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Chapter1
Introduction

1.1 Introduction to Web image search

To facilitate access to the rapidly growing collections of images on the Web and
maximize their benefit for the users, image search has become an increasingly
important research topic. We can distinguish between two main schemes for
searching for images on the Web. In the first, keyword-based scheme illustrated in
Figure 1.1, images are searched for by a query in the form of a textual keyword.
This scheme can be seen as a direct extension of the widely adopted general
Web search. The second, example-based scheme allows the users to search for
similar images by providing an uploaded example image serving as query. This
scheme is illustrated in Figure 1.2. While it has been deployed more and more
by commercial Web search engines (e.g. TinEye [7]), this scheme is also highly
valuable for potential usage in a mobile search scenario (e.g. Google Goggles [5]).

Independent of which search scheme is deployed, an image search engine gen-
erally operates in two main steps: the offline index generation and the online
index serving step. The main purpose of the index generation step, frequently
referred to as indexing, is to improve the efficiency of image search and keep this
efficiency scalable with the increasing size of image collections. In the indexing
step, the images discovered and crawled from the Web are processed to gener-
ate the metadata (the “data about the data”) that represent the content of the
images in an informative and discriminative fashion. The metadata may include
visual signal representation (visual features) of the images acquired using the im-
age analysis techniques combing image processing and computer vision, but also
manually inserted and automatically inferred textual annotations. Regarding the
extraction of visual features, one of the most notable achievements was the de-
velopment of the SIFT (Scale-Invariant Feature Transform) features [61] and the
invention of image representation in the form of a bag of visual words (BoW) [93]

1



2 INTRODUCTION 1.1

Figure 1.1: Illustration of the keyword-based image search scheme. In this scheme, the
search query comprises one or multiple keywords specified by the user.

Figure 1.2: Illustration of the example-based image search scheme. In this scheme, the
query is an image, either specified by a URL or uploaded by users.

that builds on SIFT features. A characteristic example of the manually inserted
textual annotations are user-generated keywords, or tags that typically accom-
pany the images users upload on the Web. Automatically inferred annotations
are usually acquired by analyzing the (e.g. surrounding) texts on the Web pages
hosting the images and deriving the most informative and discriminative keywords
using the theory and algorithms of information retrieval [67]. Since metadata is
extracted and formatted to be much more compact than the original image data,
searching for images based on metadata is a key to an efficient interaction with a
large image collection.

In the index serving step, the query submitted to the search engine is first
transformed into a representation that is compatible with the metadata of the
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images in the collection. While for keyword queries query alteration and expansion
may be performed, image queries are processed using the same image analysis
techniques as in the indexing step to extract their visual features. Then, the query
representation serves as input into the ranking module where it is compared with
the metadata of the images in the collection. The level of match provides the
basis for estimating the relevance of an image to the query. The relevance is then
used to rank the images in the collection. Finally, the ranked list of images serves
as the response (results list) of the image search engine to the search request of
the user.

1.2 Retrieval models

The ranking component of a general search engine deploys a retrieval model that
suggests how to compute the relevance of a document to a query. Retrieval models
are therefore critical for the success of a search engine.

In the keyword-based image search scenario, the basic retrieval models have
been adopted from the general text-document search. Already for decades, such
models have been among the most important topics of fundamental research in
the information retrieval community [67]. The models including tf-idf [67], Okapi
BM25 [80], language models [137] and learning-to-rank methods [59] are among
the most prominent retrieval models that have significantly influenced the devel-
opment of search engines over the past years.

In the example-based image search scenario, also retrieval models are required
to estimate the relevance of an image to the query image based on the match
between the visual metadata and the features extracted from the query image.
High efficiency and scalability of the BoW-based image representation has made
it widely adopted as the basis for building a retrieval model. The modeling step
itself, however, has typically been approached by extrapolating the models from
the text domain mentioned above onto the visual domain. Here, in particular,
the language modeling approach has been the most effective one [31].

1.3 Problem statement

While the aforementioned conceptual solutions for developing retrieval models
have been widely adopted, their success in enabling an image search engine to
provide a high-quality results list critically depends on how solid the foundations
are, based on which metadata are extracted and compared with a query. We now
briefly elaborate on the parameters influencing this success for both the keyword-
based and example-based image search.

Wide adoption of the keyword-basedWeb image search scheme [1][2][3] is based
on the rationale that Web images are usually hosted on Web pages. There, various
texts, including the page title, professional or user-generated annotations and the
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text surrounding the image on the page, can be considered generally available
and potentially useful to index the images contained on the page. Following this
rationale, images on the Web can be searched indirectly via the accompanying
textual information that is matched with a textual search query, for the purpose
of which proven techniques adopted from the general Web search can be used.

A typical problem encountered during the keyword-based image search is that
the relevance link between the images found on a Web page and the surrounding
text is not always obvious. The text (e.g. about politics) may be rich and its
keywords may point to different possible categories of visual content (e.g. differ-
ent politicians, interviews, journalists, people on the street discussing politics).
Related to this, the limited number of images displayed on a Web page may only
reflect some of its textual content. Consequently, not all metadata derived from
the text and attached to the images would have the same relevance in respect to
the visual content of the images. This leads to another, though related problem,
namely that a textual query will typically lead to a large variety of visual content,
the relevance of which may vary across search scenarios.

To address the mismatch problems illustrated above, significant research effort
has been invested over the past years in developing solutions that automatically
annotate images by the keywords derived directly from the visual content of the
images. The keywords in this case are expected to be related to visual semantic
concepts [96] that correspond to the objects, persons and scenes depicted in the
images (e.g. “tree”, “George W. Bush”, “car”, “landscape”). Image indexing
based on semantic concepts [73, 96] essentially consists of two steps. First, a
model is learned per semantic concept in a supervised fashion, and then, based
on the model fit, the probability is estimated whether a given image contains
a particular semantic concept. While this paradigm is theoretically effective in
bringing the image content and textual keywords closer to each other in terms
of relevance, the results reported within the TRECVID evaluation benchmark
[18, 97] have shown that in practice only a limited success could be expected
using this paradigm. The first problem lies in the insufficient capability of the
paradigm to scale up to a large number of concepts that are required to cover
a realistic query space [34]. The second problem lies in the semantic gap [96]
between the generally high abstractness of the semantic concepts and the visual
features used to train the concept models. This gap becomes even larger in case
of more abstract categories of semantic concepts, like those thematic ones (e.g.
“politics”) that do not directly relate to the visual content of an image, but rather
address the general thematic context the visual content of the image belongs to.

For the example-based image search scheme, visual metadata have the ad-
vantage to be directly related to the visual content of the images. Furthermore,
the widely adopted solutions for image analysis (e.g. using SIFT) are robust and
scalable. However, they too suffer from their own specific deficiencies. The main
problem lies in the fact that the visual metadata typically do not reflect the rel-
evance criteria users impose on the image search engine. While visual metadata
may point to an image with e.g. particular bit-pattern distribution, users are typ-
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ically interested in semantics - the meaning represented by these bit-patterns, for
instance at the level of semantic concepts, either visual or thematic ones discussed
above. Due to the underlying principle of matching visual features across images,
image search using visual metadata will typically lead to insufficient diversity of
the visual content in the results list.

In summary, we can state that metadata derived from the surrounding text
may be semantically too complex to provide clear relevance links to images on
the Web. Making the relevance links between the keywords and visual content
stronger (e.g. by linking keywords to semantic concepts learned from the im-
ages) is, however, not scalable and not always feasible. On the other hand, visual
metadata can be extracted in a scalable fashion, but they are in general insuf-
ficiently informative of image semantics to enable effective retrieval. It can also
be stated that textual metadata make the relevance space too broad, while the
visual metadata limit this space too much.

1.4 Thesis contribution

Building on the state-of-the-art in metadata extraction and relevance estimation
and in view of the problems discussed above, this thesis proposes a number of novel
insights and approaches for improving the retrieval models for both keyword- and
example-based image search. While we adopt the standard solutions for text and
image analysis, we investigate

• the possibilities to enrich the information used to estimate the image rele-
vance to the query, and

• the methods to deploy this information to verify and enhance the search
results obtained from metadata matching,

which should lead to better informed retrieval models.

We address the improvement of retrieval models in two ways, each of them
covering one of the image search scenarios. In Part I of the thesis, we focus on the
keyword-based image search and investigate how multiple information resources
can be deployed to refine the initial results list through reranking. Then, in Part
II, we explore the possibilities to exploit the contextual information to enrich the
relevance model. Here both the contexts of query formulation and the image
collection are considered.

In the remainder of this chapter, we elaborate in more detail on the rationale,
scope and contribution of the material presented in each part of the thesis and
explain the organization of the thesis material across the chapters.
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1.5 Part I: Visual reranking for keyword-based image search

Image search reranking stands for the category of techniques that are devised to
reorder (refine) the image search results list returned by the text search engine.
The refinement aims at a new results list that has better overall relevance to the
query than the original one. Since, typically, the information extracted from the
visual content of the initially returned images is deployed to derive the reranking
criteria, image search reranking is also often referred to as visual (image search)
reranking. The essence of reranking is to find the optimal trade-off between the
initial results list and the influence of the reranking criteria. In this way, the search
benefits from the synergy of information derived from two modalities – visual and
text, which is expected to make it more powerful than the pure text-based search.

Visual reranking has initially been introduced as an unsupervised paradigm
since no supervised offline model learning was required to generate the reranking
function. Instead, the reranking function is learned online based on predefined
visual reranking criteria, like for example the requirement that visually similar
images are positioned close to each other in the new results list [102]. Although the
unsupervised nature of this reranking paradigm preserves the search scalability,
this paradigm also suffers from problems that make it insufficiently effective for
broad deployment in the image search practice. The existing reranking criteria are
namely based on heuristic assumptions regarding the role of the visual modality in
determining the relevance of the search results it is supposed to refine. Since these
assumptions may not be valid to the same degree in different search scenarios,
the reranking performance remains largely unpredictable.

In the first part of the thesis we provide insights and novel technical contribu-
tions for which we believe to help the research on visual reranking to effectively
address the deficiencies mentioned above, while preserving the advantages. The
proposed insights and methods are formulated around the new supervised rerank-
ing paradigm, where supervised learning is introducing in the process of learning
the reranking criteria, however, without jeopardizing the search scalability. More
specifically, through supervised learning, the reranking criteria become less heuris-
tic and better informed by the properties of the visual content in the target image
collection. At the same time, the scalability is preserved by keeping the criteria
query independent.

Two novel supervised reranking approaches are presented, namely the feature-
based supervised reranking approach inChapter 2 and the prototype-based super-
vised reranking approach in Chapter 3. In the feature-based approach, human
supervision is introduced to learn the optimal combination of reranking criteria
from a set of predefined criteria. The prototype-based approach includes a more
sophisticated analysis of the initial search results list before deploying it as in-
put into the reranking process to further improve the reranking foundations. We
conclude the first part of the thesis with Chapter 4, where we reflect upon the
achievements in the domain of visual search reranking, perform a categorization
and a comparative study of the methods proposed so far (including those from
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this thesis) and make recommendations for future research in this direction.

1.6 Part II: Leveraging context for example-based image search

Example-based image search is usually done based on feature matching. In other
words, whether an image is relevant to and returned as a result for a query
is determined by the similarity between the query and the image in the visual
feature space. The relevance model based on visual feature matching generally
shows critical deficiencies in the image search practice due to two gaps : the intent
gap [139] and the semantic gap [95]. The semantic gap represents the difficulty
for the search engine to determine “what” the image is about or what semantic
concepts it contains from its signal-level representation. The intent gap represents
the difficulty to deduce the “why” behind the users search request: from all the
images of “cars” returned by the search engine, which one of these best responses
to the users search request? We refer to “what” and “why” aspects of the search
request as the components of the users information need behind the query [33].

Since the feature-based image representation is given, more about the users
information need could be inferred only if information sources additional to the
query formulation itself are consulted. The context in which the query is formu-
lated and the context of the images in the collection are the information sources
that could prove useful for this purpose and that we investigate in this part of the
thesis.

The use of contextual information for the benefit of search has already been
recognized in the field of the traditional information retrieval (IR). Context-based
information retrieval, which takes the context of the query and the context of
document generation explicitly into the loop to better satisfy the users information
need to provide better search experience, has even been recognized as a long-
term challenge [9][15][12] in the IR community. Various categories of contexts,
including the user profile and the texts contextualizing a keyword-based query
and the terms in the collection, have been investigated and methods have been
proposed to incorporate these contexts into the retrieval process [55].

With the increasing contextualization of the images on the Web, the impor-
tance of contextual information for enriching the Web image indexing and search
processes has grown rapidly over the past years [24][94][32]. The main idea behind
relying on the contextual information in the image search case is that an image
never appears in isolation. At the image capturing stage, the metadata such as
the camera exposure time, the ISO, the time when it was captured, and the GPS
coordinates are often associated with the image to indicate the context in which
it is captured. As described by Davis et al [24] this type of contextual information
could in some cases even serve as a reliable indicator of the actual content cap-
tured by the image (e.g. a landmark). Furthermore, when an image is shared on
the web, it is embedded in the web context. Different expressions of this context,
e.g. a graph of hyperlinks [65] or the social network context [32], have already
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been introduced as useful sources of information not only for inferring and enrich-
ing metadata, but also for revealing links between user preferences and images
and in this way biasing the relevance estimation towards the “right” images in the
collection. As a related example, images typically occur in the context of other
images taken at the same location, uploaded by one and the same user or shared
among the users. Analyzing the metadata from these images can create pointers
to those metadata that can propagate from one image to another one [119], or
to metadata that is more relevant to the content of the images than others (e.g.
[58]). Finally, an object captured in an image is typically also not captured in
isolation but in the context of a scene where other objects or scene elements can
be visible as well. Deploying this scene context can help infer or confirm the
metadata related to the object and verify the relevance of the captured image to
the query in general.

Motivated by the great potential of the contextual information to help gen-
eral image search, we focus in the second part of the thesis on the example-based
image search scheme and investigate the use of various categories of contextual
information for improving the robustness of this specific scheme against deficien-
cies of visual and textual metadata and for increasing the reliability of image
search in view of the users’ information need. We provide three technical con-
tributions in this respect. We firstly focus on the main object captured in an
image as the search target and explore in chapters 5 and 6 the possibilities to im-
prove the object retrieval model by exploiting the contextual information derived
from the visual scene where the object is captured from, first based on a single
image serving as the query (Chapter 5) and then based on an image sequence
(a video) taken about the target object (Chapter 6). The scene context proves
to be helpful in the cases where the target object is either small, cluttered or
occluded. While the methods presented in chapters 5 and 6 focus only on the vi-
sual scene context of the target object and therefore operate in the visual feature
domain only, Chapter 7 goes beyond this domain and proposes a unified context
model that integrates different classes of contextual information related both to
the query image and the images in a web collection. Inclusion of the so-called
local and global query context in the image search process, as proposed in Chapter
7, was shown to significantly improve the performance of the example-based web
image search compared to the related work. We conclude the second part of the
thesis with Chapter 8 where we reflect upon the achievements in deploying con-
textual information for improving web image search and make recommendations
for future research in this direction.

1.7 How to read the thesis

The technical part of this thesis consist of original publications that have been
adopted as Chapters 2-7. The references to the publications are given at the
beginning of each chapter. As a consequence of working with original publications,
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the notation and terminology may vary slightly across chapters. For the same
reason, the introductory parts and related work sections in the chapters addressing
the same general topic may be similar in terms of argumentation and the material
they cover.
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Chapter2
Supervised Reranking for Web

Image Search

1

In this chapter we introduce the idea of supervised rerarnking and propose
a corresponding algorithmic framework for reranking web images. Inspired by
the success of the “learning-to-rank” idea proposed in the field of information
retrieval, we build this framework on the “learning-to-rerank” paradigm, which
derives the reranking function in a supervised fashion from the human-labeled
training data. Although supervised learning is introduced, our approach does not
suffer from scalability issues since a unified reranking model is learned that can
be applied to all queries. In other words, a query-independent reranking model
will be learned for all queries using query-dependent reranking features.

1This chapter was published as: Linjun Yang, Alan Hanjalic, “Supervised Reranking for Web
Image Search,” Proc. ACM Multimedia 2010 [126].

13
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(a) (b)

Figure 2.1: Illustration of problem cases related to text-based image search. (a) Mis-
match between the image and its surrounding text. (b) Insufficient capability of the sur-
rounding text to reveal different relevance levels of returned images for the query “George
W. Bush”.

2.1 Introduction

Most of the existing Web image search engines [1, 2, 3] index images based on the
associated textual information, such as the surrounding text, anchor text, URL,
etc. Then the classic information retrieval (IR) techniques, which are originally
designed for text retrieval, can be directly adapted for image search. Though
the text-based image search approach has proven to be effective and efficient for
large-scale image collections in most of the situations, it suffers from essential
difficulties, which are caused mainly by the incapability of the associated text to
appropriately describe the image content. For example, Fig. 2.1(a) illustrates a
mismatch between the image and the surrounding text, which results in the irrel-
evant images being returned in the top of the result list. Fig. 2.1(b) shows some
images returned based on the query “George W. Bush”. Though their associated
text contains the word “George W. Bush” and the images are all relevant, their
relevance levels are different and this difference cannot be revealed by relying
solely on the textual information.

To address the difficulties illustrated above, considerable research effort has
been invested in the past years to develop the paradigm of image search using
trained semantic concepts [73, 96]. There, first a model is learned per semantic
concept (e.g. “tree”, “George W. Bush”, “car”, “landscape”) in a supervised
fashion, and then, based on the model fit, the probability is estimated whether a
given image contains a particular semantic concept. However, the recent results
reported within the TRECVID evaluation benchmark [18, 97] have shown that
only a limited success can be achieved using this paradigm. The first problem
lies in the insufficient capability of the paradigm to scale up to a large number
of concepts that are required to cover a realistic query space [34]. The second
problem lies in the semantic gap between the abstractness of the semantic concepts
and the low-level image features used to train the concept models.
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As an alternative to the search paradigm described above, visual search rerank-
ing, has attracted increasing attention from both academia and industry [37, 38,
43, 102, 121]. Generally speaking, visual search reranking is devised to re-order
the image search result list returned by the text search engine by exploiting the
visual information contained in the images. While considering an additional (vi-
sual) modality is expected to make this new search paradigm more powerful than
the pure text-based search, this paradigm also scales better than the one based
on semantic concepts since it does not require offline model learning.

The scalability advantage of the visual search reranking paradigm stems from
its unsupervised nature, i.e., from the unsupervised approach to learning the
reranking function that is used to refine the initial search result. However, this
approach also makes it difficult to handle some of the key problems encountered in
the image search practice. The reranked image search result is typically based on
heuristic assumptions regarding the role of the visual modality in determining the
relevance of the search results and the relative importance of the visual modality
compared to the initial text-based search result that it is supposed to “correct”.
Since these assumptions may not be valid to the same degree in different use cases
(search engines), the reranking performance remains largely unpredictable.

In this chapter we build on the basic visual search reranking idea and address
its deficiencies specified above by introducing a supervision step into the reranking
process. Through this step, the possibility is created to employ information from
within the data collection to steer the reranking process and to reduce the need for
making heuristic assumptions. We refer to this further as the supervised reranking
or learning-to-rerank paradigm.

Compared to the classic supervised approaches to multimedia search related
to semantic concept learning, the scalability of our approach is not degraded
by introducing supervision. This is because the ground truth information avail-
able for only a limited number of queries is used to learn a generic reranking
model to handle all queries. In other words, different from semantic concept
learning, which learns query-dependent models using query-independent features ,
learning-to-rerank embeds the query information into the query-dependent rerank-
ing features, which estimate the relevance between the query and an image in the
collection. Then a query-independent model is learned and employed to rerank
images for all queries. This decomposition of query-dependency into the rerank-
ing features in the learning-to-rerank paradigm also makes the reranking function
better “learnable” than an arbitrary semantic concept, imposes fewer require-
ments on the training data set and requires less manual annotation effort than
in the case of semantic concept learning. Moreover, the implicit user feedback
(e.g. click-through log), can also be employed as a source of training data for this
purpose [44] The scheme of our approach illustrating the offline step of learning
a general reranking model from the labeled data and then applying the learned
model online to handle all queries in a given search use case is illustrated in Fig.
2.2.

After we position our proposed reranking approach in Section 2.2 with respect
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Figure 2.2: The overview of feature-based supervised reranking approach.

to the related previous work, we formulate the learning-to-rerank paradigm in
Section 2.3 and explain the issues related to its practical implementation. This
is followed in Section 2.4 by introducing the features that we compute from the
collection and use as input into the reranking mechanism. In Section 2.5 we
first describe the experimental setup we devised to evaluate the performance of
the developed learning-to-rerank mechanism. Then we present the results of the
evaluation at various levels and provide a discussion regarding the effectiveness of
the design choices we made when developing the mechanism. A list of suggestions
for future work in this direction is provided in Section 2.6. A brief conclusion in
Section 2.7 completes the paper.

2.2 Related Work

The existing visual search reranking methods are all unsupervised and can be
defined as the classification-based [121], graph-based [102] and clustering-based
[37] methods.

Classification-basedmethods [121, 60, 132, 88] first select some pseudo-relevant
samples from the initial search result. Then a classifier or a ranking model is
learned with the pseudo-relevant/-irrelevant samples serving as training data.
The classification output scores for each image are then used to generate the final
ranking. Such methods are also referred to as pseudo-supervised methods, since
they rely on the initial ranking to automatically acquire training data for the
purpose of learning a query-dependent ranking model. In the clustering-based
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methods [37], the images in the initial result are firstly grouped automatically
into several clusters. Then the reranked result list is created first by ordering
the clusters according to the cluster conditional probability and then by ordering
the samples within a cluster based on their cluster membership value. The more
recently proposed graph-based methods [38, 43, 102] were demonstrated to be
more effective for Web-scale image search and have therefore received increased
attention. Firstly, a graph is built with the images in the initial result serving as
nodes. An edge is defined between two images if they are visual neighbors of each
other and the edges are weighted by the visual similarities between the images.
Then, reranking can be formulated, for instance, either as a random walk over
the graph [38, 43] or an energy minimization problem [102].

Learning-to-rerank has a similar underlying rationale as the learning-to-rank
paradigm that is known from IR [17, 44] and that was shown to be superior to
the existing classical unsupervised IR methods, such as Okapi BM25 [82] and
tf-idf [67]. While both paradigms utilize the human labeled data to make a
ranking/reranking model better fit the application scenario and human expecta-
tion of what the search result should be, learning-to-rerank has several unique
characteristics. First, in learning-to-rerank the initial ranking result from the
text-based search serves as a prior, which needs to be effectively incorporated
into the reranking process. Second, in learning-to-rerank the query and the doc-
uments have different representations, i.e., the query is textual while an image is
visual. This poses a considerable challenge on the design of reranking features
that we address in this chapter through a careful feature engineering step.

2.3 Learning to Rerank

In order to elegantly incorporate the supervised learning step into the reranking
approach we present in this chapter a general formulation of the learning-to-
rerank problem and decompose it into two key components: the learning step
and the feature design step. For the learning step, the Ranking SVM adopted
from the learning-to-rank approach is adjusted to solve the learning problem in
the new reranking context. For the feature design, motivated by the existing
successful reranking methods, we design an 11-dimensional vector of reranking
features based on the exploitation of the visual context, initial ranking, and the
pseudo relevance feedback. The overview of the learning-to-rerank system and
the constituent components is illustrated in Fig. 2.2.

2.3.1 Formulation

We formulate the problem addressed in this chapter through the definitions given
below.

Definition 2.3.1. A ranking r(D), abbreviated as r, is a function mapping the
document set D to the vector of documents’ rankings. In other words, each element
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of r, defined as r(dj) and further abbreviated as rj, is the ranked position of the
document dj ∈ D.

Specifically for the image search context, D will be used to denote the set of
image documents returned by the initial text search.

Definition 2.3.2. A reranking model is defined as a function

r = f(D, r̄, q), (2.1)

where r̄ is the ranking of documents in the initial search result, and q is the query.

Generally, the reranking aims at returning a new ranked list after taking the
query, the initial result and initial ranking as input. Usually, the query term q
can be ignored from Eqn. (2.1) since it has been reflected in the initial result D
and ranking r̄. In view of the above, we can define the objective of the learning-
to-rerank approach as to learn the reranking model f from training data.

Definition 2.3.3. Learning-to-rerank is defined as a process of learning a rerank-
ing model f from the given training samples {Di, r̄i, qi, r̃i}, where Di, r̄i, r̃i are the
initially returned documents, initial ranking and the ground-truth ranking corre-
sponding to the query qi. The learning process can be formulated as the process
of minimizing the loss function

f∗ = argmin
f

∑

i
△(r̃i, f(Di, r̄i, qi)), (2.2)

where △ measures the loss between the ground-truth r̃i and the prediction r̂i =
f(Di, r̄i, qi).

Since the definition given above is rather general, it leaves several issues to be
addressed more explicitly in order to be able to realize the cost minimization in
Eqn. (2.2) in a practical case. First, a function definition of the reranking model
f is needed. Second, the learning algorithm should be specified. Finally, the loss
function needs to be designed carefully and the optimization problem should be
solved efficiently. In the following subsections, we will introduce our approach to
addressing these open issues.

2.3.2 Reranking Model

It is commonly recognized that in visual search reranking there are two cues which
can be taken into account to obtain a refined ranked list [102]. One is the initial
ranking obtained from text-based search, which often shows acceptable ranking
performance though is often affected by noise due to the imperfect match between
the surrounding text and the image’s content. The other one is the visual content
of the ranked documents, which can be regarded as the visual context in which
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user’s information need is formulated. Based on such an analysis we can design
the reranking model by combining the two cues as follows,

f(Di, r̄i, qi) = argmax
ri

−w0D(ri, r̄i) +
∑Z

k=1
wkr

i · [ψk(d
i
j ,Di, r̄i)]Pj=1. (2.3)

Here dij is the j-th image in the sorted list of images in the initial result Di

based on the search engine. D is the distance between two rankings. ψk is a
function steering the reranking feature extraction processes applied to an image
dij in the initial ranking result and P is the number of images in the initial result
to be considered in reranking. Z is the number of predefined reranking features
and w = [w0, w1, · · · , wZ ]

T are the corresponding weighting coefficients. The
basic idea of Eqn. (2.3) is to maximize the bias of the reranked list towards the
initial one while at the same time maximizing the coherence of the images ranked
similarly in terms of the reranking features.

There are different methods to measure the distance between two ranking lists,
such as the Normalized Discounted Cumulative Gain (NDCG) [41] and Kendall’s τ
ranking correlation [46]. However, by incorporating such distances into Eqn. (2.3),
it would be difficult to obtain a closed-form solution, which would make the
learning of w much more difficult. Besides, it would be convenient if the solution
of the problem (2.3) is a linear function w.r.t. w, so that the resulting learning
problem could be solved easily and the online ranking process could be more
efficient. Under such guidelines, we propose to compute the ranking distance by
transforming the initial ranking into a score vector,

D(ri, r̄i) = −ri · s(r̄i), (2.4)

where s(r̄i) is the score vector with s(r̄ij) corresponding to the ranking score of
the image ranked at the j-th position in the initial ranked list.

By substituting Eqn. (2.4) into Eqn. (2.3), the reranking model can be formu-
lated as,

f(Di, r̄i, qi) = argmax
ri

∑Z

k=0
wkr

i · [ψk(d
i
j ,Di, r̄i)]Pj=0, (2.5)

where [ψ0(d
i
j ,Di, r̄i)]Pj=0 = s(r̄i). It is easily derived that the solution is the

ranking of images according to the score vector
∑Z

j=0 wk[ψk(d
i
j ,Di, r̄i)]Pj=0.

Consequently we achieve a linear model for reranking by combining different
reranking features, where the initial ranking is also represented as one of the
features. The model is similar to the ranking function widely used in the learning-
to-rank approach. Hence, the classic learning-to-rank algorithm, such as Ranking
SVM [44], could be adopted for the learning-to-rerank paradigm as well. In the
following section, we will introduce the standard algorithm of Ranking SVM and a
modification we introduced in this algorithm to adapt it to our reranking problem.
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2.3.3 Adaptation of Ranking SVM

Technically speaking, the objective of the learning-to-rerank task is to estimate
the parameters by minimizing a loss function. Methods that can be used for
this purpose differ in the design of the loss function. Ranking SVM [44] is a
classic algorithm applied in learning-to-rank, where the loss function is defined as
a combination of the prediction loss and the regularization term:

△(ri, f(Di, r̄i, qi)) =
1

2
wTw+

C
∑

di
j
≻

r
id

i
k

max(0, 1−wT (Ψ(dij ,Di, r̄i)−Ψ(dik,Di, r̄i))),
(2.6)

where the first term is the regularization and the second one is the hinge loss on
the document pairs. Here, dij ≻ri d

i
k denotes that the image dij is ranked before

the image dik in the ranked list ri . C is the trade-off parameter. Ψ(dik,Di, r̄i) is
the reranking feature vector of dik.

By substituting the loss Eqn. (2.6) into the problem (2.2), we obtain the
following optimization problem:

min
1

2
wTw + C

∑

ξijk

s.t. ∀i, dij ≻ri d
i
k : wT (Ψ(dij ,Di, r̄i)−Ψ(dik,Di, r̄i)) ≥ 1− ξijk

∀i, j, k : ξijk ≥ 0,

(2.7)

where ξijk is the slack variable.
We can clearly see from (2.7) that the rationale behind the Ranking SVM is

that it models the prediction loss based on the preference between two documents.
Then, the learning-to-rank problem can be reduced to the classification of the
preference over document pairs.

It is important to note, however, that in the reranking problem, the features
are of different importance. First, while Z dimensions attribute to the visual
content analysis, only one dimension is related to the initial ranking. Moreover,
the initial ranking is an important information source for reranking since it often
gives a reasonable result. Since in the problem formulation (2.7) the influence
of the initial ranking is likely to be degraded, and even severely degraded if Z is
large, we modify the problem (2.7) to allow the initial ranking to provide a larger
contribution, if necessary. The modified optimization problem can be formulated
as

min
1

2
((
w0

α
)2 +

∑Z

t=1
w2

t ) + C
∑

ξijk

s.t. ∀i, dij ≻ri d
i
k : wT (Ψ(dij ,Di, r̄i)−Ψ(dik,Di, r̄i)) ≥ 1− ξijk

∀i, j, k : ξijk ≥ 0.

(2.8)

where α is the parameter to control the confidence of the corresponding feature
from the initial ranking. We empirically set it to be equal to Z.
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Approaches to solving the standard classification SVM, such as SMO (Sequen-
tial Minimal Optimization) [78], can be used directly to solve the problem (2.8).
In this chapter, we adopt the fast algorithm based on the cutting-plane method
[45].

2.4 Features

In this chapter we envision three types of reranking features. Considering the
result of the initial text search as a strong prior, the features ψ0(d

i
j ,Di, r̄i) based

on the initial ranking are referred to as the prior reranking features. Other feature
types are content based and extracted through visual content analysis. In this
chapter, we propose to extract the content-based reranking features from two per-
spectives. The first leads to the contextual reranking features, which are extracted
by considering the images from the initial ranking result as a visual context of the
target image. The second leads to the pseudo relevance feedback features, which
are extracted by considering the top N images as positive examples and then by
ranking the others based on these examples. The three approaches lead to 11
reranking features being extracted, corresponding to ψk(d

i
j ,Di, r̄i) for k = 1...11,

which are summarized in Table. 2.1.

2.4.1 Contextual Reranking Features

Visual context of an image in the initial result reflecting the neighborhood struc-
ture of the ranked item list is a useful information source to refine the initial search
result list, as shown by numerous existing methods for visual search reranking
[102][38]. In this section, we present a simple yet effective method to exploit the
visual context information for image search reranking.

Visual context

Given an image dj ∈ D, where D is the initial result returned by the text search
for query q, its visual neighbors in D can be computed based on the following
three strategies.

• K-Nearest Neighbors (KNN): The top K similar images in D to dj are
regarded as the neighbors of image dj .

• ǫ-Nearest Neighbors (ǫNN): The images in D whose distance to dj is less
than the threshold ǫ are regarded as the neighbors of image dj .

• The combination: The images which satisfy the above two strategies simul-
taneously are regarded as the neighbors of image dj in D.

