to approaches informed by external knowledge sources that could add explicit
information on the relationship between the sources. We are also interested
in moving beyond moods and plot keywords and understanding the suitability
of our approaches for exploiting other sources of knowledge. In particular, we
will address the question of what characteristics of a knowledge source must
hold in order to be successfully exploited by our approach for the purpose of
context-aware recommendation.
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Chapter 5

Non-trivial Landmark
Recommendation

Online photo-sharing sites provide a wealth of information about user behavior
and their potential is increasing as it becomes ever-more common for images to
be associated with location information in the form of geotags. In this paper,
we propose a novel approach that exploits geotagged images from an online
community for the purpose of personalized landmark recommendation. Under
our formulation of the task, recommended landmarks should be relevant to user
interests and additionally they should constitute non-trivial recommendations.
In other words, recommendations of landmarks that are highly popular and fre-
quently visited and can be easily discovered through other information sources
such as travel guides should be avoided in favor of recommendations that relate
to users’ personal interests. We propose a collaborative filtering approach to
the personalized landmark recommendation task within a matrix factorization
framework. Our approach, WMF-CR, combines weighted matrix factorization
and category-based regularization. The integrated weights emphasize the con-
tribution of non-trivial landmarks in order to focus the recommendation model
specifically on the generation of non-trivial recommendations. They support
the judicious elimination of trivial landmarks from consideration without also
discarding information valuable for recommendation. Category-based regular-
ization addresses the sparse data problem, which is arguably even greater in
the case of our landmark recommendation task than in other recommendation
scenarios due to the limited amount of travel experience recorded in the on-

This work was first published as “Personalized landmark recommendation based on geo-
tags from photo sharing sites” by Y. Shi, P. Serdyukov, A. Hanjalic, and M. Larson, in Proc. of
ICWSM 11 [149] . This chapter is an extended version that has been accepted as “Non-trivial
landmark recommendation using geotagged photos” for publication in ACM Transactions on
Intelligent Systems and Technology, 4(3), 2013 [150].
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line image set of any given user. We use category information extracted from
Wikipedia in order to provide the system with a method to generalize the se-
mantics of landmarks and allow the model to relate them not only on the basis
of identity, but also on the basis of topical commonality. The proposed ap-
proach is computational scalable, i.e., its complexity is linear with the number
of observed preferences in the user-landmark preference matrix and the num-
ber of non-zero similarities in the category-based landmark similarity matrix.
We evaluate the approach on a large collection of geotagged photos gathered
from Flickr. Our experimental results demonstrate that WMF-CR outperforms
several state-of-the-art baseline approaches in recommending non-trivial land-
marks. Additionally, they demonstrate that the approach is well suited for
addressing data sparseness and provides particular performance improvement
in the case of users who have limited travel experience, i.e., have visited only
few cities or few landmarks.
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5.1 Introduction

Online photo-sharing sites such as Flickr! are a rich source of information on
user photo-taking behavior, both at the individual and at the collective levels,
representing a typical example of the social and community intelligence [195].
As GPS positioning becomes a standard functionality of mobile digital capture
devices (i.e., cell phones or digital cameras), the amount of location informa-
tion also available in online photo-sharing collections has increased. Location
information takes the form of geotags, which encode where individual photos
were taken.

Recent work has proposed various services that exploit the location informa-
tion in photo-sharing sites, including geo-coordinate prediction [138], tag rec-
ommendation, content classification and clustering [158] and location recom-
mendation [31]. The potential of location information in online photo-sharing
collections is arguably not yet fully exploited. The richness of this potential
is made clearer by closer consideration of the exact nature of an individual
picture-taking act. Users deploy their mobile capture devices willfully and vol-
untarily. In other words, a click of the shutter is an explicit act of capture
carried out on the part of a user. Insofar as it is possible to assume that users
are triggered to take a picture by the feeling that a particular moment is spe-
cial, then the capture of an image is effectively an act of tagging a particular
moment as somehow important. If the image is associated with a geotag, then
a user taking a picture is effectively tagging a place with an importance-related
tag.

How exactly this importance should be understood or interpreted can be ex-
pected to vary widely from image to image and from user to user. However,
when many acts of image capture are taken together, larger patterns emerge.
These patterns can be exploited to implement intelligent, socially aware sys-
tems [195]. Seen from this high-level perspective, mobile devices are sensors
capturing information on the importance of places for human visitors and with
the appropriate algorithms the information can be processed in a way that
makes it possible to provide back to users new information on places that they
would probably find important and interesting.

In this paper, we give this high-level goal tangible form by proposing an algo-
rithm that uses information from a photo-sharing website in order to provide
users with personalized landmark recommendations. Our formulation of the
landmark recommendation problem extends beyond the conventional location
recommendation problem in two important respects. First, landmarks are con-
sidered to be places with a significance for history, culture or contemporary

"http://www.flickr.com/
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society. In short, they are places that have meaning for people and have a high
potential for being of interest to travelers or cultural tourists. In contrast, lo-
cations are simply points on a map, which may or may not have a larger social
significance or be associated with particular meaning. Second, under our formu-
lation, landmark recommendation avoids popular landmarks, which duplicate
information already available, e.g., in travel guides. Instead, we conceptualize
personalization in the area of landmark recommendation to involve recommen-
dation of ‘non-trivial’ landmarks — landmarks that are not typical destinations
for mainstream travel and that a user would be unlikely to have easily found
by other means. Note that there are multiple possible indicators that could be
used to determine whether or not a particular landmark should be considered
trivial. For example, one could consider a landmark is trivial if it is listed in a
popular travel guide book, or if it is listed as highly popular in a travel website.
In this paper, we define the triviality of a landmark based on the overall volume
of attention that it receives from the users in an online community. We assume
that users are motivated to visit non-trivial landmarks due to underlying top-
ical interests in specific areas within domains such as architecture or history.
In contrast, users are motivated to visit mainstream landmarks by a general
desire to travel and see the world that is not topic specific. In sum, we consider
personalization to involve a topical match between users’ own interests and the
recommendations generated by the system. User satisfaction with the recom-
mendations can be anticipated to rise if we are able to improve the quality of
this match.

Recommending non-trivial landmarks is challenging because of the relative lack
of information on past behavior of individual users that is available to create
recommendations. This lack constitutes a formidable data sparseness challenge.
Data sparseness is a problem because gaping holes are left in the information
that would be desirable to create a fully fleshed-out picture of user preferences.
Note that although Flickr contains an enormous number of photos, in order to
use these photos to make recommendations, individual users must have photos
taken at specific landmarks. Seen from this perspective, it is clear that Flickr is
actually quite impoverished in terms of the information that it can offer to sup-
port landmark recommendation. Conventional recommender systems depend
on past user consumption, such as profiles consisting of items either purchased
or rated. Most users who travel, however, are relatively limited in the overall
number of places that they visit. Travel is naturally constrained by a variety of
factors that do not necessarily apply in other domains such as movie or book
recommendation. Travel requires the availability of relatively large amounts of
money and time, but also of travel documents (e.g., valid visa). The physical
or cognitive stamina of the traveler also serves to keep the number of land-
marks that a single person directly experiences relatively limited. Because of
these limiting factors, a single individual visits only an extremely small frac-
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tion of the total number of landmarks in existence. Consequently, personalized
landmark recommendation must overcome a data sparseness problem that is
arguably even larger than that presented by other domains in which there are
fewer restrictions on the number of items with which users interact.

One conceivable approach would be to gather explicit information from users
about their landmark preferences. Such a recommender system requires users to
invest quite a bit of time and effort in explicitly informing the system of their
interests. Further, if users have interests of which they are not consciously
aware, the system will automatically fail to provide recommendations suiting
these interests. Our approach to personalized landmark recommendation avoids
these issues by exploiting implicit user preferences. For information on user
landmark preference, we turn to the large and rich collections of user images
available in online photo-sharing websites.

Using photo-sharing websites to approach the personalized landmark recom-
mendation problem makes it possible to exploit user patterns that are implicit
in photo-taking behavior, as described above. Collaborative filtering [129] (CF)
allows us to make landmark recommendations in a new city for a traveler based
on both the traveler’s own preference on previously visited landmarks in other
cities and also on other travelers’ preference for landmarks in the new city. The
underlying assumption is that a user in a new city may like landmarks that are
already favored by other users who have had similar landmark visiting experi-
ences in other cities in the past. Recommendations are made on the basis of
images that the user has shared on a social media site and the user only needs
to specify a destination city.

We specifically address data sparseness when designing our personalized land-
mark recommendation approach by incorporating category-based regulariza-
tion, which exploits information concerning the general categories of landmarks.
The categories are classes such as ‘17th-century architecture’, ‘Japanese gar-
dens’ or ‘World War II sites’. We assume that user preferences are a reflection
of underlying user topical interests. The use of categories allows us to counter-
act data sparseness by introducing information on similarity between landmarks
on a more abstract, topical level. We obtain category information about land-
marks from Wikipedia?. Although another encyclopedic knowledge resource
could have been used for the same purpose, we use Wikipedia due to its scope,
availability and the fact that it is itself an online community resource.

The technique we propose is designed to be deployed in an application that uses
the geotagged photos that a traveler (i.e., the target user) has uploaded to an
online community to recommend landmarks in a new city for that user to visit.
For example, if a traveler has used a smart phone to take a few photos in a new

2http:/ /www.wikipedia.org/
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city, then the proposed system can recommend some non-trivial landmarks in
the city that could also fit her interest. We make use of the collaborative filtering
paradigm [2, 129] in order to tackle the personalized landmark recommendation
problem. We propose an approach, designated WMF-CR, that makes use of
both weighted matriz factorization and category-based regularization in order
to improve the performance of personalized landmark recommendation. This
approach represents a substantive extension on its progenitor, CRMF (Category
Regularized Matrix Factorization), which we proposed in the short paper [149]
with which we initially introduced the landmark recommendation problem. The
key innovation is our use of a weighting mechanism to balance the benefits
of retaining as much data as possible on which to base the recommendation
against the dangers of including data that will lead to highly popular, trivial
recommendations. This characteristic sets our model apart from conventional
CF models which do not have the capacity to prefer globally less-popular items
over popular ones. We also notice that in this work we rely on the geotags of
images rather than the image content for the recommendation process.

As mentioned before, recommendation using images from photo-sharing sites
differs from recommendation in more conventional scenarios due to the lack
of explicit user ratings, such as those often used for movie recommendation.
Instead, our model incorporates user preference as expressed by the number
of photos that users take at various locations. The experimental evidence pre-
sented in this paper will support the conclusion that WMF-CR effectively ex-
ploits user photo-taking behaviors to deal with data sparseness and that it is
able to make non-trivial recommendations.

This paper presents the first fully mature approach to the personalized land-
mark recommendation problem and makes the following major contributions:

¢ We propose a novel approach, WMF-CR, that specifically addresses the
issue of making non-trivial recommendations for the personalized land-
mark recommendation scenario.

o We demonstrate that WMF-CR outperforms other state-of-the-art ap-
proaches in recommending non-trivial landmarks.

e We show that WMF-CR is adequately scalable to deploy for very large
collections.

e We provide evidence that WMF-CR accomplishes its design goal of ad-
dressing data sparseness by verifying its performance for users who only
have limited travel experience, i.e., those most likely to suffer due to lack
of information in their online photo-sharing profiles.

We would also like to note that in order to help support the new research topic,
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namely, personalized landmark recommendation using users’ geotagged photos,
we make the data collection used for this research publicly available?.

The remainder of the paper is structured as follows. In the next section, we
present a summary of the relevant literature and indicate how it is related to
our own work. Then, in Section 5.3, the proposed WMF-CR model for non-
trivial landmark recommendation is described in detail. Next, in Section 5.4,
we introduce a data collection for the study of personalized landmark recom-
mendation. The experimental evaluation of the proposed approach is presented
in Section 5.5. The last section sums up the key aspects of our study and gives
a brief outlook on future work.

5.2 Related Work

This section provides the necessary background information for our work. We
discuss the emergence of non-trivial recommendation in the area of recom-
mender systems. Then we present an overview of related work on recommenda-
tion that exploits location information, especially for social media sites. Finally,
we present the necessary background on collaborative filtering (CF) techniques
for recommendation.

5.2.1 Non-trivial Recommendations

There is emerging research interest in recommending non-trivial items, which
we argue is particularly relevant for the area of travel destination recommen-
dation. In the area of general travel destination recommendation, it has been
observed that recent trends in tourism [19] have had an impact on the types
of travel that people engage in. In particular, this work discusses the trend of
cultural tourism, which involves an increasing demand for independent holidays
during which people seek authentic and personal experiences that go beyond
mainstream tourism. It emphasizes that in order for travel experiences to be
personal, they should match the topical interests of individuals. Our algorithm
for personalized landmark recommendation also adopts the assumption that
personalization involves a topical interest aspect that is specific to a particular
user.

Non-trivial recommendation shares the similar idea to the long tail investment,
which has been analyzed to bring commercial benefits for internet compa-
nies [40]. Research effort has also been devoted to improving recommendation
performance for items in the tail [118]. For the general recommendation sce-

3http://dmirlab.tudelft.nl/users/yue-shi
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nario, a recent empirical study investigated several recommender algorithms for
top-N recommendation tasks [33], revealing the importance of recommending
non-trivial items by removing the most popular items in the evaluation. In this
paper, we adopt a similar evaluation strategy as suggested in the work of [33].

Recently, evaluation issues have already attracted much effort in the rec-
ommender system research community. Various criteria have been pro-
posed for evaluation of recommender systems beyond rating prediction accu-
racy [32, 46, 48, 57, 103, 110], including diversity, coverage, robustness, novelty
and serendipity. However, standard evaluation metrics have not yet been estab-
lished for measuring recommendation performance in terms of these different
criteria. In particular, there is no evaluation metric in widespread use that mea-
sures the ability of recommendation approaches in recommending non-trivial
items. In our work, we focus on evaluating the performance of recommending
non-trivial landmarks by assuming that a specific number of the most popular
landmarks in each city are irrelevant recommendations for users.

5.2.2 Exploiting Location Information for Recommendation

GPS-based Recommendation. Recent work has exploited explicit user-
location data (e.g., GPS data) for location recommendation. Based on user
location data collected directly from GPS devices, [86] proposed to mine user-
to-user similarity from location histories in order to infer the correlation be-
tween different locations. The extension of this work [199] has shown that user
similarity based on location history can be effectively exploited for personalized
friend recommendation as well as location recommendation. Similarly, systems
that make use of user similarity or location similarity mined from user loca-
tion history have been built for shop recommendation [167] and restaurant
recommendation [59]. In addition, a HITS (Hypertext Induced Topic Search)-
based approach was proposed to recommend interesting locations and travel
sequences within a region [200]. A further study based on this work has shown
personalized recommendation can be achieved by mining correlations between
locations based on user location history [198]. Another recent study demon-
strated that user GPS history data can be exploited for location and activity
recommendation via a joint matrix factorization model [197]. Compared to this
previous work, a key difference in our work lies in that the user location data
are obtained implicitly, i.e., from users’ geotagged photos that are uploaded in
social media sites, which requires much less effort from the user and the system.
In other words, users do not need to spend large amounts of time uploading
their location history, and systems do not need to preprocess or transform huge
amount of user-uploaded data before being able to generate recommendations.

Geotag-informed Recommendation. Location data from the geotagged
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photos of users has been exploited to approach various tasks. Based on the
tags and geotags of Flickr photos together with information extracted from Ya-
hoo Travel Guide?, a travel guidance system [44] has been designed to recognize
and rank landmarks. Geotags have also been exploited to help travelers with
trip planning [94], such as, to suggest places of interest, to find a proper path
to view a landmark, and to find a proper route to travel from one landmark to
another. Mining frequent trip patterns through geotagged photos including fre-
quently visited city sequences and typical visit duration, has been proposed [8]
to improve travel recommendation. Exploiting the similar trip patterns as stud-
ied in [8, 36] has been used to automatically construct travel itineraries. The
differences between this previous work in the area of geotag-informed recom-
mendation and our own work lies in the fact that we specifically address the
personalized landmark recommendation task, i.e., making non-trivial recom-
mendations of landmarks for individual users.

Personalized Geotag-informed Recommendation. To the best of our
knowledge, there are only two recent studies that are closely related to our
work, since they also target personalized location-based recommendation based
on geotags from photo sharing sites. The first proposed to personalize loca-
tion prediction by first generating recommendations based on location popu-
larity and then re-rank recommendations based on similar interest from other
users [31]. This work observed, but did not specifically address the issue that
popular locations can dominate less frequently-visited locations in location rec-
ommendation. The authors suggest that recommendations for less-frequently
visited /non-trivial locations would be more meaningful to travelers. Our work
differs from [31] in three main respects. First, we target a new application, i.e.,
landmark recommendation rather than location recommendation. Second, we
specifically address the data sparseness problem in the recommendation con-
text. Third, the prediction model proposed by [31] relies on user similarities,
which for large data sets grow to be computationally quite expensive, an issue
which we return to below.

The second instance of closely related work, [77], proposed to approach person-
alized travel route recommendation by capturing both location dependence and
user interest dependence. Location dependence was represented by the times-
tamps of geotagged photos and user interest dependence was mined from users’
travel routes that are extracted from geotags. Compared to this work, our
approach has substantial differences in along two lines: First, we focus on land-
mark recommendation rather than route recommendation. Second, we design a
recommendation model that specifically addresses the data sparseness problem
and the challenge of recommending non-trivial landmarks, both of which were
not investigated in the work of [77].

“http://travel.yahoo.com
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5.2.3 Collaborative Filtering

Collaborative filtering is known as one of the most popular techniques for per-
sonalized recommendation. CF usually follows one of two basic approaches,
memory-based or model-based [2]. In general, memory-based approaches make
recommendations on the basis of similarities between users (user-based) [55],
or on the basis of similarities between items (item-based) [38, 88, 136].
Among the aforementioned work on location-based recommendation, the work
of [31, 59, 167, 199] involves memory-based CF. However, memory-based CF
approaches usually suffer from computational cost in computing user-to-user or
item-to-item similarities from a large number of users and items. Since there
could be millions of users in social media sites, we do not choose the direction
of memory-based CF for personalized landmark recommendation in this paper,
while focusing on the direction of model-based CF.

