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Preface

The work that resulted in this thesis was carried out at Delft University of
Technology in three different projects. In each of these project video coding

was part of the research, but every time the emphasis was put on a different

viewpoint towards video coding was taken.
The first project, Ubiquitous Communications (UBICOM), was totally funded

by the Delft University of Technology. The UBICOM scenario was a low-power

wearable augmented reality system where a virtual world could be projected
onto the real world, using semi transparent virtual reality helmet.

In the Context Aware User and Terminal (CACTUS) project a modern user,
equipped with wearable devices was central. Devices, worn by the user or in-

tegrated in rooms, buildings, cars, etc, will be able to communicate with each

other in an ad hoc manner. To support his tasks, his personal device commu-
nicates and negotiates on his behalf user with other devices such as screens,

input devices and for instance vending machines. CACTUS, as sub project of

the FREEBAND project, was funded by the Ministry of Economic Affairs in The
Netherlands.

In the I-SHARE project, we focused on sharing resources and data among

devices, people and groups of people. In this scenario, Internet wireless net-
works and peer-to-peer (P2P) networks play an important role to interconnect

devices and to facilitate sharing. I-SHARE was also funded by the Ministry of
Economic Affairs, as a sub project of the FREEBAND project.

This thesis concentrates on the aspect of video compression in these projects.

Each project had a different viewpoint on video compression. Not only the sce-
nario in which compression was used differed, but also the chosen solutions

to implement video compression. Although we concentrate on video com-

pression, we approach the task of video compression from the environment
in which it has to operate, namely a networked device, from which different

constraints are imposed on the video coder.

J. R. Taal, Delft, March 2007.
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One

Introduction

Video compression is a technology that is implemented in a lot of everyday

tools, toys and appliances. It is found in products ranging from high defi-

nition television to Digital Versatile Disc (DVD) player and digital hard disk
video recorder, and from computer to personal digital assistant and mobile

telephone. In the not too distant future, even traditionally passive appliances

such as refrigerators will have a screen capable of showing video. The environ-
ment in which video coding takes places varies greatly. Still the user expects

the best possible quality in all circumstances. The TV watcher should for in-
stance be able to keep watching his favourite programwhen he walks from the

living room to the kitchen and then to the bedroom. Each display has a dif-

ferent resolution and may have different connections to the in-home network.
In most of these cases the owner will not actually realize that video compres-

sion and adaptation is taking place. The functionality is hidden in software and

hardware.

Because video compression plays such an important role in everyday com-

munications of everybody, this enabling technology should not be visible for its
users. Users should be shielded from complex configurations and choices re-

garding video and compression format, even when the circumstances in which
the video coder has to perform are changing and not known a priori. Tradi-

tional video compression applications such as Digital Video Broadcasting over

Satellites and Digital Video Cameras, were designed with specific bit rates in
mind and for specific network conditions. In current day applications, how-

ever, the conditions in which they are used are often heterogeneous and very

dynamic. The video coder should be designed in such a way that it can deal
with uncertainties in the environment (e.g. the network, the device platform).

This means that the video coder should be adaptive and the produced video
stream should be resilient to changes in the network.

Recent developments in video compression standards, yield better compres-
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sion ratios at wider bit rate ranges. Furthermore new paradigms such as scal-
able (layered) compression and multiple description coding have received much

attention and are now resulting in implementations and standardization.1

Besides distribution via DVD and digital-TV, recently, distribution via peer-

to-peer (P2P) networks is now also becoming popular, although currently mostly
by simple downloading. More than fifty percent of the Internet backbone traf-

fic is already P2P traffic. P2P also offers the possibility to stream video, due

to the very flexible way P2P communicates between peers and the efficient
use of bandwidth in the network. Especially for offering less-popular content

(the Long Tail [4]), P2P networks may become a cheap and viable alternative to
Television broadcasting over cable or Internet.

During our research several video streaming scenarios were investigated.
On one hand, these scenarios shared a common target: maximization of the

average video quality as received by the clients. We require information about

the network behavior in order to design or adapt the video coder. The appli-
cation sets constraints on the video streaming system. For instance, a delay

constraint has impact on all parts of the video streaming system (application,
video coder, transmission protocols and network). On the other hand, in each

solution we used a different type of video compression and a different type of

cooperation among video coder network adaptation layer (NAL) and network
layers.

In this thesis we first present a framework such that each streaming sce-
nario is a specific case of the framework. We use this framework, called the

Video Streaming Model, to explain the concept of cooperation of layers and to
describe the parameters that play an important role in the scenarios. In the

second part of the thesis, we present five papers with different approaches to

implement error-resilient or adaptive video compression algorithms in differ-
ent scenarios.

In this introduction we first describe recent advances in the area of video

compression. These advances have greatly increased the number of way to

implement a video streaming system. After that we formulate the problem de-
scription of the problems to which we try to contribute in this thesis. We give

an overview of the structure of this thesis in more detail. Finally we summarize

the contributions that this work brings to the field of video compression.

1.1 Advances in Video Compression

The advances made in recent years in the field of video compression have en-
abled many streaming applications. Furthermore, the number of ways to im-

1With “scalable” is meant here that the produced bitstream is constructed and designed in
such a way that it is applicable for multiple or a range of bitrates, resolutions, framerates, or, in
general, devices
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plement a video streaming system has increased. This has made it possible to
find a tailored solution for any specific streaming scenario. We classify these

advances as follows:

1. Higher compression ratio,

2. New encoding paradigms,
3. Control of the encoding parameters.

The new encoding standards H.264 Advanced Video Codec (AVC) offers a bit

rate saving of around 40% with respect to Motion Picture Experts Group Video
Coding Standard IV (MPEG-4) and of around 60% respect to Motion Picture Ex-

perts Group Video Coding Standard II (MPEG-2) [95, 94]. Although increased
ratio means that lower bit rates are required to obtain the same quality, this

comes with an increased complexity of both encoder and decoder. These new

standards are able to maintain acceptable picture qualities at low bit rates, so
that the bit-rate range at which the encoders are useful has increased.

Although MPEG-2 and MPEG-4/Fine Granular Scalability (FGS) [42] support

some form of scalability, it was seldomly used because the enhancement layers
suffered from high compression loss, since temporal correlation was not ex-

ploited in the enhancement layers. The H.264/Scalable Video Codec (SVC) [64],
soon to be standardized, is the first standard to offer real spatial, temporal and

fine-granular SNR scalability at acceptable costs in terms of loss of compression

ratio.
Another paradigm that received much academic attention is multiple de-

scription coding (MDC) [54, 34]. MDC is an encoding technique in which more

than one description is used to describe the same data. The descriptions have
to be sufficiently different to increase the reconstruction quality whenever

more of these mutually enhancing descriptions are received by the decoder.
Especially, the error-resilience and scalability features make MDC applicable in

error-prone and heterogeneous environments. MDC may become the primary

encoding paradigm when video streaming over P2P networks gains a strong
foothold. However, this paradigm barely left the academic arena and did not

lead yet to a service ready for the consumer market.

The way the encoder setting are controlled also received academic atten-
tion. First of all, variable bit rate (VBR) and constant bit rate (CBR) encoding

are used to generate a bit stream with a constant quality or constant rate. VBR
and CBR are used for making DVDs and for Digital Video Broadcasting (DVB)

and are targeted to transmission and storage media with well-known constant

size and capacity[72]. In scenarios where network capacity is dynamic, the en-
coding rate should adapt to these network rate changes. This happens either

by adapting the encoding rate during real-time encoding, or by intelligently

selecting after encoding which parts to transmit and which parts to skip in or-
der to make real time play out possible. In both cases, the performance of the

network should be known in order to make the right choices.

3
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1.2 Problem Description

A video coder cannot be viewed independently from the rest of system in which
a video is encoded, transmitted, streamed or stored, decoded and displayed.

In this thesis we look at different streaming applications. We define (video)

streaming as a continuous transmission of (video) data, such that after some
given delay a continuous real-time play out is possible. For different scenarios,

which are described by the number of clients, the type of network and other
system requirement, this will inevitably lead to different choices regarding the

encoding algorithm.

For a given scenario a specific video streaming system can be designed that

takes the scenario constraints and uncertainties into account. With the recent

advances in video coding in mind, we now have several options to implement
the video coder and how to arrange cooperation with OSI2 transmission layers.

We have split up the design choices in the following way:

1. Video coding paradigm,

2. Encoding algorithm,

3. Type of cooperationwith Reference Model for Open Systems Interconnection
(OSI)-stack layers,

4. Encoder settings.

The first three choices are made while designing the system. The encoder

settings can also be chosen at design time, but then no adaptation to a dynamic
environment can be done.

With respect to choosing the video coding paradigm, we investigate the
following options in Chapter 3:

1. Real-time adaptive video compression (Section 3.2),

2. Scalable Coding (Section 3.3),

3. Multiple Description Coding (Section 3.4).

The choice of encoding paradigm is not independent of the actual video com-

pression method chosen, since not all standards have a scalability extension
and MDC video compression is not standardized at all. Regarding the video

compression standard, we have used H.263, MPEG-4, H.264 and Dirac in our

experiments.

With regard to cooperation between layers we explore the following op-

tions

2OSI: Reference Model for Open Systems Interconnection. [78]
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1. quality of service (QoS) cooperation: performing QoS negotiations in or-
der to fully adapt all layers to changing conditions (Chapters 5 and 4).

2. Bottom-up cooperation: informing higher layers about the state of the

lower layers (network and NAL) (Chapters 6).

3. No real-time cooperation: resulting in each layer operating independently

in a best-effort fashion. The expected average network conditions are

only taken into account at forehand. (Chapters 7 and 8).

Finally, The encoder settings are settings such as quantization-step size,

prediction scheme and motion-estimation parameters, depending on the cho-

sen encoding implementation or standard. Given the heterogeneous and chang-
ing environments of most applications, we wish to adapt the encoder settings

to up-to-date information about the network characteristics.
The problem that is addressed in this thesis is how to adapt and control

the video coder such that it performs optimally in the context of the video

streaming system scenarios.

1.3 Organization and Scope

This thesis consists of two parts. The first part describes a framework of the

scenarios presented in the second part. In Part I the Video Streaming Model
and three solutions to implement a context-aware video coder are presented.

The second part consists of five published articles that are all centered around

a video compression method which operates in a heterogeneous and changing
environment.

Part I. Network Aware Video Coding

Chapter 2

Video Streaming Model

We present the Video Streaming Model (VSM) that generalizes the scenarios

presented in Part II. The VSM is an abstract model of a video streaming system.
In the VSM, the application, video coder and network adaptation layer (NAL)

form separate functional blocks that cooperate. Between the blocks interface

parameters are defined that express the context3 in which the functional blocks
have to operate. Whether these interface parameters are actually exchanged

or negotiated depends on the chosen cooperation model.

Chapter 3

Network Aware Video Coding Strategies

3We define the context, as the state of the other layers that the video coder has to cooperate
with, for instance the network and the application, and the state of the video source. The context
may vary over time as for instance the network behavior changes.
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Three different network aware video coding strategies are discussed, namely,
real-time adaptive video coding, scalable coding andmultiple description coding.

Each strategy is ‘Network Aware’, in the sense that network characteristics and
behavior are taken into account to adapt the encoder settings.

Part II. Streaming Scenarios

Scenario 1. Low-latency real-time streaming of video to low-
power mobile devices. In a changing and error-prone environment,
the encoder and decoder have to deal with many constraints such as

bandwidth and end-to-end delay while being resilient to channel er-

rors. Since we are dealing with low-power devices, power consumption

is included in the design and taken into account as a scarce resource.

The video compression algorithm should be able to adapt to all varia-

tions in the context while keeping an optimal quality level and obeying

the constraints.

Chapter 4

End-to-end optimization of mobile video streaming using QoS

In this chapter we investigate the real-time adaptive video coding paradigm

with QoS cooperation. The Adaptive Resource Contracts – QoS system is used

to negotiate all resources and performances with a network access layer and
an application. In the experiment, we study the end-to-end behavior of the

ARC video streaming system. A network is simulated with changing proper-
ties. The NAL and the video coder adapt their internal parameters, in order

to give an optimal quality while obeying the constraints defined by network

characteristics and application.

Chapter 5

Error Resilient Video Compression using Behavior Models

In this chapter, a low-delay texture encoder is constructed from a JPEG2000

(single frame) encoder, augmented with inter-prediction without motion com-
pensation. To be able to adapt to the network changes we devise behavior

models of this encoder. An end-to-end distortion metric is presented that takes

the the network characteristics and video characteristics into account.

Scenario 2. Low-latency real-time streaming of video over Wire-
less Fidelity (IEEE 802.11) (WiFi) networks. For streaming video
over WiFi connections, the IEEE 802.11 WiFi Standard (802.11) media

access control (MAC) layer is modified to support streaming applica-

tions and to give status updates to the video coder. This scenario de-

mands a tight cooperation between video coder and 802.11 MAC-layer

in order to achieve a low latency while operating in a dynamic and

error-prone wireless environment.
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Chapter 6

Optimized Video-Streaming over 802.11 by Cross-Layer Signaling

By adapting the 802.11 modulation scheme, the modified MAC algorithm in-

creases the reliability of the link at the cost of a lower transmission speed.
Furthermore, it informs the real-time video coder of the current and expected

network statistics, such that the video coder can adapt its target rate setting.
With this scheme it is possible to do very low latency streaming. We present

the results of experiments where a real time encoded video signal is streamed

over a wireless link under different and varying conditions.

Scenario 3. Streaming of video to many clients using P2P net-
works. In this scenario, the network offers high bandwidths and a
flexible P2P communication structure between server and clients. The

varying capacities and congestion may result in long delays, which are

not desired in a streaming application. A solution with MDC and P2P

communication offers the needed error resilience and scalability to deal

with congestion and rate diversity of the clients.

Chapter 7

Fair Rate Allocation of Scalable MDC for Many Clients

In P2P networks with many connected clients, we have to deal with heteroge-

neous client bandwidths. Streaming over P2P networks, with delay constraints,

demands an error-resilient video coding. Also, P2P networks offers the possi-
bility to have different overlay networks. There may be different paths from

source to destinations. By using MDC, different descriptions are streamed over
different overlay networks. By doing so, packet losses and peer failure will only

have a limited effect. We use multiple description coding using forward error

correction (MD-FEC) to generate descriptions. This chapter is about how to find
a good rate allocation, while taking into account the packet loss rates on chan-

nels and different capacities of each client. We introduce fairness to find a fair

trade off between increasing quality for a number of clients while decreasing
the quality for others.

Chapter 8

Asymmetric MDC using Layered Coding and Lateral Error Correction

When different (P2P) overlay networks offer different bandwidths and different

reliabilities (packet loss rates), we have an asymmetric network. Where (sym-

metric) MDC systems are designed to deal with symmetric channels, we design
an asymmetric multiple description coding (AMDC) method that combines the

flexibility of Scalable Coding and Erasure Codes (like MD-FEC), but now asym-

metric descriptions are generated. In this chapter we discuss the idea of AMDC
and how to find a mapping of erasure codes to descriptions, for a given certain

unbalanced network.
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—

Chapter 9

Discussion

The thesis is concluded with a discussion where we reflect on the results and
the choices made in the presented scenarios. We evaluate and compare the

different presented solutions. Furthermore we give recommendations and an

outlook to the near future with respect to video compression.

1.4 Contributions of the Thesis

The work presented in this thesis contributed to the field of video compres-

sion on several aspects. Modeling the behavior of an encoder is essential when
tight control of the encoder in a dynamic environment is required. In Sec-

tion 3.2, we derive an integral model of a video coder in a bandwidth and

power constrained environment. The model can then be used in a quality-of-
service system, where the video coder has to cooperate with a network adap-

tation layer and an application. We performed tests where we employed such
a behavior model and quality of service (QoS) system, in a simulated wireless

network. This is described in Chapter 4. The same model can also be employed

for streaming over wireless WiFi networks. These real-world experiments are
described in Chapter 6. Chapter 5 describes the derivation of a behavior model

for a JPEG2000 Image Compression Standard (JPEG2000)-based differential tex-

ture encoder for a error-prone wireless channel.
Multiple description coding fits a network scenario where multiple paths

between sender and receiver can be used. MDC has an extra parameter, namely
the redundancy which can be tuned to match the network reliability. In Chap-

ter 7 we focus on controlling an MDC coder, and to optimize its settings in

a scenario with multiple receiving clients. Asymmetric MDC encoders can be
tuned to match a network with multiple asymmetric channels. We have de-

rived an algorithm that optimizes average quality for a LC-LEC encoder, which

is discussed in Chapter 8.
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Two

Video Streaming Model

2.1 Introduction

In this thesis, we present different video compression systems. In each case
the compression system has to operate in a different scenario. The different

scenarios require different designs and algorithmic choices for the video coder.
The presented video streaming systems, however, share a general design. In

this chapter we generalize the video streaming system. We call this framework

the ‘Video Streaming Model’ (VSM).

Before introducing the VSM, we first consider data flow in the video stream-
ing system (Figure 2.1). The raw video data X is too large to be transmitted

without compression.1 The task of the video coder (VC) is to take care of com-

pressing X in order to fit on the network. The network has a limited capacity
and is an error-prone environment where data may get corrupted delayed or

lost. For instance, when router queues congest the packets will be delayed or

dropped. In the case of wireless networks, electro-magnetic interference will

1With raw video we mean the uncompressed sequence of pictures as obtained from camera.
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Figure 2.1 — Video Transmission Channel
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corrupt packets, necessitating retransmissions. Then, the network adaptation
layer’s task is to protect this data from corruption in the network through

forward error correction and retransmissions.2 Finally, when data has found
its way through the network and appears at the receiver, the NAL—handling

retransmission and error correction—gives the corrected data to the video de-

coder. Since the NAL is not always able to repair or recover all data or data
may simply arrive too late, we have to assume the the video decoder does not

always have all data required for perfect decoding. Under these circumstances

the video decoder has to recombine received data and decode it.

Figure 2.1 also shows our definitions of delay. In a real-time encoding sce-

nario, end-to-end delay is defined as the entire delay between starting encod-

ing a frame and displaying the received frame at the decoding side. In a non-
real-time encoding scenario, end-to-end delay is defined as the entire delay be-

tween requesting video play out and displaying the first frame at the receiving

end. Network delay is defined as the (average) time required for transmitting
data from sender to receiver. Channel delay is then defined as the end-to-end-

delay minus video encoding and decoding delay, or reversely as the network
delay plus the channel encoding and channel decoding time. When the end-

to-end delay constraint becomes smaller, the time to perform video coding and

channel coding also becomes smaller. This will inevitably result in less coding
efficiency for the video coder and more uncorrectable channel errors for the

NAL. Ever-present errors and congestion on the network make that a contin-

uous transmission at the compressed data rate is sometimes not possible. We
introduce buffers at the receiving end to mitigate jitter and to provide time

for doing retransmissions, thereby inevitably increasing end-to-end delay. The
video codec and NAL therefore have to take the delay constraint into account

in when maximizing the picture quality (video coder) and throughput (NAL).

We consider an end-to-end quality metric which depends on two factors.

First, the (lossy) encoder compresses the original signal X so that even upon
correct reception, decoding yields a distorted version X̂ . The second factor is

due to network errors. When some data got lost, decoding results in a cor-

rupted version of X , denoted as X†. Eventually, the user at the receiving end
will notice these corruptions and is able to rate these impairments as being

annoying or maybe only barely noticeable. Although far from perfect, a mean-
square-error metric or peak-signal-to-noise ratio is often used to express the

quality of a video stream.

Shannon’s separation principle [65], states that source coding and channel

coding can be independent, but only under the assumption of infinite length
sequences. This means that, in practice, independently operating source and

channel coders will not be optimal, since we always want to limit delay by

2Channel coding or channel protection will from now on refer to both forward error correction
and retransmission
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using finite sequences. This is especially true in streaming applications, where
short delays are required.

Besides the video coder and the NAL, the VSM also contains the application
layer. The function of the application layer is to offer an interface between the

user and the the video streaming system.

Many attempts have been made to model the entire video streaming sys-
tem with a QoS framework [2, 50, 48]. Zhang et al. give an overview of QoS

approaches for video delivery over wireless Internet [96]. Van der Schaar dis-

cusses the need for cross-layer optimization in Ref. [88].
In the next section we treat the VSM, the application, the video coding

layer and the NAL as separate layers with their own functionality. In the VSM
the layers are cooperating to perform the joint task of video streaming in a

given scenario. In different scenarios we can have different types of cooper-

ation between layers. Section 2.3 describes the generalized scenario and the
different possible types of layer cooperation. The chapter is concluded with a

discussion.

2.2 The Video Streaming Model

2.2.1 Overview

The VSM can be seen as a compact version of the OSI-model[78].3 Figure 2.2
shows the VSM schematically. In addition to the data flow connection between

layers, we define interface parameters on the interface between two layers.

These interface parameters reflect the behavior and describe the properties of
the data flowing between the layers. During streaming some of these param-

eters may change, for instance when channel bandwidth changes. Instead of

running as stand-alone functional blocks, each layer operates in a dynamic and
changing environment, reflected by changing interface parameters.

In addition to the three layers we introduce in our model the network (NW)
as a black box between the sender and receiver. The network is outside our

control but shows behavior that we should take into account in the rest of our

system. This behavior could either be described by on-line measurements or by
an adaptive behavior model.

Since we decoupled the system functionalities into separate layers, layer

cooperation between them becomes necessary. Each layer has a specific task
which can be controlled with one or more internal parameters. When the sys-

tem is observed as a whole, many different combinations of settings for the

internal parameters exist. However, only a subset of these combinations yields
a solution that gives a global optimum while fitting the global constraints.

3OSI defines 7 layers: Application, Presentation, Session, Transport, Network, Link, Physical.
Our model roughly collapses Session and all lower layers in the NAL and fits the video coder in the
Presentation Layer.
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Figure 2.2 — Video Streaming Model. The left side shows the transmission stack

for the sender, the right side for the receiver. The application (APP) defines the

high-level constraints of the system, such as quality, resolution etc. The video

coder (VC) represents the actual coder. The network adaptation layer (NAL),

protects and transmits the encoded content over the network (NW). On each

layer interface, a set of parameters is exchanged that defines the properties of

the data the data that is exchanged between each layer.

Only for the video streaming system as a whole it is possible to make a
trade off between resources such as rate and delay, and performances such as

video quality4. The application is therefore able to select one single optimal

setting for all lower layers, such that all constraints are taken into account. To
find a global (constrained) optimum is a matter of performing constrained op-

timization, which can be performed off-line when all constraints and behaviors

are exactly known at forehand, or real-time in an adaptive fashion using a QoS
mechanism [68, 52, 90].

At the interfaces between layers, we distinguish resource interface param-
eters and performance interface parameters. Although the parameters that are

defined on the interfaces should give sufficient information to be able to make

good trade offs between resources and performance, in practice the number of

4Video Quality is often expressed in the average peak signal-to-noise-ratio (PSNR) (in dB) of the
video frames
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interface parameters should not increase too much for complexity reasons.

A resource for one layer can be performance metric for another layer and

vice versa. For instance, channel capacity is a resource to be used by the video

coder. However, for the NAL, channel capacity is a performance metric since
the more capacity (while keeping other parameters the same), the better the

performance.

2.2.2 Application

The application layer acts as an interface between the user and the video coder.

In our model, the application imposes quantifiable scenario constraints to the
video coder and indirectly to the rest of the system. We might think of con-

straints such as minimal resolution, frame rate, and maximum end-to-end de-

lay. The objective of the application is to achieve the highest possible video
quality while adhering to the constraints. The role of the user is to control the

application. The user may for instance change the maximum end-to-end delay
parameter or allow a lower frame rate.

End-to-end delay plays an important role in streaming applications. It may

not always be possible to meet end-to-end delay constraints without hamper-
ing the quality. A video application is a Streaming application, when due to the

mere presence of a delay constraint, concessions to the picture quality have

to be made. Without a delay constraint, there is no reason to make any con-
cession towards the quality. In that case the application becomes a download

application which can take as much time as required to obtain all video data

losslessly or at a required quality level.

The statistical characteristics of the video have a great impact on the ac-

tual compression ratio or on the amount of effort put into compression. For

instance, static video is easier to compress and can be encoded at a lower rate
than high-motion video, while maintaining the same quality. In the VSM the

scenario defines which video (or which type of video) is streamed, therefore
video characteristics are regarded as application constraints to the video coder.

2.2.3 Video Coder

The video coder hasmany internal control parameters, for instance quantization-
step size, format, motion estimator complexity etc. These parameters have

to be set correctly to produce an encoded stream that gives maximum qual-

ity while and obeying the constraints from the application such as resolution,
frame rate and end-to-end delay. The NAL on the other side also imposes con-

straints to the video coder, such as capacity, average packet-loss rate, etc.

The video coder produces either a single video stream, or multiple streams
for layered coding (LC) (Section 3.3) or multiple description coding (MDC) (Sec-

tion 3.4). These streams are streamed separately to the receiver in different
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channels. For each separate channel, the network has individual characteris-
tics. For instance for layered coding (LC), the base layer is streamed over the

least error-prone channel, whereas the enhancement layer may be transmitted
over a more error-prone channel. The receiver recombines all these streams to

produce a single video picture stream.

In Figure 2.2, the video coder is connected to two layers via interfaces.

From these two interfaces we can construct a set of resource and performance

parameters for the video coder as shown in Table 2.1

Interface Performance Resource

Quality End-to-end delay
Application/VC Resolution

Frame rate

VC/NAL Channel coding delays Number of channels
Channel residual error rates Channel capacities

Table 2.1 — Set of Performance and Resource parameters defined on the interfaces

of the Video coder with the application and NAL

It may be surprising that channel delay is a performance parameter as

seen from the video coder. There are two explanations. The first is because
of symmetry of resources and performance. Since channel delay is a resource

for the NAL, it is by definition a performance metric for the video coder. The

second—more intuitive—explanation is that the less delay is imposed by the
video coder, the more delay is available for channel coding, given a fixed end-

to-end delay constraint.

The residual error rate is also a performance metric, because the video

coder takes this error rate into account when predicting the picture quality.
In other words, the video decoder is able to handle such a residual error rate

while producing the given quality.

If data is corrupted, the decoded picture quality is affected. It depends on

the way packets are formed, whether whole frames are affected or only parts of

the image. Since a typical video codec uses frame prediction and motion com-
pensation, a damaged picture will cause propagation of errors, called drift. The

impairment is visible in all future frames, until an intra coded frame (I-frame) is
received. Video decoders often are designed to deal with corrupted or missing

data. These decoders are able to reconstruct missing parts of a frame by us-

ing surrounding frames and areas in a perceptually acceptable way. This often
means re-displaying the previous frame, but also more advanced techniques to

interpolate the missing frame exist [3, 17]. Still the corruption will be visible

to some extent. Although, by their nature, individual impairments are unpre-
dictable, models exist that predict an average impairment under a certain given

loss rate.
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In Chapter 3 we will introduce real-time adaptive video coding, scalable
coding and multiple description coding as solutions to fill in the video coder.

Figure 3.2 shows a block scheme of a typical Motion-Compensated-Transform-
based video coder. Most video encoders are based on or are derivatives of this

scheme.

2.2.4 Network Adaptation Layer

The network adaptation layer (NAL) provides the video coder controlled access
to the underlying network. A virtual channel is created through the underlying

network to the destination such that the video coder is shielded from routing
issues, retransmissions and packet error correction. Since the model is not

limited to one client or to single streams, the NAL in general offers multiple

parallel virtual channels to multiple clients. Each of these channels may have
different properties such as bandwidth and packet-loss rate or bit-error rate.

The task of the NAL is to transmit data without errors as fast as possible

to the receiver(s), given delay and capacity constraints from the surrounding
layers. Technically this means that retransmissions and error correction are

required to fulfill this task, since the underlying network is generally prone to
errors.

An implementation of NAL is the Internet Protocol (IP) stack. These proto-

cols takes care of packetization, rate control and retransmissions (Transport
Control Protocol (TCP)). The real-time variants RTP/RTCP are often used for

streaming, since a delay constraint can be taken into account. User Datagram

Protocol (UDP) is often used for streaming video, when no rate control and re-
transmissions are required.

The underlying network frequently suffers from congestion and packet losses.
The TCP protocol retransmits packets when they are not received at the receiver.

The video codec may therefore assume that TCP always delivers the data. A

drawback of retransmissions, on the other hand, is that it may take a long
time until the packet is finally delivered. Especially when the delay constraint

is tight, a retransmission may come too late which results in a missing frame

in the picture stream. For this reason, most streaming applications use UDP.
Since UDP does not do retransmissions, data packets may get lost, therefore

the video decoder should be resilient to lost packets. Another option is to limit
the number of retransmissions and to stop retransmitting when the data has

expired, i.e. when the moment the frame had to be displayed at the decoder

side has passed.

In the VSM, we assume that the NAL may also implement forward error

correction (FEC) to protect data from corruption. Especially on wireless trans-

missions, interference causes packets to arrive in a corrupted form, leaving
some bits erroneous. With FEC, channel codes are appended to each packet,

such that at the receiving end, the corrupted data can be corrected. In the
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2. VIDEO STREAMING MODEL

wireless 802.11 protocol, FEC is implemented in the Physical layer of the OSI-
model. There are no guarantees that all errors will be corrected. When when

the number of errors is too high to be able to correct the packet completely,
this will result in a corrupted packet which will either be dropped or passed on

to the video decoder marked as a packet with residual errors.

These types of protection on one hand increase the reliability of the trans-
mission but on the other hand cost bandwidth and increase delay.

Table 2.2 shows the relevant interface parameters for the NAL.

Interface Performance Resource

VC/NAL Channel rates Channel residual error rate
Number of channels Channel coding delays

NAL/NW Transmission delay Network capacity

Network error rate

Table 2.2 — Interface parameters for the Network Adaptation Layer.

2.3 Scenario

A ‘Scenario’ defines the properties and constraints to the VSM and the environ-
ment in which it has to operate. A scenario defines the number of clients, the

display type of the users device, the kind of network used for streaming and

the distribution of the bandwidths of connected clients. Furthermore, the sce-
nario prescribes whether the video is being streamed live or is pre-recorded and

whether all clients are streamed simultaneously or individually. Video compres-

sion may happen in real time, for live broadcasting, or can happen off-line for
video-on-demand services. An example of a scenario is mobile video streaming,

where the display size is very limited, the network is dynamic and very lossy at
certain times and the battery and processing power are limited. The scenario

also defines the criterion to optimize, often just quality or a trade off between

quality and rate.