The neighbors obtained above are sorted according to the visual similarity to
dj to get the list of images Nj . N j

k stands for the k-th image on the ranked
neighbors list.
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Recently a new neighborhood structure, the so-called reciprocal neighborhood
[49], has been proposed and successfully applied in image search reranking [107].
Basically, if an image di occurs as the neighbor of image dj then dj is referred to
as a reciprocal neighbor of di. Formally, given an image di, the set of its reciprocal
neighbors can be defined as

Ri = {dj |di ∈ Nj}, (2.9)

and the reciprocal neighbor list Ri is the sorted list of images in Ri according
to the visual similarity between di and dj .

The visual context of an image is defined by its neighbors and reciprocal
neighbors taken from the initial search result. Based on this, we now proceed
with the extraction of the contextual reranking features, as explained in the next
subsections.

Neighborhood rank voting

A straightforward approach to utilizing the visual context information for extract-
ing the reranking features is neighborhood voting. There are different variants
of the neighborhood voting. In hard voting, each of the neighbors contributes
equally to the relevance of the image dj , that is

HVN (dj) = len(Nj), (2.10)

where len(Nj) is the size of the vector Nj .

It can easily be observed that the hard voting score corresponds to the set
cardinality of a neighborhood. Therefore, hard voting is effective only in case of
applying the ǫ-Nearest Neighbor strategy or the combination strategy in the con-
struction of the visual context. A drawback of hard voting is that all neighbors
are treated equally. Different neighbors should namely contribute differently to
the relevance of a target image according to their own relevance, which can be
expressed through their initial ranking or their position in the ranked neighbor-
hood. We refer to such more sophisticated voting as soft voting. Soft voting based
on the initial ranking assigns weights to the votes using the following expression:

RSVN (dj) =
∑len(Nj)

k=1

1

log(r̄(N j
k) + 1)

. (2.11)

The transformation from the initial ranking to the voting score using the log
function is motivated by the discount term in NDCG (Normalized Discounted
Cumulative Gain) [41], which assigns a larger relative importance to top images
in the returned result since their relative relevance to the query is assumed larger.

Furthermore, the voting score of each neighboring image can be weighted
by its adjacency to the target image, measured by its position in the ranked
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neighborhood. Hence, the soft voting based on a neighbor-rank-weighted initial
ranking can be computed using the following expression,

NRSVN(dj) =
∑len(Nj)

k=1

1

log(r̄(N j
k) + 1)× k

. (2.12)

Reciprocal neighborhood rank voting

Similar to the neighborhood rank voting, the reciprocal neighborhood rank vot-
ing can also be divided into hard and soft voting. The corresponding reranking
features can be computed using the analogy to Eqn. (2.10, 2.11, 2.12) as

HVR(dj) = len(Rj). (2.13)

RSVR(dj) =
∑len(Rj)

k=1

1

log(r̄(Rj
k) + 1)

, (2.14)

NRSVR(dj) =
∑len(Rj)

k=1

1

log(r̄(Rj
k) + 1)×NR(Rj

k, dj)
, (2.15)

where NR(Rj
k, dj) is the ranked position of dj among the neighbors of image Rj

k.
In addition to the features mentioned above, the reciprocal neighborhood also

has some unique characteristics which can be exploited for reranking feature ex-
traction. In particular, we focus here on the ranked position of the target image
in the neighborhoods of the reciprocal neighboring images, which represents how
confidently other images select the target image as a neighbor. Hence, we define
the soft voting, which takes only the reciprocal neighborhood rank into consider-
ation as

NSVR(dj) =
∑len(Rj)

k=1

1

NR(Rj
k, dj)

. (2.16)

2.4.2 Pseudo relevance feedback

Pseudo relevance feedback (PRF) is a technique widely used in information re-
trieval and recently also adopted in solving the visual search reranking problem
[121, 60, 132]. The basic idea of PRF in the visual search reranking context is to
regard the top ranked images in the initial result as the relevant ones, and then
to apply a relevance feedback technique on this “pseudo” relevant image set to
refine the search result. Although the true relevance of the top-ranked images
is unknown since human is left out of the loop, the results shown in Fig. 2.3,
which are obtained on a representative image collection, using human judgment
as a reference, indicate that the top m images in the initial text-based search
could be considered more relevant than the lower-ranked ones. In the following,
we will elaborate on three light-weight PRF approaches to compute the reranking
features.
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Figure 2.3: The distribution of images’ relevance (judged by human oracle) at different
positions of the initial ranking. The horizontal axis is the ranking position and the
vertical axis is the mean relevance score among all the queries. The dataset used for the
study is detailed in Section 2.5.1.

Given the top m pseudo relevant images, a reranking feature of dj can be
computed by estimating its relevance score as the probability of generating dj
from these m images,

PRF (dj) = p(dj |d1, d2, · · · , dm), (2.17)

where p is the probability density function and d1, d2, · · · , dm are the topm images
in the initial result. A typical approach to estimating the function p is the kernel
density estimation (KDE). The KDE based PRF feature is extracted as follows,

PRFd(dj) =
1

m

∑m

k=1

1√
2πσ

δ(dj , dk), (2.18)

δ(dj , dk) = exp(||dj − dk||2/(2σ2)), (2.19)

where δ is the RBF (radial basis function) kernel and σ represents the standard
deviation. Here ||dj − dk||2 is the Euclidean distance of two images dj and dk
based on visual features.
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Alternative methods are based on duplicate voting and therefore conceptually
similar to the approach we used to compute the contextual features. However,
while in the computation of the contextual features we use the entire initial result
list to construct the visual context, in PRF we estimate the relevance of the target
images based solely on the m top-ranked images.

A PRF based on hard and soft duplicate voting can be defined using the
formulas in Eqn. (2.20) and Eqn. (2.21), respectively:

PRFdv(dj) =
1

m

∑m

k=1
IsDup(dj , dk), (2.20)

PRFsdv(dj) =
1

m

∑m

k=1

IsDup(dj, dk)

log(r̄(dk) + 1)
, (2.21)

where the function IsDup can be any duplicate detection function [77]. In the
experiments reported in this chapter, we simply use a threshold to determine
whether two images are duplicates based on their visual similarity. Information
about the features used for visual similarity computation is provided in Section
2.5.1.

We note here that PRF-based reranking features may lead to a degradation of
the performance compared to the initial ranking due to the potential query drifting
problem. However, in the approach introduced in this chapter, the weights applied
to the PRF-based ranking features are learned from the human labeled ranking.
Therefore, if the PRF feature does not perform well in a given use case, it will
receive a low weight and will not influence the final result to a large extent. Hence
the query drifting problem, if present, can be alleviated in this way.

2.4.3 Initial ranking

As stated before, the initial ranking provides critical input information for the
reranking step. In most cases, only the ranking position is available, and not
the ranking scores from a search engine. Working with the initial ranking po-
sition directly as a feature would not be a good option since the Web search
ranking is normally optimized for the top results. For example, the widely used
evaluation measure NDCG, which is also the optimization objective of typical
learning-to-rank methods [20], employs a discount factor to emphasize the top-
ranked items. In other words, the top images in the text-based search result have
larger confidence to be relevant and the confidence degrades super-linearly with
the increasing ranking position. Hence, we choose to transform the initial ranking
position by following an analogy to the discount factor in NDCG to obtain the
following feature which still reflects the initial ranking, but also takes into account
the non-linearity of the relevance confidence degradation:

IR(dj) = 1/ log(j + 1), (2.22)

where j is the position of the image dj in the initial ranked list.
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Table 2.1: An overview of the proposed reranking features.

IR Initial Ranking

HVN Hard Voting of Neighbors

RSVN Initial Rank based Soft Voting of Neighbors

NRSVN
Neighbor RankWeighted Initial Rank based Soft
Voting of Neighbors

HVR Hard Voting of Reciprocal Neighbors

RSVR
Initial Rank based Soft Voting of Reciprocal
Neighbors

NSVR
Neighbor Rank based Soft Voting of Reciprocal
Neighbors

NRSVR
Neighbor RankWeighted Initial Rank based Soft
Voting of Reciprocal Neighbors

PRFd Local Density Estimation for PRF

PRFdv Duplicate Voting for PRF

PRFsdv Soft Duplicate Voting for PRF

2.5 Experiments

In this section we first describe the experimental setup we used to evaluate our
proposed learning-to-rerank paradigm. Then we present the results of the eval-
uation at various levels and provide a discussion regarding the effectiveness of
critical design choices.

2.5.1 Experimental setup

We conduct the experiments on two datasets: a collected Web image dataset and
a publicly available MSRA-MM dataset [114]. We explain both datasets in the
following paragraphs.

29*3 queries Dataset: The dataset we used for the experiments reported in
this chapter consists of 73,340 images collected from three most popular commer-
cial image search engines, i.e., Google, Live and Yahoo. We selected 29 queries
from the query log of a commercial image search engine and popular tags of Flickr.
These queries cover a vast range of topics, such as scenes (Sky and Winter), ob-
jects (Grape and Panda) and named person entities (George W. Bush). The
queries are listed in Table 2.2. For each query, at most top 1000 images returned
by each of the three search engines are collected.

For each image, its relevance degree with respect to the corresponding query
is judged by three human judges and using four relevance levels, i.e., “Excellent”,
“Good”, “Fair” and “Irrelevant”. Then, for each image, the final ground truth
relevance is defined as the median of the scores given by the three judges.

To analyze the images’ visual content and compute the distance between im-
ages, we adopt 7 widely used low-level visual features to represent the image:
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Table 2.2: The queries in the 29*3 queries dataset.

Animal, Beach, Beijing Olympic 2008, Building, Car, Cat,
Clouds, Earth, Flower, Fox, Funny dog, George W. Bush,
Grape, Hearts, Hello Kitty, Hiking, Mercedes logo, Panda,
Sky, Statue of Liberty, Sun, Trees, Wedding, White Cat,
White House, White House Night, Winter, Yellow Rose,
Zebra

Attention Guided Color Signature, Color Fingerprint, Multi-Layer Rotation In-
variant EOH, Histogram of Gradients, Daubechies Wavelet, Facial Features, and
Black & White [22].

MSRA-MM Dataset: To more comprehensively evaluate the proposed ap-
proach, we also conduct experiments on a publicly available dataset2 which in-
cludes 68 popular queries. The detailed information about this dataset can be
found at [114]. For computing the distance between images in this case, we used
the features provided by the dataset in order to make our results reproducible
and to enable comparisons with other approaches in the future.

For each dataset we uniformly split the queries into five folds. When evaluating
each of the folds the remaining four folds are used as training. To evaluate the
ranking performance, NDCG is adopted, which is a measure commonly used in
information retrieval, especially when there are more than two relevance levels.

In the following we will mainly use the 29*3 queries Dataset to evaluate the
proposed approach since it is diverse and includes different categories of queries
and three mainstream search engines. If not explicitly stated, the experimental
results reported below refer to the 29*3 queries Dataset. The MSRA-MM dataset
will be used solely to demonstrate the transferability of the proposed paradigm
across collections.

2.5.2 General performance evaluation

We compare the proposed learning-to-rerank method with Bayesian reranking
[102, 103], random walk [38], and the text-based search baseline to demonstrate
its effectiveness. The overall performance (The NDCG averaged over all queries)
is shown in Fig. 2.4. Since the LocalPair variant of Bayesian reranking [103]
performs the best among the seven graph-based reranking methods including
six Bayesian variants and random walk, we will use it as the representative of
Bayesian and graph-based reranking methods. From this result, we can see
that the proposed learning-to-rerank (letorr) method consistently outperforms the
text-based search baseline and Bayesian reranking at all truncation levels. Specifi-
cally, letorr obtains about 11.6% and 7.4% relative improvements on NDCG@100

2http://research.microsoft.com/en-us/um/people/xshua/imm2009/dataset.html
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Figure 2.4: Performance comparison between the learning-to-rerank (letorr) and seven
graph-based reranking methods on the 29*3 queries dataset. The six variants of Bayesian
reranking are based on three consistencies: Local learning (Local), Laplacian (Lap), and
Normalized Laplacian (NorLap) and two kinds of ranking distances: Point-wise (Point)
and Pair-wise (Pair). The vertical axis is NDCG.
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Figure 2.5: The performance on the three search engines. From left to right: Google,
Live, Yahoo. The vertical axis is NDCG.

compared with the text-based search baseline and Bayesian reranking, respec-
tively. In comparison, Bayesian reranking only gains 3.8% relative improvement
over the text-based search baseline. The results indicate that the proposed super-
vised learning-to-rerank method can learn a good reranking function and that the
learned reranking model can be generalized well across a broad range of queries.
Moreover, the proposed method is a lightweight one since it requires less compu-
tational cost than graph-based reranking methods including the Bayesian rerank-
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Table 2.3: The p values of the significance test.

Letorr vs. Baseline Letorr vs. Bayesian

NDCG@40 0.0017 0.0266

NDCG@100 5.6281e-8 4.3593e-6

ing, which requires iterative computation. The 11.6% performance improvement
with less computational cost demonstrates that the learning-to-rerank method is
a promising paradigm for Web image search. This conclusion is also supported
by the result reported in Fig. 2.5 that shows the performance comparison on all
three search engines: Live, Yahoo, and Google. We can see that for all the three
search engines the learning-to-rerank method improves the performance over the
text-based search baseline. Moreover, the proposed method performs consistently
better than Bayesian reranking on all three search engines.

Figure 2.6 gives an example result for the illustration of the advantages of su-
pervised learning-to-rerank over Bayesian reranking. It can be observed that the
learning-to-rerank method promotes highly relevant images (the images marked
by the red rectangle), which are ranked at the bottom in the initial list, to the
top. We explain the inability of the Bayesian reranking to do the same by the fol-
lowing reasons. First, Bayesian reranking relies more on the initial ranking, while
in learning-to-rerank, the initial ranking is regarded as one of many features, the
weights of which can be learned and adjusted to the use cases automatically. Sec-
ond, in computing the reranking features, we mainly use the visual neighborhood
structure instead of the visual similarity itself. This alleviates the problems intro-
duced by the imperfection of the visual similarity estimation that tend to make
the existing reranking methods unpredictable in many practical use cases. For
instance, the promotion of the grassland image (the image marked by blue rectan-
gle) by Bayesian reranking should attribute to the deficiency of visual similarity
estimation.

We further performed a statistical significance test to verify whether the im-
provement of the learning-to-rerank method is statistically significant. The p
values of the t-test of learning-to-rerank over the text-based search baseline as
well as the Bayesian reranking method in terms of NDCG@40 and NDCG@100
are shown in Table 2.3. They are computed by modeling the performance improve-
ment for each query (NDCG difference between two methods) as a t-test. From
this result we can see that the improvement of the learning-to-rerank method is
statistically significant.

The performance comparison on the MSRA-MM dataset is reported in Fig.
2.7. We can see that on this dataset the performance is also greatly boosted
after applying the proposed learning-to-rerank method to rerank the image search
results. The learning-to-rerank method improves the performance over baseline
by 8.2% and over Bayesian reranking by 4.9% in terms of NDCG@100. Due to
the space limits, we will further focus only on the performance analysis on the
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Figure 2.6: An illustration of the reranking results for the query “George W. Bush”
on Yahoo image search engine. The images with red rectangles are examples of highly-
relevant result, while the images with blue rectangles are irrelevant.
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Figure 2.7: Performance comparison between the learning-to-rerank (letorr) and
Bayesian reranking on MSRA-MM dataset. The vertical axis is NDCG.

29*3 queries Dataset.

2.5.3 Performance analysis over different queries

The performance of the learning-to-rerank method on different queries is shown in
Fig. 2.8. Each bar corresponds to a combination of a query keyword and a search
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Table 2.4: The performance for each of the individual features.

Feature HVN RSVN NRSVN HVR RSVR NSVR

NDCG@40 0.484 0.445 0.458 0.363 0.366 0.360

NDCG@100 0.439 0.441 0.451 0.376 0.381 0.373

Feature NRSVR PRFd PRFdv PRFsdv IR Baseline letorr

NDCG@40 0.369 0.355 0.493 0.500 0.484 0.484 0.517

NDCG@100 0.382 0.364 0.445 0.449 0.440 0.440 0.491

engine. Therefore there are totally 87 (29*3) bars. We can see from the figure
that for a majority of queries we can achieve performance boosting after apply-
ing visual search reranking. Moreover, on a large proportion of the queries the
proposed learning-to-rerank method outperforms the Bayesian reranking method
significantly.

The reranking performance of an individual query is related to the charac-
teristics of the initial text-based search result. We can draw the conclusion that
the queries for which the relevant images in the initial result are semantically
or visually coherent, will benefit more from reranking. For example, among the
87 queries, “sun” on Google obtains the highest performance improvement af-
ter applying the learned reranking model since the relevant images are visually
coherent. However, for the ambiguous queries, such as “animal”, visual search
reranking cannot bring out too much performance improvement. The perfor-
mance is even degraded in some cases. For example, for the query “animal” on
Live and Google, letorr introduces 0.09 and 0.01 performance degradation, respec-
tively. For “animal” on Live, Bayesian reranking even degrades the performance
54% relative to the initial ranking.

As shown in Fig. 2.9, for a lot of queries the performance improvement of
Bayesian reranking is near zero. This means that Bayesian reranking cannot
change the initial ranking for these queries based on visual consistency. These
queries can be regarded as “difficult” queries for visual reranking. We can see
that nearly all the queries for which the initial ranking is poor are such “difficult”
queries. Thanks to the neighborhood voting based features, which alleviate the
imperfection of the visual similarity computation and the learning strategy, which
makes the reranking model more adapted to the data, learning-to-rerank method
can still improve the performance for these “difficult” queries.

2.5.4 Feature analysis

In this section, we will analyze the effects of the 11 selected reranking features.
Each of the reranking features can be used to rank the images on their own. The
ranking performance using the 11 features individually is summarized in Table
2.4. It can be clearly observed that most of the content based reranking features
perform well, some of which are even better than the initial ranking. For example,
the performance of PRFsdv is 0.5 in terms of NDCG@40, better than 0.484 for the
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Figure 2.9: The performance improvement (in terms of NDCG) of visual search rerank-
ing over different queries. The horizontal axis corresponds to the queries sorted in the
descending order of the performance of the text baseline. For text baseline the ranking
performance is plotted, while for letorr and Bayesian the performance improvement is
plotted.

Table 2.5: The performance of learning-to-rerank by leaving one feature out.

Feature HVN RSVN NRSVN HVR RSVR NSVR NRSVR
NDCG@40 0.516 0.517 0.516 0.515 0.517 0.519 0.517
NDCG@100 0.490 0.491 0.486 0.487 0.489 0.492 0.491

Feature PRFd PRFdv PRFsdv IR Baseline letorr
NDCG@40 0.514 0.520 0.516 0.510 0.484 0.517
NDCG@100 0.489 0.497 0.491 0.489 0.440 0.491

initial ranking. This demonstrates that the proposed reranking features, though
lightweight in computation, are still effective to be employed in the supervised
learning-to-rerank method.

The neighborhood voting based features perform better than the reciprocal
neighborhood voting based features. We argue that this is because we adopt the
combination strategy for neighborhood construction, which makes the number of
neighbors more adapted to the sample. In general, the reranking features which
use the neighborhood structure perform better than the features which directly
rely on the visual similarity. PRFd achieves the worst performance among the
11 features. This further supports the hypothesis that features based on the
neighborhood structure are less sensitive to the imperfections of visual similarity
computation.
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To further verify the effectiveness of the proposed features, in addition to
training a reranking model using all 11 features, we also train reranking models
by leaving each of the 11 features out. The result is shown in Table 2.5, from
which we can make the following observations.

• Some of the reranking models trained by leaving one feature out are even
better than the model using all of the features. For example, the reranking
model trained without PRFdv achieves 0.52 NDCG@40, which is higher than
0.517 using all the features. This suggests that there is redundancy among
the 11 reranking features and that feature selection should be performed to
preprocess the features in a general case for an improved performance.

• Some of the features, though with low individual performance, can comple-
ment the others so that their incorporation into the reranking model can
still contribute to an improved performance. For example, the individual
performance of PRFd is only 0.355 in terms of NDCG@40, which is the
worst among the 11 features. However, by incorporating it into the rerank-
ing model the performance is still improved by 0.5% compared with the
model without it.

From the results discussed above we can say that the neighborhood voting
based features perform better than the others, and that the selected 11 features
are all useful, either directly or indirectly (in combination with other features).

2.5.5 Adapted Ranking SVM

As described in Section 2.3.3, we adapt the standard Ranking SVM algorithm
by introducing an additional parameter α to model the importance of the initial
ranking based feature. It is obvious that by setting α to 1 the standard Ranking
SVM is achieved.

We vary α from 1 to 40 to see how the reranking performance is affected. The
result is shown in Fig. 2.10. We can see that the reranking model with α = 1, i.e.,
the standard Ranking SVM achieves the worst performance. This demonstrates
that the adapted Ranking SVM is effective for learning the reranking model and
indicates the range in which α should be selected.

2.6 Future Work

We see several possibilities to further explore and extend the learning-to-rerank
paradigm, the major of which can be listed as follows.

• The existing unsupervised reranking methods can be employed to construct
reranking features in the learning-to-rerank method. The advantage of the
proposed 11 reranking features lies in the lightweight computational cost.
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Figure 2.10: The effects of alpha in the adapted Ranking SVM. When alpha =1 it
becomes the standard Ranking SVM. The vertical axis is NDCG.

However, in cases that the response time is not critical we can fuse multiple
unsupervised reranking methods for a better ranking.

• The proposed learning-to-rerankmethod as well as the existing unsupervised
reranking methods take only the relevance into consideration. However,
the result diversity is also an important objective so that more informative
search result can be provided to users. The learning-to-rerank framework
makes it easy to take the result diversity into consideration by designing
diversity-aware reranking features or a diversity-aware learning objective
[134].

• As the experimental results reported in Table 2.5 suggest, the reranking fea-
ture selection can further improve the performance of the learned reranking
model.

2.7 Conclusion

In this chapter, we introduced a supervised learning paradigm into visual search
reranking to create a more robust reranking model. The idea leverages the ad-
vantages of both supervised concept-based search and unsupervised visual search
reranking, while it does not suffer from scalability issues characteristic for concept-
based search. To realize this idea, we proposed and formally defined a learning-
to-rerank framework, which we implemented using the adapted Ranking SVM
algorithm and 11 lightweight reranking features that encode the relevance be-
tween the textual query and visual documents. Experimental results obtained for
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two representative image datasets indicate that the proposed supervised reranking
paradigm can be considered a promising scheme for Web-scale image search.



Chapter3
Prototype-based Image Search

Reranking

1

In Chapter 2 we proposed a supervised reranking algorithm which shows im-
proved effectiveness compared to the existing unsupervised methods. This ap-
proach, however, still leaves significant space for improvement, and this is mainly
due to two simplifications we deployed in order to build and evaluate a proof of
concept for supervised reranking. First, we assumed that all images in the top of
the initial search results list are equally relevant to the query. Second, the rerank-
ing features were selected from a limited set of predefined features. The basic idea
of the prototype-based image search reranking proposed in this chapter and gener-
alizing the idea of supervised reranking is that we do not hypothesize about the
relevance of the initial search result nor about the potentially useful reranking
features. Instead, we learn both the relevance and the reranking features from
the initial search result using a dedicated supervised learning framework.

1This chapter was published as: Linjun Yang, Alan Hanjalic, “Prototype-Based Image Search
Reranking,” IEEE Transactions on Multimedia 14(3-2): 871-882 (2012) [128].

37
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3.1 Introduction

The existing web image search engines, including Bing [1], Google [2], and Yahoo!
[3], retrieve and rank images mostly based on the textual information associated
with the image in the hosting web pages, such as the title and the surrounding text.
While text-based image ranking is often effective to search for relevant images,
the precision of the search result is largely limited by the mismatch between the
true relevance of an image and its relevance inferred from the associated textual
descriptions [126].

To improve the precision of the text-based image search ranking, visual rerank-
ing has been proposed to refine the search result from the text-based image search
engine by incorporating the information conveyed by the visual modality. Visual
reranking has become a popular research topic in both multimedia retrieval and
computer vision communities since it provides possibilities for considering the vi-
sual modality in the existing image search engines in a lightweight fashion and
without incurring scalability issues. Moreover, apart from the image search sce-
nario, visual reranking can also be used to improve the quality of the collected
data in the process of automatically constructing training data from the web for
object recognition [27][57].

While various techniques including clustering [37], topic modeling [29][27],
SVM (Support Vector Machine) [121], graph learning [38][43][102], etc. have
been investigated for the purpose of creating visual search rerankers, all of the
existing reranking algorithms require a prior assumption regarding the relevance
of the images in the initial, text-based search result. In the most widely used
PRF (Pseudo Relevance Feedback) assumption [121][27][60][29][88][50], the top-
N images of the initial result are regarded as pseudo relevant and used to learn
a visual classifier for reranking. Even though the PRF-based reranking methods
have been able to improve the precision over the initial text-based result in the
past, the assumption that the top-N images are equally relevant can still be
seen as too rigorous to be satisfied well by any arbitrary text-based image search
engine. Since the text-based image search is far from perfect (which is the reason
to perform the reranking in the first place), the top result will inevitably contain
irrelevant images, which will introduce noise into the learning of reranking models
and which may lead to sub-optimal search results being returned after reranking.
In this sense, appropriately relaxing this assumption and redefining the reranking
approach accordingly has the potential to further improve the precision of the
visual reranking.

In this chapter we address this challenge by recalling the fact that image search
engines usually optimize the system performance based on the relevance measures,
such as NDCG (Normalized Discounted Cumulative Gain) [41], which tend to
emphasize differently on the results at different ranks. Hence, it can naturally be
assumed that the images in the top result of each query at different ranks have
different probabilities to be relevant to the query. This should be incorporated into
the reranking model for a more comprehensive utilization of the text-based search
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result. Although this information has been investigated in previous work [102], the
way in which it was utilized was rather ad hoc and therefore suboptimal. In this
chapter, we propose a prototype-based method to learn a reranking function from
human labeled samples, based on the assumption that the relevance probability
of each image should be correlated to its rank position in the initial search result.
Based on the images in the initial result, visual prototypes are generated that
visually represent the query. Each of the prototypes is used to construct a meta
reranker to produce a reranking score for any other image from the initial list.
Finally, the scores from all meta rerankers are aggregated together using a linear
reranking model to produce the final relevance score for an image and to define
its position in the reranked results list.

The linear reranking model is learned in a supervised fashion to assign appro-
priate weights to different meta rerankers. Since the learned model weights are
related to the initial text-based rank position of the corresponding image and not
to the image itself, the reranking model is query-independent and can be gener-
alized across queries. Consequently, the proposed reranking method can scale up
to handle any arbitrary query and image collection, just like the existing visual
reranking approaches, even though supervision is introduced.

The chapter is organized as follows. In Section 3.2 we briefly review the
related work on visual reranking. In Section 3.3, we provide an overview of our
proposed method and then focus in Section 3.4 on describing and discussing the
key components of this method. The experimental results are presented and
analyzed in Section 3.5, while Section 3.6 concludes the chapter with a brief
overview of the main results of the chapter and the prospects for future work.

3.2 Related work

The methods for image search reranking can be classified into supervised and
unsupervised ones, according to whether human labeled data has been used to
derive the reranking model or not.

The unsupervised reranking methods do not rely on human labeling of relevant
images but require prior assumptions on how to employ the information contained
in the underlying text-based result for reranking. The most well-known assump-
tion of this type is the PRF assumption. It considers the top ranked images in
the text-based result as equally relevant to the query and uses them as positive
samples for learning a reranking model [121][28][27][88][29]. While the reranking
based on the PRF assumption has been demonstrated to often perform well, it
suffers from a fundamental deficiency that we illustrate in Fig. 3.1. The diagram
there shows the probability that an image at a given rank position in the initial,
text-based search result is relevant to the query. We derived the probabilities
from the search results we obtained on the Web Queries dataset (described in
more detail in Section 3.5) for 353 representative image search queries. We can
observe that on this dataset only 35 top-ranked images with the relevance proba-
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Figure 3.1: The relevance probability of images at different rank positions of the text-
based search result, derived from the statistics in the Web Queries dataset comprising
353 representative image queries. The relevance probability is computed as the average
relevance of the images ranked at this position based on the ground-truth.

bility above 0.5 could be considered relevant, though noisy, and used for learning
the reranking model. This number of relevant images is, however, too small to
learn a robust model. Using more images is the only alternative, but still not a
good one. Lower-ranked images may namely be irrelevant and therefore introduce
more noise in the model learning process.

The other widely-adopted image search reranking assumption is the cluster
assumption, which says that the visually similar images should be ranked nearby
[102]. Based on this assumption, various graph-based methods [38][43][102][103]
have been proposed to formulate the image search reranking problem. The main
deficiency of this assumption is that it makes the visual similarity of images equal
to the similarity of their relevance to the query. In addition, it omits to identify
two images as equally relevant to the query if they are insufficiently visually
similar to each other. Although effort has been invested in the selection of visual
features and similarity criteria that map visual similarity into relevance [113], this
semantic gap has not yet been successfully bridged.

A straightforward way of coping with the deficiencies of unsupervised rerank-
ing methods described above is to rely on manual relevance labeling of a training
data set, that is, to introduce human supervision in the reranking process. Such
supervision, however, needs to be embedded in such a way that the learned rerank-
ing model can scale up beyond the training data collection and queries used in
the learning step. Hence, relevance feedback based approaches [142][101] can-
not be applied since there query-specific models will be learned, which requires
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Figure 3.2: Overview of the proposed prototype-based visual reranking framework.

labeling from users for each submitted query. In view of this, the challenge of
supervised reranking is to design query-independent reranking models based on
query-dependent reranking features. These features typically model the pairs of
a textual query and an image document taken from the initial, text-based search
result. Recent successful attempts in this direction have been made by Yang and
Hanjalic [126] and Krapac et al. [50]. While human supervision helps alleviate
the problems of unsupervised methods, the existing methods are still far from
optimal. The reranking features used in [126] and [50] are still designed based on
the PRF and cluster assumptions. In addition, although in [126] the contribution
of images into the reranking features varies with their initial rank positions, this
variation is based on hand-crafted rules. These rules may work well for some
data collections and text-based search engines, but their suitability is difficult to
be shown in a general case. The method proposed in this chapter makes a fur-
ther step in the development of supervised, but scalable visual reranking systems
by explicitly targeting the improvement in the robustness and reliability of the
learned reranking model.

3.3 Prototype-based reranking

3.3.1 System framework

As illustrated in Fig. 3.2, the proposed prototype-based reranking method consists
of an online and an offline step.

In the online part, when a textual query is submitted to the image search
engine by a user, initial search is performed using any contemporary text-based
search technique [67]. Then, L visual prototypes are generated and for each
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prototype a meta reranker is constructed. The construction of meta rerankers
is explained in detail in Section 3.4. Then, for each of the top-N images in the
initial search result, an L-dimensional score vector is obtained comprising the
scores from all L meta rerankers when applied to that image. Finally, the score
vector is used as input to a reranking model, which has already been trained
offline, to estimate the ranking scores in the reranked image search list.

The offline component is devoted to learning the reranking model from user-
labeled training data. Since the learned model will be used for reranking the text-
based search results, the training set is constructed from these results through the
following steps. First, several representative queries sampled from the query log
are selected. Then, using these queries the top N images are retrieved from the
text-based image search engine and downloaded for processing. Finally, for each
query-image pair, people are invited to label the relevance between them to form
the ground-truth. After the training data is collected, we can compute the score
vector from the meta rerankers, as mentioned in the online part, for each image
and the corresponding query. Then the reranking model is learned and stored
in the memory to be used in the online part for responding to users’ submitted
queries.

3.3.2 Learning a reranking model

The linear reranking model adopted in this chapter is learned by estimating the
weights of the combined scores coming from different meta rerankers. This prob-
lem can be addressed using a learning-to-rank method [59], by regarding the score
vector as the ranking feature of an image.

Ranking SVM [44] is among the most popular learning-to-rank algorithms
and we also adopt it in this chapter. This algorithm adapts the widely-used SVM
classifier to handle the ranking problem. The basic idea is to decompose a ranking
into a set of pair-wise preferences and then to reduce the ranking-learning problem
into a pair-wise classification problem. Ranking SVM learns the ranking model
by solving an optimization problem that can be defined as follows:

min
1

2
WTW + C

∑

ξijk

s.t. ∀qi, Ij ≻ Ik :WT (M(Ij)−M(Ik)) ≥ 1− ξijk

∀i, j, k : ξijk ≥ 0,

(3.1)

where W is the model weight vector, C is the parameter to trade-off the loss
and the regularization, M(Ij) is the score vector from the L meta rerankers for
the image Ij , ξ

i
jk is the slack variable, and Ij ≻ Ik means that image Ij is more

relevant than Ik for the query qi.

