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Abstract

Watermarking is the process of imperceptibly embedding a message (watermark) into a host
signal (audio, video). The resulting signal is called a watermarked signal. The message
should introduce only tolerable distortion to the host signal and it should be recoverable by
the intended receiver after signal processing operations on the watermarked data.

Watermarking schemes based on quantization theory have emerged as a result of infor-
mation theoretic analysis. In terms of additive noise attacks, these schemes have proven to
perform better than traditional spread spectrum watermarking because they can completely
cancel the host signal interference, which makes them invariant to the host signal. The ex-
istence of good lattices in high dimensions that can be directly and efficiently implemented
has made quantization-based schemes of practical interest.

Quantization (Lattice)-based schemes are vulnerable to amplitude scale and linear filter-
ing attacks, because these attacks introduce mismatch between the encoder and the decoder
lattice volumes. Furthermore, these attacks induce a large amount of distortion with re-
spect to the mean squared error, but do not cause significant perceptual degradations. Such
operations on watermarked signals are quite common in many applications.

In this thesis we study quantization-based watermarking. We incorporate statistical
techniques into quantization-based schemes to build watermarking systems that are robust
to amplitude scale and linear filtering attacks. These watermarking systems are applicable in
situations where the attacks are unintentional, due to standard signal processing operations.
Since traditional quantization-based schemes are not robust to amplitude scale and linear
filtering attacks, and due to the frequent presence of these operations in many signal process-
ing applications, we develop amplitude scale estimation procedures for quantization-based
watermarking, and construct quantization-based watermarking systems that are robust to
linear filtering attacks. The estimation procedures are based on Fourier analysis of the wa-
termarked and attacked signals, and maximum likelihood estimation. The robustness to
linear filtering is achieved by applying quantization-based techniques on the amplitudes in
the frequency domain.

To develop the estimation procedures we first derive probability density function models
of the watermarked and attacked data for general host signals.

We develop a Fourier-based estimation procedure. It exploits the structure in the proba-
bility density function of the watermarked data, due to the encoding process. The approach
gives accurate results for high watermark-to-noise ratios, for synthetic as well as real signals.

To increase the estimation accuracy for low watermark-to-noise ratios, we develop a
maximum likelihood estimation approach. The estimation technique performs well even
when there is a mismatch between the probability density function of the host signal and
that of the model assumed at the estimator. The estimator also gives accurate results for
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real host signals (speech, music).
Traditional quantization-based watermarking schemes are not secure, in the sense that

an attacker having knowledge of the embedding distortion can reconstruct the decoder and
decode (read) the watermark. To increase the security we apply a well known idea, which is
the incorporation of subtractive dither into the watermarking system. The dither realization
is assumed to be known to the decoder, but not to the attacker. By adding a scaled version
of the dither sequence to the watermarked data, we are able to obtain a signal with a
distribution that has a clear structure, which we can describe mathematically. Based on
that we are able to derive probability density function models and therefore a maximum
likelihood estimation procedure for estimation of amplitude scaling factors in the presence
of dither. Due to the complexity of the probability expressions, we derive approximations
to them under the condition that the dither variance is much smaller than the host signal
variance.

For security purposes, we design the dither statistics such that an attacker without
having knowledge of the dither realization is not able to decode the watermark. We design
the dither using the probability of error of the watermarking scheme as an objective function.
It is shown that the uniformly distributed over the base quantization cell dither is sufficient
for security purposes. We also show that the security of the system is unaffected by the
conditions needed in the approximation of the density models for the estimation of the
scaling factor in the presence of subtractive dither.

To reduce the computational complexity of the maximum likelihood estimation approach,
we apply a different model of the attack channel, in which the amplitude scaling and ad-
ditive noise are reversed. While conceptually the two channels are equal, this allows for
considerable reduction in estimation complexity. Exploiting this reduction, we show how to
jointly estimate the attacker’s amplitude scaling factor and noise variance, and apply this
technique to synthetic images.

We notice the duality between amplitude scaling and linear filtering, since linear filtering
in the time domain can be seen as multiplication in the frequency domain. To improve the
robustness to linear filtering, we study an intermediate case where the attack is a multi band
amplitude scaling channel, with scaling in the frequency domain. We develop a maximum
likelihood procedure for estimating the scaling. We show experimentally that only a few
filter coefficients are sufficient for constructing accurate probability density models.

To provide robustness to linear filtering attacks, we implement Rational Dither Modula-
tion in the frequency domain. Due to the finite Fourier transform length, there are errors in
the pass-band zone. To reduce these errors we incorporate a windowing operation on each
frame. However, this is achieved at the expense of increased distortion of the watermark
encoder. To eliminate the distortion due to windowing, we incorporate overlapped windows.
The overlapped windows allow for increased watermark payload, at the expense of increased
decoding errors in the pass-band zone due to the overlap.



Samenvatting

Watermerken is het proces van het onwaarneembaar inbedden van een boodschap (het wa-
termerk) in een bronsignaal, zoals geluidssignalen, foto’s en video. Het resulterende signaal
wordt een gewatermerkt signaal genoemd. De ingebedde (of gecodeerde) boodschap mag
slechts een kleine verstoring in het bronsignaal teweeg brengen maar de boodschap moet wel
teruggewonnen kunnen worden uit het gewatermerkte signaal door de watermerkdetector
(decodering).

Watermerkmethoden gebaseerd op kwantisatietheorie (zogenaamde QIM watermerk-
methoden) zijn voortgekomen uit informatietheoretische analyse. Deze methoden presteren
beter dan traditionele spread spectrum watermerkmethoden onder additieve ruisaanvallen
omdat ze de interferentie van het bronsignaal volledig teniet doen. Dit maakt QIM meth-
oden invariant voor het bronsignaal. Het bestaan van goede hoogdimensionale roosters
(lattices) die efficiënt geïmplementeerd kunnen worden, heeft QIM methoden van praktisch
belang gemaakt.

Kwantisatie (lattice) gebaseerde watermerkmethoden zijn echter kwetsbaar voor aan-
vallen die de amplitude van het gewatermerkte signaal schalen of die het signaal (lineair)
filteren, omdat door deze aanvallen de codeer-en decodeerroosters niet langer overeenstem-
men. Bovendien introduceren deze aanvallen een grote gemiddelde kwadratische fout, zonder
significante perceptuele verstoringen te veroorzaken. Zulke bewerkingen op gewatermerkte
signalen komen echter wel vaak voor in toepassingen.

In dit proefschrift bestuderen we QIM watermerkmethoden. We gebruiken een statis-
tische aanpak om QIM watermerkmethoden te ontwikkelen die robuust zijn voor ampli-
tudeschaling en lineaire filteringbewerkingen. Deze watermerkmethoden zijn toepasbaar in
situaties waar de aanvallen onbedoeld zijn, bijvoorbeeld ten gevolge van gebruikelijke sig-
naalbewerkingsoperaties. De ontwikkelde benadering worden schattingsprocedures gebruikt
voor de amplitudeschaling en lineaire filteringbewerking die gebaseerd zijn op Fourieranal-
yse en op een maximum likelihood benadering. De robuustheid voor lineair filteren wordt
bereikt door QIM watermerkmethoden op amplitudes in het frequentiedomein toe te passen.

Om de schattingsprocedures te ontwikkelen, leiden we eerst kansdichtheidsfuncties af
voor de gewatermerkte en aangevallen gewatermerkte signalen.Vervolgens ontwikkelen we
een Fourier-gebaseerde schattingsprocedure. Deze methode maakt gebruik de structuur in
de kansdichtheidsfunctie van de gewatermerkte data ten gevolge van het coderingsproces. De
aanpak geeft nauwkeurige resultaten voor zowel synthetische als realistische muzieksignalen
mits de watermerk-ruisverhouding voldoende hoog is.

Om de schattingsnauwkeurigheid voor lage watermerk-ruisverhoudingen te verbeteren,
ontwikkelen we een maximum likelihood schattingsaanpak. De schattingstechniek presteert
ook goed wanneer er een verschil is tussen de kansdichtheidsfunctie van het bronsignaal en
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die van het aangenomen model bij de schatter. De schatter geeft ook nauwkeurige resultaten
voor realistische signalen zoals muziek.

Traditionele QIM watermerkmethoden zijn niet veilig, in de zin dat een aanvaller met
kennis van het inbeddingsproces de door het watermerk gedragen boodschap kan decoderen
en daardoor ook verstoren. Om de veiligheid te vergroten, passen we een welbekend idee toe,
namelijk de toevoeging van subtractive dither in het watermerksysteem. Het gekozen dither -
signaal wordt verondersteld bekend te zijn bij de decoder, maar niet bij de aanvaller. Door
een geschaalde versie van het dither -signaal aan de gewatermerkte data toe te voegen, zijn
we in staat een signaal te verkrijgen waarvan de kansdichtheidsfunctie een structuur heeft die
wederom direct afhankelijk is van de amplitudeschaling. We kunnen wederom een maximum

likelihood schattingsprocedure af leiden voor het schatten van amplitudeschalingsfactor, nu
in de aanwezigheid van subtractive dither. Omdat de kansdichtheidsfunctie erg ingewikkeld
is, leiden we een benadering af voor het (meest gebruikelijke) geval dat de variantie van de
dither veel kleiner is dan de variantie van het bronsignaal.

Om maximale veiligheid te verkrijgen kiezen we het gedrag van de dither zo dat een
aanvaller zonder kennis van het gekozen dither -signaal niet in staat is het watermerk te
decoderen. We tonen aan dat als de dither uniform verdeeld is met een juist gekozen
variantie, het watermerk systeem veilig is. We tonen bovendien aan dat de veiligheid van
het systeem niet aangetast wordt door de aannamen die nodig zijn voor het benaderen van
de kansdichtheidsfunctie voor de schatting van de amplitudeschaalfactor in de aanwezigheid
van subtractive dither.

Om de rekenlast van de maximum likelihood schattingmethode te verlagen, passen we een
ander model van het aanvalskanaal toe waarin de amplitudeschaling en additieve ruisterm
in volgorde verwisseld zijn. Dit leidt tot een aanzienlijke afname van de schattingscom-
plexiteit, terwijl de twee modellen conceptueel hetzelfde zijn. Tevens laten we zien dat de
amplitudeschalingsfactor en variantie van de additieve ruisterm gezamenlijk geschat kunnen
worden. We passen deze methode toe op gewatermerkte beelden.

Het probleem van lineair filteren van gewatermerkte signalen wordt als volgt aangepakt.
Er bestaat een dualiteit tussen amplitudeschaling en lineair filteren: lineair filteren in het ti-
jddomein komt tenslotte neer op vermenigvuldigen (schaling) in het frequentiedomein. Om
robuustheid voor lineair filteren te verkrijgen, bestuderen we de situatie waarin de aan-
val een multiband amplitudeschalingskanaal is, dat wil zeggen dat enkele frequentiebanden
van het gewatermerkte signaal geschaald worden. We ontwikkelen een maximum likelihood

schattingmethode voor de schalingsfactoren van de frequentiebanden. Aan de hand van
experimenten laten we zien dat slechts een paar filtercoëfficienten voldoende zijn voor het
nauwkeurig bepalen van de kansdichtheidsmodellen van de gewatermerkte frequentiebanden.

Als laatste kiezen we een recente variant op de QIM watermerkmethode, namelijk ra-

tional dither modulation, en passen deze toe in het frequentiedomein. Ook op deze manier
wordt de robuustheid voor lineaire filter-aanvallen vergroot. Er treden echter fouten op in
de doorlaatband van de toegepaste filters ten gevolge van de eindige lengte van de Fourier-
transformatie. Om deze fouten te verminderen, passen we een vensteringsoperatie toe op elk
segment van het bronsignaal. Dit leidt echter tot een grotere verstoring van het bronsignaal.
Om de verstoring door vensteren te verwijderen, passen we overlappende vensters toe. De
overlappende vensters leiden tevens tot een grotere watermerkcapaciteit, echter ten koste
van een toename in decodeerfouten in de doorlaatband van de lineaire filters.
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Symbols and Abbreviations

X · Y dot product of vectors X and Y

| · | absolute value and determinant
‖ · ‖ L2 norm
⌊x⌋ the greatest integer smaller or equal to x⋃

union of two events
AWGN additive white Gaussian noise

A indicator set
Bn(r) n-dimensional ball with radius r

C capacity
D dither

DAB digital audio broadcasting
D(X, Y ) distortion between X and Y

DFT discrete Fourier transform
DWR document-to-watermark ratio

EE error exponent
EFA error exponent for false alarm
EM error exponent for miss

fX(x) probability density function of X

g(yk−1) equivalent to
(

1
L

∑k−1
m=k−L |ym|p

) 1
p
, where L is the memory of the system and p ≥ 1

G(ω), H(ω) transfer function of analysis and synthesis filters
Gn(Λ) normalized second moment of Λ

G∗
n normalized second moment of a ball

h(τ) filter impulse response
I identity matrix

IA indicator function
I
+ the set of positive integers

I(X, Y ) mutual information between X and Y
KX [·] n × n correlation matrix of X

Lf filter length (order)
LF likelihood function

LTI linear time invariant
MAP maximum a posteori probability

ML maximum likelihood
mod modulus operation
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n signal length
N length of DFT
N1 watermark signal
N2 attack noise
Nf additive noise due to filter operation

PDF probability density function
pX,Y (x, y) joint distribution
pY |X(y|x) conditional probability of Y given X

Pe probability of error

P
(n)
FA probability of false alarm for dimension n

P
(n)
M probability of miss for dimension n

Pr(·) probability of an event

q(x) equivalent to
∫ ∞
x

1√
2π

e−
t2

2 dt

Q(·) quantization
RDM rational dither modulation

R(·) rate-distortion function
Rc, Re covering and equivalent radius of a lattice

RN residual term due to finite DFT
SAWGN scale additive white Gaussian noise

SS spread-spectrum
t(k) k sample of the impulse response of multiband scale attack

T threshold
T (ω) transfer function of multiband scale attack

U output of a quantizer
V0 Voronoi cell
W index of a watermark message

WNR watermark-to-noise ratio

X̂ estimate of X
R

n n-dimensional vector space
X(k) k sample of X

X̃, X̃ host data random variable and vector
X, X watermarked data random variable and vector
X, X ′ multiband attacked random variable and vector
Y , Y attacked data random variable and vector

Z equivalent to (1 − α)N1 + αN2, where α =
σ2

N1

σ2
N1

+σ2
N2

β, β amplitude scale factor scalar and vector
∆ scalar quantizer step size

Fω[X] Fourier operator applied on X
µ(s) moment generating function of χ2

φX(ω) Fourier transform of X
ΦX(ω) characteristic function of X

Λ Lattice
L(m, σ2) Laplacian distribution with mean m and variance σ2

N (m, σ2) Normal distribution with mean m and variance σ2
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eX variance of host signal

σ2
N1

variance of watermark

σ2
N2

variance of attack noise

σ2
Z variance of Z

U(m, σ2) uniform distribution with mean m and variance σ2

ωc cutoff frequency
χ2 chi-squared distribution
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Chapter 1

Introduction

1.1 The Need for Watermarking

Digital multimedia devices are abundant in our lives. Such devices can easily produce
identical copies of the multimedia data. The ease with which digital data can be duplicated
has led to the need of its protection. With the advent of broadband internet connections,
digital data can be easily spread around the world. Companies producing multimedia data
(audio, images, video) suffer major losses due to piracy.

One method to protect digital data is by the use of cryptographic means. Cryptography
[1, 2] protects the data during transmission over a hostile channel. At the transmitter and
receiver though the data is not in encrypted form, and therefore no longer protected. As a
result of this, the attacker’s efforts were shifted more on the transmitter and the receiver
and less on the communication channel. There was a need for a new technology which can
protect1 the data in its raw format [4].

Watermarking is a technology that can protect the data in its clear form by embedding
a permanent message into the data [5, 6, 7, 8, 9, 10]. The message should satisfy certain
constraints that in most cases are application dependent. General models of the watermark
embedding and detection processes for image sources are shown in Fig. 1.1 and Fig. 1.2
respectively. The embedding process is a function, the input of which is the original image,
the message that we want to embed, and a secret key that is known only to the embedder
and the intended detector. The output of the embedding function is the watermarked data.
Analogously, the detection process is a function with inputs the watermarked data (possibly
modified by an attacker) and the secret key. The output of the detection function is a
decision determining the presence or absence of the message.

The challenges that watermarking technology faces [11] are broad and sometimes contra-
dictory, depending on the particular application, with goals far more restricted than those
of cryptography. Cryptography is mainly concerned with the secrecy [12, 2] and authenticity

of the data [13], although there are other services that cryptography provides, like data in-
tegrity, non-repudiation, etc [2]. However, there are no restrictions on preserving the quality
of the data. In watermarking we are interested in the reliable, sometimes secret (secure
[14, 15]) communication of the watermark message while at the same time preserving the
quality of the data being protected.

1See [3] for examples of modern applications of watermarking.
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Secret Key

Embedding
Function

Original Data Watermarked Data
"Message"

Figure 1.1: General model of watermark embedding.

Watermarked (possibly attacked) Data

Secret Key

Detection
Function

"Message" Present

"Message" Absent

Figure 1.2: General model of watermark detection.



1.2. REQUIREMENTS AND APPLICATIONS OF WATERMARKING 3

1.2 Requirements and Applications of Watermarking

Watermarking systems have to satisfy certain requirements, which in most cases are application-
dependent. First, it is desirable that a watermarking system (algorithm) have a high wa-
termark payload, or watermark capacity. In information theory, capacity is the maximum
transmission rate at zero probability of error. In the watermarking literature, sometimes the
term capacity is relaxed and usually means the number of watermark messages that can be
embedded with a given algorithm irrespective of the probability of error of the system. We
will use the term watermark payload. The term capacity will be used only when it refers to
the information-theoretic meaning of capacity.

Robustness is another requirement that the watermarking system must satisfy, i.e. that
the watermark should remain detectable by the intended receiver after attacks on the wa-
termarked data.

The third requirement is that the embedding process should satisfy a distortion con-
straint, i.e. the watermarked data should be perceptually similar to the original data. The
introduced distortion should be unnoticeable to the human perceptual system [16].

The fourth requirement is security. In this thesis, security is defined as the inability
of an attacker to read the watermark message. This can be achieved by encrypting the
watermark messages before embedding, or by incorporating a suitably chosen stochastic
element directly into the embedding algorithm [17, 14]. Both methods require a secret key
that has to be known to the intended decoder (detector). In most applications, it is more
convenient to have the security independent of the other requirements.

Robustness and distortion are dependent parameters. Usually increasing the robustness
leads to increased distortion. Although not generally independent of robustness, the payload
can be chosen independent of distortion. An important and difficult problem in the design
of watermarking systems is how to increase the robustness while at the same time keeping
the distortion below a given level. This is most often achieved by a judicious choice and
application of a perceptual model.

A block diagram with general requirements that a watermarking system should satisfy
is shown in Fig. 1.3. The arrows illustrate the dependencies between the different require-
ments. Security is independent of the other requirements.

Requirements

Payload Distortion SecurityRobustness

Figure 1.3: Requirements on watermarking systems. The arrows indicate the connection between the
different requirements. Generally, Distortion is proportional to Robustness, Payload is inversely proportional
to Robustness, and Distortion is proportional to Payload. Security is independent of the other parameters.
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A classification of watermarking systems is shown in Fig. 1.4. In terms of the signal that
has to be protected, watermarking techniques can be divided into the following categories:

• Audio watermarking. The host signal is an audio signal. This is an example of a typical
one-dimensional signal processing. A model of the human auditory system is usually
incorporated into the watermarking system to achieve low perceptual distortion.

• Image watermarking. This is a two-dimensional signal processing. Usually a good
model of the human visual system is incorporated into the watermarking system.

• Video watermarking. The same as image watermarking, but now emphasizing on
embedding in the temporal dimension.

• Watermarking of 3-D models.

• Watermarking of text files.

• etc.

Watermarking systems can also be categorized in terms of the purpose of the embedded
message. We distinguish the following categories:

• Copyright protection. This is the case when we have a multimedia data and a player
that can reproduce the data. The player checks for a watermark and based on it
decides wether or not to play the multimedia data. The payload for this scenario is
usually one bit for the whole data.