Finally, the scenario defines the way the layers are cooperating in order

to achieve a common goal (i.e. optimal quality video streaming). Cooperation

comes in different level of complexity.

Fixed Cooperation All interface and internal parameters are established and

fixed at design time, and no real-time adaptation occurs.

Bottom-up Every layer informs the layer above about its current operation,
such that other layers can adapt and try to accommodate the changed

situation.
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Discussion

QoS Negotiation All layers exchange information about their current opera-
tion and possible other points of operation. The layers then negotiate

until all application and network constraints are met.

The following is a list of the most important properties and constraints defined
by a scenario:

• Type of streaming application,
• The targeted number of clients,
• The targeted display device’s capabilities,
• Heterogeneity of the networks,
• Heterogeneity of the client down link bandwidth,
• Whether the source is prerecorded or streamed live,
• The optimization criterion,
• Type of cooperation between layers.
The video streaming scenarios we investigated and presented in this thesis,

are:

• Low-latency real-time streaming of video to low-power mobile devices,
in Chapters 4 and 5.

• Low-latency real-time streaming of video over WiFi networks, in Chap-
ter 6.

• Streaming of video to many clients using P2P networks, in Chapters, 7
and 8.

The first two are examples of a real-time streaming scenario and the third is a
broadcasting scenario.

2.4 Discussion

The VSM is aimed to be a generalization of the video streaming systems pre-
sented in Part II. Other scenarios that are not discussed here, but may fit in the

same model or require small modifications to the model are

• Live surveillance, (live unicast transmission),
• Prerecorded unicast streaming (video-on-demand),
• Television broadcasting,
• Streaming with transcoding.
By defining the model as a stack of layers with interfaces and sets of in-

terface parameters, the model is easily mapped to a QoS approach where each

19



2. VIDEO STREAMING MODEL

layer finds a jointly optimal setting, by exchanging information and negotia-
tion. In Chapter 4 we use a QoS system to adaptively find optimal video coder

and channel coder settings in a real-time video coding and streaming exper-
iment. The Adaptive Resource Contracts (ARC) QoS system is used to let all

layers cooperate such that the system promptly adapts to changes in network

characteristics. ARC was generally designed for complex modular systems that
should operate in dynamic and resource-scarce environments. ARC is explained

in more detail in Chapter 4 and 5 and in Refs. [73, 87, 86, 90].

In the VSM, video compression is decoupled from channel coding and trans-
mission. The benefits are that the video coder is shielded from decisions and

implementation issues in the other layers. Furthermore, the actual encoding
algorithm and implementation may be replaced by another. Although from a

design point of view this is very attractive, in reality, the video coder and NAL

cannot be easily separated since they are inter-dependent: the limited capacity
of a network directly limits both the amount of channel protection and the rate

produced by the video coder. This necessitates joint optimization. Especially

when the network characteristics change over time, each subsystem should
adaptively change its parameters according to the current network conditions.

In these dynamic scenarios, our solution is that parameters can be commu-
nicated between the video coder and NAL, such that a joint optimum can be

found when these layers optimize their settings.

QoS cooperation is nevertheless neither required nor the only use of this
model. The model tells us which parameters and variables are relevant in the

design of our video streaming systems and how they relate to each other. An-

other approach is that layers simply exchange status information with other
layers in a bottom-up approach, without QoS negotiations. For instance with

layered coding (Section 3.3) the video-rate control can simply consist of select-
ing the number of layers that can be transmitted over the channels without

losses. Streaming systems can also be designed while assuming a certain net-

work behavior but without any cross-layer signaling. For instance an MDC
encoder that is designed for a dynamic peer-to-peer network but where no up-

to-date network information is available. The redundancy introduced by MDC

has to be adjusted to match the error-resilience or scalability required by the
network.
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Three

Network Aware Video Coding

Strategies

3.1 Introduction

In streaming scenarios, the video coder is working in cooperation with an ap-

plication and a network communication layer. The video coder should therefore

be aware of the underlying network while at the same time obeying the condi-
tions set by the application. In order to cope with fluctuations in bandwidth,

packet losses and congestion, the video coder should either be informed of
changes in the network or generate a video stream that can cope with changes

in the network characteristics.

In Part II of this thesis different scenarios are presented. In each scenario

a different way of cooperation and a different type of video coding is used.

Each scenario dictates a different video coding strategy to deal with network
dynamics, network-losses and heterogeneity of the clients. In this chapter we

discuss three different video coding methods, which will be used in subsequent

chapters.

The first coding approach is real-time adaptive video coding (RAVC). Using

a QoS interface, up-to-date network characteristics are used to continuously
update encoder settings. Knowledge about network and application is propa-

gated and negotiated between layers to obtain a global constrained optimum
as defined by the application. To perform the QoS optimizations, the behavior

of the encoder has to be modeled which is discussed in Section 3.2. The work

presented in Chapters 4 and 6 use RAVC and QoS cooperation between layers.

Section 3.3 discusses an approach where cooperation is based on Layered

Coding instead of RAVC. The actual encoding may even be done off-line. Based
on the network characteristics, each client only receives the layers that can

be transmitted without congesting the network. Although this still requires
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up-to-date knowledge of the network behavior, QoS negotiations are no longer
necessary. In Chapter 5 we follow a different approach, we construct a behav-

ior model for a progressive JPEG2000 coder that can be used in a QoS type of
cooperation between layers.

Section 3.4 describes the MDC approach in which multiple independently

decodable descriptions are generated by the encoder. MDC descriptions are

inherently scalable to network capacity and resilient to errors, which make
MDC suitable for lossy packet networks such as P2P networks, where no hard

guarantees can be given about delivery of packets. In this case the video coder
can be designed for a particular network or network protocol (such as peer-to-

peer, UDP). However, no real time network information is required to adapt to

network changes. Chapters 7 and 8 discuss the use of MDC in P2P networks
where tight QoS cooperation is not possible or available.

3.2 Real-time adaptive video coding

3.2.1 Introduction

Real-time adaptive video coding (RAVC) is targeted at streaming applications
where the video is encoded in real time. Encoding in real time gives the ad-

vantage that if network behavior is dynamic, we can instantaneously react
to changes in the network. A change in bandwidth, for instance, could im-

mediately result in changing the quantization-step size for the next frame. A

quintessential requirement is the availability of up-to-date information about
the current network state. We rely on a QoS mechanism that exchanges this

information between all layers of the system. The interface-parameter sets in

the VSM contain the resource and performance parameters. In the UBICOM
project we devised the Adaptive Resource Contracts (ARC) method for imple-

menting QoS [73, 87, 86, 90]. ARC offers the possibility to request, negotiate
and to contract these parameters for a certain amount of time.

To provide performance and resource information to other layers, the Video

Coder should monitor its own resource usage and performance. A problem is

that the performance is only known after encoding the frames under consid-
eration by the encoder. For ARC we rather need to predict the performance

and resource usage, based on given encoder settings and context information,
but before the actual encoding has been performed. To be able to make these

predictions we need a behavior model. For instance based on the target bit

rate setting, the model predicts the resulting quality (with some limited preci-
sion). The behavior model presented in this section, predicts the performance

based on the interface parameters from the VSM and the internal video coder

parameters. The behavior model is based on the ITU-T H.263 Video Coding
Standard (H.263) [62] video encoder, which also stood model for the typical

video encoder presented in Section 2.2.3.
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Figure 3.1 — Control Loop of the real-time adaptive video coding (RAVC)

Figure 3.1 shows the block scheme of the real time adaptive video coder

within the context of application and NAL. The encoder produces the encoded
bit stream and hands this over to the NAL as discussed in the previous chap-

ter. The encoder controller uses up-to-date information of the NAL and of the

source to compute the new encoder settings. The source characteristics estima-
tor analyzes the video source and the produced video stream and updates the

source characteristics. The behavior model that is discussed here extensively,

resides inside the encoder controller. The inner workings of the source char-
acteristics estimator is not discussed here explicitly, but can be inferred from

how we construct the behavior models later on.

3.2.2 Video Coder Behavior Model

The video encoder behavior is described by a number of parameters. We group
all parameters according to Table 3.1. The grouping of parameters is as follows:
V Internal parameters of the Video Coder.

Res(V) Set of parameters describing resource usage of the video coder.

Perf (V) Set of parameters describing the performance of the video coder.
Sv Set of parameters describing the statistical characteristics of the

video source.

Cv Set of parameters containing platform-dependent parameters
and timing constants independent of video source or network.

The resource and performance parameter sets reflect the interface parameters

of the VSM listed in Table 2.1. We added central processing unit (CPU) usage to

this list, since CPU-time was taken into account as a resource in the UBICOM
scenario. We also incorporate the channel bit-error rate (as opposed to a packet-

loss rate), since the communication in UBICOM offered wireless transmission
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in which residual bit errors could occur when the channel protection could not
correct all errors.

In addition to the sets of interface parameters, we have set of internal
video coder parameters V , discussed in the next section, and a set of source
characteristics Sv. These parameters describe statistical characteristics of the

video source, for instance the amount of variance and the amount of motion.
These characteristics of course may change during the sequence. We assume

that these parameters are estimated while encoding in a feedback loop and

are hence effectively a priori known to the encoder. Finally, we have a set of
platform and encoder dependent constants Cv. The values of these parame-
ters are constant for a given platform and encoder implementation, but are not
dependent on the video source or network conditions.

The behavior model presented in the remainder of this section predicts per-

formance and resource usage as function of encoder settings V . We can there-
fore summarize the model by functions Perf (V) and Res(V). In Chapter 4
and 6, the behavior model is used to find a global constrained optimum for the

settings of the video coder, application and NAL, using the ARC system. There
the constrained optimization criterion is defined as:

max
V

Q(V) (3.1)

such that

Res(V) ≤ Resconstraints (3.2)

and

Perf (V) ≥ Perf constraints (3.3)

where Resconstraints and Perf constraints are the QoS constraints on the inter-
faces with the application and NAL. The criterion maximizes the end-to-end

quality Q over all possible combinations of the encoder settings V while ad-

hering to the application and NAL constraints. The used end-to-end quality
metric is based on the PSNR of individual video frames and is further intro-

duced in Section 3.2.9. Note that there is not necessarily always a solution to

this optimization problem, in that case the user of the system should relax his
requirements or cancel the transmission.

The video coder behavior model describes and models the relationships be-
tween internal encoder settings and the interface parameters of Table 3.1. The

goal of this model is to predict the performance (e.g. Quality) and resource us-

age (e.g. delay, transmission rate) of a given video coder, given internal coder
settings. This model is used in Chapter 4 in a QoS system to find a global

constrained optimum.

The video coder on which our model is based is the H.263 coder. Figure 3.2
shows the block scheme of the encoder. Five main encoding steps are distin-

guished:
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Table 3.1 — Overview of Video Coding Behavior Model parameters. Each of

these parameters may vary over time. However, for notational clarity we have

dropped the frame index i as argument of these parameters.

Parameter set Symbol Parameter

V = R Encoding rate
Nfs Number of frame skips

β Intra-refresh rate

lme Motion vector search range

Res(V) = Tv End-to-end delay
Cv Total CPU usage

Rc NAL transmission rate (Bandwidth)

Perf (V) = Q End-to-end video quality metric
Tc NAL transmission delay

pc NAL bit error rate

Cc NAL CPU usage

Sv = σ 2
X Mean variance of video-frame mac-

roblocks

G0 Prediction gain between two consecutive
frames

Gme Motion compensated prediction gain be-

tween two consecutive frames
Nmc Motion coherence

Nmcc Motion compensated coherence

σl Standard deviation of the motion vector
length

ffps Frame rate

Cv = t1mv vector evaluation time
Tfixed minimal encoding time

γ filter strength

θI , RI∅, DI∅ RD-curve parameters I-macroblocks
θP , RP∅, DP∅ RD-curve parameters P-macroblocks

σ2
artifact artifact distortion

L residual bit-error L-parameter
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Figure 3.2 — Typical Motion-Compensated-Transform video encoder

1. Frame prediction and frame skipping,

2. Motion estimation and compensation,

3. Intra macroblock refreshing for introducing error-resilience,

4. Rate control and quantization,

5. variable length coding (VLC) / Entropy Coding.

Each of these steps has its own parameters and imposes its own behavior

on the video coder as a whole. The choice of which internal parameters and
source characteristics to incorporate into this model is on one hand a result of

the wish to limit the model complexity. On the other hand, since it should be

possible to make trade-offs between performance and resources, a sufficiently
complex model is required.

In the following sections we will, step by step, introduce the behavior

model and thereby relate the parameters from Table 3.1 to each other. We fol-
low a bottom-up approach where we first find a model to predict the amount

of variance that has to be encoded, given motion search range and frame skip
parameters. Then we find a model for predicting the quantization distortion

given the variance and the encoder rate setting. The next step is to find a

model to predict the decoded video quality, taking quantization distortion,
frame skips, and residual channel error distortion into account, assuming a

network with bit-errors. Finally, we establish models to predict resource usage

(delay and cpu time) given the encoder settings and network information.

3.2.3 Prediction Gain

The H.263 frame prediction scheme of uses intra-coded I-frames, inter-coded

P-frames and bidirectionally predicted B-frames. In the UBICOM project we have
chosen not to use B-frames, for their added delay and for simplicity reasons. We

therefore only take I-frames and P-frames into account in this behavior model.
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Inter prediction exploits predictability between frames and thereby decreases
the amount of variance of the signal that is encoded. In general inter predic-

tion increases coding efficiency because less rate is needed to attain the same
quality. In order to predict the rate necessary to encode a particular frame, we

first predict the variance of these frames. Because these difference pictures are

not available before the actual encoding has taken place, we need to model the
behavior of the frame predictor, based on data that is available at forehand.

The ratio between the variance of a frame Xi and the variance of the dif-

ference between the frame and the prediction Xi is called the prediction gain:

Gi =
var [Xi]

var
[
Xi − X̃i−1

] . (3.4)

Here Xi is the current frame, which is predicted by the previous reconstructed
frame (reference frame) X̃i−1. Prediction gain is a measure for how good a

frame prediction is. If we can estimate Gi at forehand and know the variance
of a frame var [Xi] = σ 2

X , we can also estimate the variance of the frame

difference.

In ourmodel prediction gain is influenced by two parameters, namely frame
skip Nfs and motion vector search range lme. We will first discuss the effect of

these parameters separately and then their aggregated effect.

3.2.4 Frame prediction and Frame skipping

In a real-time streaming scenario, frames may have to be skipped for several

reasons. First of all it may happen that encoding every frame consumes too

much time to achieve real time performance. Secondly, it may turn out to yield
better compression ratio to skip frames and to concentrate on finer quantiza-

tion, for instance in low-motion scenes.

The frame skip parameter Nfs ≥ 1 is defined as the integer frame dis-
tance between two encoded frames. In this case we define the prediction gain

between frame i and frame i − Nfs, depending on the frame skip (Nfs) and
motion vector search range (lme) parameters: follows:

Gi(Nfs, lme) =
var [Xi]

var
[
Xi − X̃i−Nfs

] (3.5)

Since in general the difference between frames increases when their dis-

tance increases, we expect prediction gain to decrease whenNfs increases. Fig-
ure 3.3 illustrates for frames in the foreman 1 sequence how prediction gain

G(Nfs, 0) decays to one when the number of skipped frames is increased when

1foreman and 
arphone are well-known video sequences, often used for test and evaluation
purposes
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no motion estimation takes place.2 The circles show the prediction gain when
no motion compensation is used.
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Figure 3.3 — This figure shows the relationship between prediction gain and in-

creased frame distance for frames in the foreman sequence.
The reason that G(Nfs, 0) decays to 1 is that the worst prediction that can

happen is when there is no predictability between the two frames, meaning
that the entire frame has to be intra coded.

Our aim is to estimate the prediction gain given the frame skip parame-

ter. Based on the behavior displayed in Figure 3.3, we assume an exponential
decaying model:

Ĝ(Nfs, lme = 0) = 1 + (G0 − 1) exp

[
1−Nfs

Nmc

]
, Nfs ≥ 1. (3.6)

HereNmc is the Motion Coherence length, being the average number of skipped
frames at which the prediction gain minus one has decayed by a factor e. G0 is

the expected prediction gain when no frames are skipped (Nfs = 1). Since the
parameters Nmc and G0 depend on the video source characteristics, they are

considered ‘Source Parameters’ and are contained in the Sv vector. The solid

line in Figure 3.3 is plotted with model Eq. (3.6). The standard deviation of the
shown points with the model Eq. (3.6) is 0.12, which is sufficiently small, since
a difference in G of 0.12 corresponds to a difference of 0.1dB in quality.

2For notational clarity, we drop the frame index i from here onwards for all parameters.
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3.2.5 Motion Compensation

~v
lmv

2lmv,max + 1

2lmv + 1

Figure 3.4 — Explanation of motion vector search range. Each small square repre-

sents one pixel. The range in which the search is performed is lme which should

be smaller than or equal to the maximum range lme,max. The~v vector is a vector
within the range.

Motion compensation (MC) is used to further improve the prediction X̃i of

the encoded frame, resulting in P-frames with lower variance. Camera motion

and object motion are compensated, resulting in a prediction that is closer to
the frame being predicted. We assume the motion estimator complexity to be

parametrized. Since motion estimation is a time and power-consuming task,
we do not always want to perform full motion estimation (ME), but only search

among a limited set of candidate vectors. Prediction gain will decrease when

not all possible motion vectors are evaluated, resulting in a suboptimal motion
compensation vector. We experimentally found a trade off between complexity

and prediction gain. Correct modeling of this behavior also depends on the

implementation of ME, for instance full search, diamond search, N-step search
or hierarchical ME [19, 18]. Although advanced ME techniques give good results

at lower complexities, we have chosen the full search method since it is easy to
model. More advanced ME techniques can still be incorporated, but will require

a different model since they have a different complexity – prediction gain trade

off.

We parametrized full-search ME bymaking the search range adaptive. Search
range lme ∈ N is defined as a square around the current (macro) block position

with distance lme to the center, in which all possible motion vectors are eval-

uated. The maximum motion vector length in H.263 is 15 pixels. Since we use
half-pixel (half-pel) motion estimation, which means that a motion vector could

point half-way between two pixels, the pixel offsets are multiplied by two to

obtain integer values. The maximum motion vector length is 15 pixels result-
ing in lme ≤ 31. The total number of vectors that are evaluated during full
search ME is nmv = (2lme + 1)

2
(see Figure 3.4).
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Figure 3.5 — Histogram of motion vector lengths for the foreman sequence. The
Solid line represents the model in Eq. (3.8) fitted to this data.

Figure 3.5 shows a histogram of the found motion vector lengths lmv ∈ N

for the foreman sequence. The histogram suggests a exponential probability

density function (pdf) for the physical (continuous) motion vector length:

flmv(x) =
1

std [lmv]
exp

−x

std [lmv]
. (3.7)

When Nfs = 1, std [lmv] can be replaced by σl, the standard deviation of mo-

tion vector length:

flmv(x) =
1

σl

exp
−x

σl

. (3.8)

σl is a measure for the amount of motion between two consecutive frames and

is considered another Source Parameter (in Sv).

Figure 3.6 illustrates that prediction gain increases when the motion search
range lme is increased. Based on this behavior we assume that a motion vector

‘match’ (when the right motion vector is found) increases the prediction gain
with a constant amount while finding the wrong motion vector does not im-

prove prediction gain. The probability of a match increases when the search

range is expanded and is given by

Pmatch(Nfs = 1, lme) = Prob[lmv ≤ lme] = 1− exp
−lme

σl

(3.9)
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Figure 3.6 — Prediction Gain versus motion vector search range for the foreman
sequence. The crosses mark the experimental values for the foreman sequence
and line shows the fitted model using Eq.(3.10)

such that Pmatch = 0 when there is no motion compensation (lme = 0)
Pmatch = 1 with unconstrained motion compensation (lme →∞).

We are now able to estimate the prediction gain with the following model.

Ĝ(Nfs = 1, lme) = (1 − Pmatch(Nfs = 1, lme)) (G0 − 1)+

Pmatch(Nfs = 1, lme) (Gme − 1) + 1
(3.10)

where Source Parameter Gme denotes the prediction gain when full motion es-
timation is performed. The continuous line in Figure 3.6 shows the behavior of

the model Eq. (3.10) for fitted values ofG0 andGme. Although the fit shown in

Figure 3.5 is not very precise, we justify this model by pointing to the sufficient
accuracy of the resulting model Eq. 3.10 (Figure 3.6).

3.2.6 Joint effect of frame skip and motion compensation on

prediction gain

The joint effect of frame skip and motion compensation can be observed in Fig-

ure 3.3. At maximal motion compensation (lme = 31), the prediction gain is
higher, but also decays at a slower rate when the frame skip increases. This
means that when maximal motion compensation is used, the predictability be-

tween frames stays high over longer frame distances. This slower decay at
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maximal motion compensation is parametrized with a different motion coher-
ence parameter Nmcc (motion compensated coherence).

When frames are skipped, motion vectors are computed between frames
that are farther apart in time. Since there is often more motion in this longer

period, the motion vectors will on average become larger. Figure 3.7 shows

how the standard deviation of the motion vector length increases for foreman
when frame skip increases (crosses). If we assume the motion in subsequent

frames to be independent, we can sum the variances of the motion vector

lengths of the individual frames. This results in the standard deviation of the
motion vector length over Nfs frames:

std [lmv] =
√

Nfs σl (3.11)

and in the probability of a match:

Pmatch(Nfs, lme) = Prob[lmv ≤ lme] = 1− exp
−lme√
Nfs σl

(3.12)

by replacing σl in (3.9) by
√

Nfsσl. The solid line in Figure 3.7 is plotted using

model (3.11) and suggests that our i.i.d. assumption of the motion vectors is
reasonable.

We can now construct a model for estimating the prediction gain given

the frame skip and the motion vector search range, by combining Eqs. (3.6)
and (3.10):

Ĝ(Nfs, lme) = (1− Pmatch(Nfs, lme))

(
exp

1−Nfs

Nmc

)
(G0 − 1)+

Pmatch(Nfs, lme)

(
exp

1−Nfs

Nmcc

)
(Gme − 1) + 1

(3.13)

For frames in the foreman sequence, we have generated a 3-D plot of the ex-
perimentally measured prediction gain for different frame skips and motion

vector search ranges in Figure 3.8(a). In Figure 3.8(b) the model in Eq. (3.13) is

shown for the same conditions. A reasonably good match is obtained since the
standard deviation of the error between the model and the measured values of

the prediction gain was in this case 0.21. When assuming typical prediction
gains of 3 and higher, this corresponds to differences in the video quality of
maximally 0.3 dB, which is acceptably small.

3.2.7 Intra Block Refresh

Intra block refresh is a technique used to reduce the effect of channel errors.

Residual channel errors may impair a frame and these impairments are prop-
agated through consecutive inter-coded frames. One way to stop error propa-

gation is to send intra coded frames once in a while. Another option is to send
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Figure 3.7 — Standard deviation of the motion vector length for increasing frame

skips of the foreman sequence
intra-coded macro blocks in inter coded frames. A fraction β of all macro blocks
is then randomly selected for intra coding.

The average variance of individual intra macro blocks is σ 2
X . For inter-coded

macro blocks we can estimate the variance by σ 2
XĜ−1(Nfs, lme). Since in gen-

eral G > 1, a high β results in less coding efficiency. Clearly there is a trade
off between increasing error-resilience (by increasing β) and increasing coding
efficiency (by decreasing β). The effect of β on (decoding) quality will become

clear after taking into account quantization and residual channel errors in the
following paragraphs.

3.2.8 Quantization and Variable Length Coding

In order to predict the rate of the produced bit stream after quantization and

variable length coding (VLC), we use rate-distortion (RD) theory [36]. For Gaus-

sian memoryless sources, RD theory gives us a lower bound of the needed bit
rate when a certain distortion is allowed:

R(Dq) ≥
1

2
log2

σ 2
X

Dq

, for 0 ≤ Dq ≤ σ 2
X , (3.14)
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Ĝ
(N

fs
,l

m
e
)

(b)

Figure 3.8 — (a) Experimental values of Prediction Gain for different frame skips

Nfs and search ranges lme. (b) The estimated prediction gain using the model in

Eq. (3.13).
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where R is the bit rate (bits/sample) and Dq is the mean square error (MSE)

quantization distortion Dq = var
[
X − X̂

]
.

For non-Gaussian sources and sources with memory, this model is not very

accurate. For a practical video source most video coders are able to perform

better than this. We based our model on the model introduced by Stuhlmüller
et al. [70]:

D̂q =
θ

R−R∅
+ D∅. (3.15)

Here R∅ is the rate-offset, D∅ is the distortion-offset and θ is the RD factor.
To incorporate the use of intra codedmacro blocks and intra frames (β = 1),

we took a different approach than Stuhlmüller et al. We use different RD-curves
for intra and inter coded macro blocks. The reason is that we can now incor-

porate our prediction gain estimation for inter macro blocks. Furthermore, we
have normalized the RD-model by extracting the variance of the input signal.

The distortion is calculated as the average distortion over all macro blocks as

follows:

D̂q(V) = D̂q(R, Nfs, lme, β) =(1− β)
σ 2
X

Ĝ(Nfs, lme)

(
θP

R−RP∅
+ DP∅

)
+

β σ 2
X

(
θI

R−RI∅
+ DI∅

)
.

(3.16)

Because we use different models for intra and inter macro blocks, we now have
the following source parameters θI , θP ,RI∅,RP∅,DI∅ andDP∅ which are con-

sidered to be intrinsic to the implemented video coder and are assumed not to
change. Figure 3.9 shows for intra and inter coded macro blocks the RD-curves

for the foreman sequence. The circles are the average values of the experi-
mentally obtained macro block distortions. The continuous line represents the
fitted model, and gives an accurate fit. The error bars indicate the standard de-

viation of the distortion of individual macro blocks. Although the RD behavior

of individual macro blocks has a large spread, by using the law of large num-
bers the average distortion over a large number of macro blocks can be well

estimated by (3.16). In the context where this model is used we are more in-
terested in the average RD-behavior over a large number of macro blocks and

over multiple frames, than the behavior for a particular macro block.

3.2.9 End-to-end quality metric

In addition to the quantization noise, the perceived picture quality at the re-

ceiver side is also influenced by:

1. Residual error impairments of transmitted (non-skipped) frames
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2. Frames skipped by the encoder,

Residual channel errors (errors not corrected by error correction or retrans-

mission) impose their own local impairments on the received pictures. Frame
skips are effectively perceived as the previous frame being displayed twice as

long. Especially in scenes with a lot of motion, frame skips degrade the per-
ceived quality. We assume residual errors to be independent of the errors in-

troduced by quantization and by skipping frames. We discuss non-skipped and

skipped frames first separately and then combine the two effects in a single
metric for end-to-end quality Q.

3.2.9.1 Effect of Residual Channel Errors and quantization on encoded and

transmitted frames

Each transmitted frame suffers from quantization distortion and—when resid-

ual channels errors occur—residual error impairments. We define the total

distortion on an encoded and transmitted (non-skipped) frame i as the sum-
mation of quantization distortion Dq(i) (Eq. (3.16)) and residual channel error
distortionDc(i) (we refer to Figure 2.1 for a clarification on the used symbols):

D̂non−skipped(V , i) = var
[
Xi −X†

i

]

= var
[
Xi − X̂i

]

︸ ︷︷ ︸
+ var

[
X̂i −X†

i

]

︸ ︷︷ ︸
= Dq(V , i) + Dc(i).

(3.17)

Predicting the variance of the residual-error impairment signal is very dif-

ficult since these impairments are unpredictable in size, amount and nature.
Only based on a large number of experiments, we are able to compute an av-

erage residual error variance, if we know encoder settings and network loss
rates. Furthermore, as discussed in Section 2.2.3 the type of errors depends on

whether residual bit-errors occur or only dropped packets.

Motion compensation worsens the effects of residual errors. Since a cor-
rupted part of the frame may be used to predict a block at a different position

in the next frame, image impairments will be smeared out. Since most video

coders use half-pixel ME, which causes a filtering effect, an error will eventu-
ally fade out as in an infinite impulse response system. The following model,

adopted from [71], predicts the variance of the residual error in each frame i
introduced by an initial distortion in frame j:3

σ2
c (i, j) =

{
σ2

u(j) 1−β (i−j)
1+γ (i−j) , 0 ≤ (i− j) ≤ ⌊β−1⌋

0 otherwise
(3.18)

3The frame indexes are introduced again from here onwards, since multiple frames are in-
volved in calculating the end-to-end quality.
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where γ is the leakage, it describes the half-pixel ME filtering strength, and
is assumed to be a constant factor. The intra-block-refresh rate β was already

introduced in Section 3.2.7. Variance σ2
u(j) is the amount of errors injected in

frame j. We assume that after ⌊β−1⌋ all blocks are refreshed and no residual
errors from the initial impairment are present.

σ2
u(j) depends on how many channel errors occur during transmission and

how (on average) a channel error affects a frame. In Figure 3.10(a) the relation

between bit-error rate pc and average σ2
u(j) is shown. The crosses show the

average distortion of all experiments. In each experiment (10000 in total), a

different error pattern was induced on the data to simulate independent chan-

nel bit errors. The error bars indicate the standard deviation over the separate
experiments.

To model the behavior shown in Figure 3.10(a), we assume a linear relation-
ship between σ2

u(j) and the amount of distortion of an independent artifact
σ2

artifact:

σ2
u(j) = n · σ2

artifact (3.19)

= [1− (1− pc(j))
L] σ2

artifact, (3.20)

The factor n denotes the estimated number of independent artifacts, which is
estimated by 1 − (1 − pc(j))

L, where L is a constant for a given encoder and

has to be found by curve-fitting. L is used to model the fact that at higher bit-

error rates the introduced bit errors are not independent anymore. pc(j) is the
expected bit-error rate at time of transmitting of frame j. For a thorough dis-
cussion we refer to our paper [75], included in this thesis as Chapter 5. σ2

artifact

and L are encoder dependent parameters in Cv and assumed to be constant.
Experiments indicate that this model gives an accurate prediction of the

average normalized energy of injected errors, as shown in Figure 3.10(a). In
Figure 3.10(b) we see an approximately linear relationship between (1 − (1 −
pc)

L and σ2
u(i) as in Eq.(3.20). In Figure 3.10(a) the line shows that Eq. (3.20)

gives a good average approximation of the experimental data (crosses), but

with a quite large spread of actual measured distortion. Since we are interested

in the average end-to-end quality over multiple frames, the spread in individual
frame distortions is not so relevant.

