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Summary

Humans use binocular vision to judge depth to see the world “three-dimensionally”. Binocular
vision is the vision achieved with two eyes, exploiting the difference between the images in the
left and right eye. With computer vision, two cameras a certain distance apart “replace” human
cyes, and so simulate the natural system. Such stereoscopic systems will become more and
more important in the context of telepresence for future telecommunication applications.

As the available bandwidth for transmitting video signals is limited, it will be necessary to
reduce the video data rate while maintaining an acceptable video quality. Video data rate
reduction is achieved by using image data compression techniques which are an attempt to
minimise the large bandwidth requirements and so reduce the costs of transmission but still
provide acceptable image reconstruction. When dealing with stereoscopic images, the original
data rate is doubled, as there are two images instead of one to be transmitted, which makes
compression even more important. Image acquisition with two cameras also causes a
displacement between the left and right spatial image in a stereoscopic image pair. This
displacement, referred to as disparity, is a unique phenomenon associated with stereoscopic
images. Since it is inversely proportional to depth, it can be used to analyse stereoscopic image
pairs. In this thesis, a new stereoscopic image sequence coder which makes use of disparity is
developed. Most of the work leading to this thesis was for the European project DISTIMA
(DIgital STereoscopic IMaging & Applications).

Over the last couple of years, object-based coding, a new coding concept, has attracted a great
deal of attention. By transmitting the shape, motion and colour of the objects in an image, it is
possible to avoid the annoying coding errors, such as mosquito effects and blocking artefacts,
produced by block-oriented, hybrid coding. Furthermore, important image areas such as facial
details in face-to-face communications can be reconstructed with a higher image quality than
with block-oriented hybrid coding. Moving objects are the main problem. Whenever two
separate objects move towards each other, no information is available in object-based coders to
indicate which object is covering the other. This will cause a large error if the wrong object is
chosen when the image is reconstructed. With the help of stereoscopic information, it is
possible to overcome the limitations of this kind of coding scheme. Using depth information,
which can be estimated from the stereoscopic signal, it is easy to decide which object is farther
away and which is visible. For this reason, it is desirable not only to transmit the three
parameters shape, colour and motion, but also a fourth parameter - depth or disparity. Disparity
can be used to determine the position of an object in space. As the coder developed in this thesis
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will not be used for real physical objects, but on image regions which do not necessarily
correspond to physical objects, the coder is referred to as a region-based coder.

This thesis describes a region-based stereoscopic image sequence coder which is based on the
principles of image analysis and image synthesis. The source model uses rigid and arbitrarily
shaped regions undergoing translational motion instead of fixed blocks of pixels. The regions
are found by segmenting the images by means of motion and disparity vectors. These regions
are then described by a set of parameters including colour, shape, motion and disparity, which
are extracted by the image analysis step. To reduce the bit rate, the parameters are subsequently
coded using standard coding schemes such as temporal and spatial prediction and entropy
encoding. Image synthesis then uses these parameters to synthesise the temporally next image
and the corresponding spatial image in an stereoscopic image pair. The major developments in
this thesis include:

- Apixel-accurate disparity and motion estimation . This is required to segment regions of this
kind. Also developed in this thesis is a disparity estimator of this kind which does not need
any knowledge of the stereoscopic geometry and so can handle practically any kind of
stereoscopic image pairs. It is based on a dynamic programming approach and takes the
feature difference of the pixels into account, assuming piecewise-smooth, inner disparity
regions, as well as the relationship between disparity jumps and occlusions in a stereoscopic
image pair. The resulting vector fields are pixel-accurate and of high quality, as the analysis
shows. Therefore, they are a good basis for further processing, say, the segmentation of
regions according to their disparity. The experiments in this thesis which also apply dynamic
programming to motion estimation show that the estimation of a motion vector field is also
possible with this approach. With the region-based coder, it can, therefore, be used not only
to estimate disparity but also to estimate motion.

- Image analysis , based on these vectors and the current left image. First of all, initial regions
are segmented in accordance with the source model. Segmentation is based only on the
disparity and motion vector fields. After a suitable number of regions are obtained by
merging, the four required parameters - disparity, motion, shape and colour -are extracted
for each of the remaining regions. Evaluation shows the high quality of the segmentation of
the image into regions and the subsequent description of the regions. As the regions are only
changed if new regions can be merged with them in a subsequent image, temporal
consistency of the regions can also be guaranteed in a sequence.

- Image synthesis, performed on an image using the parameters which are stored in a region-
memory. Image synthesis, in principle, is a straightforward process involving the
reconstruction of the regions from the transmitted parameters and putting them at the correct
position in the image. This is done by motion compensating the regions in the left image
sequence and disparity compensation in the right images. Evaluation shows that image

x Summary



synthesis delivers a synthesised image with high visual quality. The region memory makes it
possible to build up a database of regions in the image sequence, so decreasing the required
transmission bit rate if, say, a previously visible region is covered and then becomes visible
again.

As the main coder requirement is reducing the number of bits to be transmitted, all the
parameters have to be coded efficiently. Different coding strategies are adopted depending on
the nature of the parameters. Motion, disparity and shape parameters undergo lossless coding
using spatial and temporal prediction schemes. The colour parameters are coded using shape-
adaptive DCT. This makes it possible to describe arbitrarily shaped regions efficiently.

Whenever uncovered background or occlusions occur, or if image analysis fails to describe the
scene completely, say because of imperfections in the source model, there will be a synthesis
error in the synthesised image. Despite this synthesis error, an informal subjective evaluation
shows that the visual quality of an individual stereoscopic image pair is comparable with that of
an MPEG2-encoded video signal, although the latter requires a considerably higher bit rate than
the region-based coder developed in this thesis.

When the quality of the entire encoded sequence without synthesis error addition is assessed,
several inconsistencies in the temporal behaviour of the region-based coder can be identified.
These inconsistencies produce noticeable artefacts which will be corrected by adding the
synthesis error. These artefacts can be caused by the incorrect merging of regions, the temporal
jerkiness of regions due to incorrect motion vectors, and the sudden changes of the region
colour due to a missing update of the region parameters at some time. To increase the quality of
the encoded stereoscopic sequence, the synthesis error is added to the synthesised images. This
will no longer be necessary when the region parameters are regularly updated.

Even with rudimentary synthesis-error coding - simple vector quantisation when the error is-
above a threshold - the region-based coder achieves a similar subjective quality as an MPEG2
coder when the two stereoscopic channels of a sequence are encoded separately with the same
total bit rate.

The investigations in this thesis only address the use of rigid, two-dimensional regions in
translational motion and it is still an open question whether the efficiency of the parameter
coding can be increased by using a different source model, say flexible two-dimensional or
three-dimensional regions. The coding efficiency of the synthesis error can be increased by
using a more intelligent error coding which also takes the regions into account. Apart from
algorithmic questions, further work will also include investigations into the possible
applications of region-based stereoscopic coders in the near future. The European project
PANORAMA (PAckage for New OpeRational Autostercoscopic Multiview systems and
Applications) will be the vehicle for most of this research.
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1. Introduction

Within seconds he ran out to the deck and waved and grinned at over three billion people. The three billion
people weren't actually there, bus they watched his every gesture through the eyes of a small robot tri-D
camera which hovered obsequiously in the air nearby. The antics of the President always made amazingly
popular tri-D: that's what they were for.

Douglas Adams, The Hitchhikers Guide through the Galaxy, 1978

In the next ten to fifteen years, emerging multimedia services will have a strong impact on social
and cultural life. By the year 2010 the boundaries between computing, communications and
broadcasting will have largely been eliminated. User-friendly multimedia terminals with flat
panel displays then will provide access to a wide range of entertainment, communication,
information and education services. Digital systems will allow the better use of existing
infrastructures for TV distribution and will also improve image quality and definition (HDTV
and 3-DTV). New digital systems will make it possible to increase the number of programmes
and the number of sound channels for multi-lingual programmes. These new systems will also
allow the creation of advanced interactive audio-visual services.

The standard television concept can be extended in future image communication systems to
cover stereoscopic multiview, 3-D and full-space imaging. This will provide the user with
potentially variable, controlled and three-dimensional windows of the world. As this new
concept will give the viewer a feeling of “being present in the scene”, it is called telepresence.
Depending on the developments in display technology, various degrees of resolution and spatial
perception will be offered. There is a large potential in these new types of imaging in non-
broadcast applications (e.g. teleconferencing, medicine) and in the consumer entertainment
market. Telepresence extends the video conferencing concept so that participants can use non-
verbal aspects of communication (eye contact, spatial perception, body movement, gestures,
facial expressions) in the same way as they would in a face-to-face meeting.

The degree of telepresence that can be achieved depends on the accuracy of sensory information
transmitted to the user. New sensors and devices - for instance high resolution stereoscopic
displays, navigational aids (head position/orientation tracking, eye-tracking, body tracking),
data gloves as well as highly agile platforms for mobility in a remote environment - will create
the need for a much higher bandwidth than is usual today.

1. Introduction 1




One of the most important and challenging tasks facing telepresence is the transmission and
presentation of visual information in a form that human beings are used to: namely three-
dimensional. Looking at our daily life, one can see that the acquisition of visual information is a
highly active process. It involves frequent changes in gaze direction, accommodation,
convergence angle and a number of involuntary control mechanisms which serve to compensate
for various limitations of the eye. Present video communications systems can only support a
few of these activities, since pictures on 2-D displays do not provide the relevant information. A
second obstacle is the large amount of data needed to be transmitied for these new telepresence
systems.

On the display side, practical solutions for 3-D displays are available but they rely on special
glasses and are therefore not applicable in interpersonal communications. Currently the most
promising approaches to auto-stereoscopic multiview displays (without special glasses) use
lenticular screen plates for optically addressing the viewer's left and right eye. Viewpoint-
adaptive display techniques are being developed which use head-tracking devices to sense the
actual viewing position of individual viewers and display the appropriate stereo views
accordingly.

On the transmission side, advanced compression is required because of the large amount of data
needed to be transmitted for telepresence systems. In the last decade a group called MPEG
(Moving Picture Expert Group) has worked on compression standards called MPEG1 and
MPEG2. Both standards are block-based coding schemes which subdivide an image into
separate blocks and work on these independently. Recent results in the RACE DISTIMA project
(DIgital STereoscopic IMaging and Applications) [Zie92a] have shown that it is possible to
transmit stereoscopic signals - which consist of two spatially separated signals - compatible to
MPEG?2. However, such block-based coding schemes suffer from blocking artefacts, especially
at a low bit rate. For that reason object-based coding, which is expected to have a better quality,
is an upcoming topic in MPEG4 and other committees.

The transmission of video signals via computer and telecommunication networks will become
more and more important. But depending on the used network, the available bandwidth is
restricted. Applications via a telephone line only have a few kbit per second available, via ATM
networks the possible data rate increases to a couple of Mbit per second, which is still not
enough when dealing with TV-resolution images with an original data rate of 166 Mbit/s.
Another aspect will be the billing of such future services: the more data one sends, the more one
has to pay. Because of this it will be necessary to reduce the video data rate, which is much
higher than data rates for data and speech transmission. Nevertheless the video quality still has
to be acceptable. This video data rate reduction is achieved by applying image data compression
techniques, which seek to minimise the large bandwidth requirements and hence reduce the cost
of transmission with acceptable image reconstruction results. When dealing with stereoscopic
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images, the original data rate is doubled, as there are two images instead of one to be
transmitted, which makes compression even more important. Although stereoscopic features are
exploited, a stereoscopic coding method will usually be based on already existing algorithms.

Most of these technologies are quite generic in nature and do not exclusively relate to
telecommunications, nevertheless their successful development is likely to help in the
introduction of advanced telepresence services.

1.1 Object-Based Coding

Within the last couple of years, a new coding concept - called object-based coding - has gained
world wide attention: through the transmission of the object shapes, the two types of annoying
coding errors of block-oriented hybrid coding - known as mosquito effects and blocking
artefacts - can be avoided. Furthermore important image areas such as facial details in face-to-
face communications can be reconstructed with a higher image quality than with block-oriented
hybrid coding. As these object-based coding methods are based on an analysis of the images at
the encoder and a synthesis of the objects at the decoder, they also are called object-based
analysis-synthesis coding.

The main advantage of object-based analysis-synthesis coding methods compared to standard
block-based methods is due to the fact that the object description avoids certain problems of
fixed blocks. Whenever fixed blocks are used, these blocks do not define an object boundary
accurately. The fact that a block can actually belong to two neighbouring objects is a source of
large errors, as the two objects might move differently but only one displacement vector will be
assigned to all of the block. Further the emerging synthesis error will be quantised based on this
. block. Therefore coding errors such as blocking artefacts and so-called mosquito effects can be
observed in the decoded images when a block-based scheme is used. Object-based coding helps
to overcome these disadvantages, as all the calculations are based on objects, so the above-
mentioned problems will not occur if the object description is accurate.

The main disadvantage of object-based coders is that present implementations are known that
can only handle very restricted sequences. All these coders aim at the very low bit-rate coding
of videophone sequences in particular, where only a few objects are moving and some
knowledge about the content is available. The main problem is with moving objects, as no
information is available in such object-based coders to indicate which object is covering another
one. With the help of stereoscopic information it is possible to overcome the restrictions of this
kind of coding scheme. Using the depth information it can be decided easily which object is
farther away and which one is visible. Through such stereoscopic extensions of the existing
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object-based coding concepts not only videophone scenes can be handled, but also general
scenes. Dealing with a stereoscopic signal is a further step towards telepresence. All this leads
to the concept of an object- or region-based stereoscopic coder.

1.2 Region-Based Stereoscopic Coding

An object-based coder transmits the parameters shape, colour and motion. With this information
the next image in time will be synthesised. Current implementations of object-based coders are
restricted to scenes where only a few moving objects are shown. The problem is that in general
scenes objects can be occluded by other objects. This will always happen if there are two
objects with contradictory motion. With the help of disparity information it can be decided
which object is in front. Now the objects can be ordered according to their distance to the
camera and information given on which object is visible. Because of this additional information
more robust and flexible coding approaches can be designed. For this reason it is desirable not
only to transmit the three parameters shape, colour and motion, but also a fourth parameter:
disparity or depth. As the coder developed in this thesis will not work on real physical objects,
but on image regions which do not necessarily correspond to physical objects, the coder is
called region-based.

Transmission (Network)

Figure 1.1: Principle of the region-based stereoscopic coder
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In the region-based stereoscopic coder described in this thesis and shown in Figure 1.1, regions
will be segmented according to their motion and disparity. These regions will be motion-
compensated in one of the two image sequences of the stereoscopic signal and stereo-
compensated from this synthesised image in the other. If the disparity is used in addition to the
parameters of usual object-based coders, the receiver gets all the information necessary for the
synthesis of both images. This way no additional information has to be transmitted to
synthesise the second channel of a stereoscopic system. The additional overhead to be
transmitted will then be restricted to a possible synthesis error signal.

The coding scheme presented in this thesis uses disparity information as an additional piece of
information, and as a result does not need any a priori knowledge about the content of the

scene.

1.3 Outline of the Thesis

This thesis is based on techniques of coding schemes known as object-based analysis-synthesis
coding. When setting up a region-based stereoscopic coder, a knowledge of stereoscopic
principles is required. Chapter 2 gives a brief survey of these stereoscopic principles and the
coding techniques used in this thesis. This includes an explanation of the basic geometrical rules
of a stereoscopic system, the definitions of disparity and occlusions, as well as an overview of
the principles and current implementations of object-based analysis-synthesis coders and
stereoscopic coders. An essential part of a stereoscopic coder is the estimation of the disparity

vectors.

In Chapter 3 an improved disparity estimation algorithm based on dynamic programming is
developed and discussed. This includes an explanation of the dynamic programming as well as
its application to find an optimal solution to the problem of disparity estimation. In several steps
the original concept of dynamic programming is extended until the final system is able to
estimate highly accurate disparity vectors to be used for the segmentation of regions. In a
region-based coder this segmentation of regions and their handling is the most critical point.

Chapter 4 describes the necessary image analysis tools - such as initial segmentation, merging
of regions and the extraction of the regions’ parameters - and their adjustments to the needs of
this system. Also the image synthesis which synthesises the image at the receiver site is
described here. Different synthesis methods are investigated in order to get the best possible
synthesis.
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The complete system utilizing many known components from image coding algorithms is
described in Chapter 5. This includes the coding of the parameters extracted by image analysis,
the handling of the synthesis error left after image synthesis and the network aspects of the
developed coder, as well as the results of a statistical and an informal subjective evaluation
comparing the region-based stereoscopic coder to a standard MPEG2 coder.

Finally, the achieved results and topics for future research in order to improve the performance
of the region-based stereoscopic coder will be discussed in Chapter 6.

6 1. Introduction




2. A Survey on Stereoscopic Image Coding

The development of the region-based stereoscopic coder in this thesis is based on techniques
used in object-based analysis-synthesis coding. Present implementations of these coding
techniques aim at the efficient coding of scenes, where

- only a few objects are moving,

- object motion is dominant and moderate,

- the moving objects cover up to 40-60% of the image area and

- no camera motion occurs.

Based on these assumptions [H&t92], investigations in object-based analysis-synthesis coding
have up to now been restricted to typical videophone and videoconference applications
aiming at a very low bit rate transmission {CCL95, Mus95, MVD96, PS94]. New approaches
as described in the MPEG4 Verification Model [MPEG96] also aim at the coding of general
scenes, but a closer look shows they are actually still based on blocks.

Through the use of stereoscopic information it will be possible to overcome the above
mentioned restrictions of object-based coders. A short overview of the two basic ingredients
of the coding scheme, the stereoscopic and the two-dimensional image coding principles is
given next. Furthermore, a selection of the most common stereoscopic image coding schemes
will be presented and discussed.

2.1 Stereoscopic Principles

Humans use binocular vision to judge depth to see the world “three-dimensionally”.
Binocular vision is the vision achieved with two eyes, exploiting the difference between the
images in the left and right eye. While binocular vision only provides one of many depth
clues, it is the one that seems easiest to understand. In computer vision, two cameras at a
certain distance apart will “replace” the human eyes, and thus simulate the natural system
setup. Points on the surfaces of objects are depicted in different relative positions depending
on their distances from the viewer [Hor86]. The key to an automated stereo system therefore
is a method for determining which point in one image corresponds to a given point in the
other image.
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A short overview of the basic geometrical principles is given next, followed by the definition
of disparity and a discussion on its estimation.

2.1.1 Basic Geometry

It is important to understand the geometrical principles of stereoscopic imaging. These
principles will be used throughout this thesis, either as a basis for image processing or to
provide simple solutions to the problems described later on. In stereoscopic imaging, two
cameras have to shoot two spatially separated images. These cameras can be set up in a way
that the optical axes are parallel or are inclined to each other by a certain angle, called the
convergence angle. If the optical axes are parallel, a lot of problems can be solved quite
easily. Unfortunately in most cases the optical axes are inclined which exacerbates the
problems. However, if the camera parameters such as focal length and convergence angle are
known, it is possible to make use of the geometry and simplify the way solutions are found.

Figure 2.1 shows the simplified setup of a stereoscopic system, assuming that the two optical
axes of the two cameras C, (left) and C, (right) are parallel and separated by a distance b. The
line connecting the lens centres is called the baseline. This baseline is perpendicular to the
optical axes and parallel to the horizontal axes (x-axes) of the images.

P(xp.Yp:2p)

Zp

(distance from
the point P

1o the baseline)

Optical axis
S o
X Buseline
-y a7
Focal length |
(distance from the * Image
lens to the image plane) plane

A4k
L Camera distance LI
Ll 1

Figure 2.1: Stereoscopic system setup with parallel optical axes
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The coordinates of a point P(x,y,z,) in the “real world” are measured relative to an origin
midway between the lens centres. They can be calculated from the image coordinates - which
are measured relative to the centre of the lenses - P’,(x’, y°) in the left and P’ (x’, y’) in the
right image if f - the distance from the lens centre to the image plane in both cameras - is

known. Then the following equations can be set up:
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From equations (2.1) and (2.2) it follows that
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The difference in image coordinates x; —x; in equation (2.4) is called disparity. By solving
(2.1) - (2.3) the real-world coordinates of the point P can be obtained:

x, = plirx)2 @5)
X=X,
yp = b()’[ -,'- yr),/2 (26)
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z,=b ,f @
X —X

As can be seen from equations (2.5) and (2.6) the disparity (x’; - x*) is linearly proportional to
the distance between the lens centres b. Even more important in the context of stereoscopic
imaging is that the distance of the object to the camera z,is inversely proportional to the
disparity, as can be seen from equation (2.7). Equation (2.7) also shows that the range of
possible disparity values in a parallel setup is 0, ], which means that a disparity of O never

¢an occur.

A point in the environment visible from both cameras causes a pair of image points - one in
the left image, the other one in the right image - called a conjugate pair. A point in the right
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image corresponding to a specified point in the left image must lie somewhere on a particular
line because the two have the same y-coordinate. This line is called an epipolar line.

A feature in the left image may or may not have a counterpart in the right image. If it does not
have a counterpart, this is because this feature can only be seen in the left image but not in the
right one. The feature is then called occluded. If the feature does have a counterpart, it must
appear on the corresponding epipolar line. For this simple geometry all epipolar lines are
parallel to the x-axis (Figure 2.2).

e[ 7] e
P | P

| |
Left image Right image

Figure 2.2: Epipolar lines for setup with parallel optical axes

Similar equations to (2.1) - (2.7) can also be setup for the more general non-parallel
geometry. The convergence angle plays an important role in this case, making the equations a
lot more complex. As the properties of the non-parallel case such as the relationship of
disparity and depth are the same as for the parallel case, these equations will not be shown
here. However, they can be found for instance in [Hor86]. The main difference is the range of
possible disparity vectors. With a non-parallel set-up the disparity vectors can take values
within [-ee, oo] as will be shown later in Figure 2.6. )

In this general case whenever the cameras are not aligned in parallel the epipolar lines will
also not be paraliel, neither to the x-axis nor to themselves (Figure 2.3). However, if the
camera parameters are known, these epipolar lines can be calculated and therefore be used to
solve some problems of stereoscopic imaging.

AT

Esipolac lin

z

Figure 2.3: Epipolar lines for setup with non-parallel optical axes
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2.1.2 Disparity

Every point in the left image of a stereo pair should have a corresponding duplicate
(conjugate pair) in the right image positioned on an epipolar line. The point will be positioned
in the right image with a displacement compared to its counterpart in the left image. The same
holds for displacements from the right to the left image. The vector describing this
displacement is called the disparity vector D. The horizontal component D, of D is called
disparity in this thesis and its size depends on the distance of the object from the camera
system (depth), as shown in Section 2.1.1. Consequently the disparity can help to determine
the position of an object in space. The relationship between the disparity vector D and the
disparity D, is different for stereoscopic setups with the optical axes parallel and non-parallel
axes. Figure 2.4 shows the case of parallel optical axes, whereas Figure 2.5 shows non-
parallel axes. Point P, in the left image, appears as point P, in the right image. Due to the
paralle]l geometry the epipolar lines are horizontal, therefore the two points are on the same
horizontal line. The vector D pointing from point P, to point P, is also horizontal and it is
identical to the disparity D, because its y-component is zero.

.

7, i
Da

O : Location of P*{in the right picture
Dy; Disparity
D : Disparity vector

Figure 2.4: Definition of disparity in a setup with parallel optical axes

In the case of a setup with non-parallel optical axes, the disparity vector D will have both x-
and y- components non-zero, as depicted in Figure 2.5. In theory the disparity runs along the
epipolar line. It is approximately equal to the x-component D, of the vector D under the
assumption that the convergence angle of the cameras is not too large. In the test sequences
used in this thesis [DIS92, DIS94] the convergence angle is less than 4 degrees, which leads
to a sufficiently small y-component of the disparity vector of maximum 2 pixels [DIS94]. In
an environment where one image is directly predicted using the disparity vectors and the
other image, it would not be advisable to neglect this y-component. However, with the system
described in this thesis a vertical component of maximum 2 pixels can be omitted, as can be
seen in later Sections. Nevertheless the disparity vector has to be estimated in both
dimensions, otherwise large vector estimation errors - also for the horizontal component -
would result. Therefore reference to disparity implies reference to the x-component D, of
vector D, as depicted in Figure 2.5. Likewise, reference to the epipolar line also implies a
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reference to the line along which the x-component of vector D lies. With the sequences used
this is almost the horizontal scanline of the image.

Hoe

ID,,'l ik

© : Location of P‘1 in the right picture
Dy Disparity
D : Disparity vector

Figure 2.5: Definition of disparity in a setup with non-parallel optical axes

In this thesis the disparity value D, gives the number of pixels a point in the left image has to
be shifted in relation to the right image. As the general case is a non-parallel camera
geometry, the disparity D, (from left to right) can have the following values (see Figure. 2.6):

D, = 0if the object lies on the Vieth-Miiller-Circle (VMC), indicated with the dashed line in
Figure 2.6,

D, < 0if the point is inside the VMC (such as the black circle in Figure 2.6) and

. D, > 0if the point is ouside the VMC (such as the black square in Figure 2.6).

Figure 2.6: Disparity and object distance in a setup with non-parallel optical axes
(not to scale)
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2.1.3 Occlusions

A unique phenomenon in stereoscopic imaging is occlusion. In a stereoscopic image pair,
there will be areas which are not visible in the left or the right stereo image. These areas are
called occlusions.

Resulting left image Resulting right image
after stereo-compensation after stereo-compensation
from the right image from the left image

Figure 2.7: Occlusions in stereoscopic imaging

For points in the area O, no corresponding image point can be found in the right image. The
same holds for points in the area O, as far as the left image is concerned. A method to estimate
the disparity in a stereoscopic image pair (see Section 2.1.4) should therefore not assign
incorrect vectors, but it should detect and mark these areas as occlusions. This should be
possible independent of the way of matching - either left-to-right or right-to-left. Stereo-
compensation shifts the pixels of the image according to the disparity vectors, this way
predicting the other image and thus predicts the other image of the stereoscopic pair. The
result of stereo-compensation will be an area of no information where occlusions occur (see
Figure 2.7). Some simple rules can be set up:

- Occlusion will only occur when there are two neighbouring objects having a different
distance to the camera (different disparity values).

- In the left image of the stereoscopic pair this occlusion will always occur left of an object
which is closer to the camera than a neighbouring object. In the right image it is the other
way around.
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In [Liu95] the visibility of any impairments in occluded areas in stereo vision is investigated.
The result was that these impairments are as visible as errors in regions that are present in
both images, the so-called binocular regions. Therefore, for the purpose of stereo image
coding, irrelevant data elimination in occluded areas has to follow the same rules as in
binocular regions.