Compared to memory-based CF, model-based approaches first fit prediction
models based on training data and then use these models to predict users’ pref-
erence on items. In particular, matrix factorization (MF) techniques have at-
tracted much research attention in recommender systems because of their scala-
bility and accuracy in rating/preference prediction, as witnessed by the Netflix
contest [75]. Generally, MF techniques learn latent features of users and items
from the observed preference in the user-item matrix and these features are then
used to predict unobserved preferences. The rationale of MF is also illustrated
from probabilistic point of view [134]. Rather than solely focusing on predicting
users’ preference scores, researchers have also formulated ranking-oriented CF
approaches that specifically model users’ pair-wise or list-wise preference based
on their rating patterns, e.g., CofiRank [182], EigenRank [90], ListRank [144].
We also notice the existence of early work on weighted low-rank approxima-
tion [160], which describes a method that is referred to “weighted” but is close
to standard MF. Another work [60] proposed to enhance the contribution of
positive feedback by weighting each factorization based on a confidence esti-
mate, which is proportionate to the strength of user-item preference. Note
that we propose to design the weights in MF based on landmark popularity to
specifically target recommending non-trivial landmarks. In contrast, in [160]
the weights in MF are based on whether or not ratings are observed for par-
ticular items, and in [60] the weights are still based on user-item preference.
Note that both of the two approaches have no particular consideration on triv-
ial items, or on the exploitation of additional item information, the two issues
studied in this paper.

Recently, the joint matrix factorization framework has been widely proposed
to extend the basic MF model by taking into account different regularizations
in order to make it suited for different purposes. For example, user social rela-
tionships have been exploited to regularize the factorization of user-item rating
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matrix for improved rating prediction [96]. User activity correlation and loca-
tion correlation in terms of location features have been exploited to regularize
the factorization of a location-activity matrix for improved location and activ-
ity recommendation [197]. Contextual movie features have been exploited to
regularize the factorization of the user-movie rating matrix for improved mood-
specific movie recommendation [145]. Collective matrix factorization [155] has
been proposed to factorize multiple matrices of related entities in order to lever-
age knowledge between different entities. In addition, since tags have been
ubiquitous in recommender systems, researchers proposed not only to exploit
tags for improving item recommendation [170], but also to exploit tensor de-
composition techniques for improving tag recommendation [165]. Our work in
this paper is closely related to aforementioned work in the sense that we also use
the joint matrix factorization framework to exploit landmark categories from
Wikipedia to regularize the factorization of user-landmark preference. However,
we not only address a different application, our work is also substantially differ-
ent from previous work in that our approach integrates a weighting scheme into
the matrix factorization model, which allows the model to specifically target
recommendation of non-trivial landmarks.

5.3 Non-trivial Landmark Recommendation

5.3.1 Overview

An overview of our personalized landmark recommender system is provided in
Fig. 5.1. At the top (i.e., step 1), the photo-sharing collection is depicted from
which the geotagged photos of the users are drawn and then transformed into
a user-landmark matrix that encodes users’ preference on landmarks. Note
that we also use the photo-sharing site to extract an inventory of landmarks.
The process of extracting landmarks from geotagged photos and extracting
landmark categories from Wikipedia will be described in greater detail in Sec-
tion 5.4. As previously mentioned, we use the number of photos that a user has
taken around a landmark to indicate the user’s preference for the landmark,
i.e., a larger number of photos taken around a given landmark reflects a larger
degree of preference.

In step 2, the landmark category information is extracted from Wikipedia and
used to calculate the similarity between landmarks that are topically related,
but not identical. Details of the category-based landmark similarity will be
explained in Section 5.3.3. Once the user-landmark preference matrix and
category-based landmark similarity matrix have been obtained, the proposed
approach, WMF-CR, is applied (i.e., step 3) to learn the latent features of users
and landmarks during the matrix decomposition process. The resulting model
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Figure 5.1: The block diagram of the proposed personalized landmark recommender

system

is then used to generate non-trivial landmark recommendations to users, as
illustrated in step 4.

In the following of this section, we present our Weighted Matrix Factorization
with Category-based Regularization (WMF-CR) approach for the personalized
landmark recommendation in detail. We first introduce the new weighting
scheme incorporated by our approach and our method for using landmark cat-
egories available from Wikipedia to quantify the similarity between landmarks.
Then, we put the individual parts together into the WMF-CR and conclude
the section with a discussion that summarizes the characteristics of our algo-
rithm that make it particularly suited to address the challenge of personalized
landmark recommendation.

5.3.2 Weighted Matrix Factorization

Rationale. Recall from the introduction that our assumption is that users
have different motivations for visiting different landmarks. The motivation for
visiting frequently-visited landmarks is a general desire to travel and see the
world. For this reason, such highly popular landmarks are considered trivial,
since they are standard and do not have to be recommended on a person-by-
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person basis. The motivation for visiting non-trivial landmarks is the interest
of travelers in the topical aspects of the landmark. Our weighting scheme is
motivated by the assumption that reducing the influence of highly popular
landmarks will effectively reduce noise within the user-landmark matrix that
is masking the person-dependent topical information implicit in user visiting
patterns for non-trivial landmarks. A simplistic approach to emphasizing non-
trivial landmarks is to eliminate all other landmarks from the user-landmark
matrix. There are two reasons for which this approach is not to be preferred.

First, we can never be entirely sure about user motivations. In the case of
the Eiffel Tower, we can probably safely assume that most visitors go there
motivated by a general desire to have seen the world rather than motivated by
a specific interest in the type of architecture it represents, namely a puddle iron
lattice tower. However, in the larger majority of the cases it will be dangerous
to apply this assumption. Rather than guessing at the topic-specific attraction
of specific landmarks, we prefer to let the model learn which landmarks are less
useful for personalized travel recommendation.

Second, we need to be very conservative about eliminating data from the user-
landmark matrix in order to reduce the danger that we discard information that
could prove useful for recommendation. As previously mentioned, the extreme
sparseness of the user-landmark matrix presents us with a significant challenge.
The sparse data problem could potentially be exacerbated if we are too aggres-
sive in removing user preferences on landmarks from the user-landmark matrix.
Instead, we would like to leave open the possibility that even relatively pop-
ular landmarks have topical interests inherent in the associated user visiting
patterns that can be exploited to make personal landmark recommendations.
Again, for this reason, we prefer to let the model learn which are useful.

Conventional Matrix Factorization. Our Weighted Matrix Factorization
(WMF) approach extends a conventional matrix factorization approach with
weights that control the relative contribution of non-trivial landmarks from the
user-landmark matrix. The basic user-landmark matrix encodes the preferences
of users for the individual landmarks. In order to represent user i’s preference
on landmark j, we first calculate the number of user i’s photos that have geotags
matching the landmark j. Note that the matching process between the photo
geotags and the landmarks will be described in Section 5.4. Then, for each
user i, we further normalize the number of her geotagged photos on landmark
J to be within [0, 1] (by dividing over the total number of the user’s geo-tagged
photos). The result is the user i’s preference score on landmark j, which is
denoted by R;;. The user-landmark matrix is designated R, and it represents
users in rows and their preferences on landmarks in columns.
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The basic matrix factorization model [75] is expressed as:

M N
) 1 2 A A
UV =argmin 53> i (Rig = UIV) 4+ UG + S5 VIR 0 (51)
’ i=1 j=1

where R consists of M users and N items. The vector U; is the d-dimensional

latent feature vector (a column vector) of user i. The vector V; is the d-
dimensional latent feature vector (a column vector) of landmark j. Note that
the elements in the feature vectors are parameters (latent features) that need
to be estimated from a set of training data. The idea of MF is to estimate
U and V in terms of the known preference data R and to use the learned
U and V to predict the unknown users’ preferences on landmarks. I;; is an
indicator function that is equal to 1 if R;;>0, and 0 otherwise. [[U||r and
IV || r are the Frobenius norms of U and V, respectively, which serve to alleviate
overfitting. Ay, Ay are the norm regularization parameters, on which we impose
the simplifying assumption Ay=Ay=A\.

Weighted Matrix Factorization. Under the basic MF formulation, all the
observed preference scores contribute equally to learning the latent features
of users and landmarks. However, for the purpose of personalized landmark
recommendation, we wish to direct the recommendation process towards non-
trivial landmarks, i.e., landmarks that are not widely visited, but that represent
users personal, topical interest. We introduce a bias towards non-trivial rec-
ommendations into the model by reducing the influence of frequently-visited
landmarks in the user-landmark matrix and increasing the influence of non-
trivial landmarks.

We build the capacity to carefully adjust the balance between different kinds of
landmarks into the model by introducing a factor W, which is integrated into
Eq. (5.1) to yield the WMF formula:

M N

. 1 A
U,V =argmin g 5 SNy (R ~UIV) 4 5 (100 +IVIE) oo (52)
) i=1 j=1

The weight that is used for a given landmark j is determined by the global pop-
ularity of that landmark measured on the entire photo-sharing collection. Note
that we define the popularity of a landmark by the number of users who have
visited the landmark. We rank all landmarks in the collection by their overall
popularity scores and retain influence only from the landmarks that are ‘low
enough’ in the ranking. These landmarks are the ones that make the most ef-
fective contribution to biasing the model towards non-trivial recommendations.
Note that in order to determine what should be considered as ‘low enough’, a
threshold of ranking position needs to be determined empirically given a con-
crete use case, while the general idea is to eliminate the influence of the top
popular landmarks on learning the recommendation model. Specifically, the
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weighting coefficient W;; in WMF is defined as:
~_ J0,R;; >0 Apoprank (j) < K
Wij = {I,Rij > 0 A poprank (j) > K. (5:3)

where poprank (j) defines the rank of the popularity of landmark j. For in-

stance, if landmark j is the most popular landmark in the collection, then
poprank (j7) = 1. For preferences that are unobserved, i.e., in cases where
R;; = 0, W;; is trivially also set to 0. K takes the role of a threshold pa-
rameter, which controls how many of the most popular landmarks have their
influence eliminated from the model. A larger K means that more highly popu-
lar landmarks are not used for training the recommendation model, resulting in
a recommendation model that could be more biased to recommend non- trivial
landmarks. However, the larger K also means that the more user-landmark
preference data are discarded for training the recommendation model, resulting
in a recommendation model that may suffer more from data sparseness. For
this reason, in practice the optimal value of K needs to be tuned for a given
data collection to attain a tradeoff between the aforementioned two aspects. We
will demonstrate and discuss the impact of K in our experiments in Section 5.5.
In sum, WMF explicitly reduces the influence of popular landmarks, effectively
extending the model with the capacity to make non-trivial recommendations.
Note that in the case of K =0, WMF returns to the basic MF model.

5.3.3 Category-based Landmark Similarity

Our Category-based Regularization extends matrix factorization with regular-
ization that integrates information on higher-level semantic similarities between
landmarks. This approach explicitly addresses the problem of data sparseness
in the user-landmark preference matrix, by making it possible to relate land-
marks not only on the basis of identity, but also on the basis of topical similarity.
For example, both landmark ‘London Bridge’ and landmark ‘Monument to the
Great Fire of London’ belong to the category ‘History of the City of London’,
indicating that they may be interesting to users who would like to know about
London history. This topic-level similarity could allow the system increase the
likelihood to recommend ‘Monument to the Great Fire of London’ to a user if
he was already in favor of ‘London Bridge’, even in the case that there is limited
preference data about ‘Monument to the Great Fire of London’. Incorporat-
ing auxiliary information to represent users and landmarks helps, in this way,
compensate for the missing information in R. For each landmark we collect
category information from Wikipedia and create a binary landmark-category
matrix, C, which captures the links between landmarks and categories. There,
Cj; = 1 if landmark j belongs to a category t, and 0 otherwise. Note that each
landmark potentially belongs to multiple categories, e.g., ‘London Eye’ belongs
to ‘Merlin Entertainments’, ‘Thames Path’, ‘Visitor attractions in London’, etc.
For this reason, we can define the category-based landmark similarity between
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landmark j and landmark n, by using the vector space similarity [135]:

S _ Z;I‘Zl Cjtcnt
gn = T T o
\/Zt:l C \/Zt:l Co
where T denotes the number of categories, and S denotes the category-based

landmark similarity matrix, which is symmetric and contains values between 0
and 1.

(5.4)

We build on the assumption that landmarks that are similar with respect to
their categories might share similar characteristics pertinent for the purpose
of landmark recommendation and that these characteristics are expected to
be preserved under matrix decomposition. Exploiting this insight, a new loss
function can be formulated as:

N N
L) =33 i (Sin — ViV, (5.5)

where J;,, is an indicator function that is equal to 1 if S, > 0, and 0 otherwise.
It is important to note that the new loss function (5.5) has the potential to
alleviate the data sparseness problem in R. An extreme example illustrates
this potential: if there is no user preference on landmark j, the latent features
V; cannot be learned from R at all. However, V; can still be learned from
other landmarks that are similar in terms of categories, and are marked as
being preferred by the users. Consequently, latent features of landmarks could
be substantially better represented when exploiting not only user-landmark
preference but also category-based landmark similarity.

5.3.4 Weighted Matrix Factorization with Category-based Reg-
ularization

We now combine WMF' and category-based regularization, and present our in-
tegrated WMF-CR algorithm for personalized landmark recommendation. The
objective function of WMF-CR is formulated as:

1 M N )
F(U,V) =3 ZWij (Rij — UZTVJ)
i=1j=1
B Al T 2 A 2 2
5 Y I S VIV S (W +IVIE)  (56)

where 3 serves as a tradeoff parameter that controls the relative contribution
from the category-based landmark similarity. Note that WMF-CR becomes
equivalent to the WMF model when f is equal to 0. Minimizing the objective
function results in the latent features of users and landmarks being learned
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from the user-landmark preference in R and from the category-based landmark
similarity in S.

Since the objective function in Eq. (5.6) is not jointly convex over U and V, we
choose to use alternating gradient descent to solve the minimization problem.
The gradients of F' (U, V') with respect to U and V can be computed as in Eq.
(5.7) and (5.8).

oF I -
U, Z Wij (U{'Vi = Rij) Vi + Ui (5.7)
7 J=1
OF M N
v, = S Wi (UFV; = Rij) Ui + 28> Jjn (V' Vi = Sjn) Vo + AV; (5.8)
=1 n=1

Note that in Eq. (5.8) we make use of the property that S is symmetric. A local
minimum solution of U and V is achieved by iteratively performing descent on
U and V. With the learned latent features of U and V, we can predict user i’s
preference on landmark j as UiT V;. On the basis of this score, we generate the
ranked list of landmarks that constitutes the personalized recommendation for
user .

The complexity of the objective function of WMF-CR in Eq. (5.6) is
O(d|R|+d|S|4+d(M + N)), where |R| denotes the number of known prefer-
ence scores in the given user-landmark preference matrix R, and |S| de-
notes the number of non-zero similarities in the category-based landmark sim-
ilarity matrix S. The complexity of the gradients in Eq.(5.7) and (5.8) is
O(d|R|4+dM) and O(d|R|+d|S|+dN), respectively. Considering that we usu-
ally have |R|>> M, N, and |S|>> N, the total complexity of WMF-CR is
O(d(|R|+|S|)), which is linear with the total number of known preference scores
in R and non-zero similarities in S. Note that both R and S are very sparse
in practice, e.g., in our data collection, as described in Section 5.4, we have
|R|=260362 and |S|=222778. For this dataset, our MATLAB implementation
of WMF-CR takes ca. 6.5 seconds for one iteration of the learning algorithm,
running on a PC with 1.59 GHz CPU and 2.93 GB memory. This analysis
indicates that WMF-CR is appropriate for application where it is necessary to
scale up to very large use cases.

5.3.5 Discussion

We conclude our presentation of the proposed WMF-CR approach with a brief
summary and discussion of the ways in which the algorithm addresses the spe-
cific challenges faced in personalized landmark recommendation.

1. Non-trivial recommendation. WMF-CR utilizes a weighting scheme
in order to enhance the impact of non-trivial landmarks on the recom-
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mendation process. We assume that non-trivial landmarks differ from
trivial landmarks in that they contain more information on the underlying
topical interests of users and, as such, are best suited to provide recom-
mendations that are very specific for individuals. Effectively, within the
personalized landmark recommendation scenario, the effect of landmarks
that are highly popular and are visited independently of travelers spe-
cific topical interests amounts to noise. We reduce the influence of highly
popular landmarks by implementing a careful balance between removing
harmful data and retaining as much information as possible so as not to
exacerbate the sparse data problem.

. Scalability. The computational complexity of WMF-CR has been

demonstrated to be linear in the total number of observed user prefer-
ences and non-zero category-based landmark similarities. Although the
complexity of computing category-based landmark similarity is quadratic
in the number of landmarks involved, this computation could be com-
pletely done offline. In addition, since the growth of the number of land-
marks in the real world could be much slower than movies or music that
are typical in recommender systems, the update of the category-based
landmark similarity could have little cost. In sum, WMF-CR has great
potential to be applied in very large scale social media sites.

. Data sparseness alleviation. WMF-CR exploits landmark categories

as an external resource to learn generalizations over the relationship be-
tween landmarks. Effectively, latent features of users and landmarks are
learned not only from the user-landmark preference matrix, but also from
the external knowledge. The external knowledge is cheap because it is ex-
tracted from Wikipedia. The ability of WMF-CR to address data sparse-
ness is important for the personalized landmark recommendation scenario,
since most of users usually have limited travel experience, i.e., a signif-
icant number of users could suffer from data sparseness problem. This
issue will also be noted in our experimental evaluation in section 5.5.1.

In sum, WMF-CR is designed to generate effective personalized landmark rec-
ommendations while addressing the challenges of applying CF to large on-
line photo-sharing collections. In the remainder of the paper, we present our
data collection and an experimental analysis that demonstrates the strength of
WMF-CR in practice.



5.4. Data Description 87

Table 5.1: Statistics of the user-landmark preference dataset.

Max Num. landmarks visited by a user| 524

Ave. Num. landmarks visited per user | 6.5
Max Num. users visiting a landmark | 4497
Ave. Num. users visiting per landmark| 27.24
Sparseness 99.93%

5.4 Data Description

We collected the data for our experiments using the public API of Flickr. First,
we downloaded metadata for 42.9 million geotagged photos and then we filtered
this data according to the following considerations. For the purpose of personal-
ized travel recommendation, we wish to focus our investigation on the images of
users who are travelers. Since overwhelmingly large majority of Flickr users are
based in the United States, we introduced a clearer focus on images most likely
to belong to travelers by focusing only on users with geotagged photos taken
outside the US. We limited our investigation to city landmarks and include in
the dataset only the photos taken in the top 40 most visited cities. The above
steps resulted in a dataset containing 126,123 geotagged photos from 40,084
users. We generated the landmarks associated with the images by making use
of Wikipedia. We considered each geotagged Wikipedia article to constitute a
landmark. Each photo was associated with all landmarks within one kilometer
radius. This set was obtained by computing the geographical distance based on
the geotags of the photos with the geotags of the Wikipedia articles, according
to Haversine formula [157]. The set of landmarks was then filtered in a process
that involved eliminating landmarks for which there was negligible overlap be-
tween the words in the title of the Wikipedia article and the tags assigned to
the photo by the user. As a final step, already mentioned above, we normalized
the number of a user’s photos related to a landmark in order to generate a
score representing that user’s preference for a landmark. The resulting user-
landmark preference matrix consists of 260,362 scores from 40,084 users and
9,557 landmarks. The main statistics of this data are given in Table 5.1.