The total residual error distortion that is present at frame i is an accumula-
tion of the induced residual errors from all previous frames.

D̂c(i) =

i∑

j=−∞

σ2
c (i, j) =

i∑

j=i−⌊β−1⌋

σ2
c (i, j). (3.21)
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Figure 3.10 — (a) Plot of and residual channel error distortion as function of the

number of artifacts 1 − (1 − pc)
L for frame 2 in the foreman sequence. For

this particular frameL = 1.61 ·103 and σ2
artifact = 17.5were found by curve-

fitting (b) Experimental values of the distortion due to residual channel errors

pc. (c) Example of artifacts due to residual channel errors.
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3.2.9.2 Effect of skipping frames on end-to-end distortion

When the decoder detects that a frame has been skipped at the encoder, it fills

in the missing frames by reusing the last received frame until a new frame is

received. The visual perception of frame skips is not easy to model, although
several attempts were made [92, 85, 22]. We used a model that simply adds a

penalty to the distortion for each skipped frame. Since in place of a skipped

frame, a previous frame is shown, the MSE distortion is in fact the difference
between the current frame and the previous frame. This amount of distortion

can be estimated using the prediction gain. We estimate the distortion of frame

i, when the last received frame was frame j:

Dskipped(V , i, j) = var
[
X†

j −Xi

]

= var
[
(X†

j −Xj)
]

+ var [(Xj −Xi)]

D̂skipped(V , i, j) = Dq(V , j) + Dc(j) +
σ 2
Xi

(G0 − 1) exp 1−(i−j)
Nmc

+ 1
(3.22)

assuming independence of quantization errors and frame differences.

We can now estimate the average end-to-end quality Q which is a perfor-

mance parameter of the video coder (Perf (V)). The end-to-end quality is cal-
culated, using the complete chain of models and all encoder settings described

above. Since we take skipped frames and propagation of errors into account,

we should estimate an average Quality Q over multiple frames. The average
perceived quality over frames j, . . . , j + (Nfs − 1) of which the first one is
encoded and transmitted and the following Nfs − 1 frames are skipped at the
encoder, is predicted by the average PSNR over these Nfs frames

Q̂(V , j) =
1

Nfs

(
20 log10

255

Dnon−skipped(V , j)
+

Nfs−1∑

i=1

20 log10

255

Dskipped(V , i, j)

) (3.23)

Evaluation of the aggregate behavior of this model is performed in the ex-

periments in Chapters4 and 6 in the context of the ARC QoS system.

3.2.10 Resource usage

In order to be able to make fair trade offs between the performance and re-

source usage, we need to predict the resource usage given the encoder settings.
The first resource, NAL bandwidth Rc follows directly from the encoding rate

R. For the other resources, delay and CPU-usage, we propose a behavior model.
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Motion estimation is the most complex operation in an encoder. We found
that the other operations (DCT, quantization etc.) have a relatively constant

contribution to the total computation time. However, motion estimation is
parametrized by the search range and greatly influences the total amount of

computations. We model the time needed to compress a frame as a constant

amount T∅ plus an amount depending on the search range lme. Since we as-
sumed a parametrized full-search ME, the amount of motion vectors calculated

is proportional to the area of the search range.

T̂frame = T∅ + t1mv (2 lme + 1)2 (3.24)

where t1mv is a calibration parameter being the time needed for evaluating one

motion vector.

3.2.10.1 End-to-end Delay

Tv is defined as the maximum allowed end-to-end transmission time between

recording and displaying (see Figure 2.1) which yields

T̂v = Trecord + Tencode + Tc + Tdecode + Tdisplay. (3.25)

We assume Trecord, Tdecode and Tdisplay to be constants that can be estimated

at forehand. Tc is the NAL transmission delay interface parameter that has
to taken into account. This leaves Tencode to be estimated. Since, in general,

end-to-end delay is bounded, Tencode has to be bounded as well.

We have to take into account that frame skips also increase encoder de-
lay, since when Nfs frames are skipped, it takes at least

Nfs

ffps
seconds, before

the next frame arrives. Furthermore, the actual encoding time also increases
delay. Besides the bound on transmission delay, real-time coding requires the

encoding time to be smaller than

Tframe ≤
1

ffps
, (3.26)

since otherwise encoding speed is lower than real time play out speed, making

real time compression impossible.

This results in the following equation to estimate encoder delay:

T̂encode =

{
Nfs

ffps
+ Tframe when Tframe < 1

ffps

∞ otherwise
(3.27)

3.2.10.2 CPU usage

The CPU-usage fraction Cv is the percentage of time available for video coding

including (NAL) channel coding. Cv = 100% means that all CPU-time is used
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for video coding and channel coding and no CPU-time is left for other appli-

cations. Per second, we encode
ffps

Nfs
frames, resulting in a total CPU fraction

Ĉv =
ffps

Nfs
Tframe + Cc, (3.28)

where Cc is the CPU fraction that the NAL requires.

3.2.11 Parameter Estimation

We realize that this model, when considering all intermediate models for esti-

mating the prediction gain, RD behavior and effect of residual channel errors,
is fairly complex and has a limited precision. Evaluation of the accuracy of this

model can be done by evaluating its composing sub models, which is done in
the previous sections and by evaluating its aggregate behavior. Evaluation of

the aggregate behavior is performed in the experiments in Chapters4 and 6 in

the context of the ARC QoS system.
Even if we would have validated this aggregated model with many differ-

ent video sources and many different channel conditions, we would question

the value and reliability of that validation. In a real usage scenario we have
to assume that we cannot find the optimal model parameters, for complex-

ity reasons and because of the fact that we can only measure behavior after

encoding and cannot perform multi-pass encoding in a real-time scenario. Fur-
thermore since video statistics are non-stationary and show large spreads in

distortions of frames and blocks, while using the same settings, real-time es-
timating the model parameters is cumbersome. Therefore, a fair amount of

uncertainty will always be present in the model parameters and in the esti-

mations of the resource usage and performance. These imprecisions could be
combat by increasing the model complexity: using higher order models or more

parameters. But this will also lead to a model for which it is more difficult to

find the optimal model parameters in a real time usage scenario.
The real value of this model lies in the fact that we are interested in the

estimations of the average behavior over longer periods of time than just one
frame. This suggests that an averaging filter could be applied to combat the

uncertainty, but which—as a side effect—makes that the predicted behavior

reacts slower to changes in the channel conditions or source characteristics.

3.3 Scalable, Layered and Progressive Coding

3.3.1 Introduction

In the previous section we presented real time adaptive video coding as a so-
lution where a tight coupling between video coder and NAL was exploited to

be able to adapt to a changing and error-prone network. Scalable coding gives
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a solution for video streaming to postpone the decision of the rate at which
the video is transmitted until the time of transmission instead of at the time of

encoding.

In scalable coding the encoded video streams are organized in such a way,
that by selecting only parts of the stream, or sub streams resolution, frame

rate, bandwidth or quality of the video can be scaled.

Layered Coding is a form of scalable coding where the stream is actually
split up in separate discrete layers or sub streams, which can then be trans-

mitted separately. Upon reception of the first layer, called the base layer, the

decoder reconstructs the source, generally at a lower resolution, frame rate or
quality. The base layer on itself is perfectly decodable and results in a basic

representation of the original data. If the decoder also receives higher layers,
it is able to reconstruct at higher quality levels (or resolution or frame rate).

An enhancement layer is useless without the corresponding base layer. Layers

are ordered or prioritized in the sense that, to decode layer i, the preceding
layers 0, . . . , i− 1 also have to be available at the decoder. Only the base layer
(0) depends on no other layer. Depending on the network characteristics and
requirements of the application, a subset of the layers is streamed to the client.
For instance if channel capacity is limited to Rc, only l layers can be streamed:

l ← max
l

Rl (3.29)

such that Rl =

l−1∑

i=0

ri ≤ Rc, (3.30)

where ri are the rates of the individual layers.

With layered coding it is possible to transmit video streams at different
rates to clients with different bandwidths. In a network where different chan-

nels exist with different levels of QoS, we can transmit each layer over a differ-

ent channel. The base information over the channel with the highest QoS, and
the refinement information over the channel with the lowest QoS.

Progressive coding is another form of scalable coding that obtains rate or

quality scalability but without explicitly producing separate layers. The bit
stream and the encoding process are organized in such a way that the most

important information, and often the coarsest structures in the frame, are en-
coded first and appear at the beginning of the bit stream. As the encoding

continues, the encoded information progressively becomes less and less im-

portant and more fine-grain. The decoder which processes this progressive bit
stream is now able to reconstruct a coarse representation of the source, and

to progressively refine this representation, until all bits are processed or until

another criteria is met. Such a stream is truncate-able at any point and still
leaves a decodable sub stream. Another advantage of progressive coding is

that errors occurring while transmitting a progressive bit stream have a lim-
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ited effect. Only the less important information, positioned after the bit-error,
will have to be discarded while the first part can still be decoded.

Scalable, layered, and progressive coding are often used interchangeably
and often more than one of these applies to a particular coder. For instance,

the scalable picture coding standard JPEG2000, is able to produce progressive

bit streams, but also implements resolution, and quality scalability.
Scalable coding is also called ‘Successive Refinement of Information’ (SRI).

W. Equitz studied this topic [29] which is based on MDC [1] theory. Thus, lay-

ered coding can be seen as a special case of MDC. The author calls a source
successively refinable when at each refinement iteration the rate distortion

bound of that source can be achieved. Only a limited set of signals is succes-
sively refinable, such as Gaussian signals with MSE distortion. Examples of

signals are known which are not successively refinable [29]. In practice how-

ever, not achieving the rate distortion bound is not necessarily a problem. A
small penalty in bit rate is often acceptable when a scalable encoder is required,

as is the case with for instance H.264/SVC.

3.3.2 Differential Layered Coding

Perhaps the most basic layering technique is differential encoding. In differen-

tial layered coding layers are encoded step-by-step and reconstruction is done
by successively adding refinements to the base reconstruction [80]. It can be

used to implement layering using standard encoder building blocks.

Encoder 1

Encoder 2

Encoder 3

Decoder 1

Decoder 2

Decoder 1

Decoder 2

Decoder 3

X Enc(X) X̂

Enc(∆X)

+∆̂X

X̂ ′

+

Enc(∆′X)

+∆̂′X

X̂ ′′

-

+

-

X̂

X̂ ′

+

+

∆X

∆′X

+

+

Figure 3.11 — Differential Layering with three layers. Left the encoder side using

generic encoders and decoders. Right the receiving decoder side.

We give an example of a differential layered encoder in Figure 3.11. Encod-

ing X results in encoded signal Enc(X). Decoding base layer Enc(X) again

results in a course representation Dec(Enc(X)) = X̂ . We define the residual
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or differential signal ∆X = X − X̂ and mean-square-error distortion

D = E
[
(X − X̂)2

]
= E

[
(∆X)2

]
.

If we also decode Enc(X) at the encoder. we can construct the residual
signal∆X . We now can encode this residual signal with another, finer encoder,

which results in a decoded signal ∆̂X with decoding error∆′X = ∆X−∆̂X .
To reconstruct the image with the enhancement data, the decoder simply

has to add the decoded base signal X̂ with decoded enhancement data ∆̂X :

X̂ ′ = X̂ + ∆̂X

= X̂ + ∆X + ∆′X

= X̂ + (X − X̂) + ∆′X

= X + ∆′X

(3.31)

As a result, the reconstruction of X using base and enhancement layer, X̂ ′

is distorted with a residual signal∆′X and yields a distortionD′ = E
[
(∆′X)2

]
.

Note that distortion ∆X itself is eliminated in the last step of Eq.(3.31) and

is no longer present in the reconstruction of the second layer, This structure
easily scales to generate any number of enhancement layer. Thus every layer

decreases the effect of the reconstruction distortion of the previous layer.

With differential layered encoding, we can in principle make a layered coder
from any non-scalable encoder. In Chapter 7 we describe the use of a scal-

able encoder based on the non-scalable Dirac encoder, developed by the British

Broadcasting Corporation [26]. There we used the differential encoding scheme
to generate multiple layers for each single frame. Only for the base layer mo-

tion compensation is used. This on one hand leads to less efficiently encoded
enhancement layers, but on the other hands makes it possible to decode any

enhancement layer without depending on previous frames. Figure 3.12 shows

the PSNR–rate curves for the layered Dirac encoder. Each branch point corre-
sponds to a different base-layer rate and base quality and each branch shows

the quality-rate curve for the enhancement layer. For comparison also the

H.264 curve is shown. We clearly see that there is a penalty in quality if a
low base rate is chosen, due to the lack of motion compensation for the en-

hancement layers.

3.3.3 Progressive Coding: Bit-plane Coding

Bit-plane coding is another method based on successively refining layers [49].

In bit-plane coding, we code the signal in a progressive manner. Often bit-plane
coding is preceded by Discrete Cosine Transform (DCT) decorrelation and uni-

form quantization. Instead of coding every quantized coefficient separately, we
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Figure 3.12 — Quality–Rate curves for a two-layer Dirac encoder. Each branch has

a different rate for the base layer. The dashed line shows the RD curve for the

H.264 codec.

take all ith bit of all pixels in a block together, forming a bit plane and encode
them efficiently using variable length coding. By starting with the most signifi-

cant bit (MSB) and working towards the least significant bit (LSB), a progressive
bit stream is produced which can be cut off between any bit plane.

Examples of still-picture compression standards that are progressive are
Embedded Zerotree Wavelet (EZW) [66], Set Partitioning in Hierarchical Trees

(SPIHT) [63] and JPEG2000 [69]. JPEG2000 is used in Chapter 5.

3.4 Multiple Description Coding

Multiple Description Coding (MDC) is described by Goyal and Kovaçevic [32] as:
’[. . . ] source coding in which several descriptions of the source are produced

such that various reconstruction qualities are obtained from different subsets

of the descriptions.’

With MDC several descriptions are generated, each of which can indepen-
dently be decoded. When more descriptions are received, the decoder can

improve the reconstruction quality, much in the same way as Layered Cod-

ing. However, in layered coding all lower layers have to be present to improve
quality, whereas for (symmetric) MDC any description will improve quality. To

achieve this layered-less property of MDC, the price we have to pay is that we

have to introduce redundancy in the bit stream. On one hand, in both cases
it depends on the networks characteristics how many descriptions/layers can

be transmitted without congesting the network. On the other hand, MDC is
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inherently error resilient, missing a description has no great impact, whereas
not receiving a base layer of layered coded sequence has a great impact on the

quality.

MDC encoder

Channel1

Channel2

Channel3

MDC decoder

d1

d2

d3

d1

d3

X X̂{1,2, 63}

Figure 3.13 — Multiple Description Coding scenario

Figure 3.13 show a usage scenario of MDC where the NAL offers different
channels for transmitting video to a client. When each of these channels is

prone to errors, the decoder will receive only a subset of the parts that were

transmitted. In principle all combinations are possible of what parts will ar-
rive at the decoder and what parts not. Ideally, the packet-loss events on these

paths would be independent of eachother. Under these circumstances, the de-
coder has to reconstruct the video stream as good as possible. In our VSM the

NAL offers different channels with known rate and known average packets loss

rates. The MDC encoder can then be designed to match these channels such
that an optimal average quality is received by the user. In Chapter 7 we use

MDC in a multi-client scenario using a P2P network.

Encoder
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Decoder 0

Decoder 2
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X̂{1}
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Figure 3.14 — Two Description Source coding, with one source, two channels and

three decoders.

In Figure 3.14 a two-description coding case is illustrated. We have one in-
put signal X , but the encoder generates two descriptions which are indepen-

dently transmitted over two channels. Depending on how many descriptions
are received, a different decoder is used. The central decoder 0 reconstructs
X̂{1,2} using descriptions 1 and 2, resulting in central distortion D0. The side

decoder 1 uses description 1 to reconstruct signal X̂{1}, resulting in side dis-
tortion D1. The same holds for decoder 2 and X̂{2}.

To design an MDC system, one has to know network characteristics such

as the number of channels, the capacity per channel and the error rate per
channel. In addition, one has to take scenario properties, such as the number

of clients into account. Depending on these properties, one can optimize the
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number of descriptions and the amount of redundancy, given a certain MDC
method. In this section we will first show a simple MDC method. Then we

discuss the trade off between error-resilience the amount of redundancy and
the rate distortion bounds for two-description encoding of Gaussian sources.

After that different practical MDC techniques are discussed.

3.4.1 Odd-Frame / Even-Frame Streaming

Odd / Even Frame Streaming is a simple implementation of MDC [5, 15]. Con-
sider a video sequence at 30 frames per second. Normally, a video coder would

apply a predictive coding scheme such as IBBPBBP . . . or IPPPP . . .. The
latter will be used in this example for simplicity reasons. We know that this
prediction scheme is vulnerable to losses. Any lost P-frame results in a cas-

cade of errors in subsequent P-frames, until a new I-frame arrives. To make
our encoding less vulnerable to these errors, we could insert more I-frames,

but these consume much bandwidth. We would like to have a mechanism to

repair a missing frame, such that we can prevent the cascade of errors. The
problem lies in the fact that all P-frames depend on all previous P-frames until

the most recent I-frame. Suppose that in our temporal prediction scheme, for

each prediction we skip one frame as in:

I0 P2 P4 P6 P8Interleaved Prediction I0 P1 P3 P5 P7 P9

When we pull apart the two thus created sub streams and encode them sepa-

rately, we have made two descriptions that both have half the frame rate (15
fps) and are independently decodable.

I0 P2 P4 P6 P8Even Stream

I0 P1 P3 P5 P7 P9Odd Stream

When the receiver combines the two streams, a complete reconstruction

at the full frame rate is possible. Now suppose one frame is lost. First of

all the other sub stream is completely unharmed. We could from that point
on, only display the unharmed sub stream, effectively reducing the frame-

rate. However, we can improve this solution by temporally interpolating the
missing frame using the surrounding frames, thereby introducing a relatively

large—but acceptable— prediction error. The following dependent frames in

the harmed sub stream will propagate this prediction error but will not be af-
fected as much as when no interpolation was performed [5].

I0 P2 P4 P6 P8Even Stream

I0 P1 P3 P̂5 P̂7 P̂9Odd Stream
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Using this solution, we have increased the error resilience. However, in the
single description case (IPPP . . . ) we obtain a better prediction gain since
we predict upon frames that are closer in time. In the MDC case, the prediction
gain will be smaller, which in turn results in a higher total bit rate to code

the two descriptions. The extra bit rate needed for this is the redundancy

introduced by MDC.

3.4.2 Theory and special cases of MDC

To explain Multiple Description Coding confine ourselves to a Gaussian source.
LetX1, X2, . . . be a sequence of i.i.d. Gaussian random variables with σX = 1.
According to Shannons rate-distortion (RD) theory at least these inequalities

have to hold:

D1 ≥2−2R1 (3.32)

D2 ≥2−2R2 (3.33)

D0 ≥2−2(R1+R2). (3.34)

In 1979, Gersho, Ozarow, Witsenhausen, Wolf, Wyner and Ziv, posed the

question of what the achievable rates and qualities are for a two-description

encoded source [28]. In 1980, Ozarow presented the tight bounds for memory-
less Gaussian sources with a mean square error distortion [54]:

D1 ≥2−2R1 (3.35)

D2 ≥2−2R2 (3.36)

D0 ≥2−2(R1+R2) · γ(D1, D2, R1, R2) (3.37)

where

γ(D1, D2, R1, R2) =



1

1−
“√

(1−D1)(1−D2)−
√

D1D2−2−2(R1+R2)
”2 for

(D1 + D2) <

1 + 2−2(R1+R2)

0 otherwise.

(3.38)

From these tighter bounds we see that besides the Shannon bounds on the

two side distortions a stronger bound is put on the central distortion, which

is dependent on the magnitude of the side distortions and the bit rates of the
descriptions. The implications of these inequalities are not immediately clear

so Goyal [35] analyzed these inequalities in three cases. Goyal defines the base

rate r as the rate that is needed to obtain distortion D0 = 2−2r with a single
description coder. He defines the excess rate or redundancy as ρ = R1+R2−r.
For more in depth derivations we refer to Ref. [35].
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Individually good If we assume that both descriptions are individually as good
as possible, i.e. when Eqs. (3.35) and (3.36) become equalities: Di =
2−2Ri , then (3.37) reduces to

D0 ≥
1

2
min(D1, D2).

We interpret this as follows: if both descriptions are individually encoded

as good as possible, the central distortion can only be marginally (1 bit)

better than the best side description.

The redundancy in this case is always

ρ > min(R1, R2)− 1/2.

For high rates the redundancy is then almost as high as the rate for a

single description.

Making two exactly the same descriptions (duplicating) is an example of
the ‘individually good’ case, where D0 = D1 = D2 and ρ = R1 = R2.

Jointly good descriptions If the joint reconstruction is as good as possible,

then D0 = 2−2(R1+R2). In this case γ = 1 which leads to

D1 + D2 ≥ 1 + 2−2R1+R2 .

This result can be interpreted as at least one side distortion being very

large. The redundancy in this case is minimal since r = R1+R2 yielding

ρ = 0.

Layered coding is a form of jointly-good MDC, or in other words: lay-

ered coding is a special case of MDC. When D0 = 2−2(R1+R2) and

D1 = 2−2R1 , description 1 forms a base layer and description 2 forms
an enhancement layer. In this case D2 tends to one for sufficiently large

R1.

Symmetric descriptions Suppose we fix R1 = R2 and D1 = D2. Ozarows
inequalities can then be rewritten as

D1 ≥
{

1
2 [1 + 2−2r − (1 − 2−2r)

√
1− 2−2ρ] for ρ ≤ ρT

2−(r+ρ) for ρ > ρT

(3.39)

ρT = r − 1 + log2 1 + 2−2r (3.40)

D0 = 2−2r (3.41)

Figure 3.15 show the achievable rates in the symmetric case.
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Figure 3.15 — Achievable rates in a two-description coding system for different

values of the Base rate r

It is argued in [35], that the Symmetric MDC case is an intermediate case

between the first two cases. This is not always true since the individually-good

and the jointly-good cases may be asymmetric. We like to present a fourth case:
Asymmetric MDC

Asymmetric descriptions In all cases whereD1 ≤ D2, butD2 not necessarily
very large, we speak of asymmetric multiple description coding (AMDC).

All combinations of descriptions may yield a different quality (regardless

whether these qualities are acceptable or not). Similar to the symmetric
case, redundancy may be added to makeD0 lower while keepingD1 and

D2 constant.

The asymmetric case can be seen as a real intermediate case, since it spans all

cases between the symmetric case, the individually-good case and the jointly-

good case. In general, AMDC subsumes the three cases as special cases. Fig-
ure 3.16 clarifies this in ρ× (D1/D2) space.

In the remainder of this section we only consider symmetric MDC. Asym-
metric MDC is further presented and discussed in Chapter 8. The cases pre-

sented above make clear that when we expect to have the lowest side dis-

tortions possible, we cannot obtain a substantially lower D0. And when we
expect the lowest central distortion D0, we cannot have two low side distor-

tions at the same time. We can, however, make a trade off between low central
and low side distortion by controlling the amount of redundancy. At the ex-

pense of some excess rate ρ we can decrease the side distortions D1,2 without

increasing D0.

If bandwidth is limited, the amount of redundancy has to be tuned accu-

rately in order to minimize average distortion. Assume that the total rate is
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Figure 3.16 — Special cases of Multiple Description Coding: jointly-good (includes

layered coding), symmetric MDC, individually-good (includes duplication), and

AMDC. We can discriminate between the special cases by looking at theD1/D2

ratio and on the relative amount of redundancy ρ/r.

limited to RT = R1 + R2 = r + ρ and suppose channel 1 has a packet loss
probability p1 and channel 2 of p2. The average distortion is then:

DT = p1 p2 + (1 − p1) p2 D1(r, ρ) +

p1 (1− p2)D2(r, ρ) +

(1− p1) (1 − p2)D0(r, ρ)

(3.42)

Minimizing DT yields ρopt. We define:

RT = R1 + R2 = r + ρ.

To get feeling for typical values of the redundancy parameter under differ-

ent conditions we present an example for a Gaussian i.i.d. source, and RT = 4
and p2 = p1 = p, Figure 3.17(a) illustrates the impact of increasing redundancy
on the average (received) distortion for different packet-loss probabilities. Since

we chooseRT constant, we trade redundancy ρ off with base rate r. The rather
flat behavior at the minima means that DT is not very sensitive to small vari-
ations of ρ.

For each packet-loss-rate we can find the optimal redundancy that mini-
mizes the distortionDT . In Figure 3.17(b) the value of the optimal redundancy

as function of the packet-loss rate is plotted. Close inspection shows that a

practical range of redundancies is from 5% to 30% for packet loss rates up to
20%. A remarkable result is that ρopt never goes beyond the ρT threshold

in (3.40).
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We compare single description coding (SDC) with MDC. In Figure 3.17(c) the
average distortion is plotted for SDC DSDC = (1 − p)2−2RT + p and for MDC
(Eq. 3.42) while using optimal redundancy ρopt. Finally, in Figure 3.17(d) the
gain in dB when MDC is used instead of SDC as function of packet-loss rate is

plotted. An improvement of several dB’s can be obtained when MDC is used for

packet-loss rates p < 0.6

1 2 3 4
Ρ

0.1

0.2
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0.4

DT
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0.1
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0.3

(a) Plot of (3.42) for different packet-loss
probabilities
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(b) Optimal ρ minimizing (3.42) for varying
packet-loss probability
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(d) Gain in [dB] when two-description MDC is
used instead of SDC

Figure 3.17 — Optimizing redundancy in the case ofRT = 4 and p1,2 = p.

3.4.3 MD Nested Quantization

MD Nested Quantization is a method where quantizers are designed to give

suboptimal distortion. However, iff the two quantization indices are combined,
resulting in a smaller quantization cell, a finer reconstruction can be obtained

and hence a lower central distortion. Vaishampayan introduced nested scalar

(MDSQ) [84] and nested vector quantization (MDVQ) [83, 25]. Nested quantiza-
tion is an example of a MDC method where a controlled trade off between D0

and D1 is made.
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(a) regular nested quantization
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Q2
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Q0

(b) one irregular quantizer

1 2 1 2 3 4 3 4
Q1

1 2 3 2 3 4
Q2

11 21 12 22 23 32 33 43 34 44
Q0

(c) irregular nested quantizers

Figure 3.18 — Multiple Description Nested Quantization

Figure 3.18 depicts three examples of two quantizers that operate on the
same source (X ). The shown numbers are the index assignments for each cell

and do not reflect reconstruction value. The greyvalue of the cell represents

the reconstruction value of the corresponding index. Source signal X is quan-
tized independently by 2 quantizers Q1 and Q2, producing X̂{1} and X̂{2}.

As always, the quantizers have to be designed to match the pdf of the source
signal. Here, the MDC quantizers are designed to have a good reconstruction

when only one quantizer index can be decoded but to have a better reconstruc-

tion when both quantizers indices are available. The quantization levels of Q1

and Q2 are in the same signal space, but are offset with respect to each other,

hence the name Nested Quantization.

In Figure 3.18(a) two uniform quantizers (Q1 and Q2) that are shifted a

little with respect to each other are shown. Receiving the index for one of

the two gives a coarse approximation X̂{1}, X̂{2}. When the indices for both
quantizers are received, the central decoder combines these indices and uses

the intersection of the cells of the individual quantizers to reconstruct X̂{1,2}.

The central decoder effectively decodes as if a central quantizer Q0 was used.
In this case, when both descriptions are received, this results in the MSE be-

coming four times as small. This case corresponds with the (highly redundant)
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individually-good MDC case.
Figure 3.18(b) shows a coarse quantizer Q1 and a finer but irregular quan-

tizer Q2. Receiving only the output index of Q1 gives a coarse but acceptable
approximation X̂{1}. Receiving only the index for Q2 gives essentially no use-

ful information about X . Receiving both indices gives a fine quantized version

of X . This case is in fact a form of Layered Coding and corresponds to the
‘jointly good’ case. Q1 produces the base layer and Q2 produces the enhance-

ment layer.

The third case presented in Figure 3.18(c) has two irregular but still useful
quantizers. When only one description is received, there is substantial but

acceptable uncertainty about X . Receiving both descriptions suddenly gives a
very accurate approximation of X . This case corresponds to the symmetrical

MDC case in which a controlled amount of redundancy is introduced to obtain

a tradeoff between low side and low central distortions.
The nested quantization MDC method works on scalar data, but can also be

extended to work on vectors. It offers control over the redundancy parameter.

A disadvantage is that the different quantizer tables have to be communicated
to the decoder and as such is less usable for non-stationary signals.

3.4.4 Multiple Description Correlating Transform

Since multiple descriptions describe the same data and are independently de-

codable, descriptions are correlated by definition. If one description is known,
the others can be predicted to some extent. Wang, Orchard and Reibman [91]

introduced the multiple description correlating transform (MDCT) that inserts
a controlled amount of redundancy in otherwise uncorrelated pairs of random

variables. Goyal improved this work by using Integer Transforms [33], which

circumvents the sub optimality of non-square quantizer cells [35].
The basic idea is to correlate two independent zero-mean random variables

x and y: (
u
v

)
= T

(
x
y

)

to obtain two correlated variables u and v (See Figure 3.19(a)). If we know u
we can make an estimate of v and v.v. Goyal derived the requirements of T for

minimizing the distortion given a redundancy value of ρ.
The main result in this work of Goyal is the redundancy – side distortion

curve for correlating transforms shown in Figure 3.20. Also shown is an ap-
proximation of Ozarows bound for two sources (line) and experimental results

for MDSQ (circles). Goyal found that for independent Gaussian sources [x, y]
with standard deviations σx > σy :

D1 = D2 =
1

2
σ2

2 +
σ2

1 − σ2
2

422ρ
(
22ρ +

√
24ρ − 1

) (3.43)
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Figure 3.19 — Operation of the correlating transform. Samples are projected from

[x, y] axes onto the new [u, v] axes with [u, v]′ = T [x, y]′. Goyal uses the non-
orthogonal transform combined with integer transform since they give better

performance.
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Figure 3.20 — Redundancy – side distortion curve of the correlating transform

(MDCT analysis). Also shown is the experimentally obtained RD points (solid

line), Ozarows bound (thick black line). For comparison the experimental RD-

points of MDSQ are also shown

We can draw several conclusions from this curve. For increasing ρ, D1

asymptotically goes to σ2
2 . This indicates that for MDC to be efficient the source

should consist of independent signals of which the variances should differ suf-

ficiently. Secondly, other methods such as MDSQ have better results in the high

redundancy region. A benefit of using MDCT is that a continuous range of re-
dundancies can be selected. Goyal found that for orthogonal Gaussian sources

[x, y] with standard deviations σx and σy , the optimal T is generally not a
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rotation but a non-orthogonal transform such as in Figure 3.19(b).