• Copy tracing. This is the case when a company wants to trace individual copies of its
multimedia content. A different watermark is embedded in each copy, identifying the
owner of the copy and possibly other information like when the copy was sold, etc.
The purpose is to prevent illegal copies and sells of the multimedia data by the owner.
The company can trace the illegal copy and connect it to the owner by identifying
the watermark. Since the number of owners can be large, such applications require
watermarking algorithms with high payload.

• Forensic watermarking. This is a scenario when someone wants to prove the authen-
ticity of a multimedia data, for example in a court of law. Suppose we have a picture
taken at a crime scene with a content that is likely to determine the outcome of the
court case. Determining that the picture is not forged and is taken by the person
who was on the crime scene can be done with a watermark. In such applications the
robustness of the embedded watermark is at the highest priority.

• Steganography (secret communication). This application requires that the embedded
message should be undetectable by an attacker.

• Content identification. This is an application where someone wants to identify an
image or song. The purpose for example can be to measure the time during which the
content is present in an advertisement.
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3−D models

Classification

Copy
Protection

Copy
Tracing

Forensic
Watermarking
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Steganography

Purpose of
Watermark
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Audio
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Image
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Watermarking

Watermarking
Text files

Figure 1.4: Classification of watermarking systems.
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Watermarking systems are evaluated with respect to a given class of attacks. The sim-
plest model of an attack operation consists of adding a source of noise to the watermarked
data. There could be correlation between the noise samples and between the noise and
watermark samples. This attack model is borrowed from communications theory due to its
mathematical tractability and generality (especially the additive Gaussian noise channel).

Other models for attack channels are also of interest. Examples are deterministic opera-
tions like amplitude scaling, linear filtering. More complex operations include compression,
linear and non-linear operations like gamma correction. These operations are quite common
in many signal processing applications.

The attacks can be unintentional, i.e. they are part of a signal processing chain, or they
can be malicious, i.e. due to an adversary. In both cases there should be a model of the attack
channel. In the first case the attack channel parameters are fixed, while in the later case
the attacker optimally chooses the parameters according to a given criterion (like capacity,
probability of error, error exponent), under some constraints (such as distortion), after
knowing the encoding and possibly decoding strategies. It is clear that malicious attacks
are harder to combat than unintentional ones. However, as it is the case in this thesis, if
the decoding operation is based on estimating the attacker’s operation and inverting it prior
to decoding the watermark, then clearly it doesn’t matter if the operation was malicious or
unintentional.

1.3 Objective of the Thesis

Depending on the principles of embedding and decoding, watermarking techniques can be
grouped into two main categories - spread-spectrum and quantization-based watermarking.
Spread-spectrum watermarking is efficient when the variance of the host signal is not too
big with comparison to the variance of the watermark. In practical cases the watermark
should preserve the quality of the original signal. In such cases the variance of the host
signal must be much bigger than that of the watermark, in which case the capacity of
the watermarking system is approximately zero. Quantization-based watermarking systems
are able to completely cancel the influence of the host signal on the system performance.
Theoretical analysis [18, 19, 20] showed that quantization-based watermarking achieves the
highest capacity in terms of additive noise attacks among all other watermarking techniques.
The theoretical results are valid for infinite dimensional quantizers. Later it was shown that
schemes constructed with practical finite dimensional quantizers can perform very close to
the theoretical limits.

Initially, it was not clear how quantization-based watermarking would perform against
other than additive noise attacks. Moreover, it was difficult to obtain theoretical performance
limits for more practical attacks like linear filtering, compression, non-linear signal processing
operations, etc. In fact it was experimentally shown [21, 22, 14] that quantization-based
techniques are vulnerable to a simple amplitude scale multiplication of the watermarked
data, since this attack causes mismatch between the encoder and decoder.

This thesis is concerned with the study of quantization-based watermarking. We study
this class of techniques in the context of unintentional, non-additive attacks, i.e. attacks
that are standard operations in signal processing applications.

Due to the severity of the amplitude scale attack to quantization-based watermarking



1.4. OUTLINE OF THE THESIS 7

and the fact that it is one of the most common operations in signal processing applications,
the amplitude scale attack in combination with additive noise is the primary attack channel
model in this thesis. Furthermore, some practical and more complex operations like linear
filtering can also be modeled by amplitude scaling, and additive noise.

In this thesis we propose statistical techniques for estimation of the amplitude scale
attack. The effect of the amplitude scale is inverted by dividing the received data with the
estimate before watermark decoding. Additionally we also study the secrecy (security) of
the watermarking system by incorporating random dither into the system. Solutions are
proposed in the presence and absence of the random dither. We extend those solutions to
multi-band scaling attacks which are closely related to the linear filtering attacks. Finally,
we study modifications for improving the robustness of quantization-based watermarking
against linear filtering attacks.

1.4 Outline of the Thesis

In chapter 2, we present background on the information theoretic principles behind wa-
termarking. These principles are based on spread-spectrum communications and channel
coding with side information at the encoder. We discuss spread-spectrum, and quantization-
based watermarking. We compare their performance in terms of capacity and error expo-
nents. We discuss practical quantization-based watermarking techniques and evaluate their
performance in terms of probability of error. We discuss the main types of attack chan-
nel models, which are the additive noise attack, the amplitude scale attack, and the linear
time-invariant filtering attack.

In chapter 3, we derive probability density models in the absence of dither and describe
our maximum likelihood, and Fourier based estimation procedures. The Fourier estimation
technique is based on estimating the periodicity in the characteristic function of the water-
marked data. The periodicity is due to the discontinuities in the density of the watermarked
data, created by the encoding process. For certain watermark-to-noise ratios this periodicity
is present in the attacked data. Experimental results with synthetic and real audio data are
presented. We discuss the advantages and disadvantages of the proposed techniques.

In chapter 4, we derive probability density models in the presence of dither. We give
approximations to these models for the case of small dither. We derive sufficient condi-
tions for the dither to achieve a given level of security for the watermarking system. These
conditions are not dependent on the approximations. We propose a maximum likelihood
estimation procedure of the amplitude scale factor through the use of the dither. We propose
a computationally efficient joint maximum likelihood estimation of the attacker’s amplitude
scale and noise variance. The reduction in computational complexity is due to a transfor-
mation of the attack channel into one that is equivalent but computationally less expensive
for computing the likelihood function. Experimental results with synthetic and real data
are presented.

In chapter 5, we extend our maximum likelihood estimation approach to the estimation
of multi-band scaling. We derive probability density models of the filtered data. The prob-
ability density of the filtered signal is a convolution of the scaled with the filter coefficients
individual probability densities derived in chapter 3. Experimental results are presented
with synthetic and real audio signals. It is shown that only a few filter coefficients, namely
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the largest ones, are sufficient for constructing accurate density models.
In chapter 6 contains recent, still unpublished results. We discuss modifications for mak-

ing quantization-based watermarking robust to linear filtering attacks. The main principle
is based on frequency rational dither modulation, which is an application of rational dither
modulation in the frequency domain. Since there is decoding error in the pass-band zone due
to the finite length of the Fourier transform, we propose improvements by applying Ham-
ming windows on each signal frame before taking the Fourier transform. While decreasing
the error in the pass-band zone, the Hamming window causes additional distortion to the
watermarked signal. To eliminate this additional distortion, instead of Hamming windows
we apply overlapped cosine squared windows with overlap 50%. Experimental results of the
proposed techniques are presented.

In chapter 7, we present discussion and directions for future research.
Chapters 3, 4, and 5 are parts of papers and for that reason there is inherently some

overlap with chapter 2.
Chapter 3 is part of I. D. Shterev and R. L. Lagendijk "Amplitude Scale Estimation for

Quantization-Based Watermarking", IEEE Transactions on Signal Processing, vol. 54, no.
11, pp. 4146-4155, November 2006, and I. D. Shterev, R. L. Lagendijk, and R. Heusdens,
"Statistical Amplitude Scale Estimation for Quantization-Based Watermarking", SPIE Se-

curity, Steganography, and Watermarking of Multimedia Contents VI, San Jose, CA, January
2004.

Chapter 4 is part of I. D. Shterev and R. L. Lagendijk "Amplitude Scale Estimation
for Quantization-Based Watermarking, IEEE Transactions on Signal Processing, vol. 54,
no. 11, pp. 4146-4155, November 2006, I. D. Shterev and R. L. Lagendijk "Maximum Like-
lihood Amplitude Scale Estimation for Quantization-Based Watermarking in the Presence
of Dither", SPIE Security, Steganography, and Watermarking of Multimedia Contents VII,
San Jose, CA, January 2005, and R. L. Lagendijk and I. D. Shterev "Estimation of At-
tacker’s Scale and Noise Variance for QIM-DC Watermark Embedding, IEEE International

Conference on Image Processing, Singapore, October 2004.
Chapter 5 is published as J. Wang, I. D. Shterev, and R. L. Lagendijk "Scale Esti-

mation in Two-Band Filter Attacks on QIM Watermarks, SPIE Security, Steganography,

and Watermarking of Multimedia Contents VIII, San Jose, CA, January 2006, and part of
J. Wang, I. D. Shterev, and R. L. Lagendijk "Two-Band Amplitude Scale Estimation for
Quantization-Based Watermarking", IEEE International Symposium on Intelligent Signal

Processing and Communication Systems, Hong Kong, December 2005.
Chapter 6 contains recent, still unpublished results.



Chapter 2

Information Theoretic Approaches to

Watermarking∗

Watermarking borrows many concepts from communications theory. In this chapter we
describe the most important classes of watermarking schemes seen in the literature, namely
spread spectrum watermarking and quantization-based watermarking [23, 20]. We discuss
their advantages and disadvantages. We discuss some of the most important models of
attack channels and their relevance to applications.

A general model of the watermarking problem is presented in Fig. 2.1. We want to
embed a message W into a host signal vector X̃ ∈ R

n, at a rate of RW bits per signal
sample. Therefore W ∈ {1, 2, ..., 2nRW }.

Encoder Channel Decoder
Y

W

ŴX̃ X

Figure 2.1: General model of the watermarking problem.

The encoder is a function that maps the host signal X̃ ∈ R
n and the message W into a

watermarked signal X ∈ R
n subject to a distortion constraint.

The attack channel is a function that maps the watermarked signal X into an attacked
signal Y ∈ R

n subject to a distortion constraint.

When the host signal is available to the decoder (see Fig. 2.1), then we say that we
have the non-blind watermarking scenario. It is logical that in this case, the watermarking
scheme is expected to achieve better performance than in the blind case. However, such
scenario has limited applications and we will be mostly interested in the blind case in which
the decoder does not have access to the host signal.

∗This chapter provides background information.

9
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Various distortion measures are used in the literature depending on their relevance to
the human perceptual system and their mathematical tractability [24, 25, 26]. The most
common distortion measure is the squared-error distortion, which will be adopted here.

The distortion constraint on the encoder is given as

D(X, X̃) =
1

n
‖X − X̃‖2 (2.1)

The distortion constraint on the attack channel is given as

D(Y , X) =
1

n
‖Y − X‖2 (2.2)

2.1 Watermarking Techniques

Watermarking techniques can generally be divided into two categories: spread spectrum
techniques and quantization-based watermarking.

2.2 Spread Spectrum Watermarking

Spread-spectrum watermarking schemes borrow principles from spread spectrum communi-
cations. The simplest form of embedding is given by

X = X̃ + N1(W ), (2.3)

where N1(W ) is a pseudorandomly generated sequence of length n based on the watermark
message W .

The power of N1(W ) determines the strength of the watermark and therefore the dis-
tortion introduced to the host signal. For this scheme

D(X, X̃) =
1

n
‖N1‖2, (2.4)

where we dropped the argument of N1(·) for notational conciseness.

All N1(W ) sequences are assumed to be known to the decoder. The decoder’s task is to
determine which N1(W ) is present in the received signal. The decoder performs correlation
of Y with all sequences N1(W ) and makes an estimate of the embedded message Ŵ . A
block diagram of spread spectrum watermarking scheme is shown in Fig. 2.2.

Channel Decoder
X̃ Ŵ

N1(W )

Y

N1(W )

X

Figure 2.2: Spread Spectrum Watermarking Scheme.
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For i.i.d. Gaussian host signals and additive Gaussian attack channels, the correlation
detector coincides with the Maximum Likelihood decoder and is therefore the optimal de-
tector [27].

As in communications [28, 29], watermarking schemes are often evaluated with respect
to additive Gaussian noise channels, in this case representing the attack channel. Such a
channel is presented in Fig. 2.3, where X̃ ∼ N (0, σ2

eXI), N2 ∼ N (0, σ2
N2

I) is the attacker’s
noise, and I is an n × n identity matrix.

In most cases the performance criteria is the channel capacity which is formulated as the
maximum amount of information that can be transmitted through the channel and decoded
without any errors.

X̃

N1 Y

N2

Figure 2.3: Gaussian Channel for Spread Spectrum Watermarking.

By definition the capacity of the channel in Fig. 2.3 is given as

C = max
fN1

(n1)
I(N1; Y ), (2.5)

where the maximization is over all distributions fN1(n1). It can be shown [30] that

max
fN1

(n1)
I(N1; Y ) =

1

2
log

(
1 +

σ2
N1

σ2
eX + σ2

N2

)
, bits/sample (2.6)

and is achieved by N1 ∼ N (0, σ2
N1

I). In other words, Gaussian watermarks are optimal
when the host signal and attack channel are Gaussian.

For the non-blind scenario the capacity is given as

max
fN1

(n1)
I(N1; Y ) =

1

2
log

(
1 +

σ2
N1

σ2
N2

)
, bits/sample (2.7)

which is of course larger than in the blind case.

It can be seen that the host signal X̃ introduces interference in the blind case and con-
tributes to the attack channel. Therefore, spread spectrum watermarking schemes achieve
good performance when the host variance is small in comparison to the watermark distortion
and the power of the attack channel. However, such assumption in watermarking applica-
tions is unrealistic, since the watermark has to preserve the quality of the host signal. In
real applications σ2

eX ≫ σ2
N1

, σ2
N2

, for which C ≈ 0. This is the main limitation of spread

spectrum watermarking in terms of additive noise attacks [20, 18].
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2.3 One-Bit Spread-Spectrum Watermarking

In many watermarking applications like copy protection, it is enough to embed only one
bit of information. Therefore, watermarking schemes that embed one bit of information
in a signal vector are also of interest [31]. In such cases probability of error [32] or error
exponents are the primary parameters for evaluating the performance of the scheme.

The scheme is a simplified version of the one discussed in the previous section. We add
a pseudo-random sequence N1 if we wish to embed bit "1". The difference here is that we
pass the host signal unchanged if we wish to embed bit "0". The detector tries to determine
the presence or absence of N1 from the received signal.

The detection process is a binary hypothesis testing problem, from which the detector
makes an estimate Ŵ of the embedded message W . The hypothesis testing can be written
as

Ŵ =

{
0 if Y = X̃ + N2

1 if Y = N1 + X̃ + N2
(2.8)

The likelihood ratio test is the correlation test (under Gaussian assumption).

N1 · Y
Ŵ=1

>
<

Ŵ=0

nT, (2.9)

where · is the dot product and T is a threshold. The probabilities of false alarm and miss
are given as

P
(n)
FA = q

(√
nT 2

σ2
N1

(σ2
eX + σ2

N2
)

)
(2.10)

P
(n)
M = q

(
√√√√ n(σ2

N1
− T )2

σ2
N1

(σ2
eX + σ2

N2
)

)
, (2.11)

where q(x) =
∫ ∞
x

1√
2π

e−
t2

2 dt is the error function.

The exponents corresponding to P
(n)
FA and P

(n)
M are by definition

EFA = lim
n→∞

− 1

n
lnP

(n)
FA (2.12)

EM = lim
n→∞

− 1

n
lnP

(n)
M (2.13)

Using the property [33] limn→∞− 1
n ln

(
q(
√

nx)
)

= 1
2x, for x > 0, (2.11), and (2.11), we
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have

EFA = lim
n→∞

− 1

n
lnP

(n)
FA

= lim
n→∞

− 1

n
ln q

(√
nT 2

σ2
N1

(σ2
eX + σ2

N2
)

)

=
T 2

2σ2
N1

(σ2
eX + σ2

N2
)

(2.14)

EM = lim
n→∞

− 1

n
lnP

(n)
M

= lim
n→∞

− 1

n
ln q

(
√√√√ n(σ2

N1
− T )2

σ2
N1

(σ2
eX + σ2

N2
)

)

=
(σ2

N1
− T )2

2σ2
N1

(σ2
eX + σ2

N2
)

(2.15)

For non-blind watermarking, the detection test is

N1 · Y − N1X̃
Ŵ=1

>
<

Ŵ=0

nT, (2.16)

with error exponents given as

EFA =
T 2

2σ2
N1

σ2
N2

(2.17)

EM =
(σ2

N1
− T )2

2σ2
N1

σ2
N2

. (2.18)

The probability of error is defined as

P
(n)
E = Pr(W = 0)P

(n)
FA + Pr(W = 1)P

(n)
M , (2.19)

with corresponding error exponent

EE = lim
n→∞

− 1

n
lnP

(n)
E . (2.20)

Since Pr(W = 0) and Pr(W = 1) are independent of n and lim
n→∞

P
(n)
FA = 0 for appropriately

chosen T , it follows that EE = min{EFA, EM}.
The threshold T is commonly chosen such that EFA = EM . Therefore, for T =

σ2
N1
2 , we

have

EE =
σ2

N1

8(σ2
eX + σ2

N2
)

, for blind detection (2.21)

EE =
σ2

N1

8σ2
N2

, for non-blind detection (2.22)
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Higher error exponents means better performance. The expressions (2.21) and (2.22) are
shown in Fig. 2.4. It can be seen that (2.22) is strictly higher than (2.21) as expected. The
later depends on DWR. The difference between (2.21) and (2.22) is more pronounced at

high DWR. The two expressions coincide at low DWR, when
σ2

eX

σ2
N1

→ 0.

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

non−blind
blind DWR=10db
blind DWR=20db
blind DWR=30db

σ2
N1

σ2
N2

E
E

Figure 2.4: Error exponents for blind and non-blind spread-spectrum watermarking.

2.4 Quantization-Based Watermarking

As mentioned in section 2.2, the main limitation of spread-spectrum watermarking is the
effect of the host signal on the capacity of the system. To overcome this limitation, after the
development of spread spectrum watermarking, several scientists with information theory
background [18, 19, 34, 35, 36, 37, 38] recognized the similarity between watermarking and
coding for a channel with random parameters [39, 40, 41].

The channel with random parameters is shown in Fig. 2.5. The transition probability of
the channel is p

Y |N1
eX(y|n1, x̃), where Y is the output of the channel, N1 is the input to the

channel, and X̃ is the random parameter called the state of the channel. In watermarking
applications, the state of the channel is the host signal. Since all random variables are
i.i.d. Gaussian, we drop the bold notation where possible in the subsequent analysis of this
section.

The capacity of this channel is given [39] as

C = max
p

U eXN1
(u,ex,n1)

{
I(U ; Y ) − I(U ; X̃)

}
, (2.23)

where U is an auxiliary random variable, and the maximization is over the joint distribution
p

U eXN1
(u, x̃, n1).
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pY |N1, eX(y|n1, x̃)
N 1

X̃

Y

Figure 2.5: Channel with random parameters.

The capacity for the additive Gaussian noise channel and Gaussian state was found in
[42]. For the case when the state is not known to both encoder and decoder, the capacity
can be calculated as

C =
1

2
log

(
1 +

σ2
N1

σ2
eX + σ2

N2

)
. (2.24)

For the case when the state is known to the encoder but not to the decoder, the capacity is
calculated as

C =
1

2
log

(
1 +

σ2
N1

σ2
N2

)
, (2.25)

and is independent of the state X̃. Therefore, it is possible to eliminate the interference
of X̃ without having to know it at the decoder side, by applying channel coding with side

information at the encoder. It can be seen also that (2.24) and (2.25) are the capacities of
blind (2.6) and non-blind (2.7) spread-spectrum watermarking respectively.