In Fig. 5.2 we illustrate properties of the data with two plots showing how users
are distributed over landmarks and landmarks over users. Note that Fig. 5.2(a)
is based on the histogram of the number of landmarks visited by each user, while
Fig. 5.2(b) is based on the histogram of the number of users who visited each
landmark. Both distributions can be seen to closely follow a power-law, which
illustrates the two underlying characteristics of the data, already mentioned
above: 1) the data set is very sparse: most of the users in our dataset visited only
a limited number of landmarks; 2) popular-landmarks threaten to dominate:
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Figure 5.2: Log-log plot on (a) the distribution of the number of landmarks visited
by the users, and (b) the distribution of the number of users visiting the landmarks

there are a few landmarks visited by lots of users, implying a phenomenon that
the overlap of non-trivial (less-popular) landmarks across users may be very
small, which makes the challenge and importance of recommending non-trivial
landmarks quite substantial.

We extracted categories for each landmark from Wikipedia, resulting in a total
of 7,379 categories. In our collection, the total number of landmark-category
assignments is 20796, and in average there are 2.2 categories per landmark. The
maximal number of categories that a landmark has is 28. This information is
encoded to generate a landmark-category binary matrix with 7,379 categories.

5.5 Experimental Framework and Results

In this section, we report on a series of experiments conducted to evaluate the
proposed WMF-CR model for personalized landmark recommendation. First,
we introduce the experimental protocol, followed by an investigation of the im-
pact of the parameters in the proposed WMF-CR model. Then, we compare the
recommendation performance of WMF-CR with several state-of-the-art base-
line approaches. We focus our evaluation on the ability of these approaches
to make non-trivial landmark recommendations. Finally, we investigate the in-
fluence of user travel experience on the performance of personalized landmark
recommendation.

Our experiments are designed in order to address the following research ques-
tions:

1. Is the weighting scheme effective? In other words, does it show evidence
of achieving its aim of enhancing the influence of non-trivial landmarks
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on recommendation?

2. Is the category regularization effective? In other words, do the landmark
categories show evidence of achieving their aim of eliminating the negative
impact of data sparseness?

3. Is WMF-CR beneficial for users who only have limited travel experience?

5.5.1 Evaluation Framework

Since we evaluate personalized landmark recommendation based on the ranked
recommendation list for each user, which is comparable to the search result
list for a query in document retrieval, we adopt two of the most widely used
evaluation metrics, i.e., mean average precision (MAP) [57] and mean reciprocal
rank (MRR) [175] to evaluate the recommendation quality. Specifically, AP and
RR are defined for a given user m as:

Ny, . .
AP, — >0 (rely, (j) X Prec,@ () (5.9)

SN rel, (4)

1
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RR min {j|rel, (j) =1,1 < j < N, } (510

where N,, denotes the number of recommended landmarks for the user m.
rel,(j) is a binary indicator, which is equal to 1 if the jth landmark in the
list is relevant to user m, and otherwise 0. Prec,,@Qj is the precision of the
top j recommended landmarks for the user m, i.e., the number of landmarks
in the top j recommendation that are relevant to user m. MAP and MRR are
average value of AP and RR, respectively, across all the users for evaluation.
MAP reflects the quality of the entire recommendation list, while MRR empha-
sizes the ability of the system to recommend a relevant landmark as early as
possible. The higher MAP and MRR scores, the better is the recommendation
performance.

The most straightforward application from this study is to provide a user in
a social photo sharing site with landmark recommendations, when she is visit-
ing a new city. For this reason, we evaluate the proposed WMF-CR approach
for personalized landmark recommendation under a simulated setting that ap-
proximates this application. In our experiments we only use the data of those
users who have visited at least one landmark in each of at least two cities. By
this means, we can define at least one “already visited” city and at least one
“target” city for each user. The user-landmark matrix used for the experiments
contains 14,031 users and all the landmarks, and has a sparseness of 99.89%,
showing a challenging recommendation scenario in which the recommendation
model would suffer from limited user preferences, while the proposed approach
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is expected to benefit from external knowledge of landmarks. We also empha-
size that the sparseness of this data collection is higher than conventional CF
benchmark datasets, such as MovieLens 10M-rating dataset® (sparseness ca.
97.7%) and Netflix 100M-rating dataset® (sparseness ca. 98.8%).

The dataset is randomly split into three sets, i.e., a training set, a validation
set and a test set. The training set contains 60% randomly selected users and
their landmark preferences. Each of the validation set and the test set contains
20% randomly selected users and their landmark preferences. For each user in
the validation and the test set, we randomly select one city that she has visited
as that user’s target city. Then, we remove the user’s landmark preferences for
this selected target city and try to recommend them. Note that the validation
set is used to investigate the impact of parameters of the WMF-CR model, and
the test set is used to evaluate the performance of WMF-CR and compare it to
that of the baseline algorithms. We compare landmark recommendation algo-
rithms on the basis of their ability to predict the withheld landmark preferences.
Note that this method of evaluation provides a very conservative, lower-bound
estimate of recommendation quality, which probably rather severely underes-
timates the usefulness of landmark recommendation algorithms in real-world
applications. Recall that a user’s landmark preferences for a city are taken to
be all the landmarks associated with photos that the user has taken in that
city. Users probably fall far short of photographing at all landmarks within a
given city that would potentially be of interest to them, especially if the city is
a large one. For this reason, landmarks that are not photographed might still
be interesting recommendations for a user, even though these landmarks are
treated as false alarms by our evaluation method. Under this evaluation frame-
work, the resulting numbers of evaluation metrics are usually very low [33].
However, our purpose in evaluation is to determine the relative difference be-
tween recommendation approaches, and for this purpose our evaluation method
is straightforward and well suited. Note that the regularization parameter X in
WMEF-CR in Eq.(5.6) is set to 1 and the latent dimensionality d is set to 10,
the optimal values as determined on the validation set for all the related MF
baseline approaches.

Finally, as discussed before, popular and well-known landmarks are not the
most useful or desirable recommendations for the task of personalized landmark
recommendation. For this reason, in our evaluation we investigate the influence
of the popular landmarks on the final result and focus on non-trivial, i.e., less
popular, landmarks when discussing the recommendation performance.

®http://www.grouplens.org/node,/73
Shttp:/ /www.netflixprize.com/
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Table 5.2: The top-ranked popular landmarks in the training set.

poprank landmark
1 eiffel tower
2 louvre
3 london eye
4 big ben
5 tower bridge
6 colosseum
7 westminster
8 sagrada familia
9 trafalgar square
10 notre dame de paris
11 arc de triomphe
12 british museum
13 tate modern
14 reichstag
15 park guell

5.5.2 Impact of Parameters

In this section, we use the validation set to investigate the impact of the pa-
rameters of the WMF-CR, discuss their role in recommendation and determine
the parameters settings that we use for the experiments.

First, we investigate the impact of parameter K in the WMF-CR model (cf.
Eq. 5.6). K controls the balance of influence between non-trivial landmarks
and mainstream landmarks on recommendation performance. In Table 5.2, we
list the landmarks in the training set according to a descending order of their
popularity, i.e., the number of users who have visited each of them.

It is evident that the top-ranked popular landmarks are well-known, frequently-
visited, mainstream landmarks. By varying K, we eliminate the influence of
those landmarks on the process of learning latent features that represent users
and other landmarks. We examine the performance of WMF-CR on the vali-
dation set both in terms of MAP and MRR for the case in which the top five
landmarks in each city have been removed.

Fig. 5.3 illustrates how the performance changes with K for non-trivial land-
mark recommendation and reveals that optimal recommendation performance
is achieved when K = 11. In this case, non-trivial landmarks are taken to
be all landmarks within a city except for the top-five most popular. Note
that these top-five most popular landmarks in a given city are different from
the ones eliminated during the learning of the recommendation model by the
threshold K. This point is important since it demonstrates the ability of our
approach to capture non-triviality as a phenomenon. In other words, it is clear
that the approach goes beyond merely de-emphasizing specific globally popular
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Figure 5.3: Impact of K on recommendation performance in the case that the five
most popular landmarks in each city are taken as irrelevant. (Standard deviation of
MAP: 0.004; Standard deviation of MRR: 0.007)

landmarks. This result also indicates that for the purpose of recommending
non-trivial landmarks, the proposed model could benefit from eliminating the
influence of a certain number of most popular landmarks. This observation
provides initial evidence that our first research question concerning the effec-
tiveness of the weighting scheme can be answered positively. As expected, there
are a certain number of landmarks that are unhelpful for non-trivial landmark
recommendation because, according to our initial conjecture, people’s motiva-
tions to visit them are general and not topical in nature. These landmarks
thus constitute noise within our recommendation scenario and performance
improves when they can be eliminated. More evidence on this point will be
provided by the experimental results in the next section. The set of these land-
marks is, however, relatively small. As can be also seen in Fig. 5.3, when more
than a certain number K of top-visited landmarks are eliminated, performance
drops off sharply. This observation indicates that excessively eliminating the
influence of popular landmarks could also degrade the performance of recom-
mending non-trivial landmarks, since a lot of user preference data associated
with popular landmarks may be discarded. In the case of excessively increas-
ing K, the performance remains low and stable with a small fluctuation. For
this reason, it is important to attain a tradeoff of the weighting scheme that
not only eliminates the influence of top-popular landmarks, but also maintains
sufficient user preference data for model learning. Those retained landmarks
carry information about helpful patterns, which we are assume arise because of
topical user motivation to visit landmarks. Note that for the purposes of per-
sonalized landmarks, it is not necessary to formulate an explicit understanding
of what it means for a user to be motivated by interest in a particular topic
to visit a landmark. Rather, user topical interests remain implicit in the data
patterns, which can be effectively exploited by the CF approach without the
need for explicit user profiles.
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Figure 5.4: Impact of 8 on recommendation performance in the case that the five
most popular landmarks in each city are taken as irrelevant.

Our next experiment in this section investigates the impact of the tradeoff
parameter 8 in the WMF-CR model (as above, cf. Eq. 5.6). (8 controls the
influence of the category-based landmark similarity in the proposed WMF-CR
model. We fix K to the optimal value determined during the first experiment
(K = 11) and vary the value of 3 in order to observe its influence on the abil-
ity of the algorithm to deal with data sparseness. As can be seen in Fig. 5.4,
the optimal performance is achieved when 8 = 0.001. In the case of 8 = 0,
WMEF-CR does not exploit the category-based landmark similarity. The result
indicates that the integration of landmark categories introduces performance
improvement to WMF-CR. Again, additional evidence will be provided by the
experimental results in the next section. Note that the optimal value [ is
collection-dependent, i.e., it needs to be tuned for different datasets, and it
depends on the scale and the sparseness of both the user-landmark preference
matrix and the category-based landmark similarity matrix. For this reason,
the absolute value of 8 cannot reflect the proportions of contribution from
each of the two matrices. We also notice Fig. 5.4 that when further increas-
ing the tradeoff parameter, i.e., biasing the learning of latent landmark features
towards category-based landmark similarity and away from user-landmark pref-
erence, the recommendation performance degrades. This effect illustrates the
contribution that is made by the user behavior patterns in the user-landmark
matrix and the importance of balancing the contribution of this matrix with
the contribution of category information.

As a final point in this section, we examine one of our central design choices for
WMEF-CR, namely, the choice of using a hard cutoff to eliminate the influence
of widely-visited, top-ranked landmarks, cf. Eq. 5.3. Top-ranked landmarks
are completely eliminated from the learning process by having their weights
set to zero. We performed a final exploratory experiment on the validation
set to determine if this hard cutoff is indeed the right choice, or whether we
should have weakened rather than eliminated the influence of these landmarks.
Although the experiment was exploratory in nature, we report it here since it
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provides additional evidence that WMF-CR, achieves an optimal balance be-
tween eliminating and retaining information in the user-landmark matrix. In
the exploratory experiment we set K = 1 and replaced the decision in Eq. 5.3
with the decision in Eq. 5.11, introducing a parameter « instead of 0 in order
to slowly reduce the influence of the top-ranked landmark.

W, = {oz,Rij > 0 Apoprank (j) < K

1, R;; > 0 A poprank (j) > K (5.11)

We found a slight trend towards dropping performance as « was increased from
0 to 1 and on this basis concluded that our decision to set a = 0 was the correct
one.

5.5.3 Evaluation

In this subsection, we analyze the performance of the proposed WMF-CR ap-
proach for the users in the test set, targeting personalized landmark recom-
mendation. This analysis also includes an investigation of the influence of
highly popular, frequently-visited landmarks and the influence of the number
of cities/landmarks a user has visited on the recommendation performance. For
comparison purposes, we also present the performance of several alternative ap-
proaches that we adopt as baselines:

e PopRec: Landmarks are recommended to users based on their popular-
ity, which is defined in terms of the number of users who visited them in
the training set. It is a non-personalized recommendation approach: for a
given city, the same recommendations are always generated independently
of the target user.

e PureSVD: The pure Singular Value Decomposition (SVD) approach is
used to decompose the user-landmark preference matrix in order to obtain
the latent user and item features, which are further used to generate the
recommendations for each user [33].

e MF: The basic matrix factorization approach in Eq. (5.1) is included to
represent a state-of-the-art CF approach [75]. Note that both PureSVD
and MF only learn the latent user and item features from the user pref-
erence data.

o CRMEF': This is the category-regularized matrix factorization approach
that learns latent features from both the user preference data and the
category-based landmark similarity [149]. Note that it is equivalent to
WMEF-CR (cf. Eq. (5.6)) in the case of parameters 5 = 0.001 and K = 0,
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i.e., equally weighting the influence of landmarks with different popularity
in the recommendation process.

o WMEF: This is the weighted matrix factorization approach that learns
latent features from the user preference data and weights the influence
of different landmarks in terms of their popularity, as shown in Eq. (5.2)
and (5.3). Note that it is equivalent to WMF-CR (cf. Eq. (5.6)) in the
case that the parameter 8 = 0, i.e., it is a special case of WMF-CR in
which the external landmark category information is not exploited in the
recommendation process.

For WMF-CR and for the approaches related to it, we adopted the optimal
values of the parameters that we had determined using the validation set as
described in Section 5.5.2.

During our exploratory experimentation we also tried some traditional memory-
based CF approaches (e.g., item-based CF by [38]) and wanted to deploy them
as additional reference methods. However, we found the performance of these
approaches was much worse than the other baseline approaches listed above.
A possible reason might be that the memory-based approaches severely suffer
from the data sparseness in the scenario of landmark recommendation. For this
reason, we limited the comparative study to the above baselines.

Recommending non-trivial landmarks. By assuming that the numbers of
most popular (and therefore irrelevant) landmarks may be different from case
to case and by letting this number vary between 0 and 10, we can observe
the performance of the proposed WMF-CR and its relative improvement over
the baseline approaches, as shown in Table 5.3. Note that we use 0 (in the
first column) to denote the case where no assumption of the relevance of most
popular landmarks is made, and we measure the performance according to the
ground truth in the test set. The results of our experiments on recommending
non-trivial landmarks are treated in the remainder of this section.

First, as can be seen from Table 5.3, PopRec outperforms all the other ap-
proaches under the condition that no popular landmarks are assumed irrele-
vant. Recall, however, we are mainly concerned about the recommendation
performance for landmarks less frequently visited by the general population,
i.e., those a traveler may not know about beforehand. If just a few most pop-
ular landmarks in each city are ignored, we can see WMF-CR outperforms
PopRec by a generous margin. For instance, WMF-CR outperforms PopRec
over 40% in terms of MAP and over 100% in terms MRR in the case in which
the top-4 most popular landmarks in each city are considered irrelevant. Note
that all the improvements reported in our experiments are statistically signif-
icant according to the Wilcoxon signed rank significance test with p < 0.05
measured across all the users in the test set.
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Second, we can observe that WMF-CR significantly outperforms CRMF in
recommending non-trivial landmarks, i.e., up to ca. 10% in MAP and up to ca.
15% in MRR. This observation indicates that WMF-CR indeed contributes to
improving the performance of recommending non-trivial landmarks by means of
reducing the influence of highly popular landmarks. We can confirm a positive
answer to our first research question about the effectiveness of the use of the
weighting scheme. Note that we can also observe that similar improvements are
achieved by WMF over PureSVD and MF, indicating that significant influence
on performance can be still introduced by the weighting scheme in the case that
the landmark categories are not exploited.

Third, we can observe that WMF-CR significantly improves over PureSVD,
MF and WMF in recommending non-trivial landmarks, i.e., up to ca. 25% in
MAP and up to ca. 35% in MRR over PureSVD; up to ca. 20% in MAP and
up to ca. 35% in MRR over MF; and up to ca. 6% in MAP and up to ca.
7% in MRR over WMF. These improvements indicate that the category-based
landmark similarity exploited in WMF-CR indeed contributes to alleviating
data sparseness. We can confirm a positive answer to our second research
question on the ability of WMF-CR to address the problem of sparse data.
Note that we can also observe that improvement is achieved by CRMF over
MF and PureSVD, indicating that substantive influence on performance can be
still introduced by exploiting landmark categories even in case the weighting
scheme is not involved.

Recommendations for users with limited travel experience. We divide
the users from the test set into two groups according to the number of cities
they have visited. For the purpose of counting the cities that a user has visited,
we ignore that user’s target city. Out of 2807 users in the test set, over half
of them (1589 users) have photos from only one city, and the rest (1218 users)
have photos from visits to more than one city. Note that the distribution of the
number of cities that users visit is skewed. For example, only 10 users visited
more than 10 cities.

We show the recommendation performance of different approaches for the two
groups of users in Table 5.4, given the condition that the top-5 most popular
landmarks in each city are considered irrelevant. As can be observed, users
with relatively more travel experience can consistently benefit more from rec-
ommendations by different approaches, indicating the user travel experience
has significant impact on recommendation performance. The proposed WMF-
CR approach achieves the best performance of all the approaches for the users
that have visited more than one city, leading to, for example, improvement of
ca. 40% in MAP and ca. 90% in MRR over PopRec, ca. 14% in MAP and ca.
17% in MRR over MF, and ca. 4% in MAP and ca. 5% in MRR over WMF.
In comparison, we can also observe that the relative improvement of WMF-CR
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Table 5.3: MAP comparison between WMF-CR, and baseline approaches under re-
moval of the x (first column) most popular landmarks in each city. Improvements
achieved by WMF-CR over other baseline approaches are statistical significant, ac-
cording to Wilcoxon signed rank significance test with p < 0.05 measured across all
the users in the test set.