A drawback of this method is that the source should consist of multiple

independent and zero-mean random variables, of which the variances should

differ sufficiently.

3.4.5 MD Channel Codes

With MDC, we protect the signal by introducing redundancy and correlation

between each description, such that whenever some description is lost, the

decoder is able to estimate the missing data and to reconstruct the source at
a reasonable quality level. In transmission channels the same goal is achieved

by applying and transmitting channel codes, such that missing blocks of data
can be completely reconstructed when enough data is received. For instance

with Reed-Solomon Codes, k symbols of data, are protected with (n− k) parity
symbols, making together n symbols. Whenever at maximum any n − k of
these symbols is lost, the original k symbols still can be recovered without any
loss or distortion. The reconstruction quality when using channel codes does

not gracefully degrade when more than n− k symbols are lost.
MD Channel Codes is a form of MDC where the Distortion Dm when m

descriptions are lost is minimal when m ≤ n − k. When m ≥ n − k no

data can be reconstructed and, resulting in maximum distortion. As such the
resulting reconstruction quality is binary: all or nothing. Still, Channel Codes

are often used for any type of data since it can be implemented in network
adapters and scales easily to high numbers of packets or descriptions.

0 1 2 3 4 5 6 7

data parity

Figure 3.21 — Example of an (8, 5) Reed Solomon Erasure Codes, whenever at
least 5 out of 8 blocks or descriptions are received, the original 5 blocks of data

(0, 1 . . .4) can be reconstructed. Blocks 5, 6, 7 are called code blocks or parity
blocks.

3.4.6 MD-FEC

The binary behavior of channel coders, described in the previous section, is in

most cases unwanted, since often a more gradual or graceful quality degrada-
tion is demanded. Multiple description coding with forward error correction

(MD-FEC) has been proposed as a method combining the ease of use of FEC
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and layered coding [20]. The idea is similar to layered coding combined with
unequal error protection (UEP) [93].

The goal is to increase quality with every description that is received. To

achieve this, the data of every layer is protected by an erasure code. Suppose
we generate M descriptions, the first layer then is protected by a (M, 1) era-
sure code. The M parts of the code comprise the M descriptions. Now as long

as we receive at least one description, the (M, 1) code ensures that we can
always decode the first layer.

The second layer is protected by a (M, 2) code and so on for layer i, which
is protected by a (M, i) code, until layer M , which is protected by a (M, M)
code, and effectively is unprotected. For each layer, theM parts are equally dis-
tributed over the M descriptions. This results in having M descriptions, each

of which contain channel codes from all layers. This structure of protecting, as
shown in Figure 3.22, ensures that whenever m descriptions are received, all

layers 1, . . . , m can be decoded. Instead of MD-FEC, we rather speak of layered

coding with lateral error correction (LC-LEC), since the error-correcting codes
are working laterally over the descriptions and not sequentially over a block of

data. Furthermore, it better expresses the fact that layered coding is used to

generate multiple layers.

We compare pure LC with LC-LEC. A source that is layered-coded, results
in a hierarchical set of layers, since each layer depends on lower layers. With

symmetric MDC in general, and therefore also for LC-LEC, descriptions can be

decoded independently. So the use of erasure codes in LC-LEC in fact trans-
forms a set of hierarchical layers into independently decodable descriptions.

This independence and increased flexibility comes with a price, namely redun-
dancy, since the introduced parity data is redundant when all descriptions are

received. The total amount of redundancy depends on the number of descrip-

tionsM and on the rates at which layer is encoded. If a small, low quality base
layer is used, total redundancy is lower than when a large base layer is used.

We consider a M description code. We generate M Layers with an LC

with rates r1, r2, . . . , rM for each layer. This yields a distortion profile D =
{D0, D1, D2, . . . , DM}, giving the distortion for when 0, 1, . . . , M layers are
decoded, respectively. By applying an (M, i) erasure code to each layer i we
form descriptions with a rate of

RD

M∑

i=1

ri

i
. (3.44)

As a result of adding erasure codes, whenever m descriptions are received and
decoded, this will yield a distortion Dm, no matter which descriptions are re-

ceived. The total amount of redundancy we have inserted in our descriptions
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is

ρ =
M∑

i=1

ri (M − i), (3.45)

where r0 = 0. This amount of redundancy can be influenced by changing the
rate of each layer, which will also result in a different distortion profile.

The optimal amount of redundancy depends on the required amount of
error-resilience given the network capacity and packet-loss rate. An algorithm

to find a good redundancy trade off is presented in Chapter 7 and [59]. In
Chapter 7 LC-LEC is used in P2P streaming scenario to stream video to multiple

clients with different bandwidths.

Another benefit of LC-LEC is that we can make asymmetric descriptions for
any asymmetric set of channels, by changing the distribution of channel codes

over the descriptions. In Chapter 8 this is discussed in more detail.
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LEC

Figure 3.22 — Illustration of a 4-description LC-LEC configuration. Each column

comprises a description, consisting of parts from each layer. The LEC works

across the descriptions.

3.5 Discussion

In this chapter we presented three different strategies to implement the video

coder in a network aware system. In the chapters in Part II, we use these
different methods. The choice of the type of encoder is made on the basis of

the type of network, the number of receivers (one or many) and other scenario

constraints such as the platform limitations.
The first method, RAVC relies heavily on a behavior model of a (existing)

video coder. RAVC is used in Chapters 4 and 6. RAVC depends on the avail-

ability of up-to-date network status information through a QoS mechanism.
Besides adapting to changing rate and bit-error-rate, this method also takes

other resources such as cpu-power and delay into account.
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The second type of encoder layered coding offers a way to create multiple
streams targeted at specific channel rates and loss rates, without requiring

complex behavior models. Theway the encoder settings are controlled depends
on the scenario in which it used. We use the progressive JPEG2000 encoder in

Chapter 5, where we also use behavior models and the network context to

optimize the settings. LC is also used as the basis for implementing MD-FEC.
MDC as the third type of encoding discussed in this thesis also relies on hav-

ing knowledge of the channel capacities and loss rates. As opposed to layered

coding, symmetric MDC is more targeted to channels with similar transmis-
sion rate and packet-loss rates. In Chapter 7 the encoder (rate), we discuss a

method where the encoder settings are controlled by a rate control algorithm
that takes the client bandwidths of all clients into account. In Chapter 8 we

focus on asymmetric MDC and present an allocation algorithm to match the

AMDC encoding to a specific configuration of asymmetric channels.
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Streaming Scenarios

61





Discussion
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Four

Adaptive End-To-End Optimization Of

Mobile Video Streaming Using QoS

Negotiation

4.1 Introduction

Mobile systems often operate in a highly variable context. The two dominant
factors causing context variability are the user and the mobile channel. The

characteristics of mobile transmission strongly depend on the user’s location

and environment. This is reflected in variable throughput, reliability, and re-
quired transmission power. The user context is variable because mobile sys-

tems are often designed to support multiple interactive services, which impose

different workloads on the system in different situations. Handling the variable
context is not the only requirement for mobile systems. They must also be effi-

cient, since resources (especially battery energy) are scarce in mobile systems.
Handling variable workloads efficiently under variable conditions necessitates

the use of collaborative adaptive modules.

The mobile system that we consider here supports video streaming over

a wireless link. It consists of various adaptive modules, including a video en-
coder and protocols (see Figure 4.1). The video encoder is driven by a workload

obtained from an application module, and the protocols induce a workload on

a radio module. The application module directly experiences the user context
variability, while the radio module is subjected to the fluctuating conditions of

This chapter was published as: J. R. Taal, K. Langendoen, A. van der Schaaf, H. W. van Dijk, and
R. L. Lagendijk, ‘Adaptive end-to-end optimization of mobile video streaming using QoS negotia-
tion,’ in Proc. ISCAS, special session on Multimedia over Wireless Networks, vol. I, Scottsdale, AZ, May
2002, pp. 53–56. [73]
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the mobile channel.

In Figure 4.1 it is apparent that the video encoder and the protocol modules

are not directly influenced by any context variability at either side of the sys-

tem. However, if we optimize the system under global efficiency constraints,
then the video encoding and protocol module will indirectly experience con-

text fluctuations from neighboring modules when they adapt. Therefore, all

modules will have to be context dependent, requiring their internal operation
to be flexible and adaptive to local context fluctuations.
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Figure 4.1 — Mobile video communication system.

Each module in an adaptive system usually contains many parameters that

influence its behavior. System-wide optimization of the decision variables is
difficult for two reasons. First, jointly optimizing many parameters yields com-

putationally complex solution strategies. Second, every single module is a com-
plex system in itself, whose application requires specific domain knowledge. To

keep the optimization proceduremanageable, we have to decompose the global

optimization problem into several smaller problems. Ideally, we can perform
independent optimization for each individual module. However, as we have ar-

gued, the optimization of one module depends on the context and inner work-

ings of other modules. Therefore, the adaptation of individual modules cannot
be optimized separately [31, 47]. Instead, context and implementation details

of the components must be exposed and shared, but in an appropriate format.

The problem we address here is therefore essentially one of coordination.
Figure 4.1 gives a computational view on the system, emphasizing function-

ality but hiding implementation aspects. Ideally the component-specific pa-
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rameters must be tuned such that system behavior complies to its objectives
while being constrained by its conditions. Taking an engineering view on the

system, however, introduces additional conditions. Suppose we opt —for this
experiment— for a straightforward implementation. We then effectively map

the functionality of Figure 4.1 to the limited processing resources of a mobile

terminal. In a simple battery-powered mobile terminal, the components that
compose Figure 4.1 share CPU, memory, and battery capacity. Consequently, the

distribution of shared resources over the components must be added to the co-

ordination process. in [7]. Controlling QoS with more than a single parameter
is a complex problem. Solutions do exist in literature, but they usually result in

ad hoc control structures [10, 9].

In [90] we have introduced a generic QoS negotiation method, called ARC.

This method is able to handle complex applications, such as video streaming,
and facilitates evolution. Here we apply the distributed and non-iterative ARC

framework to the problem of mobile video streaming.

4.2 QoS negotiation: ARC

The ARC QoS negotiation method is illustrated in Figure 4.2. In conformance

with the hierarchical setup shown in Figure 4.1, each module acts both as a
server to ’higher’ layers and as a client to ’lower’ layers. The hierarchical con-

catenation of modules is important, because subsequent modules determine

each others context. A QoS interface deals with the interaction of one module
acting as server and one module acting as client. A contract is negotiated at

the interface, holding a number of abstract QoS parameters.

The process of QoS negotiation starts with the client issuing a request. The

request is a partial specification of the expectations the client has about the
performance of the underlying server. The server (now approximately aware of

what is expected) responds with an offer, stating possible performance options.

This informs the client about the context dependent capabilities of the server.
The client can respond to the offer, either by selecting an option and issuing it

as a contract, or restarting the negotiation by formulating a modified request.

Once the contract is established, the client can put the appropriate workload
on the server. The server, in turn, must inform the client on the status of the

workload processing. This feedback of context dependent QoS information to
the client is essential for fast local adaptation. If the QoS status of the server

becomes unsatisfactory for the client (due to changes in context), then the con-

tract must be re-negotiated. This form of adaptation is slower, but involves
more precise mutual tuning of QoS parameters, which improves efficiency.

As an example of QoS negotiation consider Figure 4.3. The abstract QoS
is here represented in a two-dimensional space, the two parameters denoting

capacity and quality. Contrary to how QoS is often used, an ARC interface re-
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flects capacity (i.e. costs) in addition to quality parameters. The request from
the client in Figure 4.3 is a range selection from the QoS space. Now the server

knows what the client is interested in, and responds with a number of detailed
offers. Each offer is in the initial request range, but gives a tighter description

of the QoS that the server can offer within the current context. The client then

marks a QoS range that includes at least one offer and sets it as the contract.
Specifying a range rather than a single point for a contract leaves room for

adaptation within the contract boundaries. When the contract is established,

the server tries with best effort to keep the actual QoS within the contract
range. The actual QoS status is returned to the client as a single point in the

QoS domain. Using an abstract QoS domain as common language between the
client and the server effectively hides explicit implementation details from the

negotiations.

The QoS interface is the result of a collaborative design by the server and
the client; they share a consistent interpretation of the QoS parameters. For

reasons of efficiency, run-time implementations need not be that explicit. Min-
imization of power dissipation is a system-wide implicit agreement. Another

example of an implicit agreement is ranking of parameters which improves the

integrity of the system. In case of a contract violation a server can continue
operation in a predetermined way. In Figure 4.3, for instance, the server will

degrade quality, utilize more capacity, or do both.
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Figure 4.2 — ARC protocol outline.
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Figure 4.3 — ARC operation spaces.

4.3 Mobile Video Streaming Implementation

The implementation of the mobile video communication system involves a
video encoder, a protocol component, and a radio transmission component.

In our experiments we concentrate on the video encoder and protocol compo-
nents, and assume without loss of generality that the applied radio component

is non-adaptive. The applied channel model is time-varying though. Both the

video encoder and protocol component support the ARC framework for doing
QoS negotiations. Their fundamentals are described in this section.

The QoS parameters at the interface between the video encoder and pro-
tocols components are given in Table 4.1. For an detailed description of the

design of this interface we refer to [87].
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Table 4.1 — QoS parameters (descending priority).

Parameter Description

latency (max) The time required to transmit a single bit.

bit-error rate (max) The net bit-error probability after FEC and ARQ.

CPU usage (max) The allowed share of CPU capacity for protocols
and transmission processes.

throughput (min) The minimum net throughput.

4.3.1 Video Encoder

The video encoder implements a flexible H.263 encoder/decoder pair. Inter-

nally there are numerous video encoding parameters that can be tuned. In
the context of ARC, we apply an abstract behavior description of the encoder,

much like the work in [31, 47]. We used the entire model as presented in Sec-

tion 3.2, which is not going to discussed here. Summarizing, we consider as
dominant decision variables the frame-skip Nfs, the maximal motion vector

length lme, and the rate control’s target bit-rate r. The variable user context is
observed through the video sequence, namely through a model of the temporal

predictability τ̂ and the (average) amount of variance σ2
0 .

The control model focuses on a priori estimation of the rate-distortion be-
havior as a function of lme,Nfs, τ̂ , and the choice whether or not to use motion
compensation. The model expresses the prediction gain G as follows:

G(Nfs, rmv) =
(
Gme − (Gme −G0)e

−lme
σl

)
e

−Nfs
Nmc + 1 (4.1)

where G0, Gme, Nmc, and lme are the model parameters of τ̂ . G0 and Gme

are the prediction gains without and with motion compensation, respectively.
Nmc is the motion coherence, describing the decay of prediction gain when the

frame skip increases. σl is the average motion vector length, which character-
izes the amount of motion in the sequence.

Given σ 2
X we derive an estimate of the amount of variance to be encoded:

σ2
d = σ 2

X/G(Nfs, rmv). The distortion is estimated by a parameterized rate-
distortion curve that describes the performance of the quantizer and the arith-

metic coder. The estimated quantization noise is1

σ2
q = σ2

d 22(b(e
−r
a −1)−r) (4.2)

The distortion after transmission and decoding is a PSNR value estimated
from the quantization noise including effects of skipped frames and bit errors.

1This model is a less advanced RD-model than the one presented in Chapter 3.2, which was
not available when this paper was written.
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Skipped frames yield a PSNR based on the last received frame and τ̂ . Bit errors
degrade the PSNR assuming that one bit error destroys half of a Group of Blocks.

With our distortion model we evaluate different modes of operation. There
is a trade-off between distortion and CPU utilization. The encoder offers the

application a set of non-inferior points.

4.3.2 Protocols

The communication protocols run on top of a very simple radio that offers a
TDMA scheme with fixed length transmission/receive slots to access the physi-

cal channel. Due to interference, fading, and other factors the data transmitted

over the radio channel is subject to errors. The protocols employ two methods
to counter the high bit-error rate (BER) of the physical channel: forward error

correction (FEC) and automatic retransmit requests (ARQ).

Note that, contrary to many implementations, FEC is implemented in soft-

ware. We use a Reed-Solomon protection scheme with four different code rates:

0%, 12.5%, 25%, and 50%. The code rate determines the maximum effective
throughput that can be offered. We have run a number of off-line tests to deter-

mine the computational complexity and effective BER of the four code rates
using white Gaussian noise. These results have been collected in a lookup table

that is consulted during on-line execution.

For data that must be delivered reliably (i.e. without any error) packets are
extended with a 32-bit checksum. When the receiver observes a checksum

failure, it sends a retransmit request back to the sender, who will in turn re-
send the data. ARQ increases latency (L) and reduces the throughput (T ) that
can be obtained. We use the following model to quantify the efficiency loss due

to retransmits:

TARQ =
TFEC

1 + Perr
(4.3)

LARQ = (1 + 2Perr)LFEC (4.4)

where Perr is the probability that a packet is corrupted.

By combining the lookup tables for FEC and the ARQ model, the protocol

layer can quickly evaluate what its best setting (code rate + enable/disable
ARQ) is, given the current channel conditions and contract with the video en-

coder. When asked for an offer it prunes the inferior points out of the eight
alternatives.

4.4 Experimental Evaluation

The experiment set up is as follows. A pre-recorded video stream (
arphone)
is encoded at a mobile terminal, transmitted over a (simulated) wireless link
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and decoded at a base station. Latency requirements are such that live view-
ing is possible (< 0.5s). The radio has fixed settings: constant transmission
power and constant modulation schemes during the length of the experiment.
However interference at the physical channel will occur. Interference causes an

increased bit error rate at the radio channel.

We present here the following three experiments. For all experiments the

user requests the best quality possible within 100% CPU budget.

1. Steady run. There is constant interference on the mobile channel. There-
fore neither of the components adapts during this experiment. Note the

video encoder also does not adapt to changing characteristics of the in-

coming video source. We have run this experiment for a) a bad channel,
BER = 2 10−2 b) a medium channel, BER = 10−2 and c) a good

channel, BER = 10−4. The raw channel bitrate is kept at 1.8 104bit/s.

2. Frozen run. After 20 seconds from the start of the experiment the initial
medium channel changes to a bad channel. The throughput is maintained

at 1.8 104bit/s. At t = 47.5s the channel changes to a good state. The
protocols layer adapts instantaneously to the changed raw channel con-
ditions. Initially it keeps the contracted BER at the link to the video

encoder but it has to sacrifice throughput at the link. The video encoder

establishes an initial contract assuming a (worst-case) BER of 2 10−2

right after the start of the experiments. For the remainder of the ex-

periment, all internal settings (and contracts) are frozen. To maintain
the agreed CPU budget and real-time objectives, some frames will be

skipped, which decreases the delivered quality.

3. Adaptive run. The physical channel and protocols layer behave as in the

frozen run above. This time, however, the video encoder initiates QoS
negotiations and adapts to the changed conditions. Like in the frozen

run the net effect is that the video encoder maintains the agreed real-
time and CPU-budget constraints.

Figure 4.4 shows the results of the experiments. The top diagram shows the
BER of the raw channel for the steady cases as well as the changing channel

case. The diagram in the middle shows the effects on the throughput delivered
by the protocols to the video encoder. The bottom diagram has four curves,

three for the ‘steady’ runs and one for the adaptive run. The frozen run closely

follows the ‘bad’ steady run, and is left out for clarity. The curves plot the
quality (PSNR) per received frame. As can be expected the ‘good channel’ steady

run has the highest quality. Quality variations over time are due to variations

of the input source characteristics. Observe that the curve for the adaptive run
switches between the three steady curves (medium→bad→good) when the

channel conditions change. This shows that ARC-based negotiations succeed
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in selecting appropriate settings of the video coder that outperform a coder
that assumes worst-case conditions.
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Figure 4.4 — Experiment results.

Compared to the good channel steady run the average quality of the frozen

run is 1.97 dB less. The average quality of adaptive run is only 0.91 dB less
than the steady run. In the adaptive run, 864 operation points were evalu-
ated in three negotiations. The total time needed for these quality of service

negotiations is 80ms. It is instructive to present the internal settings of the re-

spective components for each of the experiments. Table 4.2 shows the results.
The values shown for the frozen and adaptive run are averages, because the

parameters are changing over time.

Until now we did not adapt to changes in source characteristics, but they

vary drastically. An experiment in which the parameters were optimised taking

into account the changing characteristics, improved the average quality with
1.1dB. This result was obtained using the bad channel and a CPU-budget of
30%. The user can trade quality for resources.
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Table 4.2 — Parameter settings.

steady
Run medium bad good frozen adaptive

Parameter Value

lme 12.00 9.00 12.00 9.00 14.30

R (bpp) 0.67 0.47 0.79 0.47 0.51
Nfs 1.15 1.03 1.07 1.01 1.04

Video CPU-

budget Cv

50% 45% 56% 52% 86%

FEC 25% 50% 0% 43% 38%
ARQ 0 0 0 0 0

Proto CPU-
budget Cc

6% 14% 2% 8% 7%

4.5 Discussion

The experiments show that our ARC framework is able to improve the overall

performance in cases where the channel conditions or video source character-

istics fluctuate. Moreover the ARC framework makes it possible to keep the
resource usage within bounds, even when the channel status is changing. It is

able to make more efficient use of the available resources. The ARC-framework

allows for a flexible implementation of modules. Therefore an ARC setup can
operate in different environments: mobile or internet.

Stability problems may arise when the context changes occur too often, the
optimiser might lag behind, and persists in making the wrong decisions. One

way to avoid this problem, is to relax the contract margins. This allows the

component to perform internal adaptations at the expense of being subopti-
mal.
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Five

Error Resilient Video Compression

using Behavior Models

5.1 Introduction

Wireless and Internet video applications are inherently subjected to bit errors
and packet errors, respectively. This is especially so, when constraints on the

end-to-end compression and transmission latency are imposed. Therefore, it is
necessary to develop methods to optimize the video compression parameters

and the rate allocation of these applications that take into account residual

channel bit errors. Here we study the behavior of a predictive (inter-frame)
video encoder, and model the encoders behavior using only the statistics of

the original input data and of the underlying channel prone to bit errors. The

resulting data-driven behavior models are then used to carry out Group of Pic-
tures partitioning and to control the rate of the video encoder in such a way

that the overall quality of the decoded video with compression and channel

errors is optimized.

Although the current video compression techniques can be considered ma-

ture, there are still many challenges in the design and operational control of

compression techniques for end-to-end quality optimization. This is in partic-
ular true in the context of unreliable transmission media such as the Internet

and wireless links. Conventional compression techniques such as Joint Picture
Experts Group (JPEG) and Motion Picture Experts Group (MPEG) were designed

with error free transmission of the compressed bit stream in mind. With such

unreliable media, not all bit or packet errors may be corrected by retransmis-

This chapter was published as: J. R. Taal, Z. Chen, Y. He, and R. L. Lagendijk, ‘Error resilient video
compression using behavior models,’ EURASIP Journal on Applied Signal Processing, no. 2, pp. 290–
303, Feb. 2004. [75]
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sions or Forward Error Correction (FEC). Depending on the kind of channel
coder, residual channel errors may be present in the bit stream after channel

decoding. In most practical packet networks systems, packet retransmission
corrects for some, but not all packet losses. Classic rate control, such as TM.5

in MPEG [51], can be used to control the video encoder according to the avail-

able bit rate offered by the channel coder, adaptation to the bit-error rate by
inserting intra-coded blocks is nevertheless not incorporated in Test Model 5

rate control algorithm (TM.5). Other methods exist that control the insertion

of intra-coded blocks [21].
Three classes of error-resilient source coding techniques may be distin-

guished that deal with error prone transmission channels. The first well-known
approach is joint source-channel coding, which aims at intimate integration of

the source and channel coding algorithms [23, 14]. Although this intimate in-

tegration brings several advantages to the end-to-end quality optimization, it
comes at the price of a significant complexity increase. Furthermore, nearly all

of these approaches only work with specific or non-standard network protocols

and with a specific video encoder and/or decoder.
The second class represents many approaches where the source coder has

no (or limited) control of the network layer. It is important to understand that
these approaches can generally not be optimal, since the channel coder and the

source coder are not jointly optimized. Since there is no joint optimization, the

only thing the source coder can do is to adapt its own settings according the
current behavior of the network layer. In many applications joint optimization

is impossible because none of the standard network protocols (IP, TCP, UDP)

support this. Even though the source coder has no or limited control over the
network layer, the rate control algorithm can adapt to the available bit rate and

to the amount of residual bit errors or packet losses. Such a control algorithm
needs a model describing the effects of bit errors or packet losses on the overall

distortion.

The third class, contains the approaches advocated in [71, 86]. In these
approaches the best of both worlds are combined. In these approaches, the

authors propose to limit the integration to joint parameter optimization, so

that there is no algorithmic integration. In previous work at Delft University of
Technology [90] an efficient overall framework was proposed for such joint pa-

rameter optimization from a Quality-of-Service (QoS) perspective. This frame-
work requires high-level and abstract models describing the behavior of source

and channel coding modules. However, this framework had not yet been tested

with a real video coder and with a real behavior model.
We propose such a behavior model for describing source-coding character-

istics, given some information about the channel coder. Although this model

is designed to be used in a QoS setup, it may also be used to optimize the
encoders settings when we only have knowledge of but no control over the

current channel (as a second class approach).
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With this behavior model we can predict the behavior of a source coder in
terms of the image quality related to the channel coder parameters: the bit

rate, the bit-error rate (BER) and the latency. To be applicable in a real-time and
perhaps low power setup, the model itself should have a low complexity, and

should not require that many frames have to reside in a buffer (low-latency).

We evaluate the behavior models with one type of progressive video coder.
However, we believe that other coders can be described fairly easily with our

methods as well, since we try to describe the encoders at the level of behavior

rather than at a detailed algorithmic or implementation level. In Section 5.2,
we first discuss our combined source channel coding system, the problem we

wish to solve, and we describe the source and channel coders on a fairly high
abstraction level. From these models, we can formulate end-to-end quality con-

trol as an optimization problem, which we discuss in Section 5.3. Section 5.4

describes in depth the construction of the proposed models. In Section 5.5 our
models are validated in a simulation where a whole Group of Pictures (group

of pictures (GOP)) was transmitted over an error prone channel. Section 5.6

concludes this chapter with a discussion.

5.2 Problem Formulation

To optimize the end-to-end quality of compressed video transmission, one needs
to understand the individual components of the link. This understanding in-

volves knowledge of the rate distortion performance and the error resilience of

the video codec, of the error correcting capabilities of the channel codec, and
possibly of parameters such as delay, jitter, and power consumption. One of

the main challenges in attaining an optimized overall end-to-end quality is the

determining of the influence of the individual parameters controlling the vari-
ous components. Especially because the performances of various components

depend on each other, the control of these parameters is not straightforward.

In [71, 16, 14, 30], extensive analyses of the interaction and trade-offs be-

tween source and channel coding parameters can be found. A trend in these

approaches is that the underlying components are modeled at a fairly high ab-
straction level. The models are certainly independent of the actual hardware

or software implementation but they also become more and more independent
of the actual compression or source-coding algorithm used. This is in strong

contrast to the abundance of joint source-channel coding approaches, which

typically optimize a particular combination of a source and channel coder, uti-
lizing specific internal algorithmic structures and parameter dependencies. Al-

though these approaches have the potential to lead to the best performance,

their advantages are inherently limited to the particular combination of coders
and to the (source and channel) conditions under which the optimization was

carried out.
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Here, we refrain from full integration of source and channel codecs (i.e. the
joint source-channel coding approach), but keep the source coder and channel

coder as much separate as possible.

The interaction between source and channel coder, and in particular the
communication of key parameters, is encapsulated in a QoS framework. The

objective of the QoS framework is to structure the communication context pa-
rameters between OSI layers. In the scope of this research, the changing con-

text can be the radio/Internet channel conditions and the application demands

on the quality or the complexity of the video data to be encoded. Here we dis-
cuss only the main outline of the QoS interface. A more detailed description of

the interface can be found in the literature [86, 90].
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Figure 5.1 — QoS ARC concept: Different (OSI)layers are not only communicating

their payloads; they are also controlled by QoS controllers that mutually negoti-

ate to optimize the overall performance.

Figure 5.1 illustrates the QoS Interface concept [90]. The source and channel

coders operate independently of each other, but are both under the control of

QoS controllers. The source coder encodes the video data, thereby reducing
the needed bit rate. The channel coder protects this data. It decreases the

BER, thereby effectively reducing the bit rate available for source coding and
increasing the latency. The QoS controller of the source coder communicates

the key parameters – in this case the bit rate, BER, and latency – with the QoS

controller of the channel coder. Based on the behavior description of the source
and channel coding modules, the values of these parameters are optimized by

the QoS controller. In a practical system this optimization takes into account

context information about the application (e.g. maximum latency) and about
the channel (e.g. throughput at the physical layer). The application may set

constraints on the operation of the lower layers, for instance on the power
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consumption or the delay. In this research we assumed that the only constraint
set by the application is the end-to-end delay Ta.

In order to implement the QoS Interface/controller concept, three problems

need to be solved:

• The key parameters must be optimized over different (OSI) layers. We
have developed the ‘Adaptive Resource Contracts’ (ARC) approach for solv-

ing this problem. ARC exchanges the key parameters between two lay-
ers, such that after a negotiation phase, both layers agree on the values

of these parameters. These key parameters represent the trade-offs that

both layers have made to come to a joint solution of the optimization. A
detailed discussion of ARC falls outside the scope. We refer to [86, 90, 73].

• The behavior of the source and channel coder should be modeled para-
metrically such that joint optimization of the key parameters can take

place. At the same time, an ‘internal’ controller should be available

that optimizes the performance of the source and channel coder inde-
pendently, given the already jointly optimized key parameters

The emphasis in this chapter is on the modeling of the video coder be-

havior.