A simple block diagram of channel coding with side information at the encoder is shown
in Fig. 2.6. With this type of coding, the encoder optimally assigns a codeword to each
source vector, such that it is possible to cancel the interference of the powerful source with
much less powerful codewords. The scheme works as follows. The encoder first generates

2n
(
I(U;Y )−ǫ

)
i.i.d. sequences U , where ǫ > 0 is arbitrarily chosen. These sequences are

uniformly distributed in 2nRW bins. Each bin contains 2n
(
I(U;fX)+δ

)
sequences, where δ > 0

is arbitrarily chosen. The union of these bins form the codebook which is given also to the
decoder.

encoder decoder
YW ŴN1

N2X̃

Figure 2.6: Channel with state known to the encoder.

Given the message W and the state X̃, the encoder looks in bin W for a sequence U

such that (U , S) are jointly typical. The encoder declares an error if no such sequence is



16CHAPTER 2. INFORMATION THEORETIC APPROACHES TO WATERMARKING

found. The probability of such an error goes to zero as n → ∞. Next the encoder chooses
N1 such that (N1, U , X̃) are jointly typical and sends it over the channel.

The decoder searches its codebook for a sequence U such that (U , Y ) are jointly typical.
The decoder makes an estimate Ŵ which is the index of the bin in which U is found. There
is an error when no jointly typical pair can be found or when Ŵ 6= W . The probability of
not finding a jointly typical pair goes to zero as n → ∞.

It has been shown [42] that capacity is achievable with the auxiliary random variable
U = N1+αX̃, where α is a constant to be determined later. Substituting with U = N1+αX̃
in the capacity definition (2.23) we get

I(U ; Y ) − I(U ; X̃) = H(U) − H(U |Y ) − H(U) + H(U |X̃)

= H(U |X̃) − H(U |Y )

= H(U, X̃) − H(X̃) − H(U, Y ) + H(Y )

=
1

2
log

σ2
N1

+ σ2
eX + σ2

N2

σ2
eX

+
1

2
log

∣∣K[N1 + αX̃, X̃]
∣∣

∣∣K[N1 + αX̃, N1 + X̃ + N2]
∣∣ , (2.26)

where
∣∣K[·]

∣∣ denotes the determinant of the correlation matrix K[·]. We can write

∣∣K[N1 + αX̃, X̃]
∣∣ = (σ2

N1
+ α2σ2

eX)σ2
eX − α2σ4

eX∣∣K[N1 + αX̃, N1 + X̃ + N2]
∣∣ = (σ2

N1
+ σ2

eX + σ2
N2

)(σ2
N1

+ α2σ2
eX) − (σ2

N1
+ ασ2

eX)2

Substituting in (2.26) and simplifying we obtain

I(U ; Y ) − I(U ; X̃) =
1

2
log

(σ2
N1

+ σ2
eX + σ2

N2
)σ2

N1

(α2 − 1)2σ2
N1

σ2
eX + (σ2

N1
+ α2σ2

eX)σ2
N2

(2.27)

We want to find the value of α for which I(U ; Y ) − I(U ; X̃) is maximized. Noting that
the nominator of (2.27) is independent of α, we need only minimize the denominator (α2 −
1)2σ2

N1
σ2

eX + (σ2
N1

+ α2σ2
eX)σ2

N2
. Taking the derivative with respect to α and making it equal

to 0, we have

2ασ2
N1

σ2
eX − 2σ2

N1
σ2

eX + 2ασ2
eXσ2

N2
= 0 (2.28)

Solving for α we get

α =
σ2

N1

σ2
N1

+ σ2
N2

(2.29)

Since (α2 − 1)2σ2
N1

σ2
eX + (σ2

N1
+ α2σ2

eX)σ2
N2

is a convex function of α, (2.29) is the global

minimum. Substituting with (2.29) in (2.27) and simplifying we get

max
α

{
I(U ; Y ) − I(U ; X̃)

}
=

1

2
log

(
1 +

σ2
N1

σ2
N2

)
(2.30)
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n

α

W

1 2nRW

1 − α

X̃ U X

2n

(
I(U ; eX)+δ

)
codewords

Figure 2.7: Detailed encoder scheme. The total number of codewords is 2n
`

I(U ;Y )−ǫ
´
.

n

1 2nRW

ŴX

N2

2n

(
I(U ; eX)+δ

)
codewords

Figure 2.8: Detailed decoder scheme. The total number of codewords is 2n
`

I(U ;Y )−ǫ
´
.
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Detailed descriptions of the encoder and decoder are shown in Fig. 2.7 and Fig. 2.8
respectively.

The encoder and decoder of Fig. 2.7 and Fig. 2.8 respectively are idealistic and only
show the existence of good deterministic codes1. They do not give a clue as to how to
construct good practical codes that can achieve the capacity (2.25). Lattice codes [44] are
attractive to physically construct optimal encoders and decoders, because of their optimality
in high dimensions, and the existence of computationally efficient decoding algorithms for
lattices [45, 46].

2.5 One-Bit Quantization-Based Watermarking

In this section we describe and evaluate one-bit quantization-based watermarking and com-
pare it with one-bit spread-spectrum watermarking. The scheme is developed in [47]. As
mentioned in the previous section, lattices are among the best candidates for constructing
practical, capacity achieving codes. The encoder employs an n-dimensional lattice quantizer
Q(·) [44]. The message set is W ∈ {0, 1}. Analogously to one-bit spread-spectrum water-
marking, for W = 0 the host signal is left unchanged. The watermark encoder for W = 1 is
shown in Fig. 2.9. The watermarked signal is given as

X =

{
X̃ + N1 if W = 1

X̃ if W = 0
(2.31)

where N1 is the quantization noise. The distortion introduced by the encoder is

σ2
N1

=
1

n
E‖N1‖2 (2.32)

1 − α

α

X

Q(·)
X̃ U

Figure 2.9: One-bit lattice encoder for W = 1.

1In Information Theory, the term code refers to a pair of encoding and decoding functions (mappings)
[43].
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The attack channel and the decoder are shown in Fig. 2.10. The received data is scaled
by α and then quantized using the lattice quantizer Q(·). Then the decoder computes the
squared L2 norm of the quantization noise, compares it to a threshold nT , and makes an
estimate Ŵ .

N2

modΛ ‖ · ‖2

α

X Y
>
<

nT
Ŵ

Figure 2.10: Attack channel and one-bit lattice decoder.

The quantization noise at the decoder is given as

αY mod Λ = αY − Q(αY) (2.33)

The decoding process is based on computing the square of the norm of the vector αY mod Λ
and comparing the result to a threshold. The decoding is written as

Ŵ =

{
0 if ‖αY mod Λ‖2 > nT
1 if ‖αY mod Λ‖2 < nT

, (2.34)

where T is a threshold, the optimal value of which will be derived later. The probability of
false alarm can be bounded as follows

P
(n)
FA = Pr

(
‖αY mod Λ‖2 < nT |W = 0

)

=
V ol

(
Bn(

√
nT ) ∩ V0

)

V ol(V0)

≤ V ol
(
Bn(

√
nT )

)

V ol(V0)

=
( n

n + 2

Gn(Λ)

G∗
n

T

σ2
N1

)n/2
, (2.35)

where V0 is the base Voronoi cell of Λ and Gn(Λ), and G∗
n are the normalized second moments

of the lattice Λ, and the n-dimensional ball Bn(
√

nT ) with radius
√

nT respectively.
The probability of miss is written as

P
(n)
M = Pr

(
‖αY mod Λ‖2 > nT |W = 1

)
(2.36)

The quantization noise at the decoder can be written as

αY mod Λ = (1 − α)N1 + αN2 (2.37)

Therefore P
(n)
M can be written as

P
(n)
M = Pr

(
‖(1 − α)N1 + αN2‖2 > nT |W = 1

)
. (2.38)
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For notational convenience we make the following substitution

Z = (1 − α)N1 + αN2 (2.39)

In [48] it was proved that there exists a Gaussian vector Z
∗ ∼ N

(
0, σ2

Z∗I
)

with variance

bounded as

n

n + 2

σ2
N1

σ2
N2

σ2
N1

+ σ2
N2

≤ σ2
Z∗ <

(Rc

Re

)n σ2
N1

σ2
N2

σ2
N1

+ σ2
N2

(2.40)

such that

fZ(z) ≤ eǫ1(Λ)nfZ∗(z∗), (2.41)

where

ǫ1(Λ) = log
Rc

Re
+

1

2
log 2πeG(Λ), (2.42)

and Rc, and Re are the covering and equivalent radius respectively of Λ.

We can use (2.41) to upper-bound P
(n)
M , i.e.

P
(n)
M = Pr

(
‖(1 − α)N1 + αN2‖2 > nT |W = 1

)

≤ eǫ1(Λ)nPr
(
‖Z∗‖2 > nT |W = 1

)
. (2.43)

The distribution of ‖Z∗‖2 is the X 2 (chi-square) distribution [49], i.e.

f‖Z∗‖2(z) =

{
zn/2−1e−z/2σ2

Z

2n/2σn
ZΓ(n

2
)

if z ≥ 0

0 if z < 0
(2.44)

Applying the Chernoff bound on X 2, we get

P
(n)
M ≤ eǫ1(Λ)nPr

(
‖Z∗‖2 > nT |W = 1

)
≤ eǫ1(Λ)ne−snT µ(s), for s > 0 (2.45)

and

µ(s) = e
ln

∞R
0

esz zn/2−1e
−z/2σ2

Z

2n/2σn
Z

Γ( n
2 )

dz
= e

n
2

ln 1

1−sσ2
Z∗ (2.46)

is the moment generating function of X 2. The expression e−snT µ(s) is always convex in
s > 0 [25]. Therefore, to find s which minimizes (2.45) we write

nT =
∂µ(s)

∂s

/
µ(s). (2.47)

Solving for s we get

s =
1

2σ2
Z∗

− 1

2T
. (2.48)
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Substituting in (2.46) and (2.45) we get

P
(n)
M ≤ eǫ1(Λ)ne

−n
2

(
T

σ2
Z∗

−ln T

σ2
Z∗

−1

)

(2.49)

Taking the limit n → ∞ we have

Gn(Λ) → G∗ , as n → ∞ (2.50)

ǫ1(Λ) → 0 , as n → ∞ (2.51)

σ2
Z∗ →

σ2
N1

σ2
N2

σ2
N1

+ σ2
N2

, as n → ∞ (2.52)

Taking the above limits into account, the error exponents become

EFA = lim
n→∞

− 1

n
lnP

(n)
FA

≥ lim
n→∞

− 1

n
ln

( n

n + 2

Gn(Λ)

G∗
n

T

σ2
N1

)n/2

=
1

2
ln

σ2
N1

T
(2.53)

EM = lim
n→∞

− 1

n
lnP

(n)
M

≥ lim
n→∞

− 1

n
ln eǫ1(Λ)ne

−n
2

(
T

σ2
Z∗

−ln T

σ2
Z∗

−1

)

=
1

2

(
T

σ2
N1

+ σ2
N2

σ2
N1

σ2
N2

− lnT
σ2

N1
+ σ2

N2

σ2
N1

σ2
N2

− 1
)

(2.54)

To have EFA, EM ≥ 0 we need the condition
σ2

N1
σ2

N2

σ2
N1

+σ2
N2

≤ T ≤ σ2
N1

.

The probability of error is

P
(n)
E = Pr(W = 0)P

(n)
FA + Pr(W = 1)P

(n)
M (2.55)

Since probabilities can be expressed as exponentials, we have

EE = min{EFA, EM}. (2.56)

Therefore, to maximize the error exponent bound we should choose the threshold nT such

that the lower bounds to EFA and EM are equalized, i.e. T =
σ2

N1
σ2

N2

σ2
N1

+σ2
N2

(
1 + ln(1 +

σ2
N1

σ2
N2

)
)
.

For this case we have

EE ≥ ln(1 +
σ2

N1

σ2
N2

) − ln
(
1 + ln(1 +

σ2
N1

σ2
N2

)
)

(2.57)

The bound (2.57) is shown in Fig. 2.11, together with (2.21) and (2.22). We can see that
Quantization-Based watermarking clearly outperforms blind spread-spectrum watermarking

for DWR > 35db. We also observe that for some ratios 0.5 <
σ2

N1

σ2
N2

< 10, QIM clearly

outperforms even non-blind spread-spectrum.
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Figure 2.11: Error-exponents for one-bit watermarking.

2.6 Scalar Quantization-Based Watermarking

The simplest implementation of quantization-based watermarking employs scalar quantizers
[50, 51]. An example of scalar QIM encoder is shown in Fig. 2.12, where Q(·) denotes
uniform quantization with step size ∆. For W = 1 the quantizer’s input and output are
shifted with ∆

2 and −∆
2 respectively. The quantizer’s input-output characteristics are shown

in Fig. 2.13. One of the two input-output characteristics is chosen, depending on the message
we want to embed. The quantization noise is defined as

N1 = αX̃ − Q(αX̃)

= X̃ − X (2.58)

The quantizer output is given as

U =

{
k∆ if W = 0

(2k + 1)∆
2 if W = 1

(2.59)

The attack channel and the decoder are shown in Fig. 2.14. The received signal is
written as

Y = X + N2

= U + (1 − α)X̃ + N2

=
1

α

(
U + (1 − α)N1

)
+ N2, (2.60)

where the last line follows from using the relation αX̃ = U + N1.
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Q

W ∈ {0, 1}

U

α

1 − α

XX̃

∆
2

Figure 2.12: Watermark encoder.

αX̃

U

W = 0

W = 1

∆
2

∆
2

Figure 2.13: Quantizer input-output characteristics



24CHAPTER 2. INFORMATION THEORETIC APPROACHES TO WATERMARKING

The decoder multiplies Y by α, thus obtaining

Û = αY

= U + (1 − α)N1 + αN2, (2.61)

where we used (2.60) in the last line. The decoder computes |Û − Q(Û)| and estimates the
watermark as follows:

Ŵ =

{
0 if |Û − Q(Û)| ≤ ∆

4

1 if |Û − Q(Û)| > ∆
4

(2.62)

|Û − Q(Û)|
> ∆

4

Ŵ = 1

≤ ∆
4

Ŵ = 0

α

ÛYX

N2

Figure 2.14: Watermark decoder.

When α = 1, irrespective of the attack channel, then obviously the encoder and decoder
do not know the variance of the attack channel. The performance for the case α = 1
is therefore expected to be reduced. Experimental results of the probability of error for

α =
σ2

N1

σ2
N1

+σ2
N2

and α = 1 are shown in Fig. 2.15. It can be seen that for the case α = 1,

Pe approaches 0.5 much faster than in the case when the encoder and decoder know the
variance of the attack channel.

It is possible to evaluate the performance of QIM watermarking in terms of capacity,
using the formula

C = 1 + H(Pe)

= 1 + Pe log Pe + (1 − Pe) log(1 − Pe) (2.63)

The formula (2.63) is the capacity of the binary symmetric channel (BSC) [30] with crossover
probability Pe. It can be straightforwardly shown that the QIM watermarking system to-
gether with the attack channel can be modeled as a BSC with crossover probability equal to
the probability of error of the watermarking system, see Fig. 2.16. Comparison of the ex-
perimental capacity with theoretical limits is shown in Fig. 2.17. We can see that there is a
gap to the theoretical limits (2.25) especially at high WNR, because the capacity according
to (2.63) can be at most 1 bit.

Improvements to the basic scalar QIM are possible by incorporating non-uniform scalar
quantizers. In [52] it was shown that the fidelity of the embedding process can be improved
by selectively changing the quantization step size based on the host signal statistics.
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Figure 2.15: Probability of error for additive Gaussian attacks, α =
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Figure 2.16: Watermarking scheme as a BSC.
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2.7 Attacks

In this section we consider attack channels that model signal processing operations com-
monly seen in watermarking applications. These attack channels are of particular interest
to quantization-based watermarking.

2.7.1 Additive Attacks

This type of attacks consists of adding a source of noise to the watermarked data subject
to distortion constraint. An example is shown in Fig. 2.18. The noise N2 has covariance
function KN2(t, u). When KN2(t, u) = N0

2 δ(u − t) then the noise is white, otherwise it is
said to be colored. Obviously, the colored noise can better adapt to the watermarked data
statistics, and therefore be more devastating than the white noise. Surprisingly in [19] it
was shown, under general conditions, that memoryless attacks are optimal, in particular
the i.i.d. Gaussian noise is the most malevolent power limited noise in terms of watermark
capacity.

N2

X Y

Figure 2.18: Additive Gausian noise attack.



2.7. ATTACKS 27

As mentioned above, the results obtained in [19] concern the capacity of ideal (theoreti-
cal) schemes. For some practical schemes, or other performance evaluation parameters (like
probability of error), the Gaussian attack may not be the most malevolent additive attack.
Here is an example. If we take (4.13) with D = 0, α = 1, and β = 1, we get the probability
of error for QIM without distortion compensation.

Pe =
∑

m

Pr[m∆ − 3∆

4
≤ N2 ≤ m∆ − ∆

4
] (2.64)

It can be shown that Pe = 0.5 when N2 ∼ U(0, σ2
N1

). Theoretically, to achieve Pe = 0.5 for
Gaussian attacks, we must have N2 ∼ N (0,∞), i.e. the power of the Gaussian attack must
be infinite. In practice (see Fig.2.15) Pe ≈ 0.5 when N2 ∼ N (0, 2σ2

N1
). Therefore, for scalar

QIM watermarking, the uniform noise is more malevolent than the Gaussian noise.
The Gaussian attack channel is often used in theoretical analysis for establishing bounds

and due to its mathematical tractability. Detailed analysis of the impact of additive noise
channels with different distributions on the performance of practical watermarking schemes
is given in [14].

2.7.2 Nonadditive Attacks

In [19] it was shown that, under squared-error constraints, the capacity when the attacker is
restricted to additive attacks is strictly larger than the capacity for general attacks (attack
channel specified by a conditional distribution). This demonstrates that additive attacks are
suboptimal. The result actually is not surprising, because the set of non-additive attacks is
larger than the set of additive ones.

Many signal processing operations can hardly be modeled as additive noise. In this thesis
we are mostly concerned with attacks that are common operations in signal processing
applications. An example of such an application is digital audio broadcasting (DAB). A
DAB encoder is shown in Fig. 2.19.

analog channel

D−A Mixing

Voice

All−pass
filtering

Low−pass
filtering FM

A−D compression

Dynamic 

OFDM

signal
processing

Audio

Stereo
widening

(1)

(1)digital signal

digital channel

Figure 2.19: Block diagram of DAB encoder.

Clearly, the operations within the DAB encoder cannot be modeled as pure additive
noise. They can be classified into four types of operations that we show in Fig. 2.20. The
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amplitude scaling operation is shown as a separate group, due to its central role as an attack
channel in this thesis.

Attack channel
Amplitude scaling

compression

Audiowatermarked
audio signal

attacked
signal

time−invariant
operations

NonlinearLinear
time−invariant
operations

Figure 2.20: Classification of signal processing operations within the DAB encoder.

The operations shown in Fig. 2.19 are of particular interest to watermarking, because
they do not induce big perceptual distortions to the signal, thus also making them attractive
for use by a malicious attacker. Linear time-invariant attacks are tackled in chapter 5 and
chapter 6. The class of non-linear time-invariant and compression attacks are beyond the
scope of this thesis and the reader is referred to [53, 54, 55] for theoretical analysis of the
compression attack.

Another operation (attack) that is important both to watermarking and communications
systems is the de-synchronization attack [56, 57] (time warping in audio), which can be
produced by a malicious attacker, or a byproduct of standard signal processing operations
such as sampling [58], analog-to-digital and digital-to-analog conversions [59]. The treatment
of de-synchronization attacks is outside the scope this thesis and the reader is referred to
[60, 61, 62, 63, 64] for analysis and countermeasures.

2.7.3 Amplitude Scale Attacks

As mentioned in the previous subsection, amplitude scale attacks constitute a central point
in this thesis. Amplitude scaling operations happen in every signal processing application.
Moreover, quantization-based watermarking schemes are extremely vulnerable to amplitude
scaling, because such operations introduce mismatch between the codebooks of the encoder
and decoder. Another important aspect is that although amplitude scaling introduces large
mean squared-error, the perceptual distortion of this operation is very low, i.e. only the
brightness (in images) or the loudness (in audio) is changed. The effect of unknown scaling
on probability of decoding error is shown in Fig. 2.21. It can be seen that probability of
error approaches 0.5 very fast as the scaling factor deviates from unity. It has to be noticed
that the effect of the amplitude scale attack is more pronounced at high DWR, because
then the mismatch between the codebooks is greater. In other words, the residual noise
after lattice decoding has bigger variance than in the case of low DWR.

The amplitude scale attack has also theoretical significance. For Gaussian sources, under
squared-error constraints, amplitude scale and additive noise is the optimal attack channel
from rate-distortion point of view. To see this, suppose that we want to maximally compress
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Figure 2.21: The effect of scaling β on probability of error. Experiments are performed for eX ∼ N (0, 1),
(a) DWR = 20db, (b) DWR = 30db.

X into Y (see Fig. 2.22) at rate R subject to distortion σ2
N2

, it is well known that this is
given by the rate-distortion function

R(σ2
N2

) = min
p(y;x)

I(Y ; X), (2.65)

where I(Y ; X) is the mutual information between X and Y , and the minimization is over
all joint distributions p(x; y) that satisfy the distortion constraint σ2

N2
.

optimal
compressor

X Y

Figure 2.22: Optimal compressor.

The rate-distortion function of a memoryless Gaussian source with respect to the squared-
error criterion is [24]

R(σ2
N2

) =
1

2
max

(
0, log

σ2
eX + σ2

N1

σ2
N2

)

=





1
2 log

σ2
eX
+σ2

N1

σ2
N2

, 0 ≤ σ2
N2

≤ σ2
eX + σ2

N1

0 , σ2
N2

≥ σ2
eX + σ2

N1

(2.66)

where X ∼ N (m, σ2
eX + σ2

N1
).

From [24] the optimal test channel is

p(y|x) =
1√

2πβσ2
N2

exp
−(y − βx)2

2βσ2
N2

, (2.67)

where β = 1 − σ2
N2

σ2
eX
+σ2

N1

. From (2.67) the test channel is constructed and shown in Fig.

2.23. We can see that Fig. 2.23 is nothing else but a scaling operation followed by additive
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Gaussian noise. Since the test channel minimizes I(X; Y ), we can also say that it is the
optimal attack channel that minimizes the information about the watermarked signal carried
by the attacked signal.

β

X

N2 ∼ N (0, βσ2
N2

)

Y

Figure 2.23: Test channel for Gaussian sources and squared-error criterion.

2.7.4 Linear Time-Invariant Filtering Attacks

Linear time-invariant (LTI) filtering operations are abundant in virtually all signal processing
applications. Moreover, signal processing operations that are not explicitly implemented
with filters can be modeled by a convolution with kernel. A malicious attacker can convolve
the watermarked signal with such an optimally designed kernel to prevent the communication
of the watermark message.

An example of linear filtering is shown in Fig. 2.24, where h(τ) is the filter impulse
response. The output of the filter can be written as

Y (k) =

Lf∑

τ=0

h(τ)X(k − τ)

= h(0)X(k) + h(1)X(k − 1) + · · · , (2.68)

where Lf is the filter length.

X(k) Y (k)
h(τ)

Figure 2.24: LTI filtering attack.

Each sample of the attacked data Y (k) is a linear combination of the watermarked data
X weighted by the filter coefficients. It is well known that the linear filtering operation
introduces inter-symbol interference. Therefore, the noise that hampers the decoding of the
watermark bits is the watermarked data itself. The larger the DWR the larger the variance
of the host (and therefore watermarked) signal with respect to the watermark variance and
the larger the probability of decoding error. If we assume that h(0) = 1, then from (2.64),
the probability of error under linear filtering attacks can be written as

Pe =
∑

m

Pr[m∆ − 3∆

4
≤ Nf ≤ m∆ − ∆

4
]. (2.69)
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If the watermarked signal is i.i.d. X ∼ N (0, σ2
X), then using (2.68) we have Nf ∼ N

(
0, σ2

X

Lf∑
τ=1

h2(τ)
)
.

If DWR is fixed, Pe depends mostly on the value of the expression
Lf∑
τ=1

h2(τ). For high DWR

and
Lf∑
τ=1

h2(τ) ≥ 1, Pe is expected to be high.

If the watermarked signal is correlated, the variance of Nf is given as

σ2
Nf

=

Lf∑

k=1

Lf∑

l=1

h(τ − k)KX(k, l)h(τ − l), (2.70)

where KX(k, l) is the correlation function of the watermarked signal X.
If h(0) 6= 1, then we have the more devastating amplitude scale and noise attack2 shown

in Fig. 2.25.

Y (k)X(k)

h(0) Nf

Figure 2.25: Amplitude scale and noise channel model for an LTI filtering attack.

2.8 Rational Dither Modulation

Quantization-based watermarking schemes are vulnerable to amplitude scaling operations
on the watermarked data, because such operations cause a mismatch between the encoder
and decoder code books. Amplitude scaling operations can be either unintentional (due to
signal processing applications) or malicious (due to adversary).

To cope with amplitude scale attacks, a quantization-based scheme was proposed in [22],
named Rational Dither Modulation (RDM). The advantage of the scheme is its invariance
to amplitude scale attacks. The simplest version of a first order RDM scheme is shown in
Fig. 2.26, together with the attack channel. The embedding rule is given as

X(k) =
∣∣X(k − 1)

∣∣QW

( X̃(k)∣∣X(k − 1)
∣∣
)
, (2.71)

where QW (·) denotes uniform scalar quantizer associated with watermark message W , see
Fig. 2.13. The quantization stepsize is ∆. The quantizer operates not on the host sig-

nal sample X̃(k), but on the ratio
eX(k)∣∣X(k−1)

∣∣ of the current host sample and the previous

watermarked sample X(k − 1).

2Note that, since the attacked samples are linear combinations of the watermarked samples, the noise is
not additive.
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The attack channel consists of the additive Gaussian noise N2(k) and the constant am-
plitude scaling factor β.

The decoding rule is given as

Ŵ = arg min
W

∣∣∣ Y (k)∣∣Y (k − 1)
∣∣ − QW

( Y (k)∣∣Y (k − 1)
∣∣
)∣∣∣ (2.72)

First, the decoder computes the ratio Y (k)∣∣Y (k−1)
∣∣ . Then the decoder determines the quantizer

whose representation level is closest to the ratio Y (k)∣∣Y (k−1)
∣∣ and makes an estimate Ŵ of the

embedded message. From (2.72) we can see that if the watermarked data X(k) is scaled by

β, β will be present in Y (k) and in Y (k− 1). Therefore the ratio Y (k)∣∣Y (k−1)
∣∣ is independent of

β, which makes the performance of the scheme invariant to amplitude scaling attacks.

There are some disadvantages of the first order RDM, which are as follows. Since the
quantizer operate on the ratios, this operation can also be seen as quantizing the current
samples with a variable step size quantizer, whose step size depends on the previous sample.
Since in the attack channel there is also additive noise, the variable step sizes at the encoder
and decoder will be different. This mismatch increases the probability of error with respect
to additive noise attacks. Another disadvantage is that the distribution of the watermarked
data becomes non-stationary, which makes the system difficult to analyze theoretically.

decoderQW (·)

2∆

| · | | · |

2∆

X̃(k)

N2(k)

X(k)

X−1

X(k − 1)

β

Y (k)

Y −1

Y (k − 1)

W Ŵ

Figure 2.26: First order RDM scheme.

The quantization step can be made asymptotically constant by increasing the memory
of the system. This can be done by introducing the function

g(X, k, L, p) =
( 1

L

k−1∑

m=k−L

|X(m)|p
) 1

p
, (2.73)
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where L is the memory of the system and p ≥ 1. See [22] for optimal choices of the parameter
p. The Lth order RDM scheme is shown in Fig. 2.27. The encoding rule is given as

X(k) = g
(
X(k − 1)

)
QW

( X̃(k)

g(X, k, L, p)

)
(2.74)

Instead of X(k − 1), the encoder uses g(X, k, L, p). The decoding rule is given as

Ŵ = arg min
W

∣∣∣ Y (k)

g(X, k, L, p)
− QW

( Y (k)

g(X, k, L, p)

)∣∣∣ (2.75)

As L → ∞, g(·) approaches a constant, and the performance of RDM approaches that of
QIM [22].

decoderQW (·)

2∆2∆

gg

X̃k

X(k)

X−1

X(k − 1)

X−1

X(k − 2)

X−1

X(k − L)

N2(k) β

Y (k)

Y −1

Y −1

Y −1

Y (k − L)

Y (k − 2)

Y (k − 1)

W Ŵ

Figure 2.27: General order RDM scheme.

Experimental results of the probability of error are shown in Fig. 2.28. It can be seen
that increasing the memory of the system reduces Pe mostly at high WNR, which is due
to the fact that the quantization step sizes at the encoder and decoder become almost
equivalent.

RDM can be further improved by incorporating perceptual models [65], or error correct-
ing codes [66].
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Figure 2.28: Probability of error for RDM. Chosen settings are DWR = 25db, p = 2, β = 1.05.

2.9 Discussion

In this section we have reviewed the information theoretic principles that form the foundation
for studying the watermarking problem. We analyzed spread spectrum and quantization-
based watermarking, and compared these two classes in terms of capacity and error expo-
nents, subject to additive Gaussian noise attacks. Quantization-based watermarking out-
performs blind spread spectrum watermarking in terms of capacity and error exponents. In
terms of capacity the performance of quantization-based watermarking is equal to that of
non-blind spread spectrum watermarking, and in terms of error exponents the performance
of both classes is more or less the same.

We made a simple classification of the types of attacks in signal processing applica-
tions, and gave models for each of the most important attack operations, with a particular
emphasis on the amplitude scale attack. Although quantization-based watermarking outper-
forms spread-spectrum watermarking in terms of additive noise attacks, the former remains
vulnerable to amplitude scale and linear filtering attacks.

We discussed a novel technique called rational dither modulation, that is invariant to
amplitude scale attacks. However, this technique has a lower capacity than distortion com-
pensated QIM in terms of additive noise attacks. Another drawback is its insecurity. An
attacker knowing the step size of the quantizer can easily decode the watermark. In the
next chapters we present techniques overcoming these two drawbacks.

The performance of the described watermarking schemes can be further improved, irre-
spective of the attack channel, by encoding the watermark bits with error correcting codes
[67, 68, 69] before embedding. The error correcting code will introduce redundancy, thus
reducing the watermark payload, and of course reducing probability of error (if the errors
are sufficiently low). The more powerful the error correcting code (Reed-Solomon, turbo
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codes) the bigger the improvement of the whole system.
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Chapter 3

Amplitude Scale Estimation ∗

Watermarking schemes based on Quantization Theory have recently emerged as a result of
Information Theoretic analysis [18, 19, 70, 71]. These schemes prove to perform better than
the well known spread spectrum watermarking in the context of additive attacks [72, 73].
However, the resulting watermarking schemes fail to perform well for a number of impor-
tant non-additive attacks (operations) [74, 75]. One such operation is amplitude scaling
which is a common operation in many applications, such as audio play out and recording.
Another application is Digital Audio Broadcasting (DAB), where amplitude scaling is even
more complex, because different frequency bands are scaled (filtered) with different factors.
Nonlinear scaling such as gamma correction can be seen in image processing applications.
Quantization-based watermarking schemes are vulnerable against amplitude scaling. The
reason for this is the fact that in order to assist the structured decoder, a maximum a pos-
teori (MAP ) estimation of the codeword used in the embedding stage is needed. Therefore,
the amplitude scaling factor has to be known at the detection side for reliable codeword
estimation.

Two approaches have been proposed in the literature to combat the scaling attack. One
of them is based on estimating the scaling factors using the histogram of the received data.
Once a good estimate is obtained, the scaling factors can be accounted for by dividing the
received data by the estimated scaling factors, or by an appropriate modification of the
watermark detector. We distinguish estimation based on pilot signal [21, 76] and blind
estimation [77]. Another approach is based on optimized for the scaling attack codes [78]
, such as modified trellis codes [79]. Invariance to amplitude scaling factors can also be
achieved by incorporating into the QIM scheme a suitably modified perceptual model [80],
such as the Watson model [81].

In this chapter we derive the probability density model of the received watermarked
and attacked data when the encoder is Quantization Index Modulation (QIM) with dis-
tortion compensation (DC). Based on this model we derive two approaches for estimation
of amplitude scaling modifications. In section 3.1, a mathematical model of the problem
is introduced. In section 3.2, the model of the probability density function (PDF ) of the

∗This chapter is part of I. D. Shterev and R. L. Lagendijk "Amplitude Scale Estimation for Quantization-
Based Watermarking", IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4146-4155, November
2006, and I. D. Shterev, R. L. Lagendijk, and R. Heusdens, "Statistical Amplitude Scale Estimation for
Quantization-Based Watermarking", SPIE Security, Steganography, and Watermarking of Multimedia Con-
tents VI, San Jose, CA, January 2004.
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received data is derived. In section 3.3, a procedure based on Fourier Analysis is examined.
In section 3.4, the maximum likelihood estimator is described. In section 3.5 we compare the
two proposed estimation techniques, and in section 3.6, we describe the case when different
messages are embedded. Finally, conclusions and discussion are presented in section 3.7.

3.1 Mathematical Formulation of QIM with DC

In this section we focus on the most popular quantization-based watermarking scheme,
namely scalar Quantization Index Modulation (QIM). Random variables are denoted by
capital letters and their realizations by the respective small letters. The notation X ∼ fX(x)
indicates that the random variable X has a PDF fX(x).

Fig. 4.1 shows the watermark encoder, where W ∈ {0, 1} denotes the message bits that
are embedded in the host data, X̃ is the host signal itself with a variance σ2

eX , X is the

watermarked signal. The variable U is the output of the quantizer. Q(·) denotes uniform
quantization with step size ∆. The quantization noise, which is the difference between the
quantizer input and output, is defined as

N1 = αX̃ − Q(αX̃)

= αX̃ − (X − (1 − α)X̃)

= X̃ − X, (3.1)

where α is a coefficient to be defined later.

From (4.1) we see that the watermark X̃ − X and the quantization noise are equal.
The quantizer input-output characteristic is shown in Fig. 4.2 for the watermark message
W ∈ {0, 1}. The output of the quantizer can be written as:

U =

{
k∆ if W = 0

(2k + 1)∆
2 if W = 1

(3.2)

where k ∈ (−∞,∞) is an integer.

The attack channel is shown in Fig. 4.3. It consists of the constant amplitude scale
factor β and the noise N2 ∼ N (0, σ2

N2
). The noise N2 is independent of X̃ and N1. We

choose the coefficient α =
σ2

N1

σ2
N1

+σ2
N2

as in [42], where σ2
N1

is the variance of N1. Other choices

for α are also possible [82].

The attacked (received) signal Y can be written in the following way:

Y = βX + N2

= β(U + (1 − α)X̃) + N2. (3.3)

Using the relation αX̃ = U + N1, we obtain the received data Y in terms of N1, N2, and
the watermark-bearing signal U :

Y =
β

α
(U + (1 − α)N1) + N2. (3.4)
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∆
2

Figure 3.1: Watermark encoder.

αX̃

U

W = 0

W = 1

∆
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∆
2

Figure 3.2: Quantizer input-output characteristics

N2 ∼ N (0, σ2
N2

)β

X Y

Figure 3.3: Attack Channel.
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The watermark decoder is shown in Fig. 4.4. From the received signal Y , the decoder
first performs Maximum a Posteriori Probability (MAP) estimation of the signal U , which
under mild assumptions [18] is equivalent to multiplication by α

β
1. The decoder obtains:

Û =
α

β
Y

= U + (1 − α)N1 +
α

β
N2. (3.5)

The decoder then computes the absolute value of the quantization noise |Û − Q(Û)| and
makes an estimate of the embedded watermark in the following way:

Ŵ =

{
0 if |Û − Q(Û)| ≤ ∆

4

1 if |Û − Q(Û)| > ∆
4

(3.6)

ÛY > ∆
4

Ŵ = 1

≤ ∆
4

Ŵ = 0

‖Û − Q(Û)‖

α
β

Figure 3.4: Watermark decoder.

Throughout we denote WNR = 10 log
σ2

N1

σ2
N2

, and the document-to-watermark ratio DWR =

10 log
σ2

eX

σ2
N1

.

Experimental results of the effect of unknown β on probability of error are shown in Fig.
3.5. We can see that the amplitude scale attack is more devastating at high WNR. At low
WNR, the effect of the attack is less pronounced, because Pe is already quite large for β = 1.

3.2 PDF Models

In this section we first derive exact PDF models of the watermarked and attacked signals.

From Fig. 4.1, the PDF of the watermarked data X is given as:

fX(x) = fX|W=0(x)Pr[W = 0] + fX|W=1(x)Pr[W = 1], (3.7)

where Pr[W = 0] and Pr[W = 1] are the probabilities of occurrence of bit 0 and 1, respec-
tively, and fX|W=0(x) and fX|W=1(x) are the conditional PDFs of the watermarked data
corresponding to W = 0 and W = 1, respectively.

1Here we assume that we are able to perfectly estimate β
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Figure 3.5: The effect of β on probability of error. Experiments are performed for eX ∼ N (0, 1), N2 ∼
N (0, σ2

N2
), DWR = 20db.

Taking β and N2 into account and using the fact that for any β > 0 we have fβX|W (x) =
1
β fX|W (x

β ), we obtain the PDF of the received data Y as:

fY (y) = fN2(n2) ∗ fβX|W=0(x)Pr[W = 0] + fN2(n2) ∗ fβX|W=1(x)Pr[W = 1]

= fN2(n2) ∗
[ 1

β
fX|W=0

(x

β

)
Pr[W = 0]

]

+ fN2(n2) ∗
[ 1

β
fX|W=1

(x

β

)
Pr[W = 1]

]
, (3.8)

where the convolution ∗ follows from the independence between βX and N2.
We derive the expression for fX|W=0(x). The derivation of fX|W=1(x) follows using

similar reasoning.
Let us consider the case where the input to the quantizer is in the kth quantization cell,

i.e. the output of the quantizer is U = k∆. We have

∆
(
k − 1

2

)
< αX̃ < ∆

(
k +

1

2

)
. (3.9)

Multiplying all sides by the positive term 1−α
α , we get

(1 − α)∆

α

(
k − 1

2

)
< (1 − α)X̃ <

(1 − α)∆

α

(
k +

1

2

)
. (3.10)

Adding k∆ to all sides and reorganizing, we obtain

∆

α

(
k − 1 − α

2

)
< (1 − α)X̃ + k∆ <

∆

α

(
k +

1 − α

2

)
. (3.11)
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We define the indicator function

IAk|W=0
(x) =

{
1 if x ∈ Ak|W=0

0 if x /∈ Ak|W=0
(3.12)

where

Ak|W=0 =
[∆

α
(k − 1 − α

2
),

∆

α
(k +

1 − α

2
)
]
. (3.13)

Therefore, the PDF of (1 − α)X̃ + k∆ over the support set Ak|W=0 is
1

1−αf eX

(
x−k∆
1−α

)
IAk|W=0

(x). Recognizing that (1− α)X̃ + k∆ is the watermarked data X for

a particular k, we can find the PDF of X by summing over k. Thus we have:

fX|W=0(x) =
∞∑

k=−∞

1

1 − α
f eX

(x − k∆

1 − α

)
IAk|W=0

(x). (3.14)

In the same fashion we can express the PDF of the watermarked data for W = 1 as

fX|W=1(x) =
∞∑

k=−∞

1

1 − α
f eX

(x − 2k+1
2 ∆

1 − α

)
IAk|W=1

(x) (3.15)

where

Ak|W=1 =
[∆

α
(k +

α

2
),

∆

α
(k +

2 − α

2
)
]
. (3.16)

An illustration of (3.14) is shown in Fig. 3.6.
Referring to the above equations, we can now take the scaling factor β into account:

fβX|W=0(x) =
1

β(1 − α)

∞∑

k=−∞
f eX

(x − kβ∆

β(1 − α)

)
IAk|β,W=0

(x) (3.17)

fβX|W=1(x) =
1

β(1 − α)

∞∑

k=−∞
f eX

(x − 2k+1
2 β∆

β(1 − α)

)
IAk|β,W=1

(x) (3.18)

where the indicator sets are given as

Ak|β,W=0 =
[β∆

α
(k − 1 − α

2
),

β∆

α
(k +

1 − α

2
)
]

(3.19)

Ak|β,W=1 =
[β∆

α
(k +

α

2
),

β∆

α
(k +

2 − α

2
)
]
. (3.20)

An illustration of (3.17) is shown in Fig. 3.7. The regular pattern that carries information
about the quantity β∆

α in the PDF of the watermarked data can clearly be seen. The work
[21] exploits similar modeling.