(a) Results of MAP.

z PopRec PureSVD MF CRMF WMF WMF-CR
0 0.402 0.327 0.377 0.384  0.266 0.274
1 0224 0.233 0.238 0.240 0.234 0.218
2 0.153 0.166 0.168 0.170 0.185 0.171
3 0.121 0.132 0.138 0.140 0.161 0.150
4 0.100 0.111 0.123 0.126  0.140 0.144
5 0.085 0.092 0.102 0.106 0.115 0.117
6 0.073 0.080 0.083 0.085 0.093 0.095
7 0.064 0.073 0.075 0.080 0.085 0.088
8 0.058 0.067 0.066 0.070 0.076 0.079
9 0.052 0.061 0.060 0.064 0.069 0.071
10 0.048 0.056 0.056 0.060 0.064 0.068
(b) Results of MRR.
z PopRec PureSVD MF CRMF WMF WMF-CR
0 0.550 0.472 0.516 0.535 0.380 0.392
1 0.272 0.330 0.316 0.321 0.333 0.310
2 0.174 0.226 0.222 0.225 0.268 0.249
3  0.135 0.176 0.185 0.185 0.236 0.222
4 0.108 0.145 0.167 0.170  0.204 0.215
5 0.090 0.118 0.135 0.139 0.156 0.161
6 0.078 0.097 0.093 0.098 0.112 0.116
7 0.069 0.087 0.084 0.091 0.103 0.107
8 0.062 0.079 0.073 0.079  0.090 0.096
9 0.055 0.071 0.065 0.070 0.082 0.087
10 0.051 0.064 0.062 0.068 0.079 0.084

over baseline approaches is in nearly the same magnitude for users that only
visited one city, e.g., ca. 37% in MAP and 73% in MRR over PopRec, ca. 13%
in MAP and ca. 17% in MRR over MF, and ca. 4% in MAP and ca. 4% in
MRR over WMEF. Note that the magnitude of relative improvement introduced
by the proposed WMF-CR, approach over most of the baselines is not severely
degraded for users who only visited one city. As a whole, these results im-
ply that the proposed WMF-CR approach could be particularly beneficial for
users that only have limited travel experience, indicating a positive answer to
our third research question on the benefits of WMF-CR for users with limited
travel experience.

We further divide the 1589 users who only visited one city into groups according
to the number of landmarks they visited. We thereby also assume that users
with fewer visited landmarks have less travel experience. We find that most of
these users visited a very limited number of landmarks, e.g., over one-third only
visited one landmark in a city, and users who visited a lot of landmarks are in
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Table 5.4: Performance comparison for the users who visited only one city (1) and
more than one city (>1) in the past. Results are achieved under the condition that the
top-5 most popular landamarks in each city are taken as irrelevant.

(a) Results of MAP.
Users with num. cities visited PopRec PureSVD MF CRMF WMF WMF-CR
1 (1589 users) 0.079 0.085 0.096 0.099 0.104 0.108
>1 (1218 users) 0.092 0.101 0.114 0.116 0.125 0.130
(b) Results of MRR.
Users with num. cities visited PopRec PureSVD MF CRMF WMF WMF-CR
1 (1589 users) 0.085 0.109 0.126 0.129 0.141 0.147
>1 (1218 users) 0.095 0.130 0.153 0.154 0.170 0.179

Table 5.5: MAP comparison for the users who visited only one city, in terms of the
number of their visited landmarks. Results are achieved under the condition that the
top-5 most popular landmarks in each city are taken as irrelevant.

(a) Results of MAP.
Users with num. visited landmarks PopRec PureSVD MF CRMF WMF WMF-CR

1 (676 users) 0.073 0.084 0.093 0.097 0.103 0.108
2~5 (635 users) 0.084 0.083 0.101 0.104 0.111 0.114
6~10 (153 users) 0.074 0.084 0.081 0.084 0.088 0.088
>10 (125 users) 0.094 0.095 0.093 0.096 0.101 0.102

(b) Results of MRR.
Users with num. visited landmarks PopRec PureSVD MF CRMF WMF WMF-CR

1 (676 users) 0.081 0.107 0.116 0.120 0.134 0.142
2~5 (635 users) 0.089 0.104 0.137 0.139 0.150 0.155
6~10 (153 users) 0.081 0.117 0.122 0.124 0.132 0.134
>10 (125 users) 0.096 0.118 0.125 0.131  0.148 0.150

minority, e.g., only 125 users visited more than 10 landmarks in a particular
target city. The performance for these different groups of users is shown in
Table 5.5.

As can be seen, the highest relative improvements achieved by WMF-CR  is for
the group of users who only visited one landmark, e.g., ca. 48% over PopRec,
ca. 11% over CRMF and ca. 5% over WMF in MAP; ca. 75% over PopRec; ca.
18% over CRMF; and ca. 6% over WMF in MRR. These results again indicate
that WMF-CR could be particularly helpful for users with very limited travel
experience, again supporting a positive answer to our third and final research
question.

We also notice in the tables WMF-CR outperforms other approaches for other
groups of users who have visited more than one landmark, although the magni-
tude of relative improvement is lower than for users who have visited only one
landmark. These improvements support our conclusion that WMF-CR benefits
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from alleviating data sparseness and biasing recommendation process in terms
of landmark popularity and, as such, constitutes a highly effective technique
for personalized landmark recommendation.

As a final note, we examine one particular user in more detail, who has only
one city in her travel history (Barcelona) and has only visited two landmarks
there (‘Park Guell’ and ‘Sagrada Familia’). This case illustrates how WMEF-
CR works for users with very little travel experience. We generate top-10
recommendations for this user for her target city (London) using the different
recommendation approaches. The results lists are given in Table 5.6. As can be
seen, the approaches that do not specifically target recommending non-trivial
landmarks, such as PureSVD, MF and CRMF, are heavily influenced by the
most popular landmarks, e.g., at least two of the top-5 recommended landmarks
are among the top-5 most popular landmarks in London. CRMF promoted the
recommendation of ‘London Zoo’ probably because the underlying categories
allow the algorithm to semantically relate ‘London Zoo’ to ‘Park Guell’. This
case suggests that landmark categories can indeed improve recommendation
quality. Both WMF and WMF-CR managed to move less popular landmarks
towards the top of the list. We can observe that the top-5 most popular land-
marks in London are not recommended in either of the top-10 list. In addition,
WMEF-CR succeeded in recommending the relevant landmarks on the top, ben-
efitting from not only the bias introduced towards non-trivial landmarks, but
also the category information. It is interesting to note that the users two visited
landmarks (‘Park Guell’ and ‘Sagrada Familia’) are among the most popular
landmarks in Barcelona, but that the WMF-CR is able to successfully generate
recommendations on the basis of this evidence of user interest. This example
supports our conjecture that there is not a hard difference between landmarks
that users visit motivated by their own topical interest and landmarks that
users visit motivated by a general desire to travel. Here, relatively popular
landmarks, that could also have been visited due to a general desire to travel,
prove helpful in generating the recommendation.

5.6 Conclusion and Future Work

In this paper, we put forward a comprehensive approach to the new research
challenge of personalized landmark recommendation based on geotagged photos
from photo-sharing sites. Our formulation of the personalized landmark recom-
mendation task includes the criterion that recommended landmarks should be
‘non-trivial’. In other words, the system should not recommend landmarks that
users could discover via conventional means. Our approach, called WMF-CR,
incorporates weighted matriz factorization and category-based reqularization.
Weights are incorporated into the matrix factorization approach in order to re-
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inforce the importance of non-trivial landmarks for making non-trivial recom-
mendations. Category-based regularization integrates information on topical-
level similarities between landmarks by exploiting landmark category informa-
tion available from Wikipedia. The computational complexity of WMF-CR is
linear with the number of observed preferences in the user-landmark preference
matrix and the number of non-zero similarities in the category-based landmark
similarity matrix, meaning that it easily scales to large datasets.

The experimental results demonstrate that WMF-CR is capable of produc-
ing non-trivial personalized landmark recommendations. WMF-CR shows im-
proved performance over a baseline based exclusively on popularity, over a
conventional singular value decomposition approach (PureSVD) and over a
standard matrix factorization approach (MF). Further, the addition of weights
(WMF) or the use of category regularization (CRMF') both provide good perfor-
mance when used separately. However, the best overall performance is achieved
by the full WMF-CR approach. Additional evaluation shows that WMF-CR
is particularly helpful for users with limited travel experience, i.e., in terms of
either the number of cities or landmarks visited before. With these experiments
we demonstrate that WMF-CR is indeed able to address the issue of sparseness
of landmark data within Flickr.

Our future work will address the following challenges. First, although WMF-
CR has clearly demonstrated the power of the assumption that the number of
photos taken in the general location of a landmark reflects underlying interest
that is useful for prediction, we would like to further refine the way in which our
method captures user interest. Other factors that could be taken to reflect to
user interest are: the distance of the photos from the landmark, the time that
the user spent at the landmark as represented by the temporal spread of the
photos, the detail with which the user has annotated the photos. In addition,
it would be also interesting to exploit other resources to define the triviality
of landmarks and extend our comparative study. Second, Wikipedia contains
a large amount of semantic information concerning landmarks that goes above
and beyond their topical categories. We would like to exploit these sources of
information in order to enhance our ability to model topical relatedness be-
tween landmarks. Examples include people associated with places and times
in history where places were particularly important. Such approaches could
be implemented efficiently using DBPedia (http://dbpedia.org), a structured
information resource extracted from Wikipedia. Semantic Web technologies
could be used for semantically richer encoding of categorical information, in-
troducing into the model the means to capture a finer-grained representation
of user interests. This type of user interest representation may also contribute
to landmark recommendation, in a similar way of landmark similarity. Third,
the categories of landmarks we exploit are extracted from an external resource,
i.e., Wikipedia. We could also exploit resources from within the photo-sharing
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site in order to determine higher-level similarity between landmarks. Exam-
ples of promising internal resources are user annotations for individual photos
taken at a landmark and the content features of photos. Fourth, another inter-
esting direction is to take the use-context into account for real-time landmark
recommendation. Since the application discussed in this paper is closely asso-
ciated with GPS-enabled mobile devices, it would be promising to investigate
approaches that instantly refine landmark recommendations based on the trav-
eler’s current location and landmarks visited on the same day. Finally, we would
like to evaluate our landmark recommender system with real users in future.
One earlier algorithm has been evaluated with a small-scale user study on a
prototype system [68], in which the concept of off-the-beaten-track recommen-
dations was highly appreciated by the users. It is interesting to investigate how
user satisfaction could be improved by the proposed system in this paper. In
sum, the new task of personalized landmark recommendation based on images
from photo-sharing sites can be effectively addressed with our proposed WMF-
CR approach and at the same time, the approach opens vistas for extension
that are promising for future exploration.



Chapter 6

Optimizing MAP for
Context-aware
Recommendation

In this chapter, we tackle the problem of top-N context-aware recommendation
for implicit feedback scenarios. We frame this challenge as a ranking problem
in collaborative filtering (CF). Much of the past work on CF has not focused on
evaluation metrics that lead to good top-N recommendation lists in designing
recommendation models. In addition, previous work on context-aware recom-
mendation has mainly focused on explicit feedback data, i.e., ratings. We pro-
pose TFMAP, a model that directly maximizes Mean Average Precision with
the aim of creating an optimally ranked list of items for individual users under
a given context. TFMAP uses tensor factorization to model implicit feedback
data (e.g., purchases, clicks) with contextual information.

The optimization of MAP in a large data collection is computationally too
complex to be tractable in practice. To address this computational bottleneck,
we present a fast learning algorithm that exploits several intrinsic properties of
average precision to improve the learning efficiency of TFMAP, and to ensure
its scalability. We experimentally verify the effectiveness of the proposed fast
learning algorithm, and demonstrate that TFMAP significantly outperforms
state-of-the-art recommendation approaches.

This work has been published as “TFMAP: Optimizing MAP for top-N context-aware
recommendation”; by Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic, and N.
Oliver, in Proc. of. ACM SIGIR ’12 [140].
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6.1 Introduction

Collaborative Filtering (CF) methods are at the core of most recommendation
engines. Most of the data traces left by online users come in the form of implicit
feedback, i.e., we know which items a user interacted, e.g., purchased, used, or
clicked, etc., and possibly also the count of each interaction; however, we do
not have an explicit rating, i.e., a relevance score, that represents the strength
of the user’s interest in that item [60]. Learning the suggestion function from
implicit feedback data, such as purchase or usage logs, can either be considered
a classification problem, where items are classified to relevant or irrelevant, or
a ranking problem where an optimal list of items is to be computed.

Top-N recommendation has recently attracted increased research interest be-
cause it generates a ranked list of results, which is directly connected to the
end-user satisfaction [33]. Conventionally, recommender systems have been op-
timized to produced scores. A predicted score reflects the system’s hypothesis
of the strength of a particular user’s preference for a particular item. In an
overwhelmingly large number of recommender system use scenarios, users do
not want preference strength information on all the items in the collection, but
rather a compact list of top recommended items.

Although ranking-oriented CF approaches have been proposed for explicit feed-
back domains, e.g., EigenRank [90] and CoFiRank [182], those approaches are
difficult to apply to implicit feedback domains, since they require training ex-
amples that are derived from the users ratings on various items. In particular,
implicit feedback is often binary in nature. We notice that in top-N recom-
mendation, the quality of a recommendation list that contains items of binary
relevance can be quantified using Mean Average Precision (MAP), a well known
evaluation measure in the information retrieval (IR) community. MAP provides
a single-figure measure of quality across recall levels, has especially good dis-
crimination and stability properties, and roughly corresponds to the average
area under the precision-recall curve [101]. It is thus a good measure of per-
formance when a short list of the most relevant items is shown to users [139].
A state-of-the-art approach, Bayesian Personalized Ranking (BPR) [126], has
been recently proposed to train recommendation models by optimizing the mea-
sure of the Area Under the ROC Curve (AUC), which is based on pairwise com-
parisons between items. Note that in the AUC measure mistakes at the top of
the list carry equal weight to mistakes in the bottom of the recommendation
list. In contrast to AUC, MAP is a list-wise measure, for which mistakes in the
recommended items at the top of the list carry a higher penalty than mistakes
at the bottom of the list [35, 193]. Users typically consider only few (5 -10)
top-ranked items in the recommendation list, it is thus particularly important
to get the recommendations at the top of the list right. The top-heavy bias of
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MAP is thus particularly important in the recommendation problem. For this
reason, we propose a recommendation model for implicit feedback domains by
directly optimizing MAP.

Typically, recommender systems have access to additional information about
the user-item interactions, such as the context that is associated with the user-
item interaction [1]. The context could be the location where the user listened
to a song on his/her mobile phone or the time of the user-item interaction.
Context-aware recommendations (CARs) are a new paradigm that can signifi-
cantly improve the recommendation relevance and quality, compared to conven-
tional recommendations solely based on user-item interactions [1, 11, 65, 127].
In this chapter we present a generic CF model that is based on a generalization
of matrix factorization to address context-aware recommendations. We extend
the concept of matrix factorization to tensor factorization. A tensor is a general-
ization of the matrix concept to multiple dimensions. In the example above the
user-item two-dimensional matrix is converted into a three-dimensional tensor
of user-item-location interactions (see Figure 6.1).

Two key issues need to be considered in CARs: (1) Context Integration. The
contextual information needs to be integrated in the recommendation model
to be able to benefit the quality of the recommendation; and (2) Optimization
Function. The recommendation model needs to be optimized under an ob-
jective function that corresponds to the recommendation quality for each user
under each given context. Previous work in CARs has extensively studied the
context integration issue, such as using tensor factorization [65] (TF) and fac-
torization machines [127]. However, the second issue (optimization function)
has only been addressed in a simplistic way. In the work of [65] and [127],
the objective function in the recommendation model consists of minimizing the
rating prediction error. This is an effective strategy where explicit feedback
data is available from users, however, optimizing this objective is infeasible for
scenarios with only implicit feedback data. In these scenarios, the quality of
a recommendation list for a user is solely dependent on the positions of the
relevant items in the list under the given context.

Here we propose a new context-aware recommendation approach based on ten-
sor factorization for MAP maximization (TFMAP) that is designed to work
with implicit feedback datasets. Taking insights from the area of learning to
rank, TEMAP directly optimizes MAP for learning the model parameters, i.e.,
latent factors/features of users, items and context types, which are then used
to generate item recommendations for users under different types of context.

Directly optimizing MAP across all the users in a data collection is an expensive
and non-trivial task. Therefore, we also propose a fast learning algorithm that
exploits several properties of the average precision (AP) measure. We show
that the computational complexity of the fast learning algorithm for TFMAP
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is linear in the number of observed items in a given data collection. Our contri-
butions in this chapter can be summarized as: 1) We propose a new generalized
CF approach, TFMAP, that directly optimizes for MAP and leverages contex-
tual information when available. We demonstrate that TFMAP outperforms
state-of-the-art context-aware and context-free approaches. We observe signifi-
cant improvements not only in MAP but also in precision at the top-N ranked
recommendations. 2) To the best of our knowledge, TFMAP is also the first
approach that can exploit datasets with implicit user feedback and contextual
information. 3) We propose a fast learning algorithm that ensures the scalabil-
ity of TFMAP and that exploits several properties of the AP measure.

The paper is organized as follows: in Section 6.2 we discuss the most relevant
previous work and position our paper with respect to it. The research problem
and the terminology used throughout the paper are presented in Section 6.3. In
Section 6.4, we present the detail of TFMAP and the fast learning algorithm.
Our experimental evaluation is reported in Section 6.5. Finally, Section 6.6
summarizes our main contributions and highlights a few areas of future work.

6.2 Related work

The work in this chapter closely relates to three research areas: CF with im-
plicit feedback, context-aware recommendation, and learning to rank. In the
following, we present the most relevant related work in each of them.

CF with Implicit Feedback. Most CF approaches in the literature deal with
the rating prediction problem, as defined in the Netflix prize competition!. A
common approach to CF is to fit a latent factor model to the data, e.g., la-
tent semantic models [58, 152], and matrix factorization models, which learns
a latent feature/factor vector for each user and item in the dataset such that
the inner product of these features minimizes an explicit or implicit loss func-
tion [12]. Factor models have been shown to perform well in terms of predictive
accuracy and scalability [3, 75, 134].