• An optimization procedure should be designed for selecting the param-
eters internal to the video codec, given the behavior model and the key
parameters. We do not emphasize this aspect of the QoS Interface here,

as we believe that the required optimization procedure can be based on

related work as that in [60].
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coder’ blocks represent the single frame encoder and decoder. The ‘Frame Buffer’

is needed for the predictively encoded P-frames.

In our previous work and analyses [86, 90], the source coder was modeled
as a progressive encoder, which means that with every additionally transmit-

ted bit the quality of the received decoded information increases. Therefore the
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most important information is encoded at the beginning of the data stream and
the least important information is encoded at the end. In principle, we believe

that any progressive encoder can be described with our models. To keep things
simple from a compression point of view, we use the common P-frame coding

structure (with one I-frame per GOP, multiple predictively encoded P-frames,

and no bidirectional encoded frames). The actual encoding of the (difference)
frames is done by a JPEG2000 [11] encoder, which suits our demand for pro-

gressive behavior. Figure 5.2 shows the typical block diagram of this JPEG2000-

based P-frame coder. We excluded motion compensation of P-frames for sim-
plicity reasons. The ‘internal parameters’ for this video encoder are the number

of frames in a GOP N , and the bit rates ri for the individual frames. Xi and
Xi−1 denote the current frame and the previous frame, X denotes a decoded

frame, and X̃ denotes a decoded frame at the decoder side, possibly with dis-

tortions caused by residual channel errors. D̃q and D̃e, denote the quantiza-
tion distortion and the distortions caused by residual channel errors (named

‘channel-induced distortion’ hereafter), respectively.

In this work, the channel coder is defined as an abstract functional module
with three interface parameters. The channel coder has knowledge of the cur-

rent state of the channel which it is operating on. Therefore it can optimize its
own internal settings using behavior models. Such a channel coder may use dif-

ferent techniques like FEC and automatic resent query (ARQ) to protect the data

at the expense of added bit rate and increased delay (latency). The exact im-
plementation is nevertheless irrelevant at this level. From here we will assume

that the error protection is not perfect because of latency constraints; therefore

the residual bit-error rate (BER) may be non-zero. The behavior models can be
obtained by straightforward analysis of the channel coding process [71].

5.3 Source Encoder Optimization Criterion

At this point we assume that we have a behavior model for our video encoder.
The development of this behavior model is the subject of Section 5.4. Given the

behavior model, we can minimize the average end-to-end distortion D̂ given

the constraints imposed by the QoS Interface. In our work, the QoS Interface
negotiates three key parameters between source and channel coder, namely

{R,BER, Tc}, with
• R: the available bit rate for source coding (average number of bits per
pixel);

• the residual bit-error rate BER: the average bit-error rate after channel
decoding;

• Tc: the average time between handing a bit to the channel encoder, and

receiving the same bit from the channel decoder.
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The resulting source coding optimization problem now becomes the mini-
mization of the distortion D, which can be formulated as follows:

min
Isrc

D (Isrc | {R,BER, Tc}) . (5.1)

Here Isrc denotes the set of internal source coder parameters over which the
performance of the encoder must be optimized, given the key parameters {R,BER, Tc}.
The actual set of internal parameters to be considered depends on the encoder
under consideration and the parameters included in the encoders behavior

model. We consider the optimization of the following internal parameters:

• N , the length of the current GOP. Each GOP starts with an I-frame and is

followed by N − 1 predictively encoded P-frames;

• ~r = {r0, r1, . . . rN−1}: the target bit rate for each individual frame in a
GOP.

The encoder parameter N relates to the coding efficiency and the robust-

ness of the compressed bit stream against remaining errors. The larger N , the
higher the coding efficiency because more P-frames are encoded. At the same

time the robustness of the stream is lower due to the propagation of decoded
transmission errors.

On the other hand, in order to optimize the settings {N,~r} for Nmax

frames, these Nmax frames have to be buffered, thereby introducing a latency.
In our approach the QoS Interface prescribes the maximum end-to-end latency

Ta (sec) and we assume the channel coder will have an end-to-end latency of Tc

(sec), from channel encoder to channel decoder, including transmission. Analy-
sis of the whole transmission chain gives the following expression for the total

end-to-end latency:

Ta =
N − 1

fr

+ Te + Tc +
B

R
, (5.2)

where fr is the frame rate of the video sequence that is encoded, Te is the
upper bound of the time it takes to encode a frame. Finally B/R is the trans-

mission time for one frame B/R: the maximal number of bits to describe a
frame, divided by the channel coding bit rate R.

We can now find an expression for the maximal number of frames that

can be in the buffer, while still meeting the end-to-end latency constraints Ta.

ClearlyB/R is only known after allocating the rate for each frame. We suggest
taking the worst-case value for B (i.e. calculated from the maximal bit rate set-

ting). The same goes for TE , where we suggest to take the worst-case encoding
time per frame.

Nmax = 1 + (Ta − Te − Tc −
B

R
)fr, (5.3)
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In each frame i, two kinds of distortion are introduced: (1) the quantization
error distortion, denoted byDq and (2) the channel-induced distortion, caused

by bit errors in the received bit stream, denoted by De. With our optimiza-
tion problem we aim to minimize the average distortion, which is the sum of

individual distortions of a GOP divided by the length of the group:

DGOP =
1

N

N−1∑

i=0

{Dq(ri) + De(ri,BER)} . (5.4)

Following [71], we assume that Dq and De within one frame are mutually
independent. Although (5.4) is a simple additive distortion model, the distor-

tion of a frame is still dependent on that of the previous frames because of the

P-frame prediction. Therefore, in our models we have to take into account the
propagation of quantization and channel induced distortions.

Taking the above parameters into account, we can now rewrite (5.1) as the

following bit-rate allocation problem:

~ropt, Nopt ← min
~r,N

DGOP(~r, N |BER)

= min
N

{
min

~r

1

N

N−1∑

i=0

Dq(ri) + De(ri,BER)

}

subject to
1

N

N−1∑

i=1

ri = R

N ≤ Nmax.

(5.5)

The approach that we follow here is to optimize the bit-rate allocation prob-
lem (5.5) based on two frame-level parametric behavior models. The first (rate

distortion) model parametrically describes the relation between the variance

of the quantization distortion and the allocated bit rate based on the variance
of the input frames. The second – channel induced distortion – model para-

metrically describes the relation between the variance of the degradations due

to transmission and the decoding errors, based on the variance of the input
frames and the effective bit error rate.1

5.4 Rate Distortion Model

In this section we first propose a behavior model for the rate-distortion charac-
teristics Dq of video encoders, and then propose a model for distortion caused

by residual channel errors including the error propagation,De.

1By ‘effective bit-error rate’ we mean the residual bit error rate, i.e. , the bit errors that are
still present in the bit stream after channel decoding.
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There are two approaches for modeling the rate distortion (R-D) behavior
of sources. The first approach is the analytical approach, where mathematical

relations are derived for the R-D functions assuming certain (stochastic) proper-
ties of the source signal and the coding system. Since these assumptions often

do not hold in practice, the mismatch between the predicted rate distortion

and the actual rate distortion is (heuristically) compensated for by empirical
estimation. The second is the empirical approach, where the R-D functions are

modeled through regression analysis of the empirically obtained R-D data. The

rate distortion model proposed in [71] is an example of an empirical model of
the distortion of an entire encoder for a given bit rate.

In our work we anticipate the real-time usage of the constructed abstract

behavior models. At the same time the want to keep the complexity of the
models low. This limits the amount of ‘preprocessing’ or ‘analysis’ that we may

do on the frames to be encoded. Therefore we will base our behavior models

on variance information only. In particular we will use:

• the variance of the frame under consideration, denoted by var [Xi], and

• the variance of the difference of two consecutive frames, denoted by
var [Xi −Xi−1].

5.4.1 Rate Distortion Behavior Model of Intra-frames

It is well known that for memoryless Gaussian distributed sourcesX with vari-

ance var [X ], the R-D function is given by:

r(Dq) =
1

2
log2

(
var [X ]

Dq

)
, (5.6)

or when we invert this function, by

Dq(r) = var [X ] 2−2r. (5.7)

Empirical observations show that for the most common audio and video

signals under small distortions, the power function −2r gives an accurate

model for the behavior of a compression system, especially in terms of the
quality gain per additional bit (in bit rate terms) spent. For instance, the power

function−2r leads to the well-known result that, at a sufficiently high bit rate,
for most video compression systems we gain approximately 6 dB per additional
bit per sample.

However, for more complicated compression systems and especially for

larger distortions, the simple power function does not give us enough flexi-
bility to describe the empirically observed R-D curves, which usually give more

gain for the same increase in bit rate. Since there is basically no theory to rely
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on for these cases without extremely detailed modeling of the compression
algorithm, we instead propose to generalize (5.7) as follows

Dq(r) = var [X ] 2f(r). (5.8)

The function f(r) gives us more freedom to model the rate distortion be-
havior, at the price of regression analysis or on-line parameter estimation on

the basis of observed rate distortion realizations. The choice of the kind of the

function used to model f(r) is a pragmatic one. We have chosen a third-order
polynomial function. A first- or second-order function was simply too impre-

cise, while a fourth-order model did not give a significant improvement and

higher-order models would defeat our objective of finding simple and generic
models. Clearly there is a trade-off between precision (high order) and general-

ity (low order).
In Figure 5.3 we show the Rate Distortion curve of the experimentally ob-

tained D̃q(r) for the JPEG2000 compression of the first frame of the 
arphone
sequence for bit rates between 0.05 and 1.1 (bpp). The solid line represents a
third-order polynomial fit of f(r) on the measured values. This fit is much bet-
ter than the linear function f(r) = −2r. The following function was obtained
for the first frame of the 
arphone sequence

Dq(r) = var [X ] 2−4.46r3+11.5r2−12.7r−1.83. (5.9)

It is interesting to see how the R-D curve changes for different frames of the

same scene or different scenes. Figure 5.4 shows the R-D curve for frame 1 and

frame 60 of 
arphone and frame 1 of foreman. Observe that the 
arphone
frames have very similar curves. The foreman curve is shifted, but is still
similar to the other two. These observations strengthen our belief that the

model is generally applicable for this type of coder. Of course the f(r) needs to
be fitted for a particular sequence, on the other hand, we believe that a default

curve f0(r) can be used to bootstrap the estimation of model parameters for
other video sequences. f(r) can then be adapted with new R-D data as the
encoding continues.

5.4.2 Rate Distortion Behavior Model of Inter-frames

For modeling the rate distortion behavior of P-frames, we propose to use a

model similar as the one in (5.8), but with a different polynomial g(r):

Dq(ri) = var
[
Xi −Xi−1

]
2g(ri). (5.10)

HereXi−1 denotes the previously decoded frame i−1. Whereas with I-frames,
a third-order polynomial was needed to predict f(r) accurately enough, with
P-frames, a second-order polynomial was sufficient to predict g(r). The reason
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Figure 5.3 — R-D curve for first frame in 
arphone. The crosses(x) are the mea-
sured normalized distortions D̃q and the line corresponds to the fitted function

2f(r). The dotted line corresponds to the R-D model 2−2r
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for this can be found in the fact that P-frames are less correlated than I-frames.
Therefore g(r) is more similar to the theoretical −2r than f(r).

In (5.10), var
[
Xi −Xi−1

]
is the variance of the difference between the

current frame i and the previously encoded frame i− 1. Since the latter is only
available after encoding (and thus after solving (5.5)), we need to approximate

var
[
Xi −Xi−1

]
. Obviously we have:

var
[
Xi −Xi−1

]
= E[(Xi −X i−1)

2]

= E[((Xi −Xi−1)− (Xi−1 −Xi−1))
2]

= var [Xi −Xi−1] + Dq(ri−1)−
2E[(Xi −Xi−1)(X i−1 −Xi−1)].

(5.11)

The last term on the right-hand side of (5.11) cannot be easily estimated before-

hand, and should therefore be approximated. We collapse this entire term into

a quantity that only depends on the amount of quantization errors Dq from
the previous frame, yielding:

var
[
Xi −Xi−1

]
= var [Xi −Xi−1] + κDq(ri−1). (5.12)

We expect the quantization noise of frame Xi−1 to be only slightly corre-

lated with the frame difference between frames Xi−1 and Xi. Therefore we
expect the value of κ to be somewhat smaller than one. Note that by combin-

ing (5.12) and (5.10), Dq is defined recursively, thereby making (5.5) a depen-
dent optimization problem.

Figure 5.5 illustrates the relation between the frame difference variance

var
[
X1 −X0

]
and the quantization distortion of the first frame of 
arphone

D̃q. The first frame is encoded at different bit rates. We observe a roughly
linear relation, in this case with an approximate value of κ = 0.86.

We observed similar behavior for other sequences such as susie and foreman
as well. We therefore postulate that (5.12) is an acceptable model for calculat-

ing the variance var
[
Xi −Xi−1

]
, as needed in (5.10).

The variance Xi − Xi−1 in fact consists of two terms: the quantization
distortion of the previous frames, and the frame difference between the current

and the previous frame. These two terms might show different R-D behavior,

i.e. , a separate g(r) for both terms. However, we assume that both signals
show the same behavior, since they are both frame difference signals by nature

and not whole frames. The model for predicting the distortion of an P-frame
now becomes:

Dq(ri) = (var [Xi −Xi−1] + κDq(ri−1)) 2g(ri). (5.13)

Figure 5.6 shows the experimentally obtained R-D curve, together with a

fitted curve representing our model (5.13). Since this R-D curve should not only
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Figure 5.7 — R-D curve for the first P-frame of 
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for the first ten frames of 
arphone (line), and the R-D curve for the first frame
of foreman (+)

be valid for varying bit rate ri, but also for varying propagated quantization
distortion Dq(ri−1), we also varied the bit rate of the previous frame ri−1.

Both rates were varied from 0.05 to 0.9. Each value of Dq(ri) is an average
over all settings of ri−1. For completeness the theoretic curve (5.7) is shown as

well. The function that describes the R-D behavior for these frames is:

Dq(ri) = (var [Xi −Xi−1] + κDq(ri−1)) 23.86r2
i −8.15ri−0.26. (5.14)

We then compared the curves for different frames. Figure 5.7 shows the
R-D curve for the first frame difference of 
arphone, and the R-D curve for the
first frame difference of foreman, as well as the average R-D curve for the first
10 frame differences of 
arphone. This shows again that these curves do not
vary much for different video frames and different video sources.

5.4.3 Channel Induced Distortion Behavior Model

When the channel suffers from high error rates, the channel decoding will not

be able to correct all bit errors. Therefore, to solve (5.5), we also need a model
that describes the behavior of the video decoder in the presence of bit-stream

errors.

First we define the channel-induced distortion to be the variance of the

difference between the decoded frame (X ) at the encoder side and the decoded
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frame at the decoder side (X̃ ):

D̃e = var
[
X̃ −X

]
. (5.15)

In [30] a model is proposed that describes the coders vulnerability to packet
error losses:

De = σ2
u0

PER, (5.16)

where σ2
u0

is an empirical constant and is found empirically and PER is the
packet-error rate. Since we are dealing with bit errors and want to predict the

impairment on a frame-per-frame basis, we are looking for a better model.

Modeling the impairments that are due to uncorrected bit errors may result
in a detailed analysis of the compression technique used, see for instance [61].

Since we desire to have an abstract and high-level model with a limited number

of parameters, we base our model on three empirical observations, namely:

1. For both I-frames and P-frames, the degree of image impairment due to
uncorrected errors depends on the BER. If the individual image impair-

ments caused by channel errors are independent, then the overall effect

is the summation of individual impairments. At higher error rates, where
separate errors cannot be considered independent anymore, we observed

a decreasing influence of the BER.

We notice that in a bit stream, a sequence of L bits will be decoded
erroneously if one of the bits is incorrect due to a channel error. The

probability of any bit being decoded erroneously is then

PE(BER, L) = 1− (1− BER)L. (5.17)

Note that this model describes the behavior related to dependencies be-

tween consecutive bits in the bit stream and does not assume any pack-
etization. The value of L is therefore found by curve fitting and not by

an analysis of the data stream structure. Clearly, the value of L will be

influenced by the implementation specifics, such as re-sync markers. We
interpret L as a value for the effective packet length, i.e. , the amount

of data lost after a single bit error as if an entire data packet of length

L is lost due to an uncorrected error. This model for PE corresponds
very well with the observed channel-induced distortion behavior, so we

postulate:
De ∼ PE = (1− (1 − BER)L), (5.18)

where parameter L was typically found to be in the order of 200 for

I-frames and of 1000 for P-frames.

2. For I-frames, the degree of image impairment due to uncorrected errors
highly depends on the amount of variance of the original signal, but also

on the amount of quantization distortion.
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var [Xi] − Dq(ri) represents in fact the amount of variance that is en-
coded: the higher the distortionDq(ri), the less information is encoded.
We observed that if Dq(ri) increases, the effect of residual channel er-
rors decreases. Clearly at ri = 0, nothing is encoded in this frame and
the distortion equals the variance. At ri ≫ 0, Dq ≈ 0, there is no quan-
tization distortion, all information is encoded and will be susceptible to
bit errors. We therefore postulate

De(ri,BER) ∼ var [Xi]−Dq(ri). (5.19)

3. For P-frames we did not observe a statistically significant correlation be-

tween the quantization distortion (i.e. the bit rate) and the image im-
pairment due to channel errors. We assume that the image impairment

is only related to the variance of the frame difference, thus here we do

not take into account the quantization distortion.

De(ri,BER) ∼ var [Xi −Xi−1] . (5.20)

These empirical observations lead us to postulate the following aggregated
model of the channel-induced distortions for an I-frame:

De(ri,BER) = var
[
X̃i −Xi

]
= αPE(BER, LI) (var [Xi]−Dq(ri)) ,

(5.21)

and for one P-frame:

De(ri,BER) = βPE(BER, LP)var [Xi −Xi−1] . (5.22)

Here PE(BER, L) is given by (5.17). LI andLP are the effective packet lengths
for I-frames and P-frames, respectively. The constants α and β determine to

which extent an introduced bit error distorts the picture, and need to be found

empirically.
For I-frames,De(ri,BER) depends on BER and on the variance var [Xi]−

Dq(ri). Two figures show the curve fitting on this two-dimensional function

visible. Both figures show the results of encoding one frame at different bit
rates (ranging from 0.05 to 2.0 bpp) and at different BERs (ranging from 10−3 to

10−6), where bit errors were injected in the encoded bit stream randomly. Since
we wish to predict the average behavior, we calculated the average distortions

of 1000 runs for each setting.

1. Figure 5.8 shows the average D̃e divided by var [Xi]− D̃q as a function
of BER. The straight line corresponds to a line fitted with PE = BER

and α = 255.2. We observe that it deviates at higher BER.

The fitted curve corresponds to PE = 1− (1−BER)LI with an effective

packet length LI = 202 and α = 1.29 gives a better fit.
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2. Figure 5.9 shows D̃e divided by PE(BER, LI = 202) as a function of
var [Xi]− D̃q. The fitted line crosses the origin. Clearly this model does

not fit these measurements extremely well, because the effect of Dq(ri)
is very unpredictable. Still we want to incorporate the trend in the effect

that Dq(ri) has on the error distortion. For other sources (foreman,susie) we observed a similar behavior.
Finally for P-frames, De(ri,BER) only depends on BER and on the con-

stant factor var [Xi −Xi−1]. Figure 5.10 shows the average D̃e divided by

var [Xi −Xi−1] versus the BER. The resulting curve corresponds to PE =
1− (1 − BER)LP , with LP = 876. Here we found β = 0.51.

5.4.3.1 Error Propagation in Inter-frames

Due to the recursive structure of the P-frame coder, decoding errors introduced

in a frame will cause temporal error propagation [46, 30]. Since (5.5) tries
to minimize the distortion over a whole GOP, we have to take this propaga-

tion into account for each frame individually. In [30], a high-level model was

proposed to describe the error propagation in motion-compensated DCT-based
video encoders including a loop filter. We adopted the λ factor, which describes
an exponential decay of the propagated error, but we discarded the γ factor,
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which models propagation of errors in motion-compensated video, yielding:

De(ri,BER) = (1−λ)De(ri−1,BER)+β(1−(1−BER)LP)var [Xi −Xi−1] .
(5.23)

Our observations are that this is an accurate model, although the propa-

gated errors decay only slightly. For instance, for the 
arphone sequence we
found that λ = 0.02 (not shown here). In a coder where loop filtering is used
to combat error propagation, this factor is much higher [30].

5.5 Model Validation

We have now defined all models needed to solve Equation (5.5). Assuming we
know the variances var [Xi], var [Xi −Xi−1], the parameters for the function
f(r) and g(r), and the model parameters κ, LI, LP, α and β, we can minimize
(5.5) using these models. Note that since in principle each frame can have its
own R-D function, the function will get the additional parameter i to signify
that.

DGOP =
1

N

N−1∑

i=0

{Dq(ri|i) + De(ri,BER|i)}

for i = 0

{
Dq(r0|i = 0) = var [X0] 2

f(r0|0)

De(r0,BER|i = 0) = α(1 − (1− BER)LI) (var [X0]−Dq(r0|0))

for i > 0





Dq(ri|i) = (var [Xi −Xi−1] + κDq(ri−1|i− 1)2g(ri|i)

De(ri,BER|i) = (1− λ)De(ri−1,BER|i)+
β(1− (1− BER)LP)var [Xi −Xi−1]

(5.24)

In this sectionwe will verify these models by encoding a sequence of frames

with different bit rate allocations and compare the measured distortion and
the predicted distortion. Furthermore, we will introduce bit errors in the bit

stream and verify the prediction of the distortion under error-prone channel

conditions. As we mentioned in the introduction, we do not optimize (5.5)
using the models (5.24) – as would be required in a real-time implementation.

Instead we aim to show that it is possible to predict the overall distortion for a

GOP under a wide range of channel conditions. We will show that a setting for
N and ri optimized with our behavior models (5.24) indeed yields a solution

that is close to the measured minimum.

To validate our model, we will compare the measurements of the overall
distortion of a GOP with the predictions made with our model (5.24). We used

the JPEG2000 encoder/decoder as our video-coder (Figure 5.2), and encoded the
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Figure 5.11 — For each possible bit rate assignment, the cross(x) shows the mea-
sured distortion D̃GOP horizontally and the predicted distortion DGOP verti-

cally. The line represents the points where the measurements would match the

predicted distortion
arphone sequence. In the first experiment a GOP of 10 frames was encoded
with different bit rate allocations. No residual channel errors are introduced.

In the second experiment, random bit errors were introduced in the encoded
bit stream, to simulate an error prone channel. In the third experiment we ad-

dressed the issue of finding the optimal GOP length. In all these experiments

we used the models (5.24) and the parameters we have obtained in Section 5.4
for the first ten frames of 
arphone. In the last experiment we used our mod-
els to optimize the settings for a whole sequence. We compare optimizing
the settings with our models and with two other simple rate allocations. Fur-

thermore we have investigated the gain that can be achieved if R-D curves are

known for each individual frame instead of average R-D curves.

5.5.1 Optimal Rate allocation

In this experiment no residual channel errors were present (BER = 0) and
the average bit rate available for each frame was 0.2 bpp. To each frame we
assigned bit rates varying from 0.1, 0.2, 0.3 to 1.1 bpp, while keeping the av-
erage bit rate constant at 0.2 bpp. The GOP length was set to 10. The total
number of possible bit rate allocations with these constraints is 92378.

A GOP of 10 frames was encoded with each of these bit rate allocations.
We then measured the overall distortion, denoted with D̃GOP, and compared
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that with the predicted distortion DGOP (using Equations 5.4, 5.9 and 5.14 ).
Figure 5.11 shows the results. All points were plotted with the measured dis-

tortion D̃GOP on the horizontal axis. The vertical axis shows the predicted
distortion DGOP. The straight line corresponds to the points where the pre-

diction matches the measured values. Points under this line underestimate

the measured overall distortion and the points above the line overestimate the
measured overall distortion. The region we are interested in is located in the

lower-left area, where the bottom-most point represents the bit rate allocation

that minimizes our model DGOP (5.24). The cloud shape gives good insight
in the predictive strength of the model, since the points are never far off the

corresponding measured distortion.

As we can see in Figure 5.11, the predicted distortion and the measured

distortion correspond well over the whole range of bit rate allocations. Note
that although it is not possible with these proposed behavior models to find the

exact values of ri yielding the minimal measured distortion (we only know the
exact distortion after encoding and decoding), the predicted minimal distortion

is close to the measured minimum distortion. We use the following metrics to

express the performance of the model: the relative error

ε1 = E

[
DGOP − D̃GOP

D̃GOP

]
· 100%,

and the standard deviation of the relative error:

ε2 = std

[
DGOP − D̃GOP

D̃GOP

]
· 100%.

For this experiment, ε1 = 3.2%, which means that we slightly overesti-
mated all distortions; ε2 = 5.7%, which means that on average our predictions
were within 3.2 − 5.7 = −2.5% and 3.2 + 5.7 = 8.9% around the measured

values.

We can interpret this in terms of PSNR: an increase of the error variance
of 5.7% corresponds to a decrease of the PSNR by 10 log 1.089 = 0.37 dB.
This means that we predicted the average quality with 0.37 dB accuracy.

5.5.2 Rate Allocation for a Channel With Residual Errors

When residual channel errors were introduced, the same experiment yielded
different results at different runs because of the randomness of bit errors.

Therefore for each rate allocation, the coding should be done at least a thou-

sand times, and the measured distortion values should be averaged. Analyzing
each bit allocation with such accuracy is very demanding in terms of comput-

ing time, therefore we selected twenty cases uniformly distributed from the
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Figure 5.12 — Selection of 20 bit rate assignments when BER = 32 · 10−6. For

each case the cross(x) shows the measured distortion D̃GOP horizontally and

the predicted distortion DGOP vertically. The line represents the points where

the predicted distortion and the measured distortion would match.

92378 rate allocations, to gain sufficient insight in the predictive power of the
behavior models.

For this experiment we chose BER = 32 · 10−6. Figure 5.12 shows the

measured average distortion D̃GOP and the predicted distortionDGOP for the

10-frame case. Now the relative error is ε1 = 2.0%, and ε2 = 3.7%.
Note that in these simulations, we did not use any special settings of a spe-

cific video coder, and used no error concealment techniques other than the
standard JPEG2000 error resilience. Because of the combination of wavelet

transforms and progressive bit plane coding in JPEG2000, in most cases the bit
errors only caused minor distortions in the higher spatial frequencies. How-

ever, sometimes a lower spatial frequency coefficient was destroyed, yielding a

higher distortion.

Any individual random distortion can differ greatly from the predicted one.

Because large distortions are less likely to occur than small distortions, our
model gives a boundary on the resulting distortion. We measured that for

88.0% of the cases, the measured distortion was lower than the predicted

value.

We then changed our BER to 1024 · 10−6. Figure 5.13 shows the mea-

sured and the predicted distortion. For this high BER, the relative performance
metrics were still good: ε1 = 0.31% and ε2 = 3.6%. Note that these relative
metrics are similar to the case without channel errors. This means that on the
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Figure 5.13 — Selection of 20 bit rate assignments whenBER = 1024 ·10−6. For

each case the cross shows the measured distortion D̃GOP horizontally and the

predicted distortion DGOP vertically. The line represents the points where the

predicted distortion and the measured distortion would match.

average, although the channel-error distortion is hard to predict, our model is

still able to make good predictions of the average distortion even under error-

prone conditions. Apparently the averageDe part of the total distortion is very
predictable, this is probably due to the good error-resilience of the JPEG2000

encoder we used.

5.5.3 Selecting the Optimal GOP Length

In the previous experiments the optimal bit rate allocation was selected for

each frame. This experiment deals with selecting the optimal GOP length N .
The same constraints were used as in the previous experiment, but now the

GOP length varied from 1 to 10.

Figure 5.14 shows for each GOP length from 1 to 10 the bit rate allocations
for BER = 0. Observe that the average bit rate of 0.2 bpp per frame is spread
out over each frame in the GOP, to obtain a minimal overall distortion DGOP.

The last case (N = 10) corresponds to the bottom-most point in Figure 5.11.
Figure 5.15 shows the predicted overall distortion DGOP and measured

overall distortion D̃GOP for each of these bit rate allocations. Following our

criterion (5.5), the optimal GOP length is N = 8. Since P-frames are used, we
expect that using larger GOPs gives lower distortions. This is generally true,

but in these experiments we did not cover the whole solution space since we
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Figure 5.14 — Bit rate allocations for BER = 0. Every plot corresponds to a GOP
length running fromN = 1 to 10. Within each plot, for each frame, the bit rate
allocation that minimizesDGOP is shown. The average bit rate is 0.2 bpp.
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between 1 and 10 and for an average bit rate of r = 0.2 bpp.
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Figure 5.16 — Minimized Distortion DGOP for GOP lengths between 1 and 15, for

differentBERs and an average bit rate of r = 0.2 bpp.

used increments of 0.1 bpp for the bit rates. With this limited resolution we
may find suboptimal solutions.

Figure 5.16 shows the result of a simulation where N was varied from 1
to 15. In this simulation we only used our models to predict the distortion;
the corresponding measurements were not carried out due to computational

limitations (there are 600,000 combinations of rate allocations when bit rates
0.1, 0.2 to 1.6 are used). The distortions were again minimized with an av-
erage bit rate constraint of 0.2 bpp. The points correspond to the minimum
achievable distortionDGOP at each GOP length. We see that forN > 6 the av-
erage distortion did not substantially decrease anymore, so larger GOP lengths

would not improve the quality greatly. Figure 5.16 also shows the results of
the simulations for BER = {32 · 10−6, 256 · 10−6, 512 · 10−6}. Note that at
some point the accumulated channel-induced distortion becomes higher than

the gain we obtain from adding another P-frame. At this point, the internal
controller should decide to encode a new I-frame to stop the error propaga-

tion.

5.5.4 Optimal Rate Allocation for Whole Sequences

In this experiment we used our models and our optimization criterion to opti-

mize the settings for the whole sequence of 
arphone.
We have compared the measured distortion with two other simple rate

allocation methods:
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1. The rates and GOP length settings are obtained using our models and
optimization criterion, with the constraints that Nmax = 10 and the

average bit rate is 0.2.

2. Every frame has the same fixed bit rate r = 0.2. The GOP length is
obtained using our models and optimization criterion.