2.1.4 Disparity Estimation

Disparity estimation is the key problem in stereo imaging. In applications such as depth
estimation for modelling or prediction of one stereoscopic image from the other one, the first
task to be solved is the determination of corresponding points in the two stereoscopic images.
The correspondence problem is that of identifying features in two images that are projections
of the same entity in the three-dimensional world. Most of the methods applied for disparity
estimation are well-known from motion estimation, where the correspondence of two points
has to be found in two temporally apart images. However, there are two major differences in
disparity estimation compared to motion estimation:

- In disparity estimation the possible range of vectors is extremely large compared to motion
estimation. This leads to a higher computational effort, and - as there are a lot more
possibilities to investigate - also to less reliable results. Therefore disparity estimation is a
more difficult task than motion estimation.

- A point on the surface of an object might not be visible from cither camera - this way
introducing an occlusion - but if it does appear in both images, then the two image points
must lic on corresponding epipolar lines as shown above.

On the other hand, using the knowledge of the epipolar geometry, the search area in which to
look for the corresponding point in the other image, can be reduced to a one-dimensional
search along this epipolar line. In the general non-parallel camera setup these epipolar lines
are not identical to the horizontal lines of an image. By calculating the equation of an epipolar
line {PD96] - which requires knowledge about the camera parameters and the camera
geometry - the disparity estimation can be done searching only along the points of the
epipolar line to determine the best match. Another approach is to transform one of the images
(using again the camera parameters) such that the epipolar lines will be parallel to each other
and re-sample it. This process is called rectification [PD96]. The epipolar geometry is then no
longer needed for disparity estimation itself because the epipolar lines are now parallel.
Additionally corresponding lines now even have the same y-coordinate as they are also
parallel to the horizontal line of the images. As the stereoscopic coding scheme in this thesis
is intended to be applicable to general scenes, neither calibrated cameras nor any knowledge
about the epipolar lines can be assumed. A calculation of the epipolar lines or a rectification
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will therefore not be possible, and the search for the corresponding point in the other image
has to be two-dimensional along the x- and y-axes.

The most common way to find correspondences is by using a correlation method [BDP95,
BN96]. Given a patch of one image the correlation with all patches in the search area of the
other image is calculated. This method is well-known in image coding for the estimation of
motion, but can also be used for estimation of disparity in the case of stereoscopic images.
Normally these patches are square blocks. The size of these blocks greatly influences the
result. If the blocks are too small, the brightness pattern will not be distinctive enough and
many false matches may be found. Also noise will be a problem if the patches are too small.
If they are too large, resolution is degraded, since neighbouring image regions with different
disparities will be combined in the measurement. This might lead to a situation where the two
blocks will not match, unless disparity is constant. As in motion estimation a multiple
resolution scheme would appear to be the answer. First correlation matches on reduced
images are found, then they are used to confine the search for matches in the next higher
resolution pair of images [ANG95].

While correlation methods are often the first ones to be proposed, they do not perform very
well for disparity estimation. Perhaps the most serious shortcoming is their sensitivity to
differences in foreshortening [Hor86): if a surface is tilted relative to the baseline, its
projection will appear shorter in one image than in the other. This is shown in Figure 2.8,
where the line A, B, in the left image is longer than A', B, in the right image, although both
are projections of the same line AB in the 3-D space.

Left image Plane Right image Plane

Figure 2.8: An inclined area with different amounts of foreshortening in two images
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The two grey-level waveforms will not be well correlated in this case, which leads to wrong
or rather approximate disparity values. A modification of the correlation approach that leads
to usable results is the incorporation of warping in the images to undo the foreshortening
effect. Also based on correlation, but first estimating a couple of candidate matches through
the phase difference in the Fourier transformed signal, the phase correlation [Wal91] reduces
the influence of the pattern size. Another solution is the use of dynamic programming to
optimise the output according to a cost function [PZC95).

If the grey level is more or less constant in a part of the image, it is hard to find corresponding
points. Correlation methods using patches smaller than the uniform region will produce no
clear optimum. It might be more reasonable to estimate disparity only where there are rapid
fluctuations, as on edges between patches of more or less uniform brightness or texture. These
lead to the concept of feature-based or edge-matching methods [POA94, SSJ95). In
particularly simple cases, all edges visible in one image are also visible in the other image.
Most systems do not work well if this condition is not satisfied, but even if they work well the
outcome is a sparse disparity information which has to be interpolated. In [KD94] such a
system combining feature extraction, matching and interpolation is proposed.

Another approach, joint motion and disparity estimation was recently proposed in different
papers [TGS96, IE94]. In these approaches motion and disparity estimation is based on block
matching algorithms, but taking into account the inherent coherence reiation between
disparity and motion. The resulting disparity values look very promising, although the
computational effort is a lot higher than with the earlier mentioned algorithms. The main
advantage of this method, i.e. a temporally consistent vector field, is very important for
several stereoscopic applications, but it would not be exploited in the scheme developed in
Chapter 4 of this thesis.

No matter which approach is used, disparity either will be estimated from the left to the right
image or vice versa. Depending on which direction is chosen, this will have different effects
on the detection of occluded areas (see Figure 2.7). Although different areas in the image will
be classified as occlusion, all the methods are applicable for both left-to-right and right-to-left
disparity estimation without any changes of parameters.
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2.2 Two-dimensional Image Coding

In image coding the main objective is to reduce the data rate. There are two basic
possibilities: redundancy reduction and irrelevance reduction.

Redundancy reduction is an information-preserving coding step. The parts of the data which
can be predicted through their statistical properties will be removed. An example of
redundancy reduction is the well-known Huffman Code. It is used to assign code words to the
source symbols to minimise the average bit rate. The code assignment in Huffman coding
depends on the long term probability of occurrence of the source symbol. The more often a
source symbol occurs - and the more probable it is - the shorter will be the code word
assigned to it. Longer code words will be assigned to improbable source symbols that do not
often occur. Decoding of the code words can always reconstruct the data without any
difference to the original code words.

The goal of irrelevance reduction is to adjust the coding scheme to the maximum capacity of
the human visual system: parts of the information that the human observer is not able to see
will be removed. To reduce irrelevance in image coding, quantisation of the transmitted
values is carried out. This is a non-reversible step, meaning that some information is lost.
Irrelevance reduction therefore leads to differences between original and decoded image,
which is described as the quantisation esror. ’

2.2.1 Source Models and Coding Principles

Most of the well-known image coding schemes are combinations of redundancy and
irrelevance reduction. A very important point to be considered in constructing a scheme for
image coding is the choice of the source model [Mus95] to be used. The source model
influences the parameters to be computed and transmitted -and so has a high impact on the
coding efficiency. One of the main criteria for the decision of what source model to use is
whether a single image or image sequences should be coded and transmitted. Table 2.1 shows
a list of the most common source models.

In this table and the following description, colour refers to a Y, U, V format of the images,
thus including luminance (Y signal) as well as chrominance information (U, V signals). This
colour information is coded using a transformation scheme such as the Discrete Cosine
Transformation (DCT), yielding the transformation coefficients.
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Source model Coding principle Parameters to be transmitted
Pixels Predictive coding Prediction error
Blocks of pixels or Transform coding Transformation coefficients
total image
Translational moving Hybrid transform Motion vectors,
blocks of pixels coding transformation coefficients of the
prediction error
Moving unknown objects | Object-based analysis- Motion, shape, colour
synthesis coding
Moving known objects Knowledge-based Motion, shape changes,
coding colour changes
Facial expressions Semantic coding Motion, shape, colour
action units

Table 2.1: Influence of the source model on the parameters to be transmitted [Mus95]

In predictive coding an attempt is made to predict the pixel to be encoded. The prediction is
made using the encoded values of the previously transmitted (and encoded) pixels. Only the
prediction error (differential signal) is used for transmission. In adaptive predictive coding,
the prediction can be based on local image statistics or by varying the coarseness of the
quantiser. These variations can be based on visual criteria or by not transmitting the
prediction error whenever it is below a certain threshold (as in conditional replenishment). A
further possibility is delayed coding where the encoding of a pixel is delayed until the "future
trend” [NH88] of the signal can be observed and then coded to take advantage of this trend.

In rransform coding [Cla85), blocks of pixels or the whole image are transformed into blocks
of data, called coefficients. This is done in order to reduce the correlation of the signal
samples by changing the statistical properties of the data. Again the irrelevance is reduced by
quantising the coefficients and transmitting only a certain number of cocfficients. Cosine
transforms have become most popular because they are well matched to the statistics of the
image signal. An adaptive transform coding scheme can be made by changing the
transformation such that it matches the image statistics or by changing the criteria for
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selection of the coefficients in order to match the subjective quality requirements. Well-
known examples of this kind of coding are the JPEG standard and its derivatives [PM93,
RH96, Lin95]. Other possibilities include wavelet [OS95, Sha93, QCH94] and subband
coding [Woo091, LP96]. Figure 2.9 shows a simplified block diagram of such a hybrid
transform coder. The actual parameters to be coded are the motion vectors and the colour
information of a block. In a local feedback loop - which is an embedded decoder - the image
will be reconstructed and stored in the image memory to be available for the differential
coding of the next image in time.

Source Model
Actual Parameters

/

Input Monon P Transmission Channel

Figure 2.9: Simplified block diagram of an hybrid transform coder

Predictive coding and transform coding have been designed for the coding of single images.
For the coding of image sequences also the temporal correlation of two successive images
will be taken into account. In hybrid transform coding, this temporal correlation is reduced by
applying a motion compensation of blocks of pixels. The motion information has to be
transmitted in this case. This is done as a single “motion vector” per block. In addition a
linear transformation of the residual image is followed in order to reduce the spatial
correlation. This principle is used in the image compression standards H.261 and H.263
[RH96, GSF95], where a DCT is combined with motion compensation.

System approaches to object-based analysis-synthesis coding have been based on 2D and 3D
moving objects as the source models for segmentation. Each moving object is described and
encoded by three parameter sets defining its motion, shape and colour which are analysed at
the sender site. At the receiver site the image can be synthesised from these parameters fairly
easily. Results up to now have been shown using head-and-shoulder videophone images,
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which identify an easy-to-model class of images, suitable for high compression coding

[MHO89].

In cases where it is mainly a certain known moving object which has to be encoded - e.g. a
moving human head - knowledge-based coding can be applied. Here the coding efficiency can
be increased by using an explicit object model such as a predefined wireframe model, whose
parameters can be adapted to the shape of the real head [AHS89]. The predefined wireframe
model allows a better fit of the shape by fewer vertices.

In semantic coding an even higher abstraction level is used. Facial expressions like the
opening of an eye or mouth, the most common example, can be described by one or several
so-called action units as described in [EF77]. A temporal change of the action unit is
associated with defined changes of several vertices of the 3-D model. Thus the change of one
action unit can be encoded instead of the changes of several vertices in order to increase the
coding efficiency.

International standardisation committees like ITU-T (International Telecommunication Union
- Telecommunication) and ISO (International Standard Organisation) have established a
number of standards for image coding. H.261 and H.263 [RH96, GSF95] are video coding
standards released by ITU-T which combine motion compensation with a Discrete Cosine
Transformation (DCT). The MPEG (Moving Pictures Experts Group) committee (formed by
ISO-IEC/ITC1/SC29/WG11) produced the MPEG1 (1.15 Mbit/s video and audio) and
MPEG?2 image compression standards [RH96, Mat95]. The main emphasis of all these
standards is a high compression factor. They all use translational moving blocks as the source
model, in order to allow a simple hardware structure of the coder. The MPEG group is about
to establish a new standard MPEG4 [CIB94]. In addition to the compression issue, a number
of new functionalities, e.g. object-based access to the data, are introduced, which opens up
the possibility of using a source model having either known or unknown objects as the basis.
The resulting coding principle will be explained in more detail in the next Section.

2.2.2 Object-Based Analysis-Synthesis Coding

In contrast to block-based image coding, object-based analysis-synthesis coding [MHO89]
allows arbitrarily shaped objects to be described by means of motion, shape and colour
parameters. This requires the additional transmission of the shape parameters compared to
block-based schemes. These parameters depend on the choice of the objects. Common objects
to be used in object-based analysis-synthesis coding include 2-D and 3-D objects, either rigid
or flexible.
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Object-based analysis-synthesis coding subdivides each image of a sequence into objects and
describes each object i by three sets of parameters defining Motion M,, Shape S, and Colour
C, of the object. Figure 2.10 shows the concept and structure of an object-based analysis-
synthesis coding scheme.

Source Model

Input Transmission Channel

Image 1 P
Analysis | |

Image
Synthesis

Figure 2.10: Block diagram of an object-based analysis-synthesis coding scheme [MHO89]

Instead of the image memory of hybrid transform coding techniques (see Figure 2.9), object-
based coding requires a memory to store the parameter sets M = { M,}, S = (S} and C = {C,}
of the objects. The object memory of the coder and the decoder contain the same parameter
information and allows the encoder and the decoder to reconstruct a transmitted image by
image synthesis. As the encoder makes use of the temporal correlation of successive images,
the embedded decoder allows the use of a decoded image for image analysis of the next input
image at the coder. However, the analysis fails in image areas which cannot be described by
the source model being applied. These areas will be treated separately as “special objects”,
the so-called MF (Model Failure) objects.

The parameters M,, S; and C; of each object i have to be coded efficiently. In [MHO89] the
motion parameters M,. and the shape parameters S, are coded using predictive coding
methods. For the prediction the information from the previous image is used. In the case of
planar rigid objects the shape information describes the silhouette of an object. Therefore
contour coding schemes [SSG96, TW96] are applied and only the temporal changes of the
silhouette are encoded. The colour information is normally encoded by hybrid coding
techniques, which combine motion compensated prediction with transform-coding of the
residual image [Ho6t92].
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While block-oriented hybrid coding techniques transmit only two parameter sets (the motion
and colour information of each block), object-based analysis-synthesis coding transmits three
parameter sets (the motion, shape and colour information of each object). Therefore, the
" additional bit rate R, required for transmitting the shape information § has to be compensated
by a reduction of the bit rates R,, and R, required for motion M and colour information C, in
order to achieve at least the same coding gain. This can be done in two ways. First, only one
motion parameter is transmitted for a complete object, or secondly the prediction of the colour
information can be improved through the use of a more advanced and appropriate source
model, which could also allow object rotations in addition to translations.

The efficiency of object-based coding largely depends on the size of the objects. The larger
the objects, the higher the coding efficiency. Therefore, in the case of small objects, most
object-based analysis-synthesis schemes use a block-based coding scheme as a fall-back
solution. This way it can be guaranteed that the performance of the coder is always superior
or at least equal to that of block-oriented coding.

2.2.3 Different Implementations

Object-based analysis-synthesis coding has been proposed for instance in [MHO89, Ost90,
AHS89, Koc91, NHC91, GK87, Ho6t90, TAB9S]. All these implementations encode
arbitrarily shaped regions instead of square blocks. However, there are still three main
characteristics, which differ:

- the source model (either 2-D objects or 3-D objects),

- the model of motion (either translational motion only or affine motion) and

- the colour coding strategy.

Apart from the specific implementation, one of the essential problems of object-based
analysis-synthesis coding is the image analysis part, especially the subdivision of a scene into
objects. All object-based coding schemes up to now use the motion information for this task,
assuming that all parts of one object will move with the same velocity in the same direction.
Several approaches are known to detect moving objects and to measure their velocity using
cither translational or affine motion. Many of them are based on the evaluation of the optical
flow [Adi85, Pot75, Ul179]. Based on this approach the interdependence between motion and
the object boundary is not taken into account. In [MHO89) therefore a joint motion estimation
- and object boundary detection is proposed.

Another important question is how to encode the colour information. Some systems, for
example the MPEG4 Verification Model [MPEG96] use block-based schemes, even when
dealing with arbitrarily shaped regions. To do so, blocks not covered 100% by the object have
to be filled with some estimated colour from the object. This way quite a lot of information
has to be coded, which then will not be used for the reconstruction. Another approach is
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fractal coding [FLB94] or Vector Quantisation [DK95). Again the underlying structure is still
block-based, in this case using a quadtree decomposition to describe the object. It seems
logical to go one step further and use colour coding methods with non-block objects.

One way of coding the colour information with non-block objects is to approximate the YUV-
values with polynomial functions [Koc83, Leo87], called polynomial approximation.
However the problem with polynomial approximation is that only “smooth” areas can be
described properly, whereas the extension to higher polynomial functions to describe “rough”
areas is difficult. For that reason polynomial approximation might not be able to achieve the
required quality. A second solution is region oriented transformation coding {GEM89]. Here
the question is how the appropriate orthogonal functions can be found for the regions. Using,
for example, the orthogonalization scheme of Schmidt or Householder, this is a computational
expensive procedure. Extrapolation [KA93, Kau95] aims at a shape-independent description
using the circumscribing rectangular. To do this a computational expensive regularisation is
necessary. A final possibility is the shape-adaptive DCT [SM95]. Although the 2-D
correlations are not completely exploited using a shape-adaptive DCT, it is preferable for
current realisations, as the predefined orthogonal set of DCT basis functions can be used,
which makes the algorithm easy and fast [SBM95, Sik96]

23 Stereoscdpic Image Sequence Coding

When dealing with stereoscopic image sequences, one has to handle two image sequences
instead of one as described in the previous Sections. The most straightforward method to
encode a stereoscopic image sequence would be to encode the two sequences separately, each
with one of the two-dimensional coding schemes described before. Such a method does not
evaluate the spatial correspondence of the stereoscopic image pair. This results in either a
higher data rate or a lower quality because the spatial information is not exploited [ZT92].

In stereo-compensated coding, one image sequence (either the left or the right one) still has to
be coded with a conventional two-dimensional coding scheme, whereas the second image
sequence can be predicted using disparity information. In this Section existing
implementations of stereo-compensating coders - based on either hybrid transform coding
methods or object-based analysis-synthesis coding - will be discussed. Special attention will
be paid to the role of disparity and the effects of occlusions.
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2.3.1 Implementations of Stereoscopic Image Sequence Coders

Most of the current implementations of stereosopic image sequence coders are further
developments of existing hybrid transform coders. Within the European project DISTIMA
[Zie92a] a coding principle based on MPEG2 was investigated. In this system, the left image
is coded in accordance with the MPEG2 standard. This system was hardware implemented
within this project and successfully demonstrated at the end of 1994 [Hor93, SV93]. The
developed prototype is shown in Figure 2.11. For the compression of the right image, it is
possible to choose either motion-compensated or sterco-compensated coding per block,
depending on what gives the better quality (see Figure 2.12).

Figure 2.11: Prototype of the DISTIMA coder

The DISTIMA project not only was the first one to make use of the spatial scalability concept
in MPEG2, it still is the only fully MPEG2-compatible stereoscopic system built and
demonstrated in hardware. Later approaches to stereo coding as [YC94] have been based on
these results, reducing the encoding effort through applying motion and disparity estimation
on subsampled images. Other MPEG2-compatible systems are described in [Cha95, PKH95,
TA95, TA94]. They determine ways in which temporal scalability concepts can be applied to
exploit redundancies between the two views of a stereoscopic scene.

Another approach - which is not based on a standard coding system - linking 2D left and right
motion was suggested by [CDP95]. This is done in order to define a coding scheme using a
unique channel for motion estimation and compensation. It is a two step algorithm applying a
dynamic monocular analysis and a static binocular analysis afterwards. This way the 3-D
motion and structure parameters are determined and can be used for motion compensation.
Although the system performs motion compensation for both the stereoscopic images,
disparity information is used only for the analysis of the parameters.
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Figure 2.12: Blockdiagram of the DISTIMA coder

As in conventional 2-D image coding, the trend in stereoscopic image coding is also towards
object- and region-based systems. First proposals for an object-based stereoscopic coder were
published in 1993 [ZP93]. This system segments image regions based on disparity and motion
information and uses these regions for the prediction of the next image in time or the
alternative view of the stereoscopic signal. For the coding of the prediction error block-based
methods have been used. Later on this approach was improved, for instance, by improving the
disparity estimation [PZC95] or using more exact error-coding methods [ZP96). This thesis
describes and evaluates a complete system including all the elements proposed in [PZC95]
and [ZP96).
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Various other approaches to improve individual parts of the system have been recently
published. In [FLB94a], for example, the vector field estimation and object segmentation was
investigated. A 6 parameter affine model as in [AW93] is used, which is capable of describing
translation, zoom, rotation and scaling. This affine displacement model can be extended to
true 3-D, which contains information about the orientation of the plane in which the affine
displacement occurs. The estimation of the parameters of this model is not performed directly.
Initially a conventional translational vector field estimator is used. The vector field which is
found is then partitioned into blocks of vectors and with the aid of linear regression initial
affine parameters are found for the blocks. Next these affine parameters are clustered and
remapped to the image in order to provide a segmentation. This segmentation is then used in
the refinement of the affine parameters. The clustering/affine parameter refinement process is
repeated iteratively until the result converges.

In [TGS95] a split and merge segmentation procedure based on 3-D motion and disparity is
proposed. The information obtained is used to determine regions with similar motion and
depth parameters. This is combined with a depth modelling method that offers full depth
information at the decoder site. The segmentation part of the algorithm is interleaved with the
estimation part in order to optimise the coding performance of the segmentation procedure.
Motion and depth model parameters are then quantized and transmitted to the decoder along
with the segmentation information. An object-based motion-compensating scheme is used to
reconstruct the images based on the objects created by the segmentation approach.

2.3.2 Disparity and Occlusions in Stereo Coding

In a stereoscopic image sequence coder - no matter whether block-based or object-based -
occlusions are a source of a large error when stereo-compensation is applied. In occluded
areas there is no information available to be used for the prediction of the alternate image.
These areas will have to be transmitted as residual error after applying a coding method. In
stereoscopic image sequence coding, this led to an approach where one channe] was predicted
using motion information - by having a coder compatible with the chosen standard two-
dimensional coder - and the second channel was predicted either motion- or stereo-
compensated, depending on what method resulted in the better prediction [Hor93). In
experiments the motion-compensation mode was chosen for image areas which either were
occluded or had very large estimated disparity vectors. In both cases a disparity estimation
was not possible, either due to occlusions or as the search area for the disparity vectors was
too small due to the hardware requirements of the coder. On the other hand, stereo-
compensation showed its advantages in arcas with fast motion, where motion estimation
reached its limits.

26 2. A Survey on Sterecscopic Image Coding




2.4 Conclusion

In this Chapter a survey on the stereoscopic principles, two-dimensional image coding and
stereoscopic image coding was given. Based on the geometrical rules of stereoscopic imaging
and the “classical” methods for two-dimensional image sequence coding several
implementations of stereosopic coders were discussed. What all of them have in common is
the exploitation of the disparity information. The disparity vectors can be used to predict one
of the images of the stereo pair, similar to the motion compensation known from the two-
dimensional coding. Therefore disparity estimation is one of the key problems in the
realization of a stereoscopic coder. Due to the extremely large range of possible disparity
vectors this is not an easy task. However, with the knowledge of the epipolar lines the
estimation can be restricted to a one dimensional search along these lines. Even without
knowledge about the epipolar lines the search area can at least be reduced. Also occlusions
have to be handled effectively. As they follow simple rules they can even be used to improve
the quality of a disparity field. With an object-based analysis-synthesis coder this information
will not be used for fixed blocks, but for a compensation of objects. Therefore the
segmentation of the images into objects or regions is a crucial part of such a system. Up to
now no region-based analysis-synthesis stereoscopic coder has been presented in the
literature. This thesis points to a system of this type, which will be described in the following
Chapters.
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3. Disparity Estimation

Disparity is a unique phenomenon associated with stereoscopic images or stereoscopic image
sequences. It describes the displacement between the spatially left and right image in a
stereoscopic image pair. In stereoscopic image coding, disparity can be used to spatially
predict one image of a stereo pair from the other, so reducing the number of bits to be
transmitted. Disparity will be the key to segmenting an image into regions and shifting these
regions according to their disparity in order to predict the second image. Disparity has to be
estimated from a pair of stereoscopic images. The principles used for estimating disparity as
well as for estimating motion are based on a comparison between two images with a temporal
(motion) or a spatial (disparity) difference. Both methods aim to find the correspondence
between image points in the two images. The main difference is that with disparity estimation
there is implicit information about which part of the object is occluded. This is because there
is a relationship between disparity and depth, but there is no such relationship for motion.
This Chapter discusses an approach to implementing disparity estimation which uses dynamic
programming and takes this knowledge into account. The estimation is based on an evaluation
of the luminance values in the images, but the result will be used for the chrominance signal
as well.

3.1 Rationale and System Overview

The two most common methods to solve the correspondence problem are block-matching
methods and feature-based methods:

- Block-matching methods attempt to solve the correspondence problem by comparing a
block from one image to blocks at possible matching positions in the other.

- Feature-based methods match special features - either single points, edge sections or whole
edges - to find the correspondences.

With both methods, the result is a vector which associates either a block of pixels or a feature
to its best match. For the entire image, the outputs are two displacement-vector maps, one
showing the displacement in x-direction, the other in y-direction.
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In the case of disparity estimation, there is a one-to-one correspondence between the epipolar
lines in a stereo pair of images. When the epipolar geometry is known, disparity estimation
can be restricted to a one-dimensional search along the epipolar lines. As this geometry is
unknown in many applications, it would be useful to be able to estimate disparity without this
knowledge.

A general approach of that kind is developed in this Chapter: The epipolar geometry will be
ignored and a y-displacement added to the search. Although this is computationally more
expensive, it makes the system flexible because the parameters of the cameras are not
required to calculate the epipolar geometry and the algorithm is capabie of handling a wide
range of image pairs.

In the region-based stereoscopic coder described in this thesis, the displacement-vector maps
are used to segment the image regions which are then encoded and transmitted to the receiver.
Segmentation by means of vector maps has been shown to be quite robust [Kir89]. However,
the following requirements have to be fulfilled:

- Generality: To be able to estimate disparity in the general case - without any information
about the cameras - the method used for disparity estimation in this thesis also searches in
the y-direction.

- Density: To have a good base for segmentation, the vector field has to be dense, which
means one value per pixel is needed. For pixels without a displacement vector, it cannot be
decided to which region they belong.

- Smoothness: As each region has to be described in terms of its contour and colour, the
larger the objects are, the better it is for coding. To get large regions with the segmentation
process later on, the vector field has to be smooth, which means random fluctuations in the
vector field have to be minimised.

- Accuracy: As there will be a clustering of pixels with the same displacement vector, these
values have to be close to the “real” values. Otherwise there will be a large error after
region-compensation in the coder. Additional bits for coding the stereoscopic synthesis
error signal would then be required.

Existing methods - such as the MPEG2 Video Simulation Model [MPEG90] - use block-
based correlation approaches to perform the necessary motion or disparity estimation.
However, even though these methods address the requirements referred to above, the results
are inadequate, as they estimate only one vector per block. This does not give the necessary
density and accuracy per pixel. Feature-based approaches deliver more realistic values, but
produce only sparse vector fields which have to be interpolated afterwards to obtain a dense
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vector field. As with block-based methods, the necessary accuracy per pixel cannot be
achieved.

A new disparity estimator will be presented in this Chapter. It can calculate a dense and
smooth disparity vector field, containing well-estimated disparity values that can be used
subsequently for segmentation. The new disparity estimation system is shown in Figure 3.1.
The inputs to the system are the left L, and right R images. Due to slightly different camera
characteristics, the left and right images may have a luminance discrepancy. Therefore, before
the images are used for further processing, some preprocessing based on statistical difference
modelling is required to adjust the two images (Correction of Luminance Difference block).
In order to reduce the amount of computation, only some of the theoretically possible
disparity values will be investigated. A second preprocessing step, the search range, is used to
limit the range of disparity values that are investigated during Disparity Estimation. The
Search Range Calculation limits this disparity search range to the maximal required range,
making the method faster. Another advantage of limiting the search range, albeit a minor one,
is that disparity estimation becomes more accurate because some incorrect vectors which
could lead to a local minimum in the error measurement are not investigated and so do not
influence Disparity Estimation itself.

Dynamic programming makes it possible to select the optimal disparity vectors from all
possible disparity vectors within the search range during Disparity Estimation. Two of the
earliest publications on stereo using dynamic programming are [BB81] and [OK85]. More
recently [GLY9S] improved a disparity estimation system by taking into account occlusions.
Further developments which involve performing disparity estimation based on arbitrarily
shaped 3-D regions and also considering an extended neighbourhood are described in {Fal94]
and [FS95].

Search Range
Calculation

Figure 3.1: Disparity estimation system

Before going into detail about the application of dynamic programming to disparity
estimation, a simple example will be discussed to explain the basic principles. In the
following Sections, improvements to existing stereo disparity estimation algorithms that

3. Disparity Estimation 31




assume knowledge of the epipolar geometry will be discussed. Further enhancements that
could lead to a universal disparity estimator which does not require epipolar geometry
information or preprocessing to improve disparity estimation, will be described. Finally the
developed disparity estimation system will be evaluated experimentally.

3.2 Principle of Dynamic Programming

Dynamic programming [Bel57] is an optimisation process that chooses the globally optimal
one from a number of possible solutions according to a pre-defined criterion, such as the
lowest solution cost. The simplest and most straightforward application of dynamic
programming is the determination of the shortest path or route through a network [Dan75).

Consider the (stylised) road map shown in Figure 3.2. A driver wishes to find the shortest
route from point P to point Q. There are six intermediate junctions A, B,..., F. The lengths of
all existing road sections connecting two points in the area are indicated on the map. Any
unbroken chain of road sections starting at P and ending at Q represents a possible route
through this network of roads.

7
D E F
Figure 3.2: An example “road map” [Dan75]
Assume that the direction of travel is always from left to right. When the driver arrives at,
say, point B, he never travels back to A or D, but proceeds either to C or F. The number of

possible routes is, therefore, finite. The problem can then be solved by enumerating the
alternative routes and comparing their total length.

Any route from P to Q is the result of three successive decisions. Starting at P, the driver must
decide whether to go to A or to D. If he chooses to drive to A, he can then proceed either to B
or E, and so on. The number of possible paths P,,, can be calculated as

Py, = (number of alternatives)f=mser o conseche decisions) 3.1)




Since each decision is a choice between two alternatives and there are three consecutive
decisions to be made, there are 2° = 8§ possible combinations, i.c. 8 possible routes. This can
be illustrated graphically using the decision tree in Figure 3.3. The root represents the starting
point P and the branches the road sections (length indicated). Comparing the total lengths
from root to leaves, it can be seen that PDBFQ is the shortest route.

T ! 1 f

Stage 1 Stage 2 Stage 3 Stage 4

Figure 3.3: Graphical illustration of the decision tree [Dan75]

This optimal solution is found by applying Bellman’s principle of optimality (Bel57]: If the
optimal route from P to Q passes through B, the remaining part of the route (from B to Q)
must also be optimal. The optimal route from P to Q cannot for instance contain BCQ because
there is a shorter route from B to the destination, namely BFQ.

The problem can then be solved using backward recursion. Starting at point Q, the optimal
solution has to contain F at stage 4, as the distance from F to Q is the minimal one. I the next
step, the optimal solution at stage 3 is searched for. It now has to contain F and the solution is
BFQ with the minimal distance 7.

As can be seen from this simple example the theory of dynamic programming is based on a
single concept of great power and simplicity. Bellman’s principle of optimality basically says
that an optimum decision policy has the property that any part of an optimum trajectory from
an intermediate state to the final state is itself the optimal trajectory from the intermediate
state. This makes it possible to determine a total optimum decision policy and a
corresponding minimum cost function by starting at the end of the process and working
backward one stage at a time whilst only considering the decision at that stage. When taking
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this decision, the short-term cost at the stage in question and the long-term consequences of
having to follow the optimal policy from the next state to which this decisions leads have to
be considered. In practice, this leads to a cost matrix which represents the costs for a certain
state and a particular decision. After making this sweep backward through the stages, the
optimum decision sequence and the optimum trajectory can be determined by sweeping
forward through the states and determining the next decision, depending on the accumulated
values of the cost matrix. This cost matrix for the example in Figure 3.2 is depicted in Figure
3.4. In the backward search for the best solution at each stage the accumulated values will be
calculated and stored in the elements of the cost matrix. These values are printed in bold in
Figure 3.4. Sweeping forward through the states - following the optimal path - will result in
the final solution. The full scope of dynamic programming is described in [LC78], for
example.

A B C

P 13 5.‘\

Q
a\DEF%

4
——— B
Track final solution Backward search for
best solution at each stage

Figure 3.4: Cost matrix for the example in Figure 3.2

3.3 Constraints for Disparity Estimation

Disparity estimation is governed by several constraints. They fall into two groups: physical
constraints - due to the camera geometry, such as epipolar lines, orientation and uniqueness -
and model assumptions such as continuity and ordering which come from the optimisation
method chosen in this thesis.

1. Epipolar lines: Corresponding image points must lie on corresponding epipolar lines. As
described in previous Chapters, knowledge of the epipolar geometry is essential for most
of the approaches adopted for disparity estimation. However, one of the goals of this
Chapter is to eliminate this constraint and to develop a general purpose disparity estimator.




2. Orientation: The disparity D within an object cannot exceed a certain value f)m or be
lower than D, which depends on the stereo system parameters. According to constraint 1
(epipolar lines), a point A’, must correspond to a point on the corresponding epipolar line
in the right image (see Figure 3.5). It is possible however, due to the orientation of the
object in space, that the disparity D varies considerably. This disparity range is analogous
to the size of Panum's area [Pan1858] for the human visual system which is the disparity
region in the retina where fusion occurs. The possible corresponding point for point A’; on
the epipolar line therefore can only lie on the line segment from A’ to A’,. As, according
to this constraint,- there is a maximum disparity, the search area in disparity estimation can
be limited to this maximum.

—efl ___._.fo‘l'-—-'f‘zi"
% i
E.pipolmi lines
Left image Right image

Figure 3.5: Possible disparity range within an object in a stereo pair

3. Uniqueness: For each image point in one image of a stereo pair there is at most one
corresponding point in the other. Normally there is a one-to-one projection in both stereo
images. However, this does not apply if there is occlusion.

>

A B Point of convergence E
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Figure 3.6: Occlusion of BC in the right image
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In Figure 3.6, points B and C, correspond to points B’, and C’, in the left image, but in the
right image they are seen superimposed as one point due to occlusion. Therefore,
projections of points between B and C exist in the left image, but there is no corresponding
point in the right image. Uniqueness will be the key to detecting occlusions in the
estimator.

4. Continuity: Inside an object, disparity is continuous and disparity discontinuities are only
allowed at object boundaries. Since surface changes are usually small compared to the
viewer’s distance, except at depth discontinuities, piecewise smooth depth can be imposed.
As there is simple relation between disparity and depth (equation (2.7)), a piecewise
smooth disparity can be assumed.

5. Horizontal ordering: Image points on corresponding epipolar lines should have the same
horizontal order. Figure 3.7 shows an example where the order of points A, B, C is the
same in both the left and right images. This constraint is needed when dynamic
programming is applied as the matching pattern (left epipolar line) has to be ordered in the
same way as the reference pattern (right epipolar line).

A1 By CY ; At Bt C't

Figure 3.7: Order of consecutive points is the same in both images of a pair

However, there is a special case, depicted in Figure 3.8, where the ordering constraint is not
satisfied; this is referred to as the “double-block illusion” [GLY9S5]. In such situations, it
seems the human visual system attempts to fit the data to two surfaces obeying the ordering
constraint and hence obtains transparency [GB88]. Two other theoretical solutions are either
to mismatch the two objects by using the ordering constraint (due to the reversal of order in
the two images e.g. point D’, in the left image will be matched to point B’, in the right image),
so causing the sensation of two tilted planes, or to match just one object (considering the other
one occluded), so causing the sensation of two occluded regions - one to the left and the other
to the right.

The constraints described above will have a large impact on disparity estimation. Probably the
most important constraint is horizontal ordering. As the driver was not allowed to go back in
the example in Section 3.2, the points on corresponding epipolar lines have to be in the same
order. '

36 3. Disperity Estimation



Otherwise, as shown in Figure 3.8. Bellman’s principle of optimality will not be applicable,
disparity estimation will then fail and either detect an occluded area or give wrong results.

DY BY Bt D't
Ch1 Al Ay Ct
left image right image

Figure 3.8. Double-block illusion [GLY95]: the ordering constraint is not satisfied

Second, unigueness is a system requirement. Assuming that corresponding points are ordered
and unique, the described approach will be able to detect occluded areas as indicated in
Figure 3.6. Continuity is the key to detecting depth discontinuities, so allowing disparity
discontinuities. Assuming piecewise smooth disparities, disparity discontinuities can only
occur at object boundaries, where depth discontinuities occur. The orientation constraint, is a
way of reducing the matching space and so decreasing the amount of computation; the same
applies to the epipolar line constraint.

3.4 Dynamic Programming for Disparity Estimation with Known Epipolar
Geometry

The general problem of finding correspondences between images involves searching within
large parts of the image. The knowledge of the epipolar line geometry simplifies this image-
to-image correspondence to a set of line-to-line correspondence problems. That is, once a pair
of epipolar lines is calculated, the search for a pair of corresponding points in the left and
right image can be confined solely to a well-defined searchline. This can be treated as the
problem of finding a matching path on a two-dimensional search plane whose vertical and
horizontal axes are the left and right epipolar line. A dynamic programming technique can
handle this efficiently [GLY95]. In the following Section, the a priori matching costs and the
matching space and then also an enhanced version which takes occlusions into account will
be discussed.
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3.4.1. A Priori Matching Costs

As in the example in Section 3.2, where the distance was given a priori as the cost of getting
from one point to another, in general, dynamic programming needs these a priori costs.

As far as disparity estimation as described in this thesis is concerned, one goal is to find the
best matches of a pixel P’, in the left image to another P’, in the right image. A Normalised
Feature Difference (NFD) is used as a measure of the mutual correspondence between two
pixels. A pixel-based NFD should be calculated for a pixel-based disparity map. Matching a
single pixel can give misleading results, as matching will then result in a lot of possibilities
with an identical NFD. Therefore, a matching window is selected around the pixel to provide
a more matchable pattern for unique matching. In Figure 3.9, the matching window designed
for the NFD calculation at a single pixel (n,m) is shown. The quality of the matches is very
much dependent on the window size. A small window provides a small matching area which
can be fitted to many patterns in the other image and it can produce a spurious disparity
vector. A large window would be desirable, but a major limitation is the possibility of getting
incorrect estimates near depth discontinuities. The window that is used is rectangular so as to
allow a good match along the epipolar line and to allow pixels from above and below the
epipolar line to contribute to the NFD.

gl Left image
i, Colmfu
£y Right image
g
-

mA o Columns
Dy, horizontal component of disparity vector
Figure 3.9: Window used to calculate the NFD for image point (n,m) [GLY95]
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First of all, block-matching evaluates the Feature Difference (FD) for each possible match
with every possible disparity vector D in the search area. This feature difference is
subsequently normalised (NFD) to give a value between 0 and 1 representing the a priori
costs and to be integrated in a total cost function evaluated during optimisation (see Section
3.4.4). According to Figure 3.9, point (n,m) in the left image is displaced by the disparity D,
in the right image. The feature difference FD, , for point (n,m) with disparity vector f)M is
given by the formula

B+t mED

FD,,(D,.)= \/ S 3 (W)~ We(i+ D, i)’ 3.2)

i=n=1 jam-v

- where: n,m pixe! coordinates
D, horizontal component of the disparity vector
2t+1 width of the window in (horizontal) x-direction
2v+1 width of the window in (vertical) y-direction
W, (@i, j) luminance at (i) in the left image
WG, j) luminance at (i, j) in the right image

This feature difference is derived from the squared luminance difference, as can be seen in
equation (3.2). The NFD,, for the point (n,m) with disparity vector 1'5,,_,,, is calculated from
the formula:

R+T  m+v
NFD, (D, ) = < FD, .(D,.)= i‘j Y (W) Weli+D,.J)) (3.3)
N N i=n=17 jE=m-v
where: ¢ is a normalisation constant to yield values smaller than 1

N=Qt+1)(2v+1) isthe number of pixels in the search window

If the normalised feature difference is zero this means that the lnminance of the two windows
is the same at all points, whereas a high value of the normalised feature difference shows
uncorrelated luminance.

With luminance values in the range of [0, 255], the theoretical maximum value that can be
reached by FD is \N-255*. In order to guarantee NFD < 1, ¢ therefore should be
N

JN-255

3, Disparity Estimation 39




However, in practice this value never will occur. Empirical studies have determined that the
following parameter values are suitable for disparity estimation:

c=l—12-, t=4,v=1 (34)

Actually these parameters do not heavily influence the results. Other values can still be
accepted, nevertheless disparity estimation delivers suitable results. The values of the
calculated NFD now will be used as the costs in the dynamic programming approach.

3.4.2 The Matching Space

Given a point in the left image of a stereo pair, the corresponding point in the right image lies
on the epipolar line. The search for this corresponding point can, therefore, be restricted along
this epipolar line. Figure 3.10 illustrates this principle. For each point with index n on the
epipolar line in the left image, the corresponding point with index m on the right epipolar line
is searched for. The disparity D, for a point (n,m) then can be written as D, = m - n, which is
the vertical distance from the diagonal in Figure 3.10. Points on the diagonal itself, therefore,
indicate the zero disparity. The two-dimensional space spanned by the two corresponding
epipolar lines is called the matching space. The disparity estimation process can be thought of
as looking for a path through this matching space from the bottom left comer to the top right
corner for which the accumulated cost value ACV _ shown in equation (3.5) is the smallest.

ACV, = SNFDM (3.5)

n=l
Dynamic programming - as an optimisation method - will find the optimal path among all
possible paths.

Right pixel index m

0123 4S5 678 9 10111213H415

Right epipolar line

56 7 8 9101112131415
—_—
Left epipolar line Left pixel index n

0123

Figure 3.10: An illustrative path through the two-dimensional matching space
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Based on the a priori costs of the disparity vectors per pixel, the dynamic programming
searches for the optimal solution for each epipolar line. The a priori costs are stored in the
elements of the matching space. In Figure 3.10, the matching space was also reduced (as
indicated by the grey area) by limiting the possible disparity values, based on the orientation
constraint. In the depicted case, the maximum possible disparity value was set to 17 pixel, the
minimum cost path now has to be found within the grey area. Figure 3.11 shows a part of the
matching space depicted in Figure 3.10 in node form. Again the axes are the epipolar lines,
the nodes now show the disparity values.
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Figure 3.11: Matching space as a set of nodes

As described in Section 3.2, the search for the optimal path through the matching space starts
with the pixel at the right-hand end of the epipolar line. Due to the “horizontal ordering”
constraint, the number of possible predecessors in the backward search for the best solution at
each stage is limited: For a match (n, m) possible predecessors can be found either in row
(n+1) - i.e. looking for the best match for the next pixel - or on line m - looking for occluded
pixels which can be seen in the left image but not in the right one - as shown in Figure 3.12.
In this figure, the numbers of the elements indicate the disparity difference of the current
element (dark grey) to the possible predecessors. In the second pass of the dynamic
programming procedure, when searching for the final solution, these occlusions are indicated
by a “negative” disparity jump, i.c. a jump from a larger disparity value to a smaller one. In
such a case, a number of pixels on the epipolar line equivalent to the size of the disparity
jump will be omitted, their costs will not be added to the total costs of the path. As will be
seen later, this poses significant problems which will be taken care of in Section 3.4.3.
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Figure 3.12: Possible predecessors when looking for the best partial solution

In Figure 3.13, the matching space and the ideal solution (the drawn path) for the example in
Figure 3.6 are shown. The matching space depicts the correspondence of points A’ to E’, and
A’, to E’,. Point A’, for example, has a comresponding match at point A’,. There is no
correspondence for points between B’, and C’, on the right epipolar line and so consequently
the path through the matching space will be interrupted. This interruption indicates a disparity
discontinuity and, therefore, exhibits an occlusion. The diagonal line again is the zero
disparity line as can be seen in the previous figures too.

Zero disparity

Right epipolar line

D 1 E < 1
Left epipolar line

Figure 3.13: Matching space

The disparity value between a point on the left epipolar line and its match on the right
epipolar line is the vertical distance between the zero disparity line and the plot of the path
through the matching space, as explained above. This means Figure 3.13 is easy to interpret:
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Starting at the left edge of the image, positive disparity values have been found, which means
that the points from A to B lie behind the point of convergence of the cameras (see Figure
3.6). Next, on one axis B’, and C’, are coincident, whereas B’,and C’; are not on the other: an
occlusion in the right image is the reason. Points from C to D are then in front of the point of
convergence. The connection from D’, to E’ is smaller than that from D’ to E’, a
foreshortening as introduced in Chapter 2 has occurred. This happens because the plane is not
parallel to the baseline. Also in this example the crossing of the zero disparity line indicates,
that points are now behind the point of convergence.

The following example explains the process of dynamic programming with real image data.
These data are taken from the synthetically produced “Mirror” sequence [Fra96). Table 3.1
shows the grey values for three lines of the left image, Table 3.2 the corresponding grey
values in the right image. The pixels of interest are surrounded by a bold rectangle and
marked with numbers from 1 to 6. The grey values in the table were taken from an area with
disparity zero. As noise with a level of 30 dB was added to this sequence, the values are not
identical in the two tables.

113]111]114] 111 110] 108] 111 101114 | 117] 113]121]125[139
114 11171109] 112 104] 117] 1061 99 J107]111§115]110]106] 114
113§ 111]120] 97 | 110 117] 104 [ 113|108 [ 114 111|101} 104|111
11273141516

Table 3.1: Real grey values from left image

10711051 122] 120 117]104] 1081104 105] 112] 112] 116] 125] 125
10711081 115] 105 | 113] 101|108 | 98 [ 102|121 110§ 118] 114} 111
1141 113]115] 113] 95 | 113112109102 [109] 114} 107 [ 101] 105
11213141516

Table 3.2: Real grey values from right image

The matching space for this example is shown in Figure 3.14. The entries for the elements of
Figure 3.14 (a) are the NFD calculated according to equation (3.3) with the parameters of
(3.4). For the sake of simplicity, only a small part of the whole matching space is depicted,
namely for pixels 1 to 6 with bold highlighting. Also, the search area has been restricted to +3
pixels in this example and element (6, 6) has been forced to be part of the best solution.
Figure 3.14 (b) shows the accumulated cost values along the chosen path printed in bold.
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Figure 3.14: Matching space filled with NFD from real data (a) and with accumulated cost
values (b)

The bold path is found to be the best possible according to the rule in Figure 3.12. As the
values of the NFD are rather similar, a wrong path was selected as the optimal one, leading to
disparity discontinuities where there should be continuous zero disparity.

)

Figure 3.15: Matching space, spanned by the left epipolar line and the disparity
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Because dynamic programming only runs on single image lines, an equivalent representation
of the graph shown in Figure 3.11 - where the axes are the left epipolar line and the disparity
values - is also possible. When this approach is adopted, the costs are the value of a node,
described by the disparity and the point in the left image. Figure 3.15 shows a matching space
representation of this kind which can be transformed to the “standard” cost matrix.
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Figure 3.16: Matching spaces, spanned by the left epipolar line and the disparity (a) and the
right epipolar line and the disparity (b) for the example of Figure 3.6

Figure 3.16 shows the same representation as Figure 3.15, spanning the matching space with
the left epipolar line (Figure 3.16 (a)) and the right epipolar line (Figure 3.16 (b)),
respectively. In Figure 3.16 (a), the occlusion in the left-to-right disparity estimation between
points B’ and C’, is again seen as the dashed line. As with Figure 3.13 this occlusion can be
detected as a “negative” disparity jump. In Figure 3.16 (b), representing the right-to-left
estimation, a positive disparity jump - without occlusion - between points B’, and C’, can be
seen.

The algorithm was tested on a synthetic test sequence called “Mirror” [Fra96]. This sequence
is a composite of the well-known scenes “Clown “ and “Lena”. In this composite, the main
part of the scene is at zero disparity, while the view of Lena through the mirror has a disparity
equal to the image number (images being numbered from zero). In the odd numbered images
“Lena” has been moved one pixel to the left compared to the previous odd numbered image.
In the even numbered images “Lena” has been moved one pixel to the right. In this way the
motion is introduced in every second image, the face of “Lena” therefore stays visible in the
whole sequence. Occlusions occur at the edges of the mirror, for example in Figure 3.17 the
feather on Lena's hat is visible in the left view, but not in the right view. 30dB Gaussian noise
was added to the sequence used in this thesis to make it easier to assess how the algorithm
would handle real images.
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Figure 3.17: Synthetic test sequence “Mirror”, left and right image No. 32

Figure 3.18 shows the result of a left-to-right view disparity estimation performed using the
NEFD as the only criterion. Zero disparity is shown as value 128, so being depicted as grey.
Occlusions are shown in black. As can be seen, this result is not at all satisfactory. The
problem is that whenever a disparity jump of size n is detected, the next n pixels in the line
will be treated as occlusions. Therefore, the costs of these pixels will not influence the costs
of the path which make a jump attractive. Also, adding noise made the Normalised Feature
Difference, NFD, optimal for spurious vectors most of the time. This means that only a few
disparity values are estimated and most of the image is treated as an occlusion.

Figure 3.18: Result of disparity estimation of “Mirror” (image 15) using a priori costs only

In another version of this test sequence without noise, this problem did not occur as the NFD
was a minimum for the correct vectors. This can be seen in Figure 3.19 (a), where the
background of the image is correctly matched with disparity 0 and the image of Lena with

disparity +15.




@ ®)

Figure 3.19: Result of lefi-to-right disparity estimation of “Mirror” without noise (image 15)
using a priori costs only (a) and artificially generated correct vector, field (b)

Even in this noiseless case of Figure 3.19 (a) the result is not satisfactory compared to the
correct vector field depicted in Figure 3.19 (b). Again problems occur at edges with disparity
discontinuities. This can be avoided by taking these discontinuities into account in the costs
used for dynamic programming. If discontinuities are only allowed where useful (preferably
at object boundaries), a kind of smoothing in areas without edges will be achieved.

3.4.3. Smoothing the Vector Field

Up to now only the Normalised Feature Difference (NFD) was used as the cost for the
dynamic programming. With noisy images, disparity jumps cause a lot of problems due to
local minima. However, where occlusions occur, disparity jumps have to be allowed.
Therefore, straightforward smoothing of the vector field is not possible. To take occlusions
into account a second cost will be added in order to allow these disparity discontinuities at the

appropriate places.

According to the fourth constraint “Continuity” defined in Section 3.3, piecewise smooth
disparity inside an object can be assumed. Disparity jumps will occur either at an object
boundary where there is a depth difference (e.g. between the object and the background) or
due to noise in the vector field. In the latter case, assuming piecewise smooth disparity, the
disparity values can be smoothed, whereas in the first case the disparity jump has to be
maintained. For that reason, a cost function is introduced, which penalises disparity jumps
according to their value. The higher the value of the disparity jump, the higher is the
probability that a real jump at the boundary of an object exists, whereas with small jumps the
reason is probably noise. The additional costs will be added to the costs already derived by
the a priori statistics described in the previous Section. The combination of both gives the
final cost function described in the next Section.

3. Disparity Estimation 47




If a possible disparity vector D at point (n,m) is denoted by 5,,,,, then the disparity jump 8
between disparities of consecutive points n and n—1 along the epipolar line m is defined as:

6=|D,.,.~D,.| (3.6)

It is necessary to use the disparity difference between adjacent pixels so as to be able to
decide whether a "real" disparity jump exists or simply noise. The function f{ ) is required to
make this decision. Therefore f{8) should have the following characteristics:

- fi8) > 0. The minimal cost of a disparity vector is the normalised feature difference NFD.
As f() increases to NFD, it is not allowed to have a negative value, which then would
reduce the original costs described by the normalised feature difference.

- The behaviour of f{8) should be different for small and large disparity jumps. The
objective of f{ ) is to reduce noise in the vector field but also to allow jumps at disparity
discontinuities. A large jump, therefore, should only be possible if the NFD of the
disparity vector is a lot better than for a small jump or even no jump at all. If there are,
say, two different disparity vectors with the same NFD, one forcing a jump and the other
baving the same value as the adjacent one, it would better to use the latter one, so
smoothing the vector field.

1), therefore, should sharply increase the costs for small jumps, bearing in mind the
smoothing of small jumps. On the other hand, the increase should be rather stable for
large jumps, allowing jumps only where feasible. As each disparity jump results in an
occlusion, large jumps should only be allowed where it is reasonably certain that the
detected jump is correct. Therefore, the costs for large jumps will be set to a high value in
comparison with the NFD.