One of the first studies that used latent factor models for large implicit feedback
datasets was introduced in [60]. It uses a least squares loss function and exploits
the structure of the data (dominated by zero entries that correspond to negative
preference), such that observed user-item interactions are weighted proportion-
ately to the count of the interactions. Some extensions following this approach
are introduced in [113] and [154]. In [126] a factorization approach based on
the optimization of a smoothed pairwise ranking objective function was pro-
posed. Optimizing the proposed objective function corresponds to maximizing

"http://www.netflixprize.com/
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the AUC. In this chapter, we propose to learn a recommendation model by
optimizing MAP, whose top-bias property is a significant advantage over AUC
for recommender systems, as discussed in Section 6.1. In addition, our work
is substantially different from the aforementioned work, since various types of
contextual information are exploited for the recommendation.

Context-aware recommendation (CAR). Early work in CAR utilized con-
textual information for pre-processing, where context drives data selection, or
post-processing, where context is used to filter recommendations [1, 11]. Recent
work has focused on building models that integrate contextual information with
the user-item relations and model the user, item and context interactions di-
rectly. Two state-of-the-art approaches have been proposed to date, one based
on tensor factorization [65, 185] and the other on factorization machines [127]
(FM). However, both approaches have been designed for the ezplicit rating
prediction problem.

In this chapter we utilize a tensor factorization approach, i.e., the CANDE-
COMP/PARAFAC (CP) model [69], to represent the interactions among the
user, the item and the context type. Our approach includes two substantial
innovations, compared to the state of the art in CARs: (1) It targets recom-
mendation scenarios with implicit feedback; and (2) it takes the evaluation
metric (MAP) into account for learning the recommendation model.

Note that recommendation approaches have been proposed to take into ac-
count additional information (also referred as metadata, side information, or
attributes) about users or items, e.g., collective matrix factorization [155], lo-
calized factor models [4] and graph-based approaches [72]. However, this type
of information would go beyond our definition of “context”, since we refer to
context as information that is associated with both the user and the item at
the same time. Finally, note that a recommended item set from a recommender
is regarded as the “context” of user choice in the work of [189]. However, this
type of context is still extracted from the user-item relations, and thus, does
not fall in the scope of the context studied in this chapter.

Learning to Rank. Learning to rank has been an attractive research topic
in both the machine learning and the information retrieval communities [93].
Our work in this chapter is closely related to recent research where proxies
for common IR evaluation measures, such as NDCG and MAP, are used as
the objective functions. The main difficulty of directly optimizing evaluation
measures lies in their non-smoothness [17], i.e., they are dependent on the rank
values of ranked documents/items but not directly on the predicted relevance
scores.

Ranking approaches can be broadly classified into two categories, those that
implicitly optimize the IR measure and those that formulate an explicit ap-
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proximation of the measure. LambdaRank [17] is a popular implicit optimiza-
tion method, which was proposed to apply gradient descent on an implicit loss
function, that is related to IR measures. Methods that explicitly optimize IR
measures include structured estimation techniques [171] that minimize convex
upper bounds of loss functions based on evaluation measures [187], e.g., SVM-
MAP [193] and AdaRank [186]. In the case of CF, CoFiRank [182] introduced a
matrix factorization method where structured estimation was used to minimize
over a convex upper bound of NDCG. SoftRank [169] was the first approach
that proposed an explicit smoothed version of an evaluation measure, in which
a rank distribution was employed, resulting in the expected values of document
ranks that are smooth to the predicted relevance scores. In addition, a more
general extension of SoftRank was presented by Chapelle et al. [26].

In this chapter, we also employ an explicit approximation of MAP, which is a
smooth function of model parameters. Our work is different from aforemen-
tioned research, since we target context-aware recommendation rather than
query-document search, and we propose a fast learning algorithm, which is
critical for large-scale recommender systems.

6.3 Problem and Terminology

The research problem studied in this chapter is stated as follows: Given implicit
feedback and contextual information on user-item interactions, recommend to
each user and under a given context, an optimal (from a MAP perspective) item
list.

We denote the implicit feedback data from M users to N items under K types
of context as a binary tensor Y, i.e., a 3-dimensional tensor, with M x N x K
entries which are denoted with y,ix: (1) Ymi = 1 indicates that user m has
interacted (i.e. purchased, used) with item ¢ under context type k. We can thus
assume that the user has a preference for this item; and (2) y,;x = 0 indicates
the absence of an interaction and thus the preference of user m to item ¢ under
context type k is unknown. |Y| denotes the number of nonzero entries in Y.
Y, denotes a binary vector that indicates the user m’s preference on all the
items under context type k.

As mentioned in Section 6.2, the main idea behind factor models is to fit the
original user-item interaction matrix with a low rank approximation. In this
work we use tensor factorization (TF) as a generalization of the classical matrix
factorization methods that accommodates for the contextual information. The
latent features are stored in three matrices U € RM*P Vv ¢ RNXDP and
C € REXD that correspond to users, items, and context types, respectively.
We use U, to denote a D-dimensional row vector, which represents the latent
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Figure 6.1: CP tensor factorization model.

features for user m. Similarly, V; represents the latent features of item 4, and
C}, represents the latent features of context type k.

We use the CP model [69], as illustrated in Fig. 6.1, for tensor factorization, in
which user m’s preference to item ¢ under context type k is factorized as the
inner product of the latent feature vectors, as shown below:

D
Jmik = (Um, Vi, Cr) = ZUdeided (6.1)
d=1

Based on user’s m preference over all the items under context type k, we can
then generate a recommendation list by ranking all the items in a descending
order of the computed scores. Then, the AP of this list is defined as:
1 N oy &
APk = —x Z L Zymjkﬂ(rmjk < Prnik) (6.2)

i=1 Ymik i=1 T'mik j=1

where 7,,,;; denotes the rank of item 7 in the list of user m under context type k
and I(-) is an indicator function, which is equal to 1 if the condition is satisfied,
and otherwise 0.

The MAP is defined as the average of AP across all the users and all the context
types, as shown below:

1 iw: K Zzl\il % Z;vzl ymjkﬂ(rmjk < Tmik)

N
m=1k=1 Zizl Ymik

(6.3)

6.4 TFMAP

In this section, we present the main technical contributions of this chapter: (1)
our proposed smooth approrimation of MAP, its optimization and associated
complexity analysis; and (2) a novel fast learning algorithm for optimizing over
the smooth MAP measure in a context-aware setting.
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6.4.1 Smoothed Mean Average Precision

It is apparent from Eq. (6.2) and (6.3), that AP (or MAP) depends on the
rankings of the items in the recommendation lists. The rankings of the items
change in a non-smooth way with respect to the predicted user preference scores
and thus, the AP measure ends up being a non-smooth function with respect to
the latent features of users, items and context types. We thus cannot use any
of the standard optimization methods that require smoothness in the objective
function.

As previously mentioned, significant progress has been made in the area of
learning to rank regarding the explicit optimization of evaluation metrics, such
as MAP. The key issue is to approximate 7y, and I(ry,x < i) in Eq. (6.2)
and (6.3) by smoothed functions with respect to the model parameters, i.e., U,
V,and C.

Based on insights in [26], we approximate I(rpr < rmi) by the following
logistic function:

I(rmjr < rmir) = g(fmje — fmix) = 9((Um, Vj — Vi, Cy)) (6.4)

where g(z) = 1/(1 + ™). The basic assumption is that the condition of item
j being ranked higher than item ¢ is more likely to be satisfied, if item j has
relatively higher relevance score than item i. The authors in [26] also proposed
a sophisticated approximation for 7,,;r, which, to the best of our knowledge, has
not been deployed in practice. In the case of MAP, we argue it is not necessary
to approximate 7k, since only 1/7,,;; is in use. For this reason, we propose
to directly approximate 1/7,;; with another logistic function:

1

Tmik

%g(fmik) :g(<Um7‘/iaCk>) (65)

Note that the larger the predicted relevance score fp,ix the closer g(fimir) gets

to 1, resulting in a low value of 7,,;. Reversely, the lower f,,;;, the larger is
Tmik- Substituting Eq. (6.4) and (6.5) into Eq. (6.3), we obtain a smoothed
approximation of MAP:

N

M K N
1 1
MAP =—— = D _ Ymikd((Um, Vi; Cx)) D Ymjxg({Um, Vj — Vi, Cy))

(6.6)

6.4.2 Optimization

Since Eq. (6.6) is smooth with respect to U,,, V;, and Cf, we can now optimize
it using standard methods, such as gradient ascent. In order to avoid overfitting
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, we add the Frobenius norms of the latent factors for regularization. Hence,
the resulting TFMAP objective function is given by:

N
L(U,V,0) ZZ Zymmg (Unms Vi, Ci)) > Yming((Unm, Vi = Vi, Ci))
m=1 k=1 = 1y"”k2 1 j=1
(HU||2+ IVII* -+ [ICI?) (6.7)

v \

Note that we neglect the constant coefficient in MAP, since it has no influence
on the optimization. Given a set of training data Y, a local maxima of Eq. (6.7)
can be obtained by alternatively performing gradient ascent on one of the latent
feature vectors at each step, while keeping the other latent vectors fixed. The
gradients with respect to U, C, and V are given by Eq. (6.8~6.10).

K N

oL 1

U, Z Z ymik V ®© Ck) + g(fmzk) Z ymjkg/(f'rn(j—i)k)(‘/j © Ck)]

m k=1 i= 1 Ymik ;=1 j=1
—\Up, (6.8)

oL M 1 N
il =y Zymzk (U © Vi) + 9(Fmik) Y Ymikd (Fnij—ip) Um © V5)]

k m=1 = 1 Ymik i=1 j=1
—\Cy (6.9)

M K
me C
aV Zzy kU = k Zymﬂ@ (fmzk) (fmj %) )
¢ m=1k=1

>im 1ymzk j=1
+ (90min) = 9Umie) )9 Foni-i32)] = AVi (6.10)
where:

fmik = <Uma ‘/iack>ﬂ fm(j—i)k = <Um7 V} - VuCk>

N N
6= g/(fmik) Z ymjkg(fm(jfi)k) - g(fmik) Z ymjkg/(fm(jfi)k

j=1 j=1

The sign ® denotes element-wise product, and ¢’(x) denotes the derivative of
g(z). Note that since neither U, or Cj is coupled with other latent feature
vectors as in Eq. (6.6), the derivation of Eq. (6.8) and (6.9) is straightforward.
However, V; is coupled with other latent feature vectors in Eq. (6.6), resulting
in a more complicate derivation of Eq. (6.10). We leave the detailed derivation
of Eq. (6.10) in the Appendix.

In order to understand the practical utility of TEFMAP, we analyze the complex-
ity of the learning process for one iteration. Given the data sparseness in the
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tensor Y and the fact that we usually have |Y| >> M, K, the computational
complexity of calculating the gradients in Eq. (6.8) and (6.9) is O(D|Y'|), which
is linear to the number of observed user-item interactions in the given tensor.
Hence, the computation of the gradients with respect to the latent user features
and latent context features is tractable, and able to scale up for large-scale use
cases. However, the complexity of Eq. (6.10) is O(DN|Y|). Considering that
we usually have |Y| >> N, this complexity is even larger than quadratic in the
number of items in the given collection. Thus, the computation of gradients
regarding latent item features could be intractable in practice.

In the next section, we propose a novel fast learning algorithm to address the
computational bottleneck in Eq. (6.10), reducing its complexity to O(D|Y|).

6.4.3 Fast Learning

The proposed fast learning algorithm is outlined in Algorithm 4. Note that
according to the definition of AP in Eq. (6.2), it is not necessary to optimize
the latent features of all the items in order to maximize AP (as explained below).

The key idea of speeding up the learning process is to optimize, for each fixed
pair of user m and context type k, the latent features of only a set of represen-
tative items, denoted as a buffer B,,.

The gradient of the objective in Eq. (6.7) with respect to the latent features of
item ¢ in B,,; can be computed as:

oL i 4 Ymik(Unm © Ck)

v,

Z Ymjk [gl(fmik)g(fm(j—i)k)

m—=1 k=1 ZieBmk Ymik JeBuk

+ (9(fmin) = 9(fmit) )9 Fmis-iw)] = AVi (6.11)

The computational complexity then depends on the size of the buffer, i.e., the
number of items selected for each pair of user-context type. When all items are
included in the buffer, Eq. (6.11) is equal to Eq. (6.10), while selecting fewer
items in the buffer results in lower complexity.

The key issue with this approach is finding the right items to include in the
buffer, as the quality of the learning process and hence the resulting model
directly depends on the items included in the buffer. The buffer needs to be
constructed in such a way that it both reduces the computational complexity of
the learning algorithm and conserves the necessary information to yield a high
quality model.

Representative Item Selection. Relevant Items. For each user in a given
context, we first include in the buffer all the items that have been observed by
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the user in that context, i.e., for which we have the user’s implicit feedback.
These items are the basis for the computation of AP. Note that AP is defined
based on the ranks of relevant items. Updating the latent features of relevant
items should improve (i.e., reduce) their rankings, thus, resulting in improved

AP.

Irrelevant Items. Note that the ranking of irrelevant items influences AP in-
directly, since their rankings are relative to the rankings of relevant items.
Updating the latent features of irrelevant items will also improve (i.e., raise)
their rankings, thus, resulting in overall improved AP.

However, in practice, there are many more irrelevant items than relevant items
for a user under a given context. The quantity of irrelevant items thus becomes
the computational bottleneck in the learning algorithm of TEFMAP.

For this reason, we choose to select only a relatively small number of irrelevant
items in the buffer, n,,;, for user m and context type k. AP is a top-heavy
list-wise ranking measure such that the lower the ranking of an item (the closer
it is to the top of the list), the higher its influence in the final score. Top-ranked
irrelevant items are the most influential items for AP optimization, yielding the
following lemma:

Lemma 6.4.1. If we try to improve the AP of a ranking list by optimizing
(i.e., raising) the ranks of n irrelevant items, then raising the ranks of the top
n irrelevant items should yield the largest improvement in AP.

The proof in the case of n = 1 is provided in the Appendix. The proof for the
case of n > 1 can be obtained in a similar way. Note that we could first sort all
the irrelevant items for user m under context k in a descending order, according
to the preference scores computed by the current model, i.e., Up,, V and Cf in
current iteration, and then select the top-ranked n,, irrelevant items into the
buffer.

In this work, we choose the set of irrelevant items in the buffer, n,,, to be equal
to the number of observed /relevant items for user m under context k, resulting
in a total of 2n,,; items in the buffer.

We now optimize Eq. (6.7) for the latent features of the items within the buffer
only. The complexity of Eq. (6.11) over each iteration is O(272M K D), where
7 denotes the average number of observed items per user and context type.
Note that we have nM K = |Y| and |Y| >> n. Therefore, the complexity of
Eq. (6.11) is O(D|Y'|), which is linear to the number of observed items in the
given collection.

Efficient Buffer Construction. In order to select the top-ranked irrelevant
items in each iteration, we need to make a prediction for each item and sort
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ALGORITHM 4: Fast Learning TFMAP

Input: Training set Y, regularization parameter A\, sampling size n, learning rate -y,

and the maximal number of iterations itermax.
Output: The learned latent features U, V', and C.
Initialize U, V) and C© with random values, and t = 0;
= MAP based on Y and U@ v (0,
repeat
form=1,2,...,M do

t+1 (t)
tU( ) = =Unm +76U('>

for k=1,2,...,K do
C(H'l) C(f) +

based on Eq. (6.8);

ac(” based on Eq. (6.9);

form=1,2,...,M do
for k=1,2,...,K do
B, = BufferConstruct (Y, Um JV, C(t) n);
for i € By, do
L Vi(Hl) = V(t) + 73 (t) based on Eq. (6.11);

t=t+1;
p=MAP based on Y and U®), V(B C®),
if p —po <0 then

L break ;

Po =D;
until ¢ > itermaxz;
U=U%,v=v® c=c®

ALGORITHM 5: BufferConstruct

Input: User m’s preference on all the items under context type k, i.e., Yy, and Uy,

V, Ck, and sampling size n.
Output: B,,;.
Bk = By U {Z‘ymzk = 1}a
Nk = cardinality(Bmk);
P = mini7ymik:1 <Um7 Vria Ok>,
S = {Z‘ymtk = O} N {Z| <Uma ‘/i7 Ck> > p},
Randomly sample n items from S as @;
Descendingly sort items in @, according to (U, V;,Ck) ,i € Q;
Set top-ranked n,,; items in Q) as B™;
Bk = Bk UB™;

them according to the current predicted scores. Considering that most recom-
mender systems contain large numbers of items, the computational cost for the
prediction and sorting process would be very high. For this reason, we propose



6.4. TFMAP 115

X Buffer Bmk
fmik m

>

3
Lowest ranked relevant item |

.................................

Nk

Relevant items for
user m in context k

Sample ng items
with score > 0.5 H @ 0.8 Sort
—_—

fmik Yl o 6

MlE"'N'@'ﬁM Hﬂ&h
@

Irelevant items for
user m in context k

N-n

mk

Figure 6.2: Illustration of buffer construction.

to sample a small set of irrelevant items and to select the top-ranked irrelevant
items within the sampled set into the buffer.

We can maintain the representativeness of the top-ranked irrelevant items from
the sampled set by using a key property of AP: The items below the last relevant
item in a ranked list have no contribution to AP. This property can be easily
understood from the definition of AP (see Equation 6.2).

Therefore, for each user under a given context type, we first find the relevant
item with the lowest score. This operation is computationally cheap since the
number of relevant items is usually very small. We then sample n, irrele-
vant items from those irrelevant items (assuming that most unobserved items
are irrelevant) that have higher predicted relevance scores than the minimum
predicted relevance score of the relevant items. This sampled set has higher
probability to contain the globally top-ranked irrelevant items than a randomly
sampled set. Note that the relevance scores are calculated by the model in each
iteration. We illustrate the buffer construction for user m under context type
k in an single iteration in Fig. 6.2 and Algorithm 5.

In addition, since the model will become more accurate with each iteration, the
minimum predicted score of the relevant items will also increase gradually. In
other words, the position of the last relevant item in the ranked list will grad-
ually move to the top of the list. As another by-product, this effect also helps
to reduce the buffer construction time with each iteration. An experimental
analysis confirming this property will be presented in Section 6.5.

Note that the sampling size for the irrelevant items does not only influence the
buffer construction time, but also the quality of the learned latent item features.
We investigate this tradeoff between buffer size (i.e., computational cost) and
performance in Section 6.5.