3. Every frame has the same fixed bit rate r = 0.2. The GOP length has a
fixed value of 10.

These methods were applied to the 
arphone and the susie sequences for
BER = 0, BER = 128 · 10−6 and BER = 512 · 10−6. The results are
shown in Table 5.1. For 
arphone method 1 is clearly better than method 3.
Method 2 and method 3 perform more or less the same. When bit errors are

introduced, method 1 still outperforms the other two. For susie, method 1
also outperforms the other two. When bit errors are present, method 2 (just

adapting the GOP length), greatly outperforms method 3. We conclude that the
performance of our method depends heavily on whether the characteristics of

the source are changing over time or not. It seems that either optimizing the

GOP length or the bit rates, decreases the distortion as opposed to method 3.

Finally, we have investigated whether using R-D parameters for each in-
dividual frame instead of average R-D parameters, indeed gives a significant

increase of performance. We compared the case where for each individual
frame the corresponding R-D function is used for optimization (case 1) and the

case where one average R-D function is used for the whole sequence (case 2).

For 
arphone we measured the following: for case 1, the average distortion
D = 76.5, for case 2 this isD = 91.0. This means that significant gains can be
expected when the R-D curves are known for each frame. Of course, in practice

this is not possible. On the other hand, since consecutive frames look alike,
we believe that an adaptive method to obtain the R-D curves from previous

frames, could give significant gains. For susie we have similar results. For
case 1 D = 28.6 and for case 2 D = 47.9.

Method 1 2 3

Case Distortion
arphone,BER = 0 76.6 91.1 90.6
arphone,BER = 128 · 10−6 136.8 161.3 161.1
arphone,BER = 512 · 10−6 397.7 408.4 410.4susie,BER = 0 28.6 28.9 28.9susie,BER = 128 · 10−6 47.4 49.6 59.5susie,BER = 512 · 10−6 116.4 117.1 151.2

Table 5.1 — Comparison between different rate allocation methods
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5.6 Discussion

In this chapter we introduced a behavior model that predicts the overall distor-

tion of a group of pictures. It incorporates the structure and prediction scheme

of most video coders to predict the overall distortion on a frame-per-frame
basis. Furthermore, the model corrects for statistical dependencies between

successive frames. Finally, our model provides a way to predict the channel-

induced distortion when residual channel errors are present in the transmitted
bit steam.

Although the deviation of the model-predicted distortion from the mea-
sured distortion can become substantial, with this model we can still compare

different settings and select one likely to cause the smallest distortion.

Our models are designed to closely follow the behavior of the encoder given
the characteristics of the video data, and to make an accurate prediction of

the distortion for each frame. These predictions are made before the actual

encoding of the entire group of pictures. To predict the average distortion,
we need to know the variance of each frame and the variance of the frame

difference of the consecutive original frames. We also need two parameterized
R-D curves, and six other parameters (κ, α, β, LI, LP and λ).

In our experiments—some of which were shown here—we noticed that

these parameters do not change greatly between consecutive GOPs, therefore
they can be predicted recursively from the previous frames that have already

been encoded. On the other hand we have shown that significant gains can be

expected when the R-D parameters are obtained adaptively and no average R-D
curves are used. The factors κ, α, β, LI, LP and λ do not depend greatly on the
source data, but rather on the coder design, and thus may be fixed for a given
video encoder.

After obtaining the frame differences, the distortion can be predicted be-

fore the actual encoding takes place. This makes the model suitable for rate
control and CBR as well as for QoS controlled encoders. Although we focussed

on rate allocation of entire frames rather than on macro blocks, all models can

be generalized for use at macro block level.
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Six

Optimized Video-Streaming over

802.11 by Cross-Layer Signaling

6.1 Introduction

Using wireless links for video streaming over the Internet is something that

becomes more and more common today. This combination makes that the de-
manding world of real-time multimedia (which does not tolerate drop-outs for

example) meets the quite imperfect – and capricious – dark universe of radio

links. A lot of effort is required to team up these worlds, such that the strin-
gent packet delay, jitter, and loss requirements of multimedia applications can

be met by unstable and unreliable radio links.

Wireless links introduce bottlenecks for a number of reasons. First, commu-

nication over a wireless channel is simply not able to achieve the same quality
(throughput, error rate, etc.) as its wired counterpart, which reduces the qual-

ity of the multimedia content that can be delivered. Second, in a mobile envi-

ronment, the channel conditions can change rapidly due to changing distance
between the stations (user mobility), Rayleigh fading, and interference. Since

multimedia streaming applications must deliver their content in real-time, they

are very sensitive to jitter in packet delivery caused by retransmissions in the
underlying transport protocols. Third, multimedia streaming may be done over

a shared medium like 802.11 and interfere with other users that are for instance
downloading files.

With today’s 802.11 products, the fundamental problems of wireless com-
munication are aggravated by poor handling of the limited and imperfect re-

This chapter was published as: I. Haratcherev, J. R. Taal, K. Langendoen, R. L. Lagendijk, and
H. J. Sips, ‘Optimized video streaming over 802.11 by cross-layer signaling,’ IEEE Communications
Magazine, vol. 44, no. 1, pp. 115–121, Jan. 2006. [41]
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sources (scarce spectrum, noisy medium) available to the radio. In particular,
current transport protocols and device drivers do not actively control the user-

available parameters of the 802.11 MAC layer; they use default values instead.

In this article, we present an architecture for adaptive video streaming over
802.11. We will show by a number of experiments that the real-time video-

streaming quality of the total system can be drastically improved by applying

link adaptation and cross-layer signaling techniques. Link adaptation is a tech-
nique to handle the effects due to changes in the channel conditions and is

typically being employed at the link (MAC) level [8, 24, 45, 89]. Basically, link

adaptation is the process of automatically adjusting a number of radio/MAC
parameters, so that optimal quality of packet transmission is achieved. Cross-

layer signaling can be used to pass link quality information to a video encoder
such that, for example, the degree of compression is changed and consequently

the data rate [12, 53]. This mechanism can also be used to pass changes in

throughput estimations to the application layer in case of medium sharing.

This article is organized as follows. In Section 6.2, we give an outline of our
communication architecture and the use-scenarios that it is intended to cover.

Sections 6.3 and 6.4 describe the basics of link adaptation and give an overview
of the various approaches to automatic rate control in 802.11. Section 6.5 and

6.6 describe the use of cross-signaling techniques in video-streaming without

and with medium sharing, respectively.

6.2 Communication system architecture

In designing an adaptive communication system, it is important to know what
the inherent problems in wireless communication links are and their severity.

Then, given the constraints that the application imposes, such as the perfor-
mance quality variations that it can handle, an appropriate adaptive control

mechanism can be designed. This control mechanism should keep the quality

variations within the specified bounds, but not to the extend that the control
becomes too complex.

Figure 6.1 depicts the architecture of our adaptive wireless communication

system for video streaming. In this architecture both the the Radio/MAC and

the Video encoder are rate-adjustable, meaning that the transmission rate of
the radio/MAC and video coding rate of the video encoder can be dynamically

changed (components radio rate and video rate control, respectively). The video
encoder talks with the radio/MAC through the UDP/IP component layer of the

system.

The rate control components obtain their information from the Channel

State Predictor (CSP) and the Medium Sharing Predictor (MSP) components. The
Channel State Predictor produces Channel State Information (CSI) that is used for

link adaption by the rate controller driving the radio/MAC component (path 1).
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Figure 6.1 — (1) Channel state prediction used for link adaptation; (2) Chan-

nel throughput prediction without considering medium sharing; (3) Channel

throughput prediction considering medium sharing.

This CSI is also supplied to the video encoder through a function that maps raw

radio throughput to effective throughput, accounting for headers, etc (path 2).
With medium sharing, the real link throughput is calculated from the CSI by

a MSP (path 3), accounting for background traffic (and protocol overheads as

before).

In Table 6.1 we show the communication system complexity as function of
a number of wireless use scenarios. First, consider the first row of the table

(no medium sharing). In the first two entries we have scenarios where the

channel is static, i.e. there is no movement or any change in the link quality. In
that case, we do not need any channel state prediction and we do not have to

change any parameter in the radio. A typical example of such a scenario is a

satellite link. The last two entries in the first row of the table depict scenarios
that are dynamic. Here we definitely need channel state prediction to be able to

adapt to the channel quality variations. Failing to do so will have catastrophic
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effects, no matter how smart the network layers above are, just because a
broken radio link means that no packets arrive at all.

Channel type Static channel Dynamic channel (movement)

Quality low high low high

Sharing type Paths

No medium shar-

ing

- - 1 1+2

Medium Sharing (3) 3 1+3 1+3

Table 6.1 — Configuration for different video-streaming scenarios; the numbers

refer to the paths in Fig. 6.1.

Moreover, in the case of high quality video requirements, we also need the
video encoder to have some information about the available throughput (paths

1 + 2).
The picture changes completely when the wireless channel is shared (sec-

ond row in Table 6.1). In [40], we have shown that the throughput can drop an

order of magnitude, even with only a single additional user that is download-
ing. Therefore, we need to employ medium sharing prediction in addition to

channel state prediction, for all cases (static/dynamic channel, low/high video

quality).

6.3 Link adaptation basics

The (IEEE) 802.11 standard defines several MAC-level parameters (settings) that
are available for tuning at the side of the wireless network interface card (NIC).

The most important parameter available for adjustment is the transmit rate.
In IEEE 802.11 WiFi Standard (802.11a), for example, the transmit rate can be

set to 6, 9, 12, 18, 24, 36, 48 and 54 Mb/s. Each rate corresponds to a different

modulation scheme with its own trade-off between data throughput and dis-
tance between the stations. This can be seen in Figure 6.2 - for clarity only the

last four modulation schemes are shown.

The figure shows the performance in terms of the throughput for these

modulation schemes versus the signal-to-noise ratio (SNR). Note that distance

is related to SNR as SNR ∼ 1
distα

. More complex modulation schemes like 64-
(QAM) 3/4 offer a larger throughput, but also have increased sensitivity to

channel noise, and thus provide a shorter operating range. Usually, one wants

to extend the operating range as much as possible and, at the same time, max-
imize the throughput. This can be done by proper (automatic) selection of the

rate (modulation scheme) that gives the maximum throughput for certain con-
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Figure 6.2 — Throughput vs. (radio) SNR for some 802.11a modulation schemes.

ditions. Obtaining a reliable SNR measurement from the channel is difficult,
and may require indirect solutions as will be explained in Section 6.4. Knowing

the optimal rate, we then compute the effective throughput at the user-level, so

the video codec can adjust its parameters to avoid overloading the communica-
tion link when channel conditions degrade. We use a simple model to convert

the radio rate setting to available user-space data throughput. Our model has
been derived from the IEEE 802.11 standards [44] and is of the form:

T =
8RL

8L + bR + c

where T is the throughput in Mbits/s, L is the length of a packet in bytes, R
is the data rate setting in Mbits/s, and b and c are coefficients that depend on
the 802.11 supplement. For 802.11a, b = 161.5 and c = 156. For IEEE 802.11
WiFi Standard (802.11b), b = 754 in the case of long preamble, or b = 562 in
the case of short preamble, and c = 112.
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6.4 Automatic MAC rate control

The IEEE 802.11 standard [44] and its supplements do not specify any algo-
rithm for automatic rate selection. To our knowledge, all of the known vendors

of 802.11 equipment use statistics-based approaches for rate control, which

are slow to respond to changes in link conditions. In the research community,
another class of rate control algorithms has been studied. These control algo-

rithms use SNR-related information as a feedback to improve the sensitivity to
changes in link conditions. We will discuss both approaches below, as well as

our hybrid solution that combines the advantages of the statistics-based and

SNR-based rate controllers.

6.4.1 Statistics-based automatic rate control

An easy way to obtain the necessary information on the link conditions is to

maintain statistics about the transmitted data like the frame-error rate (FER),

acknowledged transmissions, and the achieved throughput. Since these statis-
tics are directly related to the effective user-level data throughput, they inher-

ently guarantee that this throughput is maximized on the long-term. Three ba-
sic types of statistics-based rate control can be distinguished: throughput-based,

FER-based, and retry-based rate control. The throughput-based approach is the

one that uses the most global type of statistic and is the slowest method. The
retry-based control uses the most local statistic (number of retries per frame),

and is the fastest method.

In the throughput-based rate control a constant small fraction (10%) of the

data is sent at the two adjacent transmit rates to the current one (an adjacent

rate is the next higher or lower one available). Then, at the end of a specified
decision window, the performance of all three rates is evaluated and the rate

having the highest throughput during the decision window is selected. To

collect meaningful statistics, the decision window has to be quite large (i.e.
about one second), hence, the response to changes is rather slow.

In the FER-based rate control, the Frame Error Rate (FER) of the data stream
transmitted over the link is used to select an appropriate rate [13]. The FER can

easily be determined since under 802.11, all successfully received data frames
are explicitly acknowledged by sending an (ASK) frame to the sender; hence, a

missing ASK is a strong indication of a lost data frame. By counting the number

of received ASK frames and the number of transmitted data frames during a
rather short time window, the FER can be computed as the ratio of the two.

The width of the time window and the rate-switching thresholds are critical

for the performance of the FER-based algorithm. The optimal settings of the
parameters are dependent on the link and the application, but are generally

fixed at design time limiting the effectiveness of FER-based rate controllers.
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An improvement over the FER-based approach is to downscale immediately
when the MAC is struggling to transmit a frame correctly over the link. That is,

to select the next lower rate after a small number of unsuccessful retransmis-
sions (usually 5-10 retries) [45, 89]. This approach has to be implemented in

hardware, since precise control of the rate setting in between retransmissions

(of the same frame) is required. The advantage of this retry-based approach is
that it combines a very short response time (a few frames) for handling dete-

riorating link conditions (downscaling) with a low sensitivity to traffic rates.

The price to be paid is that the control algorithm is rather pessimistic. Rela-
tively short error bursts cause long drops in throughput because upscaling to

higher rates takes much longer than downscaling due to the need to collect a
meaningful FER and to prevent oscillation.

6.4.2 SNR-based automatic rate control

A fundamental limit of indirect, statistics-based feedback is that it classifies link
conditions as either ‘good’ or ‘bad’. This binary information provides some no-

tion about the direction in which to adapt the rate setting, but does not suffice

to select the appropriate rate at once. This leads to a slow step-by-step accom-
modation to large changes in conditions, and introduces the risk of oscillation

in stable conditions. A better approach is to use direct measurements of the

link conditions.

The Signal-to-Noise Ratio (SNR) is directly related to the bit-error rate in the

link and, hence, to the FER. Consequently, the SNR is linked to the packet de-

lay and jitter, and the throughput, and holds the potential of providing rich
feedback for automatic rate control [8]. Knowing the current SNR and the

throughput-vs-SNR curves for each rate setting (e.g. Figure 6.2) would solve

the rate-selection problem instantly.

Despite the advantages, SNR-based rate control has not been applied in

practice so far, because of the following three problems:

1. in reality, for certain link conditions the relation between the optimal

rate and SNR is highly variable. This is due to the imperfectness of the

models describing the radio channel.

2. it is not trivial to obtain a reliable estimate of the SNR of a link. Many

radio interfaces only provide an uncalibrated signal strength indication

(SSI)).

3. the rate controller, which is at the sending side, needs in fact the SNR

observed at the receiving side.

Most work on using SNR information for automatic rate control is based on

simulation and does not consider the practical difficulties of obtaining good
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SNR estimates. It concentrates on the way in which the noisy and drifting SNR
(problem 1) can be used to determine the correct rate setting [8, 81]. Holland et

al. [43] do address the issue of how to communicate back SNR values (problem
3), but their rate selection algorithm still relies on a straight SNR threshold

technique. Another approach is discussed in [24], where the assumption is

made that the channel is symmetric, meaning that the SNR observed at either
station is very similar for any given point in time. This assumption allows

Pavon et al. to use the SNR of the last ASK frame as an indicator of the SNR at

the other side, and to use it for selecting the rate of the next data frame to be
sent.

6.4.3 Hybrid automatic rate control

Both the statistics-based and the SNR-based approaches have their advantages

and disadvantages. The statistics-based approach gives robust performance
and inherently maximizes the throughput in the long term. However, the main

drawback is its slow response to changing link conditions, which can be a

source of problems for real-time applications. The SNR-based rate control can
respond very fast, but due to the uncertain and fluctuating relation between

SNR information and BER of the link, it lacks stability and reliability. Therefore,

a logical step forward is to combine the two approaches in a hybrid algorithm
that will provide both robustness and fast response.

We have implemented such an SNR-based hybrid rate control. The core of

this hybrid algorithm is a traditional statistics-based (throughput-based) con-
troller. The decisions of the core controller can be overridden by a second feed-

back loop. This loop bounds the acceptable range of the (signal strength indica-
tion of acknowledged frames (SSIA)) values for each rate, based on the specific

knee in the throughput-vs-SNR curve (cf. Figure 6.2). The SSIA is used instead

of the SNR, since most radio interfaces provide only uncalibrated SSI informa-
tion. To account for the drift and the lack of calibration of the SSIA readings,

we employ an adaptive adjustment logic that updates the values according to

the recent history of channel conditions. For more details see [38].

Our hybrid rate controller should not be affected by collisions caused by

transmissions from other stations. First, the throughput-based controller bases
its decisions on overall throughput measured for adjacent rate settings over

relatively long periods of time. So, collisions will affect all the throughputs si-

multaneously, hence the relationship between them will not change, and con-
sequently it will not change the controller decisions. Second, if there is a colli-

sion, there will be no ASK, so no SSIA will be returned by the radio chipset to

the driver. Thus, the state of the second feedback loop of the rate controller
will not change, and consequently the final decisions of the rate controller will

also not be affected by collisions.
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We are investigating the possibilities of implementing advanced estimation
techniques, such as Kalman filtering, in the radio rate controller, as well. Al-

though this might improve the quality of our predictions (of both SSIA values
and throughput), the benefit of such techniques should be carefully studied. In

our case the advantage is doubtful since it comes at the price of a heavy com-

putational load. We perform predictions on driver/firmware level, therefore,
such a computational burden is probably unacceptable.

We have compared the decoded video quality for different rate control algo-

rithms in an experiment. In this experiment we used two laptops of which one
has been put in a fixed position on a desk. The other laptop was carried out of

the room, moved a few times up and down through the hallway, and then re-
turned to the initial position next to the other laptop. By walking up and down

the hallway we ensured that the conditions continuously improved or deteri-

orated, so we can inspect the behavior of the various rate control algorithms
at different circumstances. During the whole experiment the first laptop was

streaming an H.263 encoded video of the 
arphone sequence in (QCIF) format

to the second laptop which decoded and recorded the received video.
A classical and easy measure for image quality is the PSNR) measure. The

downside of this measure is that it not necessarily corresponds to the human
perception and that it is not well-suited for moving pictures where sometimes

frames are missing. To overcome this shortcoming we employed twomeasures:

1) the average PSNR: The average of the PSNRs of all frames, and 2) the human
perceptual quality. To obtain a perceptual measurement we have shown each

received video to fourteen people who had to give a mark between 0 and 5

(0=bad, 5=good). Both measures together should give a good indication of
the effects of losing packets on the quality of the video.

We have compared the performance of the following three rate control al-
gorithms: perfect (a fictitious algorithm with no lost packets), hybrid-based,

and statistics-based. Table 6.2 shows for each algorithm the packet loss ratio,

the perceptual quality, and the average PSNR.

Algorithm packet loss perceptual

quality

average PSNR

(dB)
Perfect 0.00% 5.0 37.34

Hybrid 0.15% 3.0 36.59
Statistics-based 7.01% 0.4 29.33

Table 6.2 — Packet loss and PSNR measurements and perceptual quality rating for

three different algorithms.

The results in Table 6.2 show that the statistics based algorithm loses above
forty-five times more packets than the hybrid algorithm. The video quality for

the hybrid algorithm is therefore 7.26 dB higher than for the statistics based
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algorithm. The perceptual rating confirms this difference. As can be observed
from the perceptual measurements, even low packet-loss ratios already give

significant lower qualities. This is due to the propagation of errors in consecu-
tive frames. A typical effect of these errors is shown in Figure 6.3.

Figure 6.3 — Standard rate control (left) and hybrid rate control (right).

6.5 Cross-layer signaling

At the application layer, the video encoder can also adapt to the link quality

by changing the compression degree for example, and thus modifying the data
rate. This adaptation requires that the video encoder is able to sense the link

quality, for example, by getting a feedback information from the decoder side.
However, such a scheme is ineffective when the round-trip delays are too long.

Using this approach also introduces additional overhead.

Our solution is use an adaptive video encoder on top of the hybrid rate con-

trol algorithm [39]. The video encoder will adapt based on the CSI provided
by the channel state predictor (see Figure 6.1) and an additional forecast about

what the link conditions are going to be in the next couple of tens of millisec-
onds.

The video codec we used is a H.263 codec that has been modified to sup-

port interaction with the link layer. Our version of the H.263 encoder supports
a video rate control algorithm (VRCA) that tries to achieve a certain rate, by

adjusting the quantization step size. The quantization step size is the main

parameter that controls the compression of the video. This VRCA has been de-
signed for CBR encoding, but it can also be used to dynamically change the bit

rate that is produced by the encoder. The resulting bit rate not only depends

on the selected quantization step size, but also on the statistics of the picture
itself. Therefore, the VRCA can not set the bit rate beforehand and then expect

that this bit rate will be exactly achieved.
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The VRCA is implemented as a simple feedback control loop that consists
of setting an initial quantization step size, encoding part of the picture, mea-

suring the resulting intermediate bitrate, changing the step size accordingly
and then continuing with the next part of the picture. In total there are nine

parts of a picture frame for which the quantization step size can be adjusted,

which generally is enough to be able to achieve a certain preset rate. With this
algorithm, we are able to change the target bit rate for each individual frame,

meaning that we have a maximum delay of 40 ms (25 frames/s) to respond to
changes in the channel.

In this way, we are able to constantly adapt the target video encoding rate

for the VRCA according to information from the MAC rate control algorithm.

By coupling the rate control algorithms of the MAC and the video coder in this
manner we can efficiently use the available transmission rate to maximize the

picture quality.

The following experiment shows the effectiveness of our cross-layer signal-

ing approach. One of the laptops was again placed in a fixed position and the

other one was following a predetermined track. The track consisted of three
parts -‘lead-in’, which is reaching from the room to a specific start position

in the hallway, and waiting until certain time elapses (10s). Then the laptop

was moved up and down three times the hallway (60s). Finally, the laptop was
placed back (‘lead-out’) again into the room where the fixed laptop lies (20s).

We performed the above experiment for cross-signaling and no cross-signaling.

In the case of no cross-layer signaling, we have set the target-rate for the VRCA
to the average rate as was obtained from the VRCA in the coupled case.

In Figure 6.4 the quality (PSNR) is shown for the whole experiment (90s).
In the left part (0 − 10s) the channel conditions are excellent, hence the high
quality in both cases. The middle part is best described as having conditions

changing from good to bad a few times. The right part has good conditions
again.

As we can see in Figure 6.4, the cross-layer signaling case yields a higher

PSNR than the no cross-signaling case during the whole experiment. Table 6.3
summarizes the number of skipped frames (by the encoder), the number of

lost packets, and the average PSNR in the period between 10-70s. Looking at

the average PSNR in the 10 − 70s period, we conclude that the quality can be
dramatically improved by informing the video codec of the actual present rate

and a prediction for the near future.

6.6 Medium Sharing Prediction

The scenario described in the previous section assumes that the 802.11 medium
is not shared by other users. If other users are also sharing the same medium

the throughput can drop significantly [40]. To be able to cope with this sit-
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Figure 6.4 — PSNR: the solid line shows how the quality (PSNR) changes during

the experiment for cross-layer signaling. The dashed line shows the results for

no-cross-layer signaling.

Case # Skipped frames # Lost Packets PSNR Middle

cross-layer signaling 50 13 39.3
no cross-layer signaling 216 23 33.1

Table 6.3 — Cross-layer signaling and no signaling in rate control. The column

‘PSNR’ shows the average PSNR over changing conditions period between 10 and

70 seconds.

uation, we need a throughput predictor. Transmitting over the air is usually
a bursty process (streaming, downloading) and the time between switching

from an active state and back to inactive state is in the order of seconds. As

a consequence, a throughput prediction could be based on the statistics of the
observed throughput for each radio rate setting during previous transmissions.

As the medium utilization changes slowly, this prediction should work fine for
the period that we are interested in (a couple of tens of milliseconds), provided

we have a way to detect when other users start using the radio channel.

To test the viability of having a good performance throughput estimator
(the Medium Sharing Predictor component in Figure 6.1), we have implemented

a throughput prediction emulator. This emulator is in fact a lookup table with
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throughput values for each rate setting, which we have measured beforehand
in the presence of background traffic. The values are propagated as prediction

values to the video encoder at the times we know the radio channel is used by
other stations. In this way we can observe what the performance improvement

would be in case of perfect throughput prediction.
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Figure 6.5 — Our experimental setup.

To show this, we have done the following experiment. The setup consists of

two desktops (‘golum’ and ‘quickbeam’) on an Ethernet link, a 802.11a access

point, and two laptops (‘arwen’ and ‘eric’) – both running Linux (Figure 6.5).
The laptops are equipped with 802.11a cards based on the Atheros AR5000

chipset, and the card driver uses the advanced hybrid rate control algorithm.
The experiments were carried out by streaming a video file between ‘arwen’

and ‘quickbeam’ while ‘arwen’ was moving, following a predetermined track.

The track consisted of three parts - a ‘lead-in’ of walking from the room where
the access point lies, to a specific start position in the hallway. Then a move

followed taking the laptop up and down the hallway for about 20s (‘action’).

Finally, the laptop was moved back (‘lead-out’) again into the room. While the
video streaming took place, ‘eric’ downloaded a file from ‘gollum’ (during the

‘action’ part) for about 10 seconds.
To evaluate the performance of the cross-layer signaling system in a shared

medium (SM) scenario, we have examined two cases:

No-signaling The video encoder has no indication of the actual throughput,
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Figure 6.6 — PSNR of the received video: The solid line shows the results for the

No-signaling case using a fixed rate of the video encoder. The dashed line shows

the quality when SM-signaling is on.

and we set the target-rate for the VRCA to a fixed value, which is themin-
imum throughput that would be obtained in the case there is no medium

sharing (about 4Mbits/s ).

SM-signaling The video encoder is informed about the effects of other users
sharing the medium. The rate control loops of the MAC-layer and the

video encoder are coupled through the throughput prediction feedback

information provided by the MSP-component emulator (Figure 6.1).

Figure 6.6 shows the quality (PSNR) for the second (‘action’) part of the exper-
iment. In the SM-signaling case just a few frames were lost, since the video

encoder properly reduced the video-rate, following the throughput prediction

feedback. In the No-signaling case, the higher video-rate selected by the video
encoder caused the wireless interface to choke during the time the download

took place, and the video freezed as a result of multiple frame losses. This

‘freeze’ can be localized by the regions with low PSNR. At about video frame
400, the video data managed to get through again, since the link conditions

improved.
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In the periods where there is no background traffic (video frames from 100
to around 250, and from around 500 to 600), the PSNR of SM-signaling curve is

slightly lower than that of the No-signaling curve. This is because we have used
the throughput prediction emulation for the duration of the whole experiment.

This is to evaluate the loss of quality, when there is pessimistic misprediction of

the medium sharing (fewer stations to share the medium with than predicted).
The mean PSNR over the whole measurement period of No-signaling is

38.1dB, and for SM-signaling it is 39.1dB. Focusing on the period with medium
sharing (background download) we find that the mean PSNR is 28.3dB for No-
signaling and 38.6dB for SM-signaling. In the SM-signaling case a significant
improvement (over 10dB) is achieved when the medium is shared.
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Seven

Fair Rate Allocation of Scalable

Multiple Description Video for Many

Clients

7.1 Introduction

Peer-to-Peer (P2P) networks and their file swapping P2P applications have be-

come popularized in the past years because of their high download bandwidths

and inherent server off-loading. This success has stimulated research into us-
ing peer-to-peer networks as infrastructures for streaming video over the In-

ternet [67, 15]. In addition to being clients, the peers in the network then also
serve as application-level multicast nodes. Although IP-level multicast offers

efficient distribution from server to clients using routers, this mechanism is

not widely spread nor often used. For application-level multicast (application
level multicast (ALM)), however, no infrastructural changes are required, mak-

ing fast and flexible deployment possible. Furthermore, the way the multicast

is carried out can be specifically tailored to video streaming applications.

If a P2P network implements ALM, we can use intermediate nodes in the

network to forward data to other nodes. The data forwarding model that we

consider to be most suitable for video streaming over peer-to-peer networks
is known as ‘bartering’. Chunks of data are exchanged between nodes in a ‘as

fair as possible’ manner. Bartering has two advantages. First, the clients ex-

change the data without server intervention, thus off-loading the server. Sec-
ond, the clients are encouraged to participate in sharing the downloaded data

This chapter was published as: J. R. Taal and R. L. Lagendijk, ‘Fair rate allocation of scalable multiple
description video for many clients,’ in Proc. of SPIE, Visual Communications and Image Processing, vol.
5960, July 2005, pp. 2172–2183. [76]
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with other peers, which effectively combats the freeriding problem [58]. The
underlying P2P network takes care of downloading all missing chunks from

other nodes, and forwarding available chunks of data to nodes that still miss
that data.

To apply the bartering model to streaming video, two possibilities exist. The
first is to chop up the compressed video stream into data packets, and assign

these packets to different network chunks. For example, chunk 1 contains video

data packet 1, 3, 5, . . ., and chunk 2 contains video data packets 2, 4, 6, . . .. An
important drawback of this approach is that since all packets are crucial for

proper video decoding, missing chunks will result in major video degradation.

The second – and much more attractive – approach is to apply bartering

on multiple descriptions (MD) of the (compressed) video source rather than

straightforwardly chopping up a compressed bit stream. In this case, a video
encoder generates several (multiple description) streams, that are all indepen-

dently decodable. The different descriptions are put into the different chunks.
If more chunks, and hence more descriptions, are received, the decoded video

quality improves. The advantages of the MD approach is that video streaming

becomes robust against P2P bandwidth variations or failing P2P nodes, which
in both cases cause random chunks of data to be unavailable to a video decoder.