Now, the problem is to find a function that best describes this behaviour. Various authors
have proposed different functions. In [YGB90), for example, a logarithmic function (depicted
in Figure 3.20) is proposed:

(&) =In(l+¢)- ln(l + e"") X))

As argued above, it is important to determine how the cost-function behaves for small and
large disparity jumps 8. The function proposed in [YGB90] rapidly increases to a value
greater than that of the defined NFD. Even jumps greater than 1 will be penalised very
heavily, which gives a very smooth disparity vector fields.
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Figure 3.20: Various suggestions for the cost-function f{)

On the other hand, large jumps will be treated almost in the same way (see Figure 3.21), so
that it is not possible to distinguish between large jumps of different sizes. This leads to a
behaviour which, in the final analysis, means that the NFD would again be the only decisive
criterion. To avoid this, the chosen function should increase the penalty in relation to the size
of the jump.

A function that gives a sufficiently high gradient for small x and an approximately constant
penalty increase, is the root function (Figure 3.20). The function proposed for disparity jumps
in [GLY95] is:

f(E)=p-N6+e-8 (3.8)
4
£3) o
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0.34 S +0.158
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Figure 3.21: Cost functions for large disparity jumps
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In [GLY95] it is stated that function (3.8) gives reasonable results with £ =0.3 and £=0.15.
This function gives acceptable costs for both small and large jumps. Smaller values of 4 and
€ would give a penalty which is too small compared with the NFD; larger values would give
rise to a situation where the NFD could not influence the result anymore. Therefore, the
penalty function used for disparity jumps in this thesis is:

f(6)=03-4y6 +0.15-8 3.9

Unlike the NFD, the disparity jump penalty does not take luminance into account, it relies
only on the size of the possible disparity jump. It will, therefore, have a great influence on the
chosen path, as the size of the disparity jumps depend on the path through the matching space.

3.4.4. Combining the Cost Functions

The normalised feature difference NFD (Section 3.4.1) is a criterion that the block-matching
procedure uses to assess the quality of the matching. The disparity jump cost (Section 3.4.3)
gives the size of the penalty for any disparity jump. A combination of the two functions can
be used to obtain decisions which are better than decisions based solely on one function. By
adding up equations (3.3) and (3.9), a cost function CF is obtained that forces smoothness,
handles disparity jumps and takes the NFD into account.

CF, (D, )= % ‘j f 'f(m(i, iY-We(i+D,, j))2 +03-4/8 +0.15-8 (3.10)

iwn—7 jmm-v

Dynamic programming is now used to evaluate all possible paths through the matching space
by adding up the matching costs defined in equation (3.10). The best path, in other words the
one with the smallest accumulative costs, is then chosen.

The value ACV is the accumulated cost value calculated for a specific path along the epipolar
line m and is defined by equation (3.11):

acv, =S cr, =S (vrp,, + 1(5)) a1

=l n=1
This principle will be illustrated using the real data from Tables 3.1 and 3.2. Table 3.3 shows
the jump costs f{ ) (equ. (3.9)) as a function of the jump size &.

5 0 1 2 3 4 5
IR 0 0.450 0.724 0.969 1.20 1.421

Table 3.3: Jump costs fi 8) given by equation (3.9)




These values are added to the NFD-values (Figure 3.14 (a)) of the candidates of the
previously chosen value (bold). This is depicted in Figure 3.22 (a). Figure 3.22 (b) again
shows the accumulated cost value, this time taking the jump costs into consideration.
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Figure 3.22: Matching space filled with cost function CF, , from real data from tables 3.1 and
3.2 (a) and accumulated cost value ACV,, (b)

By using this combined cost function a different optimal path was found. In this example, all
jumps have been avoided so making it possible to find the correct path through the matching
space. Figure 3.23 shows the result for the “Mirror” image. Compared to Figure 3.19 (a) the
result looks better now. The disparity jumps have been detected more precisely, this way
improving the overall guality of the estimation.

Figure 3.23: Disparity vector map for image-pair 15 of the test sequence “Mirror” using cost
Junction CF, ,
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3.5 Dynamic Programming for Disparity Estimation without Known
Epipi)lar Geometry

The principle described in the previous Section is the standard version of dynamic
programming for a two-dimensional matching space. If it is to be employed for disparity
estimation, the epipolar geometry must be known. As the disparity estimation method
developed in this thesis is intended for the general use without any knowledge of the epipolar
geometry, some modifications have to be made. In the folowing Section, these modifications
will be discussed.

3.5.1 Enlargement of the Search Area

Without knowing the epipolar geometry, the correspondence problem can no longer be solved
with a one-dimensional search. As with motion estimation, a two-dimensional search area has
to be introduced. As already discussed in Section 2.1.2, the vertical deviation of the epipolar
line from a horizontal line is less than or equal to two pixels in the test sequences used in this
thesis. To obtain reliable disparity vectors, this deviation has to be included in the estimation.

Figure 3.24 shows the main difference between this case and the case where the epipolar
geometry is known. In the original case, as described in the previous Section, the search is
only performed along the epipolar line. In the new general case, the search is performed along
a horizontal line, but the possible vertical deviations from this line are also taken into account.

Left pictre i Righs picture

° —— Search line
P P

Epipolar line

Standard case: known epipolar line

3-D case: unknown epipolar line

Figure 3.24: 3-D disparity estimation versus standard approach
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This leads to a two-dimensional search region for each pixel. Disparity now is the horizontal
component of the estimated displacement vector, while the vertical component is only
considered as a deviation.

Ideally, this gives a two-dimensional disparity vector D whose horizontal component D, is
equal to the disparity vector that would be obtained if the epipolar lines were known, and
whose vertical component D, is the deviation of the vector with respect to the horizontal
search line. If the epipolar lines were horizontal, the deviation would be zero, and the
horizontal component D, would be identical to the disparity vector as estimated using the
method described in Section 3.4.

3.5.2 A Priori Matching Costs in a Two-Dimensional Search Area

The feature difference and normalised feature difference introduced in equations (3.2) and
(3.3) have to be generalised to include the second dimension of the disparity vector.
Equations (3.12) and (3.13) give a generally usable feature difference GFD and the resulting
normalised feature difference GNFD, where the luminance difference now is calculated
taking the vertical deviation d, into account.

GFD, (D,,)= J 2 2 W,(i, /)~ We(i+D, j+D,)) (3.12)

imn=7 jmm-v

GNFDn,m(ﬁn,m) = XCI'GFDn.m(Dmm) (313)

As the vertical deviations will be quite small, the window defined in Figure 3.9 can also be
used to calculate the general usable normalised feature difference. These normalised feature
differences will be used in the dynamic programming as a priori costs.

3.5.3 The Three-Dimensional Matching Space

In addition to the matching space defined in Section 3.4.2, a vertical search now has to be
added in order to take into account the vertical deviations. This results in a three-dimensional
matching space as shown in Figure 3.25. The path-finding algorithm is extended to a 3-
dimensional one by adding a vertical deviation axis to the matching space along which an
additional vertical search is accommodated. This extension makes knowledge of the epipolar
geometry superfluous. The only problem that arises is calculation time because of the much
larger matching space. According to equation (3.1), the number of possible paths P, in this
disparity estimation environment is equal to

op = (number of possible disparities) ™t et per ine) (3.14)
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When vertical displacement is added to the matching space, the number of possible paths will
increase exponentially. A method of reducing the matching space will be discussed in Section
3.6.2.
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Figure 3.25: 3-D maiching space

Figure 3.25 shows the extended three-dimensional matching space. Every node (n,D,,D,)
represents a specific displacement vector (D,, D) for the image point (n,m). The light shaded
area of Figure 3.26 is where this vertical deviation D, is zero. The dark shaded area is where
the disparity D, is zero. The, same rules are used for the two-dimensional case and for the
possible paths through this three-dimensional network.

The algorithm was tested with the “Aqua” test sequence [DIS92] as shown in Figure 3.26.
Due to the interlaced format of the sequence, the algorithm was run on single fields instead of
frames.

Figure 3.26: First field of the “Aqua” test sequence




Figure 3.27: Disparity vector map of “Aqua” using a priori costs only

The problems encountered when the epipolar geometry is known (Figure 3.18) are also
present and shown in Figure 3.27. A logical step would be to use vector field smoothing in
this case too.

3.5.4 Smoothing in the Three-Dimensional Matching Space

As with two-dimensional matching space, disparity discontinuities will give useful
information as to where occlusions occur. For these occlusions only a horizontal disparity
jump is important. However, in order to find a more precise definition of the path through the
matching space, vertical deviations will be taken into account too. Therefore, a new general
usable jump function Gf{§,, 8,) is defined, which also takes care of the vertical deviations:

Gf8, 8)=A8)+A34) (3.15)

8, being the disparity jump defined in Section 3.4.3 and §, the vertical deviation of point (n,
m) with respect to its predecessor. As the deviations are usually very small, f3,) will provide
smoothing, allowing deviations only where really necessary. With 2 maximum deviation size
of 4 pixels, f(5) as defined in equation (3.9) is also suitable.

The total cost function GCF for a node (n, D,, D,) in the matching space is calculated in line
with equation (3.10) as sum of equations (3.13 ) and (3.15):

GCF, (D, ,) = GNFD, (D, )+ Gf(5, 8, (3.16)
with Gf(5,,5,) = 0.3,[8, +0.155, +0.3,/5, +0.153,

For dynamic programming in the three-dimensional matching space, the accumulated cost
value GACV

GACY, = 3(GNFD, (B, ) + Gf(5,,3,)) G.17)

a=1
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is used as the criterion for finding the best possible path through this matching space.

In Figure 3.28, the result of disparity estimation of this kind and equalised for convenience is
shown for the “Aqua” sequence, where bright parts indicate pixels further away than dark
parts of the image. Occlusions are drawn in black. In addition to the disparity, the vertical
deviations, as shown in Figure 3.29 are estimated. In this Figure the bright area in the top left
corner of the image indicates a vertical deviation of +1, the grey colour 0 and the dark area in
the lower left corner a vertical deviation of -1. The occluded areas again refer to the disparity
shown in Figure 3.28. With the information depicted in Figure 3.29 actually a first idea about
the epipolar line geometry is given.

The disparity vector map shown in Figure 3.28 will be used for segmentation. However, the
occlusion gaps and the line structures can be expected to cause problems. Therefore,
postprocessing of the disparity vector map is necessary.

Figure 3.28: Disparity vector map for the “Aqua” test-sequence (equalised)

Figure 3.29: Vertical deviations in the “Aqua” test-sequence (expanded)




3.6 Preprocessing Images

As the stereoscopic sequences used in this thesis have been shot with two different cameras
[DIS92, DIS94], the corresponding image pairs may have a luminance discrepancy [Fra92].
This is one of the most serious problems in disparity estimation and can lead to estimation
errors [ZTT91]. The luminance balance compensation described in this Section improves
matching.

A second topic is the large increase in computation made necessary by the generalisation to a
three-dimensional matching space. In this Section, a method which limits this matching space
is described. The goal here is to have the matching space “as small as possible, but as large as
necessary”. This will not only reduce the calculation cost, but also improve the quality of the
matching.

3.6.1 Luminance Balance Compensation

In the test sequences [DIS92, DIS94], an imbalance between the luminance values of the left
and right images is noticeable. Statistical modelling of these “imperfections” and appropriate
compensation can improve the disparity estimation [ZTT91].

The model used to describe the difference in gain and offset settings is:

W, (ij)=a-W,(i—D, j-D,)+b (3.18)
where: W(ij) luminance value at (i,j) in the left image

Wi(ij) luminance value at (i,j) in the right image

(D, D)\ disparity vector

a amplifier gain

b offset

In this model it is assumed that a luminance value in the right image is derived from its
counterpart in the left image (displaced by (D,,D,)" and therefore is at position (i-D,, j~D,) in
the left image) using an amplifier gain a and offset b.

Based on the model described in (3.18), a solution to compensate these imperfections is
described in [Fra92]. Using the mean values (W, and W) and the variances (o7 and o32) of
the luminance values of the two images - calculated as shown in equation (3.19) and (3.20)
for the left image -

_— A
W, =—3 S W,(i)) (3.19)
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1 .3 A .
ol = —AZ > (W, - W.(i 1) (3.20)
=] j=1
where A the number of lines in the image
T the number of pixels per line

each pixel in the right image can be adjusted as in equation (3.21):

Wy G, j) = - We(iy )+ 321
where W' G.J) corrected luminance value of the right image point (i,j)
b W, -a-W,

This model ignores disparity and occlusions between the left and the right image. As long as
these differences are not very serious this is not a problem. With the stereoscopic test-
sequences [DIS92, DIS94] it can be assumed that applying this model will give satisfactory
results, as the sequences have been shot in order to be viewed in stereo. The sequences
therefore will be rather similar. By applying equation (3.21) to all right view pixels, the mean
value and variance of the left and right image become equal. Some of the test-sequences
exhibited luminance differences of such a magnitde that disparity estimation failed totally.
Results from the DISTIMA project [Zie92a] showed that this compensation re-established a
satisfactory function of the disparity estimators [Fra96).

3.6.2 Limiting the Matching Space

The three axes of the three-dimensional dynamic programming matching space are the pixels
n of the horizontal line, the disparity axis D, and the deviation axis D, as depicted in Figure
3.25. The number of paths that have to be considered for calculation, increases exponentially
with disparity and y-deviation. For the "Aqua" stereo sequence for example, the disparity
search range was fixed at [-15, 430], the deviation search range was fixed at [-2, +2]. With
720 pixels per line, a matching space of 720x46x5 nodes has to be created in this example.
Looking for the optimal path through this large matching space is computationally very
expensive. Therefore, it is advisable to reduce this matching space.

A way of reducing the matching space is to pre-calculate the disparity search ranges for each
line and consequently restrict the net of possible paths to within a useful range. The block
search range calculation in Figure 3.1 performs this function.




It calculates the maximum and minimum disparity and deviation ranges in the pair. The
algorithm consists of three steps (Figure 3.30). At first a large-block-matching disparity
estimator using overlapping blocks with block-size 16x16 pixels gives an estimate of the
range of the displacement vectors. Block-based median filtering follows to eliminate single
errors in the vector field. The minimum and maximum search ranges are then calculated for
each line to be used in the dynamic programming (only a single line in the image is scanned).

Block- Median- Calculation of
matching filter the search range
(16 x 16 Pixel) (3 x 3 Blocks) per line

Figure 3.30: Block diagram of the disparity calculation algorithm

The reason for having local search ranges (per line) is to be able to adaptively reduce the
matching space. As already described in Section 3.5, the disparity estimator only searches
along single horizontal image lines, so an adaptive calculation of the matching space per line
is feasible. If a global range were calculated, a small object in the foreground with large
disparity, would force a large search range for the entire image. This can be avoided using
this local criteria.

Applying this limitation process to the “Aqua” sequence reduces the disparity search range to
a maximum of {-5, +10] and the deviation search range to a maximum of [0, 1]. This way the
matching space could be reduced to a maximum of 720x16x2 nodes per line in the worst case.

3.7 Perspective on Motion Estimation

Dynamic Programming has proved to be a suitable optimisation method for disparity
estimation. With the enhancements described in Section 3.5, it is possible to estimate
disparity without knowledge of epipolar geometry. With the three-dimensional matching
space introduced, even motion estimation might become feasible using dynamic
programming. However, a straightforward extension of the algorithm for use in motion
estimation is not possible. In this Section, the necessary changes to dynamic programming for
motion estimation are discussed.

As has been discussed in Section 3.3, ordering is an important constraint in dynamic
programming. This constraint means that the objects on the two matching raster lines are in
the same order. The reason for this is the way estimation is performed, namely sequentially
along a raster line. Therefore, if the order is changed, dynamic programming will give no
matching results.
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Image 1 Image 2

Image 1 raster line r

Image 2
raster line r

Figure 3.31: Ordering violation

Figure 3.31 shows an example, where the positions of the objects have been reversed in the
two images. In this case, the ordering constraint is definitely violated. Although theoretically
there exists a match as is shown in the lower part of Figure 3.31, dynamic programming
cannot jump from one object to the next because the ordering constraint is violated. A
possible solution to overcome this behaviour is to perform optimisation within the objects
(intra) and not globally (inter) along the raster line. In Figure 3.31, although the ordering
constraint is violated in terms of objects (their position is reversed) it is not violated within
the objects. If large jumps are allowed at object boundaries but not within an object this
problem can be solved. As the ordering constraint is not valid at such boundaries, the strategy
for searching the predecessors in the dynamic programming also has to be changed. For a
point (n,m) in the matching space, possible predecessors can now be in the entire column
n+1, not just above row m, as is the case with disparity estimation (Figure 3.12). Such a
possible path through the matching space is printed in bold in Figure 3.31.

As has already been described in Section 3.5, a General usable Normalised Feature
Difference (GNFD) is used as the matching criterion. However, the matching window in this
case should be designed to provide a large matching area with special strength in the vertical
and horizontal directions. It is shown in Figure 3.32. For every possible motion vector (M,,
M) at point (n,m) in the search area, the GNFD is evaluated according to equation (3.13), as
is done for disparity estimation.
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(dh, dv): Displacement vector
Figure 3.32: Window used for calculating the NFD at image point (n,m)

The critical aspect of using dynamic programming for motion estimation is the definition of
the jump costs. On the one hand, vectors across a surface should be smooth and on the other
jumps should be allowed at object edges. By reducing the effect of the jump cost at the edges,
dynamic programming can use the matching cost GNFD as the main decision cost. Since
matching near edges is usually better than within a surface, the GNFD is very reliable at
edges leading to correct decisions without a high regularisation influence. A typical problem
is when a large motion-vector jump occurs between two consecutive pixels belonging to two
different objects along the raster line. This may be caused by the rapid motion of one of the
objects. Therefore, the jump cost function of equation (3.15) will be extended, also taking the
strength of a luminance edge into account.

The jump cost function f{ ) is defined as

,620,5>0 (3:22)

(0.3J§ +0. 156)
f(8)= —

where § is the magnitude of the motion vector jump between consecutive pixels along the
raster line and s gives the strength of an edge through the gradient computed using the Sobel
operator [Pra91). The four different oriented sobel operators shown in Table 3.4 will be
applied. The maximum value then is choosen as s. When this approach is adopted, f{9) gives
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higher values the “smoother” the image is, but gives very small values whenever an edge is

present.
Horizontal Oriented | Vertical Oriented 45° Left Oriented 45° Right Oriented
Gradient Gradient Gradient Gradient
1 0 -1 -1 -2 -1 -2 -1 0 0 -1 2
l20—2 l00() l—101 l10—1
4 4 4 4
[1 0 -1 1 2 1 o 1 2] 21 0

Table 3.4: The four different oriented Sobel operators

The accumulated cost value is then calculated using equation (3.17), so applying the same
principle to motion estimation, as was previously explained for disparity estimation.

Experiments, performed with the “Tunnel” sequence shown in Figure 3.33, where only the
train is moving,show that motion estimation using dynamic programming is indeed possible.
The result of motion estimation performed in this way, i.e. depicting the horizontal and the
vertical component separately, is shown in Figure 3.34 and Figure 3.35.

Figure 3.34 shows the horizontal component M, of the motion vectors, where negative
horizontal motion (from right to left) is shown in dark and positive horizontal motion (from
left to right) is shown in bright colours. Most parts of the image do not have any motion, this
is indicated by the grey colour. Figure 3.35 shows the vertical motion component M, of the
motion vectors. In the “Tunnel” sequence only negative vertical motion (from bottom to top)
occurs, indicated by the dark colour.

Figure 3.33: Field from the original “Tunnel” sequence




Figure 3.34: Horizontal component of the motion vector field

Figure 3.35: Vertical component of the motion vector field

3.8 Experimental Evaluation of the Disparity Estimation

In order to evaluate the quality of disparity estimation, it was tested with the “Mirror”
sequence (Figure 3.17) as well as with the “Aqua” sequence (Figure 3.26). The advantage of
the “Mirror” sequence is that the correct disparity vectors are known, as this is a synthetic
sequence. In cases like these, the best evaluation criterion is the percentage of correct
estimated vectors (PCV). In the experiments carried out in this thesis this number only refers
to the vectors, occluded areas will not be taken into account. In Figure 3.36 the percentage of
correct vectors PCV per image is shown for the “Mirror” sequence. For comparison, the
results of a full-search block matcher with block size 8x8, taken from [Fra96), are also
included.
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Figure 3.36: Percentage of correct vectors (PCV) for the “Mirror” sequence (30 dB noise)

In the first image (no disparity), 100% of the vectors are assigned the correct estimate, i.e. 0.
In all the other images, around 98 to 99% of the vectors have been estimated correctly.
Compared with a full-search blockmatcher, which estimates approximately 90% of the
vectors correctly, this result is a lot better - as the graph shows.
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Figure 3.37: Percentage of correct vectors (PCV) for the “Mirror” sequence (20 dB noise)




Comparable results are obtained when disparity estimation is applied to the “Mirror”
sequence with 20 dB noise, shown in Figure 3.37. It is not the focus of this thesis to estimate
disparity in images having such a high level of noise, but the results in Figure 3.37 show that
the vectors also improve in this case compared to a normal blockmatching. Compared to the
genetic vector field estimator described in [Fra96] the results are a worse. Due to the high
noise level, a lot of similar matches could be found, but dynamic programming does not allow
the necessary disparity jump. The number of correctly estimated vectors is therefore a lot
lower than with the 30 dB sequence.

With the “Aqua” sequence, evaluation of this kind is, unfortunately, not possible, as the true
disparity values are not known. An approach to assessing the quality of the estimate is
predicting the left image by shifting the pixel values in the right image with the corresponding
disparity value according to equation (3.23).

W' (i,)) = We(i + D, J) (3.23)

Whenever D, did not exist for a pixel, but occlusion did instead, the luminance value of the
corresponding pixel in the reconstructed image was set to zero. The quality of the
reconstructed image W’ was then compared with the original image W,. The measurement
used for this comparison is the Peak-Signal-to-Noise-Ratio (PSNR) defined as:

PSNR =10-log,y = x-4.255 [dB] (3.24)

33 (WG, /) - W, G.5)

i=l j=l

The result of this evaluation can been seen in Figure 3.38, where the PSNR-curves for
“Mirror” and “Aqua” are printed.

With “Mirror”, the reconstruction of the first image (disparity = 0) gives very high quality. As
with larger disparities there are larger occlusions which cannot be reconstructed as there is no
information available, the quality of the following images decreases rapidly. With disparities
larger than approximately 15 pixels, the curve stabilises at a PSNR-value of about 19.5 dB.
By contrast, the PSNR of “Aqua” stays approximately constant at just below 20 dB for all the
sequence. In “Aqua”, the amount of occlusion stays more or less the same in all the images,
therefore only smaller PSNR deviations can be observed. Compared with “Mirror”, it can be
seen that the disparity estimation also works well on sequences like “Aqua”, for example,
where the epipolar line geometry is not known.

To provide acomparison, an experiment was also performed where the vertical deviations of
the disparity vector field have not been allowed. The results are shown in Figure 3.39.
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Figure 3.38: PSNR-curves for “Aqua” and “Mirror” after reconstruction of the left image
from the right image and the disparity vector field
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Figure 3.39: PSNR values of “Aqua” with and without vertical deviations in the dynamic

programming approach

Here it becomes obvious that the introduction of vertical deviations is really important. An
almost constant improvement of about 4 dB could be achieved, the vertical deviations also
being taken into account.
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3.9 Conclusion

In this Chapter, a new pixel accurate disparity estimator was discussed. Although the results
of the experiments have been shown only for the “Mirror” and “Aqua” sequences, they are
representative for a larger class of images, namely the DISTIMA test-sequences. Also for the
other image sequences these results are fairly well reproducible. The disparity estimator can
estimate pixel accurate disparity fields, even if the epipolar geometry is not known. It is based
on a dynamic programming approach and takes the feature difference of the pixels into
account, as well as a piecewise smooth disparity inside regions. Due to the optimisation
approach being led through dynamic programming the estimator is also less sensitive to
differences in foreshortening. The resulting disparity vector fields are accurate to within a
pixel and are of high guality, as the evaluation showed. Therefore, they are a good basis for
the further processing, the segmentation of regions being performed according to their
disparity. The experiments applying dynamic programming also to motion estimation have
shown that the estimation of a motion vector field also is possible with this approach. It
therefore will be used not only to estimate disparity but also to estimate motion in the region-
based coder described in the following Chapters. A couple of minor problems still remain, as
there are occlusion gaps and line structures in the resulting disparity vector fields. These
problems must be solved in a postprocessing step, before the vectors are forwarded to the
segmentation process.
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4. Image Analysis and Synthesis

Region-based analysis-synthesis coding - unlike block-based image coding - permits the
description of arbitrarily shaped regions by means of certain parameters. As referred to
already in Chapter 2, two very important parts of a region-based, analysis-synthesis coding
system are image analysis and image synthesis.

At the encoder site, image analysis extracts the necessary parameters of the regions to be
transmitted to the receiver site. These parameters depend on the source model used. Current
implementations of region-based analysis-synthesis coders use either 2-D or 3-D models. The
parameters used are motion, shape and colour of the region. In this Chapter, a new definition
of the source model is developed. In addition to the “standard” parameters of a 2-D region,
disparity information will now also be used to describe the region. As this representation also
indicates the depth of 2 region it will be termed a 24— D region. The use of such 23— D
regions will enable the system to encode stereoscopic sequences without a large overhead for
the second channel and also general monoscopic sequences, assuming that disparity
information is available, without a priori knowledge of the content.

At the receiver site, image synthesis uses the transmitted parameters to shift the regions and
so synthesise the image. This, in principle, is a straightforward process: reconstructing the
regions from the transmitted parameters and putting them in the correct place in the image to
be synthesised. The introduction of disparity information will help resolve ambiguities which
are a problem in monoscopic, region-based coders and occur if two regions overlap due to
their motion. Image analysis and synthesis will not normally be capable of synthesising an
image without error. Therefore, as a final step, the synthesis error must be transmitted to
increase the quality of the resulting image. As the transmission of the synthesis error is
neither part of the analysis nor of the synthesis, it will be discussed in the next Chapter.

Firstly, a definition of the source model used will be provided in the following. Then the
overall concept of image analysis and synthesis will be described. For image analysis and
synthesis, typical image processing tools will be used; they will also be discussed. With the
aid of these tools, the next image in time and the spatially alternate stereoscopic image will be
synthesised. Finally, the performance of the image analysis and synthesis will be evatuated by
experiment.
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4.1 The Source Model

The source model influences the image analysis part of a region-based analysis-synthesis
coder in particular. In addition to, say, the 2-D regions used in [H6t90] - where a region is
defined by its motion, shape and colour - 24— D regions are also described by their disparity.
Without loss of generality, only translational vectors for motion and disparity are used in this
source model.