Termination Criterion. Since Eq. (6.6) is an approximation of MAP for the
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training data Y, we can use MAP (given by Eq. 6.3) as another termination
criterion apart from conventional criteria, such as the number of iterations
or the convergence rate. We stop the optimization process when we observe
deteriorating values of MAP. Degrading values of MAP on the training data
indicates that further optimizing the approximation of MAP as in Eq. (6.6)
may not contribute to raising the true MAP.

6.5 Experimental Evaluation

In this section we present a collection of experiments that evaluate the proposed
TFMAP. We first give a detailed description of the datasets and setup that are
used in the experiments. Then, we investigate the impact of several parameters
in the proposed fast learning algorithm that are critical for TFMAP, as men-
tioned in Section 6.4.3. Finally, we evaluate the recommendation performance
of TFMAP, compared to several baselines, and analyze its scalability.

The experiments were designed to address the following research questions: 1)
Does the proposed fast learning algorithm benefit TFMAP in achieving MAP
maximization? 2) Does TFMAP outperform state-of-the-art context-aware and
context-free approaches? 3) Is TFMAP scalable for large-scale context-aware
recommendation?

6.5.1 Experimental Setup

Dataset. The main dataset we use in this chapter is from the Appazaar
project? [15].  Appazaar recommends mobile applications to users from the
Android Market. The application usage data is recorded in the form of implicit
feedback since Appazaar logs which apps are run by each user. In addition,
Appazaar also tracks available contextual information from the phone sensors,
such as motion sensor and GPS. We use two contextual factors in the exper-
iments, i.e., motion (unavailable, slow, fast) and location (workplace, home,
elsewhere). Note that both of the contextual factors were inferred from a GPS
trace. Hence, the context variable has 9 possible types that take into account all
the combinations of the two contextual factors, i.e., K =9 for C' in Eq. (6.1).
For example, context type “1” denotes that implicit feedback about a user
running an application was observed when the user was at work and his/her
motion status was unavailable. Finally, we represent one observation in the
dataset as a triplet (UserID, ItemID, ContextTypel D). The dataset contains
300469 triplets, 1767 users, 7701 items, 9 combinations of contextual features.
On average, there are 18.9 app usage events per user and context type. A more

2http://appazaar.net/
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detailed description of the dataset and its collection procedure can be found
in [15].

Note that conventional CF benchmark datasets, e.g., Netflix dataset, are not
enriched with contextual information. Although the Appazaar dataset is not as
large as these benchmark datasets, it is still much larger than datasets that have
been used in previous context-aware recommendation work [65, 127]. Moreover,
the datasets previously used in the CAR literature are all based on explicit
ratings rather than implicit feedback, thus, not ideal for our study.

Experimental Protocol.

We separate the dataset into a training set and a test set, according to the
timestamps. The training set consists of the first 80% implicit feedback data,
while the test set contains the remaining 20% data. The target is to use the
training set to learn a recommendation model, i.e., U, V and C, which is then
used to generate recommendation lists for each user under each type of context.

We use the MAP measure as in Eq. (6.3) to evaluate on the testset Y. Note
that in order to have fair comparison with context-free approaches, we only
preserve one context type for each user in the test set, i.e., we randomly select
one context type for each user in the test set and preserve the user’s feedback
within the selected context type, while excluding all the user’s feedback data
under other context types. To further clarify this design choice, we give a
negative example in which a user in the test set has implicit feedback on the
items under two different types of context. In this case, the MAP of context-
aware approaches, such as TFMAP, should be measured according to AP under
the two different types of context, while context-free approaches would only
calculate AP based on the items and ignore the context. For this reason, our
choice is necessary in order to attain fair comparative results to other context-
free approaches.

In addition, note that since we only have implicit feedback from users, we cannot
treat all the items that have no feedback in the test set as irrelevant/negative
ones, in which case the recommendation performance could be severely under-
estimated. For this reason, we adopt a conventional widely-used evaluation
strategy [33, 73], in which we randomly select 1000 items that have no feedback
as irrelevant ones for each user in the test set. The performance is measured
according to the recommendation list that only contains these 1000 items to-
gether with relevant items, i.e., the items for which there is implicit feedback
for that user.

In order to carry out our validation experiments, we randomly select 10% of
all the implicit feedback data available in the training set. In our validation
experiments we investigate the impact of the parameters and the fast learning
algorithm in TFMAP.
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Finally, note that we empirically tune the following conventional parameters so
they yield the best performance in the validation test: regularization parameter
A=0.001, latent dimensionality D=10, and learning rate v=0.001.

Setup for Comparison to FM. As mentioned in Section 6.2, the state-of-
the-art context-aware approaches, such as FMs [127], are designed to tackle
the rating prediction problem (explicit feedback), and hence they are difficult,
if not impossible, to apply to implicit feedback data. For this reason, we use
another dataset, Food dataset [111], which has also been used in the work on
FMs [127]. This dataset contains ca. 6K 5-scale ratings from 212 users on 20
menus/items, and each rating is associated with 2 contextual factors, i.e. one
factor about whether the user’s feeling about hunger is real or virtual (2 values:
real, virtual) when she rated a menu, and the other factor about the user’s
hunger degree (3 values: normal, hungry and full). By taking into account all
the combinations of the two contextual factors, we obtain 6 types of context in
the Food dataset.

In our experiments, we randomly select 80% of the ratings as the training set
and the remaining ratings as the test set. Items with a rating higher than
3 in the test set are considered to be relevant. Note that a different rating
threshold could be set to define the relevant items. Under this setting, we
use FM approach to first predict the ratings of the users on the items under
each context type, and then generate the recommendation list according to the
predicted ratings. For TFMAP, we train the model by converting the training
set to an implicit feedback dataset, in which each rated item is regarded as an
indicator of implicit feedback (i.e., the user tried the food item).

6.5.2 Validation: Impact of Fast Learning

We investigate the properties of the fast learning algorithm in TFMAP, pre-
sented in Section 6.4.3. The experimental results reported in this subsection
are measured on the validation set previously described.

Impact of Sampling Size. By varying the sampling size in the fast learning
algorithm of TFMAP, we investigate the buffer construction time and the per-
formance variation in terms of MAP in the validation set, i.e., an issue discussed
in Section 6.4.3. We measure the buffer construction time cumulatively across
all the users under all the context types in the training set over one iteration.
The result is shown in Fig. 6.3.

Note that the buffer construction time increases almost linearly as the sampling
size increases. Hence, with a relatively small sampling size, we could signifi-
cantly reduce the buffer construction time compared to the case where all the
irrelevant items for each user under a given context need to be ranked. For
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Figure 6.3: The impact of sampling size on buffer construction time and MAP of
TFMAP.

example, in the Appazaar dataset we have over 7000 items, which means that a
sampling size of 200 could save over 50% of the buffer construction time, as il-
lustrated in Fig. 6.3. Also note that the recommendation performance in terms
of MAP increases sharply as the sampling size increases up to 200, and then sat-
urates. Therefore, even with a relatively small size of irrelevant items, e.g., 200,
(compared to all the irrelevant items), the top-ranked irrelevant items within
the sampled set are sufficiently representative to be used for MAP optimization.

In sum, these results empirically verify the selection of a small set of irrelevant
items to create the buffer in the fast learning algorithm of TFMAP and justify
our algorithm design choices. For the remaining experiments we will keep a
sampling size of 200.

Impact of Representative Irrelevant Items. Here we aim to understand
the effectiveness of choosing the representative irrelevant items in the buffer.
Rather than selecting representative irrelevant items to construct the buffer,
an alternative is to use randomly selected irrelevant items. To test the random
procedure we abandoned the ordering step of the algorithm and instead we
randomly selected n,,; irrelevant items from the sampled set of size 200. In
this case the accuracy yields a MAP of 0.083, dropping by 18.6% compared to
the case where top-ranked irrelevant items are selected, i.e., MAP of 0.102 as
shown in Fig. 6.3. Increasing the sampling size further emphasizes the benefit
of carefully selecting the representative items. When we choose to sample 5000
irrelevant items, the benefit over the random strategy is 21.7%. This experiment
validates the benefit of using representative irrelevant items in the buffer, as
discussed in Section 6.4.3.

Effect of the Lowest-ranked Relevant Item. As discussed in Section 6.4.3,
it is not necessary to sample from all the irrelevant items in order to construct
the buffer for a user in a given context, since the items ranked below the lowest-
ranked relevant item have no influence on AP. Thus, the sampling process
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could be more efficient by neglecting the items ranked below the lowest-ranked
relevant item.

Here, we present an experimental study that examines the change of the po-
sition of the lowest-ranked relevant item, i.e., the maximal rank of relevant
items in a recommendation list, during iterations, and also the change in the
corresponding buffer construction time, as shown in Fig. 6.4. Note that this
experiment is conducted on the validation set, with sampling size of 200 in
TFMAP, and the results shown in Fig. 6.4 are the average values across all the
users under all context types in each iteration.

We observe that the maximal rank of relevant items decreases with each it-
eration as the model is gradually optimized, i.e., the model is more likely to
rank relevant items higher in the list along iterations. This observation pro-
vides empirical evidence that exploiting the lowest-ranked relevant item in the
sampling process does contribute to improving the quality of the representative
irrelevant items, and also the efficiency of the buffer construction with each
iteration. For example, the buffer construction time reduces by over 10% in the
second iteration, compared to the first iteration.

Effectiveness of the Termination Criterion. Our final validation exper-
iment investigates the effectiveness of the proposed termination criterion for
the fast learning algorithm, as discussed in Section 6.4.3. We show the MAP
measured in both the training (excluding the validation set) and the valida-
tion sets across the iterations, as in Fig. 6.5. Both MAP measures gradually
improve towards an optimal value with only a few iterations (less than 20),
indicating that TFMAP effectively learns latent features for users, items and
context types for MAP optimization. Also note that both MAP measures start
dropping consistently after a few iterations, indicating that it is effective to
use the MAP measured in the training set as a termination criterion for the
learning process to avoid model overfitting.
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Figure 6.5: The MAP of the training set and the validation set in the learning process

From all the findings described in this section, we can give a positive answer to
our first research question.

6.5.3 Performance Comparison

We now compare the performance of TFMAP with that of 5 baseline algorithms,
according to the recommendation performance measured on the test set. The
baseline approaches involved in this comparative experiment are listed below:

e Pop. A naive baseline that recommends items in terms of their popular-
ity (i.e., the number of observations from all the users) under the given
context.

e iMF. A state-of-the-art CF approach proposed by Hu et al [60] for implicit
feedback data.

¢ BPR-MF. Bayesian personalized ranking (BPR) represents another
state-of-the-art optimization framework of CF for implicit feedback
data [126]. BPR-MF represents the choice of using matrix factorization
(MF) as the learning model with BPR optimization criterion. Note that
the implementation of this baseline is done with the publicly available
software MyMediaLite [42]. Although various learning models are avail-
able to be used with BPR, we find BPR-MF gives the best performance.

¢ TFMAP-noC. A variant of the proposed TFMAP, in which contex-
tual information,i.e., C, is not involved in the learning algorithm. Note
that iMF, BPR-MF and TFMAP-noC are context-free methods, i.e., the
contextual information has no influence on the recommendations to indi-
vidual users.

e FM. Factorization machine (FM) is a state-of-the-art context-aware ap-
proach [127]. As mentioned in Section 6.5.1, the comparison between FM
and TFMAP is conducted on the Food dataset, due to the applicability
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of FM. Note that the implementation of FM is done with the publicly
available software libFM3.

Based on the Appazaar dataset, the recommendation performance of TFMAP
and all the baselines except FM is shown in Table 6.1, from which we obtain
three observations.

First, the context-free version of the proposed TFMAP, i.e., TFMAP-noC sig-
nificantly outperforms the other baselines in terms of MAP. Note that in our
experiments, statistical significance is measured based on AP and precision
values of all the users in the test set, according to Wilcoxon signed rank signif-
icance test with p<0.01. This result indicates that in the case that contextual
information is unavailable, directly optimizing MAP as proposed in TFMAP
could still lead to substantial improvement over state-of-the-art context-free
approaches, such as iMF and BPR-MF.

Second, we can see that both BPR-MF and TFMAP-noC attain dramatic im-
provement in MAP over the other two baselines, Pop and iMF. As mentioned
in Section 6.2, BPR is designed to optimize the evaluation metric AUC. The
superior performance of BPR-MF and TFMAP-noC suggests that directly op-
timizing an evaluation metric that measures the recommendation performance
in implicit feedback systems would yield significant improvements in the recom-
mendation performance. In addition, note that TFMAP-noC achieves a signifi-
cant improvement in MAP of 3% over BPR-MF, and 4% improvement of PQ1.
This result indicates that optimizing MAP is a better choice for recommender
systems than optimizing AUC, since the top-heavy bias in MAP is a critical
factor that provides substantial benefit for the recommendation performance.

Third, as can be seen, TFMAP achieves an additional significant improve-
ment over TFMAP-noC, e.g., 5% in MAP and P@1. This result indicates that
TFMAP succeeds in utilizing contextual information together with user-item
implicit feedback for maximizing MAP. In addition, the exploitation of context
could greatly improve implicit feedback recommenders; a similar conclusion was
reached by previous work on CAR with explicit feedback [127, 65].

As mentioned before, we compare TFMAP with FM using the Food dataset,
according to the protocol described in Section 6.5.1. The results are shown
in Table 6.2. As can be observed, TFMAP significantly improves over FM
to a large extent, i.e., by more than 40% in MAP, 100% in P@1 and 50% in
P@5 and 8% in P@10, showing a great competitiveness for top-N context-aware
recommendation. From all the experimental results presented in this section,
we confirm a positive answer to our second research question.

3http://www.libfm.org/
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Table 6.1: Performance comparison of TFMAP and context-free baselines on Ap-
pazaar dataset

MAP P@Ql1 P@5 PQl10

Pop 0.090 0.312 0.292 0.227
iMF 0.577 0.698 0.642 0.583
BPR-MF  0.612 0.800 0.712 0.602
TFMAP-noC 0.629 0.834 0.720 0.602
TFMAP 0.659 0.879 0.732 0.611

Table 6.2: Performance comparison of TFMAP and FM on Food dataset
MAP PQ@l P@5 PQl0
FM  0.152 0.036 0.050 0.055
TFMAP 0.219 0.089 0.075 0.059

6.5.4 Scalability

The last experiment investigates the scalability of TFMAP by measuring the
model training time against the amount of data used for training the model.
We use from 10% to 100% of the training data (the observed implicit feedback
data in the training set) for learning the latent features, and the corresponding
training times are shown in Fig. 6.6. Note that we have normalized the training
time by the time that is required for training the model with all the data in the
training set. It can be observed that the training time increases almost linearly
with the amount of the training data, empirically verifying the property of
linear computational complexity. This finding also allows us to answer our last
research question positively.

6.6 Conclusions and future work

We have presented TFMAP, a novel top-N context-aware recommendation ap-
proach for implicit feedback domains. This approach utilizes tensor factoriza-
tion to model each user’s preference for each item under each type of context,
and the factorization model is learned by directly optimizing MAP. We also
propose a fast learning algorithm that exploits several properties of AP to keep
the complexity of TFMAP linear to the number of implicit feedback data in a
given collection, thus, making TFMAP scalable. Our experimental results ver-
ify the effectiveness of the proposed fast learning algorithm for TFMAP, and
demonstrate that TFMAP could outperform several state-of-the-art context-
aware and context-free recommendation approaches.

Taking insights from recent statistical analysis on evaluation measures [179],
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Figure 6.6: Scalability analysis of TFMAP

one line of our future work is to investigate the potential of optimizing other
measures for context-aware recommendation, since different measures may rep-
resent different aspects of the recommendation quality. Another interesting
topic of future work is to integrate contextual information together with meta-
data of users and items, as discussed in Section 6.2, to further advance the
state-of-the-art in recommender systems.
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6.A Derivation of Eq. (10)

Note that in the following derivation, we leave out the derivative of the regularization term, i.e., —AV},
due to the space limit.
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6.B Proof of Lemma 1

For the case of n = 1, consider that r = [r1,r2,...,rN] denotes the current ranks of all N items in a
ranked list and 7’ denotes their ranks after some optimization. We can optimize the latent features
of a single irrelevant item a using a very small step size until its rank would increase from r, = ¢
to rl, = ¢ + 1. Consequently, the rank of item b that was ranked g + 1 would now be ranked g, i.e.,
r, = q+1and r; = q. Now the Lemma can be proved by proving that AAP = AP, — AP: is a
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non-increasing function of ¢q. It follows that the largest improvement AAP can be achieved by raising
the rank of the irrelevant item with the lowest rank. Note that this proof is not related to a user or a
context, so we simplify the notations. The AAP can be expressed as:

Y
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where Ny denotes the number of relevant items. Since we have the condition: r; = 7}, if i # a,b, we
can obtain
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Since we also have y, = 0 as known, we further obtain:
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Substituting 7, = ¢+ 1 and 7} = q, we have:
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Again, when j # a,b, we have r; = r;-, and:

I(r; <q)=1(rj <q+1)=1, if r;<q
I(rf <q)=1(r; <q+1)=0, if r>q+1
Accordingly, we obtain:
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where Ny denotes the number of relevant items within top-q items. Finally, we obtain:
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Note that Ng < g and y;, € {0,1}. We complete the proof with AAP is a non-increasing function of

q. A similar proof can be deduced for the case of n > 1.



Chapter 7

Future Challenges

In previous chapters of this thesis, we introduced our contribution to the perfor-
mance improvement of the CF-based recommender systems. The contribution
addresses two critical aspects of recommendation, namely the ranking of the
recommended items and the context-awareness of the recommendation process.

Regarding the ranking models for recommender systems, we proposed a Unified
Recommendation Model (URM) in Chapter 2 and Collaborative Less-is-More
Filtering (CLiMF) in Chapter 3, which were developed to improve the rec-
ommendation in the scenarios with explicit user feedback data and implicit
feedback data, respectively. The proposed methods both achieved significant
improvements over the state-of-the-art in their respective scenarios. In our
attempt to make the CF-based recommendation more context-aware, we pro-
posed methods for incorporating two types of contextual information into the
recommendation process. The first type is the side information collected about
the users or items (Chapter 4 and 5) and second type is the information asso-
ciated with user-item interactions (Chapter 6). Just like in the case of ranking
optimization, the proposed methods for context-awareness were shown to out-
perform the state-of-the-art.