Finally an illustration of (3.8) with β = 1 and Pr[W = 0] = 1 is given in Fig. 3.8.
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Figure 3.8: Graph of fY (x) with Pr(W = 0) = 1. Chosen settings are eX ∼ N (0, 1), N2 ∼ N (0, 0.01),
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= 0.01, β = 1.

3.3 Estimation Based on Fourier Analysis

In this section we derive a procedure for scale estimation based on Fourier Analysis of the
expression (10). A similar procedure was derived by Eggers [21] for the watermark encoding
function X = (1 − α∗)X̃ + α∗Q(X̃) in the presence of dither. In [21] the authors choose
the optimal values for the quantizer step size and the coefficient α∗ numerically [83]. We
noticed, though that there is no significant difference in performance between our procedure
based on Fourier analysis and that described in [21].

We will need to define the characteristic function (c.f.) of a random variable X with pdf
fX(x) as:

ΦX(ω) =

∫ +∞

−∞
fX(x)eiωxdx (3.21)

From (3.19) and also from Fig. 3.7 we can see that fX|W (x|w = 0) has a regular structure

of discontinuity and continuity regions with width of ∆β and ∆β
σ2

N2

σ2
N1

respectively. The total

distance between the discontinuities is ∆β + ∆β
σ2

N2

σ2
N1

= ∆β
α . Therefore ΦX(ω) will have a

periodic-like structure with a period 2π α
∆β . Observing (11), we can say that the periodicity

of ΦX(ω) will not change if we embed only ones, i.e. P(W=1)=1, showing the advantage of
working in the Fourier domain. From (10) it follows that the c.f. of the received data can
be written as

ΦY (ω) = ΦX(ω)ΦN2(ω) (3.22)
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where ΦN2(ω) is the c.f. of N2. In the estimation procedure we will need to estimate the
periodicity 2π α

∆β from ΦY (ω), which due to the additive part in the attack channel will be
disturbed in a degree depending on the strength of N2 (see Fig. 4.16).

An illustration of characteristic functions for host, watermarked, and attacked data, for
Gaussian sources and different ratios of WNR is shown in Fig. 4.16. The first dominating
peak away from zero frequency is always at ω = 2π α

∆β .
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Figure 3.9: Plot of characteristic functions for Gaussian sources. (a) WNR = 0db, (b) WNR = −3db,
(c) WNR = −4.8db, (d) WNR = −6db.

There are two interesting features of the encoder that are due to the presence of α
in the periodicity of ΦX(ω). The first one improves the estimation robustness, while the
second one hampers it. Increasing σ2

N2
, the slope of ΦN2(ω) becomes steeper, and since

ΦN2(ω) ≤ ΦN2(0) = 1 for every ω (which is true for every valid c.f., see [84]), we can
say that for low WNR, only those peaks of ΦX(ω) that are nearer to ω = 0 will survive.
Fortunately decreasing WNR will also decrease α and the peaks of ΦX(w) will be shifted
towards lower frequencies, countering the effect of increasing σ2

N2
. The negative impact

of α consists of the fact that with decreasing WNR, a bigger part of the host signal will
pass through the (1 − α)X̃ branch, therefore reducing the part that passes through the
quantizer. As a result of that the zero regions in the PDF of the watermarked data will
tend to disappear, the peaks in ΦX(ω) will become flatter (even before multiplying with
ΦN2(ω)) as illustrated in Fig. 4.16, from which it would be more difficult to estimate the
scaling factor. However, experiments showed that the positive feature prevails and knowing
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the statistics at the encoder side gives better results than the case of QIM .

3.4 Maximum Likelihood Estimation

In this section we will derive the Maximum Likelihood (ML) functional of β and study its
properties. A derivation of an analytical expression for this method is quite tedious and
in most cases is not possible. That is why we have to constrain ourselves to working with
convolution of PDF s.

The ML estimator of β can be written as:

β̂ = arg max
β

fY (y|β) (3.23)

We will assume that the samples of the received data are independent, for which we can
write the joint PDF of the received data as a product of the individual densities, i.e.
fY (y) = fY (y1)fY (y2)...fY (yn). We note however that such an assumption may result in
a source of substantial loss for real audio signals, exhibiting high correlation between the
samples. Expanding (3.23), we get:

β̂ = arg max
β

fY (y1, y2, ..., yn|β)

= arg max
β

fY (y1|β)fY (y2|β)...fY (yn|β)

= arg max
β

n∑

i

ln fY (yi|β) (3.24)

where the last line follows from the monotonicity of the logarithm.

Since it is difficult to further simplify the expression of fY (y) for general (even for
Gaussian2) sources, we perform experiments with Gaussian sources to see the behavior of
the likelihood function (LF)

∑n
i ln fY (yi|β) as a function of β. In Fig. 3.10(a), curves are

shown for different β. In Fig. 3.10(b) we plot the likelihood function for different WNR.
The maximum in the likelihood function curves indicating the right scaling factor β used in
the attack channel is clearly visible in all cases. We can see that around the maximum, the
likelihood function exhibits almost concave behavior.

3.5 Experimental Results

In this section we compare the performance of the proposed estimation techniques in terms

of the ratio
σ2

N2

σ2
N1

, and the number of available signal samples, for different audio signals.

Experimental results for the estimation procedure based on Fourier analysis with real audio
host signals are shown in Fig. 3.11. It can be seen that reliable estimation of β is possible

in the presence of additive noise with ratios up to
σ2

N2

σ2
N1

= 2. Fig. 3.11 shows that reliable

estimation is also possible from around 1000 signal samples.

2Because of the discontinuity in fX(x) it is difficult to obtain a convenient analytical expression for fY (y)
trough characteristic functions.
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Figure 3.10: Plot of experimental LF with Gaussian sources, DWR = 20db. (a) Different values of β, and
fixed WNR = 0db. (b) Different values of WNR, and β = 1.
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Figure 3.11: Plot of β̂ for Fourier-based estimation averaged over different audio signals with DWR = 20db,
β = 1. The crosses represent the estimation mean. The dashed curves represent the variance of the estimation
in both directions.
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In Fig. 3.12, the ML approach is evaluated with real audio signals (model mismatch)
and β = 1. In the experiments the decoder assumes a Laplacian host signal with variance
σ2

eX + σ2
N1

+ σ2
N2

. For the small distortion case σ2
eX ≫ σ2

N1
, σ2

N2
, σ2

eX + σ2
N1

+ σ2
N2

≈ σ2
eX .

Therefore, in practical applications, guessing the host signal variance at the detection side is

not a big issue. In terms of the ratio
σ2

N2

σ2
N1

, the ML approach outperforms the Fourier-based

approach, especially at high ratios
σ2

N2

σ2
N1

. In terms of the number of available signal samples,

it can be seen that reliable estimation of the amplitude scaling factor with the ML approach
is possible from around 2500 samples, which is higher than the minimum number of signal
samples needed for estimation with the Fourier-based method.
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Figure 3.12: Plot of β̂ for ML estimation averaged over different audio signals, for fixed β = 1. The
crosses represent the estimation mean. The dashed curves represent the variance of the estimation in both
directions.

3.6 A Note on Different Messages

In this section we discuss the case of imbedding different messages with specified probabilities
Pr[W = 0], P r[W = 1] 6= 0 and its influence on the proposed estimation procedures. Since
this case will mostly affect the discontinuity of fX(x), we will concentrate on the Fourier
based estimation method.

Lets assume that f(W = 0) ≈ f(W = 1) ≈ 0.5, or in other words there is a large enough
number of zeros and ones in the watermark bitstream. From (3.19) and (3.20) we can see
that when α = 0.5, the union of Ak,W=0(x) and Ak,W=1(x) completely covers the real line,
fX(x) will be absolutely continuous, and there will be no periodicity in ΦX(ω). Further
decreasing α will cause Ak,W=0(x) and Ak,W=1(x) to overlap. An illustration of these cases
is shown in Fig. 3.13.

We can conclude that in the case of large enough number of zeros and ones in the
watermark bitstream, the Fourier based approach will work only within the restriction σ2

N2
<

σ2
N1

. The ML approach does not rely on the discontinuity in the PDF of the watermarked
data and therefore is invariant to this restriction.
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Figure 3.13: Graphs of fX(x) and their corresponding ΦX(ω) in the case of Pr[W = 0] = Pr[W = 1] = 0.5.
(a) WNR = 3db and (b) WNR = 0db.
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3.7 Discussion

We presented two statistical procedures for estimation of scaling factors in attack channels
consisting of amplitude scaling followed by additive noise. The advantage of the procedure
based on characteristic functions is that the method relies on the discontinuity of the PDF of
the watermarked data, and is not "generally" dependent on the host signal. However, for too
strong noise in the attack channel, the method fails. Another disadvantage is the insecurity.
An attacker can easily determine the quantity α

∆β from the characteristic function of the
received data and decode the watermark by directly applying lattice decoding with step
size β∆

α . The method is computationally cheap and suitable for real-time applications. The
second method based on ML estimation is computationally more expensive than the method
based on characteristic functions. In our implementation, though, we managed to estimate
β in around 50 sec. from 10000 signal samples. Another disadvantage of the method is that
it is theoretically dependent on the host signal statistics (although the experimental results
indicate good performance in case of model mismatch for a variety of audio host signals).
The advantage of the method is the high estimation accuracy even in the presence of very
strong noise in the attack channel. In the case of model mismatch, in terms of the ratio
σ2

N2

σ2
N1

, the ML approach gives better results than the Fourier based approach, while in terms

of available signal samples, the Fourier based method gives superior estimation.
The quantization-based watermarking scheme on which the estimation procedures are

based is not secure. An attacker knowing the distortion of the encoder can easily decode
the watermark. In the next section we propose a technique for making the watermarking
system secure, and develop amplitude scale estimation procedure for it.



Chapter 4

Amplitude Scale Estimation in the

Presence of Dither∗

Watermarking is the process of imperceptibly embedding a message (watermark) into a host
signal (audio, video). The resulting signal is called a watermarked signal. The message
should introduce only tolerable distortion to the host signal and it should be recoverable by
the intended receiver after signal processing operations on the watermarked data.

Watermarking schemes based on quantization theory have recently emerged as a result
of information theoretic analysis [18, 20, 39, 42]. In terms of additive noise attacks, these
schemes have proven to perform better than traditional spread spectrum watermarking
because they can completely cancel the host signal interference, which makes them invariant
to the host signal [85]. The existence of good lattices in high dimensions [24, 86, 87] that can
be directly and efficiently implemented has made quantization-based schemes of practical
interest.

Lattice-based schemes are vulnerable to amplitude scale attacks, because these attacks
introduce mismatch between the encoder and the decoder lattice volumes. Furthermore,
amplitude scaling induces a large amount of distortion with respect to the mean squared er-
ror, but does not cause significant perceptual degradations. Such operation on watermarked
signals is quite common in many applications. One example is audio play-out and captur-
ing, where the watermarked signal is passed through a D-A converter, transmitted through
an analog noisy channel, captured by a microphone, and converted back to a digital repre-
sentation. Clearly the microphone will capture a less powerful and degraded watermarked
signal, which has led us to model the noisy channel as an amplitude scaling operation fol-
lowed by additive noise. In this paper we concentrate on operations consisting of amplitude
scaling followed by additive white Gaussian noise (AWGN), often called scale additive white
Gaussian noise (SAWGN) channel.

Several techniques are known in the literature for combating amplitude scale attacks.

∗This chapter is part of I. D. Shterev and R. L. Lagendijk "Amplitude Scale Estimation for Quantization-
Based Watermarking, IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4146-4155, November
2006, I. D. Shterev and R. L. Lagendijk "Maximum Likelihood Amplitude Scale Estimation for Quantization-
Based Watermarking in the Presence of Dither", SPIE Security, Steganography, and Watermarking of Mul-
timedia Contents VII, San Jose, CA, January 2005, and R. L. Lagendijk and I. D. Shterev "Estimation of
Attacker’s Scale and Noise Variance for QIM-DC Watermark Embedding, IEEE International Conference
on Image Processing, Singapore, October 2004.
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One of the approaches is based on designing watermarking codes that are invariant to ampli-
tude scale operations, such as modified trellis codes [79], order preserving lattice codes [88],
and rational dither modulation [22]. Another approach is based on estimating the non-
additive operations and inverting them prior to watermark decoding, using pilot signals [21],
or blind estimation [89, 83, 78]. More recently an iterative estimation procedure in combina-
tion with error correcting codes (equalization [90]) was proposed [91, 92, 93], which proved
to perform well even for low watermark-to-noise ratios (WNR). The advantage of the ap-
proach in [21] is the ability to estimate the scaling factor from a small number of signal
samples, which makes the estimation procedure applicable in situations where the scaling
factor slowly varies. The disadvantage of the method is that the pilot signals consume part
of the capacity of the watermarking system. The method proposed in [83] performs well for
low WNR, but lacks security, in the sense that an attacker knowing the distortion of the
embedder is able to estimate the scaling factors and decode the watermark. The methods
based on invariant codes give small probability of error with respect to amplitude scale at-
tacks at the expense of increased probability of error [22, 88] with respect to additive noise
attacks and reduced payload [79].

In this chapter we propose a Maximum Likelihood approach for estimating amplitude
scaling factors. Our estimation technique is blind and only assumes knowledge of the wa-
termark message priors. No knowledge of the position of the message bits in the watermark
bitstream is required. We also introduce subtractive dither [94] in the encoder. The real-
ization of the dither is assumed to be known to the decoder. An application of subtractive
dither to watermarking appeared first in [17], but with no theoretical analysis of the sys-
tem security. In this chapter we design the dither statistics such that an attacker without
knowing the dither realization is not able to decode the watermark. Thus the dither serves
as the key ensuring security of the system.

The chapter is organized as follows. In Section 4.1 we formulate the attack channel, the
watermark encoder and decoder. In Section 4.2 we derive the probability density function
(PDF) of the received data in the presence of dither [14]. In Section 4.4 we give conditions
for the dither sequence statistics, such that a given level of security is achieved and at the
same time the dither variance is as small as possible, using the probability of error of the
watermarking system as an objective function. A description of the ML estimation procedure
is given in Section 4.5. Section 4.6 contains experimental results with synthetic and real
audio host signals, and Section 4.8 concludes the chapter.

4.1 Mathematical Formulation

In this section we again focus on the most popular quantization-based watermarking scheme,
namely scalar Quantization Index Modulation (QIM).

Fig. 4.1 shows the watermark encoder, where D ∼ fD(d) is the dither sequence with
a variance σ2

D. The statistics of the dither sequence will be derived in Section 4.4. The
quantization noise, which is the difference between the quantizer input and output, is defined
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as

N1 = αX̃ + D − Q(αX̃ + D)

= αX̃ −
(
X − (1 − α)X̃

)

= X̃ − X, (4.1)

The output of the quantizer can be written as:

U =

{
k∆ if W = 0

(2k + 1)∆
2 if W = 1

(4.2)

Q

1 − α

D

U

D

X̃

α

X

∆
2

W ∈ {0, 1}

Figure 4.1: Watermark encoder.

The attack channel is shown in Fig. 4.3. The attacked (received) signal Y can be written
in the following way:

Y = βX + N2

= β
(
U − D + (1 − α)X̃

)
+ N2. (4.3)

Using the relation αX̃ = U − D + N1, we obtain the received data Y in terms of N1, N2,
and the watermark-bearing signal U :

Y =
β

α

(
U − D + (1 − α)N1

)
+ N2. (4.4)

The watermark decoder is shown in Fig. 4.4. From the received signal Y , the decoder
first performs Maximum a Posteriori Probability (MAP) estimation of the signal U − D,
which under mild assumptions [18] is equivalent to multiplication by α

β
1. Then the decoder

adds the dither D, obtaining:

Û =
α

β
Y + D

= U + (1 − α)N1 +
α

β
N2. (4.5)

1Here we assume that we are able to perfectly estimate β
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∆
2

U

αX̃ + D

W = 0

W = 1

∆
2

Figure 4.2: Quantizer input-output characteristics

N2 ∼ N (0, σ2
N2

)β

X Y

Figure 4.3: Attack Channel.
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The decoder then computes the absolute value of the quantization noise |Û − Q(Û)| and
makes an estimate of the embedded watermark in the following way:

Ŵ =

{
0 if |Û − Q(Û)| ≤ ∆

4

1 if |Û − Q(Û)| > ∆
4

(4.6)

‖Û − Q(Û)‖

Dα
β

Y > ∆
4

Ŵ = 1

≤ ∆
4

Ŵ = 0

Û

Figure 4.4: Watermark decoder.

4.2 PDF Models

Since in the presence of subtractive dither fX(x) will be perturbed by D, it is difficult to
derive a useful exact mathematical expression for it. That is why we choose to manipulate X
in a convenient way, having knowledge of D, so that we are able to mathematically describe
the structure of the PDF of the resulting random variable.

For simplicity, we will assume that only message W = 0 is embedded, therefore working
only with the first part of (3.8). Extension to the more general case of embedding zeros and
ones is straightforward: use the whole expression (3.8).

Referring to Fig. 4.1, let us assume that Pr[W = 0] = 1 and αX̃ + D belongs to the
k-th quantization cell, i.e.:

∆
(
k − 1

2

)
< αX̃ + D < ∆

(
k +

1

2

)
. (4.7)

Multiplying by 1−α
α and adding k∆, we obtain:

∆

α

(
k − 1 − α

2

)
< (1 − α)X̃ + k∆ +

1 − α

α
D <

∆

α

(
k +

1 − α

2

)
. (4.8)

Recognizing that the leftmost and rightmost parts of (4.8) are the indicator set Ak|W=0 as

given by (3.13) and taking into account the fact that (1 − α)X̃ + k∆ + 1−α
α D = X + 1

αD
(see Fig. 4.1), we can write the PDF of X + 1

αD for a particular k as

f ′
X+ 1

α
D

(x) = f
(1−α) eX+k∆+ 1−α

α
D

(x)IAk|W=0(x). (4.9)

Generalizing for all k, we have

fX+ 1
α

D(x) =
+∞∑

k=−∞
f
(1−α) eX+k∆+ 1−α

α
D

(x)IAk|W=0(x). (4.10)
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The key expression for the estimation procedure in the presence of subtractive dither is
(4.10). We can see that although X is perturbed by the dither, if we add the term 1

αD to
the watermarked signal, we are able to obtain a signal that has a PDF with an indicator
function equal to that when no dither is used. In other words, we are able to recover the
structure of the watermarked signal PDF by the use of the dither.

Taking into account β and the additive noise N2, we now have:

f
Y + β

α
D

(
y +

β

α
d
)

= fN2(n2) ∗ f
βX+ β

α
D

(
x +

β

α
d
)
, (4.11)

where the convolution ∗ follows from the independence between N2 and βX + β
αD.

4.3 Approximation to the PDF Models

Since expression (4.10) is very complex to implement, we make approximations to it. We can
see that there are only two random variables involved in (4.10), namely X̃ and D. Assuming
that σ2

eX ≫ σ2
D, we can approximate fX+ 1

α
D(x) in the following way:

fX+ 1
α

D(x) =
+∞∑

k=−∞
f
(1−α) eX+k∆+ 1−α

α
D

(x)IAk|W=0
(x)

≈
+∞∑

k=−∞
f
(1−α) eX+k∆

(x)IAk|W=0
(x) (4.12)

Note that the output of the quantizer depends both on X̃ and D, but since the variance of
the first is assumed to be much larger, the term k∆ is present in the approximation together
with X̃. An illustration of fX+ 1

α
D(x), its approximation as given by (4.12), and fX(x) is

shown in Fig. 4.5. The difference between fX+ 1
α

D(x) and its approximation can hardly be

recognized. We can also see the huge difference between fX+ 1
α

D(x) and fX(x).