In the case of a monoscopic coding scheme, a very important factor is that of motion. In order
to prevent an accumulation of motion errors, a region should have the same motion vector for
all pixels in that region. In the case of a stereo-compensated coding scheme, disparity is the
information needed per region. However, unlike to motion vectors, disparity vectors will be
used only once to compensate the second stereoscopic image from the current, already
motion-compensated image. Greater deviations than those encountered with motion
compensation can, therefore, be allowed. These considerations lead to the following
definition:

Definition: A 24— D region is a solid cluster of connected pixels in an image, where each
pixel in the cluster has the same motion vector and a disparity vector with a
maximum deviation of 1 pixel from its neighbouring pixel.

From this definition, it follows that a pixel-wise motion and disparity estimation are required.
An estimate based on dynamic programming as described in Chapter 3 provides a pixel-wise
resolution of vector maps. Using disparity and motion vector maps of this kind, both having
pixel accuracy, a pixel-based segmentation of the regions is possible.

When this source model is implémented, the defined regions will not correspond to what
humans would consider to be an object - especially when only translational vectors are used.
With the test sequences used in this thesis, it is impossible to segment a real physical object as
one region as such regions have different disparity layers. Furthermore, if the real object
rotates in the sequence, the use of translational vectors for segmentation will lead to a further
partitioning of the object into several regions. In a coding environment as described in this
thesis, this is not a problem as the regions will only be used to synthesise the next image in
time or the second image of the stereoscopic image pair. Real 3-D modelling, and the
possibility of segmenting and manipulating physical objects, would be preferable for an
interactive system.

The source model consists of two sub-models: for the first image in a sequence or at scene-
cuts, “translational moving unknown rigid 24— D regions”, for all the other images in a
sequence “translational moving known rigid 24 — D regions” will be assumed. The reason for
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this is simple to explain: since no a priori knowledge of the content is used, there is no
knowledge about the regions of the scene in the first image. However, in the next images, the
regions can be tracked from the previous image, assuming known regions. The only case
where this will not work is if a new region - as e.g. uncovered background - occurs. This new
region then has to be described using the source model of unknown regions again. For the
second (stereoscopic) channel “translational displaced known rigid 2% — D regions” will be
assumed whenever the regions are aiready known from the first channel. Occluded areas will
be treated as unknown regions again. This leads to the fact that image analysis is necessary
not only in the first image but also in subsequent images, although not the entire images will
be analysed, but only small parts of them. Whenever the quality of the synthesised image falls
below a certain threshold, the next image will be analysed completely. This principle is
similar to that of introducing I-frames in MPEG. Whenever a local error occurs or the initial
segmentation is not correct, this will lead to a synthesis error and the necessity to correct it as
described later in Chapter 5.

4.2 Concept of Image Analysis and Image Synthesis

This Section gives an initial conceptional overview of the use of image analysis and image
synthesis in the region-based stereoscopic coder for the purpose of synthesising an image.
Detailed explanations will be given in the following Sections.

Image analysis (see Figure 4.1) is carried out using the motion vector field from images L;to
L,,, and the disparity vector field from images L; to R, With images L,, L, and R, image
analysis is performed for the first time, so segmenting the entire image into regions. With the
succeeding images, segmentation is restricted to image parts, where no information is
available at the moment. These image parts (areas of uncovered background and occlusion
shown in black in Figure 4.1, detected as areas without any information after the synthesis
step) will be used as separate regions for the synthesis of the current images. Merging of such
newly segmented regions with already existing regions will be investigated when motion and

disparity information js available for them in the next time instance.

Since the source model that has been used is based on rigid regions, the regions’ parameters
will not be updated. It will, therefore, be necessary to transmit the parameters for every new
region: in the first image of a sequence when the regions are defined for the first time and, in
the subsequent images, for uncovered background, occlusions and for merged regions.
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Figure 4.1: Image analysis based on motion and disparity vector fields

The basic principle of image synthesis is shown in Figure 4.2. The objective of image
synthesis is to synthesise an image with good visual quality and so make it unnecessary to
send an error signal. Image synthesis is therefore different from prediction as performed in
block-based coders. The left images will be synthesised by shifting the regions according to
their motion vectors. Based on this, the right images will be synthesised by shifting the
regions according to their disparity vector as well. For each region, there is a region memory
(to be described later) which contains the parameters colour, shape, motion and disparity. By
summing the relevant displacement vectors, the new position of the region in images L, and
R,,, is calculated. For the first, left image in a sequence, image synthesis assumes zero
motion. This means that the regions have the same position as they did in the original left
image.

The principle of image synthesis assumes that a motion estimator is able to follow the regions
over time. A region-based motion estimator [ZP93], therefore, tries to match the known
regions of the region memory to areas in the next image. Based on 2 histogram of the pixel-
accurate motion vectors estimated as described in Section 3.7, the vector which appears most
often in the region is chosen as the representative motion vector for the entire region. As long
as the region of interest is not covered by another region, this works well. Even minor
overlaps can be handled in this way. The image area will still be identified as the
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corresponding region. If the overlap is too large, a match cannot be found. The region then
cannot be motion compensated and a synthesis error occurs. When the region becomes visible
again in later images, there is a good chance of identifying it again as a region from the region
memory. If this is not possible, it will be added to the memory as a new region.

Region memories

Disparity

Left image Lj+x Right image Ri+x

Figure 4.2: Image synthesis using motion and disparity, based on a region memory

4.3 Image Analysis

If the source model described in Section 4.1 is used, the image analysis part will have to
define the regions and extract their parameters for further processing. As these regions will be
used for coding, the following requirements and considerations must be fulfilled:

- As a consequence of the definition of a 24~ D region and the source model used, the
pixels assembled to form a single region must have the same motion vector and a similar
disparity vector.

- All the parameters for each region have to be transmitted. These regions may not be too
small. For very small regions it might be better - from the coding point of view, which is
the number of bits necessary for the description - to merge them with a neighbouring
region, so taking a coding error into account.
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- Generally, there always has to be a compromise between the number of bits required to
transmit the region (including all its parameters) and the consequences of not transmitting
the region, in terms of the number of bits and image quality.

Concerning the last two points, several publications deal with the problem of looking for an
optimal solution in the rate-distortion sense. In [SSG96] a rate-distortion criterion is used to
decide which regions should be used for compensation and for optimising the contour
representation. In this thesis, in contrast to the latter and others (e.g. [MMP96] where an
optimal segmentation is based on the rate-distortion theory), a simpler, non rate-distortion
theory based decision criterion will be introduced. This criterion reduces the calculation effort
(compared with a rate-distortion approach) but nevertheless achieves high-quality resuits.

Taking the above considerations into account, the image analysis part will execute the
following steps (Figure 4.3):

1. Postprocessing of disparity maps

2. Region segmentation

3. Extraction of region parameters

4. Merging of small regions with larger neighbouring regions
5. Merging of equivalent regions

6. Description of the region shape

Postprocessing of disparity maps first carries out an interpolation of the occlusion gaps and
removal of the line structures introduced by the dynamic programming - as was seen in
Chapter 3 - which disturb the scgmentation process. Region segmentation then defines a set of
24-D regions. Bach 24— D region is subsequently processed to extract properties
(Extraction of region parameters) such as statistical information, neighbourhood information
and other parameters required for further use. These parameters are used in a process Merging
of small regions with larger neighbouring regions, which, if certain criteria are satisfied,
merges a small region with a larger one to minimise the total number of regions. These
parameters are also used for Merging of equivalent regions, which is performed if new
regions are added to the existing regions in the memory. It will check whether it is possible to
merge the new region with an existing one or whether it has to be treated as a single region on
its own. Both merging steps are done iteratively until all possible regions arc merged.
Description of the shape region concludes the analysis part - describing the final shape of the
region and performing polygon approximation.
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Figure 4.3: Image analysis

In the case of first image, all the regions will be “initialised”, but in the case of the subsequent
images, existing regions will be shifted according to their motion. In order to guarantee
temporal consistency of a region, a region once segmented will not be changed. However,
when there is a new region - as e.g. uncovered background or areas of model failure - this will
be examined and possibly merged with an existing neighbouring region, or, if the criteria for
merging are not fulfilled, it will be treated as a new region on its own. These new regions will
occur whenever background in the image is uncovered in one of the subsequent images or
whenever there is model failure. These areas will be treated as candidates for new regions.
Based on the segmentation process, a decision will be made to keep them as a separate region
or to merge them with an existing one. This merging (either performed in Merging of small
regions with larger neighbouring regions or in Merging of equivalent regions) is the only
way to change an existing region.

4.3.1 Postprocessing Disparity Maps

As the described disparity estimation method (using dynamic programming) functions
independently on single lines, there will always be some line artefacts, as shown in Section
3.5.4. These line artefacts would not be a problem with pixel-wise stereo-compensation.
However, as the vector fields are used for segmentation, these artefacts have to be removed to
obtain smooth region boundaries. Smooth region boundaries are easier to describe and so do
not need as many bits as coarse boundaries. Postprocessing of disparity maps will do so by
filtering the line artefacts. The described disparity estimation method also includes occluded
areas in the resulting disparity map. Although these areas are only visible in one of the two
stereoscopic images, they belong to a region and a decision has to be made as to which region
it should be assigned. Postprocessing of disparity maps is also a preparation for this decision,
as disparity values are introduced at occluded areas by means of interpolation. In this way, a
dense vector field without any gaps and artefacts can be input into the segmentation process
and the disparity map can now be completely segmented.
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Post-processing of the disparity map has three phases:

1. Median filtering with template size 3x 3 pixel
2. Interpolation of occlusion gaps
3. Median filtering with template 1x 5 pixel

Since the only objective of this postprocessing step is the removal of line structures and the
filling of occlusion gaps, it is not actually a particularly crucial decision what filter to use. For
the sake of simplicity, simple median filters were used. Also other types or sizes of filter
could be used without seriously influencing the result.

The 3x3 window median filter is used to adjust each pixel to its neighbourhood. A median
filter is known to respect edges, so it was selected so as not to disturb the disparity edges,
which are very important in segmentation. Figure 4.4 shows the result after applying this filter
to the disparity vector field of “Aqua” shown in Figure 3.28.

Figure 4.4: 3x3 median filtering of disparity vector field

The second phase of filtering aims to fill up the occluded areas. Assuming that the disparity
estimation can precisely detect areas of occlusions, one simple way of interpolating
occlusions would be to extend the region in the background - where the occlusion will occur -
until it reaches the region in the foreground. As has been shown in Chapter 3, this assumption
is not true in all cases. With dynamic programming there will be some incorrect estimates
near occlusions - the horizontal line structures show that. As these line structures will be
removed by simply comparing adjacent lines, it cannot be guaranteed that all the occlusions
will be detected correctly. Therefore, the simple method described above - extending the
region in the background - may be unsuccessful.

To avoid such problems, the filling process is performed by using the gradient information of
the original luminance signal. The top graph in Figure 4.5 shows the gradient along a
horizontal raster line of the image extracted from luminance. The same section of the
horizontal line extracted from the disparity graph is depicted in the middle graph of
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Figure 4.5. As occlusion will only be recognised when there is a disparity jump, occlusion
indicates a region boundary with a depth difference with respect to the neighbouring region.
Assuming that the region boundary will be visible as an edge in the image, the disparity
values have to change at the region boundary or the peak gradient.

From the two graphs at the top of Figure 4.5, one can see that there is an occluded area on
either side of the peak gradient which is defined as the dividing line between the two regions.
The filling process constructs a gradient curve (Sobel operator) beginning from the point
where the occlusion starts and ending where it stops. To the left of the peak gradient, which is
the maximum value of the gradient in the occluded area, the gap is filled with the disparity
encountered before the occlusion; to the right of the peak gradient, the gap is filled with the
disparity encountered after the occlusion as indicated in the bottom graph of Figure 4.5. The
whole process is performed independently on lines and repeated for all the occluded areas in
the image.

Gradient

Peak gradicnt ==

=

Original disparity

Occlusion
]

Interpolated disparity

n

Figure 4.5: Illustration of interpolation of an occlusion gap
The interpolation of occlusion gaps is a critical part of post-processing. If inconsistencies are
present in this process, this leads to an inaccurate definition of regions in the segmentation
process later on.

As the described operation will not result in a connected edge, but in peak gradients not
connected to one other, the final result of the interpolation process will not have smooth
contours but coarse ones. Figure 4.6. shows the result of the interpolation process on all of the
image. -
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Figure 4.6: Interpolation of disparity vector field

In some cases, this interpolation will produce the same result as the simple background-
foreground interpolation referred to at the beginning. The result will be the same whenever
both the gradient and the occlusions are detected precisely, which is not very often the case.
With occlusions in particular, there will be some problems as has been stated before. On the
other hand, using the gradient method, there is a danger that this might lead to coarse edges,
as the peak gradient might differ from line to line. Because of this possible effect and the line
structures from the dynamic programming, a final simple step is vertical filtering to eliminate
these disturbing points. A simple approach with sufficiently high quality is a median filter
with a template size of 1x5. Figure 4.7, therefore, shows the final disparity vector field of
“Aqua” which is used for further processing. The remaining artefacts - there still are some
coarse edges visible in the image - can be handled and so are acceptable for further
processing.

Figure 4.7: Vertical median filtering of disparity vector field with size 1x5

The need for postprocessing can also be illustrated experimentally. Using the disparity map,
the right image was compensated from the left one. The results were compared with the
original image to determine the Peak Signal to Noise Ratio.(PSNR).

Table 4.1 shows that each postprocessing step improves the quality of the vector map.
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Disparity Map PSNR
Raw (Figure 3.28) 19.9
Median filtered (Figure 4.4) 208
Interpolated (Figure 4.6) 249
Vertical filtered (Figure 4.7) 250

Table 4.1: The usefulness of post-processing in correct correspondence calculation

As the PSNR values are calculated after stereo-compensation of the left image, the
interpolation step makes the largest gain. As there will be no information in occluded areas,
they will not have any information in the stereo-compensated image, so reducing the quality
of the image. After interpolation, there are no occlusions left and so grey values will be
present in all of the image.

4.3.2. Segmentation of Regions

Many different segmentation methods (e.g. [Wal91] and [SSJ95]) can be found in the
literature. What they all have in common are the following two ideas [Nie90]:

- The result of a segmentation is a set of regions, each region having certain attributes. With
image segmentation, the most important types of segmentation regions are line segments,
lines, regions and volumes. Possible types of attributes include the location in two-
dimensional image co-ordinates or in three-dimensional world co-ordinates, colour,
texture, motion, depth, shape, etc. Apparently not every type of attribute is adequate for

every type of region.

- Segmentation requires some changes or fluctuations of suitable pattern properties.
Segmentation of a pattern represented by a function p(n, m) is obviously impossible if this
function is just a constant. To a human, a constant function may invoke some sensory
impressions, but it is evidently without structure. Therefore, an idea common to all
techniques of pattern segmentation is that regions are related to changes in p(n, m).
Changes in p(n, m) suggest possible borders between these regions.
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On the basis of the method used for image synthesis, two requirements have to be fulfilled:

- The errors in motion have to be kept to a minimum and so a region must have a motion
vector which is identical for all pixels in that region - for the horizontal part of the vector
as well as for the vertical part.

- With disparity vectors, larger errors than those occurring with motion compensation can be
allowed. In contrast to motion vectors, which will be summed, disparity vectors will only
be used once. Therefore, an accumulation of errors is avoided with disparity. This leads to
the concept that not all the pixels within a region have to have the same disparity.

As texture and colour information are already implicitly used in the vector estimation itself
and especially in the interpolation of the occlusion gaps, it will not be used again for
segmentation. This would make the system more complex without using new information for
the segmentation process. In [Kir89] the segmentation of vector maps has been proven to be
quite robust, it was, therefore, also selected for this system.

The segmentation of the displacement vector field

1={(b, .1, )n=1...im=1,..2} @1

into connected regions K,

I->{R)i=1..0} “42)
is performed so that
L4

I=J%K, and R,nR,; =0 for i=j @“3)

i=]

The fundamental aspect of a region is homogeneity. A simple region growing algorithm
[Pra91] (based on a 8-connective neighbourhood definition) is used to find the connective
regions which satisfy the criterion

(2, - Dl < 0) (s, - | s ) (e, -,

< e,) @4
for all (i) j): (kn l) € mi

where ©,,6,,0, are threshold values for either disparity, horizontal or vertical motion
selected as ©, =1, 6, =6, =0. In contrast to, say, [MB94] and [DC95], where an affine
model is used to segment the regions, only translational vectors are used in this case,
corresponding to the source model that is employed.
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The segmentation is controlled by a mask which determines the areas of the image that can be
segmented. Therefore, an area that has already been segmented is no longer marked, so
avoiding a further segmentation. On this mask, therefore, the occluded areas and the areas of
uncovered background are marked. These are extracted by forward image reconstruction
using the regions from the previous image and their motion and disparity vector. In this way,
uncovered background and occlusions become apparent as areas with no information at all in
the synthesised image and it is now possible to segment these regions. For the first image, the
mask shows that the entire image is segmentable. The way the segmentation is performed on
the vector fields is tracing their homogenous parts through region growing [Pra91]. The set of
parameters D,, M,, M, is evaluated and if their parameter values do not violate the
homogeneity criterion, this is taken as evidence that no transition to another region occurred.

Using this procedure, it is guaranteed that connective regions satisfying the homogeneity
criterion will be found. Of course, with the presence of inconsistencies in the vector field,
these regions might be very small and will not have any physical meaning as has already been
explained in Section 4.1. Figure 4.8 shows the result of the initial segmentation procedure for
the “Aqua” sequence. The whole vector fields are segmented for the first image.

Figure 4.8: Initial segmentation of first image of “Aqua” containing 669 regions

This result is based on the disparity vector field shown in Figure 4.7 and the motion vector
field calculated using equation (4.4) (not shown here, as there is almost no motion in the
“Aqua” sequence). The lack of motion gives a segmentation that, in this example, is almost
entirely based on the disparity field alone. A different colour value is assigned to
neighbouring regions for all the 669 regions defined in the segmentation process.
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4.3.3 Extraction of Region Parameters

After the image has been segmented into regions, the following parameters need to be
extracted for each region for subsequent processing:

- a region identification number i,

- the number of pixels A, within the region,

- the motion vector M,,

- a list of neighbouring regions X, j =1..,@

- the number of common pixels on the boundary of the neighbouring region B, ;

- the disparity D,.

Most of these parameters can be calculated in a straightforward manner, but the last one -
disparity - requires more attention. The reason for this is that, according to the requirements
of segmentation, there will normaily be a number of different disparity values within a region.
For later use in the region-based stereo-compensated scheme, only one disparity vector can be
used per region. The selection and assignment of a single disparity vector is a non-trivial
problem.

It is easy to think of some straightforward algorithms to determine which disparity vector
should be taken as representative:

- calculate the mean disparity of all present disparity values for the region,

- calculate 2 median disparity vector or

- take the vector which is correct for most of the pixels.

In this region-based coding environment, the mean square error (MSE) is used as the criterion
for assessing the quality of the synthesised image. In this sense, all of the methods mentioned
above will give suboptimal results as far as the synthesis error per region is concerned
because they do not take the MSE into account. The only way of finding the optimal
representative vector for a region is to compensate that specific region with all the possible
disparity values and to calculate the MSE as a measure of quality. The disparity value
achieving the best quality for the whole region will then be taken as the only disparity value
for the region. Therefore, the disparity vector with a minimum MSE for the region will be
selected as the representative disparity vector for the entire region.

As required by the source model, known translational moving regions will be assumed,
starting with the second image in a sequence. As these regions may change over time, due to
merging with other neighbouring regions, the parameters might change also. An update of the
parameters will always occur if the region changes.
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4.3.4 Merging of Small Regions with Larger Neighbouring Regions

In a region-based coding system, the region shape must also be transmitted. However, when a
region is very small, it may be that the shape information takes more bits than would be
required if the region were not transferred and the coding error sent instead. For that reason, a
compromise has to made for small regions of this kind. There are actually two possibilities:
either to transmit the small region on its own or to merge it with a large neighbouring region.

The objective of merging small regions with a larger neighbouring region is to obtain a single
short contour, while keeping the synthesis error at a low level, after compensation with
motion or disparity vectors. Approaches such as merging with the region which yields the
smallest possible synthesis error would be better for one type of compensation only - either
motion or stereo - but would not take the other into account. As the final regions will be used
for both motion and stereo compensation, another approach was developed.

A quantitative decision whether to merge the small region - and if so, with which
neighbouring region - would require a lot of calculations as all possibilities would have to be
calculated and compared. What is more, taking into account the fact that the boundary of a
region need only be transmitted once, whereas the corresponding synthesis error would also
occur with the subsequent images, error propagation would also have to be considered. The
decision, therefore, will be based on an estimate of the effects. The obvious way to estimate
which solution is better is based on the size of the region, comparing the probable bit rate of
the shape with the probable bit rate of transmitting the synthesis error.

First, the selection of all possible candidate regions R, with which a small region R, could
be merged. For the neighbour to qualify as a candidate, the following must apply:

A <A @.5)

For all the qualifying neighbours, equation (4.6) will be evaluated. This criterion takes into
account the difference of disparity, horizontal motion and vertical motion, but also the
number of pixels sharing the boundary B, ;. The neighbour for which the quality criterion oS,
; is minimal is selecteq as the appropriate one for merging with region X,.

o5, - [D,,i —D,,I|+|M,,‘ —M,,JI+|MV' -M, o

B
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The criterion is designed to select the neighbour R so that two neighbouring regions have:

ID,,‘ - D,,)l = g small absolute disparity difference

IM,# - M’vl + |M,i - M‘,II => a small absolute motion difference

B:j =% a large common boundary

The merging process which has been developed is iterative - it starts with the smallest region
- and is repeated until no more small regions can be merged. In this way, all small regions
will be merged.

The question of the maximum size of a small region has remained unanswered until now. It is
necessary to define a threshold so that up to size A, a region R, is considered to be a small
region. As with the probable bit rate for the contour, the necessary number of bits for a highly
sophisticated contour coding method is estimated at 0.3 bits per contour point in [H6t90a] -
assuming a maximum contour error of 3 pixels and an average length of 2000 pixels per
contour. A region with a size of, say, 100 pixels will have 28 contour points in the best case -
assuming a “digital” circle - and up to 100 contour points in the worst case - assuming a
region where no points are part of the region except the contour points themselves, ¢.g. in a
2x50 pixel block. These estimates assume that a region has a least width of 2 because the
estimated contour will be part of the region, as will be shown later. Therefore, between 8 (28
contour points times 0.3 bits per point) and 30 (100 contour points times 0.3 bits per point)
bits for the description of the region contour will be needed. As regions in this system will
have an arbitrary shape, the estimated number of bits required to describe the shape should be
somewhere between these extremes - about 15 to 20 bits on average.

The estimate for the coding error is based on an average bit rate of 0.2 bits per pixel, which
can be obtained with standard algorithms, ¢.g. MPEG2 and others {RH96). For a region with
100 pixels this gives an estimate of 20 bits for the coding error.

From the above estimates, it can be seen that, for regions smaller than 100 pixels, transmitting
an additional error will probably be cheaper in terms of bits than transmitting the shape
information. The effect is even more marked if the subsequent images are taken into account
as the error would have to be transmitted again. For regions with more than 100 pixels, the
opposite applies. With these numbers, the strategy is clear: regions with a size A, less than 100
pixels will be merged with one of the neighbouring regions. However, seen in relation to all
the other bits that are required, these few bits will not unduly affect the final result from the
region-based coder. The decision about the size of the regions to be merged is, therefore, nota
very critical one.
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4.3.5 Merging of Equivalent Regions

‘When uncovered background or occluded areas become visible in the scene, new regions will
be created in addition to the existing ones. It will then be necessary to check whether these
new regions should be treated as new single regions or whether they should be merged with
existing regions. Merging of equivalent regions will take place in all the images of a
sequence. Even in the first image - after the initial segmentation of the image into regions -
this step will help to reduce the number of regions.

This merging is a two-stage process. The first step finds suitable neighbours as candidates for
merging. If there is more than one suitable neighbour, a second stage uses a certain criterion
to find the "best" neighbour.

Only two regions, K, and its neighbour R, can qualify for merging if equation (4.4) is
satisfied. For all the qualifying neighbouring regions, the following quality criterion QE, ; will
be used:

(A+4) - -
QF,; = —p——(L,-1))o} ~0}) @.n

ij
where the criterion is designed to choose the neighbour R, so that the two neighbouring
regions have:

B, = alarge common boundary
(A, +A;) = alarge merged area

(I,-1;) = a small luminance mean value difference

(o}-0})=>4 small luminance variance difference

The objective of using criterion (4.7) is to select the best possible merging. The major
argument for selecting a certain region is the luminance difference between the two regions,
measured in terms of the luminance mean value of the complete region and its variance. If
this argument is not unambiguous, the number of common boundary points and the area of
tile regions will influence the result. This will then lead to large regions which have a large
common boundary.

Merging of equivalent regions is again an iterative process - starting with the smallest region -
and is repeated until no more regions can be merged. Figure 4.9 shows the segmented regions
after the two merging processes, starting with the region map shown in Figure 4.8.
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504 regions of the 669 regions that were initially segmented have been merged as small
regions; another 40 equivalent regions have been merged. Figure 4.9 still shows 125 regions.

Figure 4.9: Region map of “Aqua” with 125 regions
after merging of small and equivalent regions

4.3.6 Description of the Region Shape

The description of a region shape is a well-kmown problem. The basic ideas are either to
obtain a hierarchical description of the region [PN95, CL95] or to describe the region using
triangular nets [Sch95]. To achieve this, several approaches - such as using a moment
difference method [YML95] or morphological skeletons [BK95] - can be used. The objective
here is not to describe the shape precisely, which, for example, could be effected by run-
length coding of all the contour points, but to approximate the shape within a certain
permissible error. The regions used in this thesis are assumed to be solid, so only the outer
boundary of the region will be approximated.

Methods using either Fourier descriptors [PF77] or polygon approximation [H5t90a, RG96,
SIM94, WZJ96] have been shown to be very efficient. Both of the two methods mentioned
have similar efficiencies [Fra89]. However, when Fourier descriptors are used in areas with
strong curves, a large number of coefficients are required to describe the contour. It also is
very difficult to use the information from preceding images to predict the current shape
parameters [H5t90].

Polygon approximation does not have these disadvantages. Describing strong curves, or even
corners, poses no problems and it is possible to use the shape of the preceding region
efficiently to predict the current parameters. The only disadvantage of polygon approximation
is that a shape described in this way does not look very natural but angular. With regions that
correspond to natural regions as humans would define them, this might be a problem. In
[H5t90a}, for example, the goal was to approximate the shape of a person which was defined
as one region. Therefore, a combination of splines and polygons was used in that paper to
overcome this restriction.
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With the regions defined here - which have nothing in common with “natural” regions - a
description using only polygons is sufficient The maximum permitted error for polygon
approximation has to be defined. The coding scheme that has been developed will be able to
quite easily handle regions whose size has been overapproximated. This is because the
disparity information will help to solve ambiguities when two regions overlap. Based on the
results in [H6t90], 2 maximal deviation of 2 pixels outside the region is defined for this case.

In contrast to deviations outside a region, deviations within a region are a source of large
synthesis errors, as a collection of regions that are too small will leave areas in between these
regions without information after synthesis. To minimise these effects, no errors within the
region have been allowed. The maximum error of the contour description inside a region is,
therefore, set to O pixels.

To keep the contour as small as possible, - 50 as to reduce the number of bits required for the
description as much as possible - the contour was selected so that it belonged to the region.
As a result, there are regions with a minimum width of 2 pixels. The method used for the
description of the region shape has two steps [SIM94]. The first to obtain the main vertices of
the contour and the second an iterative polygon approximation.

Proceeding clockwise along the region boundary, the distance between all possible pairs of
points on the contour is calculated. This calculation is based on the 8-conmective
neighbourhood definition. The pair of points with the maximum separation is used as two
initial vertices for the approximation (vertices 1 and 2 in Figure 4.10).

© = Initial vertices

Figure 4.10: Initial vertices

The axis between them is referred to as the main axis of the region. Proceeding clockwise
along the contour from the first main-axis vertex to the second main-axis vertex, the
perpendicular distance from this point to the main axis is calculated for each point on the
contour. The point with the largest separation is called a vertex of the approximation. This is
repeated for the anti-clockwise direction. The two new initial vertices are numbers 3 and 4 in
Figure 4.10. After the definition of the initial vertices the polygon approximation starts. First,
a straight line is drawn between the two initial vertices 1 and 4 from Figure 4.10. For each
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point on the contour between these two vertices, the distance between the point and the
straight line is calculated.

© = Initial vertices

"~ 4 =Inserted vertices
Point of intersection a

Line between two initial vertices
Figure 4.11: Polygon approximation

If the separation for a point is less than or equal to the threshold of 2 pixels for a point outside
the region or O pixels for a point within the region, no new vertices need to be inserted and the
analysis can continue with the next pair of vertices. However, if the separation exceeds the
threshold, a new vertex has to be inserted. The new vertex is inserted at the contour point
which has the maximum separation from the line between the two initial vertices (Figure
4.11). The process is repeated iteratively until no more vertices can be inserted (Figure 4.12).

. @ = Initial vertices
4 @ =Inserted vertices

Figure 4.12: Completed polygon approximation

Figure 4.13 shows the polygon-approximated regions - with the regions shown in Figure 4.9 -
of “Aqua” superimposed on the original image.

‘When a polygon approximation of this kind is used, each region will have its own contour.
Therefore, double contours can be seen in Figure 4.13 when two regions overlap each other
by more than one pixel or the two regions are segmented without any overlap. The only
situation without overlapping contours is that of two regions overlapping each other by
exactly one pixel - the contour itself. With the disparity-based concept introduced in Section
4.2, this is not a problem as it is always known which region is visible and which region is
covered.
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Figure 4.13: Polygon-approximated region-contours superimposed on original image

4.4. Image Synthesis

Image synthesis naturally takes place at the receiver side to synthesise an image, but synthesis
is also necessary at the sender side to allow the image in question to be synthesised at the
receiver. Using the synthesised image, the sender can check changes in the parameters and so
be able to calculate, say, motion and disparity based on the same image as the receiver and
avoid error accumulation.

There are two different ways of performing image synthesis with this kind of coder [Hot92]:

- based on an image memory, where the last coded and decoded image is stored (familiar
from the standard block-based coders) leading to a synthesis based on the previous
image or

- based on a region memory, where all the regions and their parameters are stored in a
central memory.

Both methods will now be described in greater detail under the assumption that the images
can be synthesised using only motion and disparity information. In the stereoscopic system
described, the left images of the stereoscopic sequences will be synthesised using the regions'
motion vectors. To reconstruct the right image of the stereo pair, the same regions will simply
be shifted according to their disparity vector as well. '

As will be described in the next sections, the two methods under discussion - one based on an

image memory and the other based on a region memory - differ from each other in two

respects:

- their behaviour as regards subpixel accurate vectors;

~ their behaviour as regards the stored information when new regions are added to the
memory.
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Although only pixel accurate vectors are used in the system that has been developed, a further
improvement in the system will make it necessary to take subpixel accuracy of the vectors
into consideration as well. For this reason, the following discussion assumes that subpixel-
accurate displacement vectors can be used, so allowing a further improvement in the system
without changing the synthesis part.

4.4.1 Image Synthesis based on an Image Memory

The principle of image synthesis based on an image memory is shown in Figure 4.14 for a
one-dimensional situation. In this example with three temporally successive images, the
colour values of the image k+1 to be synthesised will be taken from the image memory,
which is the previously synthesised image. This image memory holds the synthesised image
k. The motion vector field M(n,m, k +1) describes the displacement of image k with respect
to image k+1. In Figure 4.14, each vector of M(n,m,k+1) assigns a position (m, m, k) of
image k to a position (n, m, k+1) of image k+ 1. For the image synthesis of image k+1, the
values of image k will then be taken and inserted at the displaced positions. If the motion
vectors can have subpixel accuracy, the colour values will have to be interpolated from the
surrounding values. In Figure 4.14, for example, the colour values at (n, m, k+1) and (n, m+1,
k+1) have to be interpolated from the colour values at (n, m, k), (n, m+1, k) and (n, m+2, k).
Since interpolation errors will be passed on to the next image, k+2, the image will be blurred.
The synthesis of image k+2 would require another interpolation of the already interpolated
values from image k+ 1. This can only be avoided if no interpolated values are used for the
image synthesis. With subpixel-accurate displacement vectors, image synthesis based on an
image memory is, therefore, not a good choice.

)l HM(nmk+1) M(n,mk+2)
(o, m / (n, m)

(n, m+1)S .-/_/ / (n, m+1)
(n, m+2)$ (0, m+2)
(0, m+3); / / (0, m+3)
(n, m+4)4 (n, m+4) _Iy_.

t
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Figure 4.14: Image synthesis based on an image memory [H692]
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Another problem - especially with stereoscopic coders - occurs when new regions appear.
When new regions are added to the image memory, they might overwrite other information
required at a later stage or for the second image of the stereo pair. This can happen, for
instance, if a region is covered by another region. In an image memory, information about the
covered part of the region would be deleted from the memory.

4.4.2 Image Synthesis based on a Region Memory

When image synthesis based on a region memory is implemented, the colour values to
synthesise image k+I are not taken from the previous image k, but from a region memory.

This region memory contains all the information of all the regions known up to that point in
time - as is alsothe case with a texture map in graphics processors - but at a specific instant in
time only a portion of this knowledge is used. As all the information for the synthesis of all
images will now be taken from one common region memory, continuous interpolation of the
colour information per region - even when using subpixel-accurate displacement vectors - can
be avoided. In this way, blurring of the images can be suppressed. The principle of image
synthesis based on a region memory is outlined in Figure 4.15. This one-dimensional situation
with one region memory is again based on the example in Figure 4.14. First of all, the region
memory has to be initialised. This is done by copying the contents of the first image which in
this example is assumed to be image k to the region memory. To synthesise image k+1 and
image k+2, the colour information of the region memory will be used - taking into account
the displacement vector fields - without changing the contents of the region memory.

The motion vector field M(n,m,k+1) can be used ditectly to synthesise image k+1 from
image k, as the region memory has been initialised with the data of image k. The methods of
image synthesis, based either on an image memory or a region memory, are, therefore, the
same for the first synthesis step.

To synthesise the next image k+2, the displacement must be calculated relative to the
temporal position of the data in the region memory to obtain the relationship of image k+2
and the region memory. This is done by adding the motion vector fields. The new vector
fields are indicated by the index RM (Region Memory). In Figure 4.15, the new motion vector
field My, (n, m k+2) was calculated by adding M(n, m, k+1) and M(n, m k+2).

‘When using displacement vectors with pixel accuracy, this addition can be performed without
errors. By using the region memory instead of the image memory, the intzrpol.ated values at
(n, m, k+1) and (n, m+1, k+1) will not be used for the synthesis of image k+2. An
accumulation of synthesis errors due to the interpolation of the colour information is,
therefore, avoided.
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Figure 4.15: Image synthesis based on a region memory [H5192]

In contrast to an image memory, a new region can simply be added to the region memory
without changing or deleting existing information. Also, if a region is changed as a result of
merging with another new region, this is easy to handle and the parameters in the region
memory will be changed accordingly. The problems with a stereoscopic coder, addressed in
the previous Section in relation to an image memory, are, therefore, non-existent when a
region memory is used.
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4.4.3 Using Motion and Disparity in Image Synthesis

The principle of region-based synthesis will be illustrated with the following example. Figure
4.16 shows the three images L, L,,, and R, and the parameters C, M, S and D of their
regions, which are determined from image analysis and stored in the region memory.

Region

Region

o

M2=D2=0

Colour-, Shape-, Motion- and Disparity-
parameters of the region memory

Region 1 Region 2

M; \ LI ()]

(V]

T

Figure 4.16: Depiction of the regions and their parameters in an example with two regions
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Only two regions are present in this example, one - the square - is moving, the other is a
stationary background. Image synthesis reconstructs the regions and shifts them according to
the motion and disparity vectors. In this example, it is assumed that L, has already been
segmented into regions and the region parameters are stored in the region memory.

First of all, the left image is reconstructed by means of motion compensation. The resulting
synthesised image L', is shown in Figure 4.17, where the white area is the uncovered
background that was not visible in the previous image.

Figure 4.17: Resulting image after motion-compensation of the left image

This uncovered background will be treated as a new region by image analysis. The first step is
to describe the shape of the occluded area, then extract the colour parameters from the
original left image. At this stage, this area does not have any motion or disparity vectors
assigned to it; these parameters will, therefore, be considered to be unknown. The new region
will be transmitted and reconstructed at the same position as in the original image. The result
is shown in Figure 4.18 (a) (for clarity, the square is not shown) where there are actually two
regions now, the background of region 2 in image L, and the newly transmitted, and now
uncovered, background. At this time, the parameters of region 2 are still the same as shown in
Figure 4.16. In the next analysis step, analysing the images L,,,, L;,; and R,,, , it can be seen
that the newly transmitted background and region 2 have the same motion and disparity, the
two regions will then be merged. As the motion, disparity and shape parameters will not
change, only the colour parameters will be updated at that time (Figure 4.18 (b)).

(b)
Figure 4.18: Resulting image after transmission of the uncovered background
(the square of Figure 4.17 is not shown)

%% 4. Image Apalysis and Synthesis




With the aid of disparity information, the right image R; will be reconstructed next. As region
2 is still described in the region memory as shown in Figure 4.18 (a) - merging region 2 and
the uncovered background will take place in the next analysis step - the result of the stereo
compensation is as shown in Figure 4.19 with the white area as an occlusion.

Figure 4.19: Resulting image after stereo compensation of the right image

As in the motion-compensated case previously, the occluded area will be treated as a new
region by image analysis. In the next step, this occlusion is already known to the receiver and
sot does not have to be transmitted again.

4.5 Experimental Evaluation of Image Analysis and Synthesis

To assess the quality of the segmentation process, the percentage of correctly segmented
pixels was investigated for the “Mirror” sequences. In these sequences, the position and size
of the regions are known which means that the result of the segmentation process can be
compared with a perfect segmentation. The experiment has been performed on image pairs
without taking temporal correlation into account. This forces a complete segmentation in all
of the image pairs. The segmentation results for the Sth and the 30th left image of “Mirror”
with 30dB noise are shown in Figure 4.20. With these images, two regions have been
segmented, Lena and the Clown, to be distinguished by their disparity. The percentage of
correctly segmented pixels (PCS) has been evaluated as the number of pixels segmented as
part of Lena and really belonging to that region, divided by the number of pixels for the actual
region. In the first image, where there is no disparity or motion, the whole image is segmented
as a single region. Therefore, as there is no region for Lena, evaluation of the correctly
segmented pixels does not make sense. Starting with the second image, disparity information
is available to perform a proper segmentation. About 93% of the pixels are correctly assigned
to Lena independently of the disparity values and the amount of occlusion.

As could be seen in Figure 3.23 inaccuracies in the disparity estimation on “Mirror” occurred
at the boundary of Lena towards the Clown. The 7% of incorrectly segmented pixels therefore
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can only occur at this boundary. Although the shape description enlarges the region, this leads
to contours on the inside of Lena as can be seen in Figure 4.20.

(@) ®)
Figure 4.20: Segmentation result for “Mirror” with 30 dB noise
(left image number 5 (a) and left image number 30 (b))

This experiment was also performed using the “Mirror” sequence with 20dB noise. The noise
decreased the quality of the disparity estimation, so making the segmentation more difficult.
As can be seen in Figure 4.21, more than two regions have been identified by the
segmentation process. When the PCS for Lena with these noisy images was calculated, all of
the regions belonging to Lena were taken into account. In this way, about 91% of the pixels
are correctly assigned. Bearing in mind the results of the disparity estimation (Figures 3.36
and 3.37) with a difference of about 10% of correct disparity vectors in these sequences, the
segmentation process has proved to be robust as far as noise is concerned.

()
Figure 4.21: Segmentation result for “Mirror” with 20 dB noise
(left image number 5 (a) and left image number 30 (b))
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Figure 4.22 finally shows the PCS for all the images of the sequences.
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Figure 4.22: The percentage of correctly segmented pixels for Lena in the “Mirror”
sequences

To assess the quality of the entire image analysis and image synthesis chain, the segmented
regions of the first analysis step were used to synthesise the next left image with the aid of
motion information and to synthesise the corresponding right image with the aid of disparity
information. As described in Section 4.4.3, the regions have now been updated in this
experiment. However, this was only possible for the left image sequence, where a
segmentation of the uncovered background was possible with the aid of motion and disparity
information when available in the later images. For occluded areas in the right image
sequence this is not possible, as disparity can not be estimated with occlusions. In this
experiment, the PSNR for the right channel was therefore calculated without taking
occlusions into account. Consequently, large occluded areas gave a low PSNR, as no
information was copied to such areas, but zero was assigned to them as their value. The
synthesis error was evaluated by subtracting the synthesised image from the original image.
By adding this ervor to the synthesised image, the image analysis and synthesis started with
the original images but still used the regions and their information. In this way, the entire
image analysis and image synthesis chain could be evaluated without taking the coding
aspects into account.

Figure 4.23 shows the PSNR values (equation (3.24)) of the synthesised images without the
synthesis error for the “Aqua” sequence. As only a small amount of motion occurs in “Aqua”,
the left synthesised image is of high quality. The exact PSNR values again depend on the
amount of uncovered background, but also on whether new objects could be defined to
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increase the quality. In the case of regions combining more than one disparity value, the
quality of the right synthesised images is, of course, lower than for the left ones. As can be
seen in Figure 4.23, the PSNR values for the right images are almost constant for the entire
sequence. This is due to the fact that there is not much difference in the number of occluded
areas from one image to another.
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Figure 4.23: PSNR values for the left and right channel of “Aqua” after image analysis and
synthesis

4.6 Conclusion

In this Chapter, the image analysis and synthesis tools to be used in the region-based
stereoscopic coder have been presented. After the 24 — D regions have been segmented and
described, several steps are implemented to reduce the number of regions. The regions'
parameters - shape, colour, motion and disparity - are then stored in a region memory for the
synthesis process. The region memory permits the creation of a database of regions present in
the image sequence, so decreasing the bit rate required for transmission if, say, a previously
visible region becomes covered and visible again. The regions will only be changed if new
regions - “black holes” in the synthesised image - can be merged with them. For that reason,
temporal consistency of the regions can be guaranteed. Image synthesis is a simple process
because the regions will only be shifted according to their motion and disparity; any synthesis
errors that occur are not yet dealt with in the synthesis process itself. The coding of the
parameters and the treatment of synthesis errors will be described in the next Chapter.
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5. Region-Based Stereoscopic Image Sequence Coder

The image analysis process splits the image into a set of regions and extracts the parameters
colour C, shape S;, motion M, and disparity D, for each region ®,. Image synthesis then
reconstructs an image using these parameters which are stored in a region-memory. If image
analysis fails to describe the scene completely, say, because of imperfections in the source
model that is being used, there will be a synthesis error in the reconstructed image. In this
Chapter, the concept of a region-based image sequence stereoscopic coder will be presented.
Disparity estimation, image analysis and synthesis are used, but the transmission of the
synthesis error is also taken into account. Also, the efficient coding of the parameters will be
discussed, as well as a possible rate control for a region-based stereoscopic coder. Finally, the
results of the region-based stereoscopic coder that has been described will be statistically and
subjectively evaluated.

5.1 Concept of the Region-Based Stereoscopic Coder

Figure 5.1 shows a block diagram of the sender site of the region-based stereoscopic coder in
detail. Based on Figure 2.10, an extension has been added to form a stereoscopic coder. In the
Image Analysis module, the regions are segmented using the motion- and disparity vector
fields estimated in the Motion Estimation and Disparity Estimation modules.

Each of the resulting regions is assigned its parameters colour C;, motion vector M, shape S,
and disparity vector D,. The colour parameter C; contains the luminance and chrominance
values of the region surface, the motion vector M, describes the horizontal and vertical
motion of the region. The shape parameter §; contains a description of the position of the
region in the camera-plane and its boundary. Finally, the horizontal component D, of the
disparity vector D, is the displacement of the region from the left to the right image in the
camera-plane. All these parameters have to be coded efficiently. This is done in the
Parameter Coding module. After the parameters have been decoded in the Parameter
Decoding module, these parameter sets are named C', M', §' and D’. The shape, motion and
disparity information undergo lossless coding in accordance with the concept described in
this Chapter and so §' = S, M'= M and D' = D. Parameter Decoding would, therefore,
not be necessary for these three parameter sets; the original parameters could also be used for

5. Region-Based Stereoscopic Image Sequence Coder 99




reconstruction. However, the large amount of colour data must be reduced for the colour
parameter set C which will undergo lossy coding. In order to give a general block diagram,
independent of the coding schemes that have been used, Figure 5.1 shows Parameter
Decoding for all the parameter sets.

Unlike block-based coders, which require an image memory to store the last image of the
sequence to be coded and transmitted, a region-based coder needs a Region Parameter
Memory for the transmitted and decoded parameter sets C', M', §' and D' for all the
regions.

The memories of the sender and the receiver contain the same parameters, so enabling the
sender as well as the receiver to synthesise the image using the same parameters. The
synthesised image is displayed at the receiver site, but is also used to analyse the next image.
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Figure 5.1: Detailed block diagram showing the sender site of the region-based
stereoscopic image sequence coder

In the fmage Synthesis module, the synthesised image is generated with the parameter sets

C', M', S' and D'. The synthesised left image is also sent to the fmage Analysis module
which will perform a region-based motion estimation on the synthesised image and the next
original image using the region parameters C;, S, and M, and a region-based disparity
estimation on the synthesised image and the original right image using the region parameters
C;, S; and D; in the next coding step. In this way, the vector information is always based
on the images which are also present at the receiver site, so avoiding error accumulation due
to inaccurate vector estimates transmitted from the coder.
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As image synthesis fails if the source model is not correct or if image analysis introduces
inaccuracies, a way of correcting such failures and inaccuracies has to be included. This is
done in the Coding of Synthesis Error module.

5.2 Coding of the Region Parameters

In the Parameter Coding block in Figure 5.1, all parameters are encoded as efficiently as
possible to achieve a coding gain. Two different Parameter Coding cases have to be
distinguished: either regions will be transmitted for the first time, or the parameters in the
memory will be updated when a region already exists but some of the parameters have
changed. Depending on the case, either temporal or spatial correlation within each parameter
stream can be exploited. To further increase the efficiency of parameter coding, interrelations
between different parameter streams, say shape and motion parameters, can also be exploited.
Figure 5.2 shows the principal methods of parameter coding for existing-region updates
which will be discussed in this Section.
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Figure 5.2: Parameter coding for updating regions that already exist in the region-based
stereoscopic image sequence coder

Figure 5.2 shows that the parameter sets M and D are encoded independently of all the other
parameter sets, where S depends on the motion vector of the region and C depends on its
shape. Since the disparity information is not used to encode any other parameter, the system
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can also be used for monoscopic sequences. This is also obvious from the concept in Section
5.1, where the left image is synthesised first, and the synthesis of the right image is based on
the left image. This also includes the colour parameter C which contains only the colour
information of the left images and is used synthesise the right images as well.

5.2.1 Coding of Motion and Disparity Parameters

When 24— D regions are used as a source model as described in Chapter 4, the motion and
disparity vectors for each region are stored in the region-parameter memory. Lossy coding of
motion and disparity information would lead to large synthesis errors - or even to an incorrect
three-dimensional impression when disparity vectors are involved. Therefore, the vectors
have to undergo lossless encoding using redundancy reduction only. As the vectors are
associated with regions and not with blocks, there is no spatially regular vector field. Methods
such as lossless DPCM {ZTS94] can, therefore, not be applied. When new objects are
transmitted, there is no way of using temporal prediction of the vectors either.

One way of encoding the motion and disparity vectors in a region-based stereoscopic coder is
spatial prediction of the vector of region R; from the vector of region R, _,. This means that
only the first vector in an image will be transmitted directly. Subsequently, only the
differences M,- M,, and D,- D, will be transmitted. A second approach is not to predict
the vectors at all, but to use only Huffman coding. Figure 5.3 shows a histogram of the
disparity values D, (Figure 5.3 (a)) and the differences D, - D,, (Figure 5.3 (b)) from the
“Aqua” sequence as an example.

250 -
14%
» 120 2 2004
2 100 2
E S 1504
b} ©
g EIOO-
Z Z 50+
0 04
6-30 36 91318212529 27-18-12-6 0 6 12 19
I [ Disparity r‘ Disparity difference
@ ®)

Figure 5.3: Histograms of the disparity values for newly identified regions in the
“Aqua’” sequence: (a) D;and (b) f),- - b,-.;
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In these histograms, all disparity values for newly identified regions in the entire sequence are
taken into account. These are all the regions in the first image pair and all uncovered and
occluded regions in the subsequent image pairs described in image analysis. In the first image
pair, the regions are ordered according to the size of their disparity vector. Therefore, a high
number of neighbouring regions have a disparity difference of zero (see Figure 5.3 (b)). With
subsequent image pairs, the regions will be numbered according to the occurrence of the new
region. Therefore, the correlation between vectors of neighbouring regions becomes less,
which can be seen in Figure 5.3 (b) as there are a number of large disparity differences.

The basis for deciding whether to use direct or differential encoding is an evaluation of the
entropy H:

-
=- ) p(d)-log,[p(d)] (5.1)
d=dp
where p(d) is the probability of the symbol d in the set of data, calculated from the histograms
in Figure 5.3.

The entropy gives the theoretical minimum number of bits required to code a vector
component using redundancy coding. Table 5.1 gives the calculated entropy values of the
different vectors for newly identified regions in the “Aqua” sequence, based on the histogram
data for the disparity vectors as shown in Figure 5.3.

Horizontal Vertical Motion Disparity
Motion
Spatial prediction 16 0.0 41
No prediction 13 0.0 40

Table 5.1: Entropy of vectors for newly identified regions in the “Aqua” sequence

As there is no vertical motion at all in “Aqua” and the horizontal motion is basically constant,
the entropy of motion vectors is rather low compared with that of disparity vectors. In the
case of disparity vectors in particular, differences can be quite high from one region to the
next so giving entropy values which are somewhat higher than those for motion components.
Based on the values in Table 5.1, vectors for newly identified and transmitted regions will
only be entropy encoded and not predicted. In the system described in this thesis, Huffman
coding, a common entropy coding method, is used.

When updating already existing regions the behaviour is different. The vector components to
be transmitted are relative to the position of the region in the region memory. Figure 5.4
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shows the motion components and the disparity values for a typical region as they are stored
in the region memory at each point in time of the sequence. Without prediction, all these
values would have to be transmitted as shown in Figure 5.4. For the horizontal motion
component in particular, this would result in high entropy as there are 40 different values to
transmit. This means that the required bit rate will also be quite high.
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Figure 5.4: Motion vector components and disparity stored in the region memory

‘When exploiting the temporal prediction of the vector components, the entropy, and so the bit
rate, can obviously be reduced. Figure 5.5 shows the differences after temporal prediction of
the current vector components from the content of the region memory which is assumed to be

set to zero initially.
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Figure 5.5: Differences after temporal prediction of the current vector component from the

region memory
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In this case, the vertical motion component M, is zero for the region in all the images. Except
when the region is initially defined, no information needs to be transmitted for the region in
the sequence. The situation for disparity is almost the same - except for the first and fifth
image no information needs to be transmitted.

Obviously, the horizontal motion component M, is more difficult to handle. As in “Aqua” all
the regions move horizontally, information has to be transmitted for every image. What will
be transmitted is the difference between the value in the region memory and the new value to
be stored as shown in Figure 5.5.

5.2.2 Coding of Shape Parameters

After image analysis is performed, all regions are described in terms of their shape
parameters, using polygon approximation. To synthesise successive images, the shape is
shifted according to the motion of the region. To synthesise the corresponding right images,
the regions are shifted according to their disparity.

According to the source model, only rigid regions are allowed. This means that it is not
necessary to update the region description in this system. Therefore, the parameters for coding
a contour need to be transmitted just once.

Whenever a shape has to be transmitted, it is not necessary to transmit all the contour points,
but only the vertices of the polygon. A straightforward solution is the transmission of the
absolute spatial positions of all the vertices. The histogram of what co-ordinates would have
to be transmitted in the “Aqua” sequence is shown in Figure 5.6. In this Figure, no distinction
is made between the x and y co-ordinates. As uncovered background (which will be handled
as a new region on its own) due to motion in “Aqua” mainly occurs at the right border of the
image, a large number of vertices with large co-ordinates have to be transmitted.
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Figure 5.6: Histogram of the absolute spatial co-ordinates of the shape vertices in “Aqua”
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A second solution is to transmit only one absolute spatial position of a starting vertex and the
relative spatial position of the other vertices relative to each of the previous vertices of the
polygon. The corresponding histogram is shown in Figure 5.7, where the differences of the x
co-ordinates and the differences of the y co-ordinates of the vertices are plotted.
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Figure 5.7: Histogram of the relative spatial co-ordinates of the shape vertices in “Aqua”

The entropy H (as given by equation (5.1)) has been caiculated for both methods to decide
which method needs less bits to transmit the region shape. The data shown in Figure 5.6 give
an entropy of 8.7 bits per vertex co-ordinate, whereas the data from Figure 5.7 an entropy of
only 5.3 bits per vertex co-ordinate. Therefore, the decision in this system was to transmit the
vertices of the shape using relative addressing and applying Huffman coding to the
differences to reduce the redundancy. This principle is also used in other systems such as the
MPEG 4 video verification model [MPEG96, MPEG97]. Figure 5.8 illustrates the principle of
relative addressing with the shape already shown in Figure 4.12.

Start vertex
(50/70) (1/-5 ©/2)

ar2 @8/-1)
(/-1 (-3/3)

(-1770)
Figure 5.8: Relative addressing of the vertices of the shape from Figure 4.12

With the tolerances for the shape description as described in Chapter 4 and an average
number of 300 contour points per region in the “Aqua” sequence, this principle gives an
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average number of 1.6 bits per contour point. This value does not differ from results from
similar approaches described in the literature [EK85, Ste93].

5.2.3 Coding of Colour Parameters

To code luminance and chrominance information, referred to as colour parameters, of
arbitrarily shaped regions, methods which are not limited to fixed blocks of pixels are
required. In the system which is being described, colour parameters are transmitted together
with other parameters when the region is written to the region memory. This happens
whenever a new region is defined, say for the first image pair, for uncovered background in
the subsequent left images or for occlusions in the subsequent right images, but also for newly
combined regions. When two or more regions are merged, the new contour for the new region
is described. Due to the tolerances in the shape description, this could lead to a situation
where not all the colour parameters for all the pixels inside the new region are described. To
avoid such problems, the colour parameters of the new region are transmitted and added to
the region memory.

Several non-block colour coding methods are known from the literature [Phi96]. One
approach is to approximate the luminance and chrominance values with polynomial functions
[Koc83, Leo87]. When a lot of luminance and chrominance changes have to be coded within
the region, high-degree polynomial functions which are difficult to define have to be used. As
segmentation is only based on motion and disparity, but not on colour, this occurs very
frequently. A second solution is region-oriented transformation coding [GEM89]. Finding the
appropriate orthogonal functions is a computational very expensive procedure using
orthogonalisation schemes. Extrapolation [KA93, Kau95] aims at a shape-independent
description using a circumscribing rectangle. To do this a computational expensive
regularisation is necessary. For these reasons, shape-adaptive DCT [SM95] was used in this
thesis. On one hand, correlations are not completely exploited, but on the other hand a pre-
defined orthogonal set of DCT basis functions can be used, which makes the algorithm easy
and fast [SBM95, Sik96]. It is also the choice of the MPEG 4 video group [MPEG97].

Figure 5.9 shows the basic principle of shape adaptive DCT (SA-DCT). Figure 5.9 (a) shows
an example of an image block segmented into two regions. To perform a vertical SA-DCT
transformation of the dark region, the length (vector size V, 0<V<9) of each column j (0<j<9)
of the region is calculated. The columns are then shifted and aligned with the upper border of
the 8x8 reference block (Figure 5.9 (b)). Depending on the vector size V of each particular
column of the region, a DCT transform matrix DCT,, (given by equation 5.2) containing a set
of VDCT,, basis vectors is selected.
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1\ =
DCT  (k1)=c, ~co:[k(l + 5) - V] 5.2)

where 0<k<V-Iand0<I< V-]

c‘,=‘gifk=o

¢, =1 otherwise
k denotes the k® DCT,, basis vector

The V vertical DCT-coefficients ¢; for each set of region column data X; are then calculated
by setting k=u according to [MPEG97, Kau97]:

(5.3)

For example, in Figure 5.9 (b), the rightmost column is transformed using DCT, basis vectors.
The coefficients are shown in Figure 5.9 (c). To perform the horizontal DCT transformation,
the length of each row is calculated and the rows are shifted to the left border of the reference
block (Figure 5.9 (d)). A horizontal DCT with k=v adapted to the size of each row is then
calculated using equations (5.2) and (5.3). Figure 5.9 (e) shows the final location of the
resulting DCT coefficients.
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Figure 5.9: Successive steps involved in performing shape-adaptive DCT [SM95]

108 5. Region-Based Swereoscopic Image Sequence Coder




The final number of DCT coefficients is equal to the number of pixels in the region. To obtain
a coding gain, the coefficients are quantised with a fixed quantiser and an identical quantiser
step-size for all the coefficients. The coefficients are scanned using zigzag scanning as shown
in Figure 5.10.

Figure 5.10: Zigzag scanning of DCT coefficients

Next, the coefficients are run-length encoded. For this, a run-length, indicating the number of
steps in the order of the zigzag scan to the next non-zero value, will precede the value of the
coefficient. Pixels outside the region to be encoded are not taken into account. They are
therefore skipped when the run-length is calculated. In the final step, the rundength code is
Huffman-encoded using two different Huffman tables as in the H.261 standard [GSF95}, one
for the coefficient values and another for the run-length values. The DCT coefficients used as
an illustration in Figure 5.10 would therefore give the results shown in Figure 5.11, where the
Huffman coding is not yet included:

Figure 5.11: Example illustrating run-length coding (coefficients taken from Figure 5.10)

A single, combined Huffman table for the pair {run-length, value of coefficient} would also
be possible. This would actually improve the performance of the colour parameter coding. On
the other hand, the creation of a single table of this kind is more complicated and the table
would also be larger. The decision was, therefore, to use two different Huffman tables as
described above.

The decoding of the transmitted values at the receiver [MPEG97] is possible since the shape
of the region as shown in Figure 5.9 (a) is known. The receiver can easily identify the position
of the coefficients by creating the shape of Figure 5.9 (a).
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The reverse operation
X; =DCT," -¢, 54

in both the horizontal and the vertical direction and reverse shifting of coefficients will
reconstruct the region (from Figure 5.9 (e) to Figure 5.9 (a)).

SA-DCT is used to code the colour parameters of a region by splitting the region into fixed
8x8 blocks. All the blocks are coded according to the scheme described above. If a block is on
the border of the region, SA-DCT is implemented as described above using the appropriate
basis vectors. If a block is completely inside the region, SA-DCT is implemented using DCT,
basis vectors only, so acting like 2 “normal” 8x8 DCT.

5.3 Coding of the Synthesis Error

The system described in Chapter 4 will not be able to synthesise a perfect image in the sense
of an image that is identical to the original. Due to quantisation of the colour parameters,
there will be differences inside the regions. The tolerance of the shape description will result
in an inaccurate description of the region boundaries. Finally, the source model that has been
adopted will limit the success of image synthesis if the model is not accurate. All these
inaccuracies will produce errors in the synthesised images (referred to as synthesis error)
which should be corrected using as few bits as possible or even no bits at all in an optimal
case.

As a human viewer concentrates on a natural displacement, but not on the exact positioning of
aregion in the image. Small positioning- and shape-errors are regarded as being irrelevant to
the human viewer [H5t92]. In a region-based coder as described here, the goal is high-quality
image synthesis with respect to the subjective visual quality for a human viewer to minimise
the number of bits required to transmit a synthesis error. If synthesis were perfect in this
sense, it would not be necessary to transmit any synthesis error at all.

Figure 5.12 shows synthesised, right image 5 of the “Aqua” sequence. In the image that is
shown, the occluded areas have already been transmitted as described in Section 4.4.3.

Looking at this single image, no disturbing artefacts can be seen. However, when the
differences between this synthesised image and the original image (shown in Figure 5.13) are
examined, with an offset of 128 added to the difference values, it is obvious that the synthesis
is very far from being perfect in the sense of pixel-accurate prediction.
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Figure 5.12: Synthesised right image 5 of “Aqua”

Figure 5.13: Differences between the synthesised right image 5 of “Aqua” and the original

image (offset 128)
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Obviously the PSNR-value of a synthesised image of this kind will be relatively small,
especially in comparison with block-based techniques. This is due to misalignments of the
regions which do not influence the visual guality of the image. An enlargement of a critical
Section, the big fish in the lower left comer of Figure 5.12, shows the reason for the small
PSNR-values. This enlargement is shown in Figure 5.14.

(@ (®) ©
Figure 5.14: Enlargement of a high-error area:
(a) original, (b) synthesised, (c) difference (offset 128)

Even with such an enlargement no disturbing errors can be seen. The only reason for the huge
errors shown in Figure 5.14 (c) is a positioning error of the regions of about 2 pixels, coming
from inaccuracies in the motion estimation and tolerances of the shape description. If the
objective is to have good subjective visual quality, there is no need to transmit such errors for
a single image.

When dealing with the region-based coding of image sequences, one of the most important
topics concerning visual quality is the temporal behaviour of the regions. Since only rigid
regions are allowed in this system, temporal consistency of the regions themselves can be
guaranteed. However, consistent, smooth motion of regions cannot be guaranteed. This can be
seen in Figure 5.5 where the horizontal motion alternates between values of -1 and -2 from
one image to the next one. This is due to the use of only pixel-accurate vectors but also to
estimation inaccuracies. In the example-region shown in Figures 5.4 and 5.5, which moves 66
pixels to the left in 40 images, the value needed for smooth horizontal motion in “Aqua”
would be -1.65 pixels. In an image sequence such alternating values would result in an
unnatural movement of the regions when motion vectors are concerned, and to inconsistent
positioning of regions in the right images when disparity vectors are concerned. As long as
temporal inconsistencies like this can occur, the transmission of a synthesis error is necessary
to minimise these effects.

112 S. Region-Based Stercoscopic Image Sequeace Coder



The problem with the synthesis error is knowing which parts have to be transmitted and
which parts can be omitted. As discussed above, it is not very important to transmit luminance
or chrominance errors inside a region, but, in terms of temporal consistency, a precise
positioning of the regions becomes more important. As can be seen in Figure 5.13, the error is
especially high at region boundaries. For this reason, the synthesis error has been transmitted
whenever its absolute value was above a certain threshold. Figure 5.15 shows the error of
Figure 5.13, again with a threshold of 20, which finally has to be transmitted. In the “Aqua”
sequence, an average of 12% of the image has to be transmitted.

Figure 5.15: Differences between the synthesised right image 5 of “Aqua” and the original
image (threshold of 20, offset 128)

To code this synthesis error, standard algorithms can be used. Obviously a block-based
method such as MPEG2 error coding using DCT will require a very high data rate to code the
error or result in block artefacts at a lower bit rate. This is due to the fact that the entire error
image will be described as blocks and the data will be encoded, even if it is not necessary.
When implementing a region-based coding scheme, it, therefore, cannot be the goal to
introduce block-based coding schemes for the synthesis error.

A simple way of avoiding blocks and transmitting data only when really necessary is vector
quantisation as described in [SIM94). With the low expected data volume, a simple way of
letting the decoder know where the information has to be added to is to transmit the co-
ordinates of all the blocks in addition to the vector quantised information. The vector
quantisation operates on a 2x2 luminance block and the corresponding chrominance values.
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The aim is to find an appropriate code number from a set of pre-defined code-books. The
code-books are defined in advance and are available to both the sender and the receiver. The
code-books used in this thesis have been taken from [SIM94], therefore six different code-
books with 32 to 1024 entries have been available. After the best code-book for the block to
be encoded has been chosen, the number of the code-book that has been used and the
appropriate code number for the data are transmitted. Since the code-books that are used have
been trained on images that differ from those used here, this gives suboptimal coding
behaviour. This means that fewer bits would be required for transmission if specially adapted
code-books were available. However, experiments show the feasibility of the system and give
an idea of the bit rate required to code the synthesis error. With the “Aqua” sequences, where
all the regions move, 4.9 Mbit/s have been needed to encode the synthesis errors for the left
and the right channel as described above. With “Tunnel”, where only a small number of
regions move compared to “Aqua”, 3.9 Mbit/s were required.

5.4 Rate Control

An important advantage of region-based analysis-synthesis coding over block-based hybrid
coding is that the block-based displacement estimation of a block-based coder is replaced by a
pixel-wise displacement estimation and image analysis. Image analysis gives the opportunity
to check the displacement description and to control the coding of the parameters on a region-
basis. For each region segmented in image analysis, it can be decided which parameters have
to be transmitted and which parameters can be skipped. However, as the whole concept is
based on regions, the data-rate strongly depends on the number of segmented regions. Witha
high number of regions, the data-rate also will be high and with a small number of regions the
image can be transmitted at a low data-rate. On this basis, the number of regions is the major
key for controlling the total data-rate. In order to reduce the total bit rate significantly, it
would be necessary to reduce the number of regions by merging them with neighbouring
regions. This again results in an increase in the synthesis error, also increasing the number of
bits necessary for its transmission.

As there are only a limited number of ways of fixing the bit rate, region-based coding
schemes are inherently variable bit rate (VBR) coders. What can be restricted within certain
ranges is the peak rate for transmission. A possible peak rate control is shown in Figure 5.16.
When control of this kind is implemented, it is possible to adjust the peak bit rate to the
requirements of the network. As one parameter influences the other, extensive tests within the
rate control are necessary to find the optimum for a certain bit rate. In Figure 5.16 this is
indicated by the loop rate control - parameter coding - quality evaluation. A change in the
coding of one parameter will influcnce at least one other. This means that arate control has to
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check different settings and finally select the best one based on a quality evaluation of the

result.

Rate control
Dispari Moti Sh Col Synthesis
parity otion ape ‘olour error
Quality evaluation

Figure 5.16: Possible peak rate control in a region-based stereoscopic coder

The goal of parameter control in a region-based coder must be to reduce the high amount of
colour-coding without reducing the subjective quality. Two important characteristics of
region-based coding support this idea:

- The quality of the displacement description at region-boundaries is improved by

transmitting the region-shape. Each region now has its own displacement information,

independent of its position in a block. Assuming error-free displacement vectors, the

displacement compensation will, therefore, also be error-free at region-boundaries and no

more colour parameters have to be transmitted in these areas.

- Image analysis might be able to detect small positioning- and shape-errors of the regions.
As these errors do not influence the subjective quality, the coding and transmission of

colour information can be suppressed in these areas.

A rate control has to distinguish four coding-modes: the update of regions, the coding and
transmission of occluded areas and uncovered background as new regions, the coding and
transmission of new regions for the first time and finally the coding and transmission of the
synthesis error. Figure 5.17 shows the parameters to be transmitted depending on the coding-

mode.
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Mode Mode 1 Mode 2 Mode 3 Mode 4
Update of already Uncovered background New merged Synthesis error
P; segmented regions and occluded areas regions

Disparity X X

Motion X X

Shape X X

Colour
(SA-DCT) X X

Colour

vQ X

Figure 5.17: Parameters to be coded and transmitted in the various coding-modes

In mode 1 (“Update of already segmented regions”) it is necessary to transmit either the
motion information, the disparity information or both if the region has changed and so no
longer agrees with its description in the region memory. In mode 2 (“Uncovered background
and occluded areas”) only the shape and the colour parameters have to be transmitted. In
mode 3 (“New merged regions”) the complete region description has to be transmitted. Mode
4 (“Synthesis error’) only transmits the colour information using vector quantisation for a
couple of pixels and this may not be necessary at all.

The first thing to be coded is always the displacement information (disparity and motion
vectors) for the regions that have already been segmented. Then, the shape of all new regions
is approximated and coded. Finally, the colour parameters of uncovered background,
occluded areas and the synthesis error will be coded to allow predictive coding of the
parameters as described in Section 5.2. In this way, the rate control can only influence the
total bit rate by not transmitting new regions or by adjusting the colour parameters. As with
“normal” DCT, the coefficients of the SA-DCT which has been used can also be quantised
according to channel requirements. However, this decision will now be taken on the basis of
regions and not on blocks, so avoiding the typical block-based errors.

Since the motion parameters, the disparity parameters and the shape parameters always have
to be transmitted when a region-based coder is used, there is no way to achieve a constant bit
rate (CBR) coder when working with regions. The bit rate can largely be adjusted by
quantising the colour information. A second possibility, indicated above, is not to transmit
new regions with their parameters but to handle them like synthesis errors. This means that
coding the synthesis error would cover large areas of the images. Assuming that no regions
are transmitted at all, this leads to a standard intra-frame coder as a fall-back solution.
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5.5 Experimental Evaluation of the Region-Based Stereoscopic Coder

In order to evaluate the performance of the region-based stereoscopic coder, several
investigations concerning the necessary bit rate and the resulting quality have been carried
out. Firstly, a statistical analysis for the sequences “Aqua” and “Tunnel” is given, followed by
an evaluation of the subjective quality compared with a stereoscopic signal, where both
channels have been MPEG2-encoded separately.

5.5.1 Statistical Analysis

In this Section, the coding of the “Aqua” and the “Tunnel” sequences is statistically analysed
to demonstrate the performance of the region-based coder. First of all, the rate used for the
region parameters is investigated. These parameters are used to synthesise the images as
described in Section 4.4.3. The peak signal to noise ratio (PSNR), calculated from equation
(3.24), will be presented. Next, the synthesis error as described in Section 5.3 will be
evaluated. The percentage of pixels to be transmitted as a synthesis error and the required bit
rate will be investigated as well as the final image quality measured again in terms of the
PSNR.

Figure 5.18 shows the bit rate used to code the parameters to be transmitted for both channels
of the stereoscopic “Aqua” sequence. No rate control has been used in this experiment, so
allowing the transmission of as many bits as is required for the shape, motion and disparity
parameters and the use of a fixed quantisation for the colour parameters. Most of the bits are
required to code the colour information of the regions using shape-adaptive DCT (SA-DCT).
By far the most bits are required for the first image as all the regions have to be described for
the first time. Whenever uncovered background or occluded areas are transmitted as new
regions, additional bits will be used to describe these regions. In total 240 kbits are used in the
“Aqua” sequence of 40 images with 720 pixels per line and 576 lines per image to transmit all
the shape, motion and disparity parameters. An additional 700 kbits are required to transmit
the colour information of the regions. In total, a bit rate of approximately 600 kbits per second
is required for both channels of the stereoscopic sequence.
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Figure 5.18: Bit rate used for the region description of the stereoscopic sequence “Aqua”

Using only these parameters to synthesise the images of the sequence results in the PSNR-
values shown in Figure 5.19.
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Figure 5.19: PSNR-values for synthesised images of “Aqua ” using only the region
parameters
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The segmentation of the regions was based on the first image. The PSNR-value is, therefore,
the highest for this image in the left channel. Starting with the second image, the regions have
been shifted according to their motion vectors, so introducing motion estimation and
compensation inaccuracies. The PSNR-values, therefore, decreased rapidly for the first couple
of images until the maximum error was reached in image 7. The PSNR decreases further as
the colour information of the regions is merely updated when regions are merged. Lighting
changes are, therefore, not updated in “Aqua” where merging of regions is only performed for
uncovered background. These areas of uncovered background occur only at the right border
of the image, as there is a constant motion due to a camera pan from left to right. Because of
the pixel accuracy of the motion estimator, this constant motion is not detected as constant as
it is in reality (see Figure 5.5). Sometimes, this leads to rather large changes in the PSNR-
values from one image to the next as can be seen in Figure 5.19.

For the right channel of “Aqua”, the PSNR-values are lower than for the left channel. Since
different disparity values are combined in the regions (the disparity compensation of regions
for the right channel is, therefore, not as precise as the motion compensation used for the left
channel) the quality of the right images is not as high as for the left images. Since these errors
occur in all right images to more or less the same extent, the PSNR-values do not decrease in
this case.

The percentage of pixels (based on the image size of 720x576 pixels) per image to be handled
as a synthesis error, as described in Section 5.3, is shown in Figure 5.20.
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Figure 5.20: Percentage of pixels per image to be handled as a synthesis error in “Aqua”

5. Region-Based Stercoscopic Image Seq; Coder 119




Obviously, the number of pixels to be transmitted as a synthesis error increases when the
PSNR decreases and is higher for the right images than for the left. What can be observed is
that the curve for the right channel exhibits almost the same behaviour as the curve for the left
channel, but with a delay of one image. This is due to the sequence of analysis as described in
Section 4.4.3. The right image R, is analysed at the same time as the left image L.
Consequently, a high number of errors in L;; will result in a high number of errors in R, as
well.

When the coding principle for synthesis error described in Section 5.3 is used, the number of
pixels in Figure 5.20 gives the number of bits required to code the synthesis error as shown in
Figure 5.21.
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Figure 5.21: Bit rate per image required to transmit the synthesis error for “Aqua”

The bit rate required to transmit the synthesis ervor for the left channel is 1.6 Mbit for all 40
images. This is approx. 1 Mbit/s. For the synthesis error of the right channel, 3.9 Mbit/s are
necessary. When the bit rate of 600 kbit/s for the parameter description of the regions is
included, this means that a total bit rate of approx. 5.5 Mbit/s is required to encode the
stereoscopic signal of “Aqua”. However, the coding of the synthesis error is by no means
perfect as it uses a pixel description for the error in a region-based coding scheme and also
uses non-optimised code-books.

When the synthesis error is added to the predicted images, this gives the PSNR-values shown
in Figure 5.22. Obviously, the PSNR-values are now higher compared with Figure 5.19 where
no synthesis error was added. The PSNR-curve also looks smoother than before as single
images were of a bad quality due to high esrors.
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Figure 5.22: PSNR curve of “Aqua” after adding the synthesis error

The same experiments have been performed with the “Tunnel” sequence. Figure 5.23 shows

the bits needed to transmit the region parameters.
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Figure 5.23: Bit rate for the region description of “Tunnel”

As with “Aqua”, most bits are used to describe the colour parameters of the sequence: 1300
kbits were necessary for the 50 “Tunnel” images. An additional 530 kbits were used to
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describe the motion, disparity and shape parameters. The total is 1830 kbits for the 50 images
giving a bit rate of 915 kbit/s for the region parameters and the PSNR-values shown in Figure
5.24 when using only these parameters for the synthesis.
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Figure 5.24: PSNR-values for synthesised “Tunnel” images using only the region parameters

As with “Aqua”, the first left image of “Tunnel” is of very high quality, but the following
images have a more constant quality than in “Aqua”. The reason for this is, that in the
“Tunnel” sequence there is no motion in large Sections of the images. The “Tunnel” sequence
exhibits a stationary background and a train moving from right to left and from bottom to top.
Since the unmoving background is transmitted only once in the first image, errors will mainly
occur near the moving train. The size of these areas is approximately the same for the whole
sequence and so only minor quality differences can be observed in the synthesised images.
The exceptions are images number 3 and number 23, where a sudden quality decrease occurs.
With these two images, the motion parameters could not be estimated precisely enough
because of the limitations of the source model. Since the motion of the segmented regions of
the train does not obey a simple translational relationship, using a motion model of this kind
for “Tunnel” causes the incorrect positioning of the regions in most of the images. The use of
rotational parameters could solve this problem.

For the right channel, the PSNR-values are lower again due to the combination of different
disparity values in one region. Basically, the same course of values as for the left channel can
be observed.
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Figure 5.25: Percentage of pixels per image to be handled as a synthesis error in “Tunnel”

Figure 5.25 shows the percentage of pixels (based on the image size of 720x576 pixels) per
image to be handled as a synthesis error as described in Section 5.3. Obviously, this curve
corresponds very well to the PSNR curve in Figure 5.24. Where the PSNR is low, a high
number of pixels have to be corrected, where the PSNR is high, a smaller number of pixels
have to be corrected.

When vector quantisation is used, this gives the number of bits to be transmitted per image as
shown in Figure 5.26.

140 -
§100- ‘

g 804
=
2 0.
20 4

Y T T T T T T T T 1

0 5 10 15 20 25 30 35 40 45 50

Image pumber

—o— "Tunnel": Left channel
—<¢— "Tunnel": Right channel

Figure 5.26: Bit rate per image required to transmit the synthesis error for “Tunnel”
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Using this kind of coding for the synthesis error is again far from perfect. It uses far more bits
than a highly sophisticated error coding method specially designed for the use in a region
based coder would. The sum of the numbers in Figure 5.26 gives a datarate of 1.8 Mbit for
the left channel and 6 Mbit for the right channel for all the 50 images. The time average in
secs is 900 kbit/s for the left channel and 3 Mbit/s for the right channel. If the 900 kbit/s for
the region parameters is added, a total bit rate of approx. 4.8 Mbit/s is obtained for the
stereoscopic signal.

The final PSNR-values for the corrected “Tunnel” sequence are shown in Figure 5.27, where
the quality is now quite high and the curve smoother than in previous graphs.
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Figure 5.27: PSNR curve for “Tunnel” after adding the synthesis error
5.5.2 Informal Subjective Evaluation

Since the peak signal to noise ratio PSNR is calculated taking single pixel errors into account,
small positioning and shape errors for the regions will decrease the PSNR. On the other hand,
such errors will not necessarily reduce the visual quality of the images. In order to judge the
subjective visual quality of the region-based coded images, a panel of experts - persons
working on the coding of image sequences and so familiar with the drawbacks of block-based
coding schemes - have been asked to judge the results visually. The evaluations were
performed using a 3-DTV system as shown in Figure 5.28.
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Figure 5.28: 3-DTV system used for subjective evaluations

In this system, two monitors are fixed vertically to each other. On the screen of each monitor
is a polarising foil, the foils’ polarisation being mutually perpendicular. A semi-transparent
glass plate is fixed at an angle of 45° to each monitor. This allows a light beam from the top
monitor through and it reflects a beam from the bottom monitor. Therefore, a viewer sees
both images superimposed to each other. A pair of stereo glasses is made from polarising
glass - one with a vertical polarisation vector and the other with a horizontal. With the stereo
glasses, the viewer can have the two channels separately presented to each eye and can then
see three dimensionally.

To compare the results with a standard coding scheme, both channels of the stereoscopic
sequences “Aqua” and “Tunnel” have also been coded separately with a MPEG2 coder. The
bit rate used for this experiment was half the bit rate used for the region-based coder for each
of the two channels. In this way “Aqua” was coded with 2.75 Mbit/s for each of the two
channels and “Tunnel” was coded with 2.4 Mbit/s per channel for comparison. When making
their subjective evaluations, the viewers were asked to look at the stereoscopic images and
judge the quality according to certain criteria.

As part of an initial experiment, individual stereoscopic images of “Aqua” and “Tunnel” were
shown to the viewers. The synthesis error was not added to the region-based encoded images
that were used. The viewers were asked whether they can see any artefacts. For “Aqua” a
result produced by the region-based coder without adding the synthesis error can be seen in
Figure 5.12. None of the viewers could see any artefacts. In the case of “Tunnel”, artefacts
were detected - particularly in the later images in the sequence where some of the regions in
the background have been merged with the moving train, shifting the background to an
incorrect position in the image. This can be seen in Figure 5.29 which shows one of the worst
images of the sequence - in particular the last wagon of the train and the regions behind it.
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Figure 5.29: Synthesised right image 35 of “Tunnel” without adding the synthesis error

Figure 5.30: MPEG2-encoded right image 35 of “Tunnel”
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When comparing these region-based encoded images with MPEG2-encoded images (see
Figure 5.30), the judgement of the viewers was that the quality of the region-based encoded
images was better or the same as the MPEG2-encoded ones. Bearing in mind that the two
systems use rather different bit rates - a few hundreds of kbits and a couple of Mbits - this
judgement shows the enormous potential of the region-based coder. In particular, the blurring
in the MPEG2 B-frames, which are bi-directionally predicted and encoded at a rather low bit
rate, disturbed the viewers (see Figure 5.31 (a)). This blurring did not occur in the region-
based system (see Figure 5.31 (b)). Region contours were judged to be a lot sharper here, so
enhancing the overall quality of the image.

(@) ®
Figure 5.31: Illustration of the blurring effect with details from “Tunnel”:
(a) MPEG2 coder and (b) region-based coder (without adding the synthesis error)

With “Tunnel”, even block-artefacts could be noticed in some of the MPEG2-encoded images
(see Figure 5.33 (a)). Therefore, the overall judgement of all the viewers was that the region-
based stereoscopic coder delivers better quality when looking at individual images of “Aqua”.
The region-based artefacts in some of the images of “Tunnel” were too intrusive and the
viewers judged their quality as equal to that of the MPEG2-encoded images.

In the second experiment, the viewers were asked to look at the entire sequences and to judge
their quality. Again, region-based encoded images without synthesis error addition were
presented first. A couple of problems were identified in this way. The most serious artefacts
occur in “Tunnel” whenever regions from the background are merged and shifted according
to the motion of the train. A second problem occurs due to temporal inconsistencies in the
motion vectors. Some of the regions, therefore, do not move smoothly but exhibit some
jerkiness over time. Last but not least, there is no colour update for the regions in the
sequences. The colour is only updated when the regions are merged and a new region
description is transmitted. In such cases, the colour of some regions jumps from bright to
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dark, which annoyed some of the viewers. All these problems occur occasionally in small
sections of the image, but this was very annoying to the viewers nevertheless. If these sections
are not taken into account when the quality of the images is assessed, the viewers judged the
quality the same or better than MPEG2, where the bit rate was five or even ten times that of
the region-based system without synthesis error. Again, the precise description of the region
contours and the blurring of the images with MPEG2 were the reasons for this judgement.

When the synthesis error is added to the synthesised images, the major advantage of a region-
based coder is lost. Now, the contours of the regions are no longer as sharp as they were when
the error was not added. On the other hand, all the artefacts described above can no longer be
seen (see Figure 5.32). When these corrected sequences were compared with an MPEG2-
encoded stereoscopic. signal (now using approximately the same bit rate for both coding
methods) the viewers said “Aqua” and the corrected sequences were of the same quality. With
“Tunnel”, the subjective visual quality of the region-based image sequence is even judged
better than that of the MPEG2 encoded sequence, where block artefacts are visible (see Figure
5.33). Obviously, the visual quality of the region-based stereoscopic image sequence coder
will improve when the synthesis error is coded more intelligently. Apparently, adding the
error is only necessary for selected image parts. The current approach using a threshold is too
simple as more bits are used than is necessary for visual quality.

Figure 5.32: Synthesised right image 35 of “Tunnel” after adding the synthesis error
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Figure 5.33: lllustration of block artefacts with details from “Tunnel”:
(a) MPEG2 coder and (b) region-based coder (after adding the synthesis error)

5.6 Conclusion

In this Chapter, a region-based stereoscopic image-sequence coder making use of image
analysis and synthesis methods has been presented. The coding of the region parameters was
investigated as well as the possibility of coding the synthesis error. Also, the basic ideas
underlying a rate control were described in this Chapter. Since the ways of influencing the bit
rate are basically limited to quantisation of the colour parameters, the presented coder is
basically a variable bit rate coder. Even with very basic coding of synthesis errors, the region-
based coder delivers a subjective quality that is similar to that produced by an MPEG2 coder
when the two stereoscopic channels of a sequence are encoded separately with the same total
bit rate - as was shown in the subjective evaluation.

A region-based coder obviously behaves differently from a block-based coder. In a region-
based encoded sequence, the boundaries of regions are well-defined and the regions
themselves are of high quality, whereas the use of fixed blocks resuits in a blurred image. In
this way, the images delivered by the region-based approach are much clearer and look more
pleasant to the viewers. The viewers, therefore, accept other artefacts, say abrupt colour
changes of the regions, and still state that the quality is better than that of MPEG2-encoded
sequences.

Several inconsistencies with the temporal behaviour of the region-based coder were identified
by the subjective evaluation. These inconsistencies are caused by the incorrect merging of
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regions and the temporal jerkiness of regions due to incorrect motion vectors and the sudden
changes of the region colour, due to missing updates of the region parameters over time.

When the synthesis error is coded as described, the advantage of having a clearer image
becomes less important in the case of the region-based coder, but, on the other hand, other
serious artefacts can be corrected with this type of error coding. However, a better coding of
synthesis errors, which takes the regions into account and does not simply transmit error
values when a threshold is exceeded, will probably decrease the bit rate without decreasing
visual quality.

All in all, it has been demonstrated that the concept of the region-based coder can handle
stereoscopic image sequences without knowledge of the epipolar geometry and the content of
the scene and that it can deliver visual quality comparable with that of MPEG2 encoding.
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6. Discussion

In this thesis a region-based stereoscopic image sequence coder has been developed. The coder
is based on the analysis of the stereoscopic images applying region segmentation based on
disparity and motion information. Prediction of the images is performed by image synthesis
based on the region parameters stored in a region memory. Regions in the left images will be
shifted according to their motion parameters; regions in the right images of the stereoscopic
sequence will be shifted according to their disparity as well. The use of disparity is also a big
advantage when applying motion compensation to the left image sequence. With the knowledge
of the disparity of the regions - which is proportional to their distance from the camera - it is
easy to decide which region is visible and which is covered. In this way, ambiguities which
would lead to errors without the use of disparity can be resolved efficiently.

This Chapter discusses the advantages and disadvantages of a region-based coder of this kind
compared with available, standard block-based coders such as MPEG2. Furthermore, it
contains directions for future developments and improvements of the system.

6.1 Comparison of the Region-Based Coder with Block-Based

Coders

The disadvantage of block-based coders with approximately constant quantisation is that all the
colour parameters for large areas of the image have to be coded and tténsmitted, which results in
a high bit-rate. With low-bit-rate, block-based coding, coarse quantisation is used to decrease
the bit-rate accordingly. As a result, there is a reduction in the spatial resolution and coding
errors are introduced.

Mosquito-artefacts are introduced becanse having only one displacement vector valid for the
whole block is the strategy adopted for block-based coding. When this block is not completely
within one region, but also covers part of a neighbouring region, errors will be produced. This
residual error after displacement compensation then has to be coded and transmitted, which -
particularly in the case of low-bit-rate-coding - is only possible with information loss. At the
boundaries of the regions, visible coding errors will remain.
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Apart from these mosquito artefacts, block-artefacts too will reduce the image quality in all
areas. These artefacts occur because all displacement compensation errors- irrespective of their
significance for a human viewer - will be updated with colour information. This means that
small positioning-errors will also be corrected. As a human viewer concentrates on a natural
displacement, but not on the exact positioning of a region in the image, these small positioning-
and shape-errors are not really important to the human viewer [H5t92]. In block-based coders,
" therefore, a large number of bits are used to code areas that are not relevant. An advantage of
region-based coders in this respect is possibility of spending bits in relevant areas to deliver
good quality for the viewer.

Another important advantage of a region-based coder over block-based coders is a region-based
content manipulation of the images as suggested by the MPEG4 standardisation group.
Obviously, for the system that is being described, an interactive step would be necessary to
combine several regions to form one real object as humans would “see” it. Nevertheless, this is
an avenue that is closed to block-based coders as it would normally be impossible to combine a
couple of equally sized square blocks to form an arbitrary object.

6.2 Future Work

As far as the region-based coder described in this thesis is concerned, one goal is not to transmit
a synthesis error but to achieve a very high subjective quality without even general error coding.
To increase the visual quality of the synthesised images, the artefacts that arc familiar from the
subjective tests have to be avoided.

The main artefacts, incorrect merging and jerkiness of regions, come from an inaccurate motion
estimation. An improvement of the disparity and motion estimation will not only avoid these
artefacts, but it will also contribute towards better segmentation and coding efficiency. Possible
improvements include a subpixel accurate region-based disparity and motion estimation and the
use of a more sophisticated source model.

Due to the horizontal ordering constraint, disparity and motion from one region can leak into a
neighbouring one. One solution to this problem may be to patition the image into regions
bounded by luminance edges and then apply dynamic programming to each region. On each
line,dxcpointwhereanedgecmssesﬂnscanlinccanbedefmedas a region boundary and
dynunicpmgmmmingcmbeappﬁedlwaﬂybetweenmemomgimbwndaﬂw.mismaybea
ﬁmthcrimpmvementonﬁcsoluﬁonusedformoﬁmcsﬁmaﬁmwhereﬂmhmhmedge
strength is included in the cost function.
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Except for translational motion, there are other types of motion that are better described by
affine transformations {AW93). With an affine transformation, region manipulation will become
more flexible. In this way, scaling (detected by the change of depth) and rotation can be
handled. Moreover, by calculating the coefficients of the affine model for each region, they can
then be used to create a cumulative segmentation which will progressively improve a segmented
region [AW93].

Another important aspect of motion and disparity estimation is the need for temporally
consistent vectors. Whenever vector “jumps” can be avoided, jerkiness of regions will no
longer occur. A way to guarantee temporal consistency of vectors is a postprocessing step
where the vectors for each region are followed over time and changed according to the values of
the preceding and following region vectors.

Another way of improving the visual quality of the synthesised images is a regular update of the
region colour parameters. In this way, abrupt changes of the colour values can be avoided; the
colour would then be changed smoothly. Since the transmission of the colour differences will
then be necessary for every image, this would obviously make it necessary to transmit the
synthesised images at a higher data rate. On the other hand, error coding and transmission
would be reduced or may not even be necessary at all.

When considering aspects relating to networks, network failure or cell loss must also be taken
into account. In such cases, some kind of starting points in the bit stream have to be defined if
the transmitter and the receiver are to be resynchronized. One way of doing this would be the
introduction of a kind of I-frame as they are referred to in MPEG terminology. With a region-
based coder, some of the images should be transmitted without using any kind of prediction. All
the image analysis and synthesis should be performed again starting with an image totally
defined as uncovered background. In this way, the coder would be forced to segment and
transmit all the parameters again. If there was a network failure, these images could then be
used as a new starting point.

Apart from these algorithmic questions, further work will include investigations into the
hardware feasibility and the possible applications of the region-based stereoscopic coder. As the
system that has been described is very complex and involves a large number of different steps to
synthesise stereoscopic video, dedicated hardware, which is not yet available, is necessary to
implement a real-time system. One of the most promising components that will soon be realised
as hardware is disparity estimation. It is based on a dynamic programming approach estimating
the vectors independently for each line of the image. It can, therefore, be implemented easily in
parallel. As far as image analysis and synthesis are concerned, activities associated with the
standardisation of MPEG4 are pushing forward the development of dedicated hardware.
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Consequently, the first announcements of accelerator boards, or even VLSI implementations,
for image analysis and synthesis can be expected within the next couple of years.

For this reason, applications in the near future will be restricted to systems based on software
that do not operate in real time. Professional applications in industry or medicine, such as
planning surgical operations, air traffic control systems, video archives or CAD, could benefit
greatly from region-based stereoscopic systems of this kind. If some application-specific
modifications are made to the system, these applications will be the first to make use of the
additional features not provided by the standard block-based system which is available now.
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Gebiedsgeoriénteerde Analyse en Codering van

Stereoscopische Beeldreeksen

Samenvatting

De mens kan de wereld driedimensionaal zien dankzij het binoculaire gezichtsvermogen. Diepte
kan worden “gezien” omdat er kleine verschillen zijn in de beelden die het linker- en rechteroog
ontvangen. Bij computer vision nemen twee camera’s de plaats in van de menselijke ogen, en
simuleren op deze wijze het natnurlijke gezichtsvermogen. Dergelijke technische
stereoscopische systemen zullen in toekomstige toepassingen op het gebied van de
telecommunicatie, zoals telepresentatie, een steeds belangrijkere rol gaan spelen.

De beschikbare bandbreedte voor de transmissie van videobeeldsignalen is beperkt. Daarom zal
het nodig zijn de bitsnelheid te verlagen terwijl de beeldkwaliteit op aanvaardbaar niveau blijft.
De bitsnelheid wordt door datacompressictechnieken verlaagd waarbij enerzijds getracht wordt
de benodigde grote bandbreedte en daarmee de transmissickosten te minimaliseren, maar
waarbij anderzijds aanvaardbare reconstructie van het beeld gewaarborgd blijft. In het geval van
stereoscopische beelden wordt de oorspronkelijke bitsnelheid verdubbeld, aangezien er twee
beelden worden verzonden in plaats van één. Dit maakt datacompressie nog meer noodzakelijk.

Bij beelden die met twee camera’s verkregen zijn, is er sprake van een verschuiving van
informatie tussen het linker en rechter spatiéle beeld van een stereoscopisch beeldenpaar. Deze
verschuiving, ook wel dispariteit genoemd, is een uniek fenomeen voor stereoscopische
beelden. Omdat dispariteit omgekeerd evenredig is met de diepte, kan het bij de analyse van
stereoscopische beeldenparen worden gebruikt. In dit proefschrift wordt een nieuwe
coderingstechniek voor stereoscopische beeldreeksen voorgesteld die gebruikt maakt van
dispariteit. Het onderzoek dat tot dit proefschrift heeft geleid werd voornamelijk verricht in het
Kkader van het Europese project DISTIMA (DIgital STereoscopic IMaging & Applications).

Gedurende de laatste jaren heeft objectgeoriénteerde codering -cen nieuw coderingsconcept-
wereldwijd veel aandacht gekregen. Door vorm, beweging en kleur van de objecten in een beeld
te verzenden, kunnen storende coderingsfouten (“mosquito” effecten, “blocking” artefacten)
zoals die optreden bij blokgeoriénteerde hybride codering worden vermeden. Bovendien kunnen
belangrijke beeldgebieden, zoals bijvoorbeeld de details van een gezicht in een teleconferentie-
situatie, met een hogere beeldkwaliteit worden gereconstrueerd dan met blokgeoriénteerde
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hybride codering. Bewegende objecten vormen echter een groot probleem. Als twee
afzonderlijke objecten naar elkaar toe bewegen, is het bij objectgeoriénteerde
coderingstechnieken meestal niet bekend welk object zich voor het andere bevindt. Dit levert een
grote coderingsfout op als bij de reconstructie van het beeld het verkeerde object wordt gekozen.
Stereoscopische informatie verhelpt deze beperking van objectgeoriénteerde codering. Met
behulp van diepte-informatie (geschat uit het stereoscopische signaal), kan gemakkelijk worden
vastgesteld welk object het dichtste bij de camera en dus zichtbaar, is. Daarom is het aan te
raden niet alleen de drie parameters: vorm, kleur en beweging te coderen en te verzenden, maar
deze te laten vergezellen van de vierde parameter: diepte of dispariteit.

Met behulp van dispariteit kan de positic van een object in de raimte worden vastgesteld. Echter,
omdat de in dit proefschrift ontwikkelde coderingstechniek geen echte fysicke objecten gebruikt
maar beeldgebieden die een zekere positie in de ruimte hebben maar niet noodzakelijkerwijs met
fysieke objecten overeenkomen, spreken we in dit proefschrift van cen gebiedsgeoriénteerde
codeertechnick.

Dit proefschrift beschriift een gebiedsgeoriénteerde stereoscopische coderingstechniek voor
beeldreeksen, die op de principes van beeldanalyse en -synthese is gebaseerd. Het bronmodel
veronderstelt gebieden van willekeurige, maar wel vaste vorm die een translatorische beweging
maken in plaats van een vaste opdeling van het beeld in blokken van bijvoorbeeld 8x8
beeldpunten. Aan de zenderzijde worden deze gebieden gevonden door middel van segmentatie
waarbij gebruik wordt gemazkt van bewegings- en dispariteitsvectoren. Elk gebied wordt
vervolgens gekarakteriseerd door cen set parameters (inclusief kleur, vorm, beweging en
dispariteit). Diverse beeldanalysetechnieken worden ingezet om de parameters te bepalen. Voor
het verlagen van de bitsnelheid worden de parameters vervolgens gecodeerd met behulp van
standaard-coderingstechnieken, zoals temporele en spatiele predictie en entropie-codering. Aan
de ontvangerzijde wordt gebruik gemaakt van beeldsynthese om uit de gecodeerde parameters
een beeld te reconstrueren en het overeenkomende ruimtelijke beeld in een stereoscopisch
beeldenpaar.

De belangrijkste ontwikkelingen in dit proefschrift zijn:

- Een nauwkeurige dispariteits- en bewegingsschatter (op één beeldpunt nauwkeurig). Dit is
nodig voor het segmenteren van de gebieden. In dit proefschrift wordt een dispariteitsschatter
ontwikkeld die zonder voorkennis van stereoscopische geometrie werkt en derhalve met
nagenoeg elk stereoscopisch beeldenpaar kan omgaan. De voorgestelde method voert een
optimalisatie uit op basis van dynamisch programmeren. Een optimalisatiecriterium wordt
voorgesteld dat gebruik maakt van intensiteitsverschillen tussen beeldpunten in het
stereoscopische beeldpaar, uitgaande van een het vioeiend verloop van de dispariteit binnen

gebieden, en dat tevens rekening houdt met dispariteitssprongen en -occlusies op de grenzen
van verschillende gebieden. Uit de analyse blijkt dat de hieruit voortvlociende vectorvelden
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tot opééri beeldpunt nauwkeurig zijn, en van hoge kwaliteit. Deze velden vormen derhalve
een goede basis voor de verdere verwerking zoals de segmentatie van de gebieden volgens
hun dispariteit. De experimenten in dit proefschrift laten zien dat waarbij dynamisch
programmeren niet alleen op dispariteitsschatting kan worden toegepast, maar ook de
toepassing op bewegingsschatting van dezelfde methode resulteert in een hoogwaardig
bewegingsvectorveld.

- Beeldanalyse van het linker beeld uit het stereoscopische paar gebaseerd op bovengenoemde
dispariteits- en bewegingsvectorvelden. Allereerst worden initicle gebieden gesegmenteerd
overeenkomstig het bronmodel. De segmentatie is uitsluitend gebaseerd op de dispariteits- en
bewegingsvectorvelden. Nadat door samenvoeging een geschikt aantal gebieden is
verkregen, worden voor elk van deze gebieden de vier vereiste parameters (dispariteit,
beweging, vorm en kleur) berekend. De evaluatie laat de goede kwaliteit zien van de
segmentatie van het beeld en de daaropvolgende beschrijving van de gebieden. Omdat de
gebieden alleen worden gewijzigd als deze met nieaw gevonden gebieden in een volgend
beeldpaar kunnen worden samengevoegd, kan temporele consistentie van het
segmentatieresultaat in beeldreeksen worden verzekerd.

- Beeldsynthese wordt uitgevoerd met behulp van de in een gebiedsgeheugen opgeslagen
parameters. Beeldsynthese is in feite een rechttoe, rechtaan proces dat betrekking heeft op de
reconstructie van de gebieden vanuit de verzonden parameters en een juiste plaatsing hiervan
in het beeld. Hierbij wordt bewegingscompensatie toegepast voor de linker beeldreeks en
dispariteitscompensatie voor de rechter beelden. Evaluatie toont aan dat de beeldsynthese een
gesynthetiseerd beeld oplevert van een hoge visuele kwaliteit. Het gebiedsgeheugen cregert
de mogelijkheid voor het opbouwen van een database met daarin alle gebieden die zich
voordoen in de beeldreeks. Hiermee kan de vereiste bitsnelheid verder verlaagd worden,
bijvoorbeeld wanneer een eerder zichtbaar gebied achter een ander gebied is komen te liggen
en vervolgens weer zichtbaar wordt.

Omdat de belangrijkste eis aan de coderingstechniek het verlagen is van het aantal te verzenden
bits, moeten alle parameters efficiént worden gecodeerd. Afhankelijk van de aard van de
parameters worden verschillende codeerstrategieén gebruikt. Voor de parameters die beweging,
dispariteit en vorm beschrijven, wordt gebmik gemaakt van verliesvrije spatiele en temporele
predictiemethoden. De kleurparameters worden met behulp van de z.g. vormadaptieve DCT
gecodeerd. Zodoende kunnen willekeurig gevormde gebieden efficient worden beschreven.

In het gesynthetiscerde beeld kunnen synthesefouten ontstaan als gevolg van
onvolkomendheden in het bronmodel, bij occlusie, en als bij object-bewegingen de achtegrond
vrij komt. Ondanks deze mogelijke synthesefouten toont een informele subjectieve evaluatie aan
dat de visuele kwaliteit van een individueel stereoscopisch beeldenpaar vergelijkbaar is met dat
van een MPEG2-gecodeerd videosignaal, ook al vereist dit MPEG2 videosignaal een aanzienlijk
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hogere bitsnelheid dan de in dit proefschrift ontwikkelde gebiedsgeoriénteerde
coderingstechniek.

Als de kwaliteit van de gehele beeldreeks wordt beschouwd zonder toevoeging van de
synthesefouten, kunnen verschillende inconsistenties in het temporele gedrag van de
gebiedsgeoriénteerde coderingstechniek worden herkend. Deze inconsistenties leveren
waarneembare artefacten op die na toevoeging van de synthesefouten kunnen worden
gecorrigeerd. Deze artefacten kunnen worden veroorzaakt door onjuist samenvoegen van
gebieden gedurende de beeldanalyse, door temporele schokken van de gebieden als gevolg van
onjuiste bewegingsvectoren, en door een plotselinge verandering van de gebiedskleur als gevolg
van een ontbrekende “update” van de gebiedsparameters op cen bepaald moment. Voor het
verhogen van de kwaliteit van de gecodeerde stereoscopische beeldreeks wordt daarom
momenteel nog de (gecodeerde) synthesefout aan de gesynthetiseerde beelden toegevoegd. Dit
zal echter niet langer nodig zijn wanneer de gebiedsparameters regelmatig worden
geactualiseerd.

Zelfs bij rudimentaire codering van de synthesefout - eenvoudige vectorkwantisatie als de fout
boven een drempel ligt - bereikt de gebiedsgeoriénteerde coderingstechniek een vergelijkbare
subjectieve kwaliteit als bij gescheiden MPEG2-compressic van de twee stereoscopische
kanalen op een gelijke totale bitsnelheid.

Het onderzoek in dit proefschrift heeft alleen betrekking gehad op een model dat vaste twee-
dimensionale gebieden veronderstelt die translatorische beweging kunnen ondergaan. Het blijft
vooralsnog een open vraag of de efficiéntie van de parametercodering kan worden verhoogd als
men gebruik maakt van een bronmodel dat uitgaat van flexibele twee- of drie-dimensionale
gebieden. De coderingsefficiéntie van de synthesefout kan met behulp van een meer
geavanceerde methode nog worden verhoogd, bijvoorbeeld door hierbij de gevonden
gebiedsvormen te betrekken. In de naaste toekomst dient ook aandacht besteed te worden aan
diverse algorithmische vraagstukken en mogelijke toepassingen van gebiedsgeoriénteerde
stereoscopische coderingsmethoden. Het Europese project PANORAMA (PAckage for New
OpeRational Autostereoscopic Multiview systems and Applications) is een belangrijk platform
voor dit onderzoek.
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Without &epth information object-lwaserl analysis-synthesis
coding will never outper{orm existing compression standards.

(This thesis chapter 2)

Zonder diepte-informatie zal ‘analyse-synthese’ codering
nooit beter presteren dan bestaande compressiemethoden.
(Dit proefschrift, Hoofdstuk 2)

Regiombasecl coding relies on computer grapllics methods
rather than on waveform coding concepts.

(This thesis clrapter 4)

Regio-gebaseerde codering steunt vooral op ‘'computer
graphics' methoden en  minder op ‘'waveform'
coderingsconcepten.

(Dit proefschrift, Hoofdstuk 4)

Region-}aased coders are inl’letently variable bit rate coders.

(This thesis chapter 5)

Regio-gebaseerde coderingsmethoden produceren
onvermijdelijk een variabele bitsnelheid.
(Dit proefschrift, Hoofdstuk 5)

Stereoscopic video is essential for future telepresence

systems.

Stereoscopische video is essentieel voor toekomstige tele-
aanwezigheidssystemen.

Mass acceptance of stereoscopic video demands affordable
autostereoscopic displays.

Grootschalige acceptatie van stereoscopische video vereist
betaalbare autostereoscopische weergavesystemen.

National and international political support is essential to
technological progress.

Nationale en internationale politicke steun is essentieel voor
technologische vooruitgang.




10.

11.

It is not profitable to act as prime contractor in European
projects funded l)y the European commission.

Het is niet lonend om als 'prime contractor’ op te treden in door
de Europese commissie gesubsidieerde projecten.

A common Europe requires conformity in the proceclures and
rules for getting academic degrees.

Een gezamenlijk Europa vraagt om eenduidige procedures en
regels voor het verkrijgen van een academische graad.

Even the uncertain perspective of curing currently fatal diseases is
a sufficient reason for aﬂowing genetic engineering.

Zelfs het onzekere uitzicht op genezing van op dit moment nog
dodelijke ziekten is voldoende reden om genetische manipulatie toe
te staan.

Scuba &iving tourism offers protection to the marine flora and
fauna rather than endangeting it.

De zeeflora en -fauna wordt door de duiksport eerder beschermd
dan bedreigd.

A Dutch summary in an English thesis written by a German is as
useful as a Japanese manual for the Swiss cow-bell on an Italian
l)icycle.

Een Nederlandse samenvatting in een Engelstalig proefschrift
geschreven door een Duitser is net zo zinvol als een Japanse
handleiding voor een Zwitserse koebel op een Italiaanse fiets.