In this chapter we look beyond ranking optimization and context-awareness
and identify and investigate other challenges for which we believe to shape the
research on recommender systems in the future. We group the future challenges
into two main categories, as shown in Fig. 7.1. We refer to the first category
as the ‘Challenges of New Conditions and Tasks’. These are the consequence
of many new conditions under which recommendation needs to be performed
and many new use scenarios that require recommendation to maximally exploit
the available information resources. We focus here on the challenges of social

This chapter is based on a submission to ACM Computing Surveys, by Y. Shi, M. Larson,
and A. Hanjalic, in Mar. 2013.
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Figure 7.1: Overview of challenges for collaborative filtering

recommendation, group recommendation, long-tail recommendation and cross-
domain recommendation. They are covered in detail in Section 7.1. The second
category of challenges is what we refer to as the ‘Challenges of New Perspectives
and Models’. These challenges, covered in Section 7.2, have their origins outside
the domain of recommender systems and emerge from the convergence between
recommender systems and other areas, such as search, human-computer inter-
action and economics.
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7.1 Challenges of New Conditions and Tasks

Rapid growth and the emerging new concepts of systems and platforms accom-
modating recommendation mechanisms have resulted in increasing demands
posed on these mechanisms to adjust to new conditions and tasks. Innovative
recommendation concepts are required that can operate in the increasingly so-
cial web context where much more can be derived about relations between users
or between a user and an item than from the traditional user-item matrix. Fur-
thermore, increasing accessibility of the web to new social groups, like elderly
people, opens new perspectives for designing recommendation algorithms, like
those that can satisfy not a single user, but groups of users, e.g. at elderly
homes. In the same way, increasing demands for improved and personalized
(mobile) services, like travel location recommendation, force the recommender
systems to get the most from the available information resources, for example
by focusing on the long tail of the popularity-based item list. Finally, service
providers exploiting different commercial domains have discovered a high po-
tential of learning user preferences across these domains, which gives rise to
cross-domain recommendation. For each of these challenges we describe in the
following its significance, open issues to be addressed by new research and the
state-of-the-art approaches that, in one way or the other, have attempted to
address these challenges.

7.1.1 Social Recommendation

Significance Social networks can be seen as a valuable source of information
about users and items that can benefit CF. Relations between users or between
users and items (e.g. derived from a social network graph [72]) can be exploited
together with CF approaches for recommending videos, photos, music and
news [99]. By adopting the terminology that has already become established
in literature regarding the recommender systems that incorporate information
derived from social networks, we refer to such systems as social recommendation
systems [153]. Social recommendation naturally plays a central role in social
networks and social media sites. Good examples are contact recommendations
People you may know that are offered to the users of the LinkedIn professional
network (http://www.linkedin.com/) and the Recommendations Bar offered by
the FaceBook social network (http://www.facebook.com/). We anticipate that
increasing socialization via online platforms will make social recommendation
one of the main recommendation mechanisms in the future.

Open Issues Here, we would like to discuss three issues that social recom-
mendation faces and sketch the possibilities for future research directions.
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e First, how do inherent properties of social networks interact with social

recommendation? Existing work in this direction generally neglects the
intrinsic nature of social networks and its influence on recommendation.
For example, connectivity in online social networks is known to be charac-
terized by Power Law distributions [30, 107]. In other words, it is a defin-
ing characteristic of social networks that few users have many connections,
while many users only have few connections. If social recommendations
are influenced by users’ connectivity degrees, some users stand to benefit
much more than others from the integration of social network into recom-
mender system algorithms. The impact of varying levels of connectivity on
recommender system performance is, of yet, only poorly understood and
deserves further investigation. Similar questions can be raised concerning
the impact of other social network properties on recommender systems,
such as their “small world” property [180] or the their “shrinking diame-
ters” property [81]. In short, researchers have yet to fully explore issues
related to benefits that social relationship can bring to recommendation.
As reported in most related literature, in general, social relationships
make it possible to improve recommender system performance over what
can be achieved using the U-I matrix alone. The absolute gain, however,
is not tremendous. It has also been observed that naive prediction models
based on the U-I matrix can attain recommendation performance compa-
rable to that achieved using social relationships [102, 146]. One possible
method that can be used to investigate the issue has been introduced in
preliminary work by the authors of [143]. This work proposes to exploit
social network modeling techniques, such as those of [79], to simulate the
social relationship between users in the recommender system. The sim-
ulation makes it possible to investigate the upper bounds of the benefit
that the exploitation of social networks can be expected to provide for
recommender system algorithms.

Second, how can mutual benefits between recommender systems and so-
cial networks be promoted? In other words, how can we improve both
the content item recommendation and users’ social engagement via social
recommendation? Recommender system researchers have devoted signifi-
cant effort to exploiting user social relationship for improving recommen-
dation performance, while research on how to exploit recommendations
for improving social relationships has remained relatively limited. For
this reason, an open issue is to investigate the potential of using the U-I
matrix simultaneously for social relationship prediction and recommen-
dation. A pioneering contribution in this area was made by the authors
of [188], who demonstrated the mutual benefit between recommenders and
social networks in terms of product recommendation and social friendship
prediction. However, a fundamental question that researchers need to ad-
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dress in this direction is the exact nature of the correlation between the
similarity of users’ interest and the social relationship. This question is
important since the core assumption that must hold in order to guaran-
tee mutual benefit is that socially related users share similar interests.
Previous work has shown that there is a correlation between user online
communication behavior and social relationships [156], which may also
indicate the potential correlation between recommender system users and
their social relationships. An initial study, performed in [133], investi-
gated the impact of user social relationships on their tastes in movies and
showed a positive correlation between the two. However, more convinc-
ing research in this direction is still needed, so as to provide evidence for
understanding the predictability between each other of the users’ interest
in recommender systems and their social relationships.

e Third, how to exploit negative social relationships for social recommenda-
tion? Examples of negative relationships in social networks involve dis-
trust and blacklisting. One example of the relatively limited work in this
area is [97], where it was proposed to regularize the factorization of the
U-I matrix by imposing a constraint that users with distrust relationships
should have dissimilar latent factors. This work suggests that exploiting
distrust relationships could have a positive effect for improving recommen-
dation performance. However, another recent study in [174] has compared
several trust-based and distrust-based recommendation approaches, and
observed that distrust relationships make only a marginal contribution.
In future, we consider that one of the challenging issues that researchers
need to tackle in order to effectively use negative relationships for recom-
mendation is the ways in which negative relationships propagate in social
networks. We point out that the propagation of negative relationships
can be expected to demonstrate a fundamentally different dynamic that
the propagation of positive relationships. The simple assumption that a
friend’s friend is a friend, captures the natural propagation of positive
relationships relatively well. However, the assumption that “an enemy’s
enemy is a friend” is less reliable and suggests that the propagation of
negative relationship is much more complicated. The research on social
network analysis has started investigating the propagation of the nega-
tive relationships and its predictability [49, 80]. It can be expected that
findings from research in this related area could inform the exploitation
of the negative relationship for social recommendation.

State of the Art In the literature, in addition to using social networks for
item recommendation, a few contributions have been made to social connection
recommendation. One of the first contributions to use recommender system
techniques for people recommendation in social networks was conducted in the
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domain of an enterprise social network in [52]. This work empirically investi-
gated user profile representations by structured information sources, e.g., the
user’s co-authorship, and the effectiveness of content-based recommendation
approaches. The results demonstrated the feasibility and the usefulness of ex-
ploiting rich side information sources for online connection recommendation.
Inspired by this work, [53] have carried out comprehensive research on followee
recommendation in the Twitter social network, by means of both content-based
approaches and CF approaches and the combination of the two. Their work
also demonstrated the usefulness of the content features from tweets (which,
in contrast to the information sources used in [52], is unstructured data) for
improving recommendation over that solely based on the social graph. We also
notice that other similar work investigated different user profile representations
with structured data in Flickr social network for a variety of recommenda-
tion purposes, including friend recommendation [153]. In the area of social
tagging networks, [166, 201] exploited user tagging data for user connection
recommendation, but did not examine the usefulness of the social graph. As
mentioned previously, more recent work related to the topic of people recom-
mendation has been carried out in [188]. This work proposed to jointly exploit
both the user-service/item relations and the user-user social graph for both
service/item and friend recommendation. In addition to people recommenda-
tion, community recommendation in social networks has also been attempted.
Combinational CF [29] was one of the first attempts proposed for community
recommendation. [173] investigated both MF and graph-based approaches for
community recommendation, exploiting both the user-user friendship network
and the user-community network.

Summarizing, research work in social recommendation has mainly focused on
the exploitation of social networks for item recommendation, while an effective
model/framework of social recommendation that can introduce mutual benefits
between social networks and recommender systems, is still missing. Since social
recommendation, due to its myriad of applications, is expected to remain an
productive research topic in recommender systems, the effort towards address-
ing the three open issues covered here holds the potential for high payoff in
terms of impact on the recommender system community.

7.1.2 Group Recommendation

Significance Although most recommender systems target providing quality
recommendations for individual users, in some scenarios, recommendations are
required that satisfy the needs of a group, e.g., as movie recommendation for a
family, restaurant recommendation for dating partners, and event recommen-
dation for online communities. In such applications, the success of a given
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recommendation is not dependent on the opinion of one user, but rather on
the user group as a whole. Because the recommendation needs of groups are
complex and go beyond the sum of the needs of the individual group members,
group recommendation has been identified as a research challenge in recom-
mender systems [63].

Open Issues We cover four issues that distinguish group recommendation
from recommendation for individual users. These issues constitute the key
aspects that need to be addressed for this research challenge. We note that a
recent overview work in [119] has also discussed the new perspectives on group
recommendation. In this chapter, we restrict ourselves to highlighting only
those group recommendation issues that are most critical in our viewpoint,
with the goal of complementing the information in [119].

e First, how to model group-level preference? Intuitively, a good recom-
mendation for a group should be something that fits the group-level pref-
erence. However, modeling the group-level preference is difficult, since in
most scenarios we only have the preferences of individual users, and the
side information of individual users and items. A simplistic model would
take group-level preference to be the intersection of all the members’ in-
dividual preferences. However, such an aggregation approach potentially
suffers two drawbacks. First, it might result in more severe data sparse-
ness for CF, since the common interests among all the members could
be very limited. Second, it might overlook the relationship between the
members and the group, since members can possibly adjust their personal
preference to accommodate those of other group members, who they know
to enjoy or consume different sorts of items. To overcome the drawbacks
of this simplistic model, significant research effort towards effective rec-
ommendation algorithms that can model the group-level preference in a
reasonable and interpretable manner is needed.

e Second, what is the impact of group structure, and how to exploit it for
group recommendation? Members in a social system /organization usually
have different roles, such as leaders and followers. In this sense, members
in a group should have different types of influence on items recommended
to the group as a whole. Here, again, we note that a good group rec-
ommendation is not necessarily the “common” interest of all the group
members. For example, if plenty of research themes are available/relevant
to be recommended to a research group, the group leader, who holds a
ten-year strategic view on this group, but also understands the expertise
within all the group members, should have much stronger opinion to the
relative importance of different themes, than the group members with less
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experience, who may only consider the relevance of those themes based
on their own expertise and a significantly narrower understanding of the
field. In this case, a good recommendation should be more biased to the
group leader’s preference. Another example is if a parent takes a young
child to a movie, then the recommendation should be more heavily based
on what will interest the child rather than the parent. Because of such
asymmetries, group structure needs to be investigated and exploited for
steering group recommendation. Although the explicit group structures
may not be available for individual groups, there could exist possibili-
ties for mining group structures from the side information about group
members, such as the interaction information and the social relationship.
Then, one could further study how the inferred group structures benefit
group recommendation. To the best of our knowledge, the issue of group
structures has not been raised or studied in the community, although it
is relatively clear that research addressing this issue stands to make a
significant contribution to group recommendation.

Third, how to take into account the dynamics of a group for group rec-
ommendation? This issue has been raised in the work of [119]. We also
highlight this issue, since we consider dynamics to be a key characteristic
that makes group recommendation different from other recommendation
tasks. For example, it is natural that online groups can be growing (i.e.,
more and more new members joining in) or dying (i.e., more and more
members leaving) [64]. Little is known about the impact of such trends on
group recommendation. Further, research investigation has yet to explore
if changes in the group structure can be used actually to inform recom-
mendations. For example, the information that a particular member left
a group, could potentially shed light on the ways how recommendation
could be improved for the remaining group members. The challenge is
inferring the implications of the changes, e.g., if the member dropped out
due to interests that diverged with those of the group. Conversely, if a
member is observed to join the group, this information could be useful
for improving recommendations as long as the reason for joining can be
inferred.

Finally, how to evaluate group recommendation? Although evaluation by
itself has been recognized as a big challenge in the entire scope of recom-
mender systems [39, 50, 71, 124], we particularly focus on the open issues
regarding the evaluation for group recommendation in this chapter. Note
that the general issues regarding the evaluation of recommender systems
are not covered in the scope of this thesis. In the specific case of group
recommendation, the main difficulty lies in the ambiguity of the ground
truth. In practice, the relevance of an item recommended to a group is
usually derived from its relevance to individual group members. For ex-
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ample, using the worst-case strategy, one may consider an item relevant to
a group only if it is relevant to all the members. However, using the aver-
age satisfaction strategy, one may consider whether an item is relevant to
a group based on its average relevance scores across all the members. As
a result, if different strategies are used for interpreting the data as ground
truth, contradictory evaluation results could arise, e.g., some approaches
may perform well under one particular strategy, but not others. Inconsis-
tencies in evaluation may result in the loss of opportunities for valuable
insight and conclusions made on the on the basis of experimental evalua-
tion. Ideally, the ground truth data for group recommendation should be
a relevance score for each item on behalf of all the group members, such
as the case that a group representative rated a few movies after the group
watched them together in a movie night event. Obviously, collecting such
data for group recommendation is already a very difficult task. How-
ever, it is one that is worth tackling since successful research towards this
challenge would serve to drive group recommendation research forward
significantly.

State of the Art A few research contributions have been made to address
the challenge of group recommendation. Most of them have focused on the
first open issue mentioned above, namely preference modeling. Two strategies
have been attempted for modeling group-level preferences, i.e., one is to first
generate a group profile by aggregating the user profiles in the group and then
make recommendations for the group profile, and the other is to first generate
recommendations for all the users in the group and then aggregate the results as
the final output for the group [5, 20]. The effectiveness of the two strategies for
group recommendation has been investigated in recent studies, by using either
simulated data of user groups [10], or real data about families of users [13].
In addition, some recent work has exploited the social relationship of group
members for group recommendation [45]. Other recent work has exploited
item content features or metadata for modifying group recommendation that
is solely based on the joint preferences of group members [137]. However, we
can see that those approaches fall into simplistic methods for modeling group-
level preferences, discussed above. The two drawbacks of these models, namely,
the even-worse data sparseness and the conditional relationship between the
members and their group, have not been addressed, nor have they even been
widely recognized. A recent competition focusing on group recommendation
task [132] has, again, highlighted the difficulty of addressing this challenge!.
Finally, we point that the other three open issues also present challenges in
need of attention from the research community.

"http://2011.camrachallenge.com /news/
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7.1.3 Long Tail Recommendation

Significance According to the terminology introduced in [7], the Long Tail
within the context of recommender systems refers to the items that have low
popularity or have just been added to the recommender system domain. Long
tail recommendation can be understood a distinguishing highly-personalized
recommendation from less-personalized and non-personalized recommendation
(e.g., popularity-based recommendation). For this reason, the ability of a rec-
ommender system to recommend the long tail items is a critical indicator of
the usefulness of recommender systems. For example, a user may like a popu-
lar movie (she may already know it) that suits her interest, but may be more
in favor of a movie recommendation that is less obvious and surprises her.
The ability to recommend items that users would not have otherwise found
or thought of raises their appreciation of the system. Similarly in the travel
domain, a traveler would appreciate a recommendation for a place that fits her
particular interest, rather than a popular location that is described in every
tour guide. In short, long tail recommendation plays an important role in most
recommendation applications, since it helps, to a large extent, to improve users’
satisfaction, and, by stimulating curiosity, also their engagement.

Open Issues We summarize our perspective on three issues that make long
tail recommendation extremely challenging.

e First, how to promote the recommendation of tail items? As mentioned
above, the difficulty of recommending long tail items lies in the fact that
such items have very limited user preferences in their history. Such a
problem is also known as the item cold start problem. One possibility is
to address this problem by taking into account either content information
derived from the items, or rich side information associated with them,
when applying CF approaches. Another possibility is to first explicitly
identify the tail items in a given collection, and then generate recommen-
dations intentionally biased to those tail items. However, both of these
options involve heuristics. Consequently, on the whole, the field contin-
ues to suffer from the lack of a solid theoretical ground for addressing the
long tail recommendation challenge. In other words, we are still missing
a unified and well-established recommendation model or framework that
makes it possible to explicitly target tail items.

e Second, what is the added value of tail items, and how to exploit it in
recommendation algorithms? We also notice that there has been little
investigation on how recommendation of tail items can influence user sat-
isfaction, or how additional revenue can be generated by the recommender
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systems from the tail items. In general, principled answers are lacking to
the question of why, and in which cases, recommending a tail item is more
important than a head item. Extensive experimental research may be nec-
essary in order to understand and explain the potential added value to
be derived from long tail recommendation. Pioneering work on this issue
was carried out by the authors of [108], who studied the revenue influ-
enced by recommendation of tail items and head items in Amazon.com.
They found that the recommender system helps to improve the revenue
from the tail items, but at the same time, reduces the revenue from the
head items. Although this chapter does not directly address the challenge
of improving tail recommendations, it serves as an example of work that
will inform future research that addresses the underlying question, “Why
recommend tail items?”.

e Finally, how to match long tail recommendations and users’ topical needs?
Recommendation in the long tail means not only recommending items
receiving less overall user attention, it also means satisfying user rec-
ommendation needs that are relatively speaking more exotic. Adapting
recommender systems not only to niche items, but also to niche prefer-
ences is a formidable research challenge. Consider a travel recommender
system that recommends that a user visit a relatively popular destination
“London Eye”. The user can be satisfied with this recommendation for
a relatively popular reason, namely because of a general desire to visit
famous attractions. However, the user can also be satisfied with this rec-
ommendation because of a technical interest in large ‘observation wheels’,
which is shared by relatively fewer people. Because this interest applies
to a very small group of users, it will not be well represented in the
traditional U-I matrix. Facing the challenge of recommending items for
long-tail reasons requires methods capable of adapting recommendations
to user topical interests. Approaches to this challenge could derive bene-
fit from analyzing user topical interests from various information sources,
in order to determine the specific nature of the long-tail adaptation that
would best suit a user. At the current time, awareness of the importance
of this open issue is not widespread, and significant efforts are necessary
both in order to understand the nature of highly specialized user interests,
and also how to adapt recommendation to address them.