4.4 Design of the Dither Sequence

In the previous section we saw that σ2
eX ≫ σ2

D in order for (4.12) to be an accurate approx-

imation. Approximation is perfect if σ2
D = 0, but this is unacceptable from security point

of view. In this section we find sufficient conditions for the dither sequence statistics such
that, for σ2

D as small as possible, an attacker is not able to decode the watermark with an
error probability2 different than 0.5.

To derive the conditions, we first need to derive the error probability, which is given by
the following theorem.

Theorem 1: When the dither sequence D is not known to the decoder, the error proba-
bility Pe is given by the expression:

Pe =
∑

m

Pr[m∆ − 3∆

4
≤ (1 − α)N1 +

α

β
N2 − D ≤ m∆ − ∆

4
], (4.13)

2Since we have one-dimensional, one-bit watermarking, the error probability and bit error probability are
equal.



4.4. DESIGN OF THE DITHER SEQUENCE 57

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.5: An illustration of fX(x) (dashed line), fX+ 1

α
D(x) (dotted line), and its approximation

P+∞
k=−∞ f(1−α) eX+k∆(x)IAk|W=0

(x) (solid line). Chosen settings are eX ∼ N (0, 1), σ2
N1

= σ2
N2

= σ2
D = 0.01,

β = 1.

where m ∈ (−∞,∞) is an integer.

Proof: The error probability Pe can be expressed as

Pe = Pr[Ŵ = 1|W = 0]Pr[W = 0] + Pr[Ŵ = 0|W = 1]Pr[W = 1]

= Pr[Ŵ = 1|W = 0], (4.14)

where the last line follows from the fact that the encoder is a symmetric scheme of two quan-
tizers, that the channel strategy is independent of the embedded message, i.e., fN2|W (n2|w) =
fN2(n2), and that Pr[W = 0] + Pr[W = 1] = 1. Therefore we can model the whole wa-
termarking system, together with the attack channel, as a Binary Symmetric Channel with
crossover probability Pe.

From (4.14) and (4.6), it is straightforward to show that the probability of error when
D is not added at the decoder can be written as

Pe = Pr[Ŵ = 1|W = 0]

= Pr
[∣∣Q(Û − D) − (Û − D)

∣∣ ≥ ∆

4

]
. (4.15)

Observe that for any X and scalar quantizer Q(·) with step size ∆, we can write the relation

∣∣Q(X) − X
∣∣ =

∣∣(X +
∆

2
) mod ∆ − ∆

2

∣∣. (4.16)
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Using (4.16) in (4.15) we have

Pe = Pr
[∣∣(Û − D +

∆

2
) mod ∆ − ∆

2

∣∣ ≥ ∆

4

]
(4.17)

= Pr
[
(Û − D +

∆

2
) mod ∆ ≤ ∆

4

⋃
(Û − D +

∆

2
) mod ∆ ≥ 3∆

4

]
(4.18)

where
⋃

denotes the union of two events.
Using (4.5) and taking into account that U ∈ Λ, the quantizer lattice, we can write

Pe = Pr[((1 − α)N1 +
α

β
N2 − D +

∆

2
) mod ∆ ≤ ∆

4
⋃

((1 − α)N1 +
α

β
N2 − D +

∆

2
) mod ∆ ≥ 3∆

4
].

Using Number theory [95], we can write that for any b, and any c such that b > c > 0, and
any a 6= mb, where m ∈ (−∞, +∞) is an integer, the solution to the inequalities

a mod b ≥ c (4.19)

a mod b ≤ c (4.20)

is

mb + c ≤ a ≤ (m + 1)b and (4.21)

mb ≤ a ≤ mb + c , respectively (4.22)

Therefore, after simple arithmetics, we arrive at (4.13).

We would like to choose the dither sequence statistics such that the error probability
Pe = 0.5 for all choices of the attacker noise N2. We state the following theorem.

Theorem 2: For the probability of error Pe = 0.5 it is sufficient to choose the dither
uniformly distributed over the base quantization cell3, i.e. D ∼ U(0, σ2

N1
).

Proof: For notational simplicity we make the following substitution

Z = (1 − α)N1 +
α

β
N2 − D (4.23)

We can express (4.13) in the following way:

Pe =
∑

m

m∆−∆
4∫

m∆− 3∆
4

fZ(z)dz (4.24)

By definition, we can write

fZ(z) =

∫ ∫
fZ|N1,N2

(z|n1, n2)fN1,N2(n1, n2)dn1dn2 (4.25)

3In [94], it was shown that this is sufficient for making the quantization noise independent of the input
signal.



4.4. DESIGN OF THE DITHER SEQUENCE 59

Substituting with (4.25) in (4.24) we get

Pe =
∑

m

m∆−∆
4∫

m∆− 3∆
4

∫ ∫
fZ|N1,N2

(z|n1, n2)fN1,N2(n1, n2)dn1dn2dz

=

∫ ∫ ∑

m

m∆−∆
4∫

m∆− 3∆
4

fZ|N1,N2
(z|n1, n2)dzfN1,N2(n1, n2)dn1dn2, (4.26)

where in the second equality we interchanged the order of integration and summation.

From (4.23) we can write

fZ|N1,N2
(z|n1, n2) = fD

(
(1 − α)n1 +

α

β
n2 − z

)
(4.27)

Therefore, Pe can be written as

Pe =

∫ ∫ ∑

m

m∆−∆
4∫

m∆− 3∆
4

fD

(
(1 − α)n1 +

α

β
n2 − z

)
dzfN1,N2(n1, n2)dn1dn2 (4.28)

From (4.27) we see that the term (1 − α)n1 + α
β n2 affects only the mean of fD(−z). If we

choose the dither to be uniform over the base quantization cell, i.e., D ∼ U(0, σ2
N1

), then we
can show that (see Fig.4.6)

∑

m

m∆−∆
4∫

m∆− 3∆
4

fD

(
(1 − α)n1 +

α

β
n2 − z

)
dz = 0.5 (4.29)

Therefore,

Pe =

∫ ∫
0.5fN1,N2(n1, n2)dn1dn2 = 0.5 (4.30)

Note that in the proof of the theorems, we don’t need the assumption σ2
eX ≫ σ2

D, and

therefore the high resolution quantization assumption [89] is not necessary for the system
security. However, we will assume the low distortion case σ2

eX ≫ σ2
N1

= σ2
D because of the

approximation assumptions in the previous section.

Using Fig. 4.6 it can also be shown that Pe ≤ 2
3 , with equality when σ2

D = 9
4σ2

N1
and

σ2
N2

= 0.

Experimental curves for the probability of error Pe as a function of σ2
D for different values

of σ2
N2

are shown in Fig.4.7. It can be seen that Pe = 0.5 independently of σ2
N2

, as long as
D ∼ U(0, σ2

N1
).
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Figure 4.6: An illustration of
P

m

m∆−∆

4R

m∆− 3∆

4

fZ|N1,N2
(z|n1, n2)dz for D ∼ U(0, σ2

N1
).
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Figure 4.7: Experimental curves for Pe as a function of σ2
D for different values of σ2
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. The solid curve is

for σ2
N2

= 0, the dashed curve is for σ2
N2

= 0.01, and the dotted curve is for σ2
N2

= 0.02. Chosen settings

are eX ∼ N (0, 1), D ∼ U(0, σ2
D), N2 ∼ N (0, σ2

N2
), σ2

N1
= 0.01, and β = 1.
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4.5 Maximum Likelihood Estimation

The PDF models of the watermarked and attacked data have been derived as a function of
β in the previous sections. We are now able to use these models to estimate β from the
observed signal Y .

We assume that the host signal and attack channel noise are i.i.d. vector sources, i.e., we
consider all signals to be n dimensional vectors with i.i.d. components. The ML estimation
of β is done based on the following relation:

f
Y + β

α
D

(y +
β

α
d) = f

βX+ β
α

D
(βx +

β

α
d) ∗ fN2(n2) (4.31)

Representing f
Y + β

α
D

(y + β
αd) as a joint distribution, the ML estimation β̂ of the parameter

β [27] is given as:

β̂ = arg max
β

f
Y1+ β

α
D1,...,Yn+ β

α
Dn

(y1 +
β

α
d1, ..., yn +

β

α
dn)

= arg max
β

f
Y1+ β

α
D1

(y1 +
β

α
d1)...fYn+ β

α
Dn

(yn +
β

α
dn)

= arg max
β

∑

i

log f
Yi+

β
α

Di
(yi +

β

α
di). (4.32)

Here the second line follows from the assumption that the received data consists of n i.i.d.
samples, and therefore the joint PDF can be written as a product of the "n" marginal PDFs.
The last line follows from the monotonicity of the logarithm.

Experimental curves for the maximum likelihood function (LF), which is the expression∑
i log f

Yi+
β
α

Di
(yi + β

αdi), are shown in Fig. 4.8 and Fig. 4.9.

4.6 Experimental Results

In this section we describe experiments carried out to test the estimation accuracy of the
proposed technique in terms of WNR and the number of available signal samples n. In
principle one aims at developing estimation techniques that require small amount of data,
so that they can be applied in situations where the estimating parameter slowly varies.
Since it is difficult to further manipulate (4.11) (even for Gaussian sources) because of the
indicator function in f

βX+ β
α

D
(βx + β

αd), we do brute force search for the optimal β.

4.6.1 Synthetic Host Signals

Here we perform experiments with synthetic host signals. We assume that the estimator
has perfect knowledge of the host signal variance. In Fig. 4.10 we present results for β̂ as a
function of WNR. It can be seen that for WNR > −7db, the mean of β̂ is very close to the
true value of β, and the standard deviation of β̂ is always smaller than 1%. In Fig. 4.11 we
present results for β̂ as a function of number of signal samples. It can be seen that around
100 signal samples are needed for reliable estimation of β. Results of β − β̂ as a function
of β are presented in Fig. 4.12. We can see that the standard deviation of β − β̂ is smaller
than 1% for β > 0.75.
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Figure 4.8: Graph of LF for different values of β. Chosen settings are eX ∼ N (0, 1), D ∼ U(0, 0.01),
N2 ∼ N (0, 0.01), and σ2

N1
= 0.01.
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Figure 4.9: Graph of LF for different values of WNR. Chosen settings are eX ∼ N (0, 1), D ∼ U(0, 0.01),
σ2

N1
= 0.01, and β = 1.
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Figure 4.10: Graphs of β̂ as a function of WNR. The crosses represent the mean, and the lines the standard
deviation in both directions. The chosen settings are eX ∼ N (0, 1), DWR = 20db, β = 1, n = 350000.
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Figure 4.11: Graphs of β̂ for synthetic host signals as a function of the number of signal samples n. The
crosses represent the mean, and the lines the standard deviation in both directions. The chosen settings are
eX ∼ N (0, 1), DWR = 20db, WNR = 0db, β = 1.
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Figure 4.12: Graphs of β− β̂ as a function of β. The crosses represent the mean, and the lines the standard
deviation in both directions. The chosen settings are eX ∼ N (0, 1), DWR = 20db, WNR = 0db, n = 350000.

4.6.2 Real Host Signals

In this subsection we describe experiments with real audio signals (audio and speech with
sampling frequency 48kHz). We choose more realistic settings than in the case of synthetic
hosts, in which the estimator does not have a perfect knowledge of the host signal variance.
The assumed PDF model of the host signal at the detection side is a zero-mean Laplacian
PDF with variance equal to the variance of the received signal, i.e. X̃ ∼ L

(
0, β2(σ2

eX +σ2
N1

)+

σ2
N2

)
. This is a realistic assumption, because the decoder has access to the received data

and can estimate its variance. Furthermore, in practice most audio signals have a marginal
PDF that resembles the Laplacian PDF [96]. Experimental results in terms of WNR are
shown in Fig. 4.13. It can be seen that the standard deviation of β̂ is smaller than 1% for
WNR > −5db. Experimental results of β̂ as a function of number of signal samples are
shown in Fig.4.14. It can be seen that reliable estimation of β is possible for n > 31000
samples. In Fig. 4.15 we plot experimental results of β − β̂ as a function of β for different
audio signals. It can be seen that the standard deviation of β − β̂ is smaller than 1% for
β > 0.75.

The experimental results with real signals are generally worse than in the case of synthetic
signals. There are several reasons for that. First, the experimental settings are different. For
real signals the estimator has access only to the received signal. The variance of the received
signal differs from the variance of the host signal and the difference is especially pronounced
when β deviates from 1. This causes a difference between the PDF of the watermarked
data and the PDF assumed by the estimator. Secondly, real signals are non-stationary and
exhibit correlation between the samples, which is not captured by our PDF models.

The ML estimation procedure is computationally very expensive, because of the brute
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force searching for the optimal β. The paper [97] treats the problem of jointly estimating β
and σ2

N2
by transforming the attack channel into one that is equivalent but computationally

less expensive for the ML approach processing chain. However, this transform does not
improve the estimation.
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Figure 4.13: Graphs of β̂ for real audio signals as a function of WNR. The crosses represent the estimation
mean, and the lines the standard deviation in both directions. The chosen settings are DWR = 20db, β = 1,
n = 350000 . . . 500000.

4.7 Joint Estimation of Attack Parameters

In this section we propose a maximum likelihood (ML) approach to the estimation of a
linear scale factor and the variance of the attacker’s additive noise. The approach is based
on the ML scale estimation procedure developed in the previous section. We extend this
procedure to include estimation of the attacker’s noise variance by transforming the attack
channel into one that is less computationally expensive for the ML procedure. We apply the
resulting estimation procedure on attacked watermarked images.

The model we use for the attack on the watermarked data is given by:

Y (i, j) = βX(i, j) + N ′
2(i, j) (4.33)

= β(X(i, j) + N2(i, j)), (4.34)

where Y (i, j) is the received watermarked and attacked image, N2(i, j) is the attackers i.i.d.
(zero-mean Gaussian) noise with variance σ2

N2
, and β is the amplitude scaling factor. The

model (4.34) assumes that scaling is applied after adding the attacker’s noise N2(i, j). This
is slightly different from the model commonly used (4.33), where scaling is applied before

the attacker’s noise is added [83]. Since, in our estimation procedure we estimate both the
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Figure 4.14: Graphs of β̂ for real audio signals as a function of the number of signal samples n. The
crosses represent the mean, and the lines the standard deviation in both directions. The chosen settings are
DWR = 20db, WNR = 0db, β = 1.
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Figure 4.15: Graphs of β− β̂ for real audio signals as a function of β. The crosses represent the mean, and
the lines the standard deviation in both directions. The chosen settings are DWR = 20db, WNR = 0db,
n = 350000 . . . 500000.
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scaling factor β and the noise variance σ2
N2

, we can interchange noise addition and scaling
without loss of generality. As we will see later on in this section, such model has significant
modeling and computational advantages.

The watermarked data is corrupted by the attacker’s noise. The resulting PDF of
Ỹ (i, j) = X(i, j) + N2(i, j) is given by

feY (x; σ2
N2

) = fX(x) ∗ fN2(x; σ2
N2

), (4.35)

where fN2(x; σ2
N2

) is the PDF of the attackers noise.

Finally, the PDF of the scaled version Y (i, j) = βỸ (i, j) is given by

fY (x; β; σ2
N2

) =
1

β
feY

(x

β
; σ2

N2

)
. (4.36)

Note that in the above PDFs, we explicitly indicate the dependency on the attacker’s parame-
ters, namely the amount of additive noise σ2

N2
and the amplitude scaling β. In this section we

again assume that the host data X̃(i, j) and attacker noise N2(i, j) can be regarded as i.i.d.
processes. Hence the joint PDF of the image Y = {Y (i, j), 0 ≤ i ≤ M1 −1, 0 ≤ j ≤ M2 −1}
is equal to the product of the marginal PDFs:

fY(x; β, σ2
N2

) =
∏

i,j

1

β
feY (i,j)

(x

β
; σ2

N2

)
. (4.37)

Using the PDF fY(x; β, σ2
N2

) in (4.37) we can formulate the maximum likelihood esti-
mator of the unknown parameters σ2

N2
and β as:

(β̂, σ̂2
N2

) = arg max
β,σ2

N2

LF(β, σ2
N2

)

= arg max
β,σ2

N2

log fY(x; β, σ2
N2

)

= arg max
β,σ2

N2



M1M2 log

( 1

β

)
+

∑

i,j

log feY (i,j)

(x

β
; σ2

N2

)


 (4.38)

The likelihood function LF(β, σ2
N2

) can be evaluated for a given combination (β, σ2
N2

). We
remark that the actual evaluation of log feY (x

β ; σ2
N2

) requires the PDF feY (x; σ2
N2

), which does
not depend on β. In fact, into this PDF we substitute the inversely scaled (using the current
estimate β̂) amplitudes of the attacked watermarked image Y (i, j). The efficient evaluation
of the (rather complex expression of the) likelihood function is possible thanks to the model
(4.34). In case the model (4.33) had been used, the expression for the likelihood function
would be dependent on β in a more elaborate way, making efficient evaluation of feY (x; σ2

N2
)

far more difficult.
Clearly, the sophistication of the optimization method used to maximize the likelihood

function depends greatly on the behavior LF(β, σ2
N2

). Fig. 4.16 illustrates the behavior
of the likelihood function for β ∈ [0.5, 1.5] and σ2

N2
∈ [0.1, 10.0]. In this case we have

assumed that the host image X̃(i, j) is Gaussian distributed, DWR = 30db (yielding ∆ =
3.29), WNR = 3db, α = 0.67, and β = 1.21. The optimum of the likelihood value can
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be found close to the actual attacker’s parameters, but we also observe that LF(β, σ2
N2

)
consists of ridges with deep valleys in between. In fact, in case feY (x; σ2

N2
) = 0 for certain

amplitudes, the likelihood function may become equal to negative infinity if the (inversely
scaled) amplitudes of Y (i, j) fall in these zero regions of the PDF of Ỹ . Such zero regions
are more likely to occur for larger WNR, for which the behavior of LF(β, σ2

N2
) becomes more

irregular and efficient numerical optimization procedures for (4.38) (such as gradient-based
optimization) become less likely to be successful.
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Figure 4.16: Illustration of LF(β, σ2
N2

) without dithered quantization.

In the above approach we have excluded dithering of the quantization process. To include
the dither sequence D(i, j) in the estimation of β and σ2

N2
, we observe that:

• the input to the quantizer has a PDF that is different from the case when dither is not
used. However, if the variance of the dither sequence is small compared to the variance
of the host data, we can approximately ignore the effect of the dither on the PDF of
X(i, j). In our QIM-DC scheme, the dither is uniformly distributed in [−∆

2 , ∆
2 ],

• the subtracted dither D(i, j) after the quantizer in the watermark embedding scheme
can be compensated for in the parameter estimation process by simply re-adding
D(i, j) to the inversely scaled (using the current estimate of β) attacked watermarked

image Y (i, j). Hence, in (4.38) we simply replace the argument x
β = x(i,j)

β by
(x(i,j)

β −
D(i, j)

)
. Again, this makes possible an efficient evaluation of the likelihood function.
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Fig. 4.17 illustrates the behavior of the likelihood function under the same conditions as
those in Fig. 4.16, but now taking into account dithered quantization. The maximum of the
likelihood function can still be found in approximately the same location, and the behavior
of the likelihood function itself has changed marginally. This confirms the validity of the
assumption that we can safely ignore the effect of the dither on the PDF of X(i, j) in the
maximum likelihood parameter estimation.
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Figure 4.17: Illustration of LF(β, σ2
N2

) including dithered quantization.

An effect that we see in both Fig. 4.16 and Fig. 4.17 is that the (correct) optimum of
the likelihood function is relatively insensitive to the variance of the attacker’s noise. This
suggests that in a practical context we can limit the search of a proper value of σ2

N2
to a

limited set of values.

We have applied the proposed scale and variance estimation procedure on synthetic
Gaussian distributed images of size 256 × 256. The numbers obtained in this way give a
performance ceiling, since the PDF of real images can obviously be modeled less accurately.
Various embedding settings have been used to benchmark the estimation procedure. Ta-
ble 4.1 lists our experimental results based on synthetic (Gaussian) data, with β = 0.91,
DWR = 30db, and WNR = 0,−10,−20db.

Similar results are obtained for other values of β and DWR. Our results show that the
value of β can be estimated much more reliably than σ2

N2
. However, as we already remarked,

the value of σ2
N2

seems not be important in finding the correct scaling factor β. Estimating
β below a WNR of −10 to −20 db is useless, as the attacker’s noise will effectively make



70CHAPTER 4. AMPLITUDE SCALE ESTIMATION IN THE PRESENCE OF DITHER

WNR 0db -3db -10db

β 0.91 0.91 0.91
σ2

N2
0.9 1.8 9.0

β̂ 0.91 0.91 0.90
β search resolution 0.01 0.01 0.01

variance β̂ 0.00 0.01 0.05
σ̂2

N2
1.4 1.4 2.1

σ2
N2

search resolution 0.1 0.1 0.1

variance σ̂2
N2

0.3 0.7 5.0

Table 4.1: Experimental results using synthetic data

the extraction of message bit very difficult (probability of error approaching 0.5).

4.8 Discussion

In this chapter we presented an ML amplitude scale estimation technique for quantization-
based watermarking. We also incorporated subtractive dither into the watermarking system
and gave conditions for the dither sequence to achieve a given level of security. The estima-
tion approach needs small amount of signal samples for estimating reliably β in the case of
synthetic host signals, but relatively large amount of signal samples in the case of real audio
host signals. Experiments showed that the proposed approach performs well under realistic
conditions.

We developed a computationally efficient estimation of the amplitude scaling factor and
variance of the noise of the attack channel. The estimation procedure is not affected by the
presence or absence of dither. The optimum of the likelihood function is found around the
correct values of the parameters β and σ2

N2
for a wide range of watermark-to-noise ratios. A

major disadvantage of the current ML approach is that the likelihood function shows a very
irregular behavior for varying β and σ2

N2
. For that reason, we have optimized LF(β, σ2

N2
)

using a full search of the parameter space.
Although the amplitude scale attack channel can model linear filtering attacks (see sec-

tion 2.7.4), it is difficult to employ the methods developed in this and the previous chapter
to combat the linear filtering attack. The difficulty is due to the large amount of noise
introduced by the filtering operation that hampers the watermark. In order to develop tech-
niques for combating the linear filtering attack, we first try to study intermediate cases and
develop countermeasures based on the already developed estimation techniques. In the next
chapter we study an intermediate scenario in which the amplitude scale operation is applied
in the frequency domain and develop a procedure for estimating the scaling factors.



Chapter 5

Extension to Two-Band Amplitude

Scale Attacks ∗

Watermarking schemes based on quantization theory have recently emerged as a result of
information theoretic analysis [18, 20]. In terms of additive noise attacks, these schemes
have proven to perform better than traditional spread spectrum watermarking because the
used lattice codes achieve capacity for the AWGN channel. Another important feature of
quantization-based watermarking schemes is that they can completely cancel the host signal
interference, which makes them invariant to the host signal. A similar phenomenon exists
in channel coding with side information at the encoder [42]. Unfortunately, quantization-
based watermarking schemes such as Quantization Index Modulation watermarking with
Distortion Compensation (QIM with DC) [20] are not robust against LTI filtering attacks.
Considering the implementation of a quantization-based scheme in a LTI filtering setting,
it is likely that the scheme will fail. Weakness against LTI filtering is a serious drawback,
since many normal operations on images and audio are explicitly implemented with linear
filters. The bass and treble adjustments in a stereo system apply simple filtering opera-
tions. In addition, many other operations, although not explicitly implemented with filters,
can be modeled by them. For example, playback of audio over loudspeakers can also be
approximated as a filtering operation.

In this chapter, we focus on multi-band amplitude scaling problem in combination with
additive noise attack. One of its applications of which is a multi-band equalizer that modifies
the spectrum of the signal using the filter bank. The signal frequency range is divided into
a number of frequency bands and the signal may be amplified or attenuated in each of
these bands independently. To see how serious the problem can be, Fig. 5.1 shows the
behavior of QIM with DC for a variety of Document to Watermark ratio (DWR), when the
watermarked signal is attacked by a two-band filter bank with a scaling in the high frequency
band depicted in Fig. 5.2.

The solutions proposed so far to deal with one channel amplitude scaling attack, in the

∗This chapter is published as J. Wang, I. D. Shterev, and R. L. Lagendijk "Scale Estimation in Two-
Band Filter Attacks on QIM Watermarks, SPIE Security, Steganography, and Watermarking of Multimedia
Contents VIII, San Jose, CA, January 2006, and part of J. Wang, I. D. Shterev, and R. L. Lagendijk "Two-
Band Amplitude Scale Estimation for Quantization-Based Watermarking", IEEE International Symposium
on Intelligent Signal Processing and Communication Systems, Hong Kong, December 2005.
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Figure 5.1: Probability of error for different values of DWR. β = 0.95, no noise.

Figure 5.2: Filter transfer function.
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framework of QIM watermarking, can be grouped into two main categories: One of the
approaches is based on designing watermarking codes that are resilient to amplitude scaling
operation, such as trellis codes [79, 98]. Another approach is based on estimation the
amplitude scaling operation and inverting them prior to watermark decoding [89]. However,
to the best of our knowledge, no earlier work with regard to multi-band amplitude scaling
has been proposed before. The chapter is organized as follows: in Section 5.1 we formulate
the multi-band amplitude scale attack and introduce some important notation. In Section
5.2 we derive the PDF models for frequency band amplitude scaled signal and attacked signal
respectively. A description of the estimation procedure is given in Section 5.3. Section 5.4
contains experimental results from synthetic and real audio host signals, and Section 5.6
concludes the chapter.

5.1 Mathematical Formulation

In this section, we define some notational conventions. We assume that the host signal
is arranged in an n-dimensional vector X̃, i.e., x̃ =

(
x(1), x(2), . . . , x(n)

)
, where X(k)

(k ∈ 1, . . . , n) refers to the k-th element. Throughout the chapter, random variables are
denoted by capital letters and their realizations by the respective small letters. Vectors will
be denoted by bold letters. Fig. 5.3 and Fig. 5.4 show the watermark encoder together with
the attack channel and the scale corrector together with the watermark decoder, respectively.
The basic embedding and decoding procedures are based on QIM with DC, proposed by Chen
and Wornell [20]. In the watermark encoder, where W ∈ {0, 1} denotes the message bits

that are embedded in the host data, X̃ is the host signal itself with a variance σ2
eX , X is the

watermarked signal.
The multi-band amplitude scaling attack consists of an analysis/synthesis filter bank and

a constant scaling of the amplitude of the watermarked signal in each band. Furthermore,
we will assume that zero-mean additive white Gaussian noise N2 with variance σ2

N2
and

independent of the output of the filter attack X ′ is also added by the attacker. Let β =
[β1, β2, . . . , βM ], where βi > 0, for all i, denotes the Multi-band amplitude scaling factor
vector, and M is the number of the frequency channel. Following our model, the Fourier
transform of X ′ can be written as

X ′(ω) = T (ω)X(ω)

=
(
β0G0(ω)H0(ω) + β1G1(ω)H1(ω) + . . . + βMGM (ω)HM (ω)

)
X(ω), (5.1)

where G(ω) and H(ω) are the transfer functions of the analysis and synthesis filters respec-
tively.

Then the attacked vector Y is given as

Y = X ′ + N2. (5.2)

Finally, it is useful to define some quantities that relate the powers of the host, the water-

mark and noise. The Document-to-Watermark Ratio (DWR) is given by 10 log10

σ2
eX

σ2
N1

; the

Watermark-to-Noise Ratio (WNR) is 10 log10

σ2
N1

σ2
N2

, where σ2
N1

is the variance of the water-

mark. These quantities are expressed in decibels.
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Figure 5.3: Block diagram of watermark encoder and attack channel.
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Figure 5.4: Block-diagram of scale corrector and watermark decoder.

5.2 PDF Models

In this section we derive the PDF models for frequency band amplitude scaled vector X ′

and attacked vector Y as a function of β. These PDF models are the basis for the ML
estimation procedures for estimating β developed in the next section.

Referring to Fig. 5.3 and Fig. 5.4, multi-band amplitude scaling attack in each frequency
band consists of a twin LTI filters and a scaling factor βi. Assume that the filter bank holds
Perfect Reconstruction (PR) property, if the scaling factor β = 1, and N2 = 0, we obtain:

X(k) = X ′(k). (5.3)

For β 6= 1, (5.3) no longer holds; hense it leads to watermark detection error because the
watermarked signal is moved away from the correct centroids. From (5.1), we can see that
the transfer function T (ω) carries information about β. Since our goal is to derive PDF
of frequency band amplitude scaled vector X ′, it would be reasonable to use time domain
representation of (5.1). Then X ′(k) can be written as

X ′(k) = t(k) ∗ X(k)

= t(0)X(k) + t(1)X(k − 1) + t(2)X(k − 2) + . . . + t(k)X(0), (5.4)

where ∗ denotes convolution and t(k) is the impulse response of T (ω). Note that the impulse
response of the filters are known to the estimator.

We see that the overall filter operates by summing weighted delayed versions of the
watermarked vector X. In order to derive PDF of frequency band amplitude scaled vector
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X ′, we assume that the host signal is an i.i.d. vector source. We note that this assumption
is only an approximation for the real world case. Thus, the frequency band amplitude scaled
vector sample X ′(k) is a weighted sum of i.i.d. random variables X(k). In chapter 3, we
have derived the PDF model for the watermarked data X, i.e. fX(x). Then the PDF of X ′

is given as

fX′(x′) =
1∣∣t(0)

∣∣fX

( x

t(0)

)
∗ 1∣∣t(1)

∣∣fX

( x

t(1)

)
∗ . . . ∗ 1∣∣t(k)

∣∣fX

( x

t(k)

)
. (5.5)

To simplify the multi-band amplitude scaling problem, we confine ourselves to use a sim-
plified model, namely, a two-band filter bank, and the scaling factor only exists in the high
frequency band, in other words, the scaling factor vector is β = [1, β].

Fig. 5.5 illustrates the statistical distribution of the output of the filter attack X ′,
showing the sufficient accuracy in the predicted PDF model. For β = 1 the analytical PDF
is that of the typical QIM watermarked signal.
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Figure 5.5: Analytical PDF for different β vs. empirical histogram for a Laplacian host, DWR = 15db.
The filter transfer function is shown in Fig. 5.2.

In addition there are only several coefficients t(k) which have relatively large magnitude.
So it is reasonable to consider that these filter coefficients with larger magnitude play im-
portant role in (5.5). Therefore, fX′(x′) can be simplified by substituting only a few filter
coefficients with larger magnitude in (5.5), instead of using all filter coefficients. Let F
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denote the necessary number of filter coefficients. Fig. 5.6 illustrates fX′(x′) for different
F .

From Fig. 5.6, we can see that in this case, F = 3 is sufficient for (5.5). For larger
F , there is no evident improvement in the accuracy of the analytical PDF model, which
verifies that (5.5) can be simplified by substituting only a few filter coefficients with larger
magnitude.
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Figure 5.6: Analytical PDF for different F vs. empirical histogram for a Laplacian host, β = 0.8, DWR =
15db. The filter transfer function is shown in Fig. 5.2.

Taking into account the additive noise N2, we obtain the PDF of the attacked vector
Y :

fY (y) = fN2(n2) ∗ fX′(x′) (5.6)

where the convolution follows from the independence between N2 and X ′. fY (y) is shown
in Fig. 5.7. We see that the PDF model of the attacked vector matches the histogram quite
well for additive noise case.

5.3 Maximum Likelihood Estimation

The PDF model of the attacked vector has been derived as a function of β in the previous
section. We are now able to use the model to estimate β from the attacked vector Y .
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Figure 5.7: PDF of attacked vector Y vs. empirical histogram for Laplacian host, β = 0.8, WNR = 3db,
DWR = 15db. The filter transfer function is shown in Fig. 5.2.

Maximum Likelihood (ML) estimation can be used to solve this problem. The ML
estimation of β is done based on (5.6). By definition [27], the ML estimate β̂ of the scaling
factor β is given as:

β̂ = arg max
β

fY1,Y2,...,Yn(y1, y2, . . . , yn|β). (5.7)

However, it is difficult to derive the above joint PDF. Recall that for deriving (5.5), we
have made an assumption that the frequency band amplitude scaled vector X ′ has i.i.d.
components, so it is reasonable to consider that the vector Y will also have approximately
i.i.d. components.

Therefore, the joint PDF can be approximately written as a product of the marginal
PDFs, that is:

β̂ = arg max
β

n∏

i=1

fYi(yi|β) = arg max
β

n∑

i=1

log fYi(yi|β) (5.8)

The likelihood function is
∑

i log fZi(zi|β). Experimental curves of the LF for different values
of β and WNR are shown in Fig. 5.8. Since it is difficult to find an analytical expression
for β̂, we do a brute force search for the optimal value of β based on (5.8).

5.4 Experiments

In this section we describe experiments with synthetic and real audio signals (with sampling
frequency 48kHz) carried out to test the estimation accuracy of the proposed techniques in
terms of WNR, the parameter β, and the number of available signal samples n. Furthermore,
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Figure 5.8: Graph of LF for different values of β (a) and different values of WNR (b). Chosen settings

are eX ∼ L(0, 0.02), N2 ∼ N (0, 0.01), and σ2
N1

= 0.01. The filter transfer function is shown in Fig. 5.2.

we experimentally show how inverting the effect of the attack can significantly help to reduce
the bit error rate.

Experimental results in terms of WNR and n are shown in Fig.5.9. The assumed PDF
model of the host signal at the estimator side is a zero-mean Laplacian PDF with variance
equal to the sum of the variances of the host signal, watermark, and the noise in the attack
channel, i.e. L(0, σ2

eX + σ2
N1

+ σ2
N2

). This is a realistic assumption, because the decoder has
access to the received data and can estimate its variance. Furthermore, in practice most
audio signals have a PDF that resembles the Laplacian PDF. The loss in performance of
the ML approach is due to the approximation in fY (y) and the fact that generally, ML
estimation requires a large sample size [27]. In Fig. 5.10 we plot experimental results of
β − β̂ as a function of β for different audio signals.
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Figure 5.9: Graphs of β̂ for real audio signals as a function of WNR (a) and as a function of available
signal samples n (b). The crosses represent the estimation mean, and the lines the estimation standard

deviation in both directions. DWR = 15db. The assumption for the estimator is eX ∼ L(0, σ2
eX

+σ2
N1

+σ2
N2

).
The filter transfer function is shown in Fig. 5.2.
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for the estimator is eX ∼ L(0, σ2
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). The filter transfer function is shown in Fig. 5.2.

5.5 Inverting the Effect of Two-Band Amplitude Attack

Fig. 5.11 shows the behavior of the watermark decoder when the attacked signal is passed
through the corrector depicted in Fig. 5.4. The host signal is white noise, the DWR
is 15db, the number of signal samples is 80000, and β = 0.8. The error probability for
reception of attacked signal and the error probability for reception of corrected signal using
the corresponding estimates are compared. Fig. 5.11 illustrates how inverting the effect
of two-band amplitude attack leads to significant performance improvements. The error
probability increases as WNR decreases, since the estimation accuracy decreases due to the
strong noise.

5.6 Discussion

In this chapter, we have presented a Maximum Likelihood estimation procedure for estimat-
ing a two-band amplitude scaling factor. The estimation technique performs well using only
a small number of filter coefficients - those with the largest magnitude. The disadvantage
of the estimation procedure is the need for large number of signal samples and the high
computational complexity.

Due to the duality between convolution in the time domain and multiplication in the
frequency domain, it is possible that linear filtering in the time domain can be modeled
by a multiplication in the frequency domain. However, this duality is valid only if the
Fourier transform is of infinite length. In practice, due to the finite Fourier transform
length, convolutions in the time domain can hardly be modeled by pure multiplication in
the frequency domain. This requires a new approach in developing robust to linear filtering
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Figure 5.11: Watermark decoder performance. DWR = 15db, β = 0.8. The filter transfer function is
shown in Fig. 5.2.

attacks quantization-based watermarking, which we address in the next chapter.
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Chapter 6

Robustness to Linear Filtering

Attacks ∗

6.1 Motivation

Quantization-based watermarking is vulnerable to linear filtering attacks. As mentioned in
subsection 2.7.4, each sample of the filter output is a linear combination of watermarked data
samples. This linear combination of watermarked samples interferes with the watermark in
the current sample, and is thus seen as a noise. For high DWR this noise is very powerful and
overwrites the watermark even for short filter lengths. Moreover, as mentioned in chapter
2, filtering operations are common in many applications and signal processing systems.

The filtering operation is shown in Fig. 6.1, where X(k) is the input to the filter, Y (k)
is the filter output, and h(τ) denotes the filter impulse response. In security applications,
an adversary can apply linear filtering operation with optimally designed h(τ) to disrupt
communication between the transmitter and the intended receiver. Since in this chapter
we concentrate on developing invariant to linear filtering quantization-based watermarking
schemes, the term malicious attacker is irrelevant.

X(k) Y (k)
h(τ)

Figure 6.1: LTI filtering attack.

In this chapter we construct a watermarking scheme that is robust against a linear fil-
tering attack. This watermarking scheme was first developed in [99]. The construction
principle is based on noting that theoretically every filtering operation can be modeled as
multiplication of the input with the filter transfer function in the frequency domain. Solu-
tions to the amplitude scale attack in the frequency domain were proposed in the previous
chapter and in [100, 101].

To achieve invariance to linear filtering, we apply the RDM scheme (which is a scale
invariant scheme) in the frequency domain, by watermarking the amplitude components

∗This chapter contains recent, still unpublished results.

83
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and leaving the phases unchanged. The host signal is chopped into frames and the discrete
Fourier transform is performed on each frame. Then the amplitude is computed from the
frequency coefficients. The amplitudes with the same index from different frames form
the frequency channel, on which the RDM core is applied. Since the signal frames are not
periodic signals, the amplitude scale model in the frequency domain does not hold completely
and there is also a residual noise term. The residual noise causes a decoding error. To reduce
this error we incorporate a windowing operation on each frame before taking the Fourier
transform. The reduced decoding error is at the expense of increased distortion due to the
watermark. To eliminate this increase in watermark distortion, we propose to use overlapped
windowing of the signal frames with 50% overlap. Experimental results of the probability
of error are presented of the basic scheme and its modifications, as well as experiments with
practical filters. Finally conclusions are drawn.

6.2 Principles of Frequency RDM

Here we start describing the concept of frequency RDM (FRDM) by looking first at the
discrete Fourier transform of the linear filtering system. We can write

Y (ω) = H(ω)X(ω), (6.1)

where X(ω) is the Fourier transform of X, Y (ω) is the Fourier transform of Y , and H(ω) is
the filter transfer function.

From (6.1) we can see that the attack operation is multiplication in the frequency domain.
Therefore, if we apply RDM in the frequency domain, theoretically we have to achieve
invariance to filtering operations in the time domain.

The watermark encoder is shown in Fig. 6.2. First, the encoder applies the DFT on
the signal frame X̃m of length N , where m denotes the frame index. From the frequency
coefficients, the amplitudes are computed. The number of frequency channels (amplitudes)
for each frame is N/2 + 1. The RDM core is then applied on each frequency channel
i ∈ {0, . . . , N

2 }, by embedding the watermark bits Wm(i) in the amplitudes X̃m(i). The

quantized amplitude is denoted as X̃ ′
m(i). Analogously to (2.73), the g function for the

ith amplitude of the mth frame is computed based on the ith quantized amplitudes of the
previous m − L frames, i.e.

g
(
X̃ ′

m(i), L, p
)

=
( 1

L

m−1∑

j=m−L

∣∣X̃ ′
j(i)

∣∣p
) 1

p
, (6.2)

At the end an inverse discrete Fourier transform (IDFT) is performed resulting in the wa-
termarked frame Xm.

The attack channel and the watermark decoder are shown in Fig. 6.3. After the filtering
operation, the decoder performs DFT on Y m. The decoder frames should be in alignment
with the encoder frames. The DFT length is the same as that used in the encoder. Then
the RDM decoder is applied on each Ym(i) and an estimate Ŵm(i) of the embedded bits
Wm(i) is made. The g function for the decoding process is calculated as

g
(
Ym(i), L, p

)
=

( 1

L

m−1∑

j=m−L

∣∣Yj(i)
∣∣p

) 1
p
. (6.3)
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Figure 6.2: FRDM encoder
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Figure 6.3: Attack channel and FRDM decoder

6.3 Experimental and Theoretical Results

In this section we perform experiments with different filters and synthetic host signals to
measure the performance of the watermarking system in terms of probability of error Pe per
frequency channel. For ideal low pass filters, we would expect the case Pe = 0 in the pass-
band zone and Pe = 0.5 in the stop-band zone, which is shown in Fig. 6.4. The practical
filter transfer functions used in the experiments are shown in Fig. 6.5.

Experimental results of Pe per channel i for different length Lf of the low pass filter are
shown in Fig. 6.6 (a). It can be seen that while Pe in the stop-band zone is high as expected,
Pe 6= 0 in the pass-band zone. Moreover, increasing the filter order increases Pe in the pass-
band zone. Experimental results of Pe per channel i for different cutoff frequencies ωc of
the lowpass filter are shown in Fig. 6.6 (b). It can be seen that Pe in the pass-band zone is
independent of the cutoff frequency ωc, showing the validation of the FRDM principle.

Since Pe 6= 0 in the pass-band zone, FRDM is not completely invariant to LTI filtering
attacks. One way to decrease Pe in the band-pass zone is to increase the DFT length. Fig.
6.7 shows experimental results with N = 2048 for different filter orders and different cutoff
frequencies. It can be seen that Pe in the pass-band zone is significantly reduced.
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Figure 6.6: Experimental results of probability of error Pe per channel ω for different orders (a) and
different cutoff frequencies (b) of the low pass filter. Chosen settings are X ∼ N (0, 1), ∆ = 1, L = 10, p = 2,
n = 106, N = 1024
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different cutoff frequencies (b) of the low pass filter. Chosen settings are X ∼ N (0, 1), ∆ = 1, L = 10, p = 2,
n = 106, N = 2048.
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The reason for Pe 6= 0 in the pass-band zone is that the relation (6.1) is valid only for
an infinite length Fourier transform. In practice we have a finite length discrete Fourier
transform (DFT). In such cases, the model is [102]

Y (ω) = H(ω)X(ω) + RN (ω), (6.4)

where RN (ω) is a residual term representing the end effects due to the response on the signal
X prior to t = 0 and for t ≥ N . From the model (6.4) it is obvious that the major source
for decoding errors is the term RN (ω), which is given [102] as

RN (ω) =
1√

2πN

Lf∑

k=0

h(k)ejωk
−1∑

t=−k

(
X(t) − X(t + N)

)
ejωt, (6.5)

where Lf ∈ I
+ is the filter length (order). The model of the attack channel given by (6.4)

is shown in Fig. 6.8. It consists of the multiplicative term H(ω) and the noise term RN (ω).

X(ω)

H(ω) RN(ω)

Y (ω)

Figure 6.8: Attack channel model of the filtering attack for finite Fourier transform lengths.

To quantify the effect of RN (ω) on probability of error, we need to study the dependency
between the RN (ω) statistics and the parameters of the watermarking scheme (namely N),
and the attack channel (namely Lf ). First we find the variance of RN (ω). We can write the
mean of RN (ω) as

E
[
RN (ω)

]
= E

1√
2πN

[ Lf∑

k=0

h(k)ejωk
−1∑

t=−k

(
X(t) − X(t + N)

)
ejωt

]

=
1√

2πN

Lf∑

k=0

h(k)ejωk
−1∑

t=−k

(
E

[
X(t)

]
− E

[
X(t + N)

])
ejωt (6.6)

If X(t) is a zero mean process, then we have E
[
RN (ω)

]
= 0. In this case, the variance can
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be straightforwardly calculated as

E
[
RN (ω)RN (ω)∗

]
= E

[ 1√
2πN

( Lf∑

k=0

h(k)ejωk
−1∑

t=−k

(
X(t) − X(t + N)

)
ejωt

)

× 1√
2πN

( Lf∑

m=0

h(m)e−jωm
−1∑

s=−m

(
X(s) − X(s + N)

)
e−jωs

)]

=
1

πN
E

[ Lf∑

k=0

Lf∑

m=0

−1∑

t=−k

−1∑

s=−m

h(k)ejωkX(t)ejωth(m)e−jωmX(s)e−jωs
]

=
σ2

X

πN

Lf∑

k=0

h(k)ejωk
( k−1∑

m=0

mh(m)e−jωm +

Lf∑

m=k

kh(m)e−jωm
)
, (6.7)

where ∗ denotes complex conjugate and the second equation follows from the assumption
that X(t) is uncorrelated stationary process.

From (6.7) we can see that increasing the Fourier length N decreases the variance
E

[
RN (ω)RN (ω)∗

]
, and therefore the error probability. This fact is in accordance with the

experimental results. From (6.5) it is easy to see that for periodic signals X(t) with period
N , RN (ω) = 0 and we have the ideal model (6.1), which is also satisfied when N → ∞.

It is difficult from (6.7) to predict how E
[
RN (ω)RN (ω)∗

]
will change with Lf . The

reason is that for different Lf , the filter impulse response h(τ) is different. Therefore, we
resort to numerical computations of (6.7) with the filters used in the experiments. Since (6.7)
has imaginary terms, we compute its absolute value. Table 6.1 shows numerical calculations
of (6.7) and the corresponding experimental error probabilities Pe in the pass-band zone, for
different low-pass filters, and Fourier transform lengths N . It can be seen that increasing Lf

increases
∣∣∣E

[
RN (ω)RN (ω)∗

]∣∣∣, which leads to increased probability of error in the pass-band

zone. Also, increasing N decreases
∣∣∣E

[
RN (ω)RN (ω)∗

]∣∣∣ and the probability of error.

N

1024 2048

Lf

∣∣∣E
[
RN (ω)RN (ω)∗

]∣∣∣ Pe Lf

∣∣∣E
[
RN (ω)RN (ω)∗

]∣∣∣ Pe

10 0.0146 ≈ 0.01 10 0.0073 ≈ 0.01

50 0.3209 ≈ 0.15 50 0.1604 ≈ 0.07

80 0.805 ≈ 0.26 80 0.4025 ≈ 0.13

100 1.245 ≈ 0.3 100 0.6225 ≈ 0.17

Table 6.1: Numerical computation of
˛̨
˛E

ˆ
RN (ω)RN (ω)∗

˜˛̨
˛ and the corresponding experimental error proba-

bilities Pe in the pass-band zone, for different low-pass filters, and Fourier transform lengths N . The variance
of the watermarked signal is σ2

X = 1.

Based on the experimental and theoretical results in this section we can point out that
the main problem to be solved for the FRDM principle is Pe 6= 0 in the pass-band zone.
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6.4 Improvement using Hamming Windows

In the previous section we saw that one way to decrease Pe in the pass-band zone is to
increase the DFT length. However, this will lead to decreased watermark payload per
frequency channel. Also the memory and therefore the performance of the of RDM core will
be more restricted. Although the number of channels increases, the scheme will have a low
payload in the presence of filters with large stop-band zone.

One way of reducing Pe in the pass-band zone while at the same time keeping the
watermark payload per channel constant is to apply windowing operation on the host signal,
before taking the DFT. However, such operation introduces additional distortion to the host
signal.

Experimental results with Hamming window are shown in Fig. 6.9. It can be seen that Pe

in the pass-band zone is significantly reduced and independent of the filter. The reason is that
the windowing operation forces the signal frame to have more or less a periodic structure,
thus reducing spectral leakage [103]. Other windows can also be applied. Generally, the
more the windowing operation approximates a periodic signal, the lower the probability of
error in the pass-band zone.

6.5 Modification using Cosine Squared Windows

Since the use of Hamming windows causes additional distortion to the host signal, in this
section we propose a modification to the original FRDM concept, using overlapped signal
frames multiplied by a cosine squared window. An illustration of this principle is shown in
Fig. 6.10, where n is the total signal length, 2r is the overlap, and N is the frame length,
with r ∈ I

+. The number of frames is ⌊n−N
2r ⌋ + 1, where ⌊x⌋ denotes the closest integer

smaller or equal to x. The assumption is that N ≥ 2r, with equality if there is no overlap.

The modified encoder is shown in Fig. 6.11. Each frame is multiplied by a cosine squared
window in the following way:

X̃w(i) = X̃(i) cos2
(2i − N

2N
π
)

= X̃(i) sin2
( i

N
π
)
. (6.8)

Cosine squared windows have perfect reconstruction property. When added back with
the same overlap, the windowed frames X̃w perfectly reconstruct the original signal X̃ and
hence there is no additional distortion due to the windowing operation.

The FRDM scheme is applied on each frame X̃w. At the output of the FRDM encoder
the frames are added back with the same overlap 2r.

The modified decoder is shown in Fig. 6.12. To obtain a close estimate to the water-
marked frames, the attacked frames have to be multiplied with the same window (6.8) prior
to FRDM decoding. The Fourier transform of the product can be written as a convolution
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Figure 6.9: Experimental results of Pe per ω for different orders (a) and different cutoff frequencies (b) of
the low pass filter, applying Hamming window before FRDM encoding. Chosen settings are X ∼ N (0, 1),
∆ = 1, L = 10, p = 2, n = 106, N = 1024.
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of the Fourier transforms of each term, i.e.
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where ω = 2πf .
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Figure 6.12: Cosine-squared FRDM decoder

From (6.9), it can be seen that the last two terms are actually scaled and shifted versions
of φY (f). It is interesting to observe that these two terms actually recover part of the
frequencies of the attacked signal that are lost due to the stop-band of the low-pass filter.
Therefore, we should expect reduced probability of error for some frequencies in the stop-
band zone.

The advantage of the modification with squared-cosine windows is that the watermark
payload is increased and is precisely N/2r the payload of the normal FRDM scheme.

Experimental results of the proposed modification are presented in Fig. 6.13. We can see
that due to the overlap, the error is increased and more or less uniformly distributed over all
frequencies. The reduced probability of error for some frequencies in the stop-band zone is
due to the multiplication with the squared-cosine window before watermark decoding, since
the window recovers part of the lost spectrum of the attacked signal, according to (6.9).

6.6 Experiments with Practical Filters

The previous sections contained experiments with simple low pass filters, designed to study
the capabilities and inner workings of the FRDM principle. The low pass filter is pretty
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Figure 6.13: Experimental results of Pe per ω for low-pass filter with ωc = 0.5π. Chosen settings are
X ∼ N (0, 1), ∆ = 1, L = 10, p = 2, n = 106, N = 1024, 2r = 512, (a) Lf = 50, (b) Lf = 100.
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devastating, because in the stop band zone all watermark information is lost. In this section
we consider equalizers, which usually do not have a (large) stop band zone and therefore are
less severe than the low pass filter. Such equalizers have application in music tuning, like
the WinAmp graphical equalizer.

The transfer function of a 10-band equalizer is shown in Fig. 6.14. It can be seen that
the global transfer function of the equalizer does not contain stop-band zone. The filter
in each sub-band contains only three taps, so we will expect that short Fourier transform
lengths will be sufficient to achieve low probability of error.
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Figure 6.14: Equalizer transfer function. This figure is taken from [99].

Experimental results are shown in Fig. 6.15. It can be seen that for small N , Pe is already
pretty low for all frequencies. This is due to the fact that the global transfer function of
the equalizer does not contain a stop-band zone. Another, more important for the FRDM
principle, reason is that each band contains a filter with short length (Lf = 3 in this case).
This experiment confirms the fact that the filter length Lf has a major influence on the
performance of the FRDM principle, as pointed in section 6.3.

6.7 Discussion

In this chapter we discussed and proposed techniques to combat linear filtering attacks by
applying RDM in the frequency domain. The new scheme is called FRDM. We studied the
performance of the pure FRDM scheme experimentally. However, there are still decoding
errors in the pass-band zone due to the finite length of the Fourier transform. It was shown
that increasing the FFT length decreases the errors in the pass-band zone. Furthermore, we
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Figure 6.15: Experimental results of Pe for equalizer attacks, (a) N = 256 and (b) N = 512.

showed that windowing helps to reduce the decoding errors at the expense of increased dis-
tortion. To completely cancel the distortion due to the windowing operation, we employed
overlapped windows with perfect reconstruction properties (cosine squared windows). How-
ever this is achieved at the expense of increased errors in the pass-band zone due to the
overlap.

The FRDM scheme, including its proposed modifications, are not completely invariant to
arbitrary filtering attacks. The main problem that remains to be solved is to eliminate or at
least further reduce the probability of error in the pass-band zone. This can be achieved for
example by using specially designed perfect reconstruction windows that avoid the need for
overlap. With respect to this direction, the research could concentrate on studying different
windows and their properties, and on designing special purpose windows. Another, more
promising approach would be to employ a different embedding mechanism, instead of the
RDM core.
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Chapter 7

Conclusions and Future Research

7.1 Discussion

In this thesis we studied and developed quantization-based watermarking techniques that
are robust to nonadditive attacks. Such techniques are suitable in multimedia applications,
where the attacks are standard signal processing operations.

The general class of quantization-based watermarking schemes was developed from infor-
mation theoretic principles and results. It is the class of watermarking schemes that achieves
the highest capacity in terms of additive noise attacks. However, a realistic attacker can
choose to apply more sophisticated attacks that can hardly be modeled as additive. More-
over, common signal processing operations like amplitude scaling, linear filtering, compres-
sion, etc. are clearly nonadditive. Furthermore, it turned out that classical quntization-based
watermarking is extremely vulnerable to the above mentioned examples of signal processing
operations.

To improve the robustness of quantization-based watermarking against such signal pro-
cessing operations, while at the same time keeping their good performance with respect to
additive noise attacks, we developed statistical estimation procedures for estimating ampli-
tude scale factors in the time and frequency domains.

The amplitude estimation procedure based on Fourier analysis is computationally effi-
cient and gives accurate results for high watermark-to-noise ratios. The estimation principle
is based on detecting peaks created due to the encoding process, in the characteristic func-
tion of the attack data. The procedure does not require any prior knowledge of the host
signal. The performance of the procedure degrades at low watermark-to-noise ratios. In the
case of embedding zeros and ones with equal probability, the estimation technique fails when
the power of watermark and attack noise become equal, since then the discontinuities in the
density, and the peaks in the characteristic function of the watermarked data disappear.

For watermarking applications, where the allowed variance of the attacker’s noise is larger
than that of the watermark, we developed maximum likelihood estimation of amplitude
scaling. The improvement of estimation accuracy over the Fourier based approach is at
the expense of increased complexity and the need for an accurate density model of the
host signal. The performance of the maximum likelihood approach is not affected when
the embedded messages are zeros and ones, because the approach does not rely on any
discontinuities in the density of the watermarked signal.

99
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For applications that require secrecy watermarking, i.e. when the attacker should not be
able to decode the watermark, we developed maximum likelihood estimation of amplitude
scale factors in the presence of subtractive dither. The dither sequence was introduced to
ensure the security of the watermarking system. The dither statistics were derived such
that an attacker without having the dither realization is not able to decode the watermark
with probability different than 0.5. To perform accurate estimation, we imposed restrictions
on the dither variance, but these restrictions did not affect in any way the security of the
system.

For applications that require robustness against linear filtering and additive noise attacks,
we developed maximum likelihood estimation of amplitude scaling factors in the frequency
domain (multiband scaling), by noticing the duality between linear filtering in the time
domain and amplitude scale in the frequency domain. It turned out that only a few filter
coefficients, those with the largest magnitudes are sufficient for constructing accurate density
models for the estimation procedure.

For applications that require only robustness to linear filtering attacks, we studied the
application of rational dither modulation in the frequency domain, to develop an invariant
to linear filtering attacks scheme. The performance of the proposed modification is not
ideal due to the finite length of the Fourier transform, and there are errors in the pass-band
zone. We saw that there are two ways to suppress these errors, by increasing the length
of the Fourier transform, and by pre-multiplying the signal frames with non-overlapped
windows. Both ways have pros and cons. By increasing the Fourier length, we decrease the
payload, while by applying a windowing operation we introduce additional distortion to the
host signal. We also investigated the application of overlapped windows to eliminate the
aforementioned additional distortion.

Overall, we can state that the proposed in this thesis techniques to counter ampli-
tude scale attacks, linear filtering attacks, and security problems, are sufficient for bringing
quantization-based watermarking schemes one step closer to practical applications that in-
volve the aforementioned issues.

However, looking at Fig. 2.19 and Fig. 2.20, we see that audio compression and nonlin-
ear operations like voice mixing, A-D conversion, dynamic signal processing, have not been
tacked. This is mainly due to the complex nature of these operations, and the difficulty
in finding accurate models for them. These problems can be approached by modeling the
operations by blocks of simpler well known operations and tackling each individual block
separately with the already existing techniques. Since it is difficult to construct a water-
marking scheme that is invariant to a large number of different, simple operations, it is
probable that a solution to a more complex attack would also require the incorporation of
estimation techniques like the ones developed in this thesis.

7.2 Future Research

The future directions are in the lines of the following subjects. The first subject involves
our research on the estimation techniques.

Our estimation techniques require brute force searching for the optimal scaling factor,
and therefore are computationally inefficient. It is important to find more efficient algorithms
for finding the maximum in the likelihood function, but it is unlikely that these will be
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gradient-based. A possible direction is first to obtain a more convenient analytical expression
for the probability density function of the received data, that will allow to find a closed form
expression for the maximum likelihood estimate β̂. Such an expression would allow for
considerable reduction in computational complexity, and therefore the applicability of the
estimation technique in real-time applications. In this way, we would also be able to do a
more careful analysis of the performance via bias and variance, and to compare theoretically
with other estimation procedures from the literature.

Furthermore, it is important to theoretically quantify the influence of the inaccuracy
of the assumed model on the estimation performance, for example via Kullback-Leibler
distance. Thus, we would be able to theoretically quantify the estimation performance for
real signals.

It is also important to point out that our current amplitude scaling model includes only
a constant scaling factor. Clearly, the attacker may also choose to change the amplitude
scale factor with time, in an unpredictable way. One possible way for improvement in
this direction is to look into other estimation principles that use smaller amount of signal
samples, for example order statistics [104].

The second subject for future research relates to our work on linear filtering invariance.
To achieve invariance to linear filtering attacks, it is important to decrease or eliminate the
errors in the pass-band zone. We saw that one way of achieving this is by the use of windows.
Unfortunately, the used windows introduce additional distortion to the watermarked data.
We also saw that perfect reconstruction windows introduce no additional distortion, but
cause additional errors in the pass-band zone due to the overlap. Therefore, a possible
direction for future research is to study and analyze different windows, and to design special
purpose windows that do not cause substantial additional distortion to the watermarked
data, and do not require the use of overlapped frames.

The third line for future research relates to countermeasures against more complex at-
tacks like audio compression, voice mixing, A-D conversion, appreciating the estimation
techniques in watermarking applications. It would be interesting to see if it is possible to
combat such complex operations with the already developed techniques in this thesis. One
possible way to deal with such complex attacks is to build detailed models based on simple
operations and to attack each building block individually. It is expected that by doing so,
the watermarking scheme will result in a system that contains several estimation procedures,
since it is difficult (even impossible) to construct a watermarking scheme that is invariant
to several operations at the same time.

Finally, we would like to point out that future research on security aspects of watermark-
ing is also of considerable importance. The current security requirements for watermarking
are not very high, in comparison to those for cryptography. However, some areas, like mili-
tary applications, require significantly higher level of security. This would be a stimulation
for a future research on secure watermarking algorithms.
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