Standard efficient approaches to learning an SVM classifier, such as SMO
(Sequential Minimal Optimization) [78], can be directly employed for learning



3.4 CONSTRUCTING META RERANKERS 43

the Ranking SVM. Moreover, a fast algorithm, e.g., the cutting-plane algorithm
[45], can be adopted to speed up the training of a linear Ranking SVM.

3.3.3 Discussion

The reason why the learned reranking model described above can be generalized
across queries beyond those used for the training is that the model weights are
not related to specific images but to their rank positions in the text-based search
result. The separation of the model weights from specific images is the key to
ensure that the reranking model only needs to be learned once and can then be
applied to any arbitrary query.

The existing learning-to-rerank methods, including the supervised-reranking
[126] and query-relative classifier [50], design the reranking model based on the
hand-designed ranking features defined at a higher abstraction level or on the or-
dered visual words, respectively. Compared to them, the prototype-based learning
to rerank method learns how likely the images at each of the ranked position in
the text-based result are to be relevant to the query. In other words, the method
directly learns the characteristics of the underlying text-based image search en-
gine and requires less expert input in terms of the reranking feature design and a
more relaxed assumption on the underlying text-based search than, for instance,
[126] and [50]. Consequently, the prototype-based reranking method can be ex-
pected to generalize even better over a broad set of queries and perform well for
any underlying text-based search engine.

3.4 Constructing meta rerankers

One of the key steps in the prototype-based image search reranking method is
the construction of meta rerankers. Given a prototype Pi and a set of N images
{Ij}Nj=1, the task here is to compute the ranking scores {M(Ij , Pi)}Nj=1 for these
images based on the prototypes. The computed scores are then used as input
for the reranking model to estimate the ultimate ranking scores to determine the
rank position of the images in the reranked result. In the following, we propose
three types of meta rerankers, depending on how the prototypes are generated
from the initial text-based search result.

3.4.1 Single-image prototype

A straightforward way to generate a set of prototypes is to select top L images
from the text-based result, as illustrated in Fig. 3.3. If we denote this set as
{PS

i }Li=1, then the meta reranker can be built simply based on the visual similarity
Sim(Ij , P

S
i ) between the prototype PS

i and the image Ij to be reranked:

MS(Ij , P
S
i ) = Sim(Ij , P

S
i ). (3.2)
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Figure 3.3: Illustration of constructing meta rerankers using single-image prototype.

The score vector aggregating the values (3.2) from all L meta rerankers is then
used as input to the linear reranking model in order to compute the definitive
ranking score for image Ij :

RS(Ij) =

L
∑

i=1

wi × Sim(Ij , P
S
i ), (3.3)

where wi are the individual weights from the model weight vector W .

RRC assumption

If we recall the discussion of the previous work in Section 3.2, and in particular
in relation to the PRF assumption serving as the basis of many existing visual
reranking methods, it can be said that the proposed reranking method using
single-image prototypes is also based on an assumption, namely that the relevance
of an image should be correlated to its rank position in the text-based result. We
refer to this assumption as the RRC (Relevance-Rank Correlation) assumption,
which can also be seen as a relaxed version of the PRF assumption. Compared to
the rerankers based on the PRF assumption, the RRC-based reranking methods
are expected to be more robust to imperfection and unreliability of the text-
based search result, since the relevance-rank correlation is actually reflected in
the objective of a search engine.
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Figure 3.4: Illustration of constructing meta rerankers using multiple-average proto-
type.

Query independence

It is interesting to observe that the model (3.3) is similar in form to the kernel
model trained by PRF-based methods using the top images in the text-based
result. However, while PRF-based methods learn query-specific models separately
for different queries, our approach learns the models in a query-independent way.
As discussed before, the advantage of the query-independent learning is that it
can leverage the labeled data from a limited number of queries to train a unified
model which can then be generalized across a broad range of queries. In this way,
introducing supervision in the learning process does not jeopardize scalability.

3.4.2 Multiple-average prototype

While the RRC assumption introduced in Section 3.4.1 is more powerful than the
PRF assumption, the noisiness of the relevance distribution in Fig. 3.1 indicates
that the relevance-rank correlation criterion is not necessarily fulfilled at all rank
positions in the initial text-based search result. For example, in Fig. 3.1, the
relevance probability at rank 41 is only 0.448 while that at rank 44 is 0.537. In
order to leverage the effect of possible correlation distortions at individual rank
positions, instead of considering a single image as a prototype, one could also
consider a “bag” of images taken from the neighboring rank positions.

Following this rationale, as an alternative to the prototype definition in Section
3.4.1, we now construct a prototype PMA

i by first selecting the top L images in
the initial search result list and then by cumulatively averaging the features of



46 PROTOTYPE-BASED IMAGE SEARCH RERANKING 3.4

all images ranked starting from the the topmost position to the position i, as
illustrated in Fig. 3.4. In other words, the prototype PMA

i can be defined as

PMA
i =

1

i

i
∑

j=1

Ij . (3.4)

Here the summation indicates the process on suitable features of Ij .

Then, the prototypes (3.4) can be employed to compute the scores of individual
meta rerankers by again computing the visual similarity between a prototype and
the image to be reranked:

MMA(Ij , P
MA
i ) = Sim(Ij , P

MA
i ). (3.5)

Bag-wise RRC assumption

In relation to the RRC-based reranking introduced in the previous section, we can
say that the meta rerankers (3.5) are generated under the bag-wise RRC (BRRC)
assumption, which states that a rank position should be correlated with a bag of
images, instead of an individual image. This is equivalent to smoothing out the
noise from the probability distribution in Fig. 3.1 through which more robust
reranking models can be achieved.

Fig. 3.5 shows the relevance probability of each bag at different ranks, which is
estimated as the mean relevance of all images contained in that bag. By comparing
Fig. 3.5 and Fig. 3.1 it can be observed that the relevance of a bag is better
correlated with the rank than the relevance of an individual image.

The BRRC-based reranking approach proposed in this section is a straightfor-
ward way to utilize the BRRC assumption by using the average image features as
the representation of the bag. In Section 3.4.3 we will present another approach
based on the BRRC assumption, where a visual classifier from each bag is trained
as the representation of that bag.

Analysis

In this section, we will analyze the properties of the reranking method based on
the multiple-average prototype with a special case of similarity measure based
on the dot product. While we notice that the following mathematical derivation
may not be applicable for other categories of similarity functions, we believe the
properties of multiple-average prototype obtained from this analysis are generally
useful. By using the dot product similarity the corresponding meta reranker can
be written as

MMA(Ij , P
MA
i ) =

1

i

i
∑

k=1

Sim(Ik, Ij). (3.6)
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Figure 3.5: The relevance probability of bags of images at different rank positions of the
text-based search result, derived from the statistics in the Web Queries dataset comprising
353 representative image queries. The relevance probability is computed as the average
relevance of the images ranked at and before this position based on the ground-truth.

Integration of (3.6) into the linear reranking model leads to the following expres-
sion:

RMA(Ij) =

L
∑

i=1

(wi ×
1

i

i
∑

k=1

Sim(Ik, Ij))

=
L
∑

i=1

αi × Sim(Ii, Ij),

(3.7)

where

αi =

L
∑

k=i

wk

k
. (3.8)

The above expressions transform the model based on a multiple-average prototype
onto the model based on a single-image prototype, however, with different weights.

The reranking model based on a multiple-average prototype has three im-
portant properties. The first is that the weights of images ranked higher in the
text-based search result will be larger than that of the images ranked lower:

αi >= αj for i < j. (3.9)

This property can easily be derived from Eqn. (3.8). It states that the ranking
in the text-based search result represents the ordering of the importance for each
individual image to be used as a prototype for reranking. In other words, the
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reranking based on a multiple-average prototype will rely more on the initial
text-based result than that based on a single-image prototype.

To derive the second and the third property, we write the model weights W
as

wi = i×
L
∑

k=i

(−1)k−iαi. (3.10)

Then we integrate this formula into the formulation of Ranking SVM as defined
in Eqn. (3.1) and obtain

min
1

2

∑

i

|i ×
L
∑

k=i

(−1)k−iαi|2 + C
∑

ξijk

s.t. ∀qi, Ij ≻ Ik : AT (M(Ij)−M(Ik)) ≥ 1− ξijk

∀i, j, k : ξijk ≥ 0,

(3.11)

where A is the vector of αi.
From the above expression we can see that the regularization of each model

parameter αi is weighted by its rank. Hence, the second property of the reranking
based on a multiple-average prototype is that the different α parameters have
different flexibility to find the optimal value. The parameters corresponding to
higher ranks (smaller i) have a larger solution space, and vice versa. This has a
similar effect as the feature balancing strategy in the supervised-reranking method
to emphasize the important features a priori [126]. For the reranking method
based on a multiple-average prototype, the higher the image is in the text-based
ranking the more important it is for reranking.

The third property is also derived from the regularization. The reranking
model in Eqn. (3.11) not only regularizes the solution space of model parame-
ters α, but also regularizes to make the images at adjacent ranks have similar
weights. Combining it with the first and second property, we can conclude that
the learned weights for individual images by the reranking based on a multiple-
average prototype will decline gradually with the decreasing ranks. This may
make this reranking model less aggressive and more robust than the one based on
a single-image prototype. Meanwhile, it makes the reranking model learned for
the multiple-average prototype hardly over-fitting to the training queries.

3.4.3 Multiple-set prototype

The multiple-set prototype PMS
i at rank i is defined as a bag of images ranked

from the topmost position to the rank i, as illustrated in Fig. 3.6.

PMS
i = {Ij}ij=1. (3.12)

The multiple-average prototype presented in Section 3.4.2 is the average of fea-
tures for the images in the multiple-set prototype and can be seen as a special
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Figure 3.6: Illustration of constructing meta rerankers using multiple-set prototype.

case of this prototype. The multiple-set prototype is a more flexible representa-
tion satisfying the bag-wise RRC assumption, which can support the development
of other types of meta rerankers.

Given a multiple-set prototype PMS
i , we can learn a visual classifier by re-

garding all the images in PMS
i as positive samples, which is then employed as

meta reranker and the prediction score is used as the meta reranking score.
Since a discriminative learning method is usually more effective for learning a

visual model, we adopt SVM [99] in this chapter. However, it needs not only pos-
itive samples but also negative samples. We propose the following two strategies
to select negative samples.

• Background images. The advantage of selecting the background images
as negative samples is that they are very unlikely to be relevant to any query
of interest. In this chapter, we select the images which are ranked in the
bottom for each query as the background.

• Random images. The other strategy of selecting negative samples is to
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use the randomly sampled images from the entire database. The advantage
of selecting random images as negative samples is that we can construct mul-
tiple sets of negative samples, so as to de-correlate different meta rerankers.

The meta reranker with a multiple-set prototype can be defined as follows:

MMS(Ij , P
MS
i ) = p(Ij |θ̂), (3.13)

where θ̂ is the learned model and

θ̂ = argmax
θ
p(PMS

i |θ). (3.14)

3.5 Experiments

In this section, we demonstrate the effectiveness of the proposed prototype-based
image search reranking method by means of an experimental study performed
on the publicly available Web Queries dataset. We refer to our three reranking
methods: single-image prototype, multiple-average prototype, and multiple-set
prototype, proposed in Section 3.4, as Prototype-Single, Prototype-Average, and
Prototype-Set, respectively.

3.5.1 Experimental setup

To make the experimental results reported in this chapter reproducible, we used
the publicly available Web Queries dataset2 comprising a large amount of rep-
resentative and diverse image search queries. The dataset contains in total 353
queries. For each query, tens or hundreds of images are retrieved and downloaded
using a web search engine, which resulted in a total of 71478 images. For each
query and an image in its text-based search result, a binary relevance is labeled
as the ground-truth.

To illustrate the effectiveness of the proposed method, we compare it with
the text-based search baseline from the search engine as well as the state-of-the-
art supervised and unsupervised reranking methods. The supervised approaches
include the recently proposed supervised-reranking3 [126] and query-relative clas-
sifier [50]. The unsupervised reranking methods include the PRF reranking [121],
random walk reranking [38][43], and Bayesian reranking [102][103]. In the PRF
reranking, top-ranked images in the initial search result for a given query are used
as positive samples and the negative samples are selected from the background
images. For Bayesian reranking, the best performing local learning consistency
and pair-wise ranking distance are used. As suggested in [50], 400 ordered visual
words are used to construct the binary features for query-relative classifier.

2http://lear.inrialpes.fr/∼krapac/webqueries/webqueries.html
3To differentiate the specific method called “supervised reranking” in [126] from the general

meaning of supervised reranking, we will use “supervised-reranking” to denote the method in
[126].
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The reranking models in the supervised reranking methods including those
from [126][50] and the one proposed in this chapter are trained using Ranking
SVM [44]. To validate the parameter C in Ranking SVM, the entire dataset is
randomly split into 10 folds to generate the training, validation, and test data.
The reranking methods are tested in a round robin way for 10 times. At each
time, one among the 10 folds is used for testing, 8 folds for training, and the rest
one for validating the parameter C.

For the purpose of computing visual similarity between images, the SIFT
features [61] with dense sampling are extracted from the images and then quan-
tized together with the spatial layout to represent the images as bags of visual
words [110]. For the methods including random walk reranking, Bayesian rerank-
ing, supervised-reranking, and our proposed method, histogram intersection is
used as the similarity measure between two images. For PRF reranking and the
variant of our method based on the multiple-set prototype, the linear kernel is
adopted for SVM due to efficiency reasons. In addition to the visual features, 154-
dimensional textual ranking features are extracted for each query-image pair from
the text associated with the images, according to a common text search approach4.
The textual ranking features will be combined with the visual ranking features
to achieve a better performance. The reranking using only the 154-dimensional
textual ranking features is also reported.

The SVMLight software [99] is employed to learn the classifiers for PRF rerank-
ing and for constructing the meta rerankers for the reranking with multiple-set
prototypes. Since cross-validation is time-consuming, the default value of the
parameter C estimated by the software is adopted.

All the images in the text-based result for a query in the Web Queries dataset
are involved in the reranking process. For Prototype-Single and Prototype-Average
the number of prototypes is set as the number of images in the text-based result
for a query, while for Prototype-Set we use at most top 100 images to build 100
meta rerankers. When constructing the meta rerankers for Prototype-Set We use
352 samples as negative samples that are drawn from a different query than the
one being used.

Both Average Precision (AP) [8] and Normalized Discounted Cumulative Gain
(NDCG) [41] are adopted to measure the ranking performance. AP is defined
as the average of precisions at various recall levels. The APs for all queries in
the dataset are averaged to obtain the Mean Average Precision (MAP). NDCG
emphasizes more on the relevance of top results through discounting the gain by
the ranked position, which is defined as

NDCG@k =
DCG@k

IDCG@k
, (3.15)

4http://research.microsoft.com/en-us/projects/mslr/feature.aspx
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Table 3.1: Performance comparison of various reranking methods. The numbers in the
brackets are the relative improvements of various methods over the Text-baseline.

Methods MAP NDCG@10 NDCG@40

Text-baseline 0.569 0.682 0.633

Text-ranking 0.594 (+4.39%) 0.684 (+0.29%) 0.649 (+2.53%)

PRF [121] 0.658 (+15.64%) 0.772 (+13.20%) 0.718 (+13.43%)

Random walk [38][43] 0.641 (+12.65%) 0.766 (+12.32%) 0.704 (+11.22%)

Bayesian [102] 0.643 (+13.01%) 0.766 (+12.32%) 0.709 (+12.01%)

Supervised-reranking [126] 0.665 (+16.87%) 0.769 (+12.76%) 0.733 (+15.80%)

Query-relative [50] 0.666 (+17.05%) 0.768 (+12.61%) 0.729 (+15.17%)

Prototype-Single 0.678 (+19.16%) 0.804 (+17.89%) 0.750 (+18.48%)

Prototype-Average 0.669 (+17.57%) 0.794 (+16.42%) 0.742 (+17.22%)

Prototype-Set 0.703 (+23.60%) 0.826 (+21.11%) 0.777 (+22.75%)

Prototype-All+Query-relative 0.706 (+24.08%) 0.823 (+20.67%) 0.779 (+23.06%)

Prototype-Set+Text 0.714 (+25.48%) 0.835 (+22.43%) 0.787 (+24.33%)

where

DCG@k =

k
∑

i=1

2ri − 1

log2(i+ 1)
, (3.16)

ri is the human judged relevance of the corresponding image and IDCG@k is a
normalization term used to scale the NDCG between 0 and 1.

3.5.2 Performance comparison

The proposed three variants of the prototype-based reranking method, including
the one based on a single-image prototype (Prototype-Single), multiple-average
prototype (Prototype-Average) and a multiple-set prototype (Prototype-Set) are
compared with the baseline from the text-based search engine (Text-baseline),
textual ranking based on a learned ranking model with the 154-dimensional tex-
tual ranking features (Text-ranking), and the state-of-the-art unsupervised and
supervised visual reranking methods, including supervised reranking (Supervised-
reranking) [126], query-relative classifier (Query-relative) [50], PRF reranking
(PRF ) [121], random walk reranking (Random walk) [38][43], and Bayesian rerank-
ing (Bayesian) [102][103].

Table 3.1 shows the performance comparison of the above-mentioned rerank-
ing methods, in terms of MAP, NDCG@10, and NDCG@40. It can be clearly
observed that all the visual reranking methods outperform the Text-baseline with
performance improvements larger than 12%, and Text-ranking with improvements
above 8%, in terms of MAP. This demonstrates the effectiveness of the visual
reranking concept. Furthermore, all supervised reranking methods outperform
the unsupervised ones, which once again justifies the integration of a manual
relevance labeling step in the reranking process.
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Figure 3.7: Performance comparison of Prototype-Set and Text-baseline from the
search engine. The queries are arranged in the ascending order of the performance of
Text-baseline.The x axis are the queries labeled by the corresponding ranks.

Among the three kinds of supervised reranking methods, all three variants of
the proposed prototype-based reranking method outperform Supervised-reranking
and Query-relative methods. Since the learning approach and the visual feature
representation are nearly the same for these reranking methods, this result shows
that the prototype-based meta rerankers are most successful in effectively uti-
lizing the information extracted from the text-based search result. This also
demonstrates the effectiveness of the proposed RRC and bag-wise RRC assump-
tions. Since the Query-relative classifier uses the average of the visual features
from top images as the visual representation of the query, the performance may
be influenced by the outliers in the top result and the differentiation of images
at different ranked positions is not taken into consideration. On the contrary,
the prototype-based reranking approach is hardly affected by outliers, since the
weights for different images are learned from human-labeled data. Compared
to the Supervised-reranking approach, which extracts eleven carefully designed
reranking features based on the domain knowledge from the image search con-
text, the prototype-based reranking method can be thought of as to be more
generalized since the knowledge about the image search engine is discovered au-
tomatically.

Among the three variants of the prototype-based reranking method, Prototype-
Set achieves the best performance, which improves 23.6% in terms of MAP over
the Text-baseline. The reason may lie in the fact that Prototype-Set more com-
prehensively utilizes the information in the text-based result through learning
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visual classifiers. A comparison of the MAP performance between Prototype-Set
and Text-baseline in Fig. 3.7 shows that search performance is improved for 93%
(327/353) of the queries by the Prototype-Set reranking.

For the evaluation of the computational cost of the proposed approaches, we
mainly focus in the chapter on the overall online computational cost that directly
affects the query response time. The computational cost of reranking images for a
query is 12.47s using Prototype-Set on a single CPU in our workstation, which is
mainly due to the training of meta-rerankers. While this is acceptable for the tasks
including collecting training data from web, it is not appropriate for real-time
web image search tasks. However, the speed can be traded off with the precision.
The reranking time can be reduced to 3.6s by using less negative samples (100
negative samples), and can be further reduced to 0.78s by constructing meta
rerankers at every five images. The corresponding MAP values are 0.687 and
0.684, respectively, which are still better than those of other methods.

The combination of the meta rerankers constructed by the three variants of
the prototype-based reranking method and the features in query-relative clas-
sifiers (Prototype-All+Query-relative) does not perform better than only using
Prototype-Set. This suggests that Prototype-Set already exploits all the visual
information which can be mined from the text-based search result and that the
information discovered by Prototype-Single, Prototype-Multiple, and even Query-
relative does not reveal any new aspects of influence for reranking.

To complete the experimental study, we also build a new reranking method,
Prototype-Set+Text, by integrating the meta rerankers of the best performing
Prototype-Set and the 154-dimensional textual ranking features. This hybrid
method outperforms all the others. Its ranking performance arrives at 0.714
in terms of MAP and achieves 25.48% improvement over the Text-baseline. More-
over, Prototype-Set+Text improves the results for 95% (334/353) of the queries
over the Text-baseline.

Sample results from Prototype-Set+Text and the Text-baseline are illustrated
in Fig. 3.8. We can see that the proposed method can indeed learn meaningful
visual models from the text-based search result in a query-independent way to
boost the ranking performance. For most of the queries, e.g., “forbidden city” and
“white house”, the ranking performance is greatly improved. Even when the text-
based ranking is bad, the proposed method can still discover useful information
for reranking. For example, for the query “comics page”, the MAP for Text-
baseline is only 0.161. However, the reranking can still boost the performance
by improvement of 63% since the relevant images exhibit common patterns while
noisy images are scattered. In few cases (less than 5%) where the text-based
result is poor and the noisy images are visually similar to the relevant ones, the
reranking will degrade the performance. For example, for the query “will smith”,
even though it can be discovered that the query is about people, the visual features
cannot distinguish persons from each other.
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Figure 3.8: Sample results of (a) Text-baseline and (b) Prototype-Set+Text. The
numbers 1 or 0 below the images are the manually labeled relevance values serving as
ground truth.

3.5.3 Analysis

We can observe from Table 3.1 that Prototype-Average performs slightly worse
than Prototype-Single. This seems to be in contradiction with the intuition since
Prototype-Average is based on a more robust assumption. However, the analysis
in Section 3.4.2 indicates that this result is reasonable since Prototype-Average
is more moderate in changing the text-based search result than Prototype-Single.
Fig. 3.9 shows a per-query performance comparison between Prototype-Single
and Prototype-Average with the text-based search result serving as baseline. This
comparison shows that while Prototype-Average is less effective in boosting the
reranking performance, it is also more robust in the cases when reranking may lead
to performance degradation, like in the last examples discussed in the previous
section.

Figure 3.10 illustrates the respective performance of the meta rerankers con-
structed by Prototype-Set using bags at different ranks. Two observations can be
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Figure 3.10: Performance of various Multiple-set prototype based meta rerankers cor-
responding to different ranked positions in the text-based search result.

made. First, the data size is the most important factor influencing the perfor-
mance of meta rerankers when the data size is small. For the meta rerankers with
the background images strategy, the MAP quickly improves from 0.559 to 0.632
when the number of positive samples increases from 1 to 5. It arrives at a peak
at 0.679 when top 55 images are used to construct the meta reranker. After that
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Figure 3.11: Visualization of the learned model weights w for Prototype-Single method.

the performance starts to decline with more images being incorporated into the
learning process and arrives at 0.658 when all top images are utilized. This leads
to the second observation that the data quality is the most important factor when
the data size is sufficient. Since finding a trade-off between the data quality and
data size is a challenging problem, Prototype-Set addresses this problem by learn-
ing weights to combine the meta rerankers with high data quality or large data
size, to more comprehensively utilize the information contained in the text-based
search result.

The comparison of the meta rerankers using random images and background
images shown in Fig. 3.10 demonstrates that the two strategies are comparable,
although background images perform slightly better than random images. The
MAP of Prototype-Set with background images (0.705) is also slightly better than
that with random images (0.702).

The learned reranking models are visualized in Fig. 3.11, Fig. 3.12, and Fig.
3.13 for Prototype-Single, Prototype-Average, and Prototype-Set, respectively. We
can see that the model weights in Prototype-Single tend to decrease with the de-
cline of the ranked positions in the text-based search result. While the decrease
is not strict, it is basically accordant with the relevance probability as shown in
Fig. 3.1. Figure 3.12 shows that Prototype-Average exhibits a similar trend, that
is, the weights for top-ranked multiple-average prototypes in the text-based result
tend to be larger than those ranked lower. As the weights for the multiple-average
prototypes in Prototype-Average can be transformed to be the α weights on in-
dividual images using Eqn. (3.8), the α values are computed and shown in Fig.
3.14. The α values decrease strictly and smoothly with the ranked position and
become nearly zero after rank 78, which demonstrates the correctness of the de-
rived three properties of Prototype-Average in Section 3.4.2. From this result and
the former analysis we can hypothesize that although Prototype-Average cannot
perform better than Prototype-Single in terms of average performance, it is more



58 PROTOTYPE-BASED IMAGE SEARCH RERANKING 3.5

0.2

0.4

0.6

0.8

1

W
e

ig
h

t

-0.2

0

0.2

0.4

0.6

0.8

1

W
e

ig
h

t

Initial Rank

Figure 3.12: Visualization of the learned model weights w for Prototype-Average
method.

-0.4

-0.2

0

0.2

0.4

0.6

W
e

ig
h

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

W
e

ig
h

t

Initial Rank

Figure 3.13: Visualization of the learned model weights w for the Prototype-Set
method.

robust to noise and hardly suffers from the over-fitting problem. The learned
weights for Prototype-Set as shown in Fig. 3.13 have a more complex relationship
with the rank positions since the meta rerankers learned from the bags at different
ranks are highly correlated. A conclusion that can be drawn from this is that the
learning process is rather important since we cannot simply design a function to
estimate the model weights from the rank positions.

We further studied the effect of two parameters in Prototype-Set, i.e., the
number of meta rerankers L and the number N of top images to be reranked,
on the reranking performance. We can see in Fig. 15 that the variation in
the performance reduces for L >= 30 and that the performance exceeds 0.7 for
L >= 100. Since increasing L leads to larger computational costs, we select
L = 100 in our experiments as a good representative value for our experiments.

Intuitively, involving more top images from the initial result into the reranking
process should lead to an increase in the reranking performance. Fig. 3.16 shows
the performance of Prototype-Set when applied to different numbers of top images,
from which we can see that the MAP keeps improving when N increases. This
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Figure 3.14: Visualization of the parameters α for the Prototype-Average method.
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Figure 3.15: The MAP of Prototype-Set for different numbers L of meta rerankers.

basically demonstrates the correctness of the intuition. On the other side, we
may also intuitively hypothesize that more images to be reranked could lead to
increased unreliability of the reranked result. However, we did not observe this
in our results.

3.6 Conclusions

In this chapter, we proposed a prototype-based reranking framework, which con-
structs meta rerankers corresponding to visual prototypes representing the textual
query and learns the weights of a linear reranking model to combine the results
of individual meta rerankers and produce the reranking score of a given image
taken from the initial text-based search result. The induced reranking model is
learned in a query-independent way requiring only a limited labeling effort and
being able to scale up to a broad range of queries. The experimental results on
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the Web Queries dataset demonstrate that the proposed method outperforms all
the existing supervised and unsupervised reranking methods. It improves the per-
formance by 25.48% over the text-based search result by combining prototypes
and textual ranking features.

A natural extension of the approach described in this chapter would be to
apply the proposed methods to learn concept models from image search engines
in a semi-automatic fashion. Compared to the fully automatic methods [57], the
semi-automatic approach could learn the concept models for any arbitrary concept
much better and with only little human supervision.

While our proposed methods have proved effective for reranking image search
results, we envision two directions for future work to further improve the reranking
performance. First, we could further speed up the Prototype-Set method variant
while decreasing the precision degradation. Since top images are incrementally
added into the multiple-set prototypes to train the meta rerankers, one of the
possible approaches in this direction is to utilize the online learning algorithms
[52]. Second, although we assume that the rank position is generally correlated
with the relevance value of the image found there, and while our results show that
this assumption can be regarded valid in a general case, still deviations from this
expectation can occur for individual queries. Hence, we could work on improving
the proposed reranking model to make it more query-adaptive. One possible
approach here would be to automatically estimate the query-relative reliability
and accuracy of each meta-reranker and then incorporate it into the reranking
model. Another approach may be to learn the reranking models for different
query classes.



Chapter4
Learning to Rerank Web Images:

Reflections and Recommendations

1

This chapter reviews recent advancements in developing approaches to web
image search reranking. A categorization of related theories and algorithms is
provided, accompanied by a mathematical formulation, analysis and discussion
per category. Limitations of the existing approaches are highlighted and recom-
mendations are made on what we believe to be the most critical research direc-
tions to improve the efficiency, effectiveness and overall utility of web image search
reranking technology.

1This chapter was published as: Linjun Yang, Alan Hanjalic, “Learning to Rerank Web
Images,” IEEE Multimedia Magazine, To Appear [129].
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Figure 4.1: Illustration of the mismatch between an image and the surrounding text.
This image (url:http://thewhizzer.blogspot.com/2008 11 01 archive.html) is returned by
a popular web image search engine for the query “george w bush”.

4.1 Introduction

The existing web image search engines retrieve and rank images mostly based on
matching the text queries with textual information accompanying the images on
web sites, including the tags, comments, surrounding text, title, alt text and url.
While the image retrieval performance can be good for many queries, the precision
of the returned results is still not high in a general case. The major bottleneck is
the likely mismatch between the image content and the text from the web pages,
which is not always rightfully assumed to be associated with the image and to
reveal precisely those aspects of the image content that are demanded by the
query. This mismatch is illustrated by an example in Figure 4.1.

Image search reranking attempts to resolve this bottleneck by relying in the
image search process not only on the text information channel, but also on the
visual one. There, the ranked list of images obtained via search in the text channel
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is considered as a noisy, but informative baseline. The visual content of the images
is then deployed to reduce the ambiguity in the list and move more of the relevant
images towards the top of the list. This process is illustrated in Figure 4.2.

Initially, the development of the image search reranking methods was based
on the rationale that the consistency in the content of the relevant images should
be observable in both the textual and visual domain. Enforcing the content
consistency in both domains simultaneously has typically been attempted through
an optimization approach, various realizations of which have led to many different
proposals for image search reranking over the past several years [36][102]. Since
the content consistency criteria in these methods have been defined largely ad
hoc, recently proposed reranking methods have tried to incorporate sophisticated
machine learning mechanisms into the process so that more reliable reranking
models can be generated.

The goal of this chapter is to review the trends that have characterized the
research on image search reranking, to discuss the problems found underway and
to identify promising ideas that should guide future activities in this research di-
rection. We will do this by performing a categorization of reranking theories and
algorithms, which will be accompanied by a mathematical formulation, analysis
and discussion per category. Finally, recommendations will be made on what we
believe to be the most critical research topics to improve the efficiency, effective-
ness and overall utility of web image search reranking technology. In view of the
fact that these topics not only address the scientific concepts, but also the issues
related to optimization of the implementation of reranking mechanisms in real-
life search engines, this chapter not only targets researchers, but also web system
architects and search engine developers.

We start in Section 4.2 with a general mathematical formulation of the image
search reranking problem. This is followed in Section 4.3 by a categorization,
an overview, and a discussion of the existing solutions to this problem. Section
4.4 highlights the issues that we consider important for the future research on
image search reranking. Section 4.5 concludes the chapter with a summary of
recommendations for future work.

4.2 Problem formulation

In the following we will give several definitions to mathematically formulate the
image search reranking problem.

Definition 4.2.1. A ranking score list r = [r1, r2, · · · , rN ]T , is a vector of real
numbers, each of which corresponds to the ranking score of an image in the image
set D = {d1, d2, · · · , dN}.

Definition 4.2.2. A ranking list l is a permutation of D sorted by the ranking
scores in descending order.
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Figure 4.2: Illustration of the image search reranking process.

In general reranking can be regarded as a mapping from the initial ranking list
to the desired (target) ranking list. This mapping is generated using a reranking
model that recomputes the ranking score list based on the available additional
(e.g. visual) information.

Definition 4.2.3. A reranking model is defined as a function

rij = f(dij ,Di, r̄i, qi). (4.1)

Here, Di is a collection of images dij returned for the query qi, which may be
represented by features from different modalities such as text and visual. Further-
more, r̄i is the ranking score list of images Di in the initial search result, while rij
is the final ranking score for image dij.

The existing reranking methods differ from each other mainly in the way they
derive the reranking model f . In the following, we will propose a categorization
of existing image search reranking methods and discuss how the reranking model
can be derived per category.

4.3 Categorization and analysis of approaches

The reranking function f can be written in general as

f = h ◦ g(dij ,Di, r̄i, qi), (4.2)

where ◦ represents the composition of two functions, a query-independent function
h and a query-dependent function g. The query-independent function keeps a
unified representation with identical parameters across different queries, while the
query-dependent function is adjustable for each query based on the information
derived from the initial ranking.
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In many reranking approaches [121][37][38][43][102], h is a pre-defined query-
independent function or even a constant function and g a scalar function learned
from the initial ranking returned by the search engine. We can therefore say
that in this case the (parametric or non-parametric) reranking model is generated
through learning from search engine. Since function g is dependent on the query
for which the initial ranking was generated, these approaches can be said to
deploy query-dependent learning. Learning of g here is typically unsupervised,
since the samples used for learning are labeled by the search engine based on the
initial ranking and are not provided by a human. Consequently, the approaches
from this category are also referred to as unsupervised reranking. The features
employed in such approaches to construct image similarity models underlying the
function g are usually visual features such as color, texture, and local gradient-
based features, which are only related to the content of individual images and
therefore said to be query-independent. We analyze and discuss these approaches
in Section 4.3.1.

In another category of approaches [126][50], function g is defined as a function
to compute a vector of reranking features from the initial ranking, and h is learned
from human-labeled data. The reranking features produced by g embed the in-
formation about the relevance of an image to a query, and can be characterized as
query-dependent. As model learning has shifted to function h, we can say that the
reranking model is generated through learning from human supervision. These
approaches have built on the success of the learning-to-rank [59] concept that was
introduced in the field of information retrieval. In these methods, human supervi-
sion is deployed to learn more sophisticated image relevance criteria and develop
a better reranking model than the ad-hoc one learned in an unsupervised fashion
from the search engine as in the first category of approaches described above. A
detailed analysis and discussion of the approaches falling into this category can
be found in Section 4.3.2.

A third category of approaches combines the advantages of the above two
paradigms and produces a reranking model through learning from search engine
and human supervision. The approaches falling into this category are discussed
in Section 4.3.3.

4.3.1 Learning from search engine

The approaches of learning from search engine are mostly based on two underly-
ing assumptions, the pseudo-relevance feedback (PRF) assumption and the visual
consistency assumption.

According to the PRF assumption, the top-ranked images in the text-based
search result can be considered relevant. Then a ranking model can be learned
from these (pseudo-relevant) images and deployed to predict the refined ranking
scores. Taking the method [121] as an example, where the PRF assumption is
implemented by means of a SVM (Support Vector Machine) classifier [109], the
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reranking model in this case can mathematically be defined as follows:

f = h ◦ g(dij ,Di, r̄i, qi)

= g(dij ,Di, r̄i, qi)

= ŵdij ,

(4.3)

with

ŵ =argmin
w

1

2
||w||2 + C+

1

∑

di
j
∈Di+

max(0, 1−wT dij)

+ C−
1

∑

di
j
∈Di−

max(0, 1 +wT dij).
(4.4)

The reranking model f in (4.3) is an implicit function mapping the initial text-
based result to the refined ranking scores. It is an ad-hoc function designed by
domain experts and based on the hypothesis that the reranking criterion can be
derived from the patterns discriminating the top-ranked results from the rest in
the initial list. Here Di+ is the collection of pseudo-relevant images corresponding
to the top-M images in the text-based search result and Di− is the collection of
pseudo-irrelevant images which are sampled from the bottom of the text-based
search result or from the entire collection [121]. Alternatively, the set Di+ could
also be constructed from the click-through log of an image search engine [40].
The refined query model ŵ, which is an intermediate variable of the reranking
model f , is learned from the initial text-based result and is query-dependent. In
this sense, it can be said that the reranking model (4.3) resembles the query-
dependent function g, while the query-independent function h can be seen as a
non-informative constant. Finally, C+

1 and C−
1 are the parameters to control

the tradeoff between the regularization and the loss from positive and negative
samples.

According to the visual consistency assumption, the visually consistent images
should be ranked close to each other. We illustrate the possibilities for implement-
ing this assumption on the example of the Bayesian reranking approach [102] that
also more explicitly reveals the trade-off between this assumption and the assump-
tion common to reranking in general, namely that the bias towards the noisy but
still informative initial results list should be preserved:

f = h ◦ g(dij ,Di, r̄i, qi) = r̂ij ,

r̂i = argmin
ri

1

2

∑

j,k
vijk(r

i
j − rik)

2 + C2

∑

(1−
rij − rik
r̄ij − r̄ik

)2.
(4.5)

Here, vijk is the visual similarity in terms of the feature vector between the images

dij and dik ranked at the positions j and k in the initial list obtained for query

qi, and C2 is the trade-off parameter. The visual similarity function vijk here
is defined a priori and does not change across queries. It can therefore be said
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to resemble the query-independent function h, which in this case serves as an
argument of function g.

If we compare the methods used in the examples above, we can say that in the
case of Bayesian reranking, the reranking model f in Eqn. (4.5) is also an implicit
expert-designed function mapping the initial text-based search result to the new
refined ranking. However, different from the model in Eqn. (4.3), we do not need
to explicitly infer a query model, but only to estimate the new ranking scores for
all candidate images.

While having the advantage of not requiring human supervision and therefore
to scale well across a broad range of different queries, this category of reranking
approaches suffers from insufficient reliability of the assumptions under which the
initial text-based image search result is employed in the reranking process and
from a missing link between these assumptions and the human notion of relevance
of retrieved images. Specifically regarding the examples discussed above, the
PRF assumption may not be satisfied well by the existing image search engines.
Furthermore, the visual consistency assumption steers towards optimizing the
results list to be visually consistent, which does not necessarily guarantee semantic
relatedness between these images and the query and therefore the actual relevance
for the users.

4.3.2 Learning from human supervision

The reranking approaches discussed in this section learn the reranking model
from human-labeled samples and are therefore referred to as supervised reranking
[126][50]. We adopt here a definition of supervised reranking as formulated in
[126].

Definition 4.3.1. Supervised reranking is defined as a process of learning a
reranking model f from the given training samples {Di, r̄i, qi, ri}, where Di, r̄i, ri

are the initially returned documents, initial ranking and the ground-truth rank-
ing corresponding to the query qi. The learning process can be formulated as the
process of minimizing the loss function

f∗ = argmin
f

∑

i
△(ri, [f(dij ,Di, r̄i, qi)]N

i

j=1). (4.6)

where △ measures the loss between the ground-truth ri and the prediction r̂i =
[f(dij ,Di, r̄i, qi)]N

i

j=1. N
i is the number of images to be reranked.

This definition indicates that the reranking model f in supervised reranking is
not a pre-defined function as in the unsupervised reranking case, but is estimated
by optimizing the loss function △. The loss function is defined on a few manually
labeled samples of selected queries and images in order to measure whether the
predicted ranking from the learned model is in accordance with the manual labels.

Since it is impossible to learn a reranking model for each possible query, a
general model applicable to all queries should be learned. In order to achieve this,
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Figure 4.3: An illustration of the supervised reranking process (adopted from [126]).

the query-independent component of the reranking model f needs to be developed
that is learned offline using several representative queries, but that can model the
patterns common across queries. Figure 4.3 illustrates the combination of the
query-independent and query-dependent components in a supervised reranking
approach.

A supervised reranking approach can be developed by representing f as a
weighted combination of multiple terms, where each of the terms describes one
aspect of the relevance between a query and an image where a query is usually
represented using its text-based result returned by the search engine and where
the weights to combine the components are common and can be learned across
queries:

f = h ◦ g(dij ,Di, r̄i, qi)

= h(g(dij ,Di, r̄i, qi)),
(4.7)

with
h =

∑

k

ukgk (4.8)

and
g = [g1(d

i
j ,Di, r̄i, qi), ..., gk(d

i
j ,Di, r̄i, qi), ...]. (4.9)

Here we refer to gk as reranking features realized in the form of meta rerankers. In
this way, the process of learning the query-independent reranking models uk can
be reduced to a standard learning-to-rank problem [59] that requires a few labeled
samples. Hence, the existing learning-to-rank algorithms including Ranking SVM
[44] can be deployed to learn the weights uk.
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Table 4.1: An overview of the eleven reranking features proposed in [126].

HVN Hard Voting of Neighbors

RSVN Initial Rank based Soft Voting of Neighbors

NRSVN
Neighbor Rank Weighted Initial Rank based Soft Voting of
Neighbors

HVR Hard Voting of Reciprocal Neighbors

RSVR Initial Rank based Soft Voting of Reciprocal Neighbors

NSVR Neighbor Rank based Soft Voting of Reciprocal Neighbors

NRSVR
Neighbor Rank Weighted Initial Rank based Soft Voting of
Reciprocal Neighbors

PRFd Local Density Estimation for PRF

PRFdv Duplicate Voting for PRF

PRFsdv Soft Duplicate Voting for PRF

IR Initial Ranking

Effective embedding of query information into the meta rerankers is critical
in order to be able to learn uk and to make it generalize across queries. In [126],
eleven reranking features were proposed, as listed in Table 4.1. These features are
derived from the initial text-based ranking and from the visual content analysis
of the initially returned top images. As can be seen from Table 4.1, the features
are mostly based on simple counting, like the number of near-duplicates in top
results or the weighted number of visual neighbors of each image, and are therefore
computationally lightweight. Their effectiveness has been demonstrated in [126]
on a moderate dataset collected by issuing 29 queries on three image search engines
including Bing, Google, and Yahoo! .

Krapac et al. [50] developed another strategy to build the meta rerankers.
First, the bag-of-words feature extraction method is applied to top images in
the initial list. Visual words are then aggregated over all top images and sorted
according to their word frequencies to serve as the visual surrogate of the textual
query. Finally, for each image in the initial list, the reranking feature vector is
extracted by comparing the frequencies of each visual word in the image to that
in the visual query surrogate to form a binary vector of visual word presence.

Just like in the case of unsupervised reranking, the examples of approaches
discussed above indicate that the reranking features are here again based on the
visual consistency assumption and pseudo-relevance feedback assumption. While
these assumptions are unreliable if serving alone as the basis for building a rerank-
ing model, supervised reranking improves the reliability by steering the model
learning using human-labeled samples. The critical aspect here is, however, that
the learning process is designed such that human supervision does not reduce the
scalability of the reranking approach in terms of the coverage of the query space.
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4.3.3 Learning from search engine and human supervision

One of the drawbacks of the supervised reranking approaches is that the reranking
features or meta rerankers are hand-designed by domain experts. In general, this
may be insufficiently effective for discovering sophisticated information contained
in the data that could be beneficial for reranking. Furthermore, due to large
variations in text-based search results, it is virtually impossible to hand-design
these features such that a reranking approach could work well on all search engines
and for all queries. To address this disadvantage, automatic approach is required
to learn the reranking features from the initial text-based result that are adaptive
enough to grasp the characteristics of the underlying text-based image search
engine.

In [127], a two-stage learning framework for image search reranking was pro-
posed. In the first step, meta rerankers are learned automatically steered by the
initial text-based ranking result. Then, in a second step, a reranking model is
learned using a number of selected queries as discussed in the previous section.
In this way, two categories of approaches, learning from search engine and learn-
ing from human supervision, are leveraged together to improve the quality of the
reranking scores of the initial image search result.

The underlying assumption of the feature-learning step in [127] is that the im-
ages at different positions in the initial text-based ranking should be considered
with different confidence values when acting as positive samples. These confidence
values should also be roughly consistent across queries for a given image search
engine. This assumption is reasonable since the modern image search engines op-
timize the relevance probability of top-ranked images, as evidenced by the widely
adopted evaluation measures like Mean Average Precision (MAP) or Normalized
Discounted Cumulative Gain (NDCG) that build on such optimization.

Figure 4.4 illustrates the basic idea of the reranking approach described above
that consists of two learning stages. Multiple meta rerankers are built by employ-
ing different sets of images as positive samples. More specifically, top k images
from the initial ranked list are used to learn the kth meta reranker. The higher
the image rank, the more meta rerankers it will be included in. In this way, the
prior information that the top images have higher relevance probability can be
implicitly incorporated in the process of learning the reranking function. How-
ever, the relevance confidences of images at different positions can still be adjusted
based on human supervision. This is done by learning the combination weights
of different meta rerankers from human-labeled data.

To illustrate the relation between the reranking approaches belonging to this
category and the approaches discussed in the previous sections, we take the
method [127] as an example. Mathematical formulation of the reranking model
there adopts the expressions in Eqn. (4.7) and Eqn. (4.8), with the difference that
gk now represents the kth meta reranker computed using a slightly modified query
model from Section 4.3.1:

gk(d
i
j ,Di, r̄i, qi) = ŵdij , (4.10)
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Figure 4.4: An illustration of an approach to learning meta rerankers.
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(4.11)

Here Di+
k is the collection of top k images in the initial text-based result, and Di−

k

comprises the negative samples selected from the background, e.g., sampled from
the entire collection.

The assumption underlying the model (4.10) is more relaxed than the PRF as-
sumption in that top-ranked results are not automatically assumed relevant, but
the relevance probabilities of images are learned based on human-labeled training
samples. We can see that SVM-based PRF in Section 4.3.1 is a special case of
the above formulation, if the weight vector u is not learned from human labeled
data but set to [0 0 ... 0 1]. Experiments reported in [127] and performed on the
Web Queries dataset2 have indicated that this approach outperforms the initial
text-based by 23.9% and performs significantly better than many representative
existing reranking approaches including PRF [121], Bayesian Reranking [102],

2http://lear.inrialpes.fr/∼krapac/webqueries/webqueries.html
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Table 4.2: Performance comparison of various reranking methods.

Methods MAP NDCG@10 NDCG@40

Search engine 0.569 0.682 0.633

PRF [121] 0.658 (+15.64%) 0.772 (+13.20%) 0.718 (+13.43%)

Bayesian [102] 0.643 (+13.01%) 0.766 (+12.32%) 0.709 (+12.01%)

Supervised-reranking [126] 0.665 (+16.87%) 0.769 (+12.76%) 0.733 (+15.80%)

Query-relative [50] 0.666 (+17.05%) 0.768 (+12.61%) 0.729 (+15.17%)

Two-stage learning [127] 0.705 (+23.90%) 0.828 (+21.41%) 0.778 (+22.91%)

Figure 4.5: The main components of a web image search engine.

query-relative learning [50], and supervised reranking [126], which shows the ef-
fectiveness of the combined learning paradigm. The numerical results of various
representative reranking approaches on the Web Queries dataset, as adopted from
[126], are shown in Table 4.2.

4.4 Remaining challenges

While significant progress has been achieved in web image search reranking over
the past years, we point in this section to a number of critical limitations of the
existing reranking approaches and recommend promising research directions to-
wards addressing these limitations and improving the overall utility of web image
search reranking solutions. These issues include image search system architecture,
search results diversification, query adaptivity of the reranking mechanism, and
maximizing the benefit from human supervision.

4.4.1 System architecture

Although image search reranking can be seen as a post-retrieval ranking refine-
ment step, its successful deployment poses substantial requirements on the system
architecture of a web image search engine. As illustrated in Figure 4.5, such engine
typically consists of four main components:
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• query processing, where user-generated queries are transformed into a format
interpretable by the engine, which includes query alteration and expansion;

• document understanding, which extracts meta data from the associated web
page for representing an image;

• indexing, which provides an efficient organization of the images’ metadata
to speed up the retrieval; and

• ranking, which retrieves and ranks images based on the relevance of images
to the query.

The reranking step is mainly related to the latter three components and im-
poses their adjustments at the system architecture level. The document under-
standing component needs to be modified so that the visual features can be ex-
tracted from the images after images have been collected. In order to keep the
throughput of image crawling and processing acceptable, the time cost for the
visual feature extraction needs to be limited to the order of milliseconds. This
imposes critical challenges on the development of the extractors of visual features
typically deployed in a reranking context, such as the pyramid histogram of visual
words (PHOW) [13].

Since the dimensionality of the visual features is usually high, a large additional
memory space is required to store them. For example, storing the PHOW features
for one million images using naive approaches may require several gigabytes of
memory, which would double the memory cost of the currently deployed image
search engines. Reducing the memory requirements of the visual features while
maintaining their effectiveness for reranking is another critical challenge posed on
the development of future web image search reranking solutions.

Finally, a third architecture-related challenge is posed by the fact that the
time cost of visual reranking in the ranking component should be in the order
of milliseconds in order to be able to maintain the current query response speed.
This, however, is difficult to achieve due to several complex steps of a general
image search reranking algorithm, including the distance computation, model
training and ranking score computation.

4.4.2 Diversification

The objective of most of the existing visual reranking approaches is to optimize
the relevance of the image search result, for the purpose of which the measures,
such as MAP or NDCG, are deployed. Other criteria imposed by the users, such
as the diversity of the retrieved images have, however, not be taken into account to
a significant extent. A possible reason for this is a high difficulty of capturing the
diversity in an objective measure. The measures typically deployed rely mainly
on visual diversity (e.g. [108]) and may not be powerful enough to capture the
semantic diversity of the retrieved visual content. Without the semantic diversity
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being taken into account, the retrieved images may contain trivial samples not
being capable of satisfying the information need of the user. The problem of
semantic diversification also increases through the fact that some of the popular
reranking approaches are based on the assumptions (e.g. the visual consistency
assumption) that conflict with the diversification criteria. This poses a challenge
on the development of future reranking mechanisms that should jointly optimize
both the relevance and diversity of the reranked image search results.

4.4.3 Adaptivity to a query

Due to a large variance among queries, one unified reranking model for all queries
is not likely to be optimal across the entire query space. Indeed, while image search
reranking has been shown to bring significant improvement of search results for
many queries, it still degrades the performance of the initial search results for
some of the queries. Although this degradation is statistically much less frequent
than the achieved performance improvement, the main practical problem related
to it is that degradation is difficult to predict, which may have negative impact on
the user experience, in particular if the user prefers the queries for which reranking
does not perform well. Essentially, to solve this problem an analysis needs to be
performed in order to identify those queries that would benefit from reranking
and under which conditions. We refer to this process as rerankability analysis
and consider it one of the most important challenges that need to be pursued in
order to bring the image search reranking technology to the sufficient utility level.

An important issue that would need to be considered during rerankability
analysis are the visual features used to rerank the results list for a given query.
For example, the color features being important for the query “red apple” would
clearly not be that suitable for the query “street view”, where GIST feature [74]
may be much more powerful in describing the scene appearance. Since there
is no single feature which can perform best for all queries, one of the challenges
underlying the development of rerankability analysis methods is to create a reliable
feature space from which optimal feature selection can be drawn for a given query
space.

Once the feature space has been defined, methods need to be found to per-
form the actual selection of the most suitable reranking option for a given query.
Preliminary results in this direction were reported by Tian et. al. [100]. There, a
method was proposed for selecting the best performing ranking option taking as
input a set of ranking lists generated by a text-based search baseline or a number
of reranking methods deploying different visual features. While in [100] rerank-
ing selection was addressed by a preference learning model operating on carefully
designed features extracted from different ranking lists, also an approach based
on the idea of coherence-based query performance prediction (QPP) [84] could
be deployed for this purpose. While the results reported in [100] and [84] were
promising, still a substantial body of new research is needed to improve the ef-
ficiency and effectiveness of the post-retrieval list selection methods, but also to
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explore more direct ways of evaluating different reranking options for a given
query and the initial results list.

4.4.4 Learning from search engine with light supervision

The approach of learning from both the search engine and human supervision
as described in Section 4.3.3 currently represents the most promising direction
of developing web image search reranking methods. This, however, is still not
the optimal solution since the learning process is split into two separate steps,
which does not allow cross-usage of the information contained in the initial text-
based result and the information derived from the human supervision between
the two steps. We therefore envision a framework that is to be explored in our
future work and that will make a more effective use of the information available
at different stages of the reranking process, for instance by employing human
supervision to steer the process of learning from search engine. The challenge
here is to maximally benefit from human supervision, but without jeopardizing
scalability.

4.5 Conclusions and recommendations

In this chapter we reviewed recent advancements in web image search reranking.
We grouped the existing approaches in three categories and used this categoriza-
tion to depict the main characteristics of the development of reranking method-
ologies over the past years. Advantages and disadvantages of the approaches per
category were highlighted, which led to an overview of the main challenges we see
in front of the research community addressing the improvement of the efficiency,
effectiveness and overall utility of web image search reranking technology in the
future.

In addition to the challenges related to system architecture (computational
efficiency, compactness of visual feature representation), expansion of the rerank-
ing criteria (from relevance only towards combined relevance and diversification)
and adaptivity of the reranking mechanism to the query (rerankability analysis),
we also see a high importance in further improving the reranking approaches by
maximizing the benefit from human supervision, as envisioned in Section 4.4.4.

Another direction for future work would be an in-depth study of various as-
pects of the learning process underlying the development of reranking models in
the approaches discussed in this chapter. Such analysis should optimally map
this process onto the most efficient and effective recently proposed learning-to-
rank algorithms [59]. Specifically for the methods deploying learning from human
supervision, it should be investigated how many queries are sufficient for training
a reasonably good reranking model and how to select informative queries and
images for human labeling to construct the training set for learning an effective
reranking model.
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Chapter5
Object Retrieval using Visual Query

Context

1

In this chapter we address the problem of object-based image retrieval, here
referred to simply as object retrieval. Object retrieval aims at retrieving images
containing objects similar to the query object captured in the region of interest
(ROI) of the query image. While existing object retrieval methods perform well
in many cases, they may fail to return satisfactory results if the ROI specified by
the user is inaccurate or if the object captured there is too small to be represented
using discriminative features and consequently to be matched with similar objects
in the image collection. In order to improve the object retrieval performance also
in these difficult cases, we propose in this chapter an object retrieval method that
exploits the information about the visual context of the query object and employ
it to compensate for possible uncertainty in feature-based query object represen-
tation. Contextual information is drawn from the visual elements surrounding
the query object in the query image.

1This chapter was published as: Linjun Yang, Bo Geng, Yang Cai, Alan Hanjalic, Xian-Sheng
Hua, “Object Retrieval using Visual Query Context.” IEEE Transactions on Multimedia vol.13,
no.6, pp.1295-1307, Dec. 2011 [123].
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Figure 5.1: Illustration of the case where the bounding box does not accurately represent
the search intent. In addition to relevant objects (the Pitt Rivers in Oxford), the bounding
box includes some non-relevant objects as well as some parts of the background.

5.1 Introduction

Recent advances in computer vision, and in particular in the development and
deployment of local visual feature descriptors, like SIFT [61] have boosted the
popularity of object retrieval and its adoption in real-life applications and prod-
ucts. For example, TinEye [7] released an application based on near-duplicate
web image search, while Google Goggles [5] allows users to take a picture using a
mobile phone and then to retrieve information related to the object in the picture.

In a typical object retrieval system, a user first selects an example (query)
image and then draws a bounding box in that image around the object of interest
to specify the search intent. Local features are then extracted from the bounding
box and then quantized into the so-called visual words. This “bag of visual words”
representation is used to match relevant images in a collection, where the relevance
is often computed by proven techniques in the field of information retrieval. For
example, Philbin et al. [77] employed the cosine retrieval model based on tf-idf
vector representation of images and Geng et al. [31] studied the methods based
on language modeling [137] for the purpose of object retrieval.

While object retrieval based on the visual words is generally effective, it may
not achieve a reliable search result in cases where the visual words extracted only
from the bounding box are unable to reliably reveal the search intent of the user.
Firstly, the bounding box is typically only a rough approximation of the ROI
(region of interest) representing the query object. For example, as shown in Fig.
5.1, the bounding box may not represent the ROI accurately since it is simply
a rectangle while the ROI has a complex shape. Therefore, the visual words
extracted from the bounding box may also carry information that is unrelated to
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Query Search Result

Figure 5.2: Since the bounding box is too small, the search intent cannot be estimated
reliably, which results in non-relevant search results like the image containing people.

the search intent. Secondly, in some cases where the ROI is too small, or where
the visual content within the ROI lacks texture, the number of visual words in the
bounding box may be insufficient to perform a reliable relevance estimation, with
the consequence that irrelevant images may be returned. For example, a small
bounding box used in the example in Fig. 5.2 resulted in retrieving an image of
people for the query image showing a building.

The two challenges mentioned above essentially attribute to the uncertainty of
the information contained in the bounding box to reflect the true search intent of
the user. This uncertainty could be handled by taking into account the fact that
objects in real-life images hardly occur in isolation [30][79][75][104]. In this sense,
the visual information outside the ROI can be seen as the context in which ROI
is specified as a search query. By combining the information from the ROI and
from the context, a better query representation could be obtained. For example,
as shown in Fig. 5.3 the water and the lotus leaves surrounding the ROI (lotus
flower) specified by the bounding box can help estimate a better representation
for the query “lotus”, especially when the visual word representation leads to poor
search results for flowers, while it performs relatively well for leaves.

In this work we follow the rationale described above and propose a contextual
object retrieval (COR) model that effectively employs the visual context informa-
tion together with the ROI to improve object retrieval in general, specifically in
the difficult cases discussed earlier in this section. Following the common practice
in the object retrieval field (e.g [31]), we base our model on the language modeling
approaches for information retrieval [137]. Different from the conventional meth-
ods, which estimate the query language model only based on the visual words
within the bounding box, our proposed query language model is estimated using
the visual words from both the ROI and the visual context. These visual words
are weighted using the search intent scores that are based on the uncertain ob-
servation of the search intent, i.e., the bounding box, and the prior information
derived from a saliency map of the image.

We evaluated the proposed model experimentally on three representative datasets.
One of them is the publicly available Oxford building dataset comprising 5K im-
ages of Oxford landmarks [6][77]. To test the performance of our method in a
large-scale image retrieval setting, we constructed a second dataset by combining
the 5K images from the Oxford building set and 500K images from ImageNet
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Figure 5.3: Illustration of the usefulness of the visual context in object retrieval. The
search intent (lotus flower) within the bounding box can be expressed more precisely by
also taking into account the context represented by the water and lotus leaves.

[25]. Furthermore, to investigate the usefulness of the visual context and the ef-
fectiveness of the proposed model on a broader range of search intent categories,
we collected a dataset by crawling 1 million images from Internet and generating
query objects of landmarks, books, logos, paintings, animals, etc.

Although, intuitively, the introduction of context consisting of objects and
background that are irrelevant to the query may be said to introduce noise in the
retrieval process, our experimental evaluation demonstrated that the benefit of
including the context in the retrieval model in the way introduced in this chapter
is stronger than the noise this context may introduce. Furthermore, the evaluation
showed that the proposed COR model outperforms the alternative object retrieval
approaches.

After reviewing the related work in Section 5.2 and positioning the contribu-
tion of this chapter with respect to it, we introduce our COR model in Section 5.3.
In Section 5.4, we propose two methods for computing the search intent score. The
results of the experimental evaluation are reported and discussed in Section 5.5,
while Section 5.6 brings the most important conclusions and recommendations
for future work.

5.2 Related Work and Contribution

User-generated queries are often simple and cannot contain sufficient information
to properly reveal the user’s search intent. To deal with this problem of query
uncertainty or query ambiguity, several general approaches have been proposed
in the past, the most well-known of which is relevance feedback [142]. In this
approach, the feedback from users regarding the relevance of the search results in
the initial search step is exploited in an iterative procedure to estimate a better
retrieval model. Although involving the user in the retrieval loop is conceptually
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promising for learning the search intent, practical issues related to the effort
required from the user in multiple iterations of the learning process have prevented
the adoption of this idea in real-life web search applications [67]. In this chapter,
we aim at refining the query model through a one-step interaction, in which the
user is only required to specify the ROI in the query image. We then exploit the
information from the ROI and the context in which ROI is placed to learn the
query model.

Context has already established itself as an important auxiliary information
source for developing robust and reliable image retrieval solutions [63] and improv-
ing information retrieval in general [9][15][12]. Contextual information derived
from the user profile, from a user’s search interaction, or from a user’s everyday
activity can help infer user’s search preferences and intent and in this way disam-
biguate the query [55][135], while the text surrounding an image on a web page or
the tags (including GPS), comments, and other types of metadata (e.g., exposure
time, ISO, etc.) attached to an image can help learn more about the relevance of
that image with respect to the user’s information need [47][91][130].

In this chapter we focus on the local visual query context, which is, due to its
direct availability, particularly suitable for enriching the information captured in
the bounding box and in this way for reducing the gap between the ROI estimation
and the user’s search intent. The visual context has been widely exploited in
the object recognition tasks in the fields of human vision and computer vision
[30][104][75]. It proved to be useful for disambiguating visual objects that are
cluttered, blurred, or with unfamiliar appearances to a human or computer vision
system. In such cases, the visual context can be leveraged to help improve the
reliability of the object recognition.

While the state-of-the-art contextual object recognition methods largely ex-
ploit the visual context that comprises the global features of the image containing
the object [104][75], the method proposed in this chapter relies on the visual con-
text derived from weighted visual words and is suited for modern image retrieval
approaches utilizing image representations based on the bag-of-visual-words con-
cept [93][31]. In such approaches, the SIFT features [61] are first extracted from
the images and then quantized into visual words. Then the visual words can be
indexed using inverted file system [67]. Finally, the cosine retrieval model [77] or
language model [31] can be adopted to rank images according to their relevance
with respect to the query.

In our CORmodel, the visual context is employed to estimate the search intent
score for each visual word in the query image. This score indicates how likely the
image region represented by the visual word reflects the search intent of the user.
We estimate this score using two approaches, one being based on the distance of
image pixels from the bounding box and the other one being based on the color
coherence of the pixels. We refer to these two methods as spatial propagation
and appearance propagation, respectively. In the first case, we employ the dual-
sigmoid function fitting to compute the scores, while in the second one matting
algorithms [83][112] are used.
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5.3 Contextual Object Retrieval Model

We approach the development of our COR model by first defining the main terms
and notations we are going to use in the process. Then, we briefly introduce the
basic language model approach that our COR model is based on, namely the well-
known Kullback-Leibler divergence retrieval model, which will then be expanded
to become context-aware by taking into account the search intent scores. The
strategies for computing these scores are explained in detail in Section 5.4.

5.3.1 Definitions of basic terms

The task addressed in this chapter is to develop a mechanism for returning a
ranked list of images relevant to the information need represented by the query.
The essential part of this task is to compute the relevance of the image d in
the database with respect to the query q = {qI ,qb}, which can be said to
formally consist of the example image qI and the bounding box specification
qb = [xl, yl, xr, yr]. Here, (xl, yl) and (xr, yr) are the coordinates of the top left
and bottom right point of the rectangle, respectively.

The query image and the images in the database are represented as a sequence
of visual words using the following procedure. Firstly the interest points are
detected in the images based on methods like DoG (Difference of Gaussian) [61]
or Harris Affine detectors [71]. Then for each of the detected interest points SIFT
(Scale Invariant Feature Transform) descriptors [61] are extracted to represent the
local region around each interest point. The SIFT descriptors are then quantized
into the so-called visual words using the K-means vector quantization method [77].

As a result, the query image is represented as qI = [(qi, pi)]
Mq

i=1 and the images

in the database, further referred to as documents, are represented as d = [di]
Md

i=1.
Here, qi and di are the extracted visual words from the query and a document,
respectively, pi is the corresponding position of a visual word in an image, and
Mq and Md are the numbers of visual words in the query and database images,
respectively. For the purpose of general explanations of terms and models, we
also employ w or wi to denote a visual word in an arbitrary image.

5.3.2 Kullback-Leibler divergence retrieval model

Once the images are represented as sets of visual words, classical information
retrieval models can be employed directly for image search. Among such models,
the language modeling approach has been one of the most popular approaches
due to its sound theoretical foundation and flexibility to introduce additional
components, such as relevance feedback [137]. In the language modeling approach
for information retrieval, a language model, usually the unigram model p(w|d),
is estimated for the words w for each of the documents d in the database. Then
the relevance between the query and the document is estimated as the query
likelihood given the document. Using the visual word notation we introduced
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before for our specific image retrieval context, this likelihood can be written as

p(q|d) =
Mq
∏

i=1

p(qi|d). (5.1)

In [51], Lafferty and Zhai further generalized the language modeling approach
as a risk minimization problem. The risk of returning a document d given the
query q is defined as

R(d;q) =R(a = d|q, C)

=
∑

r∈{0,1}

∫

θQ

∫

θD

L(θQ, θD, r) × p(θQ|q)

p(θD|d)p(r|θQ, θD)dθQdθD,

(5.2)

where a = d is the action to return the document d for the query q, C is the
collection of documents in the database, r indicates the relevance of the document
d to the query q, and where θQ and θD are the language models for the query
and the document, further refereed to as the query model and document model,
respectively. Finally, L is the loss function, which can best be modeled using
the Kullback-Leibler (KL) divergence between the query model and a document
model [51]. By using the KL divergence to estimate the loss function the risk
function can be formulated as

R(d;q) ∝−
∑

wi

p(wi|θ̂Q) log p(wi|θ̂D) + ξq, (5.3)

where
θ̂Q =argmaxθQ p(θQ|q)
θ̂D =argmaxθD p(θD|d)

(5.4)

are the maximum a posteriori estimations of the query and document models.
The term ξq is a query-dependent constant and can therefore be ignored when
Eqn. (5.3) is used to rank the documents for a given query. The probability of
words can be estimated using the maximum-likelihood criterion as

pml(qi|θ̂Q) =
ci(q)

Mq

pml(di|θ̂D) =
ci(d)

Md

,

(5.5)

where ci(q) and ci(d) are the term frequencies of the words qi and di in the query
and a document, respectively.

In the empirical estimation of the document models as specified above, the
probability of the visual words that do not occur in a document will be zero. This
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will lead to infinite numbers in the relevance estimation based on KL divergence
in Eqn. (5.3). Hence, smoothing [138][31] should be introduced to address this
problem, similarly as in the case of speech recognition and machine translation.

As suggested in the study of language modeling approaches for image re-
trieval [31], the Jelinek-Mercer smoothing method performs the best in the image
retrieval context and we therefore adopt it in this chapter. The Jelinek-Mercer
smoothing is defined as a linear interpolation of the maximum likelihood estima-
tion of the language model and the collection model, which can be formulated
as

pλ(wi|θ̂D) = (1 − λ)pml(wi|θ̂D) + λp(wi|C), (5.6)

where p(wi|C) is the collection language model and λ ∈ [0, 1] is the trade-off
parameter to control the contribution of the smoothing term.

5.3.3 Contextual object retrieval model

Standard works on object retrieval based on the bag-of-visual words image repre-
sentation [77][31] use the visual words located within the bounding box to estimate
the query model. However, as stated above, the visual context can be used to
improve the reliability of this estimation by looking beyond the bounding box in-
formation only. In that case, the KL divergence based retrieval model introduced
in Section 5.3.2 can again be directly applied to estimate the relevance between
the query and database images, but now employing a better, context-aware query
model.

In our COR model we assume that the the query image with its bounding box
specification is generated from the following distribution:

p(q|θQ) =p(qI ,qb|θQ)

∝
Mq
∏

i=1

p(qi, pi|θQ),
(5.7)

with
p(qi, pi|θQ) =p(qi|θQ)S(pi,q), (5.8)

where S(pi,q) is the search intent score of the visual word qi at the position pi.
While the COR model unifies both the visual words from the bounding box and
the visual words from the context of the bounding box for inferring a more reliable
query model, the search intent score steers this inference process by indicating
the confidence of a given visual word to be relevant to the search intent. As a
comparison, for the language modeling approach without considering the context,
the query also follows the above distribution, however with a binary search intent
score. For the visual words located within the bounding box, this score is then
equal to 1, while being 0 otherwise.

Based on the distribution (5.7) the maximum likelihood estimation of the
context-aware query model θQ can then be derived as
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p(wj |θQ) =

Mq
∑

i=1

S(pi,q)δ(qi = wj)

Mq
∑

i=1

S(pi,q)

, (5.9)

and then integrated into the retrieval model (5.3) to rank the images.
In the following section we will introduce two methods to estimate the search

intent score S(pi,q).

5.4 Search intent score estimation

The search intent score of each visual word in the query image can be defined
to be proportional to the probability of the corresponding position of that visual
word to reflect the user’s search intent given the query image and the bounding
box:

S(pi,q) ∝ p(pi|q). (5.10)

Based on Bayes’ formula and assuming a uniform prior, the probability (5.10)
is proportional to the likelihood of generating the query image and the bounding
box given the search intent score:

p(pi|q) =p(pi|qI ,qb)

∝p(qI ,qb|pi).
(5.11)

We realistically assume that the bounding box and the query image are con-
ditionally independent given the search intent score per position. Then, we can
write

p(pi|q) ∝ p(qb|pi)p(qI |pi). (5.12)

Applying the Bayes’ formula, we can transform the previous expression as

p(pi|q) ∝ p(pi|qb)p(pi|qI). (5.13)

The first term, p(pi|qb), is the probability of the position pi to reflect the
search intent as inferred from the bounding box. The second term, p(pi|qI), can
be seen as the probability of the position pi to represent salient properties of
the query image in general, thus not related to any specific search session, but
indicating a logical choice of a prior for inferring a user’s search intent given a
search session. As such, the second term in Eqn. (5.13) can be estimated through
saliency detection and used to improve the reliability of the search intent score
estimation, especially when the bounding box specification is unreliable.

In the next steps, we will estimate the prior using the saliency detection
method [64] in Section 5.4.1 and then propose two algorithms to compute the
search intent score from the bounding box in Section 5.4.2.
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5.4.1 Saliency detection

While human perceptual attention analysis plays an important role in the bio-
logical vision and human cognition, computational attention analysis or saliency
detection is an important approach in content-based image retrieval to detecting
the potentially important and representative regions in an image [64]. As such,
saliency detection can be regarded as a means for determining the prior for defin-
ing the ROI in a given query image. Among the existing methods for computing
the saliency of an image [105][39][64], we adopted the contrast-based image atten-
tion analysis [64] due to its simplicity and computational efficiency. According to
this approach, color contrast plays a critical role in attracting human attention
when looking at an image. We compute a contrast-based saliency score for each
of the positions in an image using the following expression:

Ci =
∑

y∈Ni

d(l(pi), l(y)), (5.14)

where Ni is the neighborhood of the position pi in the image, and l(pi) and l(y)
are the color values in the positions pi and y. According to the suggestions from
[64], we worked with the colors in the LUV space. Finally, d is the Gaussian
distance between the color values. Normalization of the color contrast Ci into the
range [0, 1] leads to the saliency score Ai for each of the positions in an image. We
then transform the saliency score into the prior probability based on the Gibbs
distribution using the expression

p(pi|qI) ∝ exp(−γ(Ai − 1)2), (5.15)

where γ is the inverse of temperature.

5.4.2 Search intent from the bounding box

Search intent score estimation from the bounding box is an important ingredient
of the proposed contextual object retrieval model. In the following, we will present
two approaches to estimating the search intent, one from the spatial propagation
(dual-sigmoid approximation) and the other from the appearance propagation
perspective (appearance-propagation based method using matting)

Search intent from the bounding box by dual-sigmoid approximation

The bounding box specification is an uncertain event conditioned by the unob-
served search intent. Users normally intend to specify a rough and inaccurate
bounding box to save the effort. Due to its limiting rectangular shape the bound-
ing box is unlikely to accurately represent a complex ROI.

In our approach to estimating the search intent score based on the information
from the bounding box we first assume that the intents for the two dimensions of
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the image are independent of each other so that the intent probability can be de-
composed into the product of the probabilities estimated from the two dimensions
respectively:

p(pi|qb) =p(xi, yi|xl, yl, xr, yr)
=f(xi;xl, xr , δ)f(yi; yl, yr, δ).

(5.16)

The function f , i.e., the search intent score estimation from a single dimension,
should be a smoothed approximation of the bounding box along that dimension
in order to take the uncertainty and the context into consideration. That is, the
value of f for xl < xi < xr should be close to 1 and should be approaching 0
the further xi is from the bounding box. To obtain a probability distribution, we
propose to model f as the minimization of two sigmoid functions for the two sides
of the bounding box along each dimension. For the x-dimension this model can
be defined as

f(xi;xl, xr , δ) = min
( 1

1 + exp(δ(xl − xi))
,

1

1 + exp(δ(xi − xr))

)

,

(5.17)

where δ is a parameter serving as a tradeoff between fitting the bounding box and
being sufficiently smooth to incorporate the context. We use the same model for
f in the y-dimension as well.

Figure 5.4 illustrates the dual sigmoid function defined in Eqn. (5.17). We
can see that the smooth dual sigmoid function indeed approximates the bounding
box. The approximation is better with a larger δ. In particular when δ → +∞
the function f becomes equal to the bounding box specification. Smaller δ leads
to more smoothing, which means that the bounding box specification is more
uncertain and the context information has a larger effect. In the extreme case of
δ = 0 the bounding box specification is unused and we just use the whole image
as the query.

Finally, we define the search intent score to be the product of the prior (5.15)
and the probability estimation indicating the search intent based on the bounding
box specification:

Sa(pi,q)
def
===exp(−γ(Ai − 1)2)×

f(xi;xl, xr , δ)f(yi; yl, yr, δ).
(5.18)

The parameters γ and δ control the contributions from the prior and the
bounding box to the intent score estimation. If the bounding box specification is
reliable then we should adopt a smaller γ and a larger δ, and vice versa.

Search intent from the bounding box by matting

The goal of estimating the search intent score from the bounding box is to assign
high scores to the object of interest, which is normally in the foreground. Low
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Figure 5.4: Illustration of the dual sigmoid function for the search intent score estima-
tion based on the bounding box.

scores should be assigned to the background or other foreground objects of no
interest for the user, which, however, should still be regarded as a useful context
for the image retrieval based on the ROI. This is similar to the problem of image
matting, which is to separate the foreground from the background by estimating
alpha values (the values in the alpha channel to indicate the opacity) for each pixel
[112]. Hence, the image matting algorithms can be adapted directly to estimate
the search intent from the bounding box.

Since the bounding box is a rough specification of the object of interest, it
can be regarded as containing the object of interest together with some irrelevant
image parts, which are—due to the immediate adjacency to the target object—
most likely to contain the background and not some other parts of the foreground
object. We now adopt a three-step approach to determine which parts of the
bounding box belong to the foreground and which to the background. Firstly,
we segment the image guided by the bounding box specification and estimate the
foreground and background models. Then we employ the estimated models to
select the pixels which most probably belong to either the foreground or to the
background. Finally the alpha value or the search intent score of each pixel is
estimated based on the pseudo-foreground and pseudo-background pixels.

The segmentation in the first step is performed using the GrabCut algo-
rithm, where the foreground and backgroundmodels are Gaussian Mixture Models
(GMM) in the RGB color space [83]. The objective of GrabCut is to minimize an
energy function comprising a data fitting term and a smoothness term, as defined
by the following expression:

E(α,k, θ, z) = U(α,k, θ, z) + γV (α, z), (5.19)

Here, α ∈ {F ,B} indicates whether the pixels belong to the foreground or back-
ground, and k indicates which GMM is assigned. Furthermore, θ are the model
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parameters, z represents the color of each pixel, and γ is the parameter regulating
the trade-off between data fitting and smoothing.

Specifically, the data fitting term U and the smoothness term V are defined
respectively as follows:

U(α,k, θ, z) =
∑

n

− log π(αn, kn) +
1

2
log |Σ(αn, kn)|+

1

2
[zn − µ(αn, kn)]

TΣ(αn, kn)
−1[zn − µ(αn, kn)],

(5.20)

V (α, z) =
∑

(m,n)∈C

[αm 6= αn] exp(−β||zm − zn||2) (5.21)

where µ and Σ are the parameters of the foreground and background models,
where π is the mixture weight, where C is the set of pairs of neighboring pixels,
and where β is the parameter to adjust the extent of smoothness in a coherent
region.

After GrabCut, which is based on an iterative energy minimization algorithm
[83], is completed, we use the estimated foreground and background models to ob-
tain the probabilities of each pixel x belonging to the foreground and background.
Such probability for the foreground is defined as

PF(x) =
P (x|θ,F)

P (x|θ,F) + P (x|θ,B) . (5.22)

Directly using the estimated probabilities as the search intent scores does not
take into account the spatial smoothness and may not perform well. We there-
fore compute the intent scores based on selected pseudo-foreground and pseudo-
background pixels. Specifically, we select the top 10% pixels inside the bound-
ing box having the largest foreground probabilities and the 20% pixels outside
the bounding box having the largest background probabilities as the pseudo-
foreground ΩF and pseudo-background pixels ΩB, respectively, which serve as
input to the matting algorithm.

The matting algorithm adopted in this chapter is based on the geodesic dis-
tance [10], as defined by the following expression:

Dl(x) = min
s∈Ωl

d(s, x), (5.23)

where l ∈ {F ,B} and where d(s, x) is computed as follows:

d(s, x) = min
Ps1,s2

∫ 1

0

|W · Ps1,s2(p)|dp, (5.24)

where Ps1,s2 is any path connecting the two pixels s1 and s2; W = ∇PF (x).
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In view of the above, the search intent score from the bounding box that
incorporates matting and the prior can be computed as

Sm(pi,q)
def
===exp(−γ(Ai − 1)2)× DB(xi)

DF (xi) +DB(xi)
, (5.25)

where γ controls the contribution from the prior and xi is the pixel value in the
poisition pi.

By integrating the query language model in Eqn. (5.9) with the search intent
score estimated by Eqn. (5.18) and Eqn. (5.25) into the KL divergence retrieval
model (5.3), we obtain two contextual object retrieval models referred to as CORa

and CORm that will be evaluated experimentally in the next section.

5.5 Experiments

5.5.1 Datasets

To evaluate the proposed COR models, we performed experiments on three repre-
sentative image datasets: Oxford5K,Oxford5K+ImageNet500K andWeb1M.

The Oxford5K dataset [77][6] was collected from Flickr [4] by using 17
Oxford landmarks as queries. In total, 5062 images have been acquired, among
which 55 images comprising 11 landmarks were selected as query images. The
bounding box specifying the ROI was inserted manually on the query images.
Furthermore, the entire dataset was annotated based on the relevance with respect
to the 55 query images, which provided the ground truth for our experimental
evaluation. The SIFT features for all images were extracted using the publicly
available software tool2 and then quantized using the 1M visual vocabulary to
visual word representations.

To evaluate the proposed method in a large-scale image retrieval setting,
we constructed the Oxford5K+ImageNet500K dataset by combining the Ox-
ford5K and a part of the ImageNet dataset [27]. Specifically, we sampled 500K
images from about 10M images in ImageNet, and then combined them with the
5K images in Oxford5K into a new collection. We still used the 55 query images
and the associated bounding boxes in Oxford5K as queries. We assumed that the
500K ImageNet data contain no relevant images to the 55 queries. The SIFT fea-
tures for the newly added 500K images were extracted and quantized into visual
words using the same procedure as for Oxford5K.

The query images in the Oxford5K and Oxford5K+ImageNet500K datasets
are all about the landmarks at Oxford University, which can be considered only a
narrow image retrieval use case. To evaluate the performance of our COR models
on a large-scale dataset able to match more versatile search intents, we created
the Web1M image collection comprising 1 million of mostly clicked images on

2http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings
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the Web. 12 keywords3 covering different categories, i.e., animals, landmarks,
paintings, logos, and book covers, were used to collect near-duplicate images from
Flickr, which are then added to the database together with the aforementioned
1M popular images. From all these images, 45 images were randomly selected as
query images and then manually marked by bounding boxes to indicate possible
objects of interest. This resulted in 56 example objects that were used as queries to
evaluate the proposed models. Again the visual word representation was obtained
here in the same way as in the other two datasets.

5.5.2 Experimental setup

In order to demonstrate the effectiveness of the proposed COR models, we com-
pare them with two baseline object retrieval models. One is the cosine model
(Cosine), which is based on the cosine similarity between the vector models of the
query and the database images. The other is the general (context-unaware) lan-
guage modeling approach (LM) that we introduced in Section 5.3.2. Each of the
baseline methods only uses the visual words inside the bounding box for building
the query model, while the contextual visual words are ignored.

In addition to a comparative analysis involving the methods listed above,
we also included in the evaluation two variants of the matting-based COR model.
The first variant is the CORg model where the foreground probability is computed
using the GMM models estimated by GrabCut as defined in Eqn. (5.22):

Sg(pi,q)
def
===exp(−γ(Ai − 1)2)× PF (x). (5.26)

The second variant is the CORw model that uses the alpha values computed based
on the weighted foreground probability proposed in [10]:

Sw(pi,q)
def
=== exp(−γ(Ai − 1)2)× ωF (xi)

ωF (xi) + ωB(xi)
,

ωl(xi) = Dl(xi)
−1 · Pl(xi), l ∈ {F ,B}.

(5.27)

The parameters of the models, such as the λ for Jelinek-Mercer smoothing,
γ for saliency weight re-scaling and δ for bounding box weight re-scaling, were
selected to optimize the average performance over all queries. The effects of γ and
δ on the retrieval performance will be analyzed in more details in Section 5.5.5.

The models were evaluated in terms of the Average Precision (AP), which is
defined as the average of the precision values computed at various recall levels.
The AP over all queries were then averaged to obtain the Mean Average Precision
(MAP).

3The 12 keywords include Big Ben, Eiffel Tower, Leaning Tower of Pisa, Ferrari, Starbucks,

Uncle Sam, Mocking jay, Leopard, Panda, Zebra, Mona Lisa, Starry Night
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Table 5.1: The MAP of the six methods on Oxford5K, Oxford5K+ImageNet500K, and
Web1M datasets.

Dataset Cosine LM CORg CORw CORm CORa

Oxford5K 0.614 0.623 0.581 0.591 0.611 0.659

Oxford5K+ImageNet500K 0.418 0.581 0.546 0.552 0.578 0.621

Web1M 0.414 0.644 0.587 0.601 0.651 0.700

(a) (b) (c)

CORm CORm CORmCORa CORa CORa

Figure 5.5: Illustration of three cases where the matting-based retrieval models will not
estimate a good intent score. For each case, the left image is the query example with the
bounding box indicated by the yellow rectangle. The right two images show the intent
score maps computed using Eqn. (5.18) and Eqn. (5.25) (γ = 0) for CORa and CORm,
respectively. The brighter the point’s intensity, the large is the search intent score, and
vice versa.

5.5.3 Performance comparison on two Oxford landmark datasets

Comparison of different COR models

The MAP values obtained for all models on the two Oxford landmark datasets
are shown in Table 5.1. It can be observed that the three matting based methods
all perform worse than the LM baseline, which states that the search intent scores
computed using matting do not reflect the user’s search intent behind the query
specification. Taking a look at the query images leads to the following possible
explanation of this result. First, the users’ bounding box specification may be
inaccurate, so that it includes some of the background regions, such as the cloud
in Fig. 5.5 (a). Then the estimated foreground model may get confused by the
background, which leads to inaccurate intent score estimation. Second, since the
matting methods are based on color coherence, the foreground may receive low
intent scores when the background has similar color appearance as the foreground,
as shown in Fig. 5.5 (b). Due to the same reason, background may get assigned
incorrectly high intent scores, as shown in Fig. 5.5 (c).

Among the three matting based approaches including CORg, CORw, and
CORm, CORm significantly outperforms the others. This indicates that the pro-
posed three-step matting-based retrieval model is more effective than the other
two more simplistic solutions and that the geodesic distance based search intent
score estimation is better than the one based on the foreground probability. We
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argue that the main reason for this result is that it is difficult to have a good esti-
mation of the foreground and background model when the background is complex
or when the bounding box is very inaccurate.

In the remaining evaluation steps, we will use CORa as the representative of
the contextual object retrieval models to compare with context-unaware baselines
and in this way gain insights about the usefulness of visual context for object
retrieval as introduced in this chapter.

Comparison with non-contextual methods

Observing the results obtained for Oxford5K as shown in Table 5.1, we can con-
clude that the language modeling approach is slightly better than the cosine
model. This is because the language modeling approach has more solid theo-
retical foundations, as have already been demonstrated in the field of information
retrieval. The proposed CORa model significantly boosts the performance, with
7.1% and 5.5% relative improvement over the cosine and language models, re-
spectively. On the Oxford5K+ImageNet500K dataset the improvement of CORa

over Cosine and LM is 21.8% and 6.9% respectively. These results suggest that
the visual context surrounding the ROI in the query image is indeed a useful
auxiliary source of information, which may lead to a more reliable relevance es-
timation between the query and database images. The results also indicate that
the proposed COR model successfully leverages the context information into the
retrieval model. Performance comparisons for each of the 55 query images on
Oxford5K and Oxford5K+ImageNet500K datasets are shown in Fig. 5.6 and Fig.
5.7, respectively.

The usefulness of visual context

The performance for each of the 11 landmarks on the Oxford5K dataset are shown
in Fig. 5.8. We can observe an improvement of CORa over LM for 7 out of
11 landmarks. Among them “keble” improves most significantly, by 32.0% and
25.6% over the cosine and LM model, followed by “magdalen” (16.0% and 19.8%)
and “ashmolean” (13.8% and 12.5%). The result on Oxford5K+ImageNet500K
dataset as shown in Fig. 5.9 suggests a similar conclusion. When we take a look
at the query images and bounding boxes of such queries, all of which can be found
in [6], we find that the bounding boxes for the queries with the most performance
improvements tend to be small. Since small bounding boxes often contain few
visual words, the relevance estimation based on these few features in the query
region is likely to be unreliable. This supports our hypothesis that the visual
context information can improve the reliability of relevance estimation in these
difficult cases and in this way improve the retrieval performance.

For the other 4 landmarks, i.e., “pitt rivers”, “hertford”, “radcliffe camera”
and “cornmarket”, the introduction of visual context did not improve the retrieval
performance. The reason is that for these 4 landmark queries the bounding boxes
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Figure 5.8: The AP for different landmarks on Oxford5K dataset.
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Figure 5.9: The AP for different landmarks on Oxford5K+ImageNet500K dataset.

are larger than in other cases and therefore more informative. Consequently,
the context did not play a large role there. While the context is less useful in
such cases, the CORa model still achieves a comparable performance with the
LM method. The largest performance degradation of CORa compared with LM
is only 0.39% (“cornmarket”). One of the reasons for the small degradation is
that we use the same values for the parameters γ and δ. While the values are
optimized for the average performance it will not be optimal for some of the
queries. A more elaborate analysis of the dependence of the CORa performance
variation on a varying bounding box size can be found in Fig. 5.10.
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Figure 5.10: Performance improvement of CORa model varies with varying bounding
box sizes on Oxford5K. Absolute MAP improvement of CORa over LM can be observed.

Finally, we show in Fig. 5.11 the retrieved images for three sample queries on
Oxford5K. We can see that although the three queries clearly benefit from the
visual context, they draw this benefit in different ways. For “keble 4” and “mag-
dalen 2”, where the query formulation from the visual words within the small
bounding box is uncertain, CORa manages to remove the completely irrelevant
images (marked with blue rectangles) from the top results and improves the re-
trieval performance. For the query “pitt reivers 4”, even if the introduction of
context does not boost the MAP, it still can replace the completely irrelevant im-
age (the image of people marked with blue rectangle) with the other image which
is more consistent to the query (the 9th image in the result for “pitt reivers 4”,
which is a building, just like the query). This demonstrates the power of visual
context in improving the reliability of relevance estimation.

5.5.4 Performance comparison on Web1M dataset

Evaluation of the retrieval performance on Web1M presented in Table 5.1 again
leads to the conclusion that CORa performs significantly better than the context-
unaware models. It achieves 69% relative improvement over the cosine model
and 8.7% relative improvement over LM, which demonstrates the usefulness of
the visual context in a broad range of image retrieval use cases. Among the four
contextual models, CORa obviously outperforms the others and certainly can be
regarded as the most effective way to incorporate visual context information into
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Figure 5.11: Sample search results for CORa and LM on Oxford5K dataset. The yellow
rectangle on the query image is the bounding box to specify the object of interest.

object retrieval.

Another noteworthy observation is that on Web1M CORm performs slightly
better than the LM baseline. By analyzing the average performance of each query
category in Fig. 5.12, we can conclude that the overall performance of CORm is
boosted mostly because it has a large performance gain over LM on the query
category “Big Ben”. Since some of the bounding boxes for “Big Ben” are on
the clock instead of the entire building, the color-coherence based matting works
well to propagate the intent to the remaining parts of the building and in this
way improves the retrieval performance. Fig. 5.13 shows the sample results to
illustrate this observation. The AP per query object is shown in Fig. 5.14.

The results of our study of the variance in the usefulness of visual context on
various search intent categories including landmark, animal, logo, book cover, and
painting are summarized in Table 5.2. We can see that the largest performance
improvement by incorporating visual context is achieved on landmarks. We argue
that this may be because landmarks are usually in a fixed geographical location.
Therefore their visual context, such as the adjacent landmarks, is relatively more
stable and better capable to improve the retrieval performance.
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Figure 5.13: The example query “BigBen 3 1” for which CORm achieves significant
performance improvement.

Table 5.2: The MAP of each search intent category on Web1M dataset.

Category LM
CORa

MAP Gain

Landmark 0.546 0.634 16.21%

Animal 0.352 0.379 7.59%

Logo 0.767 0.815 6.34%

Painting 0.866 0.930 7.35%

Book Cover 0.812 0.813 0.17%

Although performing not as well as landmarks, queries on animals, logos, and
paintings still show a significant performance boost when visual context is taken
into account. The relatedness of these objects to the context, though not as strong
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Figure 5.15: The sample search results for CORa and LM on Web1M dataset. The
yellow rectangle on the query image is the bounding box to specify the object of interest.

as landmarks, can be regarded as helpful information to disambiguate the search
intent. For example, the panda often co-occurs with bamboos and the paintings
are often fixed in a frame. Fig. 5.15 illustrates this and shows some results on
these types of queries.

For the book-cover queries, the contextual object retrieval model shows com-
parable performance with LM. The reason is that in book-cover images, there are
usually texts around the query object, such as the “Mockingjay 1 1” shown in Fig.
5.15. Since the text contains strong visual patterns resulting in a large quantity
of SIFT points, these contextual features on the text may become too dominant
and disturb the retrieval performance. This search intent category represents the
cases in which the context shows weak correlation to the search intent of ob-
ject retrieval and is hardly useful to further improve the retrieval performance.
However, the introduction of visual context doesn’t deteriorate the performance,
too. Since the search intent scores tend to be small for the contextual words, the
context cannot play a significant role if it is weakly correlated with the object of
interest.

5.5.5 Parameter analysis

We conclude the experimental section by analyzing in more detail the effects of
the two parameters in our proposed CORa model that steer the search intent
score computation on the object retrieval performance. These parameters are γ
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Figure 5.16: The effect of the parameters γ and δ on the retrieval performance.

and δ. Larger γ means that the retrieval result is more sensitive to the detected
saliency, while smaller γ suggests that saliency plays a smaller role in the retrieval
model. The parameter δ models the reliability of the bounding box specification.
Larger δ means that we rely more on the user-specified bounding box. The case
δ → +∞ makes the CORa model identical to LM, while δ = 0 means that the
whole image is used as a query, without considering the bounding box to restrict
the query region.

The results on Oxford5K dataset as shown in Fig. 5.16 indicate the optimal
values for γ and δ. Setting γ to about 0.005 and δ to around 10 achieves the
best performance. Since in this dataset the bounding boxes are annotated for
research purposes, they are expected to be much more accurate than the bounding
box specified by an average user performing a general search task. The more
accurate the bounding box is, the larger the optimal δ will be. Then, the saliency
becomes less important since the prior information plays only a small role when
the bounding box is accurate. In a practical system, the system administrator
can adjust the parameters based on the user behavior.

5.6 Conclusions and Future Work

In this chapter we proposed two contextual object retrieval models to improve the
object retrieval performance when the query object is specified by a rectangular
bounding box in the query image. Since the bounding box is an uncertain obser-
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vation of the search intent, we infer this intent for each of the visual words in the
query image from the bounding box specification and from the prior estimated
from the query image’s saliency map. Then the search intent scores are integrated
into the COR model to more effectively meet users’ true information needs. Ex-
periments on several datasets demonstrate that one of the proposed COR models,
the one based on spatial propagation by using dual-sigmoid approximation, is par-
ticularly effective in improving the object retrieval performance.

The idea of the contextual object retrieval model introduced in this chapter
can be regarded as a preliminary work on a more general topic: context-aware
Multimedia Information Retrieval (MIR) [63]. While content-based [23][95] and
concept-based [96] MIR have made a great progress in the past years, context-
aware MIR can be seen as a new paradigm to jointly address the semantic gap
[23][95][96] and intention gap [136] challenges in MIR by incorporating the con-
textual information. In addition to the contextual information used in this paper,
various other kinds of context, e.g., the text surrounding the query image in the
Web page and the user click-through log from a search engine, will be investigated
to evaluate their role in MIR in the future.





Chapter6
Video-based Image Retrieval

1

Despite the possibility to take the visual context of the query object into ac-
count, as proposed in the previous chapter, the performance of image retrieval
solutions based on the query-by-example (QBE) principle may still vary signifi-
cantly due to the likely variations in the capture conditions (e.g. light, blur, scale,
occlusion) and viewpoint between the query image and the images in the collec-
tion. In this chapter, we propose a framework in which some of these variations
are explicitly addressed to improve the reliability of QBE-based image retrieval.
We aim at the use scenario involving the user capturing the query object by
his/her mobile device and requesting information augmenting the query from the
database. Reliability improvement is achieved by allowing the user to submit not
a single image but a short video clip as a query. Since a video clip may combine
object or scene appearances captured from different viewpoints and under differ-
ent conditions, the rich information contained therein can be exploited to discover
the proper query representation and to improve the relevance of the retrieved re-
sults. The experimental results show that video-based image retrieval (VBIR) is
significantly more reliable than the retrieval using a single image as query. Fur-
thermore, to make the proposed framework deployable in a practical mobile image
retrieval system, where real-time query response is required, we also propose the
priority queue-based feature description scheme and cache-based bi-quantization
algorithm for an efficient parallel implementation of the VBIR concept.

1This chapter was published as: Linjun Yang, Yang Cai, Alan Hanjalic, Xian-Sheng Hua,
Shipeng Li, “Searching for images by video.” International Journal of Multimedia Information
Retrieval, 2012 [122].
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6.1 Introduction

Image retrieval based on the Query-by-Example (QBE) principle has recently
been revived and gained increasing attention from both the research community
and industry. A probable reason lies in the success of the applications like Google
Goggles2, TinEye3, and “Find more sizes” of Bing Image Search4 that have be-
come popular tools for retrieving images or other information related to the visual
example serving as query. In particular, in the mobile use scenario, where the user
can easily capture the visual query using the camera on his/her mobile device,
QBE-based image retrieval appears as a highly convenient retrieval concept, as
opposed to the one requiring textual keywords as queries.

Despite extensive research efforts in the past, QBE-based image retrieval is
still insufficiently reliable, largely because of the likely variations in the capture
conditions (e.g. light, blur, scale, occlusion) and viewpoint between the query
image and the images in the collection. This query-collection mismatch has been
difficult to resolve due to the still imperfect visual features used to represent the
query and the collection images. While, for instance, the SIFT features [61] are
effective in general, they are still insufficiently capable of handling the variations
in blur and occlusion. Furthermore, in a typical SIFT-based image representa-
tion using visual words [93], the visual word quantization degrades the retrieval
reliability to trade off for the scalability of the retrieval system. However, even if
the problems related to the varying capture conditions can be avoided, the likely
mismatch between the query and collection images in terms of the viewpoint
from which an object or a scene are captured still remains the main obstacle for
the successful practical adoption of QBE-based image retrieval. This obstacle is
particularly critical since it makes the retrieval performance inconsistent with a
user’s expectations. For example, a user may expect a good retrieval result given
a query image of a high quality. However, a high-quality query may perform
worse than a low-quality one if the object in the high-quality query is captured
from a very different viewpoint from that for the collection images. This problem
is illustrated in Fig. 6.1 using a set of queries which are visually similar. The
frames extracted from a video clip about a landmark of the Oxford University are
used to query the images in the Oxford building dataset [6]. As shown in Fig.
6.1, the retrieval performance varies greatly if different video frames are taken
individually as queries, although they all show the same object and are visually
similar.

While the example in Fig. 6.1 is used to illustrate the query-collection mis-
match problem as the main reason for unreliable QBE-based image retrieval, this
example also reveals a potential effective solution to this problem. Multiple im-
ages of the same object that are characterized by different capture conditions
and viewpoints could, namely, be aggregated together in order to extract the

2http://www.google.com/mobile/goggles/
3http://www.tineye.com/
4http://www.bing.com/images
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Figure 6.1: Illustration of the variance in the retrieval performance (average preci-
sion) using different captures of the same visual object as query. The query images
are extracted from the segment beginning at 7s and ending at 27s of the video found
at http://www.youtube.com/watch?v=ehPaPXaxQio. The vertical axis is the average
precision.

information for creating a more robust representation of the query object, a rep-
resentation that is more complete than if any of the individual images are used
as query alone. Although multiple images of the same object can be collected
in various ways, a video capturing the object provides the most intuitive way to
generate such a complex query, as it removes the need for the user to decide about
the type and number of images to take for the same object. We therefore refer
to this promising solution to the query-collection mismatch problem further as
video-based image retrieval (VBIR).

Video-based image retrieval is also regarded as a useful extension to query-by-
example video retrieval [89], which uses video query to retrieve videos in the
collection. Compared with QBE-based video retrieval, VBIR can provide an
alternative way to satisfy users in many application scenarios. First, although a
video contains more information than a single image, it may be more convenient
for users to browse image search results than video search results in a hand-
held small screen device. Furthermore, video browsing suffers from adaptation
problem in small screen devices. Second, the metadata accompanied with or the
web pages containing an image are usually more descriptive and informative for
users to understand the contained object than that for a video.

In this chapter, we investigate the potential of the VBIR concept for improv-
ing QBE-based image retrieval. Due to the convenience of video capture in a
mobile search scenario and the high practical importance of successfully realiz-
ing QBE-based image retrieval there, we focus on this particular scenario. As a
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consequence, we not only propose a method for improving the quality of retrieval
results using the VBIR concept, but also a method for improving the retrieval
efficiency under this retrieval concept.

The chapter is organized as follows. After reviewing the related work and
positioning our contribution with respect to it in Section 6.2, we provide in Section
6.3 an overview of our proposed VBIR framework. Then, in Section 6.4, we
describe the key components of the framework in more detail, which is followed
in Section 6.5 by the description of the proposed algorithms for improving the
retrieval efficiency. The experimental evaluation of the proposed approach is
presented in Section 6.6, followed by the conclusions and prospectives for future
work in Section 6.7.

6.2 Related Work

QBE-based image retrieval is one of the first retrieval paradigms introduced in the
field of multimedia information retrieval, and has been extensively studied already
for two decades [95][23]. Since recently, it has gained increasing attention due to
a number of successful commercial applications built on this retrieval paradigm.
For example, TinEye released a reverse image search engine to retrieve web pages
containing the near-duplicates of the query image. Bing Image Search released a
new feature called “Find more sizes”, which allows users to retrieve different sizes
of images that are near-duplicates of the query image. Particularly addressing
the challenge of image retrieval in a mobile use scenario, Google Goggles was
developed to allow search for information using an image captured by a mobile
phone. The retrieval mechanisms underlying these applications are mostly based
on image representation and matching using SIFT features [61] and the concept
of bag-of-visual-words [93][77] derived from these features.

While the development of SIFT-based image representation solutions has been
remarkable over the past several years, it is unrealistic to expect that this devel-
opment could lead to a perfect image representation for any retrieval use case.
Therefore, the idea behind the VBIR concept proposed in this chapter is not to
work towards an improved feature-based image representation, but rather to put
the currently available and imperfect features into a good use, by incorporating
relevant auxiliary information. Working in this direction, Yang et al. [124] pro-
posed to incorporate the visual context of the object captured by the query image
to enrich the visual query representation and in this way improve the relevance of
the retrieved images. In this chapter, we enrich the query representation by draw-
ing benefit from the information contained in the multiple frames of the query
video in order to compensate for the deficiencies of a single-image query.

The proposed VBIR approach is partially related to several recent works in
the field. In [92] Sivic et al. proposed an application to retrieve the shots in a
given video similar to the query shot in terms of the object of interest captured in
the query shot. There, feature tracking is used to identify the object of interest
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in the frames of the query shot. Then, the search is performed by using different
frames in the query shot individually as query images, after which the partial
results are aggregated into the final search result. Compared to [92], we also
use a video clip as query, but target the general (unconstrained) image search
problem. Furthermore, we explicitly address the problem of improving the query
representation by searching for the most stable feature points and by constructing
query expansion using synonyms. Finally, we propose a comprehensive solution
to VBIR including the postprocessing of the search results using reranking and
taking into account the issues related to the implementation efficiency in view of
the targeted mobile image search scenario.

Query expansion using an automatically constructed synonym is a well known
technique in information retrieval [67] and has been utilized in [21][106] for im-
proving image retrieval performance. While in [21][106][66] the synonym is learned
from the database, in our approach the synonym is learned from the query video,
which is more effective and also more adapted to the user’s current search intent.
Although in both [98] and our approach video is used as the context to improve
image retrieval, our proposed approach is different from [98] in that we use the
video directly as query, while in [98] the video context is used to learn the param-
eters offline for a domain-specific image feature representation. As a result, the
developed approaches are entirely different.

The research on efficient implementation of image retrieval systems has mainly
focused on searching for efficient image representation features [11] and on efficient
implementation of existing features [35]. Wagner et al. [111] proposed to utilize
the feature tracking results to reduce unnecessary detection of feature points for
an efficient implementation of image search on mobile phones. Our proposed
priority queue based feature description addresses this efficiency problem in a
different way, namely by optimally using the limited time budget. The visual
word quantization is often realized using fast approximate nearest neighbor search
[77][72]. However, the feature points are mostly quantized independently. To
exploit the redundancy across the frames in a video, we propose the cache-based
bi-quantization to quantize the feature points jointly to further reduce the time
cost.

6.3 Video-based Image Retrieval

A system overview of our proposed VBIR framework is illustrated in Fig. 6.2.
The considered use scenario is that users first capture a video clip on the object
of interest using their mobile devices and then submit it to the VBIR system
to retrieve images or other information relevant to the object of interest. The
retrieved images can be browsed by users, or the metadata associated with these
images can be presented to help users understand the observed object.

When a query video is submitted to the system it is decoded into a frame
sequence and the local features, such as SIFT [61], are extracted from each frame.
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Figure 6.2: System overview of the proposed video-based image retrieval (VBIR) frame-
work.

The features are then quantized into visual words based on already built visual
codebook. The codebook is built in the same way as in a typical QBE-based
image retrieval system, namely using Approximate Kmeans algorithm [77]. Then
the SIFT features are mapped onto visual words using hierarchical Kmeans tree
algorithm [72]. The generated visual words for all the images in the collection
are indexed using the inverted file structure [67]. Furthermore, frame-level vi-
sual words aggregated over video frames are used to derive an improved query
representation. Finally, we retrieve the images from the collection based on the
improved query representation and present the results to users. In the following
section, we focus on the core of our system, where the improved query represen-
tation is derived from multiple video frames and used to improve the retrieval
results.

6.4 The Proposed Approach

Given the visual words extracted from all video frames and the temporal structure
information in the query video, we need to appropriately process the video query
and design a retrieval model in order to be able to draw maximum benefit from the
rich information contained in the query video. Fig. 6.3 illustrates the flowchart
of the proposed VBIR approach zooming in on the query processing and retrieval
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Figure 6.3: The flowchart of the proposed VBIR approach zooming in on the query
processing and retrieval steps.

steps. In the query processing step, we first perform feature tracking among the
detected SIFT feature points over adjacent video frames and then find “good”
points, which are stable and therefore able to represent the query well. After that,
the good points are aggregated into a histogram to obtain a first improved query
representation. This representation is then further expanded based on the mined
synonyms. In the retrieval step, temporal consistency reranking is introduced to
further refine the search result obtained by a general image retrieval model based
on the expanded query. In the following, we will describe the elements of the
flowchart in Fig. 6.3 in more detail.

6.4.1 Corresponding SIFT points among frames

First, we track the SIFT points over all video frames to construct the corresponded
point sequences. Here the corresponded point sequence is defined as a sequence
composed of the SIFT points in adjacent frames, which can be corresponded
by tracking. The construction of corresponded point sequences is performed as
follows. For each pair of adjacent frames in the query video, we firstly track the
SIFT points detected in the previous frame using Lucas and Kanade optical flow
algorithm [62] implemented in OpenCV and modified using image pyramids [14].
Then, the tracked positions in the subsequent frame are further aligned to the
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detected SIFT points. Specifically, we find all the SIFT points which are not
more than one pixel far from the tracked positions as the tracked SIFT points.
The process is repeated for each pair of adjacent frames in the query video to
produce many corresponded point sequences, each of which comprises a sequence
of tracked SIFT points across video frames.

All the corresponded point sequences obtained using the procedure described
above comprise the set S. S(pji ) denotes the point sequence comprising SIFT point

pji , the j
th SIFT point in the ith frame. For the convenience of implementation,

those SIFT points which cannot be corresponded are also added into the point
sequence set. Consequently, each of these sequences comprises only one SIFT
point.

6.4.2 Finding good points

We assume that a good point that is reliable for retrieval should have the following
properties. First, it can be tracked and corresponded in multiple adjacent frames,
which states that it is stable and clearly identifiable. Second, it should gravitate
towards the center of the frame, which is due to our observation that people
usually tend to put the object of interest in the center of the frames when capturing
a video, so the central points are more likely to be related to a users’ search intent.

Based on the above assumptions, we design a set of criteria to evaluate the
goodness of points. For each point pji , its corresponded point sequence is denoted

as S(pji ). Then, the goodness of pji is defined by Eqn. (6.1) as a combination of
two terms, the stableness term and the center-awareness term,

G(pji ) = α× Len(S(pji ))

FrameCount
+ (1 − α)× Cent(pji ). (6.1)

Here, α is a parameter to control the respective contributions from the two terms,
and FrameCount is the number of frames in the query video, which is used
for normalization. Len(S(pji )) denotes the number of frames being tracked in

the point sequence S(pji ) to represent the stableness of the point. The center-

awareness term Cent(pji ) is defined to reflect the assumption that the object
near the center of the image is of more importance. Considering the occasional
departures of intended objects from the central image area, we use the average
distance of all the points in the tracked sequence to represent the center-awareness
of each point in the sequence. The center-awareness of point pji is defined as,

Cent(pji ) = −
∑

p∈S(pj
i
) d(p, c)

Len(S(pji ))× d(0, c)
. (6.2)

Here, d denotes the distance from point p to the frame center c, and d(0, c)
represents the distance from the origin of the frame to the center.
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After the goodness of the points has been computed, we select those points
with a goodness value larger than a threshold as good points, which will be used
to construct the query model, as will be explained in the following sections.

6.4.3 Aggregating visual words

Given the good points selected in all the frames in the query video, we now
aggregate them to construct an improved query model as a bag of corresponded
visual words. For efficiency reasons, the temporal information of the points is
not used in the query representation. However, we noticed that the temporal
information may be important to further improve the retrieval result. Hence,
we incorporate the temporal information into the reranking process described in
Section 6.4.5 for a trade-off between the retrieval effectiveness and efficiency.

The query video is represented as a histogram, denoted as q, where each bin
qi corresponds to a visual word wi in the vocabulary. Then, for each visual word,
we aggregate its occurrence in all frames, divided by the number of frames in
the query video, as the value in the corresponding bin of the query histogram.
Representing the query as an aggregated histogram is a convenient way to take
into account all the appearances of the query object in different frames with
variations including scales, viewpoints, and lighting. It utilizes the redundancy
in the video to achieve a comprehensive representation of the object of interest
captured by the query video. In addition, compared with that of fusing the
retrieval results using different video frames as query, which requires multiple
scan of the database [92], the aggregation of visual words into a single query
representation makes the retrieval process more efficient.

Even though the aggregated visual words already contain rich information that
should be sufficient to enable a more reliable retrieval compared to a single-image
query case, we will show in the following that reliability could be improved even
further, by mining the video for query synonyms to further expand the query
representation.

6.4.4 Synonym expansion

While SIFT features are generally effective for image retrieval, different SIFT
descriptors can still be extracted for the same object patch in different images, due
to which similar images with large variations cannot be matched well. The visual
word quantization, which is used to improve the retrieval efficiency and scalability,
makes this problem even more severe since the quantization error brings additional
obstacle for matching the image patches.

One of the advantages of a video compared to a single image is that it may
contain a wide range of different appearances of the same object. This redun-
dancy provides useful information for deriving the relations between the features
extracted in different frames. Stavens et al. [98] used such information to learn
the parameters for feature description. In this chapter, this information is utilized
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to construct the synonym relations among visual words to partially address the
imperfections due to visual word quantization.

For each visual word wi, its term count in all frames of the query video is
denoted as tci, and the number of points in a corresponded point sequence Sk

being quantized as wi is denoted as tci(Sk). Then we can construct an affinity
matrix M with the element mij defined as follows,

mij =

∑

k min(tci(Sk), tcj(Sk))

tci
, (6.3)

with the diagonal elements set to zero.
The affinity matrix is then used to generate a contextual histogram from the

aggregated query histogram so that the term counts of synonymous visual words
can boost each other to alleviate the problem of quantizing similar feature de-
scriptors into different visual words.

The contextual histogram is generated as,

cq =M · q. (6.4)

This histogram is then combined with the aggregated query histogram into the
new query representation,

qnew = βq + (1− β)M · q. (6.5)

Using the new query representation, we can construct the vector space model
based on the standard tf-idf scoring function known from text information re-
trieval to compute the similarity between the query video and images in the
collection:

qv = qnew. ∗ idf. (6.6)

Here the operator .∗ stands for element-wise vector multiplication, while idf is a
vector where idfi represents the idf (inverted document frequency) of the visual
word wi. Then the cosine similarity function can be employed to compute the
similarity between the query qv and image features.

6.4.5 Temporal consistency reranking

While many frames in the query video have been employed to achieve a robust
query representation, the noisy information spread in the frames may also get
aggregated to produce an amplified negative effect on the query quality. Hence,
to suppress this negative effect while keeping the advantages of visual word ag-
gregation, we propose a reranking approach to adjust the search result achieved
in the above steps by taking the temporal consistency of the visual content into
consideration.

The reranking approach is based on our assumption that the false matches
between the query video frames and the database images should not be consistent
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among adjacent video frames. In other words, since adjacent frames usually do not
exhibit great changes in their appearance and all contain the object of interest,
the similarity scores computed between a relevant image in the collection and
adjacent frames in a video should not change greatly. However, for a mismatch,
a high similarity score obtained on one video frame, e.g. due to noise in feature
representation and capture conditions, will most likely be followed by a low score
on the next video frame. In view of this, we choose to rerank the images in the
top of the results list based on the temporal consistency information.

For each image Ii in the top of the results list, we compute the similarity
scores between that image and all frames in the query video based on the vector
space model with tf-idf weighting, denoted as v(Ii, Fk), where Fk represents the
kth frame in the query video. Then by regarding v(Ii, Fk) as a function of k, we
can compute the gradient of the function as

gki = v(Ii, Fk+1)− v(Ii, Fk). (6.7)

The absolute values of the gradients are then averaged to reflect the temporal
consistency of the matching scores for adjacent frames:

g̃i =

∑ |gki |
FrameCount

. (6.8)

The average gradient is then combined with the similarity score computed in
Section 6.4.4 to obtain a new reranking score for the top ranked results,

ri = −g̃i + γr̄i, (6.9)

where r̄ is the initial ranking score.
We noticed that some of the query videos are highly dynamic due to camera

shake. For such a query video, all the images in the database may have a high
average gradient, which implicitly increases the impact of temporal consistency
on reranking. Actually, for the highly dynamic videos we want to decrease the
contribution of temporal consistency to reranking since even for a positive sample
it cannot achieve a low average gradient in such cases. We use the mean of average
gradients of the top-ranked images as the measure of the dynamics degree of the
query video, which is then used to weight the average gradient term to achieve a
new reranking function. In this way, the expression in Eqn. (6.9) can be modified
as

ri = − g̃i
1
N

∑N

i=1 g̃i
+ γr̄i, (6.10)

where N is the number of top-ranked images to be considered in reranking.

6.5 Efficient Implementation

A näıve implementation of the proposed VBIR approach may be inefficient, lead-
ing to a slow query response. Hence, to make the proposed approach applicable
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Figure 6.4: The flowchart of the proposed efficient VBIR implementation.

in a real-life mobile use scenario, where the realtime query response is required,
we propose a pipeline described in this section to further improve the efficiency
of the VBIR framework introduced before.

The proposed implementation is based on the client-server architecture. Users
capture a video on the client computer or a mobile device and then upload it to the
server, which is responsible to process the video and retrieve relevant images. The
first issue to be considered is the network transferring. Based on our experiments,
transferring a 6s 10fps 320×240 video clip over a 3G network will cost about 1.1s.
In other words, it costs on average 18ms to transfer one video frame. Hence, by
adopting the progressive uploading or streaming, the video uploading may become
realtime, which means that the whole query video can be transferred to the server
in a short time after the video capturing is completed.

To identify the computational bottleneck, we analyze the computational cost
of the components of the proposed VBIR framework5. The entire query process-
ing part costs about 650.82 milliseconds for processing a video frame. There, the
most time-consuming component is the SIFT feature extraction and quantization,
which costs about 345.23ms and 255.43ms, respectively. The SIFT feature extrac-
tion contains two separate processes, interest point detection and description, and
they cost about 99.11ms and 243.01ms, respectively. From these results, it can be
observed that the feature description and quantization cost in total about 76.59%
of the computation of query processing and therefore jointly form the bottleneck
of query processing in our VBIR framework, The retrieval step, on the other hand,
is efficient. It only takes 1.28s to handle one query.

Based on the above analysis, we propose an efficient VBIR implementation,
as illustrated in Fig. 6.4. Since the processing of different frames is independent
of each other, the video query processing can easily be parallelized. We maintain
a thread pool comprising three threads, and for each input video frame, a feature

5The experiments about the computational cost in this chapter are performed on a worksta-
tion with two dual-core Intel Xeon 2.67GHz CPUs and 12GB memory.
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Figure 6.5: The frequency of visual words in the query video All Souls v1.

point detection thread is created and added into the thread pool. Since the feature
description and quantization are time-consuming, we develop a priority queue
based mechanism, so that the most important feature points can be processed in
a limited time budget, as will be introduced in Section 6.5.1. To further reduce the
quantization time, we rely on the fact that the feature points in adjacent frames
are often similar and correspond to the same visual words. Hence, we develop a
cache-based bi-quantization algorithm for speed-up, as presented in Section 6.5.2.

6.5.1 Priority queue based feature description and quantization

In a realtime image search system, the search results should be returned quickly
after the user has finished uploading the query video. Hence, there will be only
a limited time budget available for the query video processing. In such a limited
time, it may be difficult to process all detected feature points in the video. Hence,
we will maintain a priority queue to keep all the detected feature points for which
the description has not been extracted. For each frame, after tracking, the newly
detected feature points will be enqueued and the priority of points in the former
frames will be updated based on Eqn. (6.1). The feature description thread will
continuously fetch the feature points from the queue for processing, until the
queue is empty or the time budget has been used up.

6.5.2 Cache-based bi-quantization

The proposed cache-based bi-quantization algorithm is motivated by the fact that
there is a local consistency in the visual word quantization for adjacent frames
in a query video. Since the adjacent frames are normally very similar to each
other, the descriptions of the feature points in adjacent frames also tend to be
similar to each other and the quantized words would be identical. Fig. 6.5 shows
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Algorithm 1 Cache-based bi-quantization

Require: a high-precision quantizer Qh, a low-precision quantizer Ql, and Nl which is
the frame interval for cache refreshing.

1: Initialization Set cache C = ∅.
2: for Frame Fi = F1 to FN do

3: for all Feature point Pj in Fi do

4: Quantize Pj into visual word Wj using Ql: Wj = Ql(Pj);
5: if Wj ∈ C then

6: continue;
7: else

8: Wj = Qh(Pj);
9: C = C ∪ {Wj};

10: end if

11: end for

12: if i%Nl==0 then

13: C = ∅;
14: end if

15: end for

the occurrence times of each visual word into which the feature points in a query
video are quantized. We can see that 6.60% visual words occur more than 40
times in the query video All Souls v1, which corresponds to 50% feature points.

To utilize the local consistency, we propose a cache-based bi-quantization al-
gorithm, as shown in Algorithm 1. Since the visual word quantization is normally
performed by using approximate nearest neighbor search, such as k-d trees [72],
we can adjust the search parameters to trade-off the precision and the time cost.
In our approach, we built two quantization methods. One is Qh, slow but with
high precision, and the other one is Ql, which is fast but with a low precision. For
each feature point, we firstly use Ql to get a rough quantization with a small time
cost. To verify the reliability we check whether the quantized word has appeared
in the cache. If so, it should be a reliable quantization. If not, we further achieve a
reliable quantization using the high-precision quantizer Qh. For every Nl frames,
the cache will be cleared and refreshed to maintain the locality. In this chapter,
we simply set Nl = 20.

6.6 Experiments

6.6.1 Experimental setup

To set a benchmark for video-based image retrieval and allow for comparison of
other methods with the approach proposed in this chapter, we first chose the
publicly available Oxford building dataset [6] as the image collection. Then, as
explained in Section 6.6.5, we also expanded our investigation to a larger, web-
scale image collection for the purpose of a more comprehensive evaluation of
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the algorithm performance. The Oxford building dataset comprises 5062 images
crawled from Flickr6 using 11 landmarks of Oxford University as queries. To
collect the query videos for our experiments, we used the 11 landmark names as
query to search for suitable videos in YouTube. Finally we obtained 15 videos
for 8 landmarks, while for the other 3 landmarks we were not able to find any
relevant videos. Since not all the parts in these videos are about the corresponding
landmarks, we selected those segments exactly describing the landmarks as query
video clips in our experiments. Consequently, 25 video clips were selected as
queries, which are summarized in Table 6.1. The ground-truth corresponding to
each landmark in the Oxford building dataset is still used as the ground-truth for
the video-based image retrieval experiments. The key frames in the query videos
and the images in the database were down-sampled to 300*300 by preserving the
aspect ratio and then SIFT features were extracted. A 100K visual vocabulary
was constructed using Approximate Kmeans [56].

The Average Precision (AP) is used to evaluate the retrieval performance. AP
is defined as the average of the precisions computed at all recall levels. The Mean
Average Precision (MAP) is the average of the APs across all queries.

6.6.2 Performance comparison

We implemented QBE-based image retrieval (QBEIR) as a baseline to be com-
pared with the proposed VBIR concept. Specifically, we used each frame in the
query videos individually to query the image database to simulate QBE-based
image retrieval. The average performance (QBEIR E) with standard deviation
and the best possible performance (QBEIR B) for each query video using different
frames as query are illustrated in Fig. 6.6. The methods in [92], which fuse the
retrieval scores by using each frame individually as query are also implemented
and used for comparisons, including fusion by summing all scores (OLGS) and
fusion by taking the maximum (OLGB).

We can see from Fig. 6.6 that QBE-based image retrieval suffers from a dra-
matic performance variation, which demonstrates its insufficient reliability. In-
tensive camera motion, e.g., zoom in/out in HertFord v1, and large changes of
light conditions caused by different shooting angles in Christ Church v1 and Rad-
cliffe Camera v1 cause that the object of interest is described at a broad range
of capture conditions, which can only in part match the conditions at which col-
lection images have been captured. This causes large variation in the retrieval
performance if video frames are used individually as query. However, such infor-
mation can be put into a good use to improve the retrieval performance by using
the whole video clip as query, as proposed in this chapter.

The performances of VBIR and QBE-based image retrieval is compared in
Fig. 6.6. We can see that the performance of VBIR is significantly better than
the expected performance of QBE-based image retrieval. The improvement was

6http://www.flickr.com
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Figure 6.6: The performance comparison of QBE based image retrieval and VBIR on
the Oxford building dataset. QBEIR E shows the mean and the standard deviation of
the MAP of image retrieval using single frames in the query video, QBEIR B is the best
possible performance of retrieval using a single frame, and VBIR shows the MAP of
video-based image retrieval.

computed as 36.37% in terms of MAP. Furthermore, for 24 among 25 query videos
VBIR can achieve a performance boost compared to the average performance of
QBE-based image retrieval. In particular, the MAP of VBIR is even larger than
the expected performance of QBEIR by a margin of the standard deviation for 19
queries. This demonstrates that the incorporation of the information contained in
all video frames has a clear potential for improving the reliability of the retrieval
performance. Finally, we can see that VBIR achieves a comparable result with the
best possible performance of QBEIR. This means that, by using a video as query,
we can achieve a result similar to the best one achievable by using an arbitrary
single image as query.

The proposed VBIR approach further outperforms OLGB and OLGS by 23.95%
and 5.81% and in 84% and 80% queries, respectively. While VBIR achieves a bet-
ter performance compared to its competitors, it also exhibits a better efficiency
in terms of the retrieval part. While OLGB and OLGS cost 5.2s to complete the
retrieval part for one query, VBIR only needs 1.2s for the same task.

For those videos that exhibit significant camera motion while introducing
new information such as the object at multiple scales or viewpoints, e.g., Mag-
dalen College 1 and All Souls 2, incorporating multiple frames into the query rep-
resentation significantly improves the retrieval performance. However, for those
videos in which all frames have the same scale and viewpoint, e.g. Christ Church 2,
VBIR cannot provide a large benefit since a video in that case hardly contains
more useful information than a single image. We believe, however, that when
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Figure 6.7: The performance of each step in our proposed approach.

users search for something using videos, it is realistic to expect that camera will
move and zoom in/out will be deployed in order to capture more information. In
this sense, VBIR is expected to boost the retrieval performance in most cases,
compared to QBE-based image search.

6.6.3 Analysis of the proposed approach

To analyze the effects of each step of our proposed approach, we compare the
intermediate results of the three steps, including filter&aggregation, synonyms
mining, and temporal consistency reranking in Fig. 6.7. Since the result after
temporal consistency reranking is just the result of the complete approach, it is
denoted as VBIR in the figure.

It can be observed that by introducing the Filter&Aggregation step the per-
formance is improved by 0.130 over QBE-based image retrieval and that the per-
formance is boosted for 24 queries. We argue that the reasons for this effect are
two-fold. First, in the “finding good points” step, the noisy SIFT points are fil-
tered out so that they do not have a negative effect on the retrieval. For example,
as shown in Fig. 6.8, the trees in the background are filtered out by our approach.
Second, aggregating visual words over all frames collects the appearances of the
object taken under different conditions, so that a more comprehensive represen-
tation of the query object is constructed to improve the retrieval performance.
This is especially useful when a single image can only capture a partial view of
the object of interest, which is likely to happen if the user stands near the object
with a common camera without ultra-wide-angle lens. For instance, each frame in
query Radcliffe Camera v2 only contains a part of the building while aggregation
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Figure 6.8: The examples of “good” feature points. The green points are good points
and the red ones are those being filtered out.

brings us a full view of the object and therefore a better retrieval performance.
By incorporating the synonyms mining, the performance is further improved

by 0.006, as shown in Fig. 6.7. Moreover, we can see that for a large majority
of queries, introducing the synonyms boosts the retrieval performance. Among
them, we observe that a video with drastic camera motion, e.g., zoom in/out,
such as HertFord v1, and light condition changes like Radcliffe Camera v1 and
Christ Church v1, tends to achieve a larger improvement. Since such videos con-
tain different views of the object of interest due to the camera motion and light
condition changes, the synonyms mining can discover the correlation between
the visual words under different views or scales. By including the visual word
correlation into the retrieval process, the system reliability is further improved.

The temporal consistency reranking step further contributes 0.008 to the over-
all performance. As illustrated in Fig. 6.9, the temporal consistency assumption is
verified to discriminate the positive from negative images. In such query videos,
the incorporation of temporal consistency reranking improves the performance
significantly. However, we also notice that for some videos the temporal con-
sistency reranking even degrades the performance. For example, on the query
HertFord v1, the performance is degraded by 0.001 after reranking. By observ-
ing the video clip, we found that this query video contains a significant shot
(dissolve) change, which breaks the temporal consistency assumption. However,
we note that in a real-life VBIR system, a user-captured short video clip is not
expected to contain shot changes.

6.6.4 Efficiency

While the above experiments demonstrate that the proposed VBIR approach is
effective, it will cost 650.82ms to process one frame in a query video and therefore
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Figure 6.9: The distribution of the average gradients for top 100 images of the query
All Souls v2.

it is difficult to apply in a search system where realtime query response is re-
quired. In this subsection, we will show that after adopting the proposed efficient
implementation, the time can be reduced to less than 300ms, which makes the
system able to process a 10fps query video in real time with three threads on a
normal computer.

Figure 6.10 shows a comparison between the proposed cache-based bi-quantization
and the baseline quantization approach that quantizes each feature points inde-
pendently. It can be observed that under the same time budget, the cache-based
bi-quantization approach can achieve a better MAP than the baseline. In other
words, to achieve the same effectiveness, the cache-based bi-quantization can per-
form faster. Further, the MAP of the cache-based bi-quantization with Qh being
a 0.9 precision quantizer and Ql a 0.5 precision quantizer is 0.5404 and better
than that of the baseline quantizer with precision 0.9. However, the quantization
time is reduced by 32.80%, from 0.4ms to 0.27ms for one feature point. Hence,
in our experiment, we used the cache-based bi-quantization with 0.9 precision Qh

and 0.5 precision Ql.

From Fig. 6.11 we can see that the cache-based bi-quantization without cache
refresh achieves the highest speed but the lowest MAP, which validates the locality
of the visual words consistency and demonstrates the necessity for cache refresh.
Based on the result, we can set the refresh interval to a moderate size, e.g., 20
frames, to achieve a trade-off between the effectiveness and efficiency.

To study the relationship between the MAP and the time cost of the priority
queue based feature description and quantization, we illustrate in Fig. 6.12 the
respective MAP of filtering out different percentages of feature points to reduce
the time cost. We can see that by filtering a small amount of points (less than
30%) the performance even improves over that using all feature points. This
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Figure 6.10: The performance comparison between the cache-based bi-quantization and
the baseline quantization method.
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demonstrates the effectiveness of the proposed feature filtering step described in
Section 6.4.2. By filtering 70% feature points, we can still achieve 0.4841 MAP,
which improves 22.3% over QBEIR. But the total time for query processing is
reduced to 283.12ms, which can be completed in realtime using three threads.

6.6.5 Experiment on a large-scale dataset

To further demonstrate the effectiveness of the proposed VBIR approach, we
performed another experiment on a large-scale dataset. The videos of Oxford
university buildings we crawled from YouTube were still employed as queries, but
the database was composed of not only the images in Oxford building dataset,
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Figure 6.13: The performance of VBIR on a large-scale dataset comprising 1M images.

but also one million images collected from Flickr. Finally the database comprises
totally 1,004,834 images. The performance of our proposed VBIR approach, and
the expected and the best performance of QBE are shown in Fig. 6.13.

By comparing Fig. 6.13 and Fig. 6.6 we can see that when the database
scales up, the retrieval performance of QBE drops significantly. Specifically, the
MAP of QBEIR E decreases from 0.396 to 0.285 when the scale of the database
increases from 5K to 1M. This shows that the QBE-based approach is less robust
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and less scalable than VBIR, which still achieves 0.461 MAP for 1M database.
Moreover, we found that on the large-scale dataset, VBIR even outperforms the
best possible performance of QBE (QBEIR B), which further demonstrates the
effectiveness and reliability of VBIR.

6.7 Conclusion and Future Work

We proposed in this chapter a new image search framework that we refer to as
the video-based image retrieval (VBIR) framework. VBIR makes it possible to
search for images and related information using a short video clip taken on the
object of interest as query. The approach underlying the proposed framework
includes mining of the useful information from all frames of the query video and
using this information to refine the query representation and in this way improve
the retrieval performance. The experimental results show that video-based image
retrieval significantly improves the retrieval reliability over that of using a single
image as query.

Since video-based image retrieval as a paradigm is particularly of importance
for the mobile use scenario, where visual queries are captured using a mobile
device, we also addressed the efficiency of VBIR framework implementation to
make it deployable in a practical (mobile) use case.

We envision four main directions for future work building on the insights pre-
sented in this chapter. First, we will focus on utility aspects of the VBIR concept
and further investigate the expected properties of the acquired query videos and
their relation to a users search intent based on the typical user behavior when
capturing videos for VBIR. Domain-related insights collected here will help us to
further improve the framework from the design and implementation perspective.
Second, we will expand the VBIR concept to investigate other possibilities for
drawing benefit from the rich information contained in a video to improve the
effectiveness and efficiency of query representation. One possibility is to generate
a 3D object model from the query video clip and then use that to retrieve images
in the database. The other is to discover useful information from the aspects
typical for the video nature of the query, like motion patterns, to efficiently pro-
cess the video query and prepare it for search. Third, the efficiency of the VBIR
implementation could be further improved by relying on more efficient features,
e.g. SURF [11]. To identify the fourth direction for future research, we note again
that the goal of this chapter was to investigate the potential of VBIR to improve
the image search performance relative to the conventional search using a single
image as query. However, in order to also achieve significant improvement in the
search performance in the absolute sense, a broader investigation is required in-
volving the criteria related to the quality of the video query, and in particular the
cases where the query does not optimally capture the object of interest, e.g. due
to occlusion or insufficient focus. Construction of the representative sets of video
queries for this purpose and identifying the possibilities to effectively cope with



6.7 CONCLUSION AND FUTURE WORK 129

Table 6.1: Summary of query video clips used in the experiments.

Query id Video url Time (s)

All Souls v1 http://www.youtube.com/watch?v=C1hwL-QHiec 0 - 6

All Souls v2 http://www.youtube.com/watch?v=V-sn0vkVYXo 77 - 86

All Souls v3 http://www.youtube.com/watch?v=V-sn0vkVYXo 152 - 159

All Souls v4 http://www.youtube.com/watch?v=V-sn0vkVYXo 260 - 280

Ashmolean v1 http://www.youtube.com/watch?v=2g8G2XDJZZ4 6 - 11

Bodleian Library v1 http://www.youtube.com/watch?v=oGkHvCa1hRQ 6 - 13

Bodleian Library v2 http://www.youtube.com/watch?v=Mxjue1nf6oE 3 - 8

Bodleian Library v3 http://www.youtube.com/watch?v=XxNhfgL0nUk 28 - 33

Christ Church v1 http://www.youtube.com/watch?v=L3mvKQorVRY 16 - 18

Christ Church v2 http://www.youtube.com/watch?v=CCOMJ3boZIY 18 - 21

Christ Church v3 http://www.youtube.com/watch?v=o4ywV2cQ0Q4 7 - 10

Christ Church v4 http://www.youtube.com/watch?v=o4ywV2cQ0Q4 15 - 18

Christ Church v5 http://www.youtube.com/watch?v=o4ywV2cQ0Q4 195 - 199

HertFord v1 http://www.youtube.com/watch?v=jtgRA9Abxs4 9 - 17

HertFord v2 http://www.youtube.com/watch?v=OwxYkWwsgLE 143 - 144

HertFord v3 http://www.youtube.com/watch?v=OwxYkWwsgLE 158 - 160

HertFord v4 http://www.youtube.com/watch?v=OwxYkWwsgLE 168 -171

Kebel College v1 http://www.youtube.com/watch?v=KpuC-yj uc0 11 - 14

Magdalen College v1 http://www.youtube.com/watch?v=ehPaPXaxQio 7 - 27

Radcliffe Camera v1 http://www.youtube.com/watch?v=C1hwL-QHiec 52 - 60

Radcliffe Camera v2 http://www.youtube.com/watch?v=jtgRA9Abxs4 64 - 69

Radcliffe Camera v3 http://www.youtube.com/watch?v=qhAVFlSwQ3c 16 - 18

Radcliffe Camera v4 http://www.youtube.com/watch?v=Pf6JHXhUgtg 52 - 59

Radcliffe Camera v5 http://www.youtube.com/watch?v=Pf6JHXhUgtg 67 - 90

Radcliffe Camera v6 http://www.youtube.com/watch?v=OwxYkWwsgLE 210 - 216

sub-optimal video queries is therefore an important future step in bringing VBIR
to the following development stage.





Chapter7
A Unified Context Model for

Semantic Image Retrieval

1

As indicated in the previous two chapters, content-based web image retrieval
based on the query-by-example (QBE) principle remains a challenging problem
due to the semantic gap as well as the gap between a users intent and the represen-
tativeness of a typical image query. In this chapter, we take a further step towards
solving this problem by integrating rich query-related contextual information into
an advanced query model. We consider both the local and global context of the
query image. The local context can be inferred from the web pages and the click-
through log associated with the query image, while the global context is derived
from the entire corpus comprising all web images and the associated web pages.
To effectively incorporate the local query context we propose a language mod-
eling approach to deal with the combined structured query representation from
the contextual and visual information. The global query context is integrated
by a multi-modal relevance model to “reconstruct” the query from the document
models indexed in the corpus. In this way, the global query context is employed
to address the noise or missing information in the query and its local context, so
that a comprehensive and robust query model can be obtained.

1This chapter was published as: Linjun Yang, Bo Geng, Alan Hanjalic, Xian-Sheng Hua, “A
Unified Context Model for Web Image Retrieval.” ACM Transactions on Multimedia Comput-
ing, Communications and Applications, Vol. 8, No. 3, 2012 [125].
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Figure 7.1: Overview of web image retrieval using local and global query context.

7.1 Introduction

While content-based image retrieval (CBIR) based on the query-by-example (QBE)
paradigm has been extensively studied already for decades [95][23], it has recently
regained increasing attention from both the industrial and research communities.
A couple of interesting applications based on scalable QBE-based image retrieval
have even been deployed on the web and/or on mobile clients. For example,
the TinEye image search engine allows users to discover where the query image
comes from, in which context it is used, whether it was modified or whether
higher-resolution versions of the query image are available. Furthermore, users
can use Google Goggles or SnapTell to search via their mobile phones for informa-
tion related to objects and scene they see by just taking one picture and sending
it to the corresponding service. Other representative applications built on the
QBE-based image retrieval paradigm include automatic image annotation [116]
and image advertising [68], where the objective is, respectively, to find similar
images for annotation propagation [116] or to retrieve an advertisement related
to the user-clicked image [68].

One of the main reasons for the revived interest in the QBE-based image
retrieval lies in the advent of the bag-of-visual-words concept, which provides a
powerful visual representation for effectively and efficiently computing the similar-
ity between two images [93][77]. However, similar image search, which targets the
retrieval of not only duplicates and near-duplicates but also semantically related
images is still a challenging problem due to the so-called intention gap [139][136]
and semantic gap [23][95][96]. Numerous approaches have been proposed to ad-
dress these difficulties. Probably the most well-known of these approaches is the
relevance feedback [142][85], which tries to bridge the two gaps through collecting
additional information from the users in an iterative relevance specification pro-
cedure. It has been shown, however, that users are usually reluctant to provide
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feedback to the system in real-life web search applications [67].
An alternative solution to the problem described above could be to rely on

the analysis of the contextual information related to the query image. An image
never appears in isolation. In the image capturing stage, the metadata such as the
exposure time, the ISO, the time when it is captured, and the GPS coordinates are
associated with the image to indicate the context in which it is captured. When an
image is shared on the web, it is usually accompanied by some textual information
(e.g. captions, comments, tags, surrounding text) in web pages associated with
the image to explain the meaning of the image or its role in a broader (say, story
and communication) context. These web pages can be found during the crawling
stage and recorded for the later use. As these contexts are directly associated
with the query image, we refer to them jointly as the local query context. Clearly,
the information derived from the analysis of the local context of an image can be
used to enrich the image representation beyond its visual (pixel-level) content.

In addition to the above, another important source for deriving the local con-
text of a query image are the click-through logs from search engines, and in
particular from the keyword-based image search engines, such as Google, Bing
and Yahoo! image search. From the click-through logs, the relationship between
the text keywords and images can be mined, and the corresponding keywords can
be assigned to images as implicit annotations. The mined keywords for an image
can be applied to enrich the existing (explicit) textual representation of the image
so that a more comprehensive and robust query representation can be formed.

The local query context may, however, be insufficiently informative or noisy in
some cases, like for instance, when the content of an image and the text in the cor-
responding web page do not (completely) match each other. Relying on the local
context in such cases may even degrade the image retrieval performance. Fortu-
nately, this problem can be alleviated by simultaneously taking the global context
of the query image into consideration. The global query context is “hidden” in
the entire data corpus consisting of all images on the web and the associated web
pages. As such, the global query context can be regarded as a knowledge-base,
from which the text and the visual content can be mutually interpreted and the
co-occurrence patterns of textual and visual words can be mined. In this way, for
example, the missing or noisy local context information could be “reconstructed”
or “filtered” by learning the textual representation for the query image from the
corpus.

While the potential sources for deriving contextual information for the query
image are numerous, effectively incorporating the local and global query context
into the web image retrieval process is a challenging problem. In this chapter,
we propose an integrated context-aware image retrieval model to address this
problem. The model is derived using a language modeling approach, which builds
on a unified feature space integrating the local query context, or more specifically
the textual representation of the query image, and the visual representation of
the query in the form of visual words. After the click-through information is
processed to associate the keywords to each of the clicked images, the keyword-
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image relations are added as a new field into the local query context. The global
query context is further incorporated through the proposed multi-modal relevance
model. We namely estimate the query model not only based on the occurrence of
words in the query’s visual or textual representation, but also based on the visual-
textual relationship implicit in all the images and web pages indexed in the corpus.
Through the multi-modal relevance model the query is actually “reconstructed”
from the document models indexed in the corpus so that the problem caused by
the unavailable or noisy local query context can be addressed and a robust and
comprehensive query model can be obtained. An overview of our approach is
illustrated in Fig. 7.1.

In Section 7.2 we first position our approach with respect to the related pre-
vious work and identify the contribution of this chapter. Then, in Section 7.3 we
elaborate on the two categories of query contexts defined above. Following the
description of the context-aware image retrieval model in Section 7.4, we define
in Section 7.5 an advanced query model incorporating the local and global query
context. The experimental results of the proposed web image retrieval approach
are reported in Section 7.6, which is followed by concluding remarks in Section
7.7.

7.2 Related work

Context aware information retrieval, which takes the context of the query spec-
ification and document generation explicitly into consideration to infer a better
search intention model, has been recognized as a long-term challenge in the in-
formation retrieval (IR) community [12]. Various context categories, such as the
user profile, the users’ everyday activity, the text surrounding the query keywords
in the web page, and the click-through log have been investigated in the recent
literature. Surveys on this subject can be found in [55][26].

Also in the multimedia community, context-aware multimedia retrieval has
received increasing attention in recent years [63]. Sinha and Jain [91] proposed to
utilize the optical context of image capturing to help learn the semantic concepts
found in images. Cao et al. [16] proposed to use the time and GPS information
to improve the semantic concept annotation, while Yang et al. [133] mined the
contextual cues including tags and GPS to improve the keyword-based image
search. In [124] the authors proposed to utilize the visual context to help improve
the reliability of object retrieval.

Exploiting context in multimedia retrieval often boils down to finding effec-
tive mechanisms for fusing typically multi-modal contextual information with the
content information from media items to help index and retrieve these items. We
can distinguish among four general approaches to multi-modal data fusion: linear
combination, latent space based, graph based, and model based approaches.

Linear combination [90][42][117][19][131][69] linearly combines the relevance
scores from different modalities. However, as shown by Robertson et al. [81] the



7.3 QUERY CONTEXT IN WEB IMAGE RETRIEVAL 135

score combination typically suffers from peculiarities that can negatively influence
the retrieval performance.

The latent space based approach converts the features of different modalities
into a shared latent space to unify these different modalities [141][140]. However,
such methods may require a data-intensive offline training stage to learn the fea-
ture mapping from the modalities onto a unified latent space, which requires a
large amount of labeled training data. Graph based approach [115] firstly builds
the relations between different modalities, like for instance relations between im-
ages and text using the web page structure. Then the relations are utilized to
iteratively update the similarity graphs computed from different modalities. The
difficulty of creating similarity graphs for billions of images on the web makes this
approach insufficiently scalable.

Model based fusion methods include relevance model based methods and
reranking methods. In [53] the authors employ a relevance-based language model
for cross-media retrieval using the multi-media representation of documents in
the corpus. The reranking methods [121][102][126] first retrieve images based on
the modality same as that of the user-submitted query, and then use the repre-
sentation of documents on the other modality in the corpus to refine the initial
search result.

Compared to the information fusion methods discussed above, we propose in
this chapter a model-based fusion method that is more effective in combining
both the local and global context for web image retrieval. Our proposed method
deploys a multi-modal relevance-based language model [54] and combines the
local context comprising the respective fields in the associated web pages and the
associated keywords from the click-through log and the global context comprising
the other images in the database. Specifically, two aspects of the proposed method
make it more advanced than the related existing fusion approaches. First, we take
into consideration the complex structure of the associated web pages by means
of a structured retrieval model using an effective model combination strategy.
Second, we integrate the learning of the mapping among modalities and the use
of the mapping into a unified model, which does not need offline learning and can
easily scale up. The other major contribution of this chapter lies in the conclusions
we have drawn from our study of the usefulness of various context categories in
web image retrieval, which could be beneficial for the future research and the
deployment of context in real web image search systems.

7.3 Query context in web image retrieval

While in a QBE-based retrieval task the query input, i.e. the example image,
is the most important observable entity to reflect the information need of the
user, user’s general preferences, the search environment and the use scenario can
be said to determine the use context, in which the information need of the user
should be satisfied. In addition to the use context, also the query context can be
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Page Title

Surrounding Text

Alt Text

<img

src="http://z.about.com/d

/cars/1/7/T/S/2007_BMW

_M6_conv.JPG" alt="2007 

BMW M6 convertible">

Surrounding Text

<QAData>

<QA Count="103">BMW</QA>

</QAData>

Click-through

Figure 7.2: Illustration of the proposed structure of the local query con-
text for web image retrieval. The web page used in this figure is from
http://cars.about.com/od/buyingadvice/ig/New-and-redesigned-2007-cars/2007-BMW-
M6-convertible.htm.

defined, which can help disambiguate the query and uncover the true search intent
represented by the query image. Incorporating the query context into the web
image retrieval process is essentially the process of expanding the actual query
by linking it with different types of contextual information. Depending on the
origin of this information, and in the specific case of web image retrieval, we can
speak about two general categories of the query context. While the local query
context encompasses the information that is tightly related to a particular QBE
search session, the global query context is independent of the particular session
and provides the knowledge that can be considered useful for all search sessions.

Although we focus in this chapter on the query context only, the proposed
retrieval approach is general enough to incorporate other context categories. In
the following sections, we elaborate on the sources of the local and global query
context that we exploit in this chapter.

7.3.1 Local query context

We consider the textual information in the web page associated with the query
image as the local query context. Since different text fields can be extracted from
a web page, and because it can realistically be assumed that not all fields are
of equal importance for the web image retrieval task, the fields will be treated
separately in our approach. The fields of the local context are illustrated in Fig.
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7.2 and can be summarized as follows:

• Page title qpt. Page title is an important field for the page author to state
what the main content of the web page is about.

• Alt text qa. Alt (alternative) text is shown when an image cannot be
displayed to a user. As such, it can be seen as a textual counterpart to the
visual content of the image.

• Surrounding text qs. Surrounding text consists of the text paragraphs
around an image in a web page. The surrounding text is in many cases
semantically related to the image content and can be used to interpret the
image. However, since the surrounding text can also contain information
that is unrelated to the image, this field as a contextual information source
can be more noisy than other fields and may therefore mislead the retrieval
process.

• Click-through log. Click-through log is the log registering which image
is clicked by users for which query. In this chapter, we specifically utilize
the click-through log from a keyword-based image search engine and ignore
the user identity. The click-through log can be represented as a set of
tuples comprising the query, the image, and the clicked count. Based on
the Query Association (QA) techniques [120][86][87], we can transform the
click-through data into the set of <image, set of clicked queries> pairs by
aggregating the queries for which the image is clicked for, which can be
regarded as an implicitly inferred local query context and, as such, added
as a new field into the textual representation of the image.

7.3.2 Global query context

The global query context can be regarded as a knowledge base from which we can
mine a meaningful interpretation of the query. In this chapter, we will focus on the
most straightforward, but at the same time also the most complex source of this
type of contextual information, namely the collection corpus itself. The corpus C
comprises the images on the web and their corresponding textual representations
and can be used as a reference with respect to which the query image can be
interpreted and the local context can be verified. In particular, the information
derived from the corpus can help improve the query model estimation in cases
in which the local context is unavailable or noisy, or if the user-specified query
image is not representative enough to express the search intent.

Based on the above, we model the local query context as consisting of four
fields, i.e., Page title, Alt text, Surrounding text, and Query Association, while the
global context is represented by the corpus.
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7.4 Context-aware image retrieval model

In this section, we first introduce the retrieval model that serves as the basis of
our context-aware image retrieval approach and that is inspired by the language
modeling theory. Then, we show how the introduced retrieval model can be made
context-aware by incorporating the local and global query context defined in the
previous section.

7.4.1 Kullback-Leibler divergence retrieval model

A retrieval approach inspired by language modeling has been widely used in infor-
mation retrieval due to its sound theoretical foundation and excellent empirical
performance [137]. Moreover, such an approach is flexible enough since it rep-
resents both the query and the document as language models and computes the
relevance score based on the distance between the two models. Hence context
information can be easily incorporated by adjusting the model estimation for the
query and the documents.

The risk minimization framework for information retrieval was first proposed
by Lafferty and Zhai in [51]. There the risk of returning a single document d

given the query q is defined as

R(d;q) =R(a = d|q, C)

=
∑

r∈{0,1}

∫

θQ

∫

θD

L(θQ, θD, r)× p(θQ|q)

p(θD|d)p(r|θQ, θD)dθQdθD,

(7.1)

where a = d is the action to return the document d for the query q, C is the
corpus comprising all the documents in the database, r ∈ {0, 1} indicates whether
the document d is relevant to the query q, θQ and θD are the language models
estimated from the query and the document, and L represents the loss function.

Among the many possible loss function definitions, Kullback-Leibler (KL) di-
vergence between the query model and a document model is a well investigated
and widely adopted approach [51] and leads to a particularly flexible framework to
incorporate additional (e.g. context) information into the retrieval model. Based
on the KL divergence loss function and after some approximation of Eqn. (7.1),
the following risk function can be obtained:

R(d;q) ∝−
∑

wi

p(wi|θ̂Q) log p(wi| ˆθD) + ξq. (7.2)

Here, wi are the words used to represent the query and the documents. Fur-
thermore, ξq is a query-dependent constant and can therefore simply be ignored
without affecting the ranking result. Finally,

θ̂Q =argmaxθQ p(θQ|q)
θ̂D =argmaxθD p(θD|d)

(7.3)
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are the maximum a posteriori estimates of the query and document language
models. By assuming a uniform prior, the query and document model can be
estimated based on the maximum likelihood principle:

pml(wi|θ̂Q) =
tf(q, wi)

Mq

pml(wi|θ̂D) =
tf(d, wi)

Md

,

(7.4)

where tf(q, wi) and tf(d, wi) are the term frequencies of the word wi in the query
q and the document d, respectively, and Mq and Md are the number of words in
the query q and document d, respectively.

For those words which appear in the query and not in the document, the

corresponding item p(wi|θ̂Q) log p(wi| ˆθD) in Eqn. (7.2) will have infinite value

since p(wi| ˆθD) = 0. This will lead to the ranking score R(d;q) = −∞. To handle
this case, smoothing [138][31] is introduced, the basic idea of which is to assign a
prior probability for those words that are “unseen” in documents.

As suggested in the study of language modeling approaches for text and image
retrieval [138][31], the Jelinek-Mercer smoothing method performs the best in the
image retrieval context as well as for text retrieval with a long query. Since our
local query context contains a lot of words, we adopt this method in this chapter.
The Jelinek-Mercer smoothing is a linear interpolation of the language model
empirically estimated from the documents and the collection model estimated
from the whole collection of indexed documents, and can be formulated as

pλ(wi|θ̂D) = (1− λ)pml(wi|θ̂D) + λp(wi|C), (7.5)

where λ ∈ [0, 1] is the trade-off parameter to control the contribution of the
smoothing term and p(wi|C) is the collection language model estimated based on
word counts in the entire corpus.

By integrating the smoothed language models Eqn. (7.5) into the risk function
defined in Eqn. (7.2) and after some transformation of the risk expression, image
documents can be efficiently ranked based on the relevance score computed as
follows:

S(d;q)
def
===

∑

wi∈q∩d

p(wi|θ̂Q) log(
(1 − λ)pml(wi|θ̂D) + λp(wi|C)

λp(wi|C)
).

(7.6)

7.4.2 Context-aware image retrieval model

The incorporation of the local query context into the web image retrieval scenario
leads to bi-modal representations of the query and a document, i.e., visual rep-
resentation of an image and textual representation of its local context. In this
respect, we can expand the definition of a query q as consisting of the query
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image qv, represented by a bag of visual words {wv
i } and the local context qt

consisting of four fields defined in Section 7.3.1, each of which is represented by a
bag of textual words {wt

i}. Similarly, each of the images d from the corpus C is
represented by the bags of visual (dv) and textual words (dt).

If the visual and textual words are combined into a unified word space, then
the problem of web image retrieval using local and global context can still be
formulated using the elegant risk minimization framework from Section 7.4.1.
Following this approach, we estimate the expanded query and document models
as follows:

θ̂Q =argmaxθQ p(θQ|qv,qt)

θ̂D =argmaxθD p(θD|dv,dt).
(7.7)

Compared to common alternatives for exploiting multi-modal information for
web image retrieval, such as reranking [121], which first ranks the images based
on one modality and then reranks them by considering the other modality, our
adopted approach building on a unified word space not only supports more effi-
cient one-step image retrieval, but also enables the investigation of the expected
correlation between visual words and textual words, as will be shown in Section
7.5.2.

In the next section, we elaborate in more detail on how we approach the
estimation of the query model using the local and global query context.

7.5 Query Model Estimation using Local and Global Query

Context

In Section 7.5.1 we first define the query model incorporating the local query
context that unifies the textual context and visual content of the query image
into one model and transforms web image search into a structured document
retrieval problem. Then, in Section 7.5.2 we define a multi-modal relevance model
that integrates the local and global query context and can address the potential
limitations facing the local query context.

7.5.1 Query model using local context

Web image retrieval using local query context can be regarded as a structured
document retrieval problem [118], where not only the query but also the docu-
ments in the database are structured. Here we use the local context not only
to enrich the query representation, but also to enrich the document representa-
tion. As defined in Section 7.3.1, the local context of image documents consists
of four fields: Page title, Alt text, Surrounding text, and Query Association from
click-through logs. They are combined with the visual representation to form the
five fields in the structured query and document. A straightforward approach
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to structured document retrieval is to linearly combine the relevance scores com-
puted on each field separately, which is also referred to as score combination
[118][69][42][117][19][131]. Though the approach seems effective, Robertson et al.
[81] pointed out that it has several essential drawbacks, such as breaking the
non-linearity of term weight and leading to non-robust estimation of collection
statistics. Based on this, they proposed to combine the term frequencies (tf ) in
the BM25 retrieval model [80]. In this chapter, by extending the tf combination
idea to language modeling approach, we propose the model combination method
to combine the language models estimated from each field individually:

pl(wi|θ̂Q) =
K
∑

k=1

αk × dlk × p(wi|θ̂kQ), (7.8)

pl(wi|θ̂D) =

K
∑

k=1

αk × dlk × p(wi|θ̂kD), (7.9)

where p(wi|θ̂Q) and p(wi|θ̂D) are the local context based language models for the
query image and database image respectively, and k represents the index of the
K fields. We set K = 5 in this chapter in view of the four context elements we

defined in Section 7.3 as well as the visual query representation. θ̂kQ and θ̂kD are
the language models for the query and document estimated using the k-th field.
αk is the weight to represent the importance of the k-th field. dlk is the average
document length for the k-th field. It is important to note that wi can be either
a textual word or a visual word.

The incorporation of the average document length is important to balance the
different fields. For example, on one of the collected datasets, we found that the
average document length of the visual representation is 996 while it is only 2 for
Alt text. This means that the average word probability is 1/996 for visual and
1/2 for Alt text. Without scaling by document length, the value of KL divergence
computed using Eqn. (7.6) would be dominated by the words appearing in the
Alt text. This problem can be addressed by incorporating the average document
length to scale the word probability.

The collection language model is estimated in the same way, namely,

pl(wi|C) =
K
∑

k=1

αk × dlk × p(wi|Ck), (7.10)

where p(wi|Ck) is the collection language model estimated from the k-th field.
Since one image may be associated with several web pages, the fields extracted

from the web page may be repeatable. Moreover, in the click-through log for each
keyword query the images may be clicked by several users, which makes the Query
Association field also repeatable. A possible way to deal with the repeatable fields
is to weight the sources differently according to the confidence of the source, such
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as the PageRank [76] of the web page, and the reliability of the user performing
the click. In this chapter, we employ the simplest possible solution that merges
the content from different sources (web pages and users) into a single field.

7.5.2 Query model using local and global query context

Although incorporating the local context can effectively improve the web image
retrieval performance, it can be problematic in some cases. First, not all images
have related web pages or Query Associations. In such cases, it is difficult to
obtain the textual description of an image. Second, for those images with local
context, the contextual information may be noisy and unable to describe the
image.

In this section we explain how we employ the global context to cope with the
aforementioned limitations of the local context. Motivated by the relevance-based
language model [54], we propose a multi-modal relevance model to incorporate
the local and global visual and textual information into the image retrieval model.
Different from a relevance-based language model for which the query is a single
medium, e.g., text, the multi-modal relevance model can handle a multi-modal
representation of queries and documents. Different from the traditional language
model, multi-modal relevance model can leverage the knowledge in the corpus to
estimate a more comprehensive and robust query model.

The query model should be estimated conditioned by the query image itself
as well as the associated textual representation.

p(wi|{qt,qv}) = p(wi,q
t,qv)

p(qt,qv)
, (7.11)

p(qt,qv) =
∑

wi

p(wi,q
t,qv), (7.12)

where wi is either a visual or a textual word. The multi-modal relevance model
is now proposed to incorporate the corpus to achieve a more comprehensive and
robust query model estimation:

pg(wi,q
t,qv) =

∑

{θt,θv}∈M

p(θt, θv)p(wi|θt, θv)p(qv|θv)p(qt|θt), (7.13)

where {wi} = {wt
i} ∪ {wv

i } and

p(wv
i |θt, θv) =p(wv

i |θv),
p(wt

i |θt, θv) =p(wt
i |θt).

(7.14)

The above equations (Eqn. (7.11–7.14)) estimate the visual query model and
contextual query model simultaneously. Here p(qv|θv) and p(qt|θt) is the visual
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and contextual query likelihood, respectively, given the model of a document from
the corpus.

The likelihood of the query given the document model in the visual domain
can be estimated by assuming that the visual words are independent of each other.

p(qv|θv) =
∏

wv
j
∈qv

p(wv
j |θv). (7.15)

Since the textual representation is structured with several fields, the likeli-
hood in the textual domain can be estimated as the products of the likelihoods
estimated in different fields,

p(qt|θt) =
∏

k

(
∏

wt
j
∈qt

k

p(wt
j |θt))αk ,

(7.16)

where αk is the weight to denote the importance of different fields, similarly to
Eqn. (7.9). If the local context qt is unavailable, we can simply set p(qt|θt) to a
small constant for any θt and so it can be ignored in the equation.

The model space M is the space comprising all the document models, which
can be regarded as a knowledge base describing the mutual interpretation of
images and texts, but also capturing the co-occurrence among the (both visual
and textual) words in the corpus. We can approximate M using all the doc-
ument models from the images in the corpus and assume that the generation
probability p(θt, θv) of image documents is uniform. Then the relevance model
defined in Eqn. (7.11–7.14) can be regarded as the weighted sum of the docu-
ment models from the corpus, where the weights are determined by the likelihood
p(qv|θv)p(qt|θt) of the query given these document models.

Different from the traditional information retrieval where the query typically
contains only a small number of keywords, in our approach both the image query
and its local context are much more informative and, as such, could also be in-
cluded in the model space M. Since, however, our experiments indicated that
the query likelihood given the query model p(qv|θvQ)p(qt|θtQ) is several magni-
tudes larger than that given other document models, our proposed multi-modal
relevance model will degrade to the model dominated by the local context and
the query image. In order to avoid this, but still benefit from the entire avail-
able contextual information, we devise the following strategy. We first estimate
the multi-modal relevance model using Eqn. (7.11) and Eqn. (7.13) by remov-
ing the query model from M and then combine it with the local context based
model defined in Eqn. (7.8). In our experiments, they are linearly combined and
the weights are 0.875 and 0.125 for the local and global context based models,
respectively.

Compared to the traditional language model, the context-aware query model
described above has the following main advantages. First, the power of the under-
lying multi-modal relevance model is that the query is essentially “reconstructed”
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from the document models from the corpus. In this way, it can lead to an alter-
native query model that has less dependence on the local context, using which
potential problems emerging from insufficiently representative query image or im-
perfect local context could be reduced. This is possible because the noisy textual
or visual words are likely to be isolated and seldom appear in the document mod-
els simultaneously with other query words. As a consequence, the noisy words
will have a relatively low probability in the relevance model. Second, the global
context can still estimate a textual query model even if the local context is un-
available. As such, the multi-modal relevance model can be said to perform the
multi-modal query expansion, by expanding the textual query words based on
the textual, but also on the visual representation of the images in the corpus. In
fact, our experiments indicated that even the query model based on the global
context only performed surprisingly well. We will elaborate on this in more detail
in Section 7.6.

7.5.3 Implementation

A näıve implementation of a multi-modal relevance model will be computationally
expensive since it will traverse all the documents in the corpus to compute the
summation in Eqn. (7.13). Here we introduce some implementation considerations
to make the proposed approach able to retrieve images in real-time.

We can see that the element in the summation in Eqn. (7.13) consists of two
components, the generation probability of words given the document and the
query likelihood. In other words, the word probability in the relevance model is
the weighted sum of word probabilities in each document, weighted by the query
likelihood of that document. The relative magnitude of query likelihood can be
determined based on the relevance score computed using KL divergence [137]. It
can be observed that except the top T results in the ranking list based on KL
divergence, the value of the query likelihood given the documents would be low.
Hence we can approximate the model space M using only the T documents with
the highest relevance scores computed based on the query image and the local
context. Then the computation of Eqn. (7.13) can be completed in real-time. In
our experiments, T is set to 100.

The size of the word space, i.e., the number of candidate words for which we
need to compute the generation probability in Eqn. (7.13), is another key factor to
influence the computational cost. The computational cost of Eqn. (7.13) is linear
to the number of candidate words. Moreover, given a relevance model comprising
a large number of words, the retrieval time will be very high since in this case
nearly all the documents in the database will have overlapping words with the
query and so the inverted file index will not be able to speed up the retrieval.
Instead of computing the probabilities for all the words, the size of which will be
millions for both textual and visual words, in this chapter, we adopt two strategies
to limit the word space:
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Table 7.1: Labeling criteria for various relevance levels

Level Labeling criteria for an image-image pair

Excellent Same product with the same brand, the same model

Relevant Same product with the same brand, different models

Related Same product with different brands

Fair Different products with the same brand

Irrelevant Unrelated images

• The space of visual words is limited to those words appearing in the query
image.

• The space of textual words is not expanded unless the local context is
unavailable, since, if available, the local context is typically already rich
enough. For those queries without the local context, we choose 20 textual
words from the local context of the top 10 documents with a large term
frequency and small collection probabilities and use them for expansion.

7.6 Experiments

To demonstrate the effectiveness of the proposed context-aware web image re-
trieval approach, we perform several experiments on two representative web im-
age search datasets. We compare different methods, including textual search,
visual search, local context based search, global context based search and local-
global context based search. The results reported below provide insights on how
to integrate various context categories into real-world web image search appli-
cations. Moreover, they demonstrate that the proposed context-aware retrieval
model is a promising way to incorporate the contextual information for more
reliable content-based web image retrieval.

7.6.1 Dataset

Since there are no publicly available image collections with the associated web
pages, we collected an image dataset using a commercial web image search engine.
Since the product image search has gained increasing importance and, in addi-
tion, is characterized by clear definitions of search relevance, we built our dataset
using product images. Twenty product brand names, which are well-known and
frequently searched on the web, are selected as queries to crawl up to 1000 images
per brand from the web. Then, five images were selected for each product name
to be as diverse as possible to represent e.g. different product models or ranking
positions in the text-based search result. After completing manual labeling of the
collection, we found that for several queries it was difficult to recognize the prod-
uct model and label relevant images. Hence they were removed from the query
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set. Finally the dataset, further referred to as the Prod60 dataset, was gener-
ated that comprises 19069 images, from which 60 images covering twelve product
brand names like BMW, Colgate, Giant, Gillette, Marlboro, Nikon, Heineken,
iPod, Macbook, Nike, Whisky, xBox have been selected as queries.

To simulate the diversity of contexts in real-world applications, i.e. some of
images may have high quality context while the contexts of others may be noisy,
we expanded the Prod60 dataset as follows. Firstly, for each of the 60 query
images, we searched for the duplicates in the web image database again using a
commercial image search engine. This resulted in 4632 duplicate images. Then
the duplicates images were added to the Prod60 dataset to enrich the queries. We
refer to this new dataset further as the Prod4692 dataset.

For all of these images, we found all the web pages that have links to them and
downloaded the web pages for analysis using a private service available in a com-
mercial web image search engine. Then the Page title, Alt text, and surrounding
text of the images were extracted. To generate the Query Association data, we
used the click-through log from a commercial keyword-based image search engine,
and processed it into the format of Query Association for each of the images in
our two datasets. Due to the dead link or other reasons, the corresponding web
pages could not be downloaded for some of the images. Moreover, the Query
Association was unavailable for those images that have never been clicked by any
user. This phenomenon made the dataset realistic since in real-world applications
one cannot assume that the local context is available for all the images.

Images in the collections were labeled manually by 6 vendors regarding their
relevance to each query using five relevance levels. The labeling criterion for each
relevance level is given in Table 7.1. For example, if the query image is a car
BMW 320i, then all other images of BMW 320i are labeled as Excellent, while the
images of other BMW cars with different models, such as BMW M6, are labeled
as Relevant. Other car brands, such as Lamborghini, are all labeled as Related.
The other images from BMW company, such as BMW logo and BMW bike are
labeled as Fair. Finally all other images are labeled as Irrelevant.

7.6.2 Experimental setup

To investigate the effects of local and global contexts in web image search, we
conducted several experiments. The visual search baseline (Visual) simply deploys
the language modeling approach based on the extracted visual words, inverted file
indexing and the Jelinek-Mercer smoothing [31] to retrieve similar images. The
text search baseline (Text) deploys the textual information in the local context
of query images and database images using the retrieval model for structured
documents, as shown in Eqn. (7.8) and Eqn. (7.9), without considering the visual
features. Since for some query images (11 in the Prod60 dataset) the local context
is unavailable, no results could be obtained using text search. For these queries, we
used the result from the visual search for the evaluation of text search so that a fair
comparison is possible. For investigating the impact of the local context, we not
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only studied the approach proposed in this chapter based on model combination
(Loc m), but also the method based on score combination (Loc s) serving as
a reference for comparison. Finally, we tested two variants of the multi-modal
relevance model, the Global variant using only the global context and the GLC
variant in which the local and global context were combined. The parameters
for all the methods were set globally and fixed for all queries. We used different
smoothing parameters λ in the language models for visual and textual fields, and
they are 0.98 and 0.005 respectively.

In addition to the methods mentioned above, we also experimented with the
Pseudo Relevance Feedback (PRF) method [121], which was slightly modified to
use both the local and global context by means of reranking. The images at the
top and the bottom of the ranked results list returned by Loc m were regarded
as pseudo-positives and pseudo-negatives, respectively. Then, the Support Vector
Machine (SVM) [109] with the RBF (Radial Basis Function) kernel was used to
train a visual classifier. Finally, a combination of the prediction scores of SVM
and Loc m was used to rank the images.

To evaluate the methods, two well-known measures, Mean Average Precision
(MAP) and Normalized Discounted Cumulative Gain [41], were used. MAP is the
mean of Average Precisions (AP) computed for each query, which is defined as the
area under the non-interpolated precision/recall curve. Since AP can only work
with binary relevance judgments, we defined “Irrelevant” and “Related” images
as negative while all others were marked as positive. In the results reported
below we computed MAP for top N results and we set N to 40. Compared to
MAP, NDCG accepts varying relevance levels. For a given query q, NDCG@k is

defined as: NDCG@k = 1
Z

∑k

j=1
2r(j)−1
log(1+j) , where r(j) is the relevance level of the

jth document, Z is the normalization coefficient to make the NDCG of a prefect
ranking become equal to one, and k is the truncation level.

We extracted the SIFT features using the feature extraction tool provided by
Oxford University2 and used the Robust Approximate Kmeans [56] to cluster the
SIFT features into a visual codebook comprising 1M visual words. For the text
processing we removed the stop words and performed stemming.

7.6.3 Performance comparison

The performance comparison of the methods described in the previous section
on the Prod60 dataset and in terms of NDCG and MAP is shown in Fig. 7.3.
The NDCG results indicate that Text performs comparably with Visual at small
truncation levels and outperforms Visual at larger truncation levels. The results
on the Prod4692 dataset, as shown in Fig. 7.4, further confirm this observa-
tion for large truncation levels, while showing that for small truncation levels
(less than 14) Visual now performs even much better than Text . Visual can be
said to achieve good performance on top results since it can accurately retrieve

2http://www.robots.ox.ac.uk/ vgg/research/affine/detectors.html
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Figure 7.3: NDCG and MAP comparison over the Prod60 dataset.

Table 7.2: Quantitative performance comparison of different algorithms.

Prod60

Visual Text Loc s Loc m PRF Global GLC

NDCG@10 0.497 0.554 0.597 0.621 0.626 0.609 0.669

NDCG@20 0.415 0.519 0.560 0.579 0.600 0.594 0.649

NDCG@40 0.358 0.496 0.531 0.547 0.584 0.579 0.621

MAP 0.240 0.418 0.453 0.465 0.521 0.545 0.572

Prod4692

Visual Text Loc s Loc m PRF Global GLC

NDCG@10 0.480 0.465 0.549 0.578 0.568 0.545 0.615

NDCG@20 0.406 0.425 0.499 0.537 0.532 0.532 0.587

NDCG@40 0.349 0.399 0.464 0.516 0.511 0.524 0.566

MAP 0.233 0.318 0.369 0.429 0.430 0.491 0.515

near duplicates and return them on the top. Although Text can better convey
semantic information for the query image, this information is noisy and not so
discriminative to differentiate between different relevance levels.

Since Visual is advantageous on retrieving Excellent results and Text performs
better for semantically relevant images, they are expected to complement each
other. This has also been confirmed by our results, demonstrating that the local
context based methods Loc m and Loc s both significantly outperform Visual and
Text . In addition, we can see that the model combination (Loc m) performs better
than the score combination strategy (Loc s), which confirms our hypothesis and
Robertson’s observations as discussed in Section 7.5.1.

The global context based model (Global), without including the local context,
performs surprisingly well on both datasets. It performs comparably or slightly
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Figure 7.4: NDCG and MAP comparison over the Prod4692 dataset.

better than Loc m on NDCG at larger truncation levels, while Loc m performs
better on the top results. This indicates that the corpus is a very useful context in-
formation source for web image search and that the multi-modal relevance model
is indeed able to “reconstruct” the search intention from the corpus. Moreover,
we can see that the models biased towards the local and global contexts can be
considered complementary to each other. As expected, GLC that combines the
local and global context can achieve the best performance over all five methods.
As shown by the results in Table 7.2, the performance of GLC improves by 7.3%
compared to Global, 13.7% compared to Loc m, 17.0% compared to Loc s, 25.4%
compared to Text, and 73.8% compared to Visual in terms of NDCG@40, and by
4.9%, 23.1%, 26.2%, 36.9%, 138.9% in terms of MAP, respectively. Furthermore,
GLC outperforms PRF by 9.8% in terms of MAP, which demonstrates the effec-
tiveness of the proposed algorithm utilizing the local and global context compared
to a well-known alternative method. Moreover, we can see that even Global, which
uses only the global context, can outperform PRF. This can be explained by the
integrated use of the visual and textual features in Global.

While GLC outperforms Loc m for the truncation levels 10 to 40, it performs
comparably with Loc m on the top 10 ranked results. This further confirms
that GLC leverages the advantage of Loc m on returning relevant images on
top results. For those images which can not be certainly determined as relevant
by Loc m, incorporating the global context by mining useful information from
the corpus further improves their relevance estimation. These conclusions were
confirmed by the results obtained on the Prod4692 dataset, as shown in Fig. 7.4.
Moreover we can see that on the expanded dataset the local context is noisier
than in Prod60. The MAP of Text on Prod4692 dataset is only 0.3183, compared
to 0.4179 on Prod60. Hence we can say that the proposed method incorporating
both the local and global context is generally effective, even though the local
context may be noisy.

The performance for each query is presented in Fig. 7.5. There, only the
NDCG@40 results are reported because MAP results suggest similar conclusions.



150 A UNIFIED CONTEXT MODEL FOR SEMANTIC IMAGE RETRIEVAL 7.6

We can observe that GLC performs better than Visual for 43 queries, and better
than Text for 47 queries. We can conclude that GLC not only significantly im-
proves the overall performance over visual and textual baselines, but also shows
superior performance on a large majority of queries.

The reason that on a small amount of queries GLC performs worse than the
textual or visual baseline can be explained in two ways. First, although the query
expansion generates more information to enrich the query, it also brings noise
into the retrieval process, especially when the textual or visual search results
are extremely poor. Second, when a region in the query image, which does not
correspond to users’ search intent, finds many duplicates in the corpus, bad visual
search result will mask the good textual search result and mislead the GLC. In our
future work we will address these problems by adaptively adjusting the parameters
based on the automatic discovery of the utilities of different categories of contexts.

7.6.4 Analysis

In this subsection, we present a detailed analysis of the impact of various categories
of contexts on the retrieval performance. Due to the space limit we will only
present the results obtained on the Prod60 dataset. The results on Prod4692
suggest similar conclusions.

Our experimental study of the importance of various fields including Page
title, Alt text, Surrounding text, and QA showed that the optimal weights of
these fields are 0.01 for Page title, 0.5 for Alt text, 0.09 for Surrounding text and
0.2 for Query Association, respectively. From this we can hypothesize that Alt
text is the most important textual field in web image retrieval. While this finding
seems contradictory to our intuition that Query Association derived from users’
click-through should be the most reliable information source, it can be explained
by the fact that Query Association usually represents the general interpretation
of the image. In search engines the queries issued by users are most likely to be
general words, which we also verified by checking the query log. On the other
hand, Alt text, which is provided by the author of the web page, contains a more
image-specific information and is therefore more likely to be useful in determining
image relevance to the query. A relatively small contribution of the Page title was
expected since this information is intended to describe the entire web page. While
Surrounding text can mostly be used to interpret the image and contains a large
amount of information, it tends to be noisy, which explains its moderate weight
in the retrieval model.

To analyze the relative importance of the visual and textual information for
the retrieval performance, we fixed the ratio of the weights between different
textual fields. The performance variations with the varying visual-versus-textual
weight are illustrated in Fig. 7.6. There, the textual weight is the sum of the
weights for the four textual fields in Eqn. (7.8) and Eqn. (7.9). From this figure
we can see that visual information provides a smaller contribution to the retrieval
performance when evaluated using MAP while larger contribution in terms of



7.6 EXPERIMENTS 151

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

V
isu

a
l

Te
x
t

G
LC

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

bmw_1

bmw_2

bmw_3

bmw_4

bmw_5

colgate_1

colgate_2

colgate_3

colgate_4

colgate_5

giant_1

giant_2

giant_3

giant_4

giant_5

gillette_1

gillette_2

gillette_3

gillette_4

gillette_5

heineken_1

heineken_2

heineken_3

heineken_4

heineken_5

ipod_1

ipod_2

ipod_3

ipod_4

ipod_5

macbook_1

macbook_2

macbook_3

macbook_4

macbook_5

marlboro_1

marlboro_2

marlboro_3

marlboro_4

marlboro_5

nike_1

nike_2

nike_3

nike_4

nike_5

nikon_1

nikon_2

nikon_3

nikon_4

nikon_5

whisky_1

whisky_2

whisky_3

whisky_4

whisky_5

xbox_1

xbox_2

xbox_3

xbox_4

xbox_5

Average

V
isu

a
l

Te
x
t

G
LC

F
ig
u
r
e
7
.5
:
N
D
C
G
@
4
0
per

qu
ery

o
ver

th
e
P
rod

6
0
d
a
ta
set.



152 A UNIFIED CONTEXT MODEL FOR SEMANTIC IMAGE RETRIEVAL 7.6

Figure 7.6: The performance of different combination weights of text and visual mod-
els/scores over Prod60. Weight=0 corresponds to purely utilizing the text model/score,
while Weight=1 means purely relying on the visual model/score.

Figure 7.7: The performance of different combinations of local and global context model
over Prod60. Weight=0 means purely utilizing the local context model Loc m, while
Weight=1 equals to the global context model Global.

the NDCG. Since NDCG cares more about the Excellent images than MAP, this
confirms the conclusion that visual representation is more suitable for bringing
Excellent images to the top of the ranked list.

The effect of the relative weight of global context over local context is shown
in Fig. 7.7. Firstly, we can see that, in general, Global performs better than
Loc m, achieving 13.7% and 30.6% improvement in terms of NDCG@40 and MAP,
respectively. However, by combining them together with suitable weights, we can
achieve a significant performance improvement. The optimal weight of the global
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context over the local context can be set to be between 0.1 and 0.2 and the
performance is not sensitive to the weight if it is larger than 0.1.

7.7 Conclusion

With the objective of improving content-based web image retrieval based on the
QBE paradigm, we studied in this chapter the possibilities to enrich the query
image using various types of contextual information and to embed this information
effectively into a context-aware image retrieval model that is based on the language
modeling theory. The contextual information we studied includes the associated
web page, the click-through log and the corpus. The experimental results on a
collected web image dataset demonstrated the utility of the contextual information
sources we considered in this chapter and the effectiveness of the proposed context-
aware image retrieval model compared to the text-only or visual-only web image
retrieval.
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Chapter8
Context in Image Retrieval:

Reflections and Recommendations

The word “context” is from Latin contextus, the past participle of contexere,
where con stands for “together” and texere stands for “to weave”. This origin
of the word then also provides a recipe for how to effectively leverage context in
example-based image search. As indicated by con, we first need to discover useful
additional sources of information about the query object and then we need to
develop an effective model to weave the information derived from the context and
from the analysis of the query in order to improve the image retrieval performance.

According to Melucci [70], the first of the two steps mentioned above corre-
sponds to identifying the contextual variables, which are the other observable in
the search process in addition to the query itself. The reason of introducing con-
text in the search process is that it is difficult to infer the users information need
accurately from the query alone, especially if the query is semantically as complex
as an image. Among the context signals potentially useful for the example-based
image retrieval, we focus in this thesis on discovering and deploying two categories
of these signals that can be referred to as the query-internal and query-external
context. In addition to demonstrating the impact of different course of contextual
information on the performance of web image search, another important insight
provided in Part II of this thesis is how language modeling can be deployed to
incorporate context into conventional retrieval models.

The query-internal context was first investigated in Chapter 5 and was searched
for in the image content surrounding the target object (the region of interest).
While the usability of this information for improving object-based image retrieval
has been recognized before, the reports found in the literature on embedding it
into the image retrieval process indicated that there is still significant room for
improvement. Our proposed method show how this improvement can be achieved,

155
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and then especially when the query object is small or occluded. While Chapter
5 considers the query that consists of a single image only, we show in Chapter 6
how further improvement can be achieved by expanding the query to an entire
video captured about the target object. In this video-based image retrieval ap-
proach, the query representation is enriched using the information extracted from
the context of all frames of the video.

The query-external context includes the contextual information extracted from
different channels than the query itself. The local and global query context we
introduced in Chapter 7 belong to this category, and were shown to be helpful to
improve semantic image retrieval. While it is easy for a human to interpret an
image at the semantic level, inferring this semantics automatically by a computer
from image pixels only is challenging and in many cases even impossible. The
method presented in Chapter 7 showed how textual information associated with
the image, ranging from the texts on the hosting web pages to the textual infor-
mation collected from the broader web can be discovered, organized and deployed
to help infer the semantic of the image query.

While Part II of the thesis proposes a number of innovative approaches on how
to deploy context for improved web image search, we conjecture that still many
challenges remain open. This leads to a number of promising research topics
that we briefly mention here. First, the context acquisition as reported in this
thesis is largely passive, in the sense that it is extracted from the data that are
available after the users interaction with data, e.g. after the data (image) was
captured. To further improve the retrieval performance, it would be beneficial
to also consider and capture in some way the actual use context directly at the
interaction time. Video-based image retrieval did a preliminary attempt in this
direction. However, we hope to see a larger progress there, for instance following
the approach of Kofler et al. [48] where query quality is assessed from the log
of the search session – the idea that could also be deployed in a more general
scope to infer and model the search context of the user. Second, mechanisms
are needed for automatically assessing the utility of different available contextual
information channels and for recommending the way and extent to which a given
contextual channel should be taken into account in a given image search case. This
would enable the development of fully adaptive context-aware retrieval models
that optimally make use of the available resources to learn the users information
need and act accordingly.



Bibliography

[1] http://images.bing.com/.

[2] http://images.google.com/.

[3] http://images.yahoo.com/.

[4] http://www.flickr.com/.

[5] http://www.google.com/mobile/goggles/.

[6] http://www.robots.ox.ac.uk/ vgg/data/oxbuildings.

[7] http://www.tineye.com.

[8] Trec-10 proceedings appendix on common evaluation measures.
http://trec.nist.gov/pubs/trec10/appendices/measures.pdf.

[9] J. Allan, J. Aslam, N. Belkin, C. Buckley, J. Callan, B. Croft, S. Du-
mais, N. Fuhr, D. Harman, D. J. Harper, D. Hiemstra, T. Hofmann,
E. Hovy, W. Kraaij, J. Lafferty, V. Lavrenko, D. Lewis, L. Liddy, R. Man-
matha, A. McCallum, J. Ponte, J. Prager, D. Radev, P. Resnik, S. Robert-
son, R. Rosenfeld, S. Roukos, M. Sanderson, R. Schwartz, A. Singhal,
A. Smeaton, H. Turtle, E. Voorhees, R. Weischedel, J. Xu, and C. Zhai.
Challenges in information retrieval and language modeling: report of a
workshop held at the center for intelligent information retrieval, univer-
sity of massachusetts amherst, september 2002. SIGIR Forum, 37(1):31–47,
2003.

[10] X. Bai and G. Sapiro. A geodesic framework for fast interactive image and
video segmentation and matting. In ICCV ’07: Proceedings of the 11th
IEEE International Conference on Computer Vision., pages 1–8, 2007.

[11] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features.
In ECCV, 2006.

157



158 BIBLIOGRAPHY

[12] N. J. Belkin. Some(what) grand challenges for information retrieval. SIGIR
Forum, 42(1):47–54, 2008.

[13] A. Bosch, A. Zisserman, and X. Muoz. Image classification using random
forests and ferns. In ICCV, 2007.

[14] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the
OpenCV Library. O’Reilly, Cambridge, MA, 2008.

[15] J. Callan and N. Belkin. Context-based information access. Report of the
Discussion Group on Context-Based Information Access of the Workshop
on “Information Retrieval and Databases: Synergies and Syntheses”, 2003.

[16] L. Cao, J. Luo, H. Kautz, and T. Huang. Image annotation within the con-
text of personal photo collections using hierarchical event and scene models.
IEEE Transactions on Multimedia, 11(2):208–219, Feb. 2009.

[17] Z. Cao and T.-Y. Liu. Learning to rank: From pairwise approach to listwise
approach. In ICML, 2007.

[18] S.-F. Chang, J. He, Y.-G. Jiang, E. El Khoury, C.-W. Ngo, A. Yanagawa,
and E. Zavesky. Columbia University/VIREO-CityU/IRIT TRECVID2008
High-Level Feature Extraction and Interactive Video Search. In NIST
TRECVID Workshop, Gaithersburg, MD, November 2008.

[19] S.-F. Chang, W. Hsu, W. Jiang, L. Kennedy, D. Xu, A. Yanagawa, and
E. Zavesky. Columbia University TRECVID-2006 Video Search and High-
Level Feature Extraction. In NIST TRECVID Workshop, Gaithersburg,
MD, November 2006.

[20] O. Chapelle, Q. V. Le, and A. J. Smola. Large margin optimization of
ranking measures. In NIPS Workshop: Machine Learning for Web Search,
2007.

[21] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall:
Automatic query expansion with a generative feature model for object re-
trieval. In CVPR, 2007.

[22] J. Cui, F. Wen, and X. Tang. Real time google and live image search
re-ranking. In ACM Multimedia, 2008.

[23] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences,
and trends of the new age. ACM Computing Surveys, 40(2):1–60, 2008.

[24] M. Davis, S. King, N. Good, and R. Sarvas. From context to content: Lever-
aging context to infer media metadata. In Proceeding of the 12th ACM in-
ternational conference on Multimedia, MM ’04, pages 188–195. ACM Press,
2004.



BIBLIOGRAPHY 159

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR ’09: Proceedings of
2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
248 –255, jun. 2009.

[26] Z. Dou, R. Song, J.-R. Wen, and X. Yuan. Evaluating the effectiveness
of personalized web search. IEEE Transactions on Knowledge and Data
Engineering, 21:1178–1190, 2008.

[27] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object cate-
gories from google’s image search. In ICCV. IEEE Computer Society, 2005.

[28] R. Fergus, P. Perona, and A. Zisserman. A visual category filter for Google
images. In ECCV, 2004.

[29] M. Fritz and B. Schiele. Decomposition, discovery and detection of visual
categories using topic models. In CVPR, 2008.

[30] C. Galleguillos and S. Belongie. Context based object categorization: A crit-
ical survey. Computer Vision and Image Understanding (CVIU), 114:712–
722, 2010.

[31] B. Geng, L. Yang, and C. Xu. A study of language model for image retrieval.
In ICDMW ’09: Proceedings of the 2009 IEEE International Conference
on Data Mining Workshops, pages 158–163, Washington, DC, USA, 2009.
IEEE Computer Society.

[32] A. Hanjalic. New grand challenge for multimedia information retrieval:
Bridging the utility gap. International Journal of Multimedia Information
Retrieval, Sep. 2012.

[33] A. Hanjalic, C. Kofler, and M. A. Larson. Intent and its discontents: The
user at the wheel of the online video search engine. In ACM Multimedia,
2012.

[34] A. Hauptmann, R. Yan, and W.-H. Lin. How many high-level concepts will
fill the semantic gap in news video retrieval? In CIVR, 2007.

[35] S. Heymann, K. Muller, A. Smolic, B. Frohlich, and T. Wiegand. SIFT
implementation and optimization for general-purpose GPU. In Proceedings
of the International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, 2007.

[36] W. Hsu, L. Kennedy, and S. Chang. Reranking methods for visual search.
Multimedia, IEEE, 14(3):14–22, 2007.

[37] W. H. Hsu, L. S. Kennedy, and S.-F. Chang. Video search reranking via
information bottleneck principle. In ACM Multimedia, 2006.



160 BIBLIOGRAPHY

[38] W. H. Hsu, L. S. Kennedy, and S.-F. Chang. Video search reranking through
random walk over document-level context graph. In ACM Multimedia, 2007.

[39] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual atten-
tion for rapid scene analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(11):1254–1259, Nov 1998.

[40] V. Jain and M. Varma. Learning to re-rank: query-dependent image re-
ranking using click data. In WWW, 2011.

[41] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly
relevant documents. In SIGIR, 2000.

[42] F. Jing, M. Li, H.-J. Zhang, and B. Zhang. A unified framework for image
retrieval using keyword and visual features. IEEE Transactions on Image
Processing, 2005.

[43] Y. Jing and S. Baluja. Visualrank: Applying pagerank to large-scale image
search. IEEE Trans. on PAMI, 30(11):1877–1890, 2008.

[44] T. Joachims. Optimizing search engines using clickthrough data. In KDD,
2002.

[45] T. Joachims. Training linear svms in linear time. In KDD, 2006.

[46] M. G. Kendall. A new measure of rank correlation. Biometrika, 30, 1938.

[47] L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. How
flickr helps us make sense of the world: context and content in community-
contributed media collections. In MULTIMEDIA ’07: Proceedings of the
15th international conference on Multimedia, pages 631–640, New York,
NY, USA, 2007. ACM.

[48] C. Kofler, L. Yang, M. Larson, T. Mei, A. Hanjalic, and S. Li. When video
search goes wrong: predicting query failure using search engine logs and
visual search results. In ACM Multimedia, pages 319–328, 2012.

[49] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest
neighbor queries. In SIGMOD, 2000.

[50] J. Krapac, M. Allan, J. Verbeek, and F. Jurie. Improving web image search
results using query-relative classiffiers. In CVPR, 2010.

[51] J. Lafferty and C. Zhai. Document language models, query models, and
risk minimization for information retrieval. In SIGIR ’01: Proceedings of
the 24th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 111–119, New York, NY, USA,
2001. ACM.



BIBLIOGRAPHY 161
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Summary

While retrieval models are of fundamental importance in Information retrieval,
they have not been studied well for the cases when the retrieval concerns multi-
media data collections. In this thesis we focused on developing advanced retrieval
models to help improve the retrieval of images from the Web. Because a typical
Web image retrieval system usually supports both keyword queries and exam-
ple image queries, the thesis is naturally divided into two parts to address the
retrieval using both query types.

The first part of the thesis addresses the keyword-based image search, and
then specifically the challenge of image search reranking in the Web context.
The basic principle of reranking is that the image search results list acquired
using a textual query is refined using the information extracted from the visual
content of the images in the list. The reranking approaches proposed in the
past were largely unsupervised. However, the reranking criteria deployed there to
determine how visual features of the images are deployed for refining the results
list were largely heuristic and therefore insufficiently reliable in a general case.
To improve the reliability, in Chapter 2 we introduced the idea of supervised
reranking, where a human supervision step is embedded in devising the reranking
model using eleven carefully designed reranking features. In Chapter 3, this idea
is generalized using prototype-based reranking techniques. We constructed the so-
called prototypes from the initial search result and then proposed three ways of
building meta-rerankers from these prototypes, which are then combined into the
final reranking model in a supervised fashion. This part of the thesis is concluded
by Chapter 4, which presents a systematic review of the reranking approaches
and which identifies the remaining challenges for developing and deploying the
reranking technology in real-world image search engines.

In part II, we address the query-by-example image search scenario and focus on
discovering and utilizing various contextual signals to help improve the retrieval
accuracy. Chapter 5 is devoted to object-based image search, where the visual
scene context surrounding the query object (object of interest) is deployed to
help find more images of that object. To that end, we developed a contextual
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object retrieval model effectively incorporating the visual scene context. In order
to acquire even richer contextual information for object-based image retrieval, in
Chapter 6 we extend the example-based image search concept into video-based
image retrieval (VBIR), which allows users to submit not a single image, but a
video clip about the query object. Since the video clip shows the target object
under varying capture conditions, rich information can be extracted from this clip,
through which the search engine can understand the query object better and fine-
tune the retrieval model accordingly. In Chapter 7 we generalize our approach
of context-aware image retrieval and present a semantic image retrieval model
that combines both the local and global context together to better understand
images semantics. Here the local and global contexts are mined, respectively, from
the Web pages associated with images and the click-through data, which can be
regarded as a knowledge base of the search engine. Chapter 8 concludes this part
of the thesis by a brief summary and recommendations for future research.



Samenvatting

Hoewel retrievalmodellen van fundamenteel belang zijn in het vakgebied van in-
formation retrieval, zijn ze nog niet goed bestudeerd in de gevallen wanneer het
gaat om het zoeken in multimediacollecties. In dit proefschrift richten wij ons
op het ontwikkelen van geavanceerde retrievalmodellen om het vinden van af-
beeldingen op het web te helpen verbeteren. Gezien een typisch zoeksysteem
voor afbeeldingen op het web doorgaans zowel zoekopdrachten in de vorm van
trefwoorden als zoekopdrachten op basis van een voorbeeldafbeelding onderste-
unt, is dit proefschrift dan ook opgedeeld in twee delen om beide manieren van
zoeken te behandelen.

Het eerste deel van het proefschrift behandelt het vinden van afbeeldingen
op basis van trefwoorden en dan in het bijzonder de uitdaging van het her-
rangschikken van afbeeldingen in de context van het web. Het basisprincipe van
herrangschikken is, dat de resultatenlijst van afbeeldingen die verkregen is met
een tekstuele zoekopdracht, wordt verfijnd met behulp van de informatie gextra-
heerd uit de visuele inhoud van de afbeeldingen uit die lijst. De manieren om
te herrangschikken die in het verleden werden voorgesteld waren voornamelijk
ongesuperviseerd. De criteria die voor het herrangschikken werden gebruikt voor
het bepalen hoe visuele afbeeldingskenmerken werden ingezet voor het verfijnen
van de resultatenlijst, waren echter grotendeels heuristisch van aard. Derhalve
waren zij onvoldoende betrouwbaar voor een algemeen geval. Om de betrouw-
baarheid te verbeteren hebben wij in hoofdstuk 2 het idee van gesuperviseerd
herrangschikken gentroduceerd. Hierbij is een menselijke supervisiestap inge-
bouwd in het ontwikkelen van het model gebruikmakende van elf met zorg ont-
worpen herrangschikkenmerken. Dit idee wordt algemener gemaakt in hoofdstuk
3 door gebruik te maken van prototype-gebaseerde herrangschiktechnieken. Wij
construeerden uit de initile zoekresultaten de zogenaamde prototypes en stelden
vervolgens drie manieren voor voor het opbouwen van meta-herrangschikkers uit
deze prototypes, die dan op gesuperviseerde wijze worden gecombineerd tot het
uiteindelijke herrangschikmodel. Het eerste deel van het proefschrift wordt afges-
loten door hoofdstuk 4 dat een systematisch overzicht van herrangschikmethoden
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presenteert en dat de resterende uitdagingen vaststelt voor het ontwikkelen en het
inzetten van herrangschiktechnologie voor afbeeldingszoekmachines in de praktijk.

In het tweede deel van het proefschrift behandelden we het voorbeeldafbeelding-
als-zoekopdracht scenario en concentreren wij ons op het ontdekken en het ge-
bruikmaken van verscheidende contextuele signalen om de accuratesse van het
zoeken te helpen verbeteren. Hoofdstuk 5 is toegewijd aan object-gebaseerd
zoeken naar afbeeldingen. De visuele context dat het object in de zoekopdracht
(het voorwerp waarin de gebruiker is genteresseerd) omringt, wordt hierbij in-
gezet om te helpen bij het vinden van meer afbeeldingen van dat object. Daar-
toe ontwikkelden wij een contextueel objectretrievalmodel dat de context van de
visuele scne effectief omvat. Om nog rijkere contextuele informatie te verkri-
jgen voor object-gebaseerd zoeken naar afbeeldingen breiden we in hoofdstuk
6 het concept van voorbeeld-gebaseerd zoeken naar afbeeldingen uit tot video-
gebaseerd image retrieval (VBIR), waarin gebruikers niet een enkele afbeelding,
maar een geheel videofragment over het te vinden object kunnen opgeven als
zoekopdracht. Aangezien het videofragment het doelobject onder verschillende
opnameomstandigheden laat zien, kan er rijke informatie uit dit fragment worden
onttrokken. De zoekmachine kan deze informatie gebruiken om het object in de
zoekopdracht beter te begrijpen en het retrievalmodel dienovereenkomstig af te
stemmen. In hoofdstuk 7 generaliseren wij onze aanpak van contextbewust zoeken
naar afbeeldingen en presenteren een semantisch retrievalmodel voor afbeeldingen
dat zowel de lokale als globale context combineert om beter de semantiek van
de afbeeldingen te begrijpen. De lokale en globale contexten worden hier re-
spectievelijk ontgonnen van webpaginas geassocieerd met afbeeldingen en van de
doorklikdata, wat kan worden gezien als een kennisdomein van de zoekmachine.
Hoofdstuk 8 sluit dit deel van het proefschrift af met een beknopte samenvatting
en aanbevelingen voor verder onderzoek.
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