We use the multiple description coding approach MD-FEC proposed by Puri
and Ramchandran [59] (see Figure 7.1). First, the video is encoded using anM -

layer video encoder. Each layer k is encoded at a rate Rk and is then protected

by an (M, k) (Reed-Solomon) erasure code. The thus obtained protected data is
evenly distributed over theM descriptions. Finally, the individual descriptions

form the chunks that are bartered by the P2P nodes. If anym out ofM descrip-
tions are available, the first m layers can successfully be decoded, resulting in

a quality Qm.

Layered

Encoder

Erasure Coding +
MDC PacketizationVideo Coder Decoder

m received

Qm

Clientvideo video
Network

M descriptions

P2P

M layers

Figure 7.1 — Block Diagram of the multiple description video distribution over a

P2P network

In the practical application of the above MD-FEC approach, several (encod-
ing) parameters have to be chosen, namely the number of layers (and descrip-

tions) and the bit rate at which the individual layers are encoded. These choices

depend strongly on the quality that is desirable and achievable for clients with
different bandwidth. In our earlier work [74] we have proposed to use a prob-

abilistic client-bandwidth distribution model that describes clients bandwidth

due to physical network limitations (e.g. the various ISDN, cable, ADSL, and
LAN connections) and due to network congestion. In this way, the probability

for a P2P peer receiving a certain number of descriptions can be calculated as a
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function of the above mentioned parameters. Using an overall criterion, such
as the average compression distortion over all clients, the optimal number of

layers/descriptions and the bit rate per layer can be found.

In the next section we will discuss related work. We present our approach
to MDC video streaming in P2P network in Section 7.3, and derive a model

for the behavior of our MD-FEC system. Also we derive an RD-model for the

layered Dirac codec. In Section 7.4 we first present three different criteria to
find the optimal encoding parameters. We will introduce these criteria from

the perspective of ‘fairness’ to the clients. After all, multiple description co-
ding is inherently less efficient than single description coding, hence some

clients ‘pay’ bandwidth or quality for the benefit of others. For instance, rather

counter-intuitive, a criterion that minimizes the average MSE distortion results
in mainly minimizing the distortion for clients with low bandwidth, whereas

clients with high bandwidth gain little. We will also discuss the optimiza-

tion of the encoding parameters for the selected fairness criteria. Finally, in
Section 7.5, we show results of optimizing the fairness criteria with specific

settings and assumptions on the client distribution. We conclude with a dis-
cussion.

7.2 Related Work

7.2.1 Peer-to-Peer Networks

A peer-to-peer network consists of a subset of all nodes present on a network
(Internet). Just by having a connection to one or multiple nodes that are part

of the P2P network, these nodes are (virtually) connected to the whole P2P

network. The actual IP connection to these nodes may go through other nodes
or routers that themselves are not part of the P2P network. Therefore the term

overlay network is also often used in place of P2P network. Often there is no
central registration site or server which controls or tracks the peers connected

to the P2P network. This means that all functionalities of the P2P network have

to be implemented in a distributed fashion. A commonly observed property of
P2P networks is that the larger the P2P network, the more efficient, or the

higher the performance. This is contrary to the single server solutions where

the number of clients that can be handled, is often bounded.
A commonly used data exchange technique in P2P networks is ‘bartering’.

Chunks of data are bartered (traded) amongst peers. This greatly reduces the

fan-out of a server. BitTorrent [57], a system that supports a large number
of parallel file downloads, splits up the file into a number of chunks. Clients

that already have downloaded certain chunks, forward these chunks to other

clients, such that the server is relieved. Furthermore, the clients that are for-
warding chunks are allowed to download more chunks simultaneously, result-

ing in a higher download speed. This tit-for-tat approach is good for the P2P
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network as a whole. Since peers are encouraged to forward chunks for other
clients, this greatly simplifies control of the network.

7.2.2 Multiple Description Coding

In multiple description coding (MDC) a certain amount of redundancy is added

to transmitted (compressed) data, such that when one or more descriptions are
lost, we are still able to recover the source data with an acceptable amount of

distortion. Where error-correcting codes are typically used to correct bit and
burst errors, MDC is used to handle situations in which losing entire packets or

descriptions is likely.

There is a substantial body of literature on MDC of images. The MDC ap-
proaches can be divided into four categories, namely:

• MDSQ, in which nested quantizers or lattice vector quantizers are used to
generate the multiple description. If one description is lost, the decoder
effectively uses a coarser reconstruction [82],

• MDCT, in which uncorrelated signal components are transformed using a
correlating transform, introducing a controlled amount of redundancy. If
a correlated component is lost, the remaining component(s) can be used

to recover the source data with an acceptable distortion [32],

• SBMDC. Source-based MDC: The autocorrelation naturally present in the
source data is exploited to generate correlated descriptions [5],

• MD-FEC. This is combination of layered (or progressive) encoding and
erasure coding. First a number of layers are generated. Then erasure
codes of different strength are applied to each layer, such that, if m out

of M descriptions is received, m layers can be successfully decoded [55].

The MD encoding of video is more complicated than MD encoding of ran-
dom i.i.d. data. This is due to the complex autocorrelation structure of video,

but also to the non-Gaussian distribution of the data. Furthermore, special care
needs to be taken to prevent accumulation of errors in inter-frame decoding.

An example of a MDC-SB like video encoder is the following [6]. The encoder

generates an ‘even’ stream, containing even video frames 0, 2, 4, . . . and an
independently decodable ‘odd’ stream containing all odd video frames. If a de-

scription is missing, it can be estimated from the other description(s) because

of the (inherent) correlation between successive video frames. A clear disad-
vantage of this (and any MDC) approach is the less efficient compression as

correlation between odd and even frames is not exploited.
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7.2.3 Application Layer Multicast (ALM)

The combination of multiple description coding and application layer multi-

cast has been addressed by Castro et al. [15]. Their Splitstream system splits the

video stream into two descriptions, similar to the above presented example
where one description contains the even frames and the other description con-

tains the odd frames. Splitstream constructs two different multicast trees with
the same server and containing the same clients, but with different routes.

When one of the nodes temporarily fails, each sub-trees is deprived of one de-

scription, but since the two subtrees are based on disjoint paths, it is very likely
that the other description can still be received. Other proposals [56, 37, 27, 79]

also describe streaming of media P2P networks, but these works concentrate

mainly on P2P tree formation and handling of joins and leaves.

7.3 MDC Video Streaming in Peer-to-Peer Networks

7.3.1 Peer-to-Peer TV Architecture

In our previous work [58] we presented the basic design of a peer-to-peer tele-

vision ( (→P2P-TV)) system. In →P2P-TV, a separate P2P layer takes care of
peer-finding, building multicast trees, handling joins and departures of nodes

and handling (temporarily) failing peers. Furthermore, the P2P layer measures

bandwidth latencies, peer failures etc, such that the video always can be effi-
ciently distributed through the multicast tree.

The P2P video distribution system within →P2P-TV supports any peer to

be the server of a video stream. At the same time, any peer in the network

can subscribe to the stream. Figure 7.2 depicts an example of such a P2P net-
work. The Server S is part of the P2P network and produces several descrip-

tions (D1, . . . , DN ) of the video data. Client Ci receives these through peers

PA, . . . , PZ , P1, . . . , PN . Another client Cj also receives these descriptions
from another set of peers. In this example Ci forwards one or more descrip-

tions to Cj . This general model enables simple packet forwarding and barter-
ing to distribute the video descriptions through the P2P network to all clients.

We assume that the total of incoming and outgoing bandwidth for each node

Ci is limited to Bi. Usually, Bi forms the bandwidth bottleneck, because the
rest of the network is normally able to support a total flow of Bi to node Ci.

Since the total flow is split up in separate description, following different paths

through the network, this is often a valid assumption. We also assume that the
total bandwidth for server S, BS is sufficient to distribute at least one copy of

each description.
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Figure 7.2 — Example of an overlay P2P network.

7.3.2 Layered MDC Video Encoder

As we mentioned in the introduction of this chapter, we use the Multiple De-

scription Coding approach proposed by Puri and Ramchandran [59] for creating
the descriptions that are streamed over the application layer multicast trees in

the P2P network. We prefer their MD-FEC approach over other MDC approaches

for two reasons. First, this MDC approach is flexible in the number of descrip-
tions to generate. If an efficient layered encoder is present, any number of

descriptions can be generated. Second, the behavior of the MD-FEC system

is easy to model if the rate-distortion performance of the layered encoder are
known. Hence, end-to-end rate-distortion optimization of the video streaming

systems becomes possible.

The video coder we use generates an inter-coded base layer. The (M − 1)
enhancement layers do not employ temporally predictive coding. On one hand

this overcomes the effect of accumulating errors, since missing enhancement
data has no effects on the next frame. On the other hand, we lose the efficiency

of temporal predictive coding for the enhancement layers.

For decoding layer l, first all lower layers 1, . . . , l − 1 should be decoded
successfully. The layered coder is followed by a packetizer, as depicted in Fig-

ure 7.1. We generate multiple descriptions by combining erasure codes of each
layer into packets. This way we ensure that when a client receives only a subset

of the descriptions, it can still successfully decode a number of layers.
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Figure 7.3 — Illustration of a 4-description MD-FEC configuration. Each column

comprises a description, consisting of parts from each layer.

In general, an (M, k) block-code is able to correct M−k
2 random errors and

M−k erasures of which the positions are known. As shown in Figure 7.3, each
description contains information of all layers using erasure codes. The data of

layer l is first split up in l equal sized data blocks and then the remainingM − l
blocks are filled with the respective erasure codes. Any number l of these blocks
is then sufficient to recover the original l data blocks of this layer. As a special,
case layer 1 is in fact just copied in all descriptions. The last layer is only split
up such that all descriptions are needed to reassemble that layer. The total

number of layers M is equal to the number of descriptions. We have control
over the redundancy added by erasure codes, since the rate of each layer is

still free to choose. For instance, by using a small base layer rate and a large

enhancement layer rate, we can induce a low redundancy.
The base layer is encoded at a rate R1. The total rate of the first n layers is

denoted by Rn. Hence, each successive layer i has a rate Ri −Ri−1. The rate

RD of each of the M descriptions is then given by:

RD =
M∑

l=1

Rl −Rl−1

l
(7.1)

RD =

M∑

l=1

αlRl, (7.2)

where R0 = 0, and

αl =
1

l(l + 1)
for l = 1, 2, M − 1, and αM = 1/M. (7.3)

A node or client in the P2P network with bandwidth Rc receives m = ⌊ Rc

RD
⌋

descriptions. After decoding these m descriptions, the client experiences a
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compression distortion of D(R1, R2 . . . , Rm) for m = 1, . . . , M . In principle,
the rate-distortion function for layer m depends on all rates Rk of the indi-

vidual layers k = 1, . . . , m as layered compression induces losses relative to a
single layer coder that are dependent on the rates of the (lower) layers. Hence,

for each layer we may have a different rates-distortion function. By definition,

D(0) = σx
2.

7.3.3 Layered Dirac Video Encoder

In our workwe used Dirac, an open-source video coder developed by the BBC [26].
Dirac is wavelet-based and its performance is comparable to H.264. In Fig-

ure 7.4 the bit rate - distortion (RD) curve of Dirac is shown for the Fore-

man sequence. We also plotted several RD-curves for two-layer encoding.
The branch-point in each curve is the rate R1 for the first layer. The effi-

ciency loss for the first enhancement layer is clearly visible. For higher lay-

ers (not shown) we have observed an insignificant loss of coding efficiency.
Consequently, the rate distortion function becomes only dependent on the rate

of the base layer R1 and the rate of the layer m under consideration, i.e. ,
D(R1, R2 . . . , Rm) = D(R1, Rm).

In order to be able to find an optimal rate allocation, we need to have an
analytic model of the RD curves. First we model the single layer curve.

D(R) = σx
2 2−2(R+a0(1−2−b0R)). (7.4)

This model embeds the information-theoretical bound for Gaussian i.i.d. sour-
ces (a0 = 0), but also models the enhanced coding efficiency for autocorrelated
sources such as video. For R → ∞, the slope of the curve becomes the well-
known 6dB per bit. For smaller R, the curve has a larger slope, which slowly
decays to the 6dB bound. The top curve in Figure 7.4(b) shows the resulting

model.

We see in Figure 7.4(a), that the slope of the two-layer curves D(R1, R2)
is smaller than for a single layer curve D(R1). By letting model parameters a
and b depend onR1, we can model the RD behavior for any combination ofR1

and R2. Since we observed no additional loss in efficiency for layers 3,4. . . , the

model for the m-layer encoder is based on the 2-layer encoder:

D(R1, R2 . . . , Rm) =D(R1, Rm) =

=σx
2 D(R1) 2−2((Rm−R1)+a(R1)(1−2−b(R1)(Rm−R1))) for m ≤M.

(7.5)

Functions a(R1) and b(R1) are fit to the experimentally observed rate-distortion
behavior of the coder.
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Figure 7.4 — (a) Rate-Distortion curves for the layered Dirac encoder with the 30Hz

CIF-Format Foreman sequence. The dashed line is for the H.264 encoder. (b) Rate-

Distortion model
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7.4 Fair MDC Streaming

7.4.1 Rate Allocation Problem

If we have to serve a large number of different clients, all with a different band-

width Rc, we have to trade-off quality and redundancy of the descriptions.
Making an optimal trade-off is not trivial as clients having different bandwidth

will receive a different number of descriptions, and hence experience a differ-

ent quality and effective bandwidth. On one hand, we wish to offer every client
a quality that is as high as possible. On the other hand because of scalability

of the system, we cannot offer each client individually an optimal stream. Fur-

thermore, clients have to accept the fact that they have to forward packets
to other peers, i.e. that they have to donate bandwidth to the P2P network,

especially when we introduce redundancy by using MDC.

In order to deal with this dilemma in a fair way, two ingredients are needed.
In the first place we need to know (or model) the distribution of the bandwidths

Rc available to the clients. The distribution is modeled by the probability den-

sity function (PDF) fRc
(Rc). Secondly, we need to establish a criterion that

expresses what we mean by ‘fair’, and which also lends itself for optimization.

The fairness criterion will generally be a function of the clients bandwidth Rc

and the bit rates Rk allocated to the layers of the video encoder. The fair-

ness criterion is therefore denoted by FC (Rc; R1, R2 . . . , RM ). An in-depth
discussion on the somewhat socio-economical question of how to distribute
resources over a heterogeneous population is, however, outside the scope. In

the following subsections we will introduce and discuss different examples of

fairness criteria.

Given the distribution of the clients bandwidth and the fairness criterion,

the optimal compression parameters M, R1, . . . , RM can then be found by

maximizing

{M, R1, R2 . . . , RM} =

argmax
M,R1,R2...,RM

∞∫

0

fRc
(r) FC (r; R1, R2 . . . , RM )dr (7.6)

In most cases the rate allocation problem (finding optimal values forR1, R2 . . . , RM

given RD and M ) can only be solved numerically. The values of RD and M ,

however, can either be optimized numerically but often are chosen practically.
The P2P network, for instance, may only support a limited number of descrip-

tions. Or, if we observe that most of the client bandwidths are smaller Bmax,

we could choise to select RD = Bmax/(M + 1) so that the client-bandwidth
spectrum is equally divided. In the remainder of this chapter we only discuss

optimizing the rates R1, R2 . . . , RM and we assume that we either have al-
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ready selected values forM and RD, or that these values are to be found in an
outer optimization loop.

When RD and M are fixed, the maximization function becomes:

{R1, R2 . . . , RM} =

argmax
R1,R2...,RM

M∑

j=0

bj+1∫

bj

fRc
(r) FC (r; R1, R2 . . . , Rj)dr (7.7)

where,

bi = i RD for i = 0, 1, . . . , M

bM+1 = ∞.

7.4.2 Minimal MSE Fairness Criterion

The first – and the most straightforward – criterion we consider is to average
the distortion D(R1, R2 . . . , Rm) = D(R1, Rm) over all clients:

D̂(R1, R2 . . . , RM ) =

M∑

j=0

bj+1∫

bj

fRc
(r)D(R1, Rj) dr

=

M∑

j=0

Cj D(R1, Rj),

(7.8)

where the number of clients receiving i + 1 out of M descriptions is Ci, com-

puted as:

Ci =

bi+1∫

bi

fRc
(r) dr for i = 0, 1, . . . , M. (7.9)

Given a fixed number of descriptionM and a fixed rate per descriptionRD,
this criterion can be solved numerically using the Lagrange multiplier method,

as discussed in the work of Puri et al. [59]

L(R1, R2 . . . , RM , λ) =

M∑

j=0

Cj D(R1, Rj) + λ




M∑

j=1

αjRj −RD


 (7.10)
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After equating the partial derivatives to zero, we obtain a set of equations for
which the roots can be found numerically:

1

α1

M∑

j=1

Cj

∂D(R1, Rj)

∂R1
+ λ = 0 (7.11)

Ci

αi

∂D(R1, Ri)

∂Ri

+ λ = 0 for i = 2, . . . , M (7.12)

M∑

l=1

αlRl −RD = 0 (7.13)

In [59], a method is presented to solve these simultaneous equations such that

after optimization Ri < Ri+1 holds for all rates. Unfortunately, the required

conditions can only be verified for a single layer coder that is described by
a single RD-function. In our case, however, we have to deal with a layered

coder that is described by multiple RD-functions. Consequently, the derivative

of D(R1, R2 . . . , Rm) with respect to Ri also depends on Rj , 1 ≤ j < i. For
that reason, we cannot use method in [59], and as a result we cannot guarantee

that after optimization all Ri < Ri+1. Currently we deal with monotonicity
of Ri as a postprocessing step after optimization. The resulting optimization

procedure is illustrated in Figure 7.5.

For the first Ri+1 < Ri, Fix Ri+1 = Ri

criterion
∫

fRc
FC(R1, R2, . . . , RM)

Start

Stop
Is there any

Yes

No

Carry out Lagrange optimization of

Ri+1 < Ri?

Figure 7.5 — Optimization Algorithm which ensures an monotonic increasing se-

quenceRi

7.4.3 Maximal Average PSNR Fairness Criterion

A drawback of the MSE metric described above is that the (inverse) magni-

tude of the MSE is not a good measure of quality. When the average MSE is
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minimized, most effort is put in minimizing the highest MSE values. Little ef-
fort is put in minimizing the lower MSE values, although these still can gain

significant amounts of quality. An obvious alternative choice for the fairness
criterion is to use the performance measure often used in video compression,

namely peak-SNR. When we average the PSNR over all clients, the following

criterion is obtained:

P̂SNR(R1, R2 . . . , RM ) =

M∑

j=0

bj+1∫

bj

fRc
(r) PSNR(R1, Rj) dr (7.14)

where PSNR(R1, Rj) = 10 log10
2552

D(R1,Rj)
. We can optimize the above crite-

rion in a similar way as the minimum MSE criterion. The Lagrangian function

is then given by

L(R1, R2 . . . , RM , λ) =

M∑

j=0

CjPSNR(R1, Rj) + λ




M∑

j=0

αjRj −RD


 . (7.15)

After partial differentiation to Ri we obtain the following set of equations:

1

α1

M∑

j=1

Cj

1

D(R1, Rj)

∂D(R1, Rj)

∂R1
+ λ = 0 (7.16)

Ci

αi

1

D(R1, Ri)

∂D(R1, Ri)

∂Ri

+ λ = 0 for i = 2, . . . , M(7.17)

M∑

l=1

αlRl −RD = 0 (7.18)

The procedure outlined in Figure 7.5 can also be used for solving the above set

of equations.

7.4.4 Weighted PSNR Loss Fairness Criterion

From the client’s point of view, the client is paying for a certain bandwidth
Rc and wishes to use this bandwidth as efficient as possible, in particular,

the client wishes to obtain maximal quality of the received compressed video

stream. Unfortunately, because of the multiple description coding, there is an
inherent reduction in quality. As long as there is a balance between the MDC-

induced quality reduction and the benefit for the entire P2P video distribution
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system (of which the client is an integral part), the client is willing to take part
in the system.

The third proposed fairness criterion reflects the MDC-induced quality re-

duction for the individual clients. We consider the system to be fair when the
(psnr) quality of all clients is close to the performance obtained if a single de-

scription coding system (SDC) had been used. The following weighted PSNR loss

(WPL) criterion measures the difference between MDC and SDC performance.
The p-parameter controls the way in which differences are weighted:

WPLp(R1, R2 . . . , RM ) =
∣∣∣PSNRSDC(Rc)− PSNRMDC(R1, R2 . . . , R⌊ Rc

RD
⌋)
∣∣∣
p

After substitution of this criterion in Eq. (7.7) and simplification of the resulting
expression, we obtain:

ŴPLp(R1, R2 . . . , RM ) =

M∑

j=0

bj+1∫

bj

fRc
(r)

∣∣∣∣10 log10

D(r)

D(R1, Rj)

∣∣∣∣
p

dr . (7.19)

With p = 1, this criterion becomes identical to the maximal average PSNR

criterion Eq. (7.14). For p > 1 we put more emphasis on larger quality reduc-
tions. Minimizing the criterion then results in a solution where the difference
between MDC case and the SDC case is more balanced over all clients. Note

that for p→∞, we effectively minimize the maximum quality reduction.

The Lagrangian for the weighted PSNR loss with parameter p (WPL-p) crite-
rion is

L(λ, R1, R2 . . . , RM ) =

M∑

j=0

bj+1∫

bj

fRc
(r)

∣∣∣∣10 log10

D(r)

D(R1, Rj)

∣∣∣∣
p

dr +

λ




M∑

j=1

αjRj −RD


 , (7.20)
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Figure 7.6 — Results for the optimization of the MSE, PSNR and WPL-p criteria for
client distribution PDF1)

resulting in the following set of equations:

1

α1

M∑

j=1

−p

(
bj+1∫
bj

fRc
(r) log D(r)

D(R1,Rj)

p−1
dr

)

D(R1, Rj)

∂D(R1, Rj)

∂R1
+ λ = 0(7.21)

1

αi

−p

(
bi+1∫
bi

fRc
(r) log D(r)

D(R1,Ri)

p−1
dr

)

D(R1, Ri)

∂D(R1, Ri)

∂Ri

+ λ = 0

for i = 2, . . . , M

(7.22)

M∑

l=1

αlRl −RD = 0.(7.23)

Similar to the other two criteria, the procedure outlined in Figure 7.5 is used

for solving the above set of equations.
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Figure 7.7 — Results for the optimization of the MSE, PSNR and WPL-p criteria for
several client distributions (PDF2 and PDF3)
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7.5 Results and Experiments

In this section we present the results of the optimization of above criteria given

several different client-bandwidth distributions and different choices for RD

and M . In these simulations we used the general RD model as derived in
Section 7.3.3.

7.5.1 Rate Optimization

The first distribution we consider is shown in Figure 7.6(a). We expressed the

clients bandwidths in bit-per-pixel, also note that fRc
(r > 1.5) = 0. Further-

more we fix M = 4 and RD = 0.3. Using the MSE criterion, this resulted in
rate assignment

~r = {R1, R2, R3, R4} = {0.15, 0.15, 0.18, 0.74}
. The resulting quality depending on the number of descriptions that is received

(and therefore depending on the client bandwidth) is shown in Figure 7.6(b).
This plot showsMDC quality depending on the number of received descriptions

in the lower curve. For reference we also plotted the SDC quality D(r) (upper
curve). A first observation is that the first layer already obtains a fairly high

quality. This has two reasons: a) the RD-function is very steep at lower rates,

making it ‘cheap’ to obtain low distortions at low rates; b) since the RD-model
correctly models the penalty in coding efficiency in the enhancement layers, a

small base layer implies lower qualities for the higher layers as well. Another

observation is that only for clients with bandwidthRc > 1.2, the system really
increases the base quality.

When we use the PSNR criterion, the optimal assignment is

~r = {0.14, 0.14, 0.14, 0.78}
(Fig. 7.6(c)). Although barely noticeable, this criterion favors the higher band-
widths with a little bit higher quality. When we apply the WPL-4 criterion

however,

~r = {0.15, 0.15, 0.32, 0.69}
, this results in amore ‘fair’ distribution of the quality over all clients. Clients re-

ceiving three descriptions do obtain a little higher quality than when receiving
only two descriptions, making it worthwhile to participate in de P2P network.

Now we consider the distribution in Figure 7.7(a). This distribution puts

emphasis on clients having bandwidths between 0.3 and 0.6. Since RD = 0.3,
all clients with Rc < 0.3 receive no descriptions at all. For the MSE criterion
(~r = {0.3, 0.3, 0.3, 0.3}) gives a high quality to all clients, but effectively re-
sults in a single-layer, single-description solution. With the WPL-4 criterion on
the other hand,

~r = {0.20, 0.31, 0.45, 0.45}
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and even clients with aRc > 0.6 still gain quality at a small expense of quality
for the lower bandwidth clients (Fig. 7.7(c).

For the distribution shown in Figure 7.7(d), we fixedM = 6 andRD = 0.2.
To gain insight in in the effect of the p-parameter, we varied p from 1 (effec-
tively the PSNR criterion) to p = 16. Figures 7.7(e)-7.7(h) display the results.
Remember that a higher p-value puts more emphasis on minimizing larger off-
sets between the SDC an MDC quality. Using a large p, the criterion goes to
a greater extent to prevent large offsets, which results in a system that really

offers different qualities for different bandwidths.

7.5.2 Streaming experiment
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Figure 7.8 — Video streaming experiment with ~r = {0.20, 0.31, 0.45, 0.45}.
Each curve shows the obtained PSNR per frame, when one (·), two (◦), three or
four(×) descriptions are received.

We have performed a streaming experiment on the short Foreman sequence.

For distribution PDF1 and fairness criterion WPL-4 we obtained after optimiza-
tion the rate-setting ~r = {0.20, 0.31, 0.45, 0.45}. We encoded the sequence
with our layered-Dirac coder and obtained the results as plotted in Figure 7.8.
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Note that our implementation does not employ an inner rate-control loop,
hence the greatly varying PSNR quality of different frames. On average how-

ever, we clearly obtain different quality levels as requested by our rate setting.
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Eight

Asymmetric Multiple Description

Coding using Layered Coding and

Lateral Error Correction

8.1 Introduction

Multiple Description Coding is a source coding method where a source is en-
coded into a limited number of descriptions such that, whenever some de-

scriptions are lost, the quality gracefully degrades. In general some amount
of redundancy has to be added in order to increase the error resilience and to

enhance the gracefulness. In [59] the theoretical bounds for the case of two

descriptions is presented. Goyal [32] gave an excellent analysis and discussion
of these bounds and also presented a method to correlate i.i.d. sources in or-

der to increase the error resilience. Most of the presented methods for MDC

are however cases of symmetric MDC: Each description is equally important
and equivalent (similar but not the same). In general, however, MDC can be

asymmetric: descriptions are not equally important and may be prioritized:
Having description one may give better quality than having only description

two. Having both results in the highest quality. An extreme case of asymmetric

MDC is Layered Coding, where the enhancement layer is useless (gives worst
quality) when the base layer is not received. We can also think of intermediate

cases where there is still some unbalance between the descriptions but each

description will at least give some quality, although descriptions are still pri-

This chapter was published as: J. R. Taal and R. L. Lagendijk, ‘Asymmetric multiple description co-
ding using layered coding and lateral error correction,’ in Proc. twenty-seventh Symposium on Infor-

mation Theory in the Benelux,. Noordwijk: Werkgenootschap Informatie- en Communicatietheorie,
June 2006, pp. 39–44. [77]
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oritized. With nested quantizers and correlating transforms it is possible to
generate these asymmetric descriptions, although most papers concentrate on

balanced/symmetric MDC [83].

In this paper we investigate the encoding of asymmetric descriptions us-

ing layered coding and channel codes. We refer to [20, 76] for a discussion of
symmetric MDC using layered coding and channel codes. In that case M MD-

packets are assembled by dividing the bytes of each layer over the descriptions.
For each layer i, a (M, i) Reed-Solomon code is computed, and these bytes are
also divided amongst each MD packet. This way, when receiving an arbitrary

combination of k MD packets, the original first k layers can be reconstructed.
This method effectively removes the prioritization from the layered coding and

introduces redundancy and hence error resilience. Each extra description will

increase quality. Later (Section 8.3) we will show an example of this symmetric
case as a special case of general (asymmetric) MD coding.

Themain idea of our Asymmetric Multiple Description Codingmethod (AMDC)

is to generate unbalanced descriptions by including different amounts of chan-

nel codes into each description. Thereby forming descriptions that contain
more base information and descriptions that contain more enhancement in-

formation. It should be clear that we need to know the channel characteris-

tics at forehand in order to fit or design the AMDC coder, the (un)balance of
the channels should be matched by an unbalance of the descriptions. In the

remainder of this paper we first present the general design of AMDC using
channel codes and layered coding (Section 8.2). In Section 8.3 we first present

other coding techniques as special cases of AMDC and compare them with our

rate-constrained AMDC method as discussed in Section 8.4. In Section 8.6 we
present an algorithm to find solutions for a rate constrained optimization of

our AMDC method.

8.2 Asymmetric Multiple Description Coding

MD – lateral

(n1, k1) code

(nN , kN) code
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AMDC Control
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Figure 8.1 — Asymmetric MDC coder + lateral error correction code block diagram
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Figure 8.3 — Example of Layered Coding RD-Curve. When using an FGS encoder.

Layers can be generated at arbitrary rate points ri.
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Figure 8.4 — This (6,4) Forward Error Correction Reed-Solomon code operates on

subsequent packets, therefore introducing a delay. Lateral Error Correction and

MDC operate on parallel streams such that the delay is not increased.
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In this section we present the general design of AMDC. What does asym-
metric MDC look like. In general, all descriptions contain some base infor-

mation (low resolution or coarse information, like a base layer) and some re-
finement information. When not all descriptions contain the same amounts

of these, we speak of AMDC. One way to obtain an AMDC code, is to extend

the MD-FEC system with longer (Lateral) Error Correction codes (lateral error
correction (LEC)) and where each description contains one ore more of these

LEC blocks. Figure 8.1 shows a block diagram. The source is first encoded using

a layered coder into L layers using rates {r1, r2, . . . , rL} (See Figure 8.3). On
each layer i a different (ni, ki) Reed Solomon Channel Code is applied (See Fig-
ure 8.4. The Packetization Block then Combines all data (layer data and channel
codes) into MD Packets according to the packetization scheme (Matrix S). The
AMDC control block controls the layered coding rates ri, the channel codes and

packetization matrix S.
In Figure 8.4, we explain the difference between Forward Error Correction

(FEC), which operates on sequential packets, and Lateral Error Correction (LEC),

which operates on parallel packets (or descriptions).