State of the Art In literature, the long tail problem in recommender sys-
tems was first formulated by the authors of [118], who specifically focused on
improving recommendations of items in the long tail, i.e., the items with only
few ratings. The authors proposed to first split the item set into head items
and tail items, and then only use the ratings in the clusters of tail items to
generate the recommendations for the tail items. Their research demonstrated
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the importance of tail items, since the effectiveness of their approach relies on
achieving the proper split between head and tail items. More recently, [161] has
proposed to specifically exploit item popularity (i.e., the number of ratings for
an item) for refining the evaluation metric used to measure recommendation
accuracy so that it places more emphasis on successful recommendations of tail
items. Our work of non-trivial landmark recommendation [150], as presented in
Chapter 5, addresses the tail recommendation by proposing a weighting scheme
that biases recommendations towards non-trivial items. We also note that long
tail recommendation is closely related to the issue of novelty/serendipity in rec-
ommender systems [48]. Researchers focusing on this issue have argued that
it is important to recommend items that are not only relevant but also can
provide users with a positive sense of surprise [61, 106, 109, 112]. In short, the
contributions that have been made thus far in this area, have mainly focused
on mechanisms that promote the recommendation of tail items, i.e., they ad-
dress the first technical problem as discussed above. There has been a marked
shortage of contributions that treat the theoretical aspects of long tail recom-
mendation models and the second and the third issues discussed above remain
open research challenges.

7.1.4 Cross-domain Collaborative Filtering

Significance Cross-domain collaborative filtering (CDCF) has recently
started to draw research attention [82]. The core concept of CDCF is to ex-
ploit information from multiple U-I matrices (i.e., domains) in order to allow
the recommendation performance of one domain to benefit from information
from one or more other domains. In other words, we can regard CDCF as
CF on one U-I matrix/domain, while taking other U-I matrices as contextual
information sources. The CDCF techniques hold particular importance for rec-
ommender systems for two reasons. First, they can be exploited by megadata
owners (e.g., internet companies with a variety of online services) for further
optimizing recommendations for their users under different sites. Second, they
can introduce mutual benefit for different data owners (e.g., two companies
running businesses that offer different online products) for further improving
their service quality. Recently, a new online application, Tipflare?, has been
developed at MIT as a pioneering application of cross-domain recommenda-
tion. In all, CDCF has become one of the major challenges for the research of
recommender systems.

Open Issues As a new research topic in recommender systems, CDCF is
in search of answers to two fundamental questions: first, what could be the

2https://www.tipflare.com/
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common knowledge/data that can be transferred/shared between different do-
mains, or simply, “What to share?”, and, second, what could be the optimal
way to transfer/share knowledge between different domains, or simply, “How
to share?”. In the following, we elaborate on our understanding of these two
issues.

o First, what to share? This problem focuses on the usefulness and the relia-
bility of information patterns that could be exploited for CDCF. Users (or
items) in different domains could be mutually exclusive, thus, making it
difficult to establish links between users (or items) from different domains.
An interesting direction is to explore the knowledge about characteristics
that are shared between domains and is represented in user-contributed
information, such as tags [147]. In addition, since social networks can
interconnect users across different domains, it might be also promising to
derive knowledge that is common between two domains by analyzing in-
formation, such as votes/likes on different domain products, contributed
by socially connected users. It is important to pay careful attention to the
reliability of information that is common between two domains. In other
words, in cases in which it is possible to automatically identify information
about characteristics shared between two domains, it is still questionable
whether, or which of, those characteristics are reliable enough to improve
CDCF. For this reason, it is important that researchers also gain an un-
derstanding of cases in which CDCF could degrade the recommendation
quality.

e Second, how to share? Addressing this issue requires the development of
new algorithms for optimally exploiting mutual benefit from multiple do-
mains. On one hand, the link (or the correlation) between user preferences
in different domains may be hidden. Methods that focus on discovering
cross-domain correlations hold promise to improve the performance of
CDCF. On the other hand, there might be multiple links between dif-
ferent domains that could be used for knowledge transfer. In this case,
algorithms are needed that are not only capable of exploiting multiple
links simultaneously, but that are also able to automatically discover the
relative importance of different links. In addition, as mentioned before,
there are many contextual information sources available in each of the
individual domains. Individually the domains may already be large scale,
and taken together they may pose an even more serious scale challenge
for CDCF. Massive amounts of information from multiple domains needs
to be processed with a reasonable computational cost.

State of the Art Some of the earliest work on CDCF was carried out by
Berkovsky et al. [14], who deployed several mediation approaches for importing
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and aggregating user rating vectors from different domains. Recently, research
on CDCF has been influenced by, and benefitted from, progress in the area
of transfer learning [115], a machine learning paradigm for sharing knowledge
among different domains. For example, approach called Coordinate System
Transfer [117] first learns latent features of users and items from an auxiliary
domain (which has relatively more user preference data), and then adapts them
to a target domain (which has relatively less user preference data). Further, an
extension of this approach has been proposed that exploits implicit user feed-
back, rather than explicit user ratings, to constitute the auxiliary domain [116].
However, these approaches require that either users or items are shared between
the domains, which is a condition not commonly encountered in practical ap-
plications. Codebook transfer (CBT) [83] and rating-matrix generative model
(RMGM) [84] are two approaches that transfer knowledge from an auxiliary
domain by learning an implicit cluster-level rating pattern that can be shared
with a target domain. Similarly, multi-domain CF is an approach that extends
PMF in multiple domains involving explicit user preference [196] or implicit user
feedback [168] by learning an implicit correlation matrix, which links different
domains for knowledge transfer. One of the latest contributions has adopted the
CDCF framework of RMGM [84] to address the problem of dynamic CF [85].
However, those approaches rely on implicit domain correlations that are mined
solely from user preference data, and no explicit links are exploited. [147] have
proposed tag-induced cross-domain collaborative filtering (TagCDCF) to use
common tags as bridges to link different domains for improving CDCF. On the
whole, very limited work has been devoted to exploiting explicit links between
different domains for CDCF. For this reason, the first technical problem, i.e.,
what to share, still a significant open issue. In addition, as discussed with re-
spect to the second CDCF issue mentioned above, the exploitation of various
contextual information sources and the consideration of multiple cross-domain
links have not been fully explored by the research community. Thus, many
opportunities remain open for addressing the challenge of CDCF.

7.2 Challenges of New Perspectives and Models

Outside of the core research area of recommender systems, there are a number
of other research areas that are rapidly developing and which have the poten-
tial to inform and stimulate new developments in recommender systems. In this
section, we cover three of these areas that we consider to be particularly promis-
ing sources of the new perspectives and new techniques necessary to stimulate
innovation and progress in recommender system research.
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7.2.1 Search and Recommendation

Significance Search and recommendation are both technologies that have
come in to their own with the rise of the Internet. From the application per-
spective, the difference between the two lies in whether or not users are re-
quired to express their information need by explicitly, via queries (as in search)
or whether the information needs are implicit, e.g., encoded in rating and con-
sumption behavior (as in recommendation). Because the function and benefit
of the two technologies are complementary, it can be expected that many online
applications will have the need for both, with various levels of integration. A
recent example of the convergence of search and recommendation is the +1-
button offered by Google+3 that allows users to vote on search results. The
quality of search results stands to benefit significantly from integrating explicit
feedback from human users with similar search needs. In addition, another
recent Google application Google Now* aims to achieve personalized search
by integrating context-aware recommendation. Because of the wide reach and
enormous importance of search engines, the integration of search and recom-
mendation technologies has become an attractive research topic, and presents
a substantial challenge for researchers from both communities.

Open Issues We would like to discuss two challenges that we expect to be
of central importance for future research on the integration of search and rec-
ommendation.

e First, how can recommendation techniques help improve the quality of
search results in the long tail? In the case of web search, which involves
billions of webpages, millions of which can be relevant to a single query,
there could be a tremendous number of webpages that are only visited by
users an extremely limited number of times. If webpages are infrequently
viewed, they will be infrequently voted upon by users, even when voting is
effortless, as with Google+ as described before. There is a real danger that
a given relevant webpage does not accumulate any votes at all. We note
that this challenge can be regarded as a special case of the general “Long
Tail Recommendation” challenge (see Section 7.1.3) in the search scenario.
However, we emphasize that one major/particular issue here is that the
result webpages (which orrespond to items) are conditioned on particular
queries. It is important to keep in mind that in search scenarios, the long
tail involves the interaction between the frequency of user votes and the
frequencies of queries. Note that there are many queries which are issued
only infrequently, and for this reason, low voting volume might fail to

3http://www.google.com /41 /button/
“http://www.google.com /landing /now/
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reinforce not only the importance of the webpage, but also the relevance
relationship between the webpage and the query. Another danger is that
user votes will create a snowball feedback effect. In other words, a few
user votes will lead to certain webpages being ranked higher, where they
will be more easily seen and accumulate more votes. Webpages that are
relevant, but happen not to establish their popularity early, risk falling to
the bottom of the ranking and never being discovered. For this reason,
we would suggest two directions for addressing this problem. First, one
could develop methods to predict votes for webpages, and then use the
inferred votes for improving search results. These methods would create a
minimum vote volume for tail webpages and could also prevent webpages
to be lost in the snowball voting patterns. A major open issue for vote
prediction is how vote prediction algorithms differ from the algorithms
that carry out the main calculation of the relevance match between query
and webpages. Second, instead of the voting system for the search results,
one could consider developing a voting system for queries so as to avoid the
constraint from tail webpages. In this way, the search results are supposed
to be improved not by the collaboratively recommended results, but by
means of using collaboratively recommended queries.

e Second, how to allow search results to benefit from user votes, but also
maintain attack resistance? Conventionally, attacks in recommender sys-
tems refer to cases in which malicious users (attackers) assign high ratings
deliberately to particular items in order to promote (or denigrate) those
items [78, 104]. In the case of a voting system for search results, malicious
users could also shill the system by giving deliberate votes to particular
results (e.g., webpages). We emphasize that this issue could be more
severe than that in recommender systems, since the queries are used to
express the users’ information needs. For example, the query “New York”
is often used by users who are planning a travel to New York. This infor-
mation need can be easily used by malicious users who may deliberately
promote some results, e.g., a particular hotel, by assigning a lot of votes
to them. This issue also opens plenty of opportunities for future research
towards attack resistant mechanisms for collaboratively recommending
search results.

State of the Art The relationship between search and recommendation was
formally raised in a panel discussion in 2010 [51]. A few recent research con-
tributions have demonstrated the possibilities of exploiting information from
search engines for item recommendation [87, 159], especially in social settings.
However, to our knowledge, there have been no specific attempts that address
the open issues for the integration of search and recommendation that we have
identified here. We anticipate that a sizable number of studies on this challenge
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will be carried out in near future, leading to significant new developments for
online applications.

7.2.2 Interaction and Recommendation

Significance Today, the interaction between users and recommender sys-
tems is no longer focused on ratings, and most recommender systems have
become more interactive than before. Note that the term “interaction” in this
subsection refers to a process in which the system elicits particular informa-
tion/reactions from the user and integrates this information to refine the rec-
ommendation results. Conversation has been recognized as one of the most
important types of interaction for recommender systems [172]. Typically, a
conversation is used to guide the users to express their information needs more
explicitly, providing a basis for fine-grained adaption of recommendation to user
needs [100]. For instance, a movie recommender may first ask the user some
situational questions, e.g., “Are you alone or with friends?”, before generating
recommendations. The answers to this kind of questions could help the system
to increase the relevance of recommendations. Another example is that the sys-
tem can ask the user for feedback on recommendations. One possibility would
be that if a user did not choose any of the top (e.g., top-10) recommended
items, the system may ask the user why she was disappointed. The answer to
this question could also be used in improving recommendation algorithms, by
allowing them to adjust the recommendations for this user [28]. In addition,
explanation of recommendations has also been considered as a critical function
for recommender systems. Explanations provide the users with rationale that
motivates why the items/products have been recommended [41, 56, 67, 164].
Two main effects can be attained by explaining recommendation results. First,
it helps users to better understand the mechanism of the system. Understand-
ing, in turn, potentially improves user satisfaction, since users could learn to
adjust their behavior and expectations to the system [190]. In addition, it also
builds trust because the users can tell if they agree with the factors influencing
recommendations produced by the system. Second, it may allow recommender
systems to serve users better with serendipitous results, since the users may dis-
cover new interest inspired by the explanations [192]. For example, in the case
that a user wants to enjoy some movies and consults a movie recommender, the
user may like some recommended movies which are certainly popular at that
moment, and which fit his interest well. However, if the user has never heard
of the recommended movie, but the recommender system provides a convincing
explanation of why the user might like the movie, the user might prefer to watch
this movie instead of other “predictable” recommended movies. In view of such
usefulness of various interactions for recommender systems, the integration of
interaction and recommendation is expected to be a trend for most of online
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services. At the same time, it will remain a challenging research topic that
requires effort from different research areas.

Open Issues Although various types of interaction exist between recom-
menders and users, the key issue we would like to highlight is how the infor-
mation from the interactions, such as conversations and explanations, can be
exploited effectively for improving recommendation quality? In other words, we
need to address the question, “Which algorithms/paradigms would be the most
effective or promising for interactive recommender systems?”. One possibility
to address this problem is to consult results from the field of decision-making
theory [130], which has been identified as a viable basis for developing new
recommendation algorithms [62]. Another aspect of this problem is whether
researchers should seek a generalized mechanism that can handle all kinds of
interactions for recommendation, or whether different mechanisms that are spe-
cialized for different types of interaction are needed. This challenge also pro-
vides valuable opportunities for future research on interactive recommendation
with different types of interaction data. Looking back on past research progress
in CF, we see that major innovations have been made in the face of the rise of
new types of data, such as the contextual information reviewed in this paper.
We anticipate that, along with the growing availability of various types of in-
teraction data, a wave of new contributions to CF beyond the user-item matrix
will be proposed for integrating interaction and recommendation.

State of the Art In the most basic case, interactive recommendation is stud-
ied as a case of the problem of online CF [91, 162]. Under such a view, the
key issue is how to constantly take into account new user preference data for
improving recommendation results. One recent contribution has exploited the
information of user choice in recommendation sessions for model training [189].
Here, a key constraint imposed is that the chosen items in a session should have
higher relevance for the user than the unchosen items. In general, however, cur-
rent research remains in a stage that focuses on user preference data. Research
has yet to turn its attention to use cases in which information about a variety
of interactions between users and recommenders is available.

7.2.3 Economics and Recommendation

Significance The study of economics provides a valuable source of models
and insights that can be used to improve recommender systems. In economic
systems, for example, in commodities markets, actors pursue specific objectives
under the limitations of specific constraints. Recommender systems are also
characterized by interactions between actors with objectives and constraints.
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As recommender system scenarios grow more complicated, multiple objectives
of multiple actors and a growing number of constraints must be taken into con-
sideration. For example, recommender systems play a key role in e-commerce
since they mediate the interaction between buyers and sellers. Recommenda-
tions must be optimized in order to satisfy both sellers business metrics, such
as sales and customer retention, and also to generate recommendations that
buyers find interesting and useful. Economic models are ideally suited for cap-
turing these complex interactions. The ability of economic models to reflect
and explain the dynamics underlying recommendation scenarios makes them
uniquely suited for understanding and improving recommender systems.

Open Issues The main challenge that must be faced in order to allow recom-
mender systems to productively exploit economic models is selecting and inte-
grating economic models that optimize recommender system output. Obviously,
different economic theories may relate to different aspects of recommender sys-
tems. The discussion in this thesis has focused on recommender systems that
exploit context. We would like to explicitly point out that the availability of
context information, such item categories or item prices, increases the com-
plexity of the recommendation problem and thereby also of the ways in which
economic models can be exploited by recommender systems.

State of the Art Here, we mention a few examples of the work in the area
of recommender systems that has drawn on economic theories. These examples
are chosen to illustrate the diversity of economic models that are relevant for
recommendation scenarios.

Early work connecting economic models and recommender systems highlighted
the correspondence between CF and Social Choice theory [121]. Social Choice
theory is a framework for analyzing how the preferences of individuals can be
combined to obtain decisions at the level of the social collective. The authors
of [121] suggest that voting mechanisms provide a valuable source of possibilities
for refined CF. Economic models have been used by the authors of [54] in
order to explain user rating behavior in recommender systems. These authors
adopt a straightforward economic model which models raters as a set of agents
that work to maximize their objectives given constraints. The model integrates
factors that influence users’ willingness to rate movies, including their desire for
high-quality movie recommendations and the limited time and effort that they
are willing to spend rating movies. The model is able to explain a significant
portion of users rating behavior. However, the authors caution that a thorough
understanding of the user population under investigation is required in order
to create economic models that explain user behavior. A market-place model
has been used in [181]. This work is based on the insight that the strengths of
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multiple recommender systems can be combined, if these systems are allowed
to compete in a marketplace for positions within the recommendation list that
is presented to the user.

A consumer behavior model has been used in [177]. This work makes use of the
economic concept of ‘utility’, which is defined as the satisfaction or pleasure
that an individual derives as a result of purchasing a product. In [177] an
existing recommender system is extended to take into account the dependence
of a product’s utility on user past purchasing behavior. For example, a user
who has just purchased a consumable such as diapers, will soon derive high
additional utility from another similar purchase. For durable items, for example
consumer electronics such as cameras, more time must elapse before similar
purchases provide high additional utility. Portfolio theory has been exploited
in [151] to improve lists of recommended items. This work observes that the
usefulness of an item recommendation is dependent not only on that particular
recommendation, but rather on the entire list of recommended items. The
approach takes this list to be an investment portfolio, and applies optimization
techniques used in the financial world. The optimization handles uncertainty
and also maximizes the diversity of the list in a way that respects the user’s
preference for topical breadth.

7.3 Conclusions

In this chapter we discussed the challenges that we anticipate to be most in-
fluential regarding the future research on CF, and also the opportunities for
addressing each of these challenges. The treatment that we have given these
challenges in this thesis is based on our understanding of application demands,
fundamental problems and outreach connections in the area of recommender
systems. We expect that these challenges will attract significant research effort
and lead to productive research outcomes in the following 5-10 years.

Without doubt, new challenges in the scope of CF with contextual informa-
tion, above and beyond those discussed in this thesis, will continue to arise in
the coming years. The emergence of new challenges is influenced by a variety
of factors. These factors include: the availability of new types of contextual
information in recommender systems, the development of new applications in-
volving recommendation technology, the reform of evaluation methodologies for
recommendation performance, the exploration of new crossovers between rec-
ommender systems and other areas, and the recognition of new fundamentals
and theories in recommender systems. As a result of these new developments,
we believe that recommender systems will continue to be a productive and in-
teresting research field, and that the opportunities for research work to achieve
high impact in this area will remain ample and attractive.
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