The general design of our AMDC method with L layers and M descriptions
is as follows:

Sasym LEC
d1 d2 . . . dM (ni, ki)



s1,1 s1,2 . . . s1,M

s2,1 s2,2 . . . s2,M

...
...

. . .
...

sL,1 sL,2 . . . sL,M




(n1, k1)
(n2, k2)

...
(nL, kL)

. (8.1)

The L rows of this Matrix correspond to the L layers as generated by the lay-
ered coder. The LEC column shows which lateral channel code is applied to

each layer. Matrix S show the allocation/distribution of each of the ni code
blocks within each layer i over each description (columns). Each layer i is pro-
tected with a (ni, ki) code, where ni =

∑M
j=1 si,j . When we accumulate the

sizes of the code blocks in each description, we have

Rj =

N∑

i=1

(ri − ri−1)
si,j

ki

(8.2)

being the rate of description j, where r0 = 0.
In order to evaluate the performance of this coding scheme we need to

know for each combination of packet losses what layers can be successfully

decoded. We define a ‘description pattern’ V = {v1, v2, . . . , vM} where vj =
1 when description j is received and zero otherwise. Set V contains all 2M

possible V ’s. In general, each V has a certain probability of occurring Pr{V }.
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Given pattern V , layer i can be decoded when all lower layers are decodable
and its channel code can be decoded:

Decodable?

M∑

j=1

vjsh,j ≥ kh ∀ 1 ≤ h ≤ i. (8.3)

We define l(V ) as the number of layers that can be decoded given pattern
V . We express the distortion obtained in this case as D(rl(V )). As a more
general case we use from now on a quality metric Q(r).

Suppose each description pattern has a probability Pr{V }, then we can
define the following average quality measure.

Q̂ =
∑

∀V ∈V

Pr{V }Q(rl(V )). (8.4)

For independent channels with loss probabilities pj , we have

Pr{V } = pj
1−vj (1− pj)

vj

In the next section we show some examples (solutions) of this problem for

the case of three descriptions.

8.3 Special Cases of AMDC and examples

In order to get insight of the behavior and design of our AMDC coding method

we will first show well-known coding methods as special cases of AMDC.One
extreme case of asymmetric MDC is (pure) Layered Coding (hence no LEC),

which only yields acceptable distortions when all layers 0, . . . up till an ar-
bitrary layer i are received. Layered Coding can be seen as a degenerate case of
MDC. Another extreme case is symmetric or balanced MDC.

Layered Coding as extreme AMDC— With the first case of layered coding,
we transmit each layer on a different channel, where the most important layer

is transmitted on the safest channel. Suppose we confine ourselves to the case

with 3 channels and 3 descriptions and since layered coding is considered a
special case of AMDC, also only 3 layers. Furthermore we assume that the

channels have increasing packet loss rates (p1 < p2 < p3. In this case using
our AMDC framework, layered coding looks like (Eq. 8.5):

This case does not include the often used Layered Coding with layered co-

ding and unequal error protection (LC-UEP). With LC-UEP each layer has a dif-
ferent amount of error protection, according to the priority of each layer. It is

clear that the UEP is based is forward error correction (Fig.8.4 and is thereby

introducing possibly unwanted delay.
Symmetric MDC case — Symmetric MDC is special in the sense that matrix

S only contains ones and ~k = {1, 2, 3, . . .} (Eq.(8.6).
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Slayered LEC
d1 d2 d3 (ni, ki)


1 0 0
0 1 0
0 0 1




(1, 1)
(1, 1)
(1, 1)

(8.5)

Ssym LEC
d1 d2 d3 (ni, ki)


1 1 1
1 1 1
1 1 1




(3, 1)
(3, 2)
(3, 3)

. (8.6)

8.4 General AMDC constrained by channel rates

The most general optimization criterion can be defined when the rate on each

channel is limited and potentially different. Furthermore we assume that also

the packet loss rates on each channel are different (See Figure 8.2).

max
Si,j ,ki,ri

∀1≤,i≤L
∀1≤j≤M

∑

∀V ∈V

Pr{V }Q(rl(V )) (8.7)

such that
L∑

i=1

si,j

ki

(ri − ri−1) ≤ Rmax,j ∀1 ≤ j ≤M. (8.8)

Optimizing matrix S and ~k in order to maximize the average quality cri-

terion Q is an integer programming problem since values for si,j and ki only

take integer values and is very complex since the number of parameters tends
to get very large. Furthermore, the behavior of Function (8.3) is non-linear and

non-continuous. When also the rates for all layers ri have to be optimized, the
problem is a mixed integer programming problem. For now we concentrate on

investigating the behavior of fairly simple AMDC cases.

If we constrain again to a system with three layers and three descriptions,

each layer i is coded with a different (ni, ki) channel code. In this example
layer one is (channel) coded with a (6, 3) code, layer 2 with (6, 4) code and layer
3 with (6, 3). The following table shows the distribution of the n codewords

over all descriptions:

Sasym,6 LEC
d1 d2 d3 (ni, ki)


3 2 1
2 2 2
1 2 3




(6, 3)
(6, 4)
(6, 5)

. (8.9)

This simple example already gives some interesting behavior. If a client
only receives description one, he has — according to the channel code — suf-

ficient information to decode layer one. When he receives descriptions two
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and three, he could decode layer one as well as layer two. Receiving all three
descriptions results in all descriptions being decodable.

8.5 Comparison of results for M = 3 and simple quality metric

Let us compare the AMDC method to SDC, layered coding and symmetric MDC.

The quality metric we use here is simply counting the number of layers that can

successfully be decoded, Furthermore we assume that every layer has a rate
ri = 1. Suppose descriptions d1, d2, d3 have loss probabilities of 0.05, 0.1, 0.3,
respectively. For the asymmetric case, on average 2.89 layers can be decoded at
a total rate of 5.5 (See Table 8.1). For the symmetric case, the total rate is also
5.5, but on average only 2.55 layers can be decoded. By changing the codes
and reallocating the codewords over the descriptions we have adapted to the
network conditions, which results in more layers being decodable (and hence in

higher quality) and in lower rates. The Layered coding technique where each

layer is send over a different channel, only 2.4 layers can be decoded. For a
complete view, we also simulated the single description coding case, where all

data is sent over the safest channel. This gives a pretty high average of 2.85,
but needs much higher rate on this channel. In a rate-constrained case, where

description rates Rj are constrained to 1.8, by using AMDC we achieve better
error resilience and are able to balance the load over all channels.

Method Rtotal {R1, R2, R3} n
SDC 3.0 {3.0, 0, 0} 2.85
Layered 3.0 {1.0, 1.0, 1.0} 2.40
Symmetric MDC 5.5 {1.8, 1.8, 1.8} 2.55
Asymmetric MDC 5.5 {1.8, 1.8, 1.8} 2.89

Table 8.1 — Comparison of AMDC cases forM = 3.

8.6 Optimization Algorithm

Since we believe there is no efficient analytic solution to the optimization cri-

terion, we developed an algorithm (Alg: 8.5) based on simulated annealing that

tries to find a good S matrices. We do this for the simple case using the layer-
counting metric and for equal layer rates ri = rj∀i 6= j. We try to find a Pareto
set S of S matrices, containing non-inferior solutions S using function

Pareto(S, V, k̃ ) : {Si ∈ S;Q̂(Si, ~k) > Q̂(Sj , ~k) ∧
Ri > Rj ∀Sj ∈ S, i 6= j}.

(8.10)
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The algorithm runs an arbitrary number of passes. With each pass, the existing
set S is extended with multiple random variations of each matrix S ∈ S. Of

this new set the Pareto points are extracted. With each pass i set Si is superior
to Si−1. The algorithm is initialized with a template matrix S which can be a

random or structured matrix. The purge step is included to purge solutions that

are not required, and can be used to bound the rates. By feeding the algorithm
sufficiently large f0 and ~k the algorithm has enough freedom to find good

candidates. By shaping the initial S matrix and k-values towards a reasonable
initial solution the optimization process can be improved. In figure 8.6 we
show some results of the algorithm. The X-axis shows the total rate

∑M
1 Rj ,

the Y-axis the average Quality under the given conditions. The lines show the
Pareto points found in each pass. The upper-left-most line corresponds the the

last pass.

Spar = EXTEND(M, S0, ~k, V, ~p,Npasses)

Require: Number of descriptions M , template matrix S0, ~k, V, channel proba-
bilities ~p, total number of passes.

Ensure: Spar ≡ Pareto(S0)
for pass = 1 to Npasses do

N ← N0/2pass−1, f ← f0/2pass−1,

T← Spass−1

for all S ∈ Spass−1 do

for n = 1 to N do

T⇐ S + f · randomM× M ,
end for

end for

T← Prune(T)

Spass ← Pareto(T, V, ~k)
end for

Spar ← SNpasses

Figure 8.5 — Algorithm to find a Pareto set of S matrices, which all result in a

different rateRm and QualityQ.
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Figure 8.6 — Example of results of the algorithm (5 Pass, N0 = 128, f = 16,
~k = {16, 32, 48, 64}, ~p = {0.05, 0.1, 0.2}). The dots correspond to all points
found in each pass. The lines connect the Pareto points found in each pass of the

algorithm
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Nine

Discussion

9.1 Common Solutions and Results

The video streaming scenarios presented in this thesis have in common that

video has to be streamed over an error-prone channel. However, the presented
solutions differ in encoding paradigm, the level of cooperation and the type

of network. In all cases though, the underlying optimization problem could

be reduced to variants of a rate-allocation problem, each demanding a differ-
ent approach. Another observation is that in all cases, behavior models of

the video coder in question are used to find the optima, although the com-

plexity of these model range from RD models—based on variance—to high
complexity models taking more source characteristics into account. Although

specific coders were used in each scenario for tuning the models, the models

are generic enough to apply to other coding methods as long as they are based
on a motion-compensated predictive control-loop.

From Chapters 5, 4 and 6, we may generalize the results in the sense that,

whenever network behavior is taken into account in the design and in the

settings of a video coder, the video quality is increased, as opposed to a worst-
case or medium-case approach, especially when the network characteristics are

very dynamic.

In Chapter 6 a tight cooperation of video coder and 802.11a MAC layer

was established. Where the original MAC was not designed for streaming ap-
plications but to maximize average throughput, the modified MAC supported

streaming, by making a trade off between small delays and high throughput.

Especially when the MAC layer and Video Coder exchange bit rate, delay and
packet-loss parameters, the MAC is able to take these into account, while the

video coder tries to be resilient to packet losses, resulting in higher average

quality.

P2P networks introduce path diversity by offering different overlay net-
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works. We can exploit path diversity by transmitting multiple descriptions
over different independent paths, the possible losses in the network have lim-

ited effect on the quality (Chapters 7 and 8). In this case, a part of the error-
resilience comes from the network itself. This ‘Betting on more than one horse’

paradigm is in fact what makes a P2P network an interesting medium for

streaming video to many clients.

9.2 Diversity or Adaptivity

We conclude from our papers that different encoding paradigms combined with
different network types with different types of cooperation, enable adaptive

and error-resilient video streaming in dynamic networks. In these cases we
either need adaptivity with cooperation between layers or diversity requiring

less cooperation, to deal with streaming on error-prone networks. Adaptivity

emerges when using parametrized implementations with behavior models and
a method for finding the optimal settings given the constraints from other

layers. Both LC and MDC create diversity, in the sense that, more than one

description (or layer) is generated, and each description (or layer) is associated
with a different quality level and rate. On the network access side, diversity

is created by, for instance, P2P networks with multiple overlay networks and
by an NAL that offers different channels with a different throughput/reliability

trade off.

If we summarize the three scenarios in this thesis:

1. Low-latency real-time streaming of video to low-power mobile devices
— with full QoS cooperation using ARC negotiations;

2. Low-latency real-time streaming of video over WiFi networks — with

limited QoS cooperation using the bottom-up approach;
3. Streaming of video to many clients using P2P networks — using MDC

and different channels but with limited network adaptivity,

where each solution scores differently with respect to adaptivity and diversity

and in each case a different level of cooperation is used between Video Coder

and NAL, we can make the a table as in Table 9.1. For all scenarios the total
score is more or less constant. It seems that adaptivity can be traded off with

diversity, resulting in having less QoS cooperation. Having less cooperation,

does not mean that there is a mismatch between Video Coder and NAL, the
introduced diversity ensures that Video Coder and NAL are matched automati-

cally by the behavior of the underlying network.
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Scenario 1 2 3

Scenario Scores

Video Coder Adaptivity ++ + +

Video Coder Diversity 0 0 ++
NAL Adaptivity + ++ 0

NAL Diversity 0 0 ++

Level of QoS Cooperation ++ + 0

Table 9.1 — Scores for each scenario solution w.r.t. Adaptivity and Diversity.

9.3 Recommendations

The presented ideas and techniques rely on implementations of Single, Scal-
able and MD Video Coders. For real implementation and use of Layered and

MDC video streaming applications on Internet, these encoding technologies
still need to become faster in order to achieve the real time constraint. Further-

more, for every new encoder, behavior models are required, or existing ones

have to be tuned. Real-time adaptation of these models to follow the real-time
source-characteristics is an interesting and useful research topic.

In the field of MDC, especially AMDC deserves more research and attention,

because of its general applicability on any sort of network and for its flexibil-
ity of generating anything between prioritized and unprioritized descriptions.

MDC in general will benefit from having more methods for generating more

that two descriptions with good control over the amount of redundancy.

The inter-layer communication advocated in this thesis also deserves more
attention. The market of Video Streaming will benefit from having a standard

for inter-layer communication and negotiation, in the style of ARC (Chapter 4),

although full QoS negotiations may not always be required.

The approaches for P2P streaming presented here are focused on the video
coder and the control of it. The P2P network itself and the algorithms for build-

ing distribution trees and the algorithms for real time streaming, greatly in-
fluence the quality level of the received video for each client. Since streaming

P2P networks are still at their infancy, these aspects require more research and

attention.

9.4 Outlook

Video streaming to mobile devices will become common, enabled by the higher

speeds offered by Universal Mobile Telecommunications System (UMTS), WiFi

and follow-ups. The speed increase of these networks also comes with more
varying speeds and packet-losses. To deal with these, a QoS system will help.

Whether inter-layer QoS will become commonly used is a matter of will in the
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Internet community, from both developers and operators. This kind of evolu-
tion is maybe more to be expected from open-source developers than from stan-

dardization bodies. A more viable option is maybe the ‘bottom-up’ approach of
informing higher layers of the performance.

In the coming years, video streaming over Internet will get a stronger

foothold and in some cases replace Television broadcasting. Especially for less-
popular content and programs. The bulk of ‘long tail’ content deserves to be

distributed but is more and more left out in favor of big shows, sports events,

the news etc [4]. P2P may help in disclosing the long tail content by setting up
P2P networks for fans of the relatively unpopular content.

Using MDC on P2P networks is becoming a viable option, when good and
standardized MDC encoders and players become available. The demand for Lay-

ered Coding becomes higher when more different devices are used for display,

ranging from mobiles to high definition television (HDTV), and the rate vari-
ation between devices increases (100kbps for mobiles to 20Mbps for ADSL/2

users). The use of the scalable H.264/SVC standard will probably be boosted

when fast and free implementations become available on Internet, enabling its
use in P2P networks. Since the LC-LEC MDCmethod is based on Layered Coding,

H.264/SVC may significantly boost the use of MDC in streaming applications.
The uprise of P2P networks also shows another development: decentral-

ization. Where content delivery networks (CDNs) have centralized control and

are well-organized. P2P networks rely more on self-organization and central-
ized control. The latter is the more complex option, but has the advantage of

having no single-point of failure and not having to rely on a single party. As

long as Internet traffic itself is not controlled and censored by governments,
P2P enables the freedom of speech and people can start their own Internet

Television (TV) station using P2P networks.
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Summary

Although mostly hidden, video compression plays a large role in many of our

every day activities such as watching TV, web-browsing and mobile telephony.
Every device with a matrix screen will be used to display moving pictures.

In fact, the essence of compression does not change for TV or digital video
or for mobile communications. Only the level of compression changes, and

the format and capabilities of the display. The required level of compression
might even change when the connection is prone to noise, failure and varying

numbers of users. In that case, the video transmission system should be able

to adapt to the changing conditions, such that the user will still receive the
best quality given the circumstances. This adaptability is in fact the leitmotif

throughout this thesis.

The thesis is split up in two parts. The first part discusses a framework

for real-time video streaming over an infrastructure that is prone to disrup-
tions. Especially wireless networks and peer-to-peer networks suffer from dis-

ruptions as noise, peer-failure, packet loss and bandwidth variations due to

varying numbers of users. The framework has a multi-level structure with an
underlying network, a network adaptation layer, the video compression layer

and an application. Every layer in this structure has a specific task. Besides

exchanging the video data, the layers also exchange status information that
express the current status of for instance the network, the quality of the video

or the average processing and transmission delay. By exchanging this informa-
tion, the individual layers are able to adapt to changes, for instance by applying

more compression.

This layered structure serves two purposes. First of all, it could be a ba-

sis for an implementation where the layers cooperate to guarantee ti the best

video quality under the given circumstances. Secondly, the framework gives
better understanding of which parameters play the most important role when

adapting the video compressor and other layers.

Then the thesis discusses three different techniques to design the video

compressor that fits in the presented framework. The first technique employs a
parametrized video compressor. By using behavior models, the behavior of the

video compressor can be predicted based on knowledge of the circumstances
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as given by the other layers. Consequently, the optimal settings for the video
compressor can be found. The accuracy of these models is important, since a

balance has to be found between the accuracy and the complexity and predic-
tive value of the models.

The second technique is based on a layered video compressor. Multiple

video layers are generated such that the video quality can be increases when
multiple layers are received by the user. It is necessary that the lower video-

layers are also received, otherwise the decoding will fail. Layered compression

also plays a role in a new technique for multiple description coding (MDC), that
is presented in the second part.

The third technique is based on MDC where also different descriptions are
generated. The difference is that the resulting quality depend on the number

of descriptions. It is not required that lower-level descriptions are received in

order to successfully decode the video. Since MDC is used in two papers in the
second part, a more thorough discussion on symmetric and asymmetric MDC

is presented.

In the second part, five different articles are presented. The first article dis-
cusses an experiment in which the layered framework with cooperating video

and network layers is employed in a dynamic and error-prone network. Follow-
ing this, an article is presented that uses a different type of video compressor,

and discusses the accompanying behavior models and optimization of the set-

tings. The subsequent article discusses the adaptive video compression system
that is used in a wireless 802.11 network, where also the network layer is able

to adapt to the circumstances. By cooperation between the video compressor

and the network layer, the system is able to respond fast to changing condi-
tions.

The last two articles discuss the usage of MDC for transmitting real-time
video over peer-to-peer networks where the descriptions can be sent indepen-

dently. One article handles the optimization of the compressor settings for a

large user group, such that all users receive acceptable quality. The other article
discusses a new method for MDC that is able to adapt to unbalanced channels.

Whenever different channels have unequal capacity and reliability, asymmetric

MDC offer a better solution than layered coding, symmetric MDC and single
description coding.
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Samenvatting

Video compressie speel een grote, alhoewel grotendeels verborgen, rol in veel

van onze dagelijkse activiteiten, zoals TV-kijken, Web-browsen en het gebruik
van de mobiele telefoon. Ieder apparaat met een matrix-scherm zal worden

benut om bewegend beeld weer te geven, waardoor ook video compressie toe-

gepast moet worden.

In feite verschilt het principe van compressie niet voor TV of video en voor

mobiele telefoons. Het verschil zit hem in de mate van compressie en het for-

maat van het weergavescherm. De benodigde mate van compressie kan zelfs
fluctueren als de verbinding onderhevig is aan ruis, uitval en wisselende aan-

tallen gebruikers. In dat geval zal het videoverzendsysteem zich moeten aan-
passen aan de veranderde omstandigheden, dusdanig dat de kijker de best mo-

gelijke kwaliteit te zien krijgt, die onder die omstandigheden mogelijk zijn. Het

is deze aanpasbaarheid die als een rode draad door dit proefschrift loopt.

Dit proefschrift is opgedeeld in twee delen. Allereerst wordt een raamwerk

besproken voor live video verzending over een infrastructuur die onderhevig is

aan verstoringen. Met name draadloze verbindingen en zogenaamde peer-to-
peer verbindingen lijden aan verstoringen zoals uitval, ruis en belastingsvari-

atie. Vervolgens worden drie technieken besproken voor het ontwerp van de

video compressor binnen dit raamwerk. In het tweede deel worden diverse ar-
tikelen gepresenteerd die allemaal in bepaalde mate uitgaan van dit raamwerk

en diverse aspecten belichten van het ontwerp van de video compressor en de
optimalisatie van de instellingen ervan.

Het raamwerk biedt een ontwerpstructuur voor een videoverzendsyteem

dat zich kan aanpassen aan veranderende netwerkomstandigheden. Het is
in eerste instantie gericht op ware-tijd verzending van video, zodat het tijd-

verschil tussen beeld-opname en weergave aan de kijker gelimiteerd is. Het

raamwerk volgt een gelaagde structuur met een onderliggend netwerk, een
netwerk-adaptatie laag een video compressie laag een en applicatie. Iedere

laag heeft in die structuur zijn eigen taak. Naast de beeldgegevens die worden

overgedragen tussen die lagen, worden ook gegevens uitgewisseld die uitdruk-
king geven aan de huidige omstandigheden zoals de kwaliteit van het netwerk,

de kwaliteit van de video en de gemiddelde vertraging die optreed door ver-
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werking en verzending. Doordat de lagen deze gegevens uitwisselen zijn ze
in staat in te spelen op veranderingen in de situatie, bijvoorbeeld door meer

compressie toe te passen.
Deze gelaagde structuur dient twee doelen. Ten eerste kan het als basis

dienen voor een implementatie waarin de verschillende lagen werkelijk samen-

werken om de video verzending zo goed mogelijk te verzorgen onder wisselen-
de omstandigheden. Ten tweede biedt het raamwerk inzicht in welke parame-

ters de belangrijkste rol spelen bij het instellen van de video compressor en

andere lagen.
Vervolgens behandelt het proefschrift drie verschillende technieken om een

video compressor te ontwerpen, die is in te passen in het raamwerk. De eer-
ste techniek gebruikt een video compressor waaraan verschillende parameters

ingesteld kunnen worden. Met behulp van gedragsmodellen kan het gedrag

van deze compressor voorspeld worden op basis van de omstandigheden zo-
als die door de ander raamwerk-lagen worden doorgegeven. Vervolgens kan

de optimale instelling gevonden voor de video compressor. De accuraatheid

van de gedragsmodellen speelt hier een belangrijke rol, hoewel een afweging
gemaakt zal moeten worden tussen deze accuraatheid en de complexiteit en

voorspellende kracht van de modellen.
De tweede techniek is gebaseerd op een gelaagde video compressor. Hier

worden verschillende videolagen gegenereerd zodat de kwaliteit verhoogd kan

worden zodra meer lagen ontvangen worden door de kijker. Het is dan wel
noodzakelijk dat de onderliggende videolagen ook steeds ontvangen worden.

Deze methode biedt de mogelijkheid om het aantal te versturen lagen te laten

afhangen van de beschikbare capaciteit op het netwerk. Gelaagde compressie
speelt ook een belangrijke rol in een nieuwe techniek voor meervoudige be-

schrijvingscodering die wordt gepresenteerd in het tweede deel van het proef-
schrift.

De derde techniek is gebaseerd op de meervoudige beschrijvingscodering

(MBC). Hier worden ook verschillende beschrijvingen gegenereerd. Met dit ver-
schil, dat de kwaliteit zoals de kijker die te zien krijgt afhangt van de hoeveel-

heid beschrijvingen die hij ontvangt. Er is dan geen noodzaak om ook onderlig-

gende video beschrijvingen te ontvangen. Aangezien MBC een belangrijke rol
speelt in twee artikelen in het tweede deel van het proefschrift, wordt dieper

ingegaan op theorie van symmetrische en asymmetrische MBC.
In het tweede deel wordt een vijftal artikelen gepresenteerd. Het eerste ar-

tikel bespreekt een experiment waarin het gelaagde raamwerk met samenwer-

kende lagen wordt toegepast op een veranderend netwerk. Vervolgens wordt
een artikel gepresenteerd dat een ander type video compressor gebruikt en be-

handelt de bijbehorende gedragsmodellen en optimalisatie van de compressor

instellingen. Vervolgens word een artikel gepresenteerd dat de adaptieve vi-
deo compressor gebruikt in een draadloze 802.11 netwerk, waarbij ook de net-

werklaag zich kan aanpassen aan de omstandigheden. Door de samenwerking
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tussen video compressor en netwerk adaptatie laag, kan zeer snel gereageerd
worden op de veranderende omstandigheden.

De laatste twee artikelen behandelen het gebruik van meervoudige be-
schrijvingscodering voor het verzenden van ware-tijd video over peer-to-peer

netwerken, waarbij de beschrijvingen onafhankelijk over het netwerk verzon-

den worden. Het ene artikel bespreekt de optimalisatie van de compressor
instellingen voor een grote groep kijkers zodat alle gebruikers een acceptabele

kwaliteit ontvangen. Het andere artikel bespreekt een methode voor meer-

voudige beschrijvingscodering dat zich aanpast aan ongebalanceerde kanalen.
Zodra verschillende kanalen een verschillende capaciteit en betrouwbaarheid

hebben, is de asymmetrische MBC een betere oplossing dan gelaagde codering,
symmetrische MBC en traditionele enkele beschrijvingscodering.

167





Curriculum Vitae

Jacco Taal was born in Hoek van Holland (Rotterdam), The Netherlands on
September 2, 1976. He obtained a HAVO diploma in ’s-Gravenzande in 1993.

After successfully finishing the Propaedeuse at Technische Hogeschool Rijswijk

in 1994, he was accepted in the same year at Delft University of Technology for
the Electrical Engineering study.

During his studies he ran a small IT company. In 1998 he worked for one

whole year in a Dutch company as a programmer to solve Millennium Problems
in their software. He graduated in 2001 in the UBICOM project at the Informa-

tion and Communication Theory Group, on ‘Error Resilient Video Streaming
over Wireless Transmission Channels’.

After Working in UBICOM as a researcher, he commenced the Ph.D. track in

2003 at the Information and Communication Theory Group. During this track
he was involved in three different interdisciplinary research programs, namely

UBICOM, CACTUS and ISHARE. In these projects, cooperation with researchers

of different background (Computer Science, Physics, Industrial Design), played
an important role.

Besides this research he was involved in guiding master graduation stu-

dents, supervising lab work in the course on Multimedia Compression.
Since December 2007, he has been working as business developer in the

Tribler Valorization Project, in Delft. In this new function he has to combine
technical supervision of development and managing the external contacts with

potential clients of Tribler.

He is a member of Advanced School for Computing and Imaging. He plays
various sports such as korfbal, squash, diving and skiing. In his korfbal club,

he has been active in the board, organizing events and bookkeeping. Other

interests include photography, reading, architecture, astronomy and traveling.

169


	Preface
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Advances in Video Compression
	Problem Description
	Organization and Scope
	Contributions of the Thesis

	Network Aware Video Coding
	Video Streaming Model
	Introduction
	The Video Streaming Model
	Overview
	Application
	Video Coder
	Network Adaptation Layer

	Scenario
	Discussion

	Network Aware Video Coding Strategies
	Introduction
	Real-time adaptive video coding
	Introduction
	Video Coder Behavior Model
	Prediction Gain
	Frame prediction and Frame skipping
	Motion Compensation
	Joint effect of frame skip and motion compensation
	Intra Block Refresh
	Quantization and Variable Length Coding
	End-to-end quality metric
	Resource usage
	Parameter Estimation

	Scalable, Layered and Progressive Coding
	Introduction
	Differential Layered Coding
	Progressive Coding: Bit-plane Coding

	Multiple Description Coding
	Odd-Frame / Even-Frame Streaming
	Theory and special cases of MDC
	MD Nested Quantization
	Multiple Description Correlating Transform
	MD Channel Codes
	MD-FEC

	Discussion


	Streaming Scenarios
	End-to-end optimization of mobile video streaming using QoS
	Introduction
	QoS negotiation: ARC
	Mobile Video Streaming Implementation
	Video Encoder
	Protocols

	Experimental Evaluation
	Discussion

	Error Resilient Video Compression using Behavior Models
	Introduction
	Problem Formulation
	Source Encoder Optimization Criterion
	Rate Distortion Model
	Rate Distortion Behavior Model of Intra-frames
	Rate Distortion Behavior Model of Inter-frames
	Channel Induced Distortion Behavior Model

	Model Validation
	Optimal Rate allocation
	Rate Allocation for a Channel With Residual Errors
	Selecting the Optimal GOP Length
	Optimal Rate Allocation for Whole Sequences

	Discussion

	Optimized Video-Streaming over 802.11 by Cross-Layer Signaling
	Introduction
	Communication system architecture
	Link adaptation basics
	Automatic MAC rate control
	Statistics-based automatic rate control
	SNR-based automatic rate control
	Hybrid automatic rate control

	Cross-layer signaling
	Medium Sharing Prediction

	Fair Rate Allocation of Scalable MDC for Many Clients
	Introduction
	Related Work
	Peer-to-Peer Networks
	Multiple Description Coding
	Application Layer Multicast (ALM)

	MDC Video Streaming in Peer-to-Peer Networks
	Peer-to-Peer TV Architecture
	Layered MDC Video Encoder
	Layered Dirac Video Encoder

	Fair MDC Streaming
	Rate Allocation Problem
	Minimal MSE Fairness Criterion
	Maximal Average PSNR Fairness Criterion
	Weighted PSNR Loss Fairness Criterion

	Results and Experiments
	Rate Optimization
	Streaming experiment


	Asymmetric MDC using Layered Coding and Lateral Error Correction
	Introduction
	Asymmetric Multiple Description Coding
	Special Cases of AMDC and examples
	General AMDC constrained by channel rates
	Comparison of results for M=3 and simple quality metric
	Optimization Algorithm

	Discussion
	Common Solutions and Results
	Diversity or Adaptivity
	Recommendations
	Outlook

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae


