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Summary

For almost three decades, side-channel analysis has represented a realistic and severe
threat to embedded devices’ security. As a well-known and influential class of implemen-
tation attacks, side-channel analysis has been applied against cryptographic implementa-
tions, processors, communication systems, and, more recently, machine learning models.
Two reasons make these attacks powerful. First, they take advantage of unintended in-
formation leakages that the security designer could easily forget. These leakages can
be conveyed from various sources, such as power consumption, electromagnetic ema-
nations, time, temperature, and acoustic and photonic emissions. Protection from such
leakages can be challenging and costly. Second, such attacks do not require complicated
and expensive equipment or frameworks. Commonly, an adversary uses an oscilloscope
to monitor some of those side-channel leakages, then performs statistical analysis to find
the relation between the leakages and the actual executed values, and finally uses these
relations to recover secret information.

Fortunately, hardware and software developers are prepared for these attack meth-
ods. Several protection mechanisms, also called side-channel countermeasures, have been
implemented to increase the security assurance of their devices. However, this cat-and-
mouse game is now changed because of the rising of artificial intelligence in side-channel
analysis. Some countermeasures, resilient to conventional methods, can be easily by-
passed by machine learning. This thesis aims to improve the capability of side-channel
analysis using deep learning techniques. Specifically, we propose approaches covering
complete deep learning-based side-channel analysis procedures (we denote them as ”The
Circle of DL-SCA”). Before applying the leakages to launch actual attacks, in chapter
2, we offer strategies for improving leakage’s ”quality” from various aspects. Then, in
chapter 3, the study focuses on critical deep learning hyperparameters and proposes two
automated neural architecture search methods that release the burden of the evaluation in
tuning the neural network.

Besides developing new attack strategies, we also focus on the existing attack methods
and investigate how to enhance their efficiency, robustness, and explainability. Chapter
4 introduces an efficient learning scheme that can reduce the required training traces.
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Then, we develop an attack evaluation metric that can reliably reflect the performance
and robustness of the model. In chapter 5, we create a novel methodology to evaluate the
influence of noise and countermeasures on deep-learning models, then apply the research
outcomes to design low-cost deep-learning resilient countermeasures. Our research out-
comes will push the designers to develop more secure devices. The feed-forward loop
between us (researchers) and designers can eventually make the electronic world more
secure.



Samenvatting

In de afgelopen 30 jaar heeft side-channel analyse zich tot een realistische en ernstige
bedreiging voor de beveiliging van embedded devices ontwikkeld. Side-channel analyse
is een van de meer bekende klassen van implementatieaanvallen, die veelvuldig wordt
toegepast op cryptografische modules, processoren, communicatiesystemen en, meer re-
centelijk, machine learning-modellen. Er zijn twee redenen die deze aanvallen krachtig
maakt. Ten eerste profiteren ze van informatielekken die beveiligingsontwerper gemakke-
lijk over het hoofd zien. Deze informatielekken kunnen afkomstig zijn van verschillende
bronnen, zogenaamde side-channels, zoals stroomverbruik, elektromagnetische emissies,
tijd, temperatuur en akoestische en fotonische emissies. Bescherming tegen dergelijke
informatielekken is kostbaar en niet eenvoudig. Ten tweede heeft een side-channel aanval
geen ingewikkelde en dure apparatuur nodig. Gewoonlijk gebruikt een de aanvaller een
oscilloscoop om enkele van side-channels te meten. De aanvaller doet een statistische
analyse om de relatie tussen de side-channel data en de algoritmische operaties te vinden,
en vervolgens deze relaties te gebruiken om geheime informatie zoals cryptografische
sleutels, te ontfutselen.

Gelukkig zijn hardware- en softwareontwikkelaars op de hoogte van deze aanvalsmeth-
oden. Er worden verschillende beveiligingsmechanismen geı̈mplementeerd , ook wel
tegenmaatregelen genoemd, om het beveiligingsniveau van embedded devices te ver-
groten. Door de opkomst van kunstmatige intelligentie – en in het bijzonder machine
learning – in side-channel analyse is dit kat-en-muisspel is nu echter radicaal veranderd.
Sommige tegenmaatregelen die tot dusverre onbreekbaar waren met traditionele side-
channel analyse methoden, blijken eenvoudig omzeild te worden door machine learning.

Dit proefschrift heeft als doel de resultaten van side-channel analyse verder te ver-
beteren door verbeteringen in de toepassing van deep learning-technieken. We stellen met
name benaderingen voor die volledige op deep learning gebaseerde side-channel analy-
seprocedures omvatten (we duiden ze aan als ”de cirkel van DL-SCA”). Voordat we
daadwerkelijke aanvallen voeren aan de hand van side-channel data, ontwikkelen we in
hoofdstuk 2 nieuwe aanpakken om de”kwaliteit” van de side-channel data te verbeteren.
Vervolgens richt hoofdstuk 3 zich op het bepalen van de optimale waarde van kritieke
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hyperparameters voor deep learning. Er worden twee geautomatiseerde neurale archi-
tectuur zoekmethoden voorgesteld die het optimaliseren van deze hyperparameters veel
makkelijker maakt.

Naast het vinden van nieuwe methoden om van embedded devices effectief aan te
kunnen vallen, richten we ons ook op de efficiëntie, robuustheid en uitlegbaarheid van de
resulterende deep learning aanval. Hoofdstuk 4 introduceert een efficiënt machine learn-
ing aanpak waarmee het benodigde aantal trainingsdata (de side-channel traces) aanzien-
lijk verminderd kan worden. Vervolgens ontwikkelen we een evaluatiemetriek die op be-
trouwbare wijze de prestaties en robuustheid van het deep learning model kan weergeven.
In hoofdstuk 5 creëren we een nieuwe methode om de invloed van ruis en tegenmaatrege-
len op deep learning modellen te evalueren. Deze resultaten passen we vervolgens toe om
effectieve tegenmaatregelen te ontwerpen die embedded devices beter beschermen tegen
deep learning side-channel aanvallen. Onze onderzoeksresultaten ondersteunen ontwer-
pers van embedded devices veiligere implementaties te ontwikkelen. De feed-forward-lus
tussen onderzoek en de toepassing door embedded devices ontwerpers kan uiteindelijk de
digitale wereld veiliger maken.



综述

近三十年来，侧信道分析对嵌入式设备的安全性的造成持续且严重的威胁。作为

一种具有广泛影响力的物理攻击手段，侧信道分析已被应用于若干攻击场景，如

密码算法、处理器、通信系统以及机器学习模型等。侧信道分析如此有效的原因

有两点：首先，他们利用了安全设计人员很容易忽略的意外信息泄露（例如功

耗、电磁辐射、时间、温度以及声学和光子辐射），而防止此类泄漏非常具有挑

战性且成本高昂。其次，这种攻击不需要复杂昂贵的设备或系统。通常而言，攻

击者只需使用示波器分析和记录侧信道泄漏，然后通过对泄露进行统计分析来找

出泄漏与实际执行值之间的关系，最后利用这些关系恢复秘密信息。

幸运的是，硬件和软件开发人员都充分意识到侧信道攻击的巨大威胁。当今

的高安芯片设计中一般会存在若干种针对侧信道泄露的防护手段以提高其设备的

安全性。然而，这种猫（安全开发人员）捉老鼠（侧信道漏洞）的游戏现在因为

人工智能算法在侧信道分析中的广泛应用而发生了变化：一些常规侧信道分析方

法难以攻破的安全防护可以很容易地被机器学习攻克。本论文旨在使用深度学习

技术提高侧信道分析的能力，并提出了涵盖完整的的侧信道分析流程的解决方案

（我们将它们统称为“DL-SCA环”）。具体来说，在第二章，我们从两个方面提
高泄漏“质量”。第三章重点关注一些关键的深度学习超参数的影响，并提出了两
种对神经网络架构的全自动优化方法，这些方法显著减少了优化神经网络所需要

的时间和专业知识。

除了开发更加优秀的侧信道攻击手段外，我们还关注侧信道攻击本身，研究如

何提高其效率、鲁棒性和可解释性。我们在第四章介绍了一种有效的学习方案，

可以减少所需的侧信道泄露数据。同时，我们开发了一种评估模型性能和鲁棒性

的攻击评估指标。在第五章，我们创建了一种全新的方法来评估噪声和各种安全

防护方法对深度学习模型的影响，并将研究成果应用于低成本安全防护策略的设

计之中。

此论文提出的侧信道分析手段旨在帮助设计人员开发更安全的产品。作者希望

学术研究人员和安全开发人员之间的前馈循环可以帮助我们创造一个更加安全的

电子世界。
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Chapter 1

Introduction

1.1 Cryptography and Cryptoanalysis

Cryptography is the study of secure communication techniques between the sender and
intended recipient in the presence of adversarial behavior, aiming at protecting the confi-
dentiality, integrity, and authenticity of sensitive information. In ancient times, confiden-
tiality was the main focus of cryptography. The main classical cipher types are transpo-
sition ciphers, which rearrange the order of letters in a message, and substitution ciphers,
which use a pre-designed substitution table to replace letters or groups of letters with
others systematically [36]. Cryptography significantly advanced during the 20th century
because of the high demands of private communication during the Second World War
and the technological evolution of computational resources. Secret information was en-
crypted to ensure secrecy in communications, such as those used by spies, military lead-
ers, and diplomats. Cryptography is an essential part of secure digital communications.
The field has expanded beyond confidentiality concerns to include techniques for digital
signature, message integrity checking, sender/receiver identity authentication, interactive
proofs, and secure computation [93]. Although cryptography seems far from us, it is very
relevant and deeply embedded into our daily lives. Indeed, modern cryptography is widely
used in electronic devices such as mobile phones, credit cards, and the Internet of Things
paradigm. The current number of active connected devices is estimated to be more than 20
billion and is expected to reach more than 30 billion by 2025 [67]. Using the credit card
as a more specific example, the convenience of payment comes from the high-security as-
surance on both hardware on software. One can witness hardware implementations such
as memory encryption, bus encryption/scrambling, environmental sensors, and dedicated
crypto co-processors in nearly all devices; software-wise, the encryption schemes strictly
protect each communication between the user, point-of-sale (POS) machine, and the bank

1



2 1 Introduction

enforced by the security guidance [22]. Although these security implementations intro-
duce extra costs when developing and using, they significantly reduce the possibility of
suffering more significant losses caused by an attacker.

Generally speaking, cryptography consists of two main steps: encryption and de-
cryption. A massage (plaintext) is encrypted by a sender to an incomprehensible form
(ciphertext), which can only be decrypted by the receiver who knows the decryption rule
or the key. Depending on the availability of the key, there are two categories of cryp-
tography schemes; symmetric-key cryptography and asymmetric-key cryptography. Both
sender and receiver share a symmetric-key algorithm’s (private) key, using the same key
to encrypt or decrypt messages. Algorithm-wise, symmetric-key algorithms can be di-
vided into stream ciphers and block ciphers. The stream cipher encrypts sequentially,
while the block cipher encrypts an entire block of messages. Thanks to their efficiency
and implementation simplicity, stream ciphers are particularly relevant for cell phones or
small embedded devices with low computation power. Commonly used block ciphers,
such as Advanced Encryption Standard (AES) with 128 bits block length, Data Encryp-
tion Standard (DES), and triple-DES (3DES) with 64-bit block length, are widely adopted
in encrypting computer communications. For AES, each plaintext block is processed in
nine rounds plus a final round without the MixColumns part. For AES-192 and AES-256,
the number of repeated rounds is 11 and 13, respectively (plus the final round without
MixColumns). A demonstration of the AES-128 (AES with 128-byte key) structure is
shown in Figure 1.1.

Modern symmetric-key algorithms such as AES and 3DES are computationally se-
cure. Given a long enough key (e.g., 128 bits or more), an adversary would have a limited
chance of guessing the correct key within his lifetime with brute-force attacks. How-
ever, there are three major problems associated with symmetric-key algorithms. First, the
sender and receiver should determine the algorithms they want to use and then share the
key. Usually, it would not be a security issue if an adversary knew the selected algorithms,
as they are computationally secure. However, the key must be shared using a secure chan-
nel - it is naive to assume a regular communication channel is secure. Second, imagine
a case where the secure message needs to be shared with n people. With symmetric-key
algorithms, each person has to hold n− 1 keys to communicate with others securely, and
there will be n(n−1)/2 key pair in the entire system. Assuming 1 000 people transmitting
data using AES-128 with their PC, the key storage will occupy more than 60GB of mem-
ory! Finally, since the sender and receiver share the same key, it is difficult to prove that
the sender is the one who sends the message (message authenticity) but not the adversary.
To counter the shortcomings of symmetric-key algorithms, an entirely different approach,
asymmetric-key (or public-key) cryptography, was introduced by Whitfield Diffie, Martin
Hellman, and Ralph Merkle in 1976. In asymmetric-key algorithms, a receiver possesses
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Figure 1.1: AES-128 structure.

a public-private key pair, in which the receiver only knows the private key. To send a
message, the sender encrypts the message with the public key published by the receiver.
Only the person with the correct private key (the receiver) can correctly decrypt the ci-
phertext. Compared with symmetric-key algorithms, each person only needs to generate
a single public-private key pair. Everyone in the system can use an asymmetric-key al-
gorithm to securely share messages without requiring a secure channel. Finally, digital
signatures ensure message authenticity - sign with the sender’s private key and verify with
the public key. Note that the signed items are usually a hash of the message, which is a
digest (intuitively, a fingerprint) of a short and fixed-length bit string message. Unfortu-
nately, asymmetric-key algorithms such as RSA and ECDSA tend to be much slower than
its counterpart. In practice, a hybrid cryptography scheme is commonly adopted. For
instance, a sender and a receiver use the convenience of asymmetric-key cryptography
to agree on a symmetric-key algorithm and a private key. Then, efficient symmetric-key
cryptography is used to exchange their messages.

While enjoying the convenience of the products secured by cryptographic algorithms,
information security and personal privacy are still under significant threat. A solid cryp-
tosystem should adhere to Kerckhoffs’s principle, postulated by Auguste Kerckhoffs in
1883: ”a cryptosystem should be secure even if everything about the system, except the
key, is public knowledge.” Unfortunately, even a mathematically secure cryptographic
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primitive could have flaws when used in practice. We refer to the analysis of the vulner-
ability of a cryptosystem as cryptoanalysis. Generally speaking, there are three types of
cryptoanalysis: classical cryptoanalysis, social engineering, and implementation attacks.
Classical cryptoanalysis can be performed by either analytical or brute-force attacks [93].
The former tries to exploit the internal structure of the cryptographic algorithm [84, 37];
the latter treats the cipher as a black box and tries all possible keys. In practice, brute-
force attacks are not necessarily to be exhaustive. Using a login system as an example, a
naive but high-frequency password, such as admin, 12345, and the user’s birthday, would
be first tested. Social engineering attacks are based on humans, which can also be catego-
rized based on attackers’ behavior: violently, using a threat or blackmailing, or peacefully,
for instance, by sending phishing links via email. CISCO’s 2021 Cybersecurity threat
trends report suggests that at least one person clicked a phishing link in around 86% of
organizations. According to IBM, Business Email Compromise (BEC), a type of phishing
where the attackers hijack or spoof a legitimate corporate email account, costs businesses
an average of $5.01 million per breach [113]. Finally, there is a type of attack that proved
very powerful in the last decades and where, despite all the efforts, the attacker can obtain
or modify secret information. Since such attacks focus on the weakness of the imple-
mentation rather than the ciphers themselves, they are called implementation attacks. A
detailed introduction of this type of attack is available in section 1.2.

Implementation attacks can be potent: security assets can be retrieved from poor im-
plementation within minutes. Therefore, implementation attacks are one of the primary
tools to exploit the vulnerability of devices for both security evaluators and potential at-
tackers. To protect the confidentially and integrity of the asset and critical execution,
hardware design reviewers would focus on aspects such as bootloader sequence, mem-
ory encryption, and busses data transfer protection. Regarding source code review, the
evaluator checks the feasibility of applying implementation attacks on, for instance, ac-
cessing reserved or illegal memory addresses, skipping a part of an entire function, or
changing/resetting the values stored in the control registers. Such comprehensive checks
eliminate vast vulnerabilities that can cause severe security issues. On the other hand,
increased security concerns and vulnerabilities escalate the number of devices, resulting
in the ever-growing demand for certified products. Consequently, products with millions
of users undergo rigorous security assessments in evaluation labs worldwide on a daily
basis [3]. Unfortunately, one should be aware that the vulnerability of an implementation
is defined based on the capabilities of implementation attacks. A secure-certified product
today is not necessary to be secure in the future. For instance, a recent research work re-
ports that the ECDSA security key of NXP P5x/SmartMX that is Common Criteria (CC)
and EMVCo certified (Last CC certified 2015) can be broken within a day after five years
(2020) [112]. Indeed, the security assurance of a product given by a security evaluation
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is inversely correlated with the advances in implementation attacks. Since a new attack
method developed by an attacker would not be noticed before it causes damage, there is
a strong demand for academia to research, design, and publish new attack methodologies
actively so that the developer could be better noticed and prepared for potential vulnera-
bility caused by such attacks.

On the other hand, thanks to the advances in implementing attack methods in recent
years, several protection mechanisms, also referred to as countermeasures, have been im-
plemented to increase the security level of products. From hardware aspects, protection
mechanisms such as environmental sensors (e.g., voltage, temperature, light sensors),
error detection code/parity checks, and data scrambling are typical security implementa-
tions. Protections such as program counter, attack counter, random execution shuffling,
and dummy operation are also widely adopted for software. However, such methods are
costly - they sacrifice performance (e.g., power dissipation, design complexity) as a trade-
off. For a developer aiming to reach maximal device performance with sufficient security
assurance, ”how secure my product needs to be?” is always a difficult question to an-
swer. Indeed, a careless design or decision would exploit devices and put users at risk.
Again, one of the most effective solutions would closely follow the recent advances in
attack methods. Indeed, knowing ”how far an attacker can go?” offers developers a clear
roadmap in balancing performance and security.

1.2 Implementation Attacks

Depending on the attack methods, implementation attacks can be divided into active at-
tacks, denoted as fault injection (FI), and passive attacks, referred to as side-channel anal-
ysis (SCA). The term ”active” and ”passive” depends on their influence/changes on the
target. Both methods are decisive in various applications [106, 125, 8].

1.2.1 Fault Injection

Fault injection is a well-researched topic spanning more than 20 years [16, 70]. In contrast
to passive side-channel analysis, fault injection attacks aim to manipulate the device’s nor-
mal process and generate faulty results (e.g., incorrect ciphertext) or unexpected outputs
(e.g., memory dump from an inaccessible address).

Depending on the device’s accessibility, fault injection attacks can be non-invasive,
semi-invasive, or invasive. For non-invasive attacks, an attacker can introduce glitches to
the external clock when executing functions that handle the security assets or change the
operating temperature beyond or below the design specifications. Non-invasive attacks do
not require modification on the device and thus are financially-efficient attack solutions.
However, the lack of attack localization would make such attacks easily detected.
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Semi-invasive attacks require exposure to the chip surface, which can be performed
using a sharp knife (e.g., for smart cards) or chemical etching. There are several ap-
proaches to launch semi-invasive attacks, for instance, with laser [122, 149], EM [87], and
body-biasing [14]. Depending on the attack scenarios, the injected fault can be transient
(e.g., faulty encryption output) or permanent (e.g., bit manipulation in memory). Thanks
to their diversity and strong fault injection capability, semi-invasive attacks have become
one of security evaluation labs’ commonly-used attack methods. Naturally, such attack
methods get strong attention from hardware and software developers. Several counter-
measures, such as environmental sensors, dual-rail circuits, and parity checks, are widely
introduced to protect the integrity of the assets transferred or stored in the devices.

Invasive attacks require direct electrical contact with the surface of the chip. It is gen-
erally realized by modifying the chip structure by cutting or connecting wires or finding
out the inner value of the chip with a probe (probing attacks [55]), or cutting internal
connections to disable intrusion detection or removing protection technologies such as
environmental sensors or tamper meshes (focused ion beam (FIB) attacks [135]). Coun-
termeasures, such as active shields, have become standard approaches to protect devices
from such attacks in modern devices.

1.2.2 Side-channel Analysis

In contrast to FI attacks that actively manipulate the normal process of the target, side-
channel analysis, the main focus of this thesis, is based on passively measuring leakages
like electromagnetic (EM) radiation [107] or power dissipation [68] when executing algo-
rithms/instructions that are security assets-related. By combining the physical observation
of a specific internal state within computation and a hypothesis on the manipulated data,
one could recover the intermediate state processed by the device. Then, with such knowl-
edge, it is possible to ”break” the device, i.e., learn its secrets. Note that the side-channel
analysis aims to understand the leakage traces (e.g., the relationship between the traces’
pattern and the instruction/operation being processed); In the attack phase, the leakage
traces are used to retrieve the security assets. A typical division of side-channel analysis
is into direct (non-profiled) attacks like Simple Power Analysis (SPA), and Differential
Power Analysis (DPA) [69] and two-stage (profiled) attacks like template attack [25] and
machine learning-based attacks [60, 75, 101, 156]. Non-profiled and profiled attacks
are used under different security assumptions. The former does not require access to an
identical and open copy of the device under attack. Simultaneously, breaking a specific
implementation could require tens of thousands of measurements. Under a stronger se-
curity assumption, profiling attacks assume an ”open” device (or a copy of it) that can
be used for leakage characterization. Naturally, the key recovery could require fewer
measurements in the attack phase.
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Non-Profiled SCA

SPA is one of the most straightforward approaches in SCA, which relies on the visual
interpretation of the leakages of the targeted device that can provide information about
the order of the execution of specific operations. SPA is generally assisted by knowing
the cryptography operation and tuning the parameter. For instance, different plaintext
lengths/key sizes would be used to identify the pattern of an AES round; the amplitude of
the leakage can deviate from the square and multiply processes during an RSA operation.
SPA is commonly considered a preparation step for more extensive attacks. The knowl-
edge obtained from SPA can significantly help in, for instance, reducing the attack time
window.

DPA is one of the most commonly used approaches in security evaluation, which
relies on the data dependencies in the power consumption patterns. Thanks to its simplic-
ity (first partition, then average, finally subtract) and statistical robustness, DPA can be
highly efficient and powerful when attacking unprotected/naive-designed devices. Brier et
al. proposed the correlation power analysis (CPA) [17] that extends the aforementioned
attacking methods, which is realized by calculating the correlation between the secret in-
formation and observations. In many cases, CPA can lead to better results than DPA but
is more computationally expensive as a trade-off.

A side-channel distinguisher called Mutual Information Analysis (MIA) was intro-
duced at CHES 2008 [42]. This distinguisher aims at generality because it is expected to
lead to successful attacks without requiring specific knowledge or restrictive assumptions
about its target device. In other words, it can cope with less precise leakage predictions
than other side-channel analysis [10].

Profiling SCA

With profiling SCA, an attacker has a clone device identical (or at least similar) to the
device to be attacked. The attacker uses O measurements from the profiling device to
build a model and then Q measurements from the device to be attacked to infer the secret
information. Each measure consists of a leakage vector x and its corresponding labels y,
determined by the secret or secret-related intermediate data and the used leakage model
(introduced in section refsubsubsec:Leakage Models). In practice, if the targeted secret
contains multiple bytes, only part of the secret value (e.g., one byte) is used as labels to
reduce the classification complexity. A general principle of the profiling attack is depicted
in Figure 1.2. The profiling model’s outputs are marked in blue. In the profiling phase,
an adversary trains a model to map the input profiling traces to their corresponding labels
(e.g., keys or key-related intermediate data). Then, in the attack phase, the trained model
is used to predict the (unknown) labels of the attack traces. Each key candidate’s ranking
is based on the probability of labels. Depending on the profiling technique, one builds
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different types of profiling models. The two most common types are templates for the
template attack and machine learning models.

1. Profiling

2: Attack

Profiling model

Profiling 
traces

Profiling 
labels

Attack 
traces

Rank keys based 
on predictions

Figure 1.2: Profiling side-channel analysis.

The best-known profiling attack is the template attack (TA) that uses Bayes’ theorem
to obtain predictions, dealing with multivariate probability distributions as the leakage
over consecutive time samples is not independent [26]. This attack works under the as-
sumption that the traces depend on the F features given the targeted intermediate data.
For the vector ofN observed attribute values for x, the posterior probability for each label
value y can be computed as:

p(Y = y|X = x) =
p(Y = y)p(X = x|Y = y)

p(X = x)
. (1.1)

Here, X = x represents the event that X1 = x1 ∧X2 = x2 ∧ . . . ∧XN = xN .
The label variable Y and the measurement X are not the same type: Y is discrete

whileX is continuous. Consequently, the discrete probability p(Y = y) equals its sample
frequency where p(X = x|Y = y) displays a density function. In state-of-the-art, p(X =

x|Y = y) is assumed to rely on a (multivariate) normal distribution and is parameterized
by the mean x̄y and covariance matrix Σy:

p(X = x|Y = y) =
1√

(2π)F |Σy|
e−

1
2 (x−x̄y)

TΣ−1
y (x−x̄y). (1.2)

In practice, the covariance matrices’ estimation for each class value y can be ill-posed
mainly due to insufficient traces for each class. As an alternative, combining all co-
variance matrices into one is possible, reaching the version of the template attack com-
monly known as the pooled template attack. Choudary and Kuhn evaluated using a sin-
gle (pooled) covariance matrix to cope with statistical difficulties and thus lower effi-
ciency [29]. As such, Eq. (1.2) changes to:

p(X = x|Y = y) =
1√

(2π)F |Σ|
e−

1
2 (x−x̄y)

TΣ−1(x−x̄y). (1.3)
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Some related works showed that the pooled TA could be more efficient, particularly for
smaller traces in the profiling phase [29, 101].

Leakage Models

During the execution of the cryptographic algorithm, the processing of sensitive infor-
mation produces a certain leakage. Depending on the leakage model l, we distinguish
between three leakage models, all of which are used in this thesis:

1. The Hamming Weight (HW) and Hamming Distance (HD) leakage models.
For the Hamming weight leakage model, the attacker assumes the leakage is pro-
portional to the sensitive variable’s Hamming weight. For the Hamming distance
leakage model, the attacker assumes the leakage is proportional to the XOR of two
sensitive variables’ Hamming weights. These leakage models result in nine possi-
ble labels (nine classes) for a single intermediate byte for the AES cipher.

2. The Identity (ID) leakage model. In this leakage model, the attacker considers the
leakage as an intermediate value of the cipher. This leakage model results in 256
possible labels for a single intermediate byte for the AES cipher.

The selection of leakage models depends on the characteristic of the underlying device. If
the power consumption of a device is roughly proportional to the number of bit transitions,
HW is a reasonable leakage model choice. Compared with HW, the profiling model may
be more accurate with the ID leakage model as it directly links to the data value. It may
require more labeled leakage measurements and computation resources as a trade-off.
Indeed, an attacker needs a sufficient number of measurements per value to gain stable
estimations for each possible value. Additionally, an attacker has to iterate through all
possible label values in the profiling phase. For each measure in the attacking phase, the
computational complexity is higher than HW, which only owns nine classes.

Side-channel Countermeasures

The efficiency of a side-channel analysis relies on the correlation between the attacked
(intermediate) data and acquired leakages. Countermeasures aim to break the statistical
link between intermediate values and traces (e.g., power consumption or EM emanation).
The countermeasures can be divided into two categories: masking and hiding. Masking
splits the sensitive intermediate values into different shares to decrease the key depen-
dency [24, 9]. On the other hand, hiding aims to reduce the side-channel information
by adding randomness to the leakage signals or making it constant. There are several
approaches to hiding. For example, the direct addition of noise [31] or the design of dual-
rail logic styles [132] is frequently considered options. Exploiting time-randomization is
another alternative, e.g., by using Random Delay Interrupts (RDIs) [32] implemented in
software and clock jitters in hardware.
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In modern devices, a common practice of developers is to adopt multiple countermea-
sures to strengthen the security assurance of their implementations. However, stronger
countermeasures usually mean higher power consumption or lower performance. There-
fore, how to balance performance and security becomes a tricky question. As a result, the
developers would closely follow the recent attack advances in academia and evaluate if
such attacks threaten their devices.

1.3 Machine Learning and SCA

Machine learning (ML), a part of artificial intelligence, studies computer algorithms that
can improve automatically through experience and using data [80]. Commonly, machine
learning algorithms are used to extract knowledge from given data and learn how to
perform complicated tasks that conventional algorithms are difficult to handle, such as
medicine applications [108], email spam filtering [34], speech recognition [88], and com-
puter vision [119]. Machine learning got increasing attention in the SCA community
since 2016. Thanks to its strong learning capability and high flexibility for different tasks,
it has become one of the standard approaches in the security evaluation of devices.

1.3.1 Learning Approaches

In practice, ML algorithms can identify patterns on a dataset that can be labeled or un-
labeled. Depending on the availability of labels and usage objectives, machine learning
approaches can be divided into three broad categories: supervised learning, unsupervised
learning, and reinforcement learning.

As its name explains, supervised learning is ”supervised” by examples. The most
common usage of supervised learning is in so-called classification problems. To correctly
classify the given inputs, a model (more specifically, a classifier) is constructed to map in-
put data to output (some form of predefined class or category) based on an existing set of
input-output pairs (training dataset). Model training is an iterative process whose compu-
tation complexity depends on both difficulties of a given task and the model’s complexity
(details in section 1.3.3). After the training phase of a classifier, in the ideal case, it would
also correctly determine the output class for new inputs not found in the training dataset
(so the category is unknown), which would mean it is successfully generalized from the
training data. From an SCA perspective, there is a natural mapping between supervised
learning and profiling SCA, as both contain a learning phase and a predict/attack phase.
The most common examples of the machine learning methods in SCA are support vec-
tor machines [60, 58, 101], random forest [74, 81], Naive Bayes [99, 57], and multilayer
perceptron [44, 83].
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Unsupervised learning is still ’supervised’ by examples. However, instead of rely-
ing upon input-output pairs, the algorithm learns from data that has not been labeled,
classified, or categorized. Unsupervised learning can learn from the data structure or
extract valuable features, widely used for clustering [152] and dimension reduction [7]
tasks. Compared with state-of-the-art supervised learning algorithms, the clustering per-
formance with unsupervised learning could be underperforming due to the need for la-
bels. However, one should note that labeling the sample can be an expensive task. Un-
supervised learning can be a more general approach when dealing with more practical
scenarios. Moving to SCA, when an attacker only has leakage measurements without
the corresponding labels, unsupervised learning could be an excellent choice for cluster-
ing. However, a leakage measurement may contain leakages from multiple sensitive data,
leading to different clustering results. Time intervals are carefully selected to help the
learning algorithm focus on the target-sensitive data.

Notably, in between the two learning methods (supervised and unsupervised) men-
tioned above, there is a learning approach called semi-supervised learning that uses both
labeled and unlabelled (or mislabeled) data [23, 160]. By using this combination, machine
learning algorithms can, for example, label the unlabelled data [23]. For its application to
SCA, as an example, Perin et al. [95] adapted this method to iteratively correct partially-
correct private keys resulting from a clustering-based horizontal attack, a type of SCA
that reveals leakages from the time variation of certain executions.

Reinforcement learning attempts to teach an agent how to perform a task by letting
the agent experiment and experience the environment, maximizing some reward signals.
It differs from supervised machine learning, where the algorithm learns from examples
labeled with the correct answers. An advantage of reinforcement learning over supervised
machine learning is that the reward signal can be constructed without prior knowledge of
the correct course of action. This is especially useful if such a dataset does not exist or
is infeasible to obtain. While, at a glance, reinforcement learning might seem similar
to unsupervised machine learning, they are decidedly different. Unsupervised machine
learning attempts to find some (hidden) structure within a dataset, whereas finding struc-
ture in data is not a goal in reinforcement learning [128]. Instead, reinforcement learning
aims to teach an agent how to perform a task through rewards and experimentation. In
SCA, reinforcement learning is used for complicated tasks with large search spaces, such
as the hyperparameter search and countermeasure design. Section 3.2 and section 5.3
describe its usage on these tasks.

1.3.2 Deep Learning

Deep learning, a subdomain of machine learning, is inspired by the biological neural
networks of the human brain. The fundamental components of deep learning are called
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neurons. Typically, a neuron takes a single input. Given some parameters (a set of weights
and a bias), it outputs a new number:

y = w · x+ b, (1.4)

where x denotes the input, w denotes the weight, and b denotes bias.

Eq. (1.4) can be easily extended to a scenario where the neuron receives more than
one input, which is common for deep learning. Each input is given its weight, multiplied
by the value of that input. The sum of i weighted inputs is then calculated, where we add
bias to the result. Finally, the activation function ϕ is applied:

y = ϕ(
∑
i

wi · xi + b). (1.5)

The activation functions ϕ used in neural networks are almost always non-linear. The non-
linear transformation of the inputs empowers deep learning models to learn from complex
data.

A deep learning model usually consists of multiple layers with a group of neurons.
The multilayer structure progressively allows deep learning models to extract higher-level
features from the raw input. For example, lower layers may identify edges in image
processing, while higher layers may identify the concepts relevant to a human, such as
digits, letters, or faces.

Compared with traditional machine learning, deep learning is wider adopted and
achieves higher performance in various tasks, such as image recognition [120], autonomous
driving [47], and natural language processing [153]. Naturally, different deep learning ar-
chitectures are developed for various tasks. In recent years, profiling SCA mostly moved
toward deep learning techniques that provided even better results than machine learning
or template attack [20, 65]. Deep learning methods do not require feature engineering,
simplifying attack preparation. A detailed discussion of deep learning-based SCA is pro-
vided in section 1.3.4.

Multilayer Perceptron

The multilayer perceptron (MLP) is a feed-forward neural network that maps sets of in-
puts onto sets of appropriate outputs. MLP consists of multiple layers (at least three) of
nodes in a directed graph, where each layer is fully connected to the next one, and net-
work training is performed with the backpropagation algorithm [46]. A typical example
of MLP is shown in Figure 1.3.
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Figure 1.3: An example of an MLP network with two hidden layers (created with NN-
SVG [73]).
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Figure 1.4: An example of a convolution layer.

Convolutional Neural Networks

Convolutional neural networks (CNNs) commonly consist of three types of layers: con-
volutional layers, pooling layers, and fully-connected layers. The convolutional layer
computes neurons’ output connected to local regions in the input, each computing a
dot product between their weights and a small region connected to the input volume.
A demonstration of the convolution layer is shown in Figure 1.4. The pooling layer aims
to decrease the number of extracted features by performing a down-sampling operation
along the spatial dimensions. It is common to consider convolution and pooling layers
to form a convolution block. There are mainly two pooling layers: average-pooling and
max-pooling. Average-pooling layers perform the average of a pooling block concerning
the pooling size (i.e., the number of elements covered with a single pooling operation).
Max-pooling layers return the maximum element from a block concerning pooling size.
All convolution and pooling operations are one-dimensional as we treat uni-dimensional
side channels. Figure 1.5 illustrates the different types of pooling operations over a feature
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map (output of a convolution layer). The different approaches of feature down-sampling
could significantly influence the model performance. Pooling stride refers to the pooling
step over the feature map. Finally, fully connected/dense layers are usually applied after
convolution and pooling layers. The goal of this layer is to compute either the hidden
activations or the class scores.

(a) Max-pooling operation. Example for
pooling size and pooling stride of 2.

(b) Average-pooling operation. Example for
pooling size and pooling stride of 2.

Figure 1.5: Pooling types.

1.3.3 Hyperparameters and Parameters

It is common to differentiate between parameters and hyperparameters for machine learn-
ing algorithms. Hyperparameters are all configuration variables external to the model f ,
e.g., the number of hidden layers in a neural network. Template attack has no hyperpa-
rameters (besides the input size), and simpler machine learning techniques (random for-
est, support vector machines) have a few (important) hyperparameters. Neural networks
(deep learning) have many hyperparameters, making tuning difficult and computationally
intensive. Some common hyperparameters for MLP are:

• Hidden layers: The number of hidden layers in MLP.
• Neurons: The number of neurons in a hidden layer in MLP.
• Activation Function: Defines the output of a neuron given an input or set of inputs.
• Learning Rate: Controls how quickly the trainable parameters (weights and biases)

adapt to the model.
• Mini-Batch: A portion of the training set is processed at each training iteration.
• Epochs: A complete processing of the training set.
• Optimizer: Back-propagation algorithm used to update trainable parameters ac-

cording to a loss function.
• Loss Function: Error function to be minimized during training.
• Weight initializer: Method used to initialize the weights in all layers.
• Bias initializer: Method used to initialize the bias in all layers.
Regarding CNNs, convolution, and pooling layers introduce new hyperparameters
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such as (convolution) filter size/stride and pooling size/stride. Besides, additional layers,
such as the dropout layer, a layer that randomly switches on and off specific neurons, aim-
ing to improve the neural network’s generality to the dataset, could be adopted depending
on the usage cases and introduce new hyperparameters.

On the other hand, the parameters are the configuration variables whose values can
be estimated from data. Examples of parameters are the weights and biases in a neural
network. Commonly, the parameter vector θ represents the configuration variables inter-
nal to the model f estimated from the data. The complexity of θ is closely related to the
computation complexity and is quantified by the number of trainable parameters n. For
multilayer perceptron, the number of trainable parameters equals the sum of connections
between layers summed with biases in every layer:

n = (in · r + r · out) + (r + out), (1.6)

where in denotes input size, r is the size of hidden layer(s), and out denotes the output
size.

For convolutional neural networks, the number of trainable parameters in one convo-
lution layer equals:

n = [in · (fi · fi) · out] + out, (1.7)

where fi is the filter size, and out is the number of output maps.

1.3.4 Deep Learning-based Side-channel Analysis

As mentioned in section 1.3, supervised learning has two phases: training and testing. The
training phase corresponds to the SCA profiling phase, and the testing phase corresponds
to the side-channel analysis phase. When using deep learning for profiling, the goal is
to learn a function f mapping an input leakage measurement to a discrete label value
(constructed by targeted secret assets and leakage models) based on examples of input-
output pairs.

θ′ = argminθ
1

N

N∑
i

L(fθ(xi), yi), (1.8)

where N denotes the number of training traces and L stands for a loss function. The
function f is parameterized by θ ∈ Rz , where z represents the number of trainable param-
eters and θ denotes the vector of parameters learned in a profiling model. The profiling
phase aims to learn the parameters θ′, minimizing the empirical risk represented by a loss
function L on the training dataset.

In the attack phase, the goal is to predict labels (more precisely, the probabilities that a
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specific class would be predicted) y based on the previously unseen set of traces x of size
Q and the trained model f . Probabilistic deep learning algorithms output a matrix that
denotes the probability that a particular measurement should be classified into a specific
class. Thus, the result is a matrix P with dimensions equal to Q× c, where c denotes the
number of output labels (classes). The cumulative sum S(k) for any key candidate k is
the maximum log-likelihood distinguisher:

S(k) =

Q∑
i=1

log(pi,v(k)). (1.9)

The value pi,v(k) represents the probability that a specific class v(k) is predicted. De-
pending on the targeted sensitive variables, v(k) could represent a key candidate k or a
key-related value (e.g., obtained from the key and input through a cryptographic function
and a leakage model). If the key values are used as labels, then k equals v(k).

Deep learning-based side-channel analysis (DL-SCA) has become widely researched
and adopted. Even the security industry has started using such techniques as standard ones
in the certification process [18, 111]. Indeed, some countermeasures, unbreakable by con-
ventional methods, can be easily bypassed by machine learning. Thanks to its strong at-
tack capabilities, DL-SCA also receives ever-growing appeal and popularity in academia.
In the last six years, as shown in Figure 1.6, 183 papers 1 that investigate deep learning-
based side-channel analysis have been published [104]. By analyzing those works, we
can notice two main advantages commonly brought up: 1) deep learning-based SCA can
break targets protected with countermeasures, and 2) deep learning-based SCA requires
little effort to pre-process the side-channel measurements and feature engineering. Com-
pared with conventional SCA, these two advantages simplify the leakage preparation step
and simultaneously increase the attack capability (e.g., high-order attacks).

While such attack methods actively threaten the security of cryptographic devices,
severe limitations still increase the bar to applying them. We identify these gaps following
the steps of profiling SCA.

Pre-proccess leakages Although the DL-based approach can process the raw features
at the input, an overly large input dimension would introduce too many trainable
parameters. Besides, introducing too many irrelevant features could increase the
profiling complexity, and the DL model would be more likely to overfit the noise.
In practice, evaluators select target data-related time intervals or time samples based
on techniques such as the Difference Of Means based method (DOM) [25], Signal-
to-Noise Ratios based method (SNR), Principal Component Analysis based method
(PCA) [4], Correlation Power Analysis based method (CPA) [17] or Sum Of Squared

1Only articles published in English and peer-reviewed are considered.
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Figure 1.6: The distribution of papers and datasets per year that use deep learning in side-
channel analysis [104].

pairwise T-differences based method (SOST) [43]. In practice, such methods be-
come less effective due to side-channel countermeasures.

DL model Design A significant advantage of a deep learning model is its flexibility in
adjusting to different attack scenarios. However, the flexibility comes from the con-
siderable number of tunable hyperparameters. A successful side-channel analysis
relies on the optimization of the hyperparameter combinations. However, due to
the vast hyperparameter search space and imprecise hyperparameter tuning meth-
ods, finding the optimal setting of the DL hyperparameter is a challenging task,
even for a deep learning expert.

Leakage Profiling Unlike conventional profiling SCA, training a DL model can be time-
consuming. Due to the limited time budget, there is a vital requirement to reduce
the time consumption of the profiling phase. On the other hand, the lack of SCA-
based online evaluation metrics makes it difficult to monitor the learning status of
the profiling model fθ in real time. Consequently, the DL model is more likely to
overfit without the evaluator’s awareness.

Attack With all the diverse strategies and techniques in deep learning-based side-channel
analysis, it is not apparent how effective and efficient are the different approaches
and whether the attack performance is fairly evaluated.

Countermeasures Besides some vague explanations, we need a clear answer on how the
countermeasures will influence the DL-based profiling model and the final attack
performance. From the developer side, a cascade of various countermeasures is a
common practice in defending DL-SCA. There needs to be a clear judgment on
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how many countermeasures or what level of countermeasures is required, not to
mention balancing the performance cost and security.

1.4 Contributions

Following the gaps of DL-SCA identified in the previous section, we formalize four re-
search questions and give solution(s) in this thesis. Since these four research questions
cover the DL-SCA phases from beginning to end, as shown in Figure 1.7, we denote them
as ”The Circle of DL-SCA”. Note that the circle of DL-SCA is defined in the profiling
SCA context. The profiling phase covers the first two quarters (leakage pre-processing
and deep-learning hyperparameters); the last two quarters (efficient attack and evaluation
and noise and countermeasures) contribute to the attack phase.

First, we focus on the input of a profiling side-channel analysis: leakages traces and
offer solutions to the following question:

How to generate a good representation of the leakage trace?

A good leakage representation correlates well with keys or intermediate data, while noise
and countermeasures are the main obstacles to such correlations. Noise removal and
feature extraction are commonly used to reduce the noise effect. For noise removal,
approaches such as low-pass filtering, averaging (for vertical noise), and re-alignment
(for horizontal noise) can help reduce the noise effect. Unfortunately, more complicated
countermeasures such as masking, clock jitters, and random delay significantly reduce
such approaches’ effectiveness. This thesis uses a denoising autoencoder to reduce the
countermeasure effect while keeping the main characteristic of the leakage. A single de-
noising autoencoder can remove different types of noise and countermeasures. Naturally,
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the attack performance is enhanced with denoised traces.

Regarding feature selection, conventional methods such as PCA, SOST, and Linear
Discriminant Analysis (LDA) [126] rely on the linear combination of features. On the
other hand, the non-linear feature combinations introduced by deep learning methods can
extract more high-level features. With the help of similarity learning, the generated fea-
tures have maximized the inter-class difference and minimized the intra-class difference.
Even template attacks can achieve state-of-the-art attack results with the extracted features
with minimal computation effort.

Second, we focus on optimizing the deep learning model (profiling model) for DL-
SCA. The research question is:

How to design an efficient deep learning model for profiling SCA?

Indeed, knowing the high dimension of possible hyperparameters of a DL model, it is
always challenging to tune models that generalize well on different datasets. Even worse,
designing such a model requires DL expertise, which only some evaluators necessarily
have. To lower the bar of using DL-SCA, we propose two methods for automatic hy-
perparameter tuning based on Bayesian optimization and reinforcement learning. Both
approaches only require a searching space as input, and the algorithms would automati-
cally search for the optimal hyperparameter settings that lead to powerful attacks.

In the meantime, we move deeper into evaluating specific hyperparameters and try to
give suggestions for the potential implementors. Specifically, we investigate the influence
of the pooling layers from various aspects, such as pooling types and depth of the pooling
layer. Besides, based on evaluating the conventional loss functions, we propose a novel
loss function that performs outstandingly on different datasets.

The previous two questions concentrate on the preparation of the DL-SCA. Next, we
move to profiling SCA itself and give solutions to the following question:

How to evaluate and improve the efficiency of DL-SCA?

The solutions to the previous two research questions can also improve the efficiency
of DL-SCA. However, this question focuses on the learning phase, namely the model’s
training. To answer the above question, we first systematically evaluate the influence of
algorithmic randomness of DL-SCA, then give suggestions on how to fairly assess the
attack performance with the median mean and variance of guessing entropy. For effi-
cient DL training, we propose to transfer the one-hot encoded labels (the default choice
in DL-SCA) to Gaussian-distributed labels. Compared with its counterpart, Gaussian-
distributed labels represent better the true characteristic of the leakage traces. Thus, they
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can efficiently reduce the requirement of training (profiling) traces while keeping a good
attack performance. Next, we extend label distribution to key distribution based on the
assumption that labels with closer Euclidean distance should have similar prediction prob-
ability. The ideal key rank generated by the key distribution can measure the skewness
of the predicted key rank. Compared with other SCA metrics that only focus on a single
(correct) key, the rank evaluation for all possible keys enables fast and accurate reflection
of the model’s generality on the dataset.

Finally, we take a step back, focusing on the noise and countermeasures:

How does a deep learning model interact with noise and countermeasures?

Compared with the first research question, which aims to reduce the noise effect, this
question focuses on understanding the effect of noise in DL-SCA and how they are pro-
cessed. For instance, we would like to know how different noise and countermeasures are
handled in each layer. Additionally, it would be interesting to know which countermea-
sure combinations are efficient in countering the DL-SCA. Indeed, a better understanding
of the noise effect helps develop powerful DL models for SCA; it is also beneficial in
developing effective DL-resilient countermeasures.

Following this, we answer this research question from two opposite directions. First,
we use an ablation study to investigate the influence of the noise layer by layer. The layer
that causes significant performance variation after ablation would be the one that takes
more responsibility in dealing with noise and countermeasures. Next, with the help of
state-of-the-art DL models, we use reinforcement learning to select countermeasures with
the lowest performance cost and highest resilience on DL-SCA.

1.5 Thesis Outline

This thesis is divided into six chapters. In each chapter, we first introduce the problem
and overview the solution. Then, we form each sub-section based on the corresponding
papers.

Chapter 2 We propose approaches to improving leakage’s ”quality” from two aspects:
noise removal and feature extraction. For noise removal, noisy-clean trace pairs
train the denoising autoencoder. Once trained, such a model can ”clean” the noisy
traces. The proposed strategy has been verified with different types of countermea-
sures and various attack settings. Besides, we use a triplet network with a newly
developed hybrid distance metric for feature extraction. With one-epoch training,
the template attack, one of the profiling SCA considered less powerful than DL-
SCA, outperforms the state-of-the-art attack performance with extracted features.
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The papers included in this section are:

• Remove some noise: On pre-processing of side-channel measurements with
autoencoders. Wu, L., & Picek, S. (2020). IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 389-415.

• The best of two worlds: Deep learning-assisted template attack. Wu, L., Perin,
G., & Picek, S. (2022). IACR Transactions on Cryptographic Hardware and
Embedded Systems, 413-437.

Chapter 3 We first introduce two automatic hyperparameter tuning methods. First, we
use Bayesian optimization to obtain the optimal hyperparameter combinations for
multilayer perceptron (MLP) and convolutional neural networks (CNN). We exper-
imentally validated the efficiency of the SCA-based objective function in neural
architecture search. Then, we focus on CNN explicitly with a reinforcement learn-
ing scheme. With the customized objective functions, powerful and light-weighted
DL models can be obtained. Next, we investigate the influence of the pooling layer
in terms of types, depth, and hyperparameters. Finally, based on evaluating com-
monly used loss functions, we propose a novel loss function: focal loss ratio. The
experimental results indicate its superior performance in different attack scenarios.
The papers included in this section are:

• I choose you: Automated hyperparameter tuning for deep learning-based side-
channel analysis. Wu, L., Perin, G., & Picek, S. (2022). IEEE Transactions
on Emerging Topics in Computing.

• Reinforcement learning for hyperparameter tuning in deep learning-based side-
channel analysis. Rijsdijk, J., Wu, L., Perin, G., & Picek, S. (2021). IACR
Transactions on Cryptographic Hardware and Embedded Systems, 677-707.

• On the importance of pooling layer tuning for profiling side-channel analysis.
Wu, L., & Perin, G. (2021, June). In International Conference on Applied
Cryptography and Network Security (pp. 114-132). Springer, Cham.

• Focus is Key to Success: A Focal Loss Function for Deep Learning-Based
Side-Channel Analysis. Kerkhof, M., Wu, L., Perin, G., & Picek, S. (2022). In
International Workshop on Constructive Side-Channel Analysis and Secure
Design (pp. 29-48). Springer, Cham.

Chapter 4 We first evaluate the influence of algorithmic randomness of the DL model,
then give attack evaluation solutions that can reliably reflect the performance and
robustness of the model. Next, we introduce an efficient learning scheme with
distributed labels that can reduce the required number of profiling traces. The pro-
posed learning scheme requires ten times fewer profiling traces but keeps a similar
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attack performance. Next, we offer a novel SCA metric: augmented guessing en-
tropy. Compared with the conventional metric, the augmented guessing entropy is
more sensitive to the performance variation of a deep learning model, thus helping
evaluate the efficiency of DL-SCA during the training process. The papers included
in this section are:

• On the evaluation of deep learning-based side-channel analysis. Wu, L., Perin,
G., & Picek, S. (2022). In International Workshop on Constructive Side-
Channel Analysis and Secure Design (pp. 49-71). Springer, Cham.

• AGE Is Not Just a Number: Label Distribution in Deep Learning-based Side-
channel Analysis. Wu, L., Weissbart, L., Krček, M., Li, H., Perin, G., Batina,
L., & Picek, S. (2022). Cryptology ePrint Archive.

Chapter 5 We develop a novel methodology based on an ablation study, evaluate the in-
fluence of noise and countermeasures from the perspectives of attack performance
and the model’s weight variation and then apply the research outcomes to the mul-
tiple device models. Next, we propose a methodology based on reinforcement
learning to design low-cost deep-learning resilient countermeasures. A customized
objective function is designed to quantify each type of countermeasure’s cost. A
low-cost countermeasure solution is proposed as the outcome. The papers included
in this section are:

• Explain some noise: Ablation analysis for deep learning-based physical side-
channel analysis. Wu, L., Won, Y. S., Jap, D., Perin, G., Bhasin, S., & Picek,
S. (2021). Cryptology ePrint Archive.

• Reinforcement Learning-Based Design of Side-Channel Countermeasures. Ri-
jsdijk, J., Wu, L., & Perin, G. (2021, December). In International Conference
on Security, Privacy, and Applied Cryptography Engineering (pp. 168-187).
Springer, Cham.

Chapter 6 This chapter gives a short conclusion and presents some open problems for
future research.

Appendix Introduction of the used datasets.

Note that several co-authored papers are not included in this thesis but contribute or
give ideas to some of the works in this thesis. One can find a list of papers at the end of
this thesis.



Chapter 2

Leakage Pre-processing

2.1 Introduction

Even for an unprotected device, the side-channel leakages are not noiseless. Depending
on the leakage sources, the noise can come from, for instance, environmental noise, inter-
ference from other irrelevant processing, and, more severely, the artificially designed in-
terruption/detection mechanisms, generally referred to as side-channel countermeasures.
In practice, the environmental noise can be countered by noise filtering, increasing the
number of profiling leakage traces, or attacking averaged traces. The effect of the irrele-
vant processing can be reduced by 1) for power leakages, measuring the power bus that
is connected to the target building blocks; 2) for EM leakages, grid scanning the chip
surface and finding the optimal location of the EM probe/coil that give EM leakages with
highest SNR. However, since side-channel countermeasures are dedicated to reducing the
efficiency of side-channel analysis, the methods mentioned above could be less effective.

The countermeasures can be divided into two categories: masking and hiding. The
masking countermeasure splits the sensitive intermediate values into different shares to
decrease the key dependency [24, 9]. The hiding countermeasure aims to reduce the side-
channel information by adding randomness to the leakage signals or making it constant.
There are several approaches to hiding. For example, the direct addition of noise [31] or
the design of dual-rail logic styles [132] is frequently considered options. Exploiting time-
randomization is another alternative, e.g., using Random Delay Interrupts (RDIs) [32] im-
plemented in software and clock jitters in hardware. Still, the countermeasures (especially
the hiding ones) are not without weaknesses. Regardless of the used hiding approaches,
we can treat their effects as noise due to randomness. In other words, the ground truth of
the traces always exists.

While considering the countermeasures as noise and removing that noise sounds like

23
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an intuitive approach, this is not an easy problem. The noise (both from the environ-
ment and countermeasures) is part of a signal, and those two components cannot entirely
be separated if we do not know their characterizations. Additionally, in realistic set-
tings, we must consider the portability and the differences among various devices [15].
Combining all these factors makes this problem very complicated, and to the best of our
knowledge, there are no universal approaches to removing the effects of environmental
noise and countermeasures. Standard techniques to remove/reduce noise are to use low-
pass filters [142] and conduct trace alignments [130]. On the other hand, various feature
engineering methods, such as Principal Component Analysis (PCA) [11, 75], Linear Dis-
criminant Analysis (LDA) [126], Sum of Squared Pairwise T-differences (SOST) [43] for
feature engineering, which, while powerful, struggles when dealing with protected leak-
ages [12]. More recently, the SCA community started using deep learning techniques that
make implicit feature selection and counteract the effect of countermeasures [20, 65, 157].
While such methods are helpful, they are usually aimed against a single noise source. In
cases when they can handle more noise sources, the results could lack interpretability.
More precisely, in such cases, it is not clear at what point noise removal stops and the
attack starts (or even if there is such a distinction). We emphasize that being able to re-
duce the noise comprehensively could bring several advantages, like 1) understanding the
attack techniques better, 2) understanding the noise better, and consequently, (hopefully)
being able to design stronger countermeasures, and 3) the ability to mount stronger/more
direct attacks as there is no noise to consider.

In this chapter, two deep learning-based pre-processing methods are proposed. First,
in section 2.2, we offer a new approach to remove several common hiding countermea-
sures with a denoising autoencoder 1. Although the denoising autoencoder is proved to
be successful in removing the noise from several sources such as images [45], as far as
we are aware, this technique has not been applied to the side-channel domain to reduce
the noise/countermeasures effect. We demonstrate the effectiveness of a convolutional
denoising autoencoder in dealing with different types of noise and countermeasures sep-
arately, i.e., Gaussian noise, uniform noise, desynchronization, RDIs, clock jitters, and
shuffling. We then increase the problem difficulty by combining various types of noise
and countermeasures with the traces and trying to denoise it with the same machine learn-
ing models. The results show that the denoising autoencoder efficiently removes the noise
and countermeasures in all investigated situations. We emphasize that denoising autoen-
coder is not a technique to conduct the profiled attack but to pre-process the measurements
to apply any attack strategy. Our approach is compelling when considering the white-box
scenarios, but we also discuss denoising autoencoders in black-box settings.

Second, in section 2.3, we propose a similarity learning-based approach with a novel

1The source code is available in the Github https://github.com/AISyLab/Denoising-autoencoder.

https://github.com/AISyLab/Denoising-autoencoder
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Hybrid Distance metric, capable of extracting an efficient embedding (features) of side-
channel traces in the latent space 2. We use the triplet model for this goal, obtaining a
compact data representation resulting in an outstanding attack performance. We validate
the time efficiency and attack performance on dynamic attack settings (datasets, leakage
models, traces desynchronization). As a result, with one epoch training (around 20 sec-
onds on a GPU), our results are comparable to or better than state-of-the-art deep learning
architectures and feature reduction techniques. Besides, we systematically evaluate the
influence of several critical hyperparameters in the proposed attack scheme, which can
serve as a guideline for potential evaluators/attackers.

2.2 Remove Noise with Denoising Autoencoder

Autoencoders were first introduced in the 1980s by Hinton and the PDP group [114] to
address the problem of “backpropagation without a teacher”. Unlike other neural network
architectures that map the relationship between the inputs and the labels, an autoencoder
transforms inputs into outputs with the least possible amount of distortion [7]. Benefits
from its unsupervised learning characteristic, an autoencoder is applicable in settings such
as data compression [129], anomaly detection [115], and image recovery [45]. 3

An autoencoder consists of two parts: encoder (ϕ) and decoder (ψ). The goal of the
encoder is to transfer the input to its latent space F , i.e., ϕ : X → F . The decoder,
on the other hand, reconstructs the input from the latent space, which is equivalent to
ψ : F → X . When training an autoencoder, the goal is to minimize the distortion when
transferring the input to the output (Eq. (2.1)), i.e., the most representative input features
are forced to be kept in the smallest layer in the network:

ϕ, ψ = argmin
ϕ,ψ

X − (ψ ◦ ϕ)X 2. (2.1)

When applying the autoencoder for the denoising purpose, the input and output are
not identical but are represented by noisy-clean data pairs. A similar idea can also be
applied to remove the countermeasures from the leakage traces. A well-trained denoising
autoencoder can keep the most representative information (i.e., leakage trace value) in
its latent space while neglecting other random factors. Since the original trace (without
noise) can be recovered by feeding noisy traces to the autoencoder’s input, one can expect
that the attack efficiency will be significantly improved with the recovered traces.

2The source code is available in the Github https://github.com/AISyLab/Triplet-attack.
3This section is based on the paper: Remove some noise: On pre-processing of side-channel measurements

with autoencoders. Wu, L., & Picek, S. (2020). IACR Transactions on Cryptographic Hardware and Embedded
Systems, 389-415.

https://github.com/AISyLab/Triplet-attack
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2.2.1 Denoising Strategy

As discussed in section 2.2, we require noisy-clean trace pairs to train a denoising au-
toencoder. In our context, we assume an attacker with full control of a device (device
A). Specifically, he can enable/disable the implemented countermeasures. To attack the
real devices with countermeasures enabled (device B), he first acquires traces with and
without countermeasures from device A to build the training sets. Then the attacker uses
these traces to train the denoising autoencoder. Once the training process is finished, the
trained model can pre-process the leakage traces obtained from the device B. Finally,
with “clean” (or, at least, cleaner) traces reconstructed by the denoising autoencoder, an
attacker could eventually retrieve the secret information with less effort. For practical
attack scenarios, the biggest challenge for this strategy is how to obtain clean traces:

1. White-box setting. For software implementations, an attacker might have a de-
vice where he can modify the code, and then turn off the countermeasures. For
hardware implementations, the scenario is more complicated. Let us consider a
cryptographic core on an SoC: an attacker might be able to turn off countermea-
sures by setting the control registers of the cryptographic engine if he has run-time
control of the SoC’s main processor. For signature schemes, the public key’s verifi-
cation procedure sometimes does not include countermeasures while the signature
generation does. This means that verification can be used for learning. Finally,
during EMVCo and Common Criteria evaluations, it is common to turn off some
(or all) countermeasures.

2. Black-box setting. Here, the attacker cannot obtain clean measurements, but he
can apply other denoising techniques like averaging or spectral analysis to reduce
the influence of noise or countermeasures. Then, he can use noisy/less noisy pairs
to train a denoising autoencoder. While this approach is unrealistic for all coun-
termeasures, we show it works for several of them. Even if we train autoencoder
for different types of noise simultaneously, it is successful when applied to settings
that do not use all the noise types.

The application of denoising autoencoders is intuitive if we consider the white-box
setting. Still, we also see its potential in the black-box setting. Let us consider the Gaus-
sian noise scenario. The first option is to use noisy traces and build a profiling model
on such traces. Then, we use that model to attack noisy traces. Alternatively, we can
use averaging on profiling traces, and then we build a profiling model. Next, we apply
the averaging on attack traces and use the profiling model. While this will work, due to
averaging, we reduce the number of profiling traces (less severe as we assume unlimited
traces) and the number of attack traces, which could directly influence the attack perfor-
mance. Now, let us consider a denoising autoencoder setup. We can use averaging on
profiling traces and apply the original/averaged measurements to train the autoencoder,
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and then use the averaged measurements to build a profiling model. When conducting the
attack, we apply the autoencoder on the attack (denoised) traces. Consequently, there is
no size reduction of the attack trace set.

The denoised traces processed by the denoising autoencoder turn an impossible attack
(from the perspective of guessing entropy with a limited number of traces) into a reality.
From the attacker perspective, he can invest more effort to acquire limited numbers of
clean traces and train a denoising autoencoder. Naturally, for some other countermea-
sures, like desynchronization, there is no dataset size reduction if applying specialized de-
noising techniques. Still, an autoencoder brings the advantages of having an autoencoder
model based on profiling traces. This makes the denoising process potentially faster when
compared to the independent application of specialized techniques and more adapted to
the profiling model, which will potentially improve the attack performance. We give ex-
perimental results for the black-box setting in section 2.2.4.

Moreover, the denoising autoencoder serves well as a generic denoiser technique, so
that it can be used in denoising other countermeasures or types of measurements. For
instance, the verification procedure could be used for training the denoising autoencoder.
Although signature generation and verification contain many operations, scalar multipli-
cation is the most prominent one and is shared by both of them. As such, we presume the
training with the verification procedure will work for most of the cases.

2.2.2 Convolutional Autoencoder Architecture

An autoencoder can be implemented with different neural network architectures. The
most common examples are the MLP-based autoencoder and convolutional autoencoder
(CAE). We tested different MLP and CNN architectures and then selected the best model
in denoising all types of noise and countermeasures. As a result, we use the convolu-
tion layer as the basic element for denoising. To maximize the denoising ability of the
proposed architecture, we tune the hyperparameters by evaluating the CAE performance
toward different types of noise, and we select the one that has the best performance on
average for all noise types4. We display the tuning range and selected hyperparameters
in Table 2.1. We use the SeLU activation function to avoid vanishing and exploding
gradient problems [66].

In terms of autoencoder architecture, we observed that an autoencoder with a shallow
architecture could successfully denoise the traces when dealing with trace desynchro-
nization. Still, when introducing other types of noise into the traces while keeping the

4We consider all sources of noise or countermeasures equally important and thus, we do not give preference
toward any. In case one aims to explore the behavior of a denoising autoencoder against only one type of noise,
more tuning is possible, which will result in better performance when denoising that type of noise.
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Hyperparameter Range Selected

Optimizer Adam, RMSProb, SGD Adam
Activation function Tanh, ReLU, SeLU SeLU
Batch size 32, 64, 128, 256 128
Epochs 30, 50, 70, 100, 200 100
Training sets 1 000, 5 000, 10 000, 20 000 10 000
Validation sets 2 000, 5 000 5 000

Table 2.1: CAE hyperparameter tuning.

same hyperparameters, such autoencoders cannot recover the traces’ ground truth. Con-
sequently, we decided to increase the autoencoder’s depth to ensure it would be suitable
for different noise types.

The size of the latent representation in the middle of the autoencoder is a critical
parameter that should be fine-tuned. One should be aware that although the autoencoder
can reconstruct the input, some information from the input is lost. We aim to maximize the
noise removal capability for the denoising purpose while minimizing useful information
loss. By choosing a smaller size of the latent space, the signal quality will be degraded. In
contrast, a larger size may introduce less critical features to the output. To better control
the latent space’s size, we flatten the convolutional blocks’ output and introduce a fully-
connected layer with 512 neurons as the middle layer in our proposed architecture.

The details on the CAE architecture used in this section are in Table 2.2. The con-
volution block (denoted Convblock) usually consists of three parts: convolution layer,
activation layer (function), and max pooling layer. As we noticed that an autoencoder
implemented in this manner suffers from overfitting and poor performance in denoising
the validation traces, we add the batch normalization layer to each convolution block.

The latent space’s size is controlled by the number of neurons in the fully-connected
layer. To ensure the CAE output has the same shape with the training sets, we develop the
following equation to calculate the needed size of the fully-connected layer Slatent:

Slatent =
Sclean∏n
i=1 Spool,i

∗Nfilter0. (2.2)

Sclean is the size of the target clean traces, Spool,i represents the ith non-zero pooling
stride of the decoder, and Nfilter0 represents the number of the filters of the first Decon-
volution block. Note, one can vary the latent space’s size for different cases by changing
the pooling layer’s size and the number of filters.

We emphasize that a CAE can be easily trained by noisy (protected)–clean (unpro-
tected) traces pairs. Once the training finishes, the autoencoder can be used to denoise the
leakages from real-world devices.
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Block/Layer # of filters Filter number Pooling stride # of neurons

Conv block * 5 2 256 0 -
Conv block 2 256 5 -
Conv block * 3 2 128 0 -
Conv block 2 128 2 -
Conv block * 3 2 64 0 -
Conv block 2 64 2 -

Flatten - - - -
Fully-connected - - - 512
Fully-connected - - - Slatent

Reshape - - - -

Deconv block 2 64 2 -
Deconv block * 3 2 64 0 -
Deconv block 2 128 2 -
Deconv block * 3 2 128 0 -
Deconv block 2 256 5 -
Deconv block * 5 2 256 0 -

Deconv block 2 1 0 -

Table 2.2: CAE architecture.

2.2.3 Experimental Results

To investigate the precise influence of different sources of noise in a fair way, we simu-
lated six types of noise/countermeasures: Gaussian noise, uniform noise (results in Ap-
pendix 2.2.3), desynchronization (misalignment), random delay interrupts (RDI), clock
jitters, and shuffling. The simulation approaches are based on previous research and the
observation or implementation of real devices. Our experiments show that the denoising
architecture can reduce GE to 0 (or close value) within 10 000 attack traces. Note that
CAE could also reduce even higher noise levels, but more measurements are required
to reach GE close to 0. Additionally, we do not provide results for scenarios with less
noise (i.e., smaller countermeasure effect), as our experiments consistently show those
cases to be easier to attack. To compare CAE’s denoising performance with the existing
techniques commonly used by attackers, we select and benchmark well-known denois-
ing techniques for each type of noise. First, we consider principal component analysis
(PCA) [143], a well-known dimensionality reduction technique. The PCA is combined
with TA, where TA uses the first 20 principal components without additional POIs selec-
tion. Additionally, recent research shows that the addition of noise can enhance the ro-
bustness of the model, eventually becoming beneficial in the process of classification [65].
Thus, we also use CNNs, where we add Gaussian noise to the input layer to improve the
model’s classification performance. We tested several noise levels in the range from 0.05
to 0.25 (recommendations from [65]), and we select to use a noise variance of 0.1 as it
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provides the best performance improvement. Finally, we apply specialized techniques
to denoise specific types of noise. More precisely, we use static alignment [82] for the
treatment of misaligned traces [11]; frequency analysis (FA) [133], which is a method to
analyze leakages in the frequency domain by transferring the data to its power spectrum
density, to reduce the effect of RDIs and clock jitters [105, 159]. For shuffling, we use
additional traces during the profiling phase [136]. To the best of our knowledge, there is
no optimal method for denoising the combined noise, and we use FA for traces with the
combination of the noise and countermeasures.

Throughout the experiments, we use two versions of the ASCAD dataset: fixed key
(ASCAD F) and random keys (ASCAD R). Note that the ASCAD dataset is masked, and
there is no first-order leakage. As such, we consider the masked S-box output:

Y (i) = S-box[(p[i]⊕ k[i])⊕ rout]. (2.3)

Besides the template attack, we use two machine learning models, CNNbest and
MLPbest introduced in the ASCAD paper [13]. The CNN architecture is listed in Ta-
ble 2.3, while for MLP, we use six fully-connected layers, each with 200 neurons. We
use an NVIDIA GTX 1080 Ti graphics processing unit (GPU) with 11 Gigabytes of GPU
memory and 3 584 GPU cores. All of the experiments are implemented with the Ten-
sorFlow [1] computing framework and Keras deep learning framework [28]. The time
consumption to train a CAE highly depends on the length of the traces, but for the exper-
iments performed in this section, a CAE can be trained within one hour, on average. We
note that there is no conceptual limitation on CAE’s trace length; the only limit is that
longer traces need more processing time.

Layer Filter size # of filters Pooling stride # of neurons

Conv block 11 64 2 -
Conv block 11 128 2 -
Conv block 11 256 2 -
Conv block 11 512 2 -
Flatten - - - -
Fully-connected * 2 - - - 4 096

Table 2.3: CNN architecture used for attacking.

We selected 20 POIs from the traces according to the trace variation of the interme-
diate data (S-box output) for the template attack. For each POI, the minimum distance
is set to 5 to avoid selecting continuous points from the traces. For the selected hyper-
parameters for MLP and CNN classifiers, we used Uniform distribution and ReLU
activation functions. The RMSProb optimizer is used for both models with the learning
rate of 1e-5, while the batch size equals 128. During the training phase, the MLP and



2.2 Remove Noise with Denoising Autoencoder 31

CNN are trained for 100 and 1 000 epochs, respectively. Finally, 35 000 traces were used
for training, 5 000 for validation, and 10 000 for the attack.

We emphasize that we do not aim to find the best attack models but show how de-
noising autoencoders can help improve various attacks’ performance. The quality of the
recovered traces is evaluated by guessing entropy (GE). For a good estimation of GE, the
attack traces are randomly shuffled, and 100 key ranks are computed to obtain the average
value.

Denoising the “Clean” Traces

One should notice that the traces regenerated by CAE have information loss because of
the bottleneck in the middle of the architecture. An ideal CAE could locate as well as
precisely describe the leakage (variation) of the dataset. To evaluate the reconstruction
capability, we first use CAE to denoise the “clean” traces. Here, by “clean”, we use the
original traces as in the ASCAD dataset with no added noise or countermeasures. Still,
note that the traces are not perfectly clean as the noise still exists. In this case, the CAE
input and output are the same measurements, while the goal of training the model is to
learn how to represent the output with fewer features than the input. We consider this
scenario to 1) show that CAE removes mostly noise (features that do not contribute to
the useful information), and 2) validate that if the evaluator applies CAE by mistake, the
performance of the attack will not be reduced.

We use the CNNbest model [13] for the attack. Interestingly, the SNR [39] value for
the traces reconstructed by CAE slightly increases by 0.05, which confirms that CAE can
discard random features (such as noise) and focus on the distinguishing ones and even-
tually make the reconstructed trace more “clean”. Furthermore, considering the variation
for each cluster (divided by the Hamming weight or intermediate data), CAE acts as a
regulator to minimize the in-cluster variance, eventually leading to a better SNR. As ex-
pected, the improvement of SNR directly leads to better performance in terms of GE: for
instance, we require 831 traces for the correct key for CNN if we use the original traces,
while this value decreases to 751 after the traces are reconstructed with CAE. Similar
performance could be observed when adding the noise to the input layer: the required
number of traces decreases from 742 to 647. Note that CNN’s performance with added
noise is slightly better than the version without noise, proving that noise, as a regulariza-
tion factor, could improve the attack efficiency. For MLP, the required traces are reduced
from 1 930 to 1 084. For TA, the required traces are reduced from 5 928 to 4 667; when
applying PCA to the traces, 615 and 635 traces are required to obtain the correct key for
two datasets. The detailed results are presented in Figure 2.1.
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(a) Original traces.
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(b) Traces denoised by CAE.

Figure 2.1: GE: original traces vs “cleaned” traces by CAE.

Gaussian Noise

The Gaussian noise is the most common type of noise existing in side-channel traces. The
transistor, data buses, the transmission line to the record devices such as oscilloscopes, or
even the work environment can be the source of Gaussian noise (inherent measurement
noise). The noise can also be intentionally introduced by parallel operations or a dedicated
noise engine. In terms of trace leakage, the noise level’s increment hides the correlated
patterns and reduces the signal-to-noise (SNR) ratio. Consequently, the noise influences
an attack’s effectiveness, i.e., more traces are needed to obtain the attacked intermediate
data.

To demonstrate the influence of the Gaussian noise, we add normal-distributed ran-
dom values with zero mean and variance of eight to each point of the trace. An example
of the zoom-in view of two manipulated traces is shown in Figure 2.2a. PCA-based
TA shows the best performance with GE equal to 3 after applying 10 000 attack traces.
CNN and CNN with added noise from the input layer (CNN Noise) also converge to low
guessing entropy, while TA and MLP do not succeed in the attack. Compared with the
baseline traces, the Gaussian noise significantly distorted the shape of the original traces
in the amplitude domain, eventually increasing the difficulties in obtaining the correct key
(Figure 2.2).

Next, we denoise the Gaussian noise with trace averaging as well as CAE proposed
in this section. The GE of denoised traces with 10-trace averaging and CAE are shown
in Figures 2.3a and 2.3b, respectively. From the attack perspective, GE converges in
both cases when the number of traces increases. After denoising with either averaging or
denoising autoencoder, CNN attack performance is significantly improved over the noisy
version: 1 754 averaged traces, or 8 751 denoised traces are sufficient to reach GE of
0. Interestingly, TA and MLP perform similarly regardless of the pre-processing method,
while CNN introduces differences in attacking performance. It is worth noting that GE for
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(b) GE.

Figure 2.2: Gaussian noise: demonstration and its influence on guessing entropy.

averaged traces is lower than GE for CAE, confirming that trace averaging successfully
removes the Gaussian noise. Still, we demonstrate that CAE can remove the Gaussian
noise and improve the attacking efficiency.
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(a) Denoise with averaging.
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(b) Denoise with CAE.

Figure 2.3: GE: denoising Gaussian noise with averaging (a) and CAE (b).

Uniform Noise

Besides analyzing the denoising performance with Gaussian noise, we also consider the
uniform noise. Uniform-distributed random values ranging from -20 to 20 are added
to each point of the trace to simulate the uniform noise. An example of the zoom-in
view of two manipulated traces is shown in Figure 2.4a; the attack results are shown in
Figure 2.4b. Similar to Gaussian noise, PCA-based TA performs the best with the correct
key ranking reaching 29. We also observe that adding noise to the input of CNN improves
the attack performance. Still, the uniform noise significantly increases the difficulties in
obtaining the correct key (Figure 2.4).

Next, we denoise the traces with averaging as well as CAE. The GE of denoised
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(b) GE.

Figure 2.4: Uniform noise: demonstration and its influence on guessing entropy.

traces with 10-trace averaging and CAE are shown in Figures 2.5a and 2.5b, respectively.
From the attack perspective, GE converges in both denoising cases when the number of
trace increases: 3 584 averaged traces or 4 880 denoised traces are sufficient to reach GE
of 0. Following this observation, we again confirm that trace averaging is a successful
method for removing the uniform noise. Additionally, TA is better than MLP in dealing
with uniform noise. Indeed, TA is a generic method that follows Bayes’ theorem and is
resilient to noise interference. As the noise still exists in the denoised traces, we believe
that the MLP model we used is less robust than TA in dealing with fluctuation from the
amplitude level. Compared with the denoising performance with the Gaussian noise, the
uniform noise seems easier to counteract.
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(a) Denoised with averaging.
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(b) Denoised with CAE.

Figure 2.5: GE: denoise uniform noise with averaging vs CAE.

Desynchronization

Well-synchronized traces can significantly improve the correlation of the intermediate
data. The alignment of the traces is, therefore, an essential step for the side-channel
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analysis. To align the traces, usually, an attacker should select a distinguishable trig-
ger/pattern from the traces, so that the following part can be aligned using the selected
part as a reference. However, there are two limitations to this approach. First, the se-
lected trigger/pattern should be distinctive, so that it will not be obfuscated with other
patterns and lead to misalignment. Second, due to the existence of the signal jitters and
other countermeasures, the selected trigger should be sufficiently close to the points of
interest, thus minimizing the noise effect. A good reference that meets both limitations
is not always easy to find from a practical perspective. Even with an unprotected device,
sometimes traces synchronization can be a challenging task.

Different from the Gaussian noise, the desynchronization of the traces adds random-
ness to the time domain. To show the effect of desynchronization, we use traces with
a maximum of 50 points of desynchronization. The pseudocode for constructing traces
with desynchronization is shown in Algorithm 1. An example of two zoom-in viewed
traces with different desynchronization levels is given in Figure 2.6a, while attack results
are shown in Figure 2.6b. From the attack results, CNN proves its ability to fight against
the desynchronization effect, as 9 627 traces are sufficient for the correct key when attack-
ing the noisy traces. Considering that the original “clean” traces only needed 831 traces
on average to retrieve the key, the desynchronization degraded the attack’s performance.
Additionally, one can expect that performance to become even worse with an increased
desynchronization level. Note that TA-PCA results do not converge at all, as PCA breaks
the information’s spatial ordering.

Algorithm 1 Add Desynchronization.

1: function ADD DESYNC(trace, desync level)
2: new trace← [] ▷ container for new trace
3: level←randomNumber(0, desync level)
4: i← 0
5: while i+ level < len(trace) do
6: new trace[i]← traces[i+ level] ▷ add desynchronization to the trace
7: i← i+ 1

8: return new trace

Next, we attack the denoised traces pre-processed by static alignment or CAE. The
GE are shown in Figures 2.7a and 2.7b. GE of the traces denoised by CAE converges
faster than for the static-aligned traces. CAE provides a generic approach to synchroniz-
ing the traces, as by training a CAE with desynchronized-synchronized traces pairs, the
model can automatically align the traces. As a result, compared with static alignment,
the number of required traces to retrieve the key reduces from 1 180 to 822 with CNN
(comparable to the attack result with the original traces). For MLP and TA, the number of
required traces reduces from 8 905 to 7 168, and more than 10 000 to 6 398. Note that if
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(b) GE.

Figure 2.6: Desynchronization: demonstration and its influence on guessing entropy.

attacking traces with desynchronization (Figure 2.6b), we are successful with CNN only
with more than 9 000 attack traces to reach GE of 0.
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(a) Denoise with static alignment.
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(b) Denoise with CAE.

Figure 2.7: GE: denoising desynchronization with static alignment (a) and CAE (b).

Random Delay Interrupts (RDIs)

Desynchronization introduces the global time-randomness to the entire trace. RDIs, on
the other hand, lead to local time-randomness. As a type of countermeasure typically
implemented in the software, the existence of RDIs breaks the traces into fragments, thus
significantly increasing the randomness of traces in the time domain and reducing the
correlation of the attacked intermediate data.

We simulate RDIs based on the Floating Mean method (with parameters a=5 and b=3)
introduced in [32]. The RDIs implemented in such a way can provide more variance to
the traces when compared with the uniform RDI distribution. To further increase the
randomness of the injected RDIs, a random number (uniformly distributed between 0 and
1) is first generated when scanning each point of a trace, then compared with a threshold
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value. We set the threshold value to 0.5, so the probability of the RDIs in each feature
equals 50%. Moreover, in real implementations, instructions, such as nop, are used to
generate the random delay. This implementation will introduce specific patterns, such as
peaks, in the power traces whenever a random delay occurs. We consider this effect by
generating a small peak by adding a specific value (10) when injecting the random delays
to the traces. The pseudocode for constructing traces with RDIs is shown in Algorithm 2.
The manipulated traces are then padded with zero to keep the traces the same length.

Algorithm 2 Add Random Delay Interrupts.

1: function ADD RDIS(traces, a, b, rdi amplitude)
2: new trace← [] ▷ container for new trace
3: i← 0
4: while i < len(trace) do
5: new trace[i]← new trace[i].append(trace[i])
6: rdi occurrence←randomNumber(0, threshold ∗ 2)
7: if rdi occurrence > threshold then
8: m←randomNumber(0, a− b)
9: rdi num←randomNumber(m,m+ b) ▷ number of RDIs

10: j ← 0
11: while j < rdi num do ▷ add RDIs to the trace
12: new trace[i]← new trace[i].append(trace[i])
13: new trace[i]← new trace[i].append(trace[i] + rdi amplitude)
14: new trace[i]← new trace[i].append(trace[i+ 1])
15: j ← j + 1

16: i← i+ 1

17: return new trace

A zoom-in view of two example traces with random RDIs is shown in Figure 2.8a.
The number of injected RDIs can be obtained by counting the number of peaks. From the
traces, we observe that more randomness was introduced locally to the traces compared to
the traces with desynchronization, which further influenced the attack result of guessing
entropy. From Figure 2.8b, the best correct key rank of the traces with RDIs is 147 when
using 10 000 traces, indicating that even the CNNbest model (with or without adding
noise to the input layer) is not powerful enough to extract the useful patterns and retrieve
the key. We can conclude that RDIs implemented in this way dramatically increase the
attack difficulty. Note that CNN’s performance (with or without added noise) drastically
differs from that reported in [65]. There are several possible reasons for such a difference:
1) we implement more difficult RDIs countermeasures, 2) we do not use as deep CNN
architecture, and 3) we do not conduct a detailed tuning of the noise level when consid-
ering CNN with noise at the input. TA and TA with PCA perform similarly and do not
converge.
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(b) GE.

Figure 2.8: RDIs: demonstration and its influence on guessing entropy.
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(a) Frequency analysis.
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(b) Denoised with CAE.

Figure 2.9: GE: denoise Random Delay Interrupts with frequency analysis vs CAE.

Figures 2.9a and 2.9b show the attack results with the frequency analysis (FA) and
CAE. With FA, GE slowly decreases when using CNN and TA for the attack, while the key
rank reaches 52 for TA’s best case. On the other hand, the effect of RDIs has been reduced
dramatically with the help of CAE: GE converges significantly faster when attacking with
TA, MLP, and CNN. CNN performance is especially good as it needs only 1 322 traces
on average to reach GE of 0, while TA needs 8 952 traces and MLP 3 398 traces. Note
the attack results with CNN and MLP are close to the ones with the original dataset.
Therefore, we can conclude that CAE can effectively recover the original traces from the
noisy traces with RDIs countermeasure.

Clock Jitters

Clock jitters is a classical hardware countermeasure against side-channel analysis, real-
ized by introducing the instability in the clock [20]. Comparable to the Gaussian noise that
introduces randomness to every point in the amplitude domain, the clock jitters increase
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the randomness for each point in the time domain. The accumulation of the deforming
effect increases the misalignment of the traces and decreases the intermediate data corre-
lation. Here, we simulate the clock jitters by randomly adding or removing points with
a pre-defined range. Similar approaches are used in [20]. More precisely, we generate a
random number r that is uniformly distributed between -4 to 4 to simulate the clock varia-
tion in a magnitude of 8. When scanning each point in the trace, r points will be added to
the trace if r is larger than zero. Otherwise, the following r points in the trace are deleted.
The pseudocode for constructing traces with clock jitters is shown in Algorithm 3. The
manipulated traces are then padded with zero to keep the traces the same length.

Algorithm 3 Add Clock Jitters.

1: function ADD CLOCK JITTERS(trace, clock jitters level)
2: new trace← [] ▷ container for new trace
3: i← 0
4: while i < len(trace) do
5: new trace[i]← new trace[i].append(trace[i])
6: r ←randomNumber(0, clock jitters level) ▷ level of clock jitters
7: if r < 0 then
8: i← i+ r ▷ skip points
9: else

10: j ← 0
11: average amplitude← (trace[i] + trace[i+ 1])/2
12: while j < r do
13: new trace← new trace.append(average amplitude)▷ add points
14: j ← j + 1

15: i← i+ 1

16: return new trace

Zoom-in viewed traces with clock jitters are shown in Figure 2.10a. From Fig-
ure 2.10b, it is clear that no classifiers are successful in retrieving the key with 10 000
attack traces. The best results are achieved for CNN (with and without noise), followed
closely by TA. A comparison of the attack results for FA and denoised traces with CAE
is shown in Figure 2.11. Like the previous attack results with the RDIs countermeasure,
FA cannot retrieve the key within 10 000 traces even for the best attack (MLP with rank
41). The proposed CAE, on the other hand, successfully reduces the effect of clock jitters.
Specifically, with the best setting for CNN, 8 045 traces are sufficient to obtain the correct
key.

Shuffling

As a hiding countermeasure, a classical approach to realize shuffling is by randomizing
the access to the S-box [136]. With this method, it becomes more difficult for attackers to
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Figure 2.10: Clock Jitters: demonstration and its influence on guessing entropy.
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(a) Frequency analysis.
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(b) Denoised with CAE.

Figure 2.11: Guessing entropy: denoising clock jitters with frequency analysis vs CAE.

select points of interest or locate part of the traces that are correlated to the S-box-related
intermediate data. Here, we simulate the shuffling effect by gathering the trace segments
related to 16 S-box accesses and then clustering them into 16 groups. Next, for traces to
be manipulated, we randomly select one group and replace the attack traces part (related
to the S-box processing) with the segment in the group. The pseudocode is shown in
Algorithm 45

Note that shuffling does not change the shape of the traces dramatically, so we do
not demonstrate the shape of the traces here. Figure 2.12 shows the attack results for the
shuffling countermeasure. PCA-based TA shows the best performance with 9 885 attack
traces required to reach the correct key. Compared with the baseline traces, the shuffling
countermeasure increases the attack difficulty. Although GE is slowly converging for all
attack methods except TA, (rank 32 for the best case with PCA-based TA), none of the

5We acknowledge that the described algorithm may not produce the same effect as the actual shuffling, but
we consider it to be a valid showcase for the experimental evaluation, and the closest option to simulate the
effect of shuffling.
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Algorithm 4 Add shuffling.

1: function ADD SHUFFLING(trace, sbox seg)
2: new trace← [] ▷ container for new trace
3: i← 0
4: while i < len(trace) do
5: sbox idx←randomNumber(3, 16)
6: new trace[i]← traces[i].replace(sbox seg[sbox idx]) ▷ replace sboxs
7: i← i+ 1

8: return new trace
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Figure 2.12: Shuffling: guessing entropy.

attacks reach GE equal to 0 within 10 000 traces.

The results improve when we use additional 10 000 traces for profiling. As shown in
Figure 2.13a, for the best case with MLP, we reach rank two after 10 000 traces, indicat-
ing that deep learning attacks can combine complex features as well as handle the trace
randomness. CNN is slightly worse, while TA does not manage to converge to a success-
ful attack (rank 30). The traces denoised with CAE give the best results (Figure 2.13b),
as only 7 754 traces are needed for the correct key when using CNN (MLP behaves only
marginally worse). TA reaches a rank equal to six after 10 000 traces. We emphasize that
with CAE, we use only 10 000 traces, and we get better results than with 20 000 traces
without using CAE.

To conclude, the proposed CAE proves its ability to limit the Gaussian noise, desyn-
chronization, random delay interrupts, clock jitters, and shuffling. Traces denoised with
CAE show comparable, and in many cases, even better results than specific denois-
ing/signal processing techniques. Finally, denoising autoencoder works for TA, MLP,
and CNN attacks, but CNN’s performance is the best for most cases.
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(a) Profiling with additional 10 000 traces.
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(b) Denoised with CAE.

Figure 2.13: GE: denoising shuffling by applying more traces (a) or CAE (b).

Combining the Effects of Gaussian Noise and Countermeasures

In the previous section, we individually add and denoise different types of noise. Next,
we investigate an extreme situation by adding all five noise/countermeasures discussed in
the previous section and verifying the CAE approach’s effectiveness. To maximize the
effectiveness of each type of noise and keep the simulated traces close to the realistic, we
added the noise in the order: shuffling - desynchronization - RDI - clock jitters - Gaussian
noise. Note there would be fewer countermeasures combined in the traces in realistic
settings. In such cases, we expect the proposed CAE’s performance to be better, as evident
from scenarios when handling only a single countermeasure. We test two datasets: AES
with a fixed key and AES with random keys. Since there are no specific approaches in
reducing the effect of combined noise sources, we evaluate GE of the noisy traces and
traces after applying frequency analysis and CAE. Note that we do not, for instance, use
averaging after frequency analysis; we do not have enough measurements to conduct a
successful attack.

Like the previous sections’ procedure, we calculated the GE of the noisy and denoised
traces and made a comparison. As expected, the attack methods used in this section
cannot obtain the correct key within 10 000 traces. More precisely, the noisy traces do not
converge with the increasing number of traces.

As shown in Figure 2.14a, FA is not working when dealing with the combination of
noise and countermeasures (which is not surprising as we now use noise sources where
this technique is insufficient). The GE of denoised traces with CAE (Figure 2.14b), on
the other hand, reaches 27 with 10 000 traces when using CNN. Somewhat worse is MLP,
and it reaches rank 61 after 10 000 traces. The attack performance converges slower than
for the denoised traces with a single type of noise, but CAE still proves its capability in
removing the combined effect of noise and countermeasures.
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(a) Frequency analysis.
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(b) Denoised with CAE.

Figure 2.14: GE: denoising combined noise with frequency analysis (a) and CAE (b).

AES with Random Keys

Finally, we verify the CAE’s performance by trying to denoise the AES traces with ran-
dom keys (ASCAD R). To retrieve the correct key from the leakage traces, we first train
the model with leakage with random but known keys, then use the trained model to attack
the leakages and try to retrieve the unknown key. In terms of attack settings, there are
1 400 features in every trace. The attacked intermediate data is kept the same.
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(a) Frequency analysis.
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(b) Denoised with CAE.

Figure 2.15: GE: denoising combined noise with frequency analysis vs CAE.

From the attack results, the GE of the noisy traces fluctuates above 100 regardless
of the number of traces. On the other hand, guessing entropy indicates improved perfor-
mance as a result of FA and CAE. For the best cases shown in Figure 2.15, GE value
converges to 56 with 10 000 traces with FA and CNN, and 28 with CAE and CNN. Fi-
nally, we conclude that the proposed CAE can denoise the leakage in fixed and random
key scenarios where the results are especially good when using CNNs as the attack mech-
anism.
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2.2.4 Case Study: The Black-box Setting

The denoising strategy we proposed in this section is orientated more toward white-box
settings, as the evaluator has full control of the device so that the clean traces can be easily
obtained by turning off the countermeasures. The denoising strategy cannot be directly
applied when considering the difficulties in disabling the black-box settings’ countermea-
sures. Fortunately, CAE can denoise the traces even when the reference traces are not
entirely clean. The less noisy traces generated by the traditional denoising methods can
also be used as the “clean” traces for CAE training.

We investigate noisy-to-less-noisy scenarios with Gaussian noise and desynchroniza-
tion. The traces are denoised by averaging (for Gaussian noise) and static alignment (for
desynchronization) are used as the “clean” traces at the CAE output to handle the noisy
traces. To quantify the remaining noise, CNN-based attacks were performed on these
traces. There, 901 traces are required for realigned traces and 1 054 traces for averaged
traces. Compared with the original traces with 831 attack traces, the traces denoised by
classical methods are not perfectly denoised; one could expect a larger deviation of the
attack traces value with simpler attack methods such as TA and MLP. Still, CAE can
reduce noise levels by mapping the noisy traces to less noisy traces. First, we denoise
the traces with Gaussian noise and desynchronization separately. The results are given in
Figure 2.16.
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(a) Gaussian noise: train CAE from noisy to av-
eraged traces.
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(b) Desynchronization: train CAE from noisy
to static aligned traces.

Figure 2.16: GE: denoising Gaussian noise/desynchronization from less noisy traces.

Compared with the denoised traces using the original clean traces as the reference, the
noise-to-less-noise cases’ attack performance is degraded. Specifically, 8 751 traces are
required to retrieve the correct key when using the clean traces to denoise the Gaussian
noise (white-box setting), while this reduces to 6 073 when denoised with averaged traces,
indicating that the averaged traces contain even less noise than the original clean traces.
The attack performance degradation is different when removing desynchronization: 822
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traces to attack when denoised from the clean traces and 1 604 traces when denoised from
the static aligned traces. One can expect that with deeper (or improved) CAE models with
better denoising ability, the variation of the attack performance between different clean
references can be further minimized. Also, note that we do not specifically optimize the
denoising approach, so the CAE’s denoising performance can be improved with cleaner
traces (e.g., more traces for averaging).

Finally, we denoised the traces with Gaussian noise and desynchronization in a com-
bined setting. More precisely, 10 000 trace pairs with Gaussian noise (noisy-averaged)
and 10 000 trace pairs with desynchronization (noisy-static aligned) are combined and
used for training the CAE. The results are presented in Figure 2.17.
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(a) Gaussian noise.
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(b) Desynchronization.

Figure 2.17: GE: denoised Gaussian noise and desynchronization by combined training
of CAE.

The joint training method leads to comparable (or even better) performance than the
previous results on a single noise source. To be specific, 8 989 traces are needed for the
Gaussian noise and 942 for the desynchronization. This result again shows that the CAE
model can learn and remove different types of noise simultaneously. More precisely, we
can train CAE to remove various types of noise, and it will work even if using traces that
do not have all noise sources.

2.3 Feature Selection with Similarity Learning

Similarity learning belongs to supervised machine learning, where the goal is to learn a
similarity function that measures how similar or related two objects are. One option for
this task is to use a triplet network model to learn useful data representations by distance
comparisons [59]. The Triplet network evolved from the Siamese network [85, 50] and
was first proposed by Wang et al. [139] in 2014. Then, based on the triplet network,
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Schroff et al. developed the well-known Facenet network for face recognition and clus-
tering [118]. 6

A depiction of a triplet network is shown in Figure 2.18. A triplet input consists of
three samples 7: positive, anchor, and negative. Positive and anchor samples have the
same label i, while that label is different from the negative samples. By training the deep
network with the shared weights, three embeddings 8 (Embp, Emba, and Embn), corre-
sponding to their input are outputted by the deep network and used for the triplet loss cal-
culation. Weight vectors are updated using shared architecture during back-propagation.
During training, we follow the online triplet mining method proposed in [118], mean-
ing that triplets are generated in real time within a training batch. Compared with of-
fline triplet mining, which fits the manually-created triplets to the network, the randomly-
generated triplets increase the chance to find triplets with high triplet loss, thus speeding
up the learning process.

An embedding represents a (relatively) low-dimensional space into which vectors with
high dimensional can be translated. Ideally, an embedding would capture some input se-
mantics by placing semantically similar inputs close together in the embedding space. A
triplet model aims to extract these features while enlarging their inter-class differences.
The conventional triplet loss function is defined in Eq. (2.4). The evaluation and bench-
mark between different loss functions is presented in section 2.3.5. Among all of the
considered loss functions, triplet loss performs the best.

loss = max(d (a, p)− d (a, n) +margin, 0), (2.4)

where d denotes the Euclidean distance 9 between two feature vectors. a, p, and n stand
for anchor, positive (with the label same as the anchor), and negative samples (with a label
different from the anchor); margin is enforced between the positive and negative pairs.

Based on the loss definition, there are three categories of triplets:
• Easy triplets: d(a, p) +margin < d(a, n).
• Hard triplets: d(a, n) < d(a, p).
• Semi-hard triplets: d(a, p) < d(a, n) < d(a, p) +margin.
Clearly, margin defines the boundary between the three types of triplets. When

margin reaches zero, only easy and hard triplets exist. From the feature learning per-
spective, training on easy triplets could easily reach a low loss value as p and n are easy
to distinguish. However, it may result in the model converging to the local optima and

6This section is based on the paper: The best of two worlds: Deep learning-assisted template attack. Wu,
L., Perin, G., & Picek, S. (2022). IACR Transactions on Cryptographic Hardware and Embedded Systems,
413-437.

7For SCA, samples are leakage traces.
8For SCA, the embeddings are extracted features used for attacks.
9The Euclidean distance between two points in Euclidean space is the length of a line segment between the

two points.
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Figure 2.18: The structure of the triplet network. Each deep network is identical to the
others. From the implementation perspective, any of these networks can be used to gen-
erate embeddings for anchor, positive, and negative inputs.

struggling in differentiating the samples belonging to the different clusters but with a
close Euclidean distance. Training directly on the hard triplets whose negative sample
is closer to the anchor than the positive may also lead the model to stop learning or col-
lapse (the embedded output collapses to one feature) [118]. On the other hand, training
on semi-hard triplets increases the learning difficulties in a reasonable range, leading to
more representative extracted embeddings features. We set the margin to 0.4 for all of the
following experiments, enabling us to choose a random semi-hard negative (the negative
lies inside the margin) for every pair of anchor and positive and train on these triplets.
The influence of margin is discussed in section 2.3.5.

2.3.1 Triplet Loss with Hybrid Distance

Based on Eq. (2.4), once the anchor’s label is set, the rest of the samples can be binary
classified based on their label: positives and negatives. However, these embedding-based
semi-hard triplets ignore the diversity of labels in negatives. Indeed, for a dataset with c
classes, negatives contain c − 1 classes. Within all embedding-based semi-hard triplets,
if one can use negative’s label information to find negatives that are potentially closer
to the anchor than other negatives, the newly formed (semi-hard) triplets could include
negatives that could be more ’difficult’, thus leading to more efficient learning. From
the classification perspective, focusing on differentiating with neighboring clusters would
help in improving classification performance.

Unfortunately, for the triplet learning tasks such as images or audio feature extraction,
it is challenging to judge the similarity between the anchor and negatives based on their
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labels [59, 30]. For instance, imagine images with the labels ’Alice’, ’Bob’, and ’Eve’.
One can hardly tell which two clusters are similar by only seeing the name. On the other
hand, the correlation between label distance and embedding distance is stronger for SCA.
Indeed, the SCA’s labels are determined by intermediate data processed by the target, and
we apply leakage models to these labels to simulate and correlate with measured leakages.
Naturally, a smaller label distance may indicate similar leakage traces (smaller feature
distance). The Hamming weight leakage model assumes that the leakage is proportional
to the sensitive variable’s Hamming weight. For a device that leaks byte-wise Hamming
weight, intermediate values with closer Hamming weight values would generate similar
leakages.

Following this, we optimize the distance metric (Euclidean distance) to enforce the
triplet learning based not only on embedding distance but also on label distance. We de-
note it as Hybrid Distance. The newly proposed embedding distance calculation method
is defined in Eq. (2.5).

Hybrid Distance =
d(ala , blb)

αd
′ (la,lb)

, α ∈ (0, 1]. (2.5)

Here, d(ala , blb) stands for the squared Euclidean distance between embedding a and
b with their corresponding labels la and lb (determined by the used leakage model). d

′
(.)

denotes the normalized Euclidean distance between labels (ranges from zero to one); α
is a constant that needs to be tuned (detailed evaluation in section 2.3.5). Following
Eq. (2.5), the Hybrid Distance ranges from d(ala , blb) to d(ala , blb)/α based on the label
distance. When α equals one, the squared Euclidean distance is calculated.

An illustration of the conventional and newly proposed embedding distance calcula-
tion methods is shown in Figure 2.19. a, p, and n are used to represent anchor, positive,
and negative samples, respectively; the corresponding labels are denoted by their subscript
i, i + 1, and i + 2. The margin range is highlighted in pink. As defined in Eq. (2.4),
only negative samples within this range can be counted as the semi-hard triplet and used
later for learning. The left graph indicates the conventional method where the embedding
distance is purely based on the extracted features; the right graph takes into consideration
the label distance so that ni+2 is pushed out of the margin range. Consequently, the
triplet model will learn from ni+1 that is semi-hard both embedding-wise and label-wise.

2.3.2 Attack Scheme

The correctly trained triplet model outputs embeddings with a larger distance between
each cluster than the raw inputs. Our attack scheme can be divided into two steps: 1) train
a triplet model and extract the embeddings features for the profiling and attack traces, 2)
launch standard profiling attacks using these embeddings features. A demonstration of
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Figure 2.19: Comparison of two embedding distance calculation methods. Compared
with the Euclidean distance (left), the Hybrid Distance (right) introduces a larger distance
value when the label distance increases.

the attack scheme is shown in Figure 2.20.
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Figure 2.20: Triplet-assisted profiling attack.

Compared with the traditional dimensionality reduction methods such as PCA or au-
toencoders [138, 148, 109], the triplet network is more task-specific: the label information
utilized by the triplet network forces the network to focus on differentiating leakages (or
point of interests), which is directly helpful for the SCA attack. Considering LDA and
SOST, the triplet network combines features in a nonlinear manner, which is beneficial
when the leakage traces are noisy or protected by countermeasures.

Additionally, since it is based on constructing a Probability Density Function (PDF),
a template attack can benefit from using the extracted features as the input. First, the
small triplet embedding size reduces the computation complexity of the template attack.
Second, the triplet network outputs Gaussian-distributed embeddings with a greater inter-
class difference, thus leading to more separated PDFs. As a result, it can help to retrieve
the key with fewer attack traces. Therefore, after training the triplet network, we use the
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extracted embeddings and corresponding labels to perform the template attack. Since our
attack scheme is partially based on deep learning, better neural network tuning will help to
achieve powerful attack performance. Still, with a single model, we demonstrate that our
method is more robust than conventional DL-SCA toward hyperparameter and datasets
changes, thus reducing the bar for launching such attacks. Besides, note that template
attack is only one of many methods that can be used for attack. Still, we believe the
template attack is a more general attack method considering the difficulties of classifying
the leakages protected by countermeasures and tuning the hyperparameters.

2.3.3 Neural Network Architectures

The main body of the triplet network is designed based on the VGG neural network [121].
The design principle from related works [65, 12] is applied to tune the specific hyperpa-
rameters. The neural network tuning is based on the combination of different hyperparam-
eters to reach the best attack performance on all test settings (datasets, leakage models,
noise resilience). The search space is listed in Table 2.4. Note that the architecture of the
triplet model is flexible. In section 2.3.4, we modify different state-of-the-art models to
build triplet networks and reach outstanding performance with minimal training effort.

Hyperparameter Options

Convolution layers 1 to 13 in a step of 1

Convolution size 1 to 128 in a step of 1

Pooling size/stride 2 to 80 in a step of 1

Embedding size 16 to 128 in a step of 16

Learning Rate 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

Margin 0.2 to 1 in a step of 0.2

Loss function RMSProb, Adam

Batch size 32 to 512 in a step of 32

Training epoch 1, 5, 10, 15, 20, 25, 30

Table 2.4: Hyperparameters search space for the triplet network.

Since the goal of the triplet network is to extract useful embeddings from side-channel
leakages, several adjustments were needed. First, the large dense layers and the final clas-
sification layer are replaced with a single embedding (dense) layer as the goal is feature
extraction and not classification. Note that the size of the embeddings layer is essential
for the triplet network: either too large or too small embeddings size may have side ef-
fects on the extracted embeddings, influencing the attack performance (see section 2.3.5
for detailed discussion). We set the size of the embedding to 32 based on the grid search
results (discussion in section 2.3.5). Besides, we use average pooling as it performs better
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for the tested datasets [12, 145]. SeLU is used as the activation function to avoid vanish-
ing and exploding gradient problems [66]. To provide a sufficient number of valid triplets
per batch, the batch size is set to 512 for all experiments. The optimizer is Adam with a
learning rate of 5e-4. The detailed description of the neural network is listed in Table 2.5.

Layer Kernel number/size Pooling stride/size Neurons

Conv+AvgPooling 64/15 15/15 -

Conv+AvgPooling 128/3 2/2 -

Dense - - 32

Table 2.5: Triplet architectures used in the experiments.

To verify that the reported attack performance is due to the proposed attack scheme
and not just to a choice of neural network architecture that happens to suit the evaluated
attack scenarios, the model presented in Table 2.5 is directly used for profiling by adding
one additional prediction layer. As a result, the attack performance becomes significantly
worse than state-of-the-art attack results.

2.3.4 Attack Capability and Perturbation Resilience

This section evaluates our attack scheme from two aspects: side-channel analysis perfor-
mance and triplet hyperparameters’ influence. For ASCAD F and ASCAD R, we enlarge
the input dimension to 4 000 features. We consider the HW, HD (for AES HD), and ID
leakage models. The training epoch is set to one, which requires around 20 seconds of
training time. The detailed discussion about the required number of training epochs is in
section 2.3.5.

To evaluate the attack performance, we report the number of traces required to reach
GE equal to zero, which is denoted as TGE0. TGE0 metric is derived from guessing
entropy, aiming at evaluating the key recovery capacity of profiling models by setting
a limited number of attack traces. Specifically, TGE0 is designed for cases where the
models require fewer traces (than the maximum number of attack traces) to retrieve the
secret key. In this case, even if guessing entropy equals zero for different settings, we can
better estimate the attack performance by evaluating the required number of attack traces
to reach it.

The algorithmic randomness stemming from the weight initialization for neural net-
works could have a significant impact on the attack performance [147]. Besides, simu-
lating noise (section 2.3.4) with different random seeds would cause attack performance
fluctuation. To provide representative results and a fair benchmark, all considered test
scenarios (datasets, leakage models, deep learning models, dimensionality reduction tech-
niques) in the following section are trained/executed and attacked 20 times independently.
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Themedium-performing model is used to represent the attack efficiency in the following
sections.

Attack Capability

The attack performance of triplet attacks is benchmarked with the state-of-the-art MLPs
and CNNs [146, 156, 110, 96] models (SOTAs). Note that those neural networks are
designed for the pre-selected windows of features (700 for ASCAD F and 1 400 for AS-
CAD R). Since our work adjusts their input layers with dimensions 10, the attack perfor-
mance of the modified architectures does not correspond to the different numbers given
in the respective works. Still, we expect targets can still be broken and even reach better
attack performance [79]. The references are kept in the tables for readability.

Besides offering insight into how these networks perform on (much) longer traces,
various dimensionality reduction techniques, such as PCA, LDA, SOST, and autoencoder
(AE) [148] are considered in this section. The feature size is set to be optimal 11. The
extracted features/latent space are then used for the template attack.

The benchmarks for all datasets with the TGE0 metric are shown in Tables 2.6, 2.7,
and 2.8. Here, ’-’ indicates that GE does not reach zero with a given number of attack
traces. The best values are denoted in bold font.

For ASCAD F and ASCAD R, the increased number of input features leads to similar
or even significantly better performance compared to the original papers (SOTA model
from [110] with the ID leakage model now requires only seven traces to break the tar-
get). Still, the proposed attack scheme generates the best performance in four out of five
scenarios with a single model presented in Table 2.5, confirming the generality and trans-
ferability of the triplet model and the attack method. On the other hand, compared with
PCA and AE, the usage of the label information significantly increases the quality of the
extracted features by the triplet network, thus leading to a better attack performance. Al-
though LDA and SOST also consider the labels, the high sensitivity to the embedding
size (i.e., they may only work with a specific embedding size setting), the linear combina-
tion of raw features, and the absence of the mask knowledge [19] could be the reason for
their mediocre performance. Finally, for [96], the hyperparameter space used to generate
ensembles could be non-optimal due to an increased number of input dimensions, thus
leading to unsuccessful attacks.

Besides the results listed in the tables, we verify the generality of the proposed method

10We also evaluate the performance with the pre-selected windows of feature with sizes 700/1 400 to provide
a better comparison with related works.

11We experimentally test multiple feature sizes ranging from 8 to 128. The one with the best attack perfor-
mance is considered to be optimal. The detailed settings for each dataset and leakage model are listed as follows,
and the results for the HW and ID leakage models are separated by ’/’. ASCAD F: PCA=16/16; LDA=8/128;
SOST=32/64; AE=16/16. ASCAD R: PCA=16/16; LDA=8/32; SOST=128/8; AE=16/16. AES HD: PCA=8,
LDA=8; SOST=8; AE=16.
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by varying the input dimension size. Specifically, we attack ASCAD F and ASCAD R
with commonly-used feature settings (700 and 1 400). As a result, for ASCAD F, a me-
dian model requires 353 (HW) and 632 (ID) traces to break the target. For ASCAD R,
the required number of traces for two leakage models are 533 and 1 228. Consequently,
we can observe that more attack traces are required when the input dimension is smaller.
Still, the secret information can be retrieved with one-epoch training.

[156] [146] [110] PCA LDA SOST AE This work

HW 174 225 294 187 - 1 123 239 159

ID 191 160 7 193 - 5 294 183 64

Table 2.6: Benchmark with the ASCAD F dataset.

[96] [146] [110] PCA LDA SOST AE This work

HW - 864 519 416 - - 686 197

ID - 3 144 4 244 577 - - 1 183 188

Table 2.7: Benchmark with the ASCAD R dataset.

[65] [156] 12 PCA LDA SOST AE This work

HD - 4 415 - 19 23 1 860 - 1 768

Table 2.8: Benchmark with the AES HD dataset.

The template attack used as the final stage of triplet attacks could also be switched
to other profiling attack methods. For instance, the trained triplet model can be used
for transfer learning: adapting one or more hidden layers and a prediction layer with
additional training epochs could also break the target. Still, we believe a template attack
represents a robust and straightforward solution. In addition, we also tested the pooled
template attack on features extracted by the triplet network. This technique fails to break
the protected dataset (ASCAD F and ASCAD R) with the given number of attack traces
but performs very well on AES HD (reaches zero GE with around 600 attack traces).
Indeed, pooled template attack can only reach a higher precision estimate if each cluster
has a different mean but the same covariance matrix. The introduction of the masking

12Although using the same profiling model, our attack settings, such as round key and label calculation, are
different from Zaid et al. [156] for AES HD (they assume the subkeys of the last round are all zeros due to the
lack of plaintext and ciphertext). This causes performance variation when compared with the original paper.
Since the intermediate data we used is the real data corresponding to the cryptographic calculation, we suggest
using these results as a reference.
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countermeasure in ASCAD F and ASCAD R would break this assumption, thus leading
to worse attack performance.

Perturbation Resilience

The well-synchronized traces significantly improve the correlation between the interme-
diate data and trace values. Therefore, the alignment of the traces is an essential step for
the side-channel analysis. Two desynchronization levels (50 and 100) were simulated and
tested to show the effect of trace desynchronization. The model is trained for one epoch
for the triplet attack, aligned with the previous section. To counter the added noise, the
kernel size of the first convolution layer and the pooling size/stride of the first pooling
layer is increased to 55 for all test settings based on grid search results. Finally, the meth-
ods that failed in the previous section are excluded from the experiments, as the addition
of noise further increases the attack difficulties.

For AE, we train with noisy-noisy traces pair as our goal is to test the feature extraction
capability of AE. 13Consequently, this method failed in key recovery with all noise levels.

We modify SOTAs from [110, 156] to build triplet models and compare the noise
resilience of conventional deep learning-based method and triplet-based training method.
More specifically, all dense layers were replaced by the embedding layer with a size of
32. The rest of the settings are aligned with previous experiments.

Tables 2.9, 2.10, and 2.11 list the median attack results from 20 independent training.
The attack results for the HW and ID leakage models are separated by ’/’; the corre-
sponding models are referred as the median model. The perturbation in the time domain
significantly reduces the attack performance with the conventional deep learning-based
methods. Meanwhile, since the leakage traces are not perfectly aligned (common in re-
alistic settings), valid features become more difficult to extract with the dimensionality
reduction techniques. On the other hand, with only one-epoch training, the triplet-based
method shows its perturbation resilience: the triplet-based SOTA attacks break the target
in some attack scenarios, while their counterparts failed in all test cases.

In addition, we tested the noise resilience of the triplet attack with a reduced number
of input features for ASCAD F (700) and ASCAD R (1 400). For both ASCAD F and
ASCAD R, except for the desynchronization level 100 and the ID leakage model, the
median model can retrieve the secret information within 10 000 traces. More precisely, for
ASCAD F and desynchronization 50, we require 751/6 097, while for desynchronization
100, we need 2 641/- attack traces. For ASCAD R and desynchronization 50, we need
1 449/8 478 attack traces, and for desynchronization 100, 7 936/- attack traces. Therefore,

13Training with noisy-clean traces pairs (as done in denoising autoencoder approach [148]) may reach better
attack performance. However, this method is not considered here because clean traces are difficult to obtain in
realistic settings.
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we can confirm the superior perturbation resilience of the triplet-based attack method.

Noise [156] 14 [146] [110] PCA SOST Triplet-[110] This work

50 -/- -/- -/- -/- -/- -/2 850 251/191

100 -/- -/- -/- -/- -/- -/- 382/582

Table 2.9: Benchmark with the ASCAD F dataset perturbed with desynchronization.

Noise [146] [110] PCA Triplet-[110] This work

50 -/- -/- -/- 7 805/3 715 2 251/3 385

100 -/- -/- -/- -/- 6 386/9 932

Table 2.10: Benchmark with the ASCAD R dataset perturbed with desynchronization.

Noise [156] LDA SOST Triplet-[156] This work

50 - - - - 4 662

100 - - - - -

Table 2.11: Benchmark with the AES HD dataset perturbed with desynchronization.

2.3.5 Hyperparameter Evaluation

This section concentrates on evaluating several critical hyperparameters for the triplet
network model. Besides better understanding their influence on the attack performance,
we hope the detailed evaluations could serve as guidelines for potential users to design
their triplet models. This section considers the setting where each trace has 4 000 features
for ASCAD both versions and 1 250 for AES HD.

Loss Function

Recall that the proposed loss function introduces a new hyperparameter α. To better
understand the effect of this hyperparameter, we tune α from 0.1 to 1 in a step of 0.1
and attack all considered datasets. Note that the Hybrid Distance is equivalent to the
Euclidean distance when α equals one. The rest of the training settings are aligned with
the previous sections.

14For consistency, the same model from [156] used in the previous benchmarks is considered here as well.
In addition, we have also the models optimized for different levels of desynchronization. As a result, it reaches
comparable performance with our attack method.
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(a) ASCAD F. (b) ASCAD R. (c) AES HD.

Figure 2.21: The effect of α.

The attack results for three datasets are shown in Figure 2.21. First, we can confirm
that introducing α and Hybrid Distance helps increase the attack performance. On the
other hand, the optimal α varies for each dataset: the best α is 0.9 for AES HD, while
this value drops to 0.1 for the other two datasets. For AES HD, the attack performance
becomes worse than the default distance metric (α = 1) when α is below 0.6. Indeed,
although smaller α strengthens the influence of the label distance, it reduces the number of
valid triplets to be learned. As a result, it causes quick overfitting (ASCAD both versions)
or the degradation of attack performance (AES HD). Note that each alpha parameter is
averaged from 20 independent tests, and we expect limited performance fluctuation even
with a greater resolution of the tested α value.

Next, we benchmark the attack performance of the proposed loss function with some
other loss functions used for similarity learning. More specifically, we considered Con-
trastive loss [52], Lifted Structure loss [89], Pinball loss [127], and Hard triplet loss.
Besides, the Semi-hard triplet loss with the default distance metric (Euclidean distance)
is included in this benchmark. Loss functions that contain hyperparameters are tuned to
be optimal 15. The model and training hyperparameters are kept the same.

Contrastive Lifted Structure Pinball Hard Semi-hard This work

ASCAD F 4174/230 744/324 432/332 -/8600 296/124 159/64

ASCAD R 5376/904 999/1457 651/983 -/- 775/713 197/188

AES HD 3 849 3 486 3 279 - 2 910 1 768

Table 2.12: Benchmark different loss functions.

The attack results are shown in Table 2.12. Although the model trained with almost

15We experimentally test multiple τ (for Pinball loss) and margin (for the rest except the Hard triplet loss)
ranging from 0.2 to 1.0. The one with the best attack performance is considered to be optimal. The detailed
settings for each loss function and leakage model are listed as follows, and the results for the HW and ID
leakage models are separated by ’/’. ASCAD F: Contrastive=1.0/0.2; Lifted Structure: 0.4/0.2; Pinball: 0.2/0.2.
ASCAD R: Contrastive=1.0/0.6; Lifted Structure: 0.8/0.6; Pinball: 1.0/0.4. AES HD: Contrastive=0.8; Lifted
Structure: 0.8; Pinball: 1.0.
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all loss functions can generate features that lead to zero guessing entropy within the given
number of attack traces, our proposed loss function outperforms all considered loss func-
tions in all attack scenarios. Specifically, one can observe a significant improvement in
the attack performance from the Hard triplet loss to the Semi-hard triplet loss, indicating
the importance of learning from the semi-hard triplets. On top of that, besides the em-
bedding distance, we introduce label distance in the distance metric calculation. With the
help of the Hybrid Distance metric proposed in this section, our loss function reaches the
best attack performance. The attack performance with other loss functions could increase
with more training epochs or profiling traces, but the computation complexity is increased
as a trade-off.

Embedding Size

The embedding size directly impacts the template attack performance as it determines
the dimension of the extracted features. In this section, we tune this hyperparameter and
analyze its effect on the attack performance. The tuning range is from 16 to 128 in a
step of 16. We set the maximal embedding size to 128, as there are only around 140
measurements for the least represented class for the ASCAD dataset, so higher values
would trigger a singular matrix problem, and the template attack would fail.

The embedding tuning results are shown in Figure 2.22. From the results, a larger
embedding size could lead to worse attack performance. Indeed, the additional features
introduced by a larger embedding size could harm the overall attack performance as they
may contain noise learned from the irrelevant raw features. Moreover, more embedding
features would either dilute the features extracted by the triplet model or require more
training effort, thus reducing the attack performance.

(a) ASCAD F. (b) ASCAD R. (c) AES HD.

Figure 2.22: The effect of embedding size.

When evaluating smaller embedding sizes, size 32 performs comparable (Figure 2.22b)
or even better than size 16. As expected, an overly small embedding size would not have
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enough dimensions to represent the characteristic of the raw features. Although the opti-
mal embedding size would be different when testing other datasets, we believe the rela-
tionship between the embedding size and attack performance follows the observations in
this section. Since it is common to conduct feature engineering when running the template
attack, we do not consider the effort required to tune the embedding size more substantial.

Triplet Margin

In this section, we vary the triplet margin and investigate its influence on the attack perfor-
mance. The test settings are the same as in the previous sections. The minimum margin

is set to be 0.2, which is aligned with [118].
The experimental results are shown in Figure 2.23. From the results, the increase

of the margin value could slightly degrade the attack performance in some cases (Fig-
ure 2.23a). When the margin becomes too large, since too many simple triplets are in-
volved in training, the model can easily converge to the local optima and stop learning.
Still, compared with the effect of the size of the embedding shown in Figure 2.22, the
margin has a limited effect on the attack performance.

(a) ASCAD F. (b) ASCAD R. (c) AES HD.

Figure 2.23: The effect of margin.

Training Epochs

Accuracy is one of the core metrics to evaluate a deep learning model in the deep learn-
ing domain. Most of the individual examples must be correctly classified to reach high
accuracy. As a consequence, when using the triplet network to extract the features, a
high training effort is required to extract meaningful embeddings (1 000 to 2 000 CPU
hours according to to [118]). This section explores the influence of the number of training
epochs on attack performance. Same as in the previous sections, the results are averaged
over 20 independently trained models. As mentioned, each epoch training requires around
20 seconds with a single GPU.

As shown in Figure 2.24, more training epochs lead to worse attack performance for
ASCAD F and ASCAD R, indicating they suffer more from overfitting. Indeed, although
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the introduction of α in the distance metric increases the difficulties of the selected triplets,
it reduces the number of valid triplets that can be used for learning. If the profiling traces
are limited or well-protected by countermeasures, a too-small alpha could significantly
contribute to the observed effect. The most straightforward approach to prevent/delay
such an effect is to increase the pooling size/stride of the triplet model. The triplet model
could focus on more general features from input. As a demonstration, we increase the
pooling size/stride of the first pooling layer from 15 to 60 in Table 2.5. As shown in
Figure 2.25, although overfitting still occurs, the performance remains stable with more
training epochs without a performance loss.

(a) ASCAD F. (b) ASCAD R. (c) AES HD.

Figure 2.24: The effect of training epoch.

(a) ASCAD F. (b) ASCAD R. (c) AES HD.

Figure 2.25: The effect of training epoch with the increased pooling size and stride.

Compared with other deep learning attacks that generally require more than 50 train-
ing epochs [12, 65, 155], our triplet-based method dramatically speeds up the feature
learning process. Indeed, the DL-based SCA attacks aim at training an efficient classi-
fier that should work well in both efficient feature extraction and precise classification.
To reach both goals, careful hyperparameter tuning and an increased training effort are
required. On the other hand, the triplet-based method splits the feature extraction and
classification into separate steps (same as the conventional profiling SCA attack method).
Therefore, the task of the triplet model is much simpler and straightforward: transfer
and combine raw features that can maximize the embedding distance between differ-
ent clusters. The triplet model can extract meaningful features more efficiently with the
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SCA-optimized distance metric. For the same reason, the hyperparameter’s flexibility in
designing a triplet model is significantly increased.

Training Set Size

Similar to other deep learning-based methods, the triplet model can require large quan-
tities of data to perform well. However, the training sets for the triplet network have
more constraints: 1) a single training set for a triplet network consists of three individual
samples (anchor, positive, and negative), and 2) the selection of the positive and negative
samples is limited by the margin value. Following this, the triplet network training may
require more traces than the conventional deep learning attacks. To investigate the relation
between the number of training traces and the attack performance, we vary the number
of the profiling traces from 10 000 to 50 000 with a step of 5 000 traces. The results are
shown in Figure 2.26. Note that for the ID leakage model, due to the lack of training
data, training with 10 000 traces always leads to an unsuccessful template attack (singular
matrix), so the results are not presented.

(a) ASCAD F. (b) ASCAD R. (c) AES HD.

Figure 2.26: The effect of training set size.

In all test scenarios, more training traces lead to better attack performance. Besides, a
significant performance leap can be observed when the number of training traces increases
from 10 000 to 20 000 for the HW leakage model. For the HD leakage model, this trend
extends to 25 000 profiling traces. Indeed, with a 10 000 training set, the smallest cluster
has very limited samples (i.e., 35 for HW and 20 for ID). Knowing that not all of them can
form a triplet due to triplet margin restriction, the triplet network cannot generalize well
for the minority clusters, thus leading to poor performance or even attack failure for both
leakage models. On the other hand, the performance increases slower when the traces
are above 20 000, indicating that the triplet model reaches its maximum feature extraction
capability.

2.3.6 What Can We Learn?

Based on the conducted experiments, we provide several general observations:
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• When attacking the original datasets (without noise addition), with a single deep
learning model, triplet-assisted template attack performs comparably to or better
than the state-of-the-art models from the literature that consider pre-selected win-
dows of features.

• With a single deep learning model, triplet-assisted template attacks can be more
resilient to noise in horizontal and vertical dimensions than deep learning-based
attacks and commonly used feature engineering techniques.

• The optimal α values are different for different datasets, but starting with a larger
value (i.e., 0.9) would be a good starting point.

• The newly proposed Hybrid Distance helps the semi-hard loss function to outper-
form other loss functions for SCA tasks.

• The embedding size has a dominant influence on the attack performance. Either
too large or too small an embedding size would lead to the degradation of the attack
performance.

• Increasing margin will increase the triplet loss and provide additional capability
to the triplet network to learn from the data. However, since the semi-hard triplet
selection is also based on the margin value (the negatives lie inside the margin),
a greater margin would also include easier triplets being formed. In general, the
triplet network still has a high tolerance towards the variation of the margin value.

• The number of training traces has a significant impact on the attack performance.
• The triplet network is highly efficient in extracting leakage-related features. One-

epoch training is sufficient to train a triplet network for the evaluated datasets.

2.4 Conclusions

In this chapter, we propose two methods for leakage pre-processing. First, a convolu-
tional autoencoder is introduced to remove the noise and countermeasure from the leak-
age traces. We consider different types of noise and countermeasures: Gaussian noise,
uniform noise, desynchronization, random delay interrupts, clock jitters, and shuffling.
Additionally, we simulate the scenario where all noise types and countermeasures are
combined into the measurements. We consider two types of leakage traces (one encrypted
with fixed and another with random keys) and three attacks (CNN, MLP, and TA). It is
interesting to note that in our experiments, adding noise to the input of CNN does not
provide as beneficial results as reported in [65]. Still, note that our CNN architecture is
much simpler and does not work as well as the architecture presented by Kim et al. Con-
sequently, it is not surprising that noise addition does not work as well and requires less
noise at the input. The results show that the proposed CAE can remove/reduce the noise,
determine the underlying ground truth, and significantly improve attack performance. Our
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approach is compelling in the white-box settings, but we demonstrate it has the potential
also in black-box settings. We believe it is interesting to consider denoising autoencoders
as a generic denoiser technique since our results indicate it gives good results while it is
easy to apply. Our results show that autoencoders reliably remove noise/countermeasures
even if the measurements do not contain all the noise sources the autoencoder used in the
training process.

Next, we investigate how to extract useful features from side-channel leakages for ef-
ficient template attacks. To accomplish this, we use the concept of triplet networks that
have the task of finding a well-performing embedding based on the input traces. We con-
duct experiments on three publicly available datasets and three leakage models, showing
that our deep learning-assisted template attack can effectively break targets (even with
the addition of noise) with significantly reduced training effort. This result is especially
significant as we compared it with several deep learning architectures that were precisely
tuned for different experimental settings. Additionally, we show that our approach is rel-
atively resilient to desynchronization. Finally, we systematically investigate the influence
of multiple hyperparameters in the proposed attack scheme, which could be helpful in
future research.

For future works, we expect denoising autoencoder could help with problems like
portability [15]. There, the biggest obstacle stems from the variance among different de-
vices. These variances introduce the trace variation, making the attack model generated
for one device challenging to transfer to another. With the help of an autoencoder, this
problem can be solved by considering the trace variation as noise and using a denoising
autoencoder to remove it. This setting is similar to the scenario with added Gaussian
noise, which indicates that the CAE approach should be beneficial in portability. Ad-
ditionally, the trained denoising autoencoder could be used for transfer learning. Then,
the encoder part of the autoencoder could be further trained and used to launch attacks.
Finally, we plan to investigate whether a denoising autoencoder could also work for the
masking countermeasures. In terms of similarity learning, an possible research direc-
tion is to explore the combinations of triplet networks with more straightforward machine
learning techniques like the random forest or support vector machines. Besides, it would
be interesting to see whether continuous label encoding would be beneficial for the pro-
posed method.



Chapter 3

Deep Learning Hyperparameters

3.1 Introduction

Deep learning-based side-channel analysis (SCA) represents a powerful option for pro-
filing SCA. The results in just a few years showed the potential of such an approach,
see, e.g., [81, 65, 156]. This potential is so significant that most of the SCA community
turned away from more straightforward machine learning techniques, representing the
go-to approaches only a few years ago. 1 Intuitively, as mentioned in chapter 1, we can
find two main reasons for such popularity of deep learning-based SCA 1) strong perfor-
mance: breaking targets protected even with countermeasures, 2) capability of handling
raw features [81, 65]. However, everything has its own advantages and disadvantages.
Hyperparameter tuning becomes one of the most challenging tasks when applying the
deep learning-based approach in SCA.

It is worth noting that hyperparameter tuning can differentiate a machine learning-
based SCA that performs “only” satisfactorily from one that breaks a target in a few
measurements or even in a single measurement. In previous years, when more straight-
forward machine learning techniques were still commonly used in SCA, hyperparameter
tuning was an essential factor in the attack’s success, but not the only one. For instance,
feature engineering (e.g., dimensionality reduction like PCA [4] and LDA [126]) played
an equally important role as hyperparameter tuning in mounting a successful attack. With
deep learning, due to the reduced requirement of pre-processing and feature engineer-
ing, the security evaluator’s (attacker’s) attention shifted toward hyperparameter tuning
as the core task for a successful deep learning-based side-channel analysis. Nevertheless,
suppose one of the assumptions in the profiling phase involves an adversary restricted in

1In the last few years, there appears to be only a handful of works investigating profiling SCA while not
(exclusively) using deep learning.

63
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terms of measurements. In that case, hyperparameter tuning plays a significant role in se-
curity evaluations by allowing the discovery of models that can break targets with fewer
side-channel traces [102].

The problem of hyperparameter tuning in SCA is a difficult one. First, deep learning
architectures have many hyperparameters to tune, so it is impossible to check all options.
Even a grid search becomes difficult for larger neural network models and datasets. In
SCA, we encounter additional difficulties as we do not know what hyperparameters influ-
ence the attack performance compared to those that show little to no importance. Second,
in general, we do not know what would be the best hyperparameter tuning strategy for
every attack setting. Considering the number of different datasets, leakage models, neural
network architectures, and hyperparameter options, it is evident that an exhaustive search
is not an option. Although random search and grid search with limited searching space
offer good performance in some settings, we are still left wondering how far those ar-
chitectures are from the optimal ones. Finally, many SCA evaluators are not experts in
machine learning, and for them, it is not easy to recognize the essential hyperparameters
without significant experience.

When considering machine learning and profiling SCA, several works discuss hy-
perparameter tuning, e.g., [12, 96]. While those works manage to (partially) answer the
question of better-performing neural network architectures for specific settings, they do
not provide a methodology for tuning the hyperparameters. Still, by recognizing the less
important hyperparameters, those works indirectly help make more efficient hyperparam-
eter tuning. A few papers discuss how to provide a more structured way to build neural
networks for SCA. More precisely, those works offer methodologies to construct neural
network architectures for SCA [156, 144]. Unfortunately, while such methodologies rep-
resent a good start, they are far from perfect as they require knowledge about the dataset
to be attacked, and they are not easy to extend to other datasets.

This chapter offers hyperparameter tuning methods from different aspects. In sec-
tion 3.2 and section 3.3, we introduce two automatic hyperparameter tuning methods
based on reinforcement learning and Bayesian optimization. For reinforcement learn-
ing 2, we use a well-known paradigm called Q-Learning and devise SCA-oriented reward
functions. Our analysis includes 1) the goal of finding top-performing convolutional neu-
ral networks (CNNs) and 2) CNNs that are small (in terms of trainable parameters) but
exhibit strong attack performance. For the Bayesian optimization-based approach 3, we
develop a custom SCA framework supporting both machine learning and SCA metrics.
We optimize neural networks (multilayer perceptron and convolutional neural networks)

2The source code is available in the Github https://github.com/AISyLab/Reinforcement-Learning-for-SCA.
3The source code is available in the Github https://github.com/AISyLab/AutoSCA.

https://github.com/AISyLab/Reinforcement-Learning-for-SCA
https://github.com/AISyLab/AutoSCA
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to perform excellently for several commonly used SCA datasets. By doing this, we of-
fer a simple yet powerful approach that results in high-performing neural networks for
SCA that do not require knowledge about the datasets to be attacked. Moreover, since
our framework offers automated hyperparameter tuning, it is easy to switch to different
datasets.

After introducing the automatic tuning frameworks, we evaluate specific hyperparam-
eters and suggest optimal selections in different attack scenarios. In section 3.4, we focus
on the pooling layer of CNNs. We experimentally investigate the influence of a pooling
layer’s hyperparameter variation on the attack performance, then show that pooling hyper-
parameter tuning is essential and can result in significantly different attack performance
even when not considering other layers or hyperparameters. We also give guidelines on
how to choose the hyperparameters in different cases. In section 3.5, we design a novel
loss function, Focal Loss Ratio (FLR), that enables deep learning models to learn from
noisy or imbalanced data efficiently 4. As FLR requires tuning of additional hyperparam-
eters, we discuss the appropriate hyperparameter tuning strategies. Finally, we system-
atically evaluate and benchmark commonly used and recently proposed SCA-based loss
functions.

3.2 Model Tuning with Reinforcement Learning

Reinforcement learning attempts to teach an agent how to perform a task by letting the
agent experiment and experience the environment, maximizing some reward signals. It
differs from supervised machine learning, where the algorithm learns from examples la-
beled with the correct answers. An advantage of reinforcement learning over supervised
machine learning is that the reward signal can be constructed without prior knowledge
of the correct course of action, which is especially useful if such a dataset does not exist
or is infeasible to obtain. While, at a glance, reinforcement learning might seem similar
to unsupervised machine learning, they are decidedly different. Unsupervised machine
learning attempts to find some (hidden) structure within a dataset, whereas finding struc-
ture in data is not a goal in reinforcement learning [128]. Instead, reinforcement learning
aims to teach an agent how to perform a task through rewards and experimentation. 5

In reinforcement learning, there are two main categories of algorithms: value-based
and policy-based. Value-based algorithms try to approximate or find the value function
that assigns state-action pairs a reward value. These reward values can then be used in a
policy. Policy-based algorithms, however, directly try to find this optimal policy.

4The source code is available in the Github https://github.com/AISyLab/focal loss.
5This section is based on the paper: Reinforcement learning for hyperparameter tuning in deep learning-

based side-channel analysis. Rijsdijk, J., Wu, L., Perin, G., & Picek, S. (2021). IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 677-707.

https://github.com/AISyLab/focal_loss
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Most reinforcement learning algorithms are centered around estimating value func-
tions, but this is not a strict requirement for reinforcement learning. For example, methods
such as genetic algorithms, genetic programming, and simulated annealing can be used
for reinforcement learning without ever estimating value functions [128]. In this research,
we only focus on Q-Learning, which belongs to the value estimation category.

Q-Learning was first introduced in 1989 by Chris Watkins [141], and it aims not only
to learn from the outcome of a set of state-action transitions but to learn from each of them
individually. Q-learning is a value-based algorithm, and it tries to estimate q∗(s, a), the
reward of taking an action a in a state s under the optimal policy, by iteratively updating
its stored q-value estimations using Eq. (3.1). The most basic form of Q-learning stores
these q-value estimations as a simple lookup table and initializes them with some chosen
value or method. This form of Q-learning is also called Tabular Q-learning.

Environment

Agent

𝐴𝐴𝑡𝑡
𝑅𝑅𝑡𝑡+1

𝑆𝑆𝑡𝑡

𝑆𝑆𝑡𝑡+1

𝑅𝑅𝑡𝑡

Figure 3.1: The q-learning concept where an agent chooses an action At, based on the
current state St, which affects the environment. This action is then given a reward Rt+1

and leads to state St+1. Eq. (3.1) is used to incorporate this reward into the saved reward
for the current state Rt, and the cycle starts again.

The algorithm is illustrated in Figure 3.1, and the function used to update the current
q-value mappings based on the received reward is defined as follows:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
, (3.1)

where St, At are the state and action at time t, and Q(St, At) is the current expected
reward for taking action At in state St. α and γ are the q-learning rate and discount
factor, which are both hyperparameters of the Q-Learning algorithm. The q-learning rate
determines how quickly new information is learned, while the discount factor determines
how much value we assign to short-term versus long-term rewards. Rt+1 is the currently
observed reward for having taken actionAt in state St. maxaQ(St+1, a) is the maximum
of the expected reward of all the actions a that can be taken in state St+1.
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3.2.1 The Framework

Baker et al. introduced MetaQNN, a meta-modeling algorithm, which uses reinforcement
learning to automatically generate high-performing CNN architectures in the image clas-
sification domain [6]. The algorithm considers the task of using Q-Learning in training
an agent at the task of sequentially choosing neural network layers and their hyperpa-
rameters. When reaching a termination state (either a Softmax or global average pooling
layer), the MetaQNN algorithm evaluates the generated neural network’s performance
and, using accuracy as the reward, uses Q-Learning to adjust the expected reward of the
choices made during the neural network generation.

Applying MetaQNN to side-channel analysis is not as simple as simply changing
the dataset to side-channel traces and using its accuracy as the reward function. First,
conventional machine learning metrics, and especially accuracy, are not a good metric
for assessing neural network performance in the SCA domain [100]. Second, MetaQNN
uses a fixed α (learning rate) for Q-Learning, while using a learning rate schedule where
α decreases either linearly or polynomially is the normal practice [38]. Finally, one of
the shortcomings of MetaQNN is that it requires either a tremendous amount of time
or computing resources to properly explore the neural network search space when we
factor in the combination of all the types of layers, their respective parameters, and neural
network depths possible. We address this by guiding our search and limiting the search
space based on choices motivated by the current state-of-the-art SCA research.

Reward Functions

To allow MetaQNN to be used for SCA neural network generation, we use a more com-
plicated reward function in place of just using the network’s accuracy on the validation
dataset. This reward function incorporates the guessing entropy and is composed of four
metrics: 1) t′: the percentage of traces required to get GE to 0 out of the fixed maximum
attack set size; 2) GE′

10: the GE value using 10% of the attack traces; 3) GE′
50: the GE

value using 50% of the attack traces, and 4) the accuracy of the network on the valida-
tion set. The formal definition of the first three metrics are expressed in Eq. (3.2), (3.3),
and (3.4).

t′ =
tmax −min(tmax, QtGE

)

tmax
. (3.2)

GE′
10 =

128−min(GE10, 128)

128
. (3.3)

GE′
50 =

128−min(GE50, 128)

128
. (3.4)
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Note that the first three metrics of the reward function are derived from the GE metric,
aiming to reward neural network architectures based on their attack performance using
the configured number of traces. Specifically, the second and third metrics are designed
for cases that the models that require more traces (than the maximum attack traces) to
retrieve the secret key. Our reward function in this approach will adequately reward even
a model that failed to make GE converge to zero. Furthermore, by including the second
and third metrics together in the reward function, the reward function considers the GE
convergence, which would better estimate the attack performance of a network. In terms
of the fourth metric a (validation accuracy), although related works, e.g., [100], indicates a
low correlation between validation accuracy and success of an attack, a higher validation
accuracy could still mean a lower number of traces to reach GE of 0. Therefore, the
validation accuracy is added to the reward function. This is especially true if considering
the ID leakage model, or reaching a high validation accuracy, meaning that the network
classifies correctly. Combining these four metrics, we define the reward function as in
Eq. (3.5), which then gives us the total reward between 0 and 1, since each individual
metric is also defined to be a value between 0 and 1. To better reward the model that can
retrieve the secret key with fewer traces, larger weights are set on t′ and GE′

10. We note
that the derived reward function is based on significant experimental results lasting for
months. Although it is possible to improve the reward function for a specific dataset and
a straightforward approach is to tune each metric’s weight, a reward function working for
different datasets and leakage models better than the one we found should be nontrivial to
obtain. Furthermore, we do not claim that the reward function we use is optimal. Rather,
we experimentally confirm it gives good results for various experimental settings.

R =
t′ +GE′

10 + 0.5×GE′
50 + 0.5× a

3
. (3.5)

Neural networks with fewer trainable parameters generally take less time and traces to
train. To find small but attack-efficient neural networks, we design an additional reward
function. Therefore, the reward function shown in Eq. (3.5) is adapted with a new metric
defined in Eq. (3.6).

p′ =
max(0, pmax − p)

pmax
, (3.6)

where pmax is defined as a configurable maximum amount of trainable parameters to
reward and p is the number of trainable parameters in the neural network.

Combining Eq. (3.5) and 3.6 gives us a modified reward function R′ as denoted in
Eq. (3.7):

R′ =
t′ +GE′

10 + 0.5×GE′
50 + 0.5× a+ p′

4
. (3.7)
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∗†
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∗†

†

if fc layers < max fc ‡

Figure 3.2: The original Markov Decision Process for generating a CNN architecture in
MetaQNN.

To distinguish the reward function used for the experiments, we denote experiments
using the small reward function (R′) as defined in Eq. (3.7) as RS experiments. Those
denoted as regular experiments or without any indication make use of the reward function
(R) as defined in Eq. (3.5). To understand how these reward functions are incorporated
into the main Q-learning algorithm, see Fig. 3.1 and Eq. (3.1).

Q-Learning Learning Rate

Theoretically, Q-Learning converges to the optimal policy with probability one under
reasonable conditions on the learning rates and the Markovian environment [140]. Fur-
thermore, when using a polynomial learning rate α = 1/tω with ω ∈ (1/2, 1) and t
being the Q-Learning epoch, this convergence is polynomial [38]. Even-Dar et al. ex-
perimentally found an ω of approximately 0.85 to be optimal across multiple different
Markov Decision Processes, which is within their theoretical optimal value range. There-
fore, this is also the value we use for all experiments, giving us a learning rate schedule
of α = 1/t0.85.

Markov Decision Process Definition and Search Space

The actions in deciding neural network layers and their respective parameters are mod-
eled as a Markov Decision Process (MDP). The original MDP used by Baker et al. can
be found in Figure 3.2 [6] and the version used in our experiments in Figure 3.3. In both
figures, the actions in the process are the addition of specific layers to the neural network
being generated. ∗Only allows transitions to layers with a smaller size than the current
representation size. ‡max fc was set to three in Baker et al. [6], which is also consis-
tent with the state-of-the-art SCA results and helps keep the environment size down. In
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Pool GAP
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∗

if fc layers < max fc ‡

Figure 3.3: Our Markov Decision Process for generating a CNN architecture.

Figure 3.2, †Only available if the current layer depth is smaller than the maximum con-
figured. In Figure 3.3, †Only available if the transition marked with ∗ is not available due
to the current representation size.

The first difference is that we introduce the agent’s option to select a Batch Nor-
malization layer between a convolutional and pooling layer, making a network converge
faster and more stable by re-centering and re-scaling the inputs [62]. Another difference
is that while in the original MDP, the agent can choose to transition to a SoftMax or
GAP (Global Average Pooling) layer from any of the earlier layer states, we opt for the
VGG-like approach as used more commonly in SCA [65, 12, 156]. This means that we
prefer blocks of Convolutional and Pooling layers, only transitioning to fully-connected
layers and SoftMax layer when in a pooling layer or when a transition from a batch nor-
malization layer to a pooling layer is no longer possible due to the current representation
size.6 There is an option to transition from a convolutional layer to a GAP layer as an
alternative to a Pool or Flatten layer combination. Another addition is the Flatten layer
found in current state-of-the-art SCA CNNs as a transition between convolutional blocks
and fully-connected layers. The hyperparameter search space is listed in Table 3.1. In
summary, compared to the original MDP, our new MDP is customized for SCA based on
recent research results. Still, this does not mean it is not possible to use the original MDP
or that it would necessarily result in architectures performing poorly. Rather, we consider
this as a design choice to limit the search space for reinforcement learning.

3.2.2 Experimental Results

To assess the SCA performance, we use guessing entropy, where we average 100 inde-
pendent attacks for guessing entropy calculation. Additionally, we attack a single key
byte only (which is properly denoted as the partial guessing entropy), but we denote it as

6The representation size is similar to the feature size of a trace. The only difference is that the size no longer
directly corresponds to the trace features but rather to the intermediate representation of the trace in the CNN.
Therefore, this representation’s size is called the representation size, which varies throughout a CNN based on
the layer parameters.
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Hyperparameter Option

Maximum Total Layers 14

Maximum Fully Connected Layers 3

Fully Connected Layer Size [2, 4, 10, 15, 20, 30]

Convolutional Padding Type SAME

Convolutional Layer Depth [2, 4, 8, 16, 32, 64, 128]

Convolutional Layer Kernel Size [1, 2, 3, 25, 50, 75, 100]

Convolutional Layer Stride 1

Pooling Layer Filter Size [2, 4, 7, 25, 50, 75, 100]

Pooling Layer Stride [2, 4, 7, 25, 50, 75, 100]

SoftMax Initializer Glorot Uniform

Initializer for other layers He Uniform

Activation function SeLU

Table 3.1: Hyperparameters for the neural network generation and hyperparameter op-
tions for the generated neural networks used for all experiments.

guessing entropy for simplicity.

To assess the performance of the Q-Learning agent, we compare the average rewards
per ε 7 and the rolling average of the reward with the expectation, from the principles of
Q-Learning, that the average obtained reward increases as the agent improves in selecting
neural network architectures suitable for SCA as ε reduces, and the agent starts exploiting.

In terms of computation complexity, eight CPUs and two NVIDIA GTX 1080 Ti
graphics processing units (GPUs) (with 11 Gigabytes of GPU memory and 3 584 GPU
cores each) are used for each experiment. The memory assigned for each task highly
depends on the dataset to be tested. On average, we used 20GB of memory for an ex-
periment. All of the experiments are implemented with the TensorFlow [1] computing
framework and Keras deep learning framework [28]. For the time consumption, since
more than 2 500 models are examined, four days on average are required to complete the
search process. More precisely, we generate 2 700 unique CNNs due to the epsilon-greedy
schedule inherited from the MetaQNN paper.

Note that this section does not consider multilayer perceptron architectures despite
being commonly used in SCA. We opted for this approach as reinforcement learning is
computationally expensive, and results from related works indicate that random search in
pre-defined ranges or grid search gives good results for MLP [100, 96, 146]. Furthermore,
Bayesian optimization produced top-performing MLP architectures as reported by Wu et

7ε schedule for all experiments. A ε of 1.0 means the network was generated completely randomly, while
an ε of 0.1 means that the network was generated while choosing random actions 10% of the time.
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al. [146].

ASCAD Fixed Key Dataset

Figure 3.4 depicts the scatter plot results for the HW and ID leakage models, regular
and RS reward. For all the experiments, the training batch size is fixed to 50. Notice
the red lines that depict the placement of the state-of-the-art model [156] concerning
the attack performance and the number of trainable parameters. The corresponding re-
ward value is computed by the Q-Learning, using numbers obtained with their publicly
available code. The variation in the reward values comes from using different reward
equations and leakage models. All dots in the lower right quadrant depict neural network
architectures that are smaller and better performing than state-of-the-art. First, we can
observe that most of the architectures are larger or worse performing than state-of-the-art.
Naturally, this is to be expected as our reinforcement learning framework starts with ran-
dom architectures. 8 At the same time, for all settings, there are dots in the lower right
quadrant, which indicates that we managed to find better-performing architectures than in
related works. Notice that many architectures are significantly larger when not including
the number of trainable parameters in the reward function than those from related work.
Interestingly, small architectures also result in more highly-fit architectures, suggesting
that we do not require large architectures to break this target. Besides, in comparison
with random search, the corresponding outcomes are practically equal to yellow dots. As
mentioned, the performance of the random search is highly dependent on the pre-defined
search space. As shown in Figure 3.4, although there are cases where random search ob-
tains good results, the unstable searching performance constrained by other factors makes
it a less preferable searching method.

Notice that we also report the time required to find the neural network models, i.e.,
for reinforcement learning to finish the process. For this dataset, the time is around 100
hours, slightly more than four days of the experiment running (per scenario). It is difficult
to give more precise numbers as at the beginning of the process, neural networks vary
more in size (and performance), while later in the process, neural networks are more
“similar”. This discrepancy between the neural networks at the beginning and end of the
reinforcement learning process is especially pronounced for theRS setting, as final neural
networks that are also optimized for size tend to be significantly smaller (thus, faster) than
those evaluated at the beginning of the process.

Next, in Tables 3.2 and 3.3, we provide a comparison of the best-obtained architec-
tures in this section with results from related works for the HW and ID leakage models,

8We start with random architectures to generalize our method’s usages in different datasets, allowing the
reinforcement learning process to investigate less intuitive hyperparameter combinations. If we start with state-
of-the-art architectures, it can easily happen to get stuck there as it would be difficult to find architectures that
improve over them.



3.2 Model Tuning with Reinforcement Learning 73

(a) CNN ASCAD F HW (100 hours). (b) CNN ASCAD F ID (105 hours).

(c) CNN ASCAD F HW (RS) (97 hours). (d) CNN ASCAD F ID (RS) (102 hours).

Figure 3.4: An overview of the number of trainable parameters, reward, the total search
time, and the ε a neural network was first generated for the ASCAD F dataset experi-
ments.

respectively. N/A denotes that the related work does not report on the specific value.
The value QtGE

denotes the number of attack traces that are required to reach GE of
0. Since [156] provides results for the ID leakage model only, the publicly available ID
neural network models were adapted to work for the HW leakage model by changing the
number of output classes. We note that this approach is not completely “fair” toward the
architectures from [156], but it represents the best option for the comparison. Notice that
for the HW leakage model, we manage to find smaller and better-performing architectures
than [156], regardless of whether we also include the size in the reward function. [146]
uses Bayesian optimization and reaches results comparable to our setting while the neural
network size is 240 times bigger. The best performing and the smallest network is ob-
tained with reinforcement learning (906 traces to reach GE of 0, and having only 5 566
trainable parameters). We do note that it is not fully fair to compare [146] with regards
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Metric [156] [146] Best CNN Best CNN (RS)

Complexity 14 235 1 336 753 8 480 5 566

Traces to reach GE = 1 1 346 965 1 246 906

Table 3.2: Comparison of the top generated CNNs for the ASCAD F HW leakage model
experiments with the current state-of-the-art.

Metric [156] [144] [146] Best CNN Best CNN (RS)

Complexity 16 960 6 436 3 510 424 79 439 1 282

Traces to reach GE = 1 191 ≈ 200 155 202 242

Table 3.3: Comparison of the top generated CNNs for the ASCAD F ID leakage model
experiments with the current state-of-the-art.

to the network size, as this is a constraint not considered as a part of their objective func-
tion. For the ID leakage model, our results are not so good: Zaid et al. [156], Wouters et
al. [144], and Wu et al. [146] reach better performance (especially considering our result
where we do not optimize for network size). Still, our best CNN (RS) is significantly
smaller than the counterparts, while the performance difference is not so pronounced.
Note that [144] and our best small architecture has similar performance while our net-
work is five times smaller. We believe the reinforcement learning results could be easily
improved if taking more human expertise into account. Indeed, as related works indicate
very small architectures performing well, we could constrain the search space size further.

In Figure 3.5, we depict the GE results for our best-obtained models for both leakage
models and versions of the reward function for ASCAD with the fixed key. There is
almost no difference between the two models for the HW leakage model, indicating that
reducing the model size did not damage the model performance. The regular reward for
the ID leakage model brings somewhat faster GE convergence when considering small
attack trace set sizes. The GE difference between Table 3.3 and Figure 3.5 comes from
the random initialization of the best model’s weights before retraining and from the level
of detail present in the GE graph, which also applies for the experiments on the other
dataset.

In Figure 3.6, we show the average reward per epsilon and the rolling average of the
reward over 50 iterations, where at each iteration, we generate and evaluate a neural net-
work architecture. The blue line indicates the rolling average of the Q-Learning reward
for 50 iterations, where at each iteration, we generate and evaluate a neural network ar-
chitecture. The bars in the graph indicate the average Q-Learning reward for all neural
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Figure 3.5: Guessing entropy for the ASCAD F dataset.

network architectures generated during that ε. In this figure, we observe three different be-
haviors for our Q-Learning agent. As can be seen, when ε = 1.0, the reward value remains
relatively flat during the exploration phase. Indeed, the neural networks are generated
randomly when ε equals one. Therefore, this exploration phase can also be viewed as the
baseline of the random search. In Figure 3.6a, the rolling average reward shows a steady
increase in the SCA performance of the generated neural network architectures, starting
at ε = 0.6. However, this increase is not visible in the average reward across all the gen-
erated neural network architectures in each ε until ε = 0.1, where the average reward is
approximately 0.41, compared to the average of 0.046 for ε = 1.0. Figure 3.6b shows the
second type of behavior of the Q-Learning agent, where the agent does not seem to show
clear signs of increasing the average reward of the neural network architectures it selects
as ε decreases. There is a slight upwards trend for ε 0.5 to 0.3, but this does not continue.
Fortunately, there is a clear and significant increase in the average reward toward the final
iterations of Q-Learning. Finally, we observe the third type of behavior, in Figure 3.6d,
and even more clearly in Figure 3.6c, where both the average reward per ε and the rolling
average reward show a clear and steady increase as ε decreases, indicating that the agent
is increasingly able to generate top-performing neural network architectures. It should be
noted that the RS experiments have a higher baseline average reward, which occurs due
to the added p′ component of the R′ reward function.

ASCAD Random Keys Dataset

Figure 3.7 depicts the results for all the obtained models for the ASCAD with random
keys dataset. The training batch size is fixed to 400. We do not depict red lines for this
dataset, as we are not aware of results stating precise GE performance and the number
of trainable parameters. Still, when we do not optimize the network size, the obtained
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(a) CNN ASCAD F HW. (b) CNN ASCAD F ID.

(c) CNN ASCAD F HW (RS). (d) CNN ASCAD F ID (RS).

Figure 3.6: An overview of the Q-Learning performance for the ASCAD F dataset exper-
iments.

models’ largest grouping is close to zero in terms of Q-Learning reward. If the number
of trainable parameters is considered, observe a smooth curve decreasing the number of
trainable parameters and increasing the reward. Again, this suggests that while the reward
function is more complicated due to an additional term, rewarding smaller models helps
find top-performing models. This, in turn, indicates that to find the secret key for this
dataset, it is sufficient to use relatively simple neural network architectures, which again
means that ASCAD random keys is not much more difficult than ASCAD fixed keys.
This is also aligned with the results in [15], where the authors report more difficulties
arising from using different devices than having different keys for training and attack. At
the same time, notice slightly larger time consumption that stems from the fact that this
dataset is larger compared to ASCAD fixed key.

Tables 3.4 and 3.5 give GE and the number of trainable parameters comparisons for
the HW and ID leakage models, respectively. Interestingly, for the HW leakage model,
we see that [96] requires significantly fewer traces for GE to reach 0. Still, as that paper
considers ensembles of CNNs, a direct comparison is difficult. Also, [146] reaches a sim-
ilar performance when compared with [96], while the network size is significantly larger
than ours. Finally, note that we managed to find a smaller model, but that also comes with
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(a) CNN ASCAD R HW (105 hours). (b) CNN ASCAD R ID (108 hours).

(c) CNN ASCAD R HW (RS) (102 hours). (d) CNN ASCAD R ID (RS) (104 hours).

Figure 3.7: An overview of the number of trainable parameters, reward, the total search
time, and the ε a neural network was first generated for the ASCAD R dataset experi-
ments.

a price concerning the GE result. Our result is worse for the ID leakage model than [96],
but significantly better than [146]. Interestingly, even the smaller model we found per-
forms much better than the best model found with Bayesian optimization. Again, direct
comparison with [96] is not possible because there, the authors use ensembles.

Figure 3.8 gives the GE results for our best-obtained models for both leakage models
and versions of the reward function for the ASCAD with random keys dataset. Interest-
ingly, we observe only marginal GE convergence differences for both HW leakage model
architectures and the ID leakage model RS architecture. This means that small models
can perform well regardless of the leakage model. Still, the architecture for the ID leak-
age model that uses the regular reward does offer the best performance, especially if the
number of traces is smaller than 250.

Finally, in Figure 3.9, we depict the results for the Q-Learning performance for the
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Metric [96] [146] Best CNN Best CNN (RS)

Complexity N/A 1 314 009 15 241 9 093

Traces to reach GE = 1 470 496 911 1 264

Table 3.4: Comparison of the top generated CNNs for the ASCAD R HW leakage model
experiments with the current state-of-the-art.

Metric [96] [146] Best CNN Best CNN (RS)

Complexity 14 235 1 336 753 8 480 5 566

Traces to reach GE = 1 N/A 2 076 744 70 492 3 298

Table 3.5: Comparison of the top generated CNNs for the ASCAD R ID leakage model
experiments with the current state-of-the-art.

Figure 3.8: Guessing entropy for the ASCAD R dataset.

ASCAD dataset with random keys. The scenarios where we do not reward small sizes are
similar to the ASCAD with the fixed key case. There is a steady increase in the rolling
average reward and the average reward per ε for the HW leakage model, while for the ID
leakage model, the average reward slowly increases only after more than 2 000 iterations.
For the HW leakage model and RS setting, the results are analogous to the ASCAD fixed
key case, where large rolling and average rewards increase with the number of iterations.
For the ID leakage model with RS, we observe a new behavior where both rolling and
average reward start to decrease after 2 200 iterations. This indicates that reinforcement
learning got stuck in local optima, and more iterations only degrade the obtained models’
quality.
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(a) CNN ASCAD R HW. (b) CNN ASCAD R ID.

(c) CNN ASCAD R HW (RS). (d) CNN ASCAD R ID (RS).

Figure 3.9: An overview of the Q-Learning performance for the ASCAD R dataset Ex-
periments.

CHES CTF Dataset

Finally, we give results for the CHES CTF dataset. We present the HW leakage model
results only, as we were unable to find good-performing models in the ID leakage model
(also discussed in related works, see, e.g., [96]). The training batch size is set to 400 for
all of the following experiments. In Figure 3.10, we show results for the HW leakage
model for the CHES CTF dataset. As before, we do not show red lines as no known
results indicate the number of trainable parameters. Notice that when using the regular
reward, most of the models reach a small final reward, while when using a reward with
RS, there is a clear tendency toward smaller and better-performing models.

Table 3.6 gives the best-obtained results as well as two from related works [96, 146].
We cannot compare the number of trainable parameters as related works do not state that
information, but we see that our models reach GE with significantly fewer attack traces.
Notice that even when we reward smaller models, our attack performance is better than
those in related works, and we use a very small architecture. The time consumption for the
reinforcement learning process is in line with the previous results, indicating somewhat
more than four days of experiments are required to finish.
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(a) CNN CHES CTF HW (102 hours). (b) CNN CHES CTF HW (RS) (108 hours).

Figure 3.10: An overview of the number of trainable parameters, reward, the total search
time, and the ε a neural network was first generated for the CHES CTF dataset experi-
ments.

Metric [96] [146] Best CNN Best CNN (RS)

Complexity N/A 2 418 085 33 788 6 395

Traces to reach GE = 1 310 618 122 349

Table 3.6: Comparison of the top generated CNNs for the CHES CTF and HW leakage
model experiments with the current state-of-the-art.

Figure 3.11 gives the GE results for our best-obtained models for the HW leakage
model and both versions of the reward function for the CHES CTF dataset. Observe that
the model with the regular reward function performs better when the number of traces is
limited, which is in line with the previous results.

Figure 3.11: Guessing entropy for the CHES CTF dataset.
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Finally, in Figure 3.12, we give results for the Q-Learning performance. Both graphs
show a steady increase in the rolling and average rewards as the number of iteration in-
crease. This confirms that our models learn the data and converge to top-performing and
small models, as shown in Table 3.6. Note that our best models are significantly smaller
than [146] and perform better.

(a) CNN CHES CTF HW. (b) CNN CHES CTF HW.

Figure 3.12: An overview of the Q-Learning performance for the CHES CTF dataset
Experiments.

3.3 Automatic Model Tuning with Bayesian Optimization

Tuning hyperparameters for deep neural networks is a computationally expensive task.
Various neural architecture search (NAS) methods aim to find the best architecture for the
given learning task and dataset within the deep learning domain. The NAS algorithms
are commonly costly as their computational complexity depends on the number of neural
network architectures to evaluate and the time needed to evaluate each network. There-
fore, it is crucial to have an efficient method to select optimal hyperparameters when the
number of iterations t is limited due to either computation power or time. In that context,
Bayesian optimization (BO) can be used to optimize any black-box function [94, 124]. 9

In general, Bayesian optimization aims to find the parameters x
′

that maximize the
function f(x) over a domain X :

x
′
= argmax

x∈X
f(x). (3.8)

Let us consider that the Bayesian optimization works over t iterations. Then, Bayesian
optimization aims to find the maximum point on the function using the minimum number

9This section is based on the paper: I choose you: Automated hyperparameter tuning for deep learning-
based side-channel analysis. Wu, L., Perin, G., & Picek, S. (2022). IEEE Transactions on Emerging Topics in
Computing.
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of iterations. Formally, the aim is to minimize the number of iterations t before we can
guarantee that x

′
such that f(x

′
) is less than ϵ from the true maximum f

′
.

If the problem is simple, e.g., we search in a small hyperparameter space, random
search or grid search is often sufficient. If considering larger search spaces, we can ben-
efit from the memory in the process (i.e., considering the results from previous mea-
surements). This is commonly possible with sequential search strategies, represented by
sequential model-based optimization (SMBO) in Bayesian optimization.

To achieve good results with any search strategy, we need to account for both explo-
ration (visiting search space regions not visited before) and exploitation (sampling from
more promising regions based on observed results). In Bayesian optimization, the aim
is to build a probabilistic model of the underlying function that will include exploitation
and exploration. We first require a probabilistic model of a function (often referred to as
the surrogate model), where there are several ways to model it. This work considers the
Gaussian Process, a common choice for Bayesian optimization, especially considering
Euclidean spaces [63]. A Gaussian Process is a collection of random variables, where
any finite number of such random variables is jointly normally distributed. Gaussian Pro-
cess is defined by the mean function and the covariance function. We can estimate the
function’s distribution at any new point x∗, where the mean gives the best estimate of the
function value, and the variance gives the uncertainty.

Second, we require an acquisition function for Bayesian optimization to generate the
next neural network architecture to observe, i.e., to select what point to sample next.
More precisely, the acquisition function takes the mean and variance at each point x on
the function and computes a value that indicates how desirable it is to sample next at
this position. We use a common example of the acquisition function in this work: the
upper confidence bound [5]. Upper confidence bound action selection uses uncertainty
in the action-value estimates to balance exploration and exploitation. The value of the
upper confidence bound function is an estimation of the lowest possible value of the cost
function given the neural network f :

α(x∗) = µ(x∗)− βσ(x∗). (3.9)

Here, β is the balancing factor to regulate the exploration and exploitation (we use the
default value from Keras Tuner, which equals 2.6). This acquisition function computes
the likelihood that the function at x∗ will return a result higher than the current maxi-
mum f(x

′
). For further information about Bayesian optimization, possible models of the

functions, and acquisition functions, we refer interested readers to [63, 40].
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3.3.1 The Framework

The AutoSCA framework can be divided into two steps:

1. characterizing the search space by testing different combinations of hyperparame-
ters;

2. selecting the best candidate (profiling model) out of these attempts.

An illustration of the framework is shown in Figure 3.13. To evaluate the efficiency of
AutoSCA (we denote such experiments as BO since the framework uses Bayesian op-
timization), we compare it with random search (RS). In terms of search iterations, the
iteration number is determined based on the extensive preliminary tuning phase. Specif-
ically, during the preliminary tests, we observed that a higher number of searching itera-
tions could help BO better characterize the search space, thus obtaining architectures with
stronger attack performance than the one obtained by RS. To balance search performance
and time consumption, eventually, our framework performs 200 iterations (i = 200) to
test different hyperparameter combinations. In each iteration, the Bayesian optimization
function outputs a set of hyperparameters Pi to build the model, followed by the training
process. Each profiling model is trained for ten epochs to speed up the training process.
This also brings the additional benefit that the best model obtained from this setting would
consume less training time for the real attack, increasing the attack efficiency. The search
can be finalized within ten hours with a single CPU and an NVIDIA GTX 1080 Ti graph-
ics processing unit (GPU) with 11 Gigabytes of GPU memory and 3 584 GPU cores. Note
that we also tested the search efficiency with an increased number of training epochs (50),
but the results are comparable to the 10-epoch training. Thus, 10-epoch training is more
efficient, and we will show those results only.

The attack performance of each model is evaluated by calculating the score O(Pi)

of the different objective functions with 2 000 attack traces. Note that the score is only
calculated in the validation phase to speed up the test procedure. After 200 iterations
are finished, the best hyperparameters combination is selected based on its score, and
the best model is constructed following this setting. Then, to evaluate its actual attack
performance, this model is trained for either 10 or 50 epochs and then used to attack
5 000 traces randomly selected out of 10 000 traces (repeated ten times). As a result,
guessing entropy can be calculated by averaging the key rank of each attack.

3.3.2 Experimental Results

We do not add the neural network architecture size (measured by the number of trainable
parameters) into our design considerations. We consider the neural network size less
critical than the attack performance. Additionally, the neural networks used in SCA are
smaller than deep learning architectures used in other domains. Still, it is easy to extend
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Bayesian 
Optimization Model Training

Model Evaluation
𝑂𝑂 𝑃𝑃𝑖𝑖

Attack with the best model 
(Guessing Entropy)

AutoSCA tuning strategy

𝑃𝑃𝑖𝑖

𝑖𝑖 = 𝑖𝑖 + 1

Figure 3.13: AutoSCA framework.

Hyperparameter Min Max Step

Dense layers 2 10 1

Neurons (for dense layers) 8 1 024 8

Options

Learning rate 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

Activation function ReLU, Tanh, ELU, or SELU

Table 3.7: Hyperparameter search space for MLP.

the SCA framework to search for small neural networks that perform well in SCA.
In Tables 3.7 and 3.8, we give the ranges for our search for MLP and CNN hyper-

parameters, respectively. Based on related work results, we selected those ranges as a
rough estimate to expect a good attack performance. We could have selected even smaller
ranges for certain settings, which would make the search too easy for a random search
and Bayesian optimization. Note that the ranges for MLP still result in a search space
size of “only” 23 040 hyperparameter combinations (Table 3.7). On the other hand, for
CNNs, the exhaustive search should evaluate 637 009 920 hyperparameter combinations
(Table 3.8). Recall we randomly (RS) select a profiling model or run BO for 200 it-
erations to obtain a profiling model in all the experiments. The best profiling model is
trained for several epochs (10 or 50), and the test set evaluates the SCA performance.
We use 50 000 traces for profiling, 2 000 for validation, and 5 000 for the attack for both
versions of datasets. Besides profiling on the original dataset, we add different Gaussian
noise levels to simulate a more difficult attack scenario (but also a more realistic one).
The noise addition increases the search difficulty and could better demonstrate the perfor-
mance difference between BO and RS. We note that we conducted experiments on one
more dataset commonly used in the SCA domain (usually denoted as CHES CTF), but
we do not show results due to the lack of space. Still, the obtained results align with the
observations for the ASCAD datasets. We consider validation accuracy, key rank, and
AGE [150] for objective functions. The detailed implementation of AGE is available in
chapter 4. Accuracy and AGE are maximized, while key rank is minimized. To increase
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Hyperparameter Min Max Step

Convolution layers 1 4 1

Convolution Filters 8 256 8

Convolution Kernel Size 2 10 1

Pooling Size 2 5 1

Pooling Stride 2 10 1

Dense (fully-connected) layers 1 3 1

Neurons (for dense or fully-connected layers) 8 1 024 8

Options

Pooling Type max pooling, avg pooling

Learning Rate 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

Activation function (all layers) ReLU, Tanh, ELU, or SELU

Table 3.8: Hyperparameters search space for CNNs.

the readability of tables, we present the results for the smallest architectures in italic style,
while the best-performing ones are in bold style.

ASCAD with the Fixed Key (ASCAD F)

First, in Figure 3.14, we depict the results for three objective functions (accuracy, key
rank, and AGE) where we compare random search (RS) and Bayesian optimization (BO)
when tuning MLP profiling models. Based on these results, one can decide what objective
function is appropriate for the specific setting. We do not depict more results for the
objective functions due to the lack of space, but we discuss the effects in the text. The
profiling models are trained with the Hamming weight leakage model with ten epochs.
We see that the key rank decreases regardless of the objective function. The performance
of key rank and AGE is better than accuracy, and for all three objective functions, BO
converges faster than RS.
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(a) Objective: accuracy.
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(b) Objective: key rank.
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(c) Objective: AGE.

Figure 3.14: Search results for MLP with the HW leakage model on ASCAD with fixed
key with no noise added.
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(a) Bayesian optimization.
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(b) Random search.

Figure 3.15: The GE comparison with the best MLP models obtained by two search
methods with the HW leakage model on ASCAD with the fixed key.

Based on the results from the best RS and BO profiling models, we show the guessing
entropy results for several settings (Figure 3.15). As mentioned, we consider three objec-
tives and two training duration (10 or 50 epochs), resulting in six settings. When using
BO, AGE with ten epochs works the best, as shown in Figure 3.14a. This indicates that
BO can find profiling models that generalize well. What is more, the best setting reaches
GE of 1 for around 800 attack traces. The same observation also holds for RS, as shown
in Figure 3.14c where the AGE objective manages to reach GE equal to 1 for around 400
attack traces. At the same time, the accuracy objective function with RS requires more
traces to reach GE of 1. Interestingly, our results show very strong attack performance
with ten epochs already, which is somewhat differing from related works where it is com-
mon to train for significantly more epochs [12, 156, 65]. Finally, we observe that multiple
profiling models perform well, confirming that the ASCAD dataset with the fixed key is
easy to attack.

For the ID leakage model, the results align with the HW leakage model results, and
BO performs better for all three objective functions. The results for the attack dataset
are shown in Figure 3.16, where the profiling model selected by BO performs on average
significantly better than the one from RS. When training with ten epochs, the best model
from BO requires around 191 attack traces, while the best model for RS requires only
around 67 attack traces. Note that the best result from RS depends on chance, while
BO obtains well-performing models consistently. Both results indicate (significantly)
better attack performance than reported in state-of-the-art [156, 144]. The good results
for random search indicate this dataset is easy to break, and we do not (necessarily) require
any special methodologies to succeed in the attack.

Next, we show the results when optimizing CNN hyperparameters. The results for op-
timizing different objectives for CNN and the HW leakage model are significantly worse
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(a) Bayesian optimization.
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(b) Random search.

Figure 3.16: The GE comparison with the best MLP models obtained by two search
methods with ID leakage model on ASCAD with a fixed key.
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(a) Bayesian optimization.
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(b) Random search.

Figure 3.17: The GE comparison with the best CNN models obtained by two search
methods with the HW leakage model on ASCAD with the fixed key.

than MLP as now, the search space size is more than 27 000 times larger. Still, accuracy
and AGE reach a significantly better key rank with BO. The guessing entropy results de-
picted in Figure 3.17 show good performance, where around 1 100 attack traces is enough
for most of the settings to reach a guessing entropy of 1. The best-performing result is
obtained with RS, where we need only 965 traces to break the target. Nevertheless, BO
has a higher probability of finding good models as it converges faster than RS.

For the ID leakage model, BO performs better than RS with key rank and AGE ob-
jectives. The best results are for BO and accuracy as the objective metric (155 traces to
break the target). Class imbalance does not pose a problem when using the ID leakage
model, and thus, accuracy is more stable. Considering the GE results in Figure 3.18, both
models from BO and RS converge well: 500 traces on average are sufficient to break the
target.

The obtained best architectures are retrained to validate their attack performance. Due
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(a) Bayesian optimization.
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(b) Random search.

Figure 3.18: The GE comparison with the best CNN models obtained by two search
methods with the ID leakage model on ASCAD with the fixed key.

to the random weight initialization, the attack performance may differ from the GE plots
discussed before. In Tables 3.9 and 3.10, we compare the results for several architectures
for both leakage models. Note that [156] provides results for the ID leakage model only,
so we adapted the neural network models to work for the HW leakage model by changing
the number of output classes. Thus, the adapted model is not an optimal architecture
from [156], but it represents the best option for comparison. We consider complexity
(the number of trainable parameters) and the number of traces needed to reach GE of 1,
denoted as TGE=1. To evaluate the attack performance of the obtained models, we train
the model with 10 and 50 epochs separately, the corresponding GE are listed in the Tables
(separated with the “/” symbol).

For the HW leakage model, both AutoSCA MLP and AutoSCA CNN reach top per-
formance. Specifically, 447 traces are required to break the target for AutoSCA MLP with
10-epoch training, which is more than two times less than for [156]. Compared with the
results obtained with reinforcement learning, we observe that AutoSCA produces neural
networks with more trainable parameters, but they perform better. Note that more than a
million trainable parameters for both models were obtained with AutoSCA (while those
from related works are significantly smaller). However, 10-epoch training is enough for
a model to retrieve the secret key, thus efficiently erasing the time complexity. For the
ID leakage model, Benadjila et al. [12] consider a significantly larger neural network, as
evident through the training time and the number of trainable parameters. On the other
hand, the architecture from Zaid et al. [156] is the smallest. However, it takes more time
than AutoSCA MLP (MLP is simpler to train) and AutoSCA CNN when training with ten
epochs. Indeed, the obtained best model outperforms state-of-the-art models from the lit-
erature for both HW and ID leakages models. It is worth noting that 10-epoch training for
the best AutoSCA models always performs better than 50-epoch training. This is because
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Metric [156] [110] AutoSCA MLP AutoSCA CNN

Complexity 14 235 5 566 1 388 457 1 086 801

TGE=1 1 246 906 447/1 224 539/4 136

Table 3.9: Benchmark on ASCAD with the fixed key and the HW leakage model.

Metric [12] [156] [110] AutoSCA MLP AutoSCA CNN

Complexity 66 652 444 16 960 79 439 1 544 776 3 510 424

TGE=1 1 476 191 202 120/430 257/690

Table 3.10: Benchmark on ASCAD with the fixed key and the ID leakage model.

the models are trained and evaluated with 10-epoch training during the search process.
As a result, the search algorithm selects the models with greater learning ability, as they
could reach higher scores when training with ten epochs. Note that [156] and [110] reach
very similar attack performance, but compared to BO, their performance is worse (around
three times more traces required to break the target in the best case scenario). Finally, we
reach better performance with 10-epoch training for both leakage models, indicating that
longer training causes overfitting and that it is possible to have a short training phase that
results in top attack performance.

Next, we add Gaussian noise with a standard deviation of two and four to the dataset to
investigate the hyperparameter tuning difficulty when dealing with more complex datasets.
A brief overview is shown in Table 3.11. The averaged final GE at the tenth training epoch
is used to compare BO and RS. If one search method is better than the other for a certain
leakage model and objective function, the better search method (BO or RS) is noted in
the table’s corresponding position. If their key-rank difference is within five (thus, no
significant performance difference), a sign ’-’ is added. Table 3.11 includes the compar-
ison for two noise level (noise2/noise4). From the results, when we exclude the cases
where BO and RS are comparable, BO outperforms RS in 16 out of 21 cases, which again
indicates BO’s superiority in hyperparameter tuning. Regarding the key rank difference,
the performance variation between BO and RS increases with more noise added to the
traces, indicating BO’s capability to find strong models when training with more difficult
datasets.

ASCAD with Random Keys (ASCAD R)

For the HW leakage model and MLP, BO performances with all three objectives are
slightly better than for RS and in line with the results in the previous section. The guess-
ing entropy results are shown in Figure 3.19. Observe that the AGE results are, in general,
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Model Accuracy Key rank AGE

MLPHW RS/- BO/BO BO/BO

MLPID -/BO BO/BO RS/BO

CNNHW RS/BO BO/BO BO/BO

CNNID BO/- BO/BO RS/RS

Table 3.11: Performance benchmark of BO and RS with the addition of different noise
levels (two and four) - ASCAD with the fixed key, both leakage models.
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(a) Bayesian optimization.
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(b) Random search.

Figure 3.19: The GE comparison with the best MLP models obtained by two search
methods with the HW leakage model on ASCAD with random keys.

the best for both RS and BO. The best model is obtained for BO with the key rank objec-
tive and ten epochs: only around 600 traces are required to reach GE equal to 1. As this
dataset is more difficult to attack than the ASCAD dataset with a fixed key, MLP with
RS has more issues reaching top performance, and BO should be already considered a
preferable option for hyperparameter tuning.

Next, we consider the ID leakage model and MLP for the ASCAD dataset with ran-
dom keys. Note that there are more labels in this leakage model (256 classes), and the
dataset is more difficult than ASCAD with a fixed key. The results indicate that BO
performs significantly better than RS with the key rank objective. Figure 3.20 shows cor-
responding GE results, where BO with key rank can break the target with 3 481 traces
with 10-epoch training.

The obtained results suggest that accuracy is similar to the HW leakage model, while
the key rank and AGE objectives are somewhat better. Translating these into the attack
performance, we show guessing entropy in Figure 3.21. Again, the profiling model se-
lected by BO converges faster than RS in general, as the best-performing profiling model
requires only 496 traces to break the target.
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(a) Bayesian optimization.
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(b) Random search.

Figure 3.20: The GE comparison with the best MLP models obtained by two search
methods with the ID leakage model on ASCAD with random keys.

0 1000 2000 3000 4000 5000
Attack Traces

0

50

100

150

200

250

Gu
es

sin
g 

En
tro

py

AGE_10_epoch
AGE_50_epoch
Key_rank_10_epoch
Key_rank_50_epoch
Acc_10_epoch
Acc_50_epoch

(a) Bayesian optimization.
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(b) Random search.

Figure 3.21: The GE comparison with the best CNN models obtained by two search
methods with the HW leakage model on ASCAD with random keys.

For the ID leakage model and CNN, all three objectives struggle to reach good perfor-
mance, suggesting that our profiling models will have problems with generalization. Such
intuition is confirmed in Figure 3.22, where we display the GE results. Here, RS works
significantly better as it reaches GE of 1 for around 1 500 attack traces (key rank and 50
epochs). For BO, no results suggest we can break the target. We believe this happens
as the search space is very large, and BO probably needs significantly more iterations to
exhibit good performance.

Next, in Tables 3.12 and 3.13, we retrain and compare the results for several archi-
tectures for both leakage models. Again, the model complexity and the number of traces
needed to reach a GE of 1 are considered. For the HW leakage model, the attack perfor-
mance of AutoSCA CNN is comparable with the model listed in [96]. Interestingly, the
authors in [96] used an ensemble of neural networks to reach such an attack performance.
On the other hand, we managed to find a single profiling model that performs similarly.
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(a) Bayesian optimization.
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(b) Random search.

Figure 3.22: The GE comparison with the best CNN models obtained by two search
methods with the ID leakage model on ASCAD with random keys.

Metric [96] [110] AutoSCA MLP AutoSCA CNN

Complexity N/A 15 241 1 783 425 4 128 753

TGE=1 470 911 617/818 496/1 112

Table 3.12: Benchmark on ASCAD with random keys with the HW leakage model.

Compared with the model listed in [110], our best models have more trainable parameters,
but we argue that the model’s attack performance should be prioritized when selecting the
models. For the HW leakage model, the similar GE performance between [110] and the
MLP models obtained in this work indicate that with a good hyperparameter tuning, MLP
can represent a viable option even compared to CNNs. The AutoSCA CNN model per-
forms significantly better than [110] for the HW leakage model. On the other hand, both
benchmark models perform significantly better for the ID leakage model than those ob-
tained with AutoSCA. One possible reason could be that the search algorithm does not
fully explore the search space, where more iterations may lead to better attack models.
Also, additional training effort may be required to learn from this dataset with the ID
leakage model, as a shorter training time (10 epochs) gives significantly worse results
than 50 epochs.

Finally, we add Gaussian noise with standard deviations of two and four to the dataset,
with a brief conclusion shown in Table 3.14. In line with the tests on ASCAD with a fixed

Metric [96] [110] AutoSCA MLP AutoSCA CNN

Complexity N/A 70 492 1 699 744 1 539 320

TGE=1 105 490 3 481/1 596 2 945/1 568

Table 3.13: Benchmark on ASCAD with random keys with the ID leakage model.
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key, 15 out of 19 cases indicate that BO performs better than RS. With the increasing
noise level added to the traces, the performance difference between BO and RS becomes
larger, as observed from the key rank difference, indicating BO’s ability to cope with more
difficult datasets.

Model Accuracy Key rank AGE

MLPHW RS/BO RS/BO BO/-

MLPID BO/- BO/BO BO/BO

CNNHW -/RS -/BO BO/BO

CNNID -/BO BO/BO RS/RS

Table 3.14: Performance benchmark of BO and RS with the addition of different noise
levels (two and four).

3.4 Understanding the Pooling Layer

Convolutional neural networks (CNNs) are widely used neural networks in many do-
mains, including SCA. They commonly consist of three types of layers: convolutional
layer, pooling layer, and fully-connected layer; the functionality of these layers and the
corresponding hyperparameters have been introduced in section 1.3.2. Specifically, the
pooling layer aims at decreasing the number of extracted features by performing a down-
sampling operation along the spatial dimensions. The selection of the pooling type can be
crucial for the model performance, as each type of pooling returns different results. This
section presents our strategy to evaluate the performance of two commonly-used pooling
layers: average pooling and max pooling. 10

3.4.1 Evaluation Strategy

Before diving into details, it is worth recalling the difference between the parameters and
hyperparameters for machine learning algorithms. Hyperparameters are all configura-
tion variables corresponding to the model architecture, e.g., the convolution size or the
type of pooling layer. The parameters are the configuration variables whose values can
be estimated from data. Examples of parameters are the weights and biases in a neural
network. When discussing tuning a neural network (or a part of it like pooling layers),
we mean tuning its hyperparameters. The default CNN models used to test the pooling
layer are described in Table 3.15. Specifically, the Chipwhisperer dataset is attacked by

10This section is based on the paper: On the importance of pooling layer tuning for profiling side-channel
analysis. Wu, L., & Perin, G. (2021, June). In International Conference on Applied Cryptography and Network
Security (pp. 114-132). Springer, Cham.
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CNNchipwhisperer. The ASCAD fixed key dataset (ASCAD F), and ASCAD random
keys dataset (ASCAD R) are profiled with CNNascad [12]. We consider only the HW
leakage model as the conclusions drawn from the pooling layer with one leakage model
can be easily extended to other leakage models. Also, considering the related work, the
HW leakage model performs well for the considered datasets [146, 110]. Regarding hy-
perparameters, we show the number of filters in the table for convolution layers. The
convolution stride is set to 11 for both models following the network design from [12].
Pooling layers follow each convolution layer, and the pooling size and stride are set to
two by default. For both models, ReLU is used as the activation function. The optimizer
is RMSProb with a learning rate of 1e-5.

Model Convolution layer Pooling layer Dense layer

CNNchipwhisper Conv(8) avg(2,2) 128*2

CNNascad Conv(64, 128, 256, 512, 512) avg(2,2)*5 4 096*2

Table 3.15: CNN architectures used in the experiments.

To evaluate the profiling attack performance, we consider four metrics:

• Guessing Entropy (GE): the averaged correct key rank after applying the maximum
number of attack traces.

• TGE0: the number of traces required to reach GE equal to zero.
• AGE: the correlation between the ideal key rank vector and the key rank (or guess-

ing entropy) vector calculated from the attack [150]. The detailed implementation
of AGE is available in chapter 4.

• ACC: the classification accuracy on the validation traces.

GE and AGE metrics are derived from guessing entropy, aiming at evaluating the key
recovery capacity of trained neural networks by setting a limited number of attack traces.
The second metric (TGE0) is designed for cases where the models require few traces to
retrieve the secret key. In this case, even if GE equals zero for different circumstances,
we can better estimate the attack performance by evaluating the number of attack traces
to reach it. Implementation details and benefits of AGE metric in profiling SCA are
provided in [150]. This metric can indicate attack performance even if the number of
attack traces is limited and other metrics, such as GE or TGE0, cannot precisely describe
the key recovery capacity from the profiling model. Although related works indicate a
low correlation between validation accuracy and success of an attack [100], the ACC
metric shows that a higher validation accuracy could still mean a lower GE [146, 110].
Therefore, the validation accuracy is also taken into consideration.

In the experimental results, we first try to understand the influence of data standard-
ization on the attack performance for the ChipWhisperer dataset. After that step, we
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perform an extensive analysis of the impact of two main configurable hyperparameters:
pooling size and pooling stride, within a pooling layer with different evaluation metrics.
Additionally, we vary the pooling settings in different layers to understand the correlation
between the pooling hyperparameter variation and layer depth. Finally, we explore the
contribution of the pooling layer by training a profiling model with and without the last
pooling layer.

3.4.2 Explore the Influence of the Pooling Layer

The experiments start with ChipWhisperer as this dataset is easily breakable even with
a small CNN architecture. The required time to train a CNN model for this dataset is
relatively low, and, therefore, we can tune the model’s hyperparameter with smaller steps
and a larger range. In terms of the evaluation aspects, with the CNNchipwhisperer spec-
ified in Table 3.15, we focus on tuning the pooling size and stride of the only available
pooling layer. With such an analysis, we aim to understand the pooling hyperparame-
ters’ influence on the general performance of the model. Here, we experiment with both
average-pooling and max-pooling methods by setting the range for pooling size and stride
from 1 to 100 with a step of 1 and test all combinations (10 000 combinations in total).
Besides, we investigate the link between the data standardization and the pooling layer’s
hyperparameters selection. As such, the experiments are performed with two versions
of a dataset: original (no pre-processing) and standardized (forcing the amplitude ranges
from -1 to 1).

CNNascad is used as the profiling model for standardized ASCAD F and ASCAD R.
Compared with CNNchipwhisperer, this model’s complexity is increased to overcome the
masking countermeasure. Note there are five pooling layers in the CNNascad model.
When perturbing all pooling layers simultaneously, the variation range of the pooling
layer is limited. Therefore, we only focus on varying the hyperparameters of the first
and the last pooling layers. Due to the trace length differences, for ASCAD F, we tune
the pooling hyperparameters ranging from 1 to 20, while for ASCAD R, we double this
range (1 to 40). The step equals one for both datasets. Finally, we also investigate the role
of the pooling layer from the aspects of the network size and attack performance. This
experiment is launched by training and comparing the model with and without the last
pooling layer.

Case Study: the ChipWhisperer Dataset

The results for GE are shown in Figure 3.23. Since GE remain zero for all hyperparameter
combinations when attacking the standardized dataset, we only present the GE value for
the original dataset. As mentioned, 2 000 traces are used for the attack. First, we can
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conclude that the data standardization increases the model’s resilience towards the pooling
layers’ hyperparameter variation. As shown in Figure 3.23, for both average- and max-
pooling, the attack model is more sensitive to the pooling stride variation. Indeed, a larger
pooling stride misses some critical features outputted by the previous convolution layer,
finally causing degradation of the attack performance. However, there are cases when a
large pooling stride can achieve outstanding attack performance (i.e., pooling stride equal
to 45, 50, 75, 85). Meanwhile, a large pooling stride can effectively reduce the outputted
features, leading to a smaller model. This observation indicates the possibility of reducing
the network size by using a large pooling stride and having a good understanding of the
leakage measurements.

(a) GE: original dataset with average-pooling
(min: 0; max: 150).

(b) GE: original dataset with max-pooling
(min: 0; max: 151).

Figure 3.23: GE for the original dataset for the HW leakage model on ChipWhisperer.

Interestingly, when attacking the original dataset, the model equipped with the max-
pooling layer performs better than the one with the average-pooling layer in general.
Specifically, 97% of the average-pooling setting combinations lead to GE value larger
than 50, while this value decreases to 85% when applying max-pooling. Additionally,
when applying a larger pooling size and pooling stride, max-pooling seems a better choice
for a successful attack (GE converges or even decreases to zero). Simultaneously, we
observe V-shaped patterns (i.e., at max-pooling stride: 57, 80) that occur periodically. The
corresponding patterns are also marked by a red dashed line in Figure 3.24b. A possible
explanation could be that these (large) pooling hyperparameters accidentally cover the
leakages appearing in specific locations. However, these critical features are most likely
to be skipped, considering many unsuccessful setting combinations. This observation
points out the importance of leakage characterization: if an evaluator understands leakage
positions (points of interest), he can confidently decrease the complexity of the attack
model by increasing the stride of the pooling layer to a proper value. A similar conclusion
is also drawn in [134].
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(a) TGE0: original dataset with
average-pooling (min: 31; max: >2 000).

(b) TGE0: original dataset with max-pooling
(min: 15; max: >2 000).

Figure 3.24: TGE0 for the original dataset for the HW leakage model on ChipWhisperer.

Figure 3.24 provides results when evaluating the number of traces required to reach
GE equal to zero (TGE0). Since GE converge to zero with only a single trace with the stan-
dardized dataset, we only show the results attacking the original dataset in Figure 3.24.
Similar to the observation with the GE metric, the max-pooling layer seems more robust
to the pooling size variation when the pooling stride is small.

Next, we apply the AGE metric and depict results in Figure 3.25. In line with the ob-
servations for the GE metric, the standardized dataset is easier to attack than the original
one without pre-processing. Although AGE reaches a higher value with smaller pooling
strides (less than ten) for the original dataset, AGE reaches above 0.5 for all hyperpa-
rameter combinations when applying the standardization to the dataset. Additionally, for
the original dataset, we again observe that the max-pooling layer is more resilient to the
pooling size variation, ensuring a large number of setting combinations for a successful
attack.

Recall that the secret can be obtained with only one trace with the standardized
dataset, so limited information can be acquired by evaluating GE and TGE0. With the
help of AGE, we observe the influence of the hyperparameter variation: max-pooling
performs slightly better than average-pooling. Indeed, only 52 average-polling setting
combinations lead to an AGE value greater than 0.5. When using the max-pooling layer,
this value increases to 174.

Finally, we analyze the attack performance with each hyperparameter combination
with ACC. As shown in Figure 3.26, aligned with the previous observation, attacks on
the original dataset lead to low ACC, while for the standardized dataset, the accuracy is
higher. When comparing the max-pooling and average-pooling layers, the former per-
forms better, as it could lead to high ACC with more pooling setting combinations.
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(a) AGE: original dataset with average-pooling
(min: 0.075; max: 0.806).

(b) AGE: original dataset with max-pooling
(min: 0.074; max: 0.806).

(c) AGE: standardized dataset with average
-pooling (min: 0.748; max: 0.929).

(d) AGE: standardized dataset with
max-pooling (min: 0.748; max: 0.929).

Figure 3.25: AGE for HW leakage model on ChipWhisperer.

ASCAD with a Fixed Key (ASCAD F)

Utilizing the observations for the Chipwhisperer dataset, we postulate that the dataset
standardization increases the attack efficiency. Simultaneously, it dramatically increases
the model’s resilience towards the pooling layer’s hyperparameters variation. Therefore,
for the ASCAD dataset, we only attack the standardized dataset.

First, we evaluate the attack performance of each setting in combination with the GE
metric. The results are shown in Figure 3.27. Here, we omit the tuning results for the first
pooling layer because of the constant GE value (zero) for all setting combinations. On
the other hand, when tuning the last pooling layer, the average-pooling method provides
inferior performance with a large pooling size. Although not so obvious when going
to a larger pooling stride, the models applying both the average- and max-pooling lay-
ers method on the last layer have reduced attack performance. For the average-pooling
method, a larger pooling size could lead to these critical features being ’averaged’ by other
less relevant features, thus degrading the classification efficiency. The unique features can
be picked up even with a larger pooling size for the max-pooling method. Interestingly,
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(a) ACC: original dataset with average-pooling
(min: 0.263; max: 0.373).

(b) ACC: original dataset with max-pooling
(min: 0.228; max: 0.358).

(c) ACC: standardized dataset with
average-pooling (min: 0.339; max: 0.945).

(d) ACC: standardized dataset with
max-pooling (min: 0.322; max: 0.942).

Figure 3.26: Accuracy for HW leakage model on ChipWhisperer.

we see a ’slash line’ on the right part of the figure for both pooling methods. One pos-
sible reason could be that the critical features are completely missed with these pooling
settings.

When analyzing the results with TGE0 (Figure 3.28), some unique patterns can be
observed even when tuning the first pooling layer. From Figures 3.28a and 3.28b, we
confirm that changing the pooling stride causes greater variation of TGE0 than the pooling
size for both average-pooling and max-pooling methods. A possible reason could be
that the features are still location-dependent after sampling by the first convolution layer.
A smaller pooling stride could support capturing these important features. Meanwhile,
comparing the results for average- and max-pooling, the latter method seems to enable
more pooling settings with low-value TGE0, which is aligned with the conclusion made in
Figure 3.27. Indeed, when counting the number of setting combinations that lead to TGE0

greater than 5 000, the values are 118 and 70 for the averaging-pooling and max-pooling
methods, respectively. Besides, when comparing Figures 3.28a and 3.28c or Figures 3.28b
and 3.28d, the corresponding patterns seems to be rotated for 90 degrees. One explanation
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(a) GE: tuning the last average-pooling layer
(min: 0; max: 248).

(b) GE: tuning the last max-pooling layer (min:
0; max: 248).

Figure 3.27: GE for the standardized dataset with average-/max -pooling layer for the
HW leakage model on ASCAD F.

could be that the leakages in the deeper layers tend to distribute uniformly across the
features. Thus the selection of the pooling stride becomes less important than the pooling
size.

Next, we evaluate the attack performance with the AGE metric (Figure 3.29). From
the results, we confirm the observations made with GE and TGE0. First, tuning the first
pooling layer has less impact on overall attack performance than varying the last pooling
layer. Meanwhile, when the pooling stride is fixed for the first pooling layer, the pool-
ing size variation causes less impact on AGE. For the last pooling layer, in contrast, the
pooling stride becomes a less sensitive hyperparameter. When comparing the overall per-
formance between average- and max-pooling, max-pooling performs slightly better than
average-pooling when attacking the standardized ASCAD dataset: 255 average-pooling
settings lead to an AGE value greater than 0.5, while this value raises to 271 for the max-
pooling. This observation is aligned with the conclusion drawn from the ChipWhisperer
dataset.

Finally, we consider the ACC metric (Figure 3.30). Interestingly, the ACC metric
presents similar patterns as the other three metrics but reversely. More specifically, the
settings that reach better GE/TGE0/AGE values are worse with ACC and vice versa. With
this observation, we can conclude that overfitting is the cause of the degraded perfor-
mance. Indeed, the HW leakage model forces the dataset to follow a binomial distribu-
tion. Thus, the overfitted model tends to output high probabilities for the middle classes
(i.e., the HW class 4, and then HW classes 3 and 5) regardless of the input. Following
this, although the model may have higher validation accuracy and lower loss, the model’s
classification capability is degraded. Moreover, as can be seen from Figures 3.30a, 3.30b,
and 3.30c, overfitting is more easily triggered with larger pooling settings, which is equiv-
alent to smaller network sizes. For the max-pooling in the last layer (Figure 3.30d), a more
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(a) TGE0: tuning the first average-pooling
layer (min: 321; max: 2 569).

(b) TGE0: tuning the first max-pooling layer
(min: 527; max: 4 616).

(c) TGE0: tuning the last average-pooling layer
(min:500; max: >5 000).

(d) TGE0: tuning the last max-pooling layer
(min: 638; max: >5 000).

Figure 3.28: TGE0 for the standardized dataset for the HW leakage model on ASCAD F.

uniform distribution of the ACC value can be seen, indicating its potential of reducing the
network size while keeping good attack performance.

Next, we investigate the role of the last pooling layer and the following dense layers,
trying to find a direction to reduce the network size (complexity). Again, four evaluation
metrics, GE, TGE0, AGE, and ACC, are applied to interpret the attack results. Results are
shown in Figure 3.31. Note that each unit of the dense layer size represents 64 neurons.
For example, for a dense layer with 64 units: 4 096 neurons are available in the dense
layer.

By fixing the hyperparameters of the pooling layer to default (two) and only tuning
the size of the dense layer, a quick drop of GE and TGE0 and rise of AGE can be observed
when increasing the dense layer size from one to three (64 neurons to 192 neurons).
Moreover, in Figures 3.31b and 3.31c, a network without the last pooling layer (before the
first dense layer) requires less dense neurons to reach the top performance, which can be
attributed to the contribution of more features being used for classification. On the other
hand, the pooling layer reduces the complexity of the network by averaging/selecting the
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(a) AGE: tuning the first average-pooling layer
(min: 0.463; max: 0.688).

(b) AGE: tuning the first max-pooling layer
(min: 0; max: 0.691).

(c) AGE: tuning the last average-pooling layer
(min: 0.409; max: 0.676).

(d) AGE: tuning the last max-pooling layer
(min: 0; max: 0.706).

Figure 3.29: AGE for the standardized dataset for the HW leakage model on ASCAD F.

max value over multiple features. As a trade-off, more neurons are required in the dense
layer to reach similar attack performance.

When further increasing the dense layer size, the values decrease for both AGE and
ACC. Indeed, although the network’s classification capability could be increased by in-
creasing the complexity of the dense layer, the training effort to learn from the dataset is
also increased. Therefore, to balance the attack performance and model complexity, the
small size of the dense layer with a pooling layer could be optimal.

ASCAD with Random Keys (ASCAD R)

Compared with the ASCAD F dataset, the length of a trace in the ASCAD R dataset is
doubled (1 400 features). Since the same CNN model (CNNASCAD) is used as the pro-
filing model, the number of features available at the output of the last convolution layer
(input of the last pooling layer) is also doubled, providing additional range to tune the
hyperparameter of the pooling layer. Aligned with the experiments for the ASCAD F
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(a) ACC: tuning the first average-pooling layer
(min: 0.192; max: 0.280).

(b) ACC: tuning the first max-pooling layer
(min: 0.176; max: 0.274).

(c) ACC: tuning the last average-pooling layer
(min: 0.177; max: 0.277).

(d) ACC: tuning the last max-pooling layer
(min: 0.149; max: 0.270).

Figure 3.30: ACC for the standardized dataset for the HW leakage model on ASCAD F.

dataset, we tune both average- and max-pooling layers and analyze the results with differ-
ent metrics. Note, the dense layer’s size is varied to reduce the network size while keeping
a good attack performance.

First, we apply the GE metric to interpret the results shown in Figure 3.32. Interest-
ingly, we again confirm the conclusion drawn for the ASCAD F dataset: for the pool-
ing layer in the shallower layers, the pooling stride is essential in extracting and down-
sampling the features, while the pooling size should be more carefully tuned in the deeper
layers. Meanwhile, average-pooling performs better than max-pooling for most setting
combinations. This tendency becomes more significant when investigating the first layer:
for the max-pooling layer, 21% of the pooling setting combinations lead to GE value
below 50 with 5 000 attack traces. When using the average-pooling layer, this value
increases to 68%. Recall the observations for the ChipWhisperer dataset: an average-
pooling layer is more suitable for the standardized dataset, while the max-pooling layer
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(a) GE. (b) TGE0.

(c) AGE. (d) ACC.

Figure 3.31: Tuning the dense layer with/without the average/max last pooling layer at-
tacking ASCAD F.

works better for the original (non-standardized dataset). Here, we reach the same conclu-
sion from the results when attacking the ASCAD R dataset. Compared with the conclu-
sions for ASCAD F, it seems that more input features lead to a better performance of the
average-pooling layer than max-pooling. However, considering the different characteris-
tics of the data, no definitive conclusions can be drawn.

The performance deviations of average- and max-pooling become more pronounced
when considering TGE0 as depicted in Figure 3.33. Specifically, from Figure 3.33b, only
22 setting combinations (out of 400) required less than 2 000 attack traces to retrieve
the correct key. When using the average pooling as the first pooling layer, this value
increases to 271. For the last pooling layer, the differences between the two pooling
methods are reduced. Still, average pooling has more tolerance (276 good settings) to the
hyperparameter variation than max-pooling (179 good settings).

The results for the AGE metric are shown in Figure 3.34. They consolidate the ob-
servations from the previous two metrics but also provide new information. For instance,
when looking at Figures 3.34b and 3.34d, we find more setting combinations with the
potential to reach a high AGE value, eventually leading to a successful attack. Recall that
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(a) GE: tuning the first average-pooling layer
(min: 0; max: 255).

(b) GE: tuning the first max-pooling layer
(min: 0; max: 245).

(c) GE: tuning the last average-pooling layer
(min: 0; max: 96).

(d) GE: tuning the last max-pooling layer (min:
0; max: 249).

Figure 3.32: GE for the HW leakage model on ASCAD R.

overfitting represents the main reason for the degradation of the attack performance for
the ASCAD F. From Figure 3.34d, the sub-optimal AGE values ( 0.2) are more concen-
trated in the middle of the graph, indicating a huge reduction of the model size. Therefore,
training longer could be a solution to enhance the attack performance. Again, in general,
average pooling outperforms max pooling in both shallower and deeper layers.

We analyze the attack results with the ACC metric in Figure 3.35, which are similar
to ASCAD F (see, e.g., Figure 3.35c). The model starts overfitting with a larger pooling
stride and pooling size. Interestingly, this observation is more distinguishable for the
average-pooling method. For the max-pooling layer (Figures 3.35b and 3.35d), the ACC
values distribute more uniformly, indicating the possibility of the trained model to be
underfitting. Combined with the observations for ASCAD R: a model equipped with
max-pooling layers may require more training effort, and additional training epochs may
help enhance the attack performance.

Next, we set the pooling layer’s hyperparameter to default (two) and tune the size of
the dense layer. The results are shown in Figure 3.36. Different from the observations in
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(a) TGE0: tuning the first average-pooling
layer (min: 789; max: >5 000).

(b) TGE0: tuning the first max-pooling layer
(min: 1 440; max: >5 000).

(c) TGE0: tuning the last average-pooling layer
(min:668; max: >5 000).

(d) TGE0: tuning the last max-pooling layer
(min: 746; max: >5 000).

Figure 3.33: TGE0 for the HW leakage model on ASCAD R.

Figure 3.31 (ASCAD F), by increasing the dense layer size, we see an improved attack
performance for TGE0, AGE, and ACC, indicating the potential to further increase the
attack performance by using larger dense layer size and more dense layers. Besides,
compared with the model with the pooling layers, the removal of the last pooling layer
tends to have less variation when increasing the dense layer size. Still, more trainable
parameters are used as a trade-off (the output of the last convolution layer is directly
flattened and fully connected with the first dense layer). In general, the model with or
without pooling performs equally well, but pooling layers are still needed to construct a
CNN model that reduces the model size while keeping a good attack performance.

Based on those observations, we have conclusions for all three datasets. First, Data
standardization can significantly improve the attack performance. Next, when the input
data has limited features, varying a pooling layer in the shallow layer causes less influence
on the attack performance than in the deeper layer. For the deeper pooling layers, if the
input features are limited, the max-pooling layer is preferable. Otherwise, an average-
pooling layer could lead to better performance. Smaller pooling strides are required for
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(a) AGE: tuning the first average-pooling layer
(min: 0; max: 0.441).

(b) AGE: tuning the first max-pooling layer
(min: 0; max: 0.418).

(c) AGE: tuning the last average-pooling layer
(min: 0; max: 0.510).

(d) AGE: tuning the last max-pooling layer
(min: 0; max: 0.443).

Figure 3.34: AGE for the HW leakage model on ASCAD R.

the shallower pooling layers. At the same time, they are preferable for deeper pooling
layers.

For the network size reduction, larger pooling sizes could be applied for the shallower
pooling layers. The deeper pooling layers could be used with larger pooling strides. The
removal of some pooling layers may increase the robustness of the model towards the
dense layer variation. We recommend using the last pooling layer as part of the model to
reduce the network size while maintaining good attack performance efficiently.

3.5 Optimizing the Loss function

In machine learning, the loss indicates the difference between the predicted outputs of the
model and the ground truth labels belonging to the input. The result of a loss function L
is used to update the weights in the network with gradient descent, finally reducing the
deviation between the predicted and true labels. 11

11This section is based on the paper: Focus is Key to Success: A Focal Loss Function for Deep Learning-
Based Side-Channel Analysis. Kerkhof, M., Wu, L., Perin, G., & Picek, S. (2022). In International Workshop on
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(a) ACC: tuning the first average-pooling layer
(min: 0.137; max: 0.289).

(b) ACC: tuning the first max-pooling layer
(min: 0.161; max: 0.270).

(c) ACC: tuning the last average-pooling layer
(min: 0.155; max: 0.288).

(d) ACC: tuning the last max-pooling layer
(min: 0.162; max: 0.262).

Figure 3.35: ACC for the HW leakage model on ASCAD R.

For classification, the common loss function is the categorical cross-entropy (CCE),
and it has been used in various classification tasks [72, 154, 56]. Since side-channel
analysis can also be considered a classification task, CCE is also usually adopted in
SCA [13, 81, 65]. Cross-entropy is a measure of the difference between two distribu-
tions. Minimizing the cross-entropy between the distribution modeled by the deep learn-
ing model and the true distribution of the classes would improve the predictions of the
neural network:

CCE(y, ŷ) = − 1

n

n∑
i=1

c∑
j=1

yi,j · log(ŷi,j), (3.10)

where c is the number of classes, y is the true value, and ŷ is the predicted value.

Categorical cross-entropy loss has several variants depending on usage cases. Focal
loss is one of the popular ones in dealing with class imbalance problems and improving
learning speed [77]. The definition of the focal loss is given in Equation 3.11.

Constructive Side-Channel Analysis and Secure Design (pp. 29-48). Springer, Cham.
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(a) GE. (b) TGE0.

(c) AGE. (d) ACC.

Figure 3.36: Tuning the dense layer with/without the average/max last pooling layer at-
tacking ASCAD R.

FOCAL(y, ŷ) = α(1− ŷ)γCCE(y, ŷ), (3.11)

where CCE is the categorical cross-entropy function, α is a vector of weights for each
class, and γ is the parameter that increases the loss for correctly classified examples with
low confidence.

More recently, two SCA-specific loss functions have been proposed. One of them
is the ranking loss (RKL) proposed by Zaid et al. [155]. The ranking loss uses both
the output score of the model and the probabilities produced by applying the Softmax
activation function to these scores. The idea behind the ranking loss is to compare the
rank of the correct key byte and the other key bytes in the score vector before the Softmax
function is applied:

RKL(s) =
∑
k∈K
k ̸=k∗

(
log2

(
1 + e−α(s(k

∗)−s(k))
))

, (3.12)

where s is the predicted vector with scores for each key hypothesis, K is the set of all
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possible key values, k∗ is the correct key, and s(k) is the score for key guess k, calculated
by looking at the rank of k in the list of all possible keys. Finally, α is a parameter that
needs to be set dependent on the size of the used profiling set. The implementation of the
ranking loss function is provided by the authors [155] on Github. 12

Zhang et al. proposed the cross-entropy ratio (CER) [158]. CER can be used as
a metric to estimate the performance of a deep learning model in the context of SCA,
which can be further extended as a loss function:

cer(y, ŷ) =
CE(y, ŷ)

1
n

∑n
i=1 CE(yri , ŷ)

, (3.13)

where CE is the categorical cross-entropy, and yri denotes the one-hot encoded vector
with the incorrect labels. Here, the variable n denotes the number of incorrect sets to use.
The authors do not provide a value for n, but state that increasing n should increase the
accuracy of the metric. We use n = 10 to balance computational complexity and attack
performance in our experiments.

3.5.1 Focal Loss Ratio

First, we first formally define the easy and hard samples [118]. Let a, p, and n denote
anchor (i.e., ground truth), positive (with a label same as the anchor), and negative
samples (with a label different from the anchor). In general, the anchor can be the data
of any label, and the positive and negative samples are based on the anchor’s label. We
can categorize the positive samples p into two categories based on their similarity S to
the anchor sample: 1) easy samples, where S(a, p) < S(a, n); 2) hard samples, where
S(a, n) < S(a, p). The way of calculating the similarity depends on the selection of
the loss function. Nevertheless, the samples closer to the anchor have higher confidence
to be classified to the corresponding clusters. Following this, based on the classification
outcomes, we define:

• Easy positives/negatives: samples classified as positive/negative examples.

• Hard positives/negatives: samples misclassified as negative/positive examples.

Recall that the CER loss takes advantage of samples with incorrect labels to increase
the attack performance. However, the training would become inefficient if most samples
are easy negatives with limited contribution to the learning process. The bias introduced
by easy negatives makes it difficult for a network to learn rich semantic relationships
from samples: cumulative easy negatives loss overwhelms the total loss, degenerating the
model. Moreover, one should notice that the class imbalance can be introduced based

12https://github.com/gabzai/Ranking-Loss-SCA

https://github.com/gabzai/Ranking-Loss-SCA


3.5 Optimizing the Loss function 111

on the leakage model. For instance, when using the Hamming weight leakage model,
information related to middle classes (i.e., HW=4) in a dataset or mini-batches used in
training is over-represented compared to the other classes. Indeed, training a network on
an imbalanced dataset will force the network to learn more representations of the data-
dominated class than other classes. Unfortunately, besides re-balancing from the dataset
level, there are no special measures to address this problem during training. Finally, the
accurate estimate of CER requires a sufficient number of negative samples (infinite in the
ideal case), but it would reduce the training efficiency as a trade-off.

Two actions are essential to address the identified problems. First, the hard samples
should be prioritized in the training process compared to the easier ones. Second, the
weight of each class should be parameterized. Following this, we propose the Focal Loss
Ratio (FLR):

FLR(y, ŷ) =
α(1− ŷ)γCE(y, ŷ)

1
n

∑n
i=1 α(1− ŷ)γCE(ysi , ŷ)

, (3.14)

where y are the true labels, ys are the shuffled labels, CE is the categorical cross-entropy,
and n is the number of negative samples to use. In Eq. (3.14), α and γ are introduced
to weight the classes and emphasize hard samples for both numerator and denominator,
respectively. When looking at the numerator, aligned with the focal loss, the samples with
lower prediction probability (hard samples) have a greater impact on the loss function,
which is further controlled by the α value. The same statement holds for the denominator
as well. Besides, introducing the denominator further separates the prediction distribution
between the correct cluster and other clusters. Indeed, compared with other loss functions,
FLR introduces additional benefits to efficient learning: 1) concentrating on the samples
that are difficult to classify (hard samples) and 2) balancing the dataset. Finally, FLR can
be seen as an improved version of CER loss, focusing on learning efficiency. Since the
theoretical evidence from the CER loss also applies to our FLR loss, we do not repeat it
in this work.

Figure 3.37 demonstrates the above-mentioned effects. Given that input in the predic-
tion probability ŷ ranges from zero to one and the ground truth y equals zero, as shown in
the left graph, FLR (α=0.5) introduces the greatest penalty to the hard samples compared
to others. When ypred is getting closer to ytrue, the FLR value is neglectable, thus reduc-
ing the contribution of the easy negatives. The effect of α is shown on the right graph:
the influence of the hard samples is reduced when α decreases. Consequently, the FLR
loss could be a good candidate when the classes are imbalanced (i.e., the HW leakage
model). Moreover, since α can effectively control the hard sample’s influence, then the
improvement of the model’s performance can be realized by different tuning strategies.
More discussions are presented in section 3.5.3.
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(a) Comparison between loss functions. (b) The influence of α towards the FLR.

Figure 3.37: Demonstration of different loss functions.

Hyperparameter Tuning

Compared with other loss functions, FLR loss introduces additional hyperparameters. We
consider three strategies for α and γ selection to investigate their influence and reach the
top performance in the considered testing scenarios. For the first strategy, we use the
values given by [77], namely α = 0.25 and γ = 2.0. Models with these settings are
denoted as FLR. The second strategy optimizes both α and γ via random search, denoted
as FLR optimized. The search ranges are defined in Table 3.16.

α 0.1, 0.25, 0.5, 0.75, 0.9

γ 0, 0.5, 1.0, 2.0, 5.0

Table 3.16: Hyperparameter space for FLR optimized.

Finally, we introduce class re-balancing into our loss function [33]. With class bal-
ancing, the weights for each class (α) are set based on the classes size. For each class, the
corresponding weight is calculated as shown in Eq. (3.5.1).

αi =
1− β
1− βny

, (3.15)

where αi is the weight for class i, ny is the number of samples in the considered class in
the profiling set, and β is a new parameter to be tuned. In this section, aligned with [33],
we set β = 0.999. Models trained with these settings are referred to as focal balanced.

We conducted a preliminary search to determine the optimal value of n (ranges from
1 to 20). Our experiments showed the best attack performance when n equals three. This
observation also holds when tested on the other datasets. Also, the impact on training
time of using n = 3 is negligible compared to n = 1. Therefore, we set n to three for our
experiments with FLR.
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3.5.2 Performance Benchmark

Regarding model architecture tuning, using one or a few optimized models from the lit-
erature may introduce bias as they are optimized for a specific dataset-loss function com-
bination. Besides, the model’s performance may fluctuate with each training due to the
random weight initialization. Therefore, we follow Algorithm 5 to tune the model’s hy-
perparameters for each loss function.

Algorithm 5 Model tuning and the evaluation strategy.
1: Generate, train, and test Z models sampled from range S with loss function L.
2: Select the best performing model Tb.
3: Train and test the model Tb N times.
4: Select the median performing model Tbm.
5: Evaluate Tbm with evaluation metrics.

This section compares our function against the CER loss, categorical cross-entropy,
ranking loss, and focal loss. The selection of “traditional” loss functions is based on the
results from [64]. Note that for the RKL’s α value, the original paper selected 0.5 for the
ASCAD dataset and did not provide values for the other datasets. Since the number of
profiling traces we used was almost the same for all datasets, α = 0.5 was used for every
dataset and model. Although this value can be further optimized, we argue that tuning α
for all of the scenarios and architectures is not viable and practical for real-world usages,
considering the number of different scenarios/architectures that are relevant.

For each loss function, we set Z to 100 with hyperparameters sampled from Ta-
bles 3.17 and 3.18. n is set to be 10. We use guessing entropy to evaluate the model’s
performance during the tuning process (steps 2 and 4). For the evaluation (step 5), we look
at the guessing entropy and success rate. In some of the plots in the following sections,
the x-axis is reduced to increase visibility.

Hyperparameter Option

Dense layers 2 to 8 in a step of 1

Neurons per layer 100 to 1 000 in a step of 100

Learning rate 1e-6 to 1e-3 in a step of 1e-5

Batch size 100 to 1 000 in a step of 100

Activation function ReLU, Tanh, ELU, or SeLU

Loss function RMSprop, Adam

Table 3.17: Hyperparameter space for multilayer perceptrons.
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Hyperparameter Option

Convolution layers 1 to 2 in a step of 1

Convolution filters 8 to 32 in a step of 4

Kernel size 10 to 20 in a step of 2

Pooling type Max pooling, Average pooling

Pooling size 2 to 5 in a step of 1

Pooling stride 2 to 10 in a step of 1

Dense layers 2 to 3 in a step of 1

Neurons per layer 100 to 1 000 in a step of 100

Learning rate 1e-6 to 1e-3 in a step of 1e-5

Batch size 100 to 1 000 in a step of 100

Activation function ReLU, Tanh, ELU, or SeLU

Loss function RMSprop, Adam

Table 3.18: Hyperparameter space for convolutional neural networks.

ASCAD F

Figure 3.38 and Figure 3.39 show the guessing entropy and success rate metrics with
different attack models and leakage models. From the results, models trained with FLR
loss outperform the CCE and focal loss in all test scenarios. Specifically, when the HW
leakage model is considered, the FLR model halves the required attack traces compared
with categorical cross-entropy or focal loss to reach a GE of 1. Surprisingly, ranking
loss performs mediocre in most cases, indicating its low generality towards different deep
learning models and test scenarios. Note that we tested on the same datasets as the RKL
paper does, and the poor performance mainly comes from the variation of the attack model
(recall, we use models created via random search). Unfortunately, although RKL may
work well with some specific settings (like the one in [155]), the general applicability of
that loss function is relatively poor based on our results.

On the other side, FLR loss and CER loss perform comparably. Still, as shown in Ta-
ble 3.19, when the median NTGE

is evaluated, the models trained with FLR outperform
the CER loss in three out of four of the test scenarios. Interestingly, all three FLR tuning
strategies (for α and γ) work well and lead to successful attacks with a limited number of
traces. Although optimal strategy differs per scenario, their variation is limited.

ASCAD R

Next, loss functions are tested on the ASCAD R dataset. The guessing entropy for each
loss function is presented in Figure 3.40. For the ID leakage model, neither the MLPs nor
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Figure 3.38: Guessing entropy of the optimized models for the ASCAD F dataset.

Model Lfocal CCE CER loss RKL FLR FLR
balanced

FLR
optimized

MLP ID 580 860 570 900 810 540 680

MLP HW 1480 1560 560 1620 460 570 510

CNN ID 1250 1360 600 1760 610 850 550

CNN HW 1840 >2000 540 >2000 570 790 560

Table 3.19: MedianNTGE
for the ASCAD F dataset. The lowestNTGE

for each scenario
is denoted in bold font.

CNNs reach a GE of 1 with less than 3 000 traces. Still, the CER loss and FLR perform
the best: the CER loss reaches a GE of 1.7 with MLP and 3.13 with CNN, while the
models with FLR reach 2.11 and 1.18. When the HW leakage model is considered, as
shown in Table 3.20, the secret key can be retrieved successfully with all considered loss
functions. For MLP, FLR loss performs slightly worse than CER (NTGE

= 1800 versus
NTGE

= 1340). For CNN, FLR outperforms CER (NTGE
= 800 versus NTGE

= 950).
Ranking loss, unfortunately, performs the worst in most of the test scenarios.
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Figure 3.39: Success rate of the optimized models for the ASCAD F dataset.

Model Lfocal CCE CER loss RKL FLR FLR
balanced

FLR
optimized

MLP ID >3 000 >3 000 >3 000 >3 000 >3 000 >3 000 >3 000

MLP HW 1 940 2 600 1 340 2 910 2 180 2 460 1 800

CNN ID >3 000 >3 000 >3 000 >3 000 >3 000 >3 000 >3 000

CNN HW >3 000 2 840 950 >3 000 880 1 670 1 020

Table 3.20: MedianNTGE
for the ASCAD R dataset. The lowestNTGE

for each scenario
is denoted in bold font.

Next, the success rates (SR) of each loss function are shown in Figure 3.41. Inter-
estingly, the FLR (default version) equipped model reaches a higher SR slightly faster
than the other loss functions with the ID leakage model. The FLR and CER loss perform
equally well for the HW leakage scenarios. Note that the performance of FLR can fluctu-
ate with different hyperparameter tuning strategies. For the ASCAD R dataset, however,
FLR with default values (α = 0.25, γ = 2.0) would be a good choice.
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Figure 3.40: Guessing entropy of the optimized models for the ASCAD R dataset.

CHES CTF

In this section, we discuss the results for the CHES CTF dataset. Figure 3.42 shows the
guessing entropy in the different scenarios.

For all considered loss functions, 3 000 attack traces are insufficient to obtain the cor-
rect key for the ID leakage model. Still, from the results, we see a significant performance
improvement with the MLP models and the ID leakage when using FLR balanced. Such
an improvement is also visible in some CNN models with FLR. However, these models
turned out to be less consistent in terms of performance when changing the attack settings.
For instance, the FLR balanced performs the best with MLP but performs mediocre with
CNN. Similar behavior is also visible for the FLR optimized.

When the HW leakage model is considered, we again see a significant increase in
the performance when a CNN is used. As shown in Table 3.21, the models with FLR and
FLR optimized were the only ones that successfully retrieved the correct key. The median
of 10 models with FLR and FLR optimized were successful with a NTGE

of 2 740 and
2 000, respectively. When MLPs are used, there is no significant increase in NTGE

. The
performance is approximately equal to the CER loss.



118 3 Deep Learning Hyperparameters

(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Figure 3.41: Success rate of the optimized models for the ASCAD R dataset.

Model Lfocal CCE CER loss RKL FLR FLR
balanced

FLR
optimized

MLP ID >3 000 >3 000 >3 000 >3 000 >3 000 >3 000 >3 000

MLP HW 1 220 630 480 1 860 1 080 2 030 2 450

CNN ID >3 000 >3 000 >3 000 >3 000 >3 000 >3 000 >3 000

CNN HW >3 000 >3 000 >3 000 >3 000 2 740 >3 000 2 000

Table 3.21: Median NTGE
for the CHES CTF dataset. The lowest NTGE

for each sce-
nario is denoted in bold font.

3.5.3 Discussion

FLR loss performs well in various test scenarios, while the only downside to using FLR
as a loss function is the introduction of the α and γ parameters. We used three different
strategies: 1) fixed value: α = 0.25 and γ = 2.0; 2) optimized via random search; 3)
determined by the frequency of each class.

Throughout the experiments, there was not a single strategy that worked best for
every scenario. Still, the best-performing FLR variants have fixed α values for every
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Figure 3.42: Guessing entropy of the optimized models for the CHES CTF dataset.

class in almost all cases. In some of the scenarios with the ID leakage model, the class
re-balance strategy improves performance. However, using class balancing with the ID
leakage model results in almost constant and low values of α. This leads us to conclude
that the best strategy is the variant where α is the same for every class and the α and γ
parameters are optimized. Optimization via random search can be performed to set the
α and γ values. In combination with an increased range of the possible values, e.g., the
addition of lower α values, FLR optimized should outperform the other variants. From
section 3.5.1, one should note that with lower α, the samples that trigger high loss value
are the ones misclassified with high confidence (probability).

Compared with other loss functions that require models to be confident about predict-
ing, this FLR configuration softens the restriction for the predictions: only (very) hard
negative will be penalized, while the others that are correctly classified, or even misclas-
sified but with low confidence would have limited loss contributions. From the learning
perspective, loss functions forcing the model to reach high accuracy/low loss would nor-
mally lead to the learning from the major classes/overfitting. FLR with low α allows the
models to make mistakes, increasing the model’s generality and helping to learn from the
imbalanced data.
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We performed an additional set of experiments on ASCAD F and ASCAD R datasets
to test our hypothesis. The search space for α is now extended to 0.005, 0.01, 0.05, 0.1,
0.25, 0.5, 0.75, and 0.9. We use FLR as the loss function for each test scenario and again
optimize hyperparameters via random search. The results of these experiments are listed
in Table 3.22 and Table 3.23.

Model Lfocal CCE CER loss RKL FLR

MLP ID 580 860 570 900 640

MLP HW 1 480 1 560 560 1 630 490

CNN ID 1 250 1 360 600 1 760 520

CNN HW 1 840 >2 000 540 >2 000 500

Table 3.22: MedianNTGE
for the ASCAD F dataset. The lowestNTGE

for each scenario
is denoted in bold font.

Model Lfocal CCE CER loss RKL FLR

MLP ID >3 000 >3 000 >3 000 >3 000 >3 000

MLP HW 1 940 2 600 1 340 2 910 1 340

CNN ID >3 000 >3 000 >3 000 >3 000 >3 000

CNN HW >3 000 2 840 950 >3 000 800

Table 3.23: MedianNTGE
for the ASCAD R dataset. The lowestNTGE

for each scenario
is denoted in bold font.

From the results, in the scenarios in which the class-balanced FLR was previously
best, such as the ASCAD F scenarios, the FLR with our new strategy still performs very
well. For instance, when attacking ASCAD F with MLP and the ID leakage model, the
best-performing model uses a fixed α that equals 0.005. Although it did not perform as
well as the CER loss or FLR balanced in this case, it did perform better than the other
strategies. We also see results similar to the previous experiments when using the HW
leakage model on the ASCAD R dataset. FLR outperforms the CER loss in most cases.
The benefit, however, is that a single strategy can be used for each scenario, namely the
same optimized value for α for each class.

3.6 Conclusions

This chapter proposes multiple DL hyperparameter tuning methods, then evaluates some
specific hyperparameters and gives suggestions. In section 3.2, we proposed a reinforce-
ment learning framework for deep learning-based SCA. To accomplish that goal, we use
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a well-known paradigm called Q-Learning, and we define two versions of reward func-
tions that are custom developed for SCA. Additionally, we devise a Markov Decision
Process with an ample search space of possible convolutional neural network architec-
tures with constraints following the current state-of-the-art practices in SCA. We test the
reinforcement learning behavior for CNN hyperparameter tuning on three datasets and
several experimental settings. The results show strong performance where we reach the
best-known performance in several scenarios, while in other settings, our performance
is only moderately worse than state-of-the-art, but our neural network models are tiny.
Additionally, the results suggest further reducing the network size, as small neural net-
works often result in the best attack performance. This is especially pronounced for the
HW leakage model, as smaller networks did not have any performance drawbacks over
larger ones. Our approach is automated and can be easily adapted to different datasets or
experimental settings.

In section 3.3, we proposed Bayesian optimization for the deep learning-based SCA
hyperparameter tuning. We develop a custom framework that supports both machine
learning and side-channel metrics, and we evaluate the performance of such obtained
profiling models with random search and state-of-the-art results. We can observe that
BO works well and produces many highly-fit profiling models, which indicates that BO
should be the first choice when running deep learning-based SCA, especially when the
evaluator is more restricted concerning the number of measurements and wants to search
for the strongest possible profiling model. Random search can also find excellent profil-
ing models, especially for more leaky datasets. Still, random search results need to be
considered from a proper perspective as we pre-select some “reasonable” ranges. Extend-
ing the ranges makes the problem more difficult for a random search. Thus, there is a
trade-off between the hyperparameter tuning complexity and the assumptions on the ar-
chitectures one makes. It is exciting to observe that BO results can outperform the results
obtained through a methodology approach [156] or reinforcement learning [110]. Con-
sidering that [110] reports on average 100 hours to perform a single experiment, Bayesian
optimization requires, on average, 10× less time while having similar attack performance.
Still, [110] considered only CNN architectures, making it interesting to investigate how
reinforcement learning would behave in settings where Bayesian optimization with MLP
works better than Bayesian optimization with CNN.

Section 3.4 considered the effect of a pooling layer on profiling side-channel analy-
sis. We investigated one unprotected dataset (ChipWhisperer) and two datasets protected
with masking countermeasures (ASCAD F and ASCAD R). Two commonly used pool-
ing methods, average pooling and max pooling, are tested with different hyperparameter
settings. The results are evaluated through four metrics. Our results clearly show that
the pooling method and the corresponding hyperparameters should be determined based
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on the depth of the (pooling) layer and the size of input features. Besides, we evalu-
ated the last pooling layer’s importance in attack performance and network complexity.
As a trade-off of model size reduction, implementing the pooling layer leads to omitting
some features. However, the attack performance is comparable to the one without the last
pooling layers.

Finally, in section 3.5 we proposed a novel loss function optimized for deep learning-
based side-channel analysis. More precisely, we started by discussing the advantages and
drawbacks of several loss functions in the context of SCA. We constructed a new loss
function for deep learning-based SCA, denoted as the Focal Loss Ratio (FLR).

We confirmed FLR’s outstanding performance by testing it on combinations of datasets,
leakage models, and neural network architectures. Finally, we showed that neural net-
work models using FLR work with different parameter optimization strategies and that
FLR outperforms the CER loss and other loss functions like the categorical cross-entropy
in most scenarios.

There are multiple possibilities for exploring the field of automatic hyperparameter
tuning. First, reinforcement learning uses many models before finding the best ones. It
would be interesting to consider how well the best models obtained through reinforce-
ment learning would behave in ensembles of models [96]. Next, it would be interesting
to extend our AutoSCA framework to different types of Bayesian optimization in future
work. This work considers one surrogate model (Gaussian Process) and one acquisition
function (upper confidence bound). While those choices are common options, further in-
vestigation should be done to judge specific design choices’ merits. Besides, we consider
two research directions particularly interesting for future work on reinforcement learning.
We evaluated the Q-Learning approach in this work, but more powerful (and computa-
tionally demanding) techniques are available. For instance, it would be interesting to in-
vestigate the deep Q-Learning paradigm’s performance, especially in a trade-off between
computational efficiency and the obtained results. Additionally, we considered only CNN
architectures as their hyperparameter tuning complexity fits into the high computational
complexity of reinforcement learning. Still, there are no reasons not to try reinforcement
learning with other neural networks, like multilayer perceptrons.

For the investigation of the pooling layer, it is an exciting option to investigate the
influence of the pooling layer’s hyperparameter choice in various input sizes and profiling
models. Next, we aim to explore the role of the countermeasures when selecting and
tuning the pooling layers. Finally, we concentrated on the HW leakage model only in this
work. Expanding this to other leakage models in future work would be interesting.

Finally, we plan to explore the hyperparameter selection for FLR loss when consid-
ering datasets with more complex countermeasures for future work. Besides, it would be
interesting to examine the applicability of the possibility of multi-loss functions in SCA.



Chapter 4

Efficient Attack and Evaluation

4.1 Introduction

The success of machine learning-based attacks relies on a sufficient number of training
traces and a well-designed deep learning model so that the built classifier can accurately
map the relationship between the traces and corresponding labels (intermediate data).
However, the countermeasure increases the demand for the profiling traces number and
the machine learning model’s complexity, thus increasing the profiling times. Researchers
design small and powerful deep learning models dedicated to datasets to be attacked to
reduce the computation effort. For instance, Zaid et al. proposed the first methodology to
tune the hyperparameters related to the size (number of learnable parameters, i.e., weights
and biases) of layers in convolutional neural networks [156]. Starting from the work from
Zaid et al. [156], Wouters et al. showed how to reach similar attack performance with data
regularization and even smaller neural network architectures [144]. In chapter 3, we also
explore the reinforcement learning paradigm to find small neural networks that perform
well [110].

Unfortunately, another major contributor to the profiling time, the time consumption
of leakage measurement, has been ignored by researchers. Although an attacker can ob-
tain unlimited training traces from the clone device for profiling attacks in the worst-case
scenario, it would cost unlimited time for the leakage acquisition. The time constraint
for an evaluation dramatically limits the number of traces one can obtain. For instance,
measuring one million profiling traces for a software RSA implementation with a 128-bit
key could take more than a week [71]. With additional post-analysis tasks such as trace
realignment, noise filtering, and leakage assessment, an evaluator may not have enough
budget to measure sufficient traces to break the target. Therefore, reducing the required

123
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number of profiling traces would be beneficial in saving time and enhancing the evalua-
tor’s attack capability.

Besides, the demand for reducing the required number of profiling traces also comes
from the advances in countermeasures. As introduced in chapter 1, the SCA training data
are most likely being ’protected’ - the SCA countermeasures represent a standard/default
setting for modern smart card/SOC’s crypto-related implementations. These protection
mechanisms further increase the difficulties in learning the trace-label relationship, thus
increasing the demand for the number of measurements. From a developer’s point of view,
an increasing number of side-channel measurements to break the target implementation
means higher security assurance of their product. For an attacker, if he can effectively
reduce the required number of profiling traces, such vulnerabilities will be exposed again.

In addition, for a black/grey box evaluation, the available traces can drop to hundreds
or thousands due to the upper limit of program counters such as Application Transaction
Counter (ATC) or PIN Try Counter (PTC) [22], which is commonly insufficient when im-
plementing an efficient profiling model. Building a profiling model with limited profiling
traces would significantly increase the capability of exploiting the potential vulnerability.

Next, a perspective that cannot be neglected is how to assess the performance of such
a profiling model. While the state-of-the-art in deep learning SCA has progressed tremen-
dously in the last few years, no results consider how to evaluate the performance of
such attacks and if commonly used techniques are the most appropriate ones. In prac-
tice, it is common to use metrics like key rank, success rate, and guessing entropy to
evaluate the attack performance in SCA [12, 156, 65, 144]. While the first metric re-
quires one experiment run, the latter two are run multiple times to counteract the effect
of dataset/measurements selection. For direct attacks or simpler profiling attacks like the
template attack, this repetition is sufficient as the algorithms are deterministic, so running
them multiple times gives the same results (if the measurements and selected features
do not change). On the other hand, deep learning techniques (i.e., artificial neural net-
works) have multiple sources of randomness (due to the initialization, regularization, and
optimization procedure), making those algorithms stochastic. The randomly initialized
weights and biases with selected initialization methods make the models perform differ-
ently before training, which may also lead to performance variation after training. Regu-
larization techniques like dropout randomly ’switch off’ some neurons, leading to unpre-
dictable model behaviors. Optimization algorithms, such as stochastic gradient descent
(SGD) and Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS),
can lead to significant performance variation due to their different working principles.
Thus, it is intuitive to expect different results when training deep learning models (includ-
ing the above-mentioned random sources multiple times), making the evaluation of the
attack performance not straightforward. This problem becomes even more challenging
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when considering the differences among various neural network architectures.

Finally, the importance of evaluation metrics in the deep learning training process
is worth noting: by actively monitoring the metric value, one can easily interpret if the
model is underfitting or overfitting. However, we notice a limited online evaluation met-
rics (i.e., evaluate during profiling) optimized specifically for DL-SCA. First, accuracy,
a commonly used metric for deep learning, is less indicative of SCA [65]: 1) due to the
noise/countermeasures in the traces, side-channel leakages are more challenging to clas-
sify, 2) accuracy does not represent the success of an attack well, as we commonly need to
consider continuous attacks that are better evaluated with metrics capturing this continu-
ity. Second, using common SCA metrics such as guessing entropy and success rate would
significantly increase the training time due to their computation complexity. Moreover,
guessing entropy evaluates the rank of the correct key only. Although effective, we argue
that it can be less indicative as the internal relationship with other (faulty) key candidates
is not considered. More discussions are available in section 4.3.3.

We put the above concerns forward as the motivations for this chapter. In section 4.2,
we investigate the influence of algorithmic randomness on the attack performance of DL-
SCA. More precisely, we use the standard deviation to showcase that running experiments
multiple times can result in a significantly different assessment of the attack performance.
This difference in the attack performance is confirmed for scenarios that use 1) different
random models and 2) the same profiling model and train it independently several times
(where the randomness comes from the algorithmic settings). Then, we investigate the
most appropriate summary statistic for evaluating the attack performance. We consider
the arithmetic mean, geometric mean, and median and show that the median works the
best (fastest convergence). Our results indicate that deep learning-based SCA often results
in skewed distributions of the attack performance, so the arithmetic mean is not appropri-
ate statistics, which is relevant as it is commonly used in the SCA domain. Besides, we
investigate how a different number of independent experiments (key rank evaluations) in
the attack phase influences attack performance. Our results show that this value does not
significantly influence the results, so much smaller values can be safely used.

In section 4.3, first, to reduce the required number of training traces, inspired by [41],
we transfer the one-hot encoded labels to their Gaussian distribution centering on the cor-
responding labels. An illustration of the proposed learning scheme is shown in Figure 4.1.
A one-hot encoded label that belongs to class 4 has been transferred to the distributed label
with the value of the fourth index with the highest probability. Based on our experiment,
regardless of the used leakage model and deep learning architectures, the profiling traces
can be reduced at least ten times compared with the number of profiling traces used in the
literature using our learning scheme.

Second, we extend the label distribution to key distribution to measure the geometry
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Figure 4.1: Learning with distributed labels.

distance between the most likely key (not necessarily the correct key) and all the other
keys. From this method and guessing entropy estimation, we propose a novel profiling
model fitting metric - Augmented Guessing Entropy (AGE) that calculates the correlation
between key distribution and the key guessing vector of all key guesses. As demonstrated
with experiments on publicly available datasets, the proposed metric can indicate the
generalization ability of a profiling model and thus serve as a reliable evaluation metric of
early stopping and network architecture search. AGE is more indicative than conventional
metrics such as validation cross-entropy loss or perceived information because it directly
links with the attack performance. On the other hand, compared with GE, AGE requires
significantly fewer computation efforts to obtain a reliable estimation of the results. Thus,
it can be a good metric during model training.

4.2 Evaluation of DL-SCA

Before moving to the evaluation part, we first introduce two important notations: sources
of randomness for the DL model and Summary Statistics for GE calculation. 1

4.2.1 Sources of Randomness in DL-SCA

When considering deep learning, several common sources of randomness will influence
the obtained results. The random sources are connected with the dataset (dataset random-
ness) and the machine learning algorithm (algorithmic randomness). Dataset randomness
is caused by the random selection of the traces included in the training/attack dataset. Av-
eraging multiple results is a common way to reduce the effect of any specific traces. While
the choice of traces can significantly influence the results, we consider it out of scope for

1This section is based on the paper: On the evaluation of deep learning-based side-channel analysis. Wu, L.,
Perin, G., & Picek, S. (2022). In International Workshop on Constructive Side-Channel Analysis and Secure
Design (pp. 49-71). Springer, Cham.
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this section, as it affects any side-channel analysis and not only the deep learning ones.
For more results about attack performance when selecting different traces, see [151].

In terms of algorithmic randomness, we can obtain different results even if train-
ing/evaluating a neural network on the same set of traces (for experiments, see sec-
tion 4.2.3, Figure 4.2). Indeed, the setting of the random seeds introduces randomness
to the machine learning algorithm, where the common sources are:

• Initialization of weights and biases. Initialization of weights provides the first
model that is then improved with the backpropagation algorithm. If the weights
are chosen poorly (e.g., all the weights are the same value), the training process
will not be efficient. The initialization of weight analysis in the context of SCA is
done in [76].

• Regularization techniques, such as dropout. Regularization represents techniques
used to reduce the error by fitting a function f appropriately on the training set.
Regularization is used to prevent overfitting (when the model does not generalize
to previously unseen data). Dropout is a regularization technique where during the
training, some layer outputs are randomly ignored (“dropped out”). Dropout is used
to approximate the training of many neural networks with different architectures in
parallel.

• Optimization techniques used to minimize the loss function. Optimizers change the
parameters (e.g., weights) of machine learning algorithms (e.g., neural networks)
to reduce the loss. They can also change the hyperparameters like learning rate.
The analysis of various optimization algorithms and their behavior in SCA is done
in [97].

4.2.2 Summary Statistics

Once we obtained the information about key rank from z independent experiments over
space S, we need to find the most appropriate estimator for the expected value of S. A
common way to do this is to use the arithmetic mean, where the arithmetic mean of z
examples equals x = 1

z

∑z
i=1 xi. While a common way to calculate guessing entropy,

arithmetic mean has a drawback as it is dominated by numbers on a larger scale. This
happens due to a simple additive relationship between numbers where scales do not play
a role.

An alternative to arithmetic mean that takes into account the proportions is the geo-
metric mean x̌ = (

∏z
i=1 xi)

1
z .

We can also consider the middle value of the dataset, which is called median x̃ =
x z

2
+x z

2
+1

2 . The median is less affected by outliers and skewed data than the arithmetic
mean.

The standard deviation is a measure of the amount of variation or dispersion of a
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set of values σx =
√

1
z

∑z
i=1(xi − x)2. In the SCA context, a large standard deviation

means that the adversary will have a high probability to be “lucky” (or “unlucky”) in the
choice of traces or hyperparameters.

4.2.3 Experiments

We investigate two scenarios in our experiments: random profiling models and state-of-
the-art profiling models from related works. We experiment with multilayer perceptron
(MLP) and convolutional neural networks (CNNs) in the Hamming weight (HW) and
Identity (ID) leakage models. Finally, we consider the ASCAD fixed key (ASCAD F),
ASCAD random keys (ASCAD R) 2, and CHES 2018 Capture-The-Flag (CHES CTF)
datasets) 3. For both ASCAD versions, we attack key byte 3 (the first masked key byte)
and use 50 000 traces for profiling and 5 000 traces for the attack. For CHES CTF, we use
45 000 traces with 2 200 features each for profiling and 5 000 traces for the attack, and we
attack the first key byte. We opted for these settings to make our experiments aligned with
related works. Additionally, it is common to attack only one key byte as it is expected that
the attack difficulty should be similar for the other key bytes, see, e.g., [156, 110, 144].

The machine learning model was implemented in python version 3.6, using Tensor-
Flow library version 2.0. The model training algorithms were run on a cluster of Nvidia
GTX 1080 and GTX 2080 graphics processing units (GPUs), managed by Slurm work-
load manager version 19.05.4. The number of random profiling models is set to 100 for
all experiments. We set the maximum sizes (in terms of the number of training param-
eters) for architectures for the random model generation to the ones from the ASCAD
paper [12], which we denote as ’MLP best’ and ’CNN best’. Since more recent state-
of-the-art models are even smaller, we can assume we do not need bigger models for the
dataset under investigation. The detailed model implementations are listed in Table 4.1.
Aligned with the settings provided by the ASCAD paper [12], we use RMSProb as the
optimizer with a learning rate of 1e-5. The number of training epochs is set to 75. To
generate the random models from the baseline models (MLP best and CNN best), for
CNN models, we randomized the kernel size of the convolution layer and the number of
neurons in the dense layer. The latter one is also randomized for MLP models. Specifi-
cally, the range is from the half of the original parameter to the original parameter. For
instance, the kernel values of the first convolution layer in the CNN model range from 32
to 64. For MLP, the range of the neurons is from 100 to 200. We use diverse architec-
tures to provide general conclusions, but they should still perform relatively well (break
the target) since they are based on well-performing architectures that we do not change
radically.

2https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1
3http://aisylabdatasets.ewi.tudelft.nl/ches ctf.h5

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
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Test models Convolution
(filter number, size)

Pooling
(size, stride) Dense layer Activation

MLP best - - 200*5 ReLU

CNN best
Conv (64, 128,
256, 512, 512) avg(2,2)*5 4 096*2 ReLU

Table 4.1: Baseline MLP and CNN architectures used in the experiments.

In terms of attacks with the state-of-the-art models, we used the MLP models obtained
through the Bayesian Optimization [146]. The CNN models we used are developed with
the reinforcement learning approach [110]. Both approaches are introduced in chapter 3.
The details about the architectures are listed in Tables 4.2 and 4.3. All of the training
hyperparameters are aligned with the original papers [146, 110]. Specifically, CNNs use
He uniform as the kernel initializer, and the corresponding learning rate is handled by
OneCycleLR policy [123] with the maximum learning rate (LR) of 5e-3. For MLPs,
Glorot uniform is used as the kernel initializer. Both MLPs and CNNs apply categorical
cross-entropy as the loss function and mini-batch as the optimization method. While there
are other state-of-the-art models we could use (e.g., from [156, 144]), we opted for these
as the related works did not run experiments for the HW leakage model but only the ID
leakage model. We used the selected state-of-the-art models as the authors provided the
code for their architectures, making the risk of wrongly interpreting and implementing an
architecture impossible. The training effort of each model (i.e., the number of epochs) is
set based on the related works [12, 146, 110]. Specifically, MLP best and CNN best are
trained with 75 epochs, while the other models are trained with 50 epochs.

Test models Dense layer Activation Learning rate

ASCAD FHW 1 024, 1 024, 760, 8, 704, 1 016, 560 ReLU 1e-5

ASCAD FID 480,480 ELU 5e-3

ASCAD RHW 448, 448, 512, 168 ELU 5e-4

ASCAD RID 664, 664, 624, 816, 624 ELU 5e-4

CHES CTFHW 192, 192, 616, 248, 440 ELU 1e-3

Table 4.2: MLP architectures used in the experiments [146].

In all the experiments, we conduct the following steps to obtain the results:
1. To evaluate the general performance of different averaging methods and training

settings, we perform multiple independent training phases for state-of-the-art and
random models. Based on the preliminary experiments, 20 independent models
(thus, independent training phases of a model) are sufficient to assess the perfor-
mance of the state-of-the-art models, while to evaluate the performance variation
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Test models Convolution Pooling Dense layer Activation
(filter number, size) (size, stride)

ASCAD FHW Conv(16,100) avg(25,25) 15+4+4 selu

ASCAD FID Conv(128,25) avg(25,25) 20+15 selu

ASCAD RHW Conv(4, 50) avg(25, 25) 30+30+30 selu

ASCAD RID Conv(128, 3) avg(75, 75) 30+2 selu

CHES CTFHW Conv(4, 100) avg(4, 4) 15+10+10 selu

Table 4.3: CNN architectures used in the experiments [110].

of random architectures, we increase the number of the tested models to 100.
2. For each independent training, we calculate summary statistics (arithmetic mean,

geometric mean, and median) for the evaluation metrics (GE, SR) over a number
of attacks. Note that an attack represents an individual key rank experiment. For
instance, having 100 attacks means running 100 key rank evaluations and providing
summary statistics using the evaluation metrics.

3. The arithmetic average and standard deviation of the attack performance metric are
plotted. Since the attack performance is averaged over profiling models, the influ-
ence of algorithmic randomness is present but not dataset randomness (in that case,
we should show standard deviation over different selections of the attack traces).

4. As all of the models effectively retrieve the key or converge to close to zero guess-
ing entropy, we use TGE0 (i.e., the number of attack traces to reach GE of zero) to
evaluate the attack result. Note that this is still a GE metric, but now, with an ad-
justed number of traces required for a successful attack instead of the fixed number
of traces.

5. To conclude which summary statistics is the best, we consider two aspects: the
metric that converges to the best value (e.g., GE of 0) and the metric that converges
the fastest (with the minimum number of attack traces) to the best value. Since for
most experiments provided here, we obtain the best possible value (GE of 0), the
main objective is to reach the GE of 0 with the lowest number of attack traces.

Naturally, one could argue that the best metric is the one that gives the worst results as
it approximates the worst-case security evaluation. However, we believe this somewhat
negates the idea of using the most powerful attack approach, which is a common setup
for deep learning-based SCA.

We also investigated the success rate but observed that it commonly does not change
regardless of the averaging methods and thus offers limited information. Therefore, we
omit these results and only present the success rate results that contain more information.
We postulate this happens as the success rate considers only the most likely key guess
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(first-order success rate). At the same time, guessing entropy uses the information from
the whole key guessing vector. Thus, if the attack is more difficult, i.e., the probability
differences among the best guesses are less pronounced, it will affect the guessing entropy
metric more. For success rate, algorithmic randomness is less likely to cause such sig-
nificant differences in the profiling models so that the most likely guess will change. To
conclude, the success rate metric can help avoid the influence of outliers, but that comes
with a price of less information about the attack performance.

In the next section, most of the results are plotted with the number of attacks on the x-
axis (for GE calculation) and TGE0 on the y-axis. The solid lines represent the average of
the TGE0 metric (i.e., arithmetic mean, geometric mean, or median of several independent
key rank experiments), while the dashed lines of the same color indicate the upper and
lower bound of the standard deviation (± σ). The spaces between of upper and lower
bounds are filled with the corresponding but lighter color.

A Demonstration of Algorithmic Randomness Influence.

We showcase the effects of algorithmic randomness in Figure 4.2 for the ASCAD fixed
key dataset. We select two models from a random hyperparameter tuning: one performs
well (GE converges to zero), and the other performs poorly (GE does not converge). For
every value of the solid line, we train 100 random models, and for each of those random
models, we run the number of attacks as denoted on the x-axis. The influence of the
random weight initialization on the poor-performing model is greater than on the well-
performing model over 100 independent training experiments. This behavior indicates
that a better model suffers less from the random weight initialization, but there will still
be differences in performance (recall, finding a model with optimal weights is difficult,
and there is no methodology allowing that in the general case). The influence of the
dropout layer is limited in this example (cf. Figure 4.2a), but still, we can observe slight
differences caused by dropout randomization. Finally, two optimization techniques, SGD
and L-BFGS, are tested with the same (well-performing) models. In both cases, the attack
performance varies more significantly than the original mini-batch optimization method,
confirming the impact of the optimizer’s randomness on the attack performance. Inter-
estingly, L-BFGS does not reach GE of zero, making a model that performed well into a
model that performs poorly.

Since most deep learning-based SCAs use random search to find good hyperparame-
ters, from Figure 4.2, we can expect (radically) different evaluation results based on the
used architectures. While there are already results showing that these sources of random-
ness introduce instability in deep learning-based SCA, there is no discussion on how to
resolve such issues or at least report the results in a more meaningful way. On the other
hand, the algorithm randomness is also beneficial as it gives the model a better chance
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(a) TGE0: Random initialization of weights
and biases of a well-performing model.

(b) GE: Random initialization of weights and
biases of a bad-performing model.

(c) TGE0: Regularization techniques (dropout
on well-performing model.)

(d) GE: Optimization techniques (SGD,
L-BFGS on the well-performing model.)

Figure 4.2: A demonstration of the algorithm randomness for the Hamming weight (HW)
leakage model and the arithmetic mean as summary statistics.

to converge when training networks. For example, stochastic gradient descent uses ran-
domness to give the model the best chance to jump out of local minima and converge to
the global minimum for a convex loss function. Correspondingly, algorithm randomness
should cause better model convergence and lower standard deviation under the correct set-
tings. This assumes that the training and test data have similar distributions, and optimal
hyperparameters are chosen. Since those two constraints are not easy to fulfill [15, 156],
algorithmic randomness can (and will) also have a negative influence on the attack per-
formance.

Results for the ASCAD F Dataset

The results for random models are shown in Figure 4.3. All the results indicate relatively
stable behavior: when attacking with 100 random models, the median is a statistic indicat-
ing the best attack performance while the worst is the arithmetic mean. Interestingly, we
can observe that the upper deviation value for the median gives similar results as the lower
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(a) Random MLP with the HW leakage model. (b) Random MLP with the ID leakage model.

(c) Random CNN with the HW leakage model. (d) Random CNN with the ID leakage model.

Figure 4.3: TGE0: attack on ASCAD F with random MLP and CNN models.

deviation value for the arithmetic means, indicating that the median is a significantly bet-
ter evaluation statistic. The differences in the number of attack traces are also significant:
from around 700 to 2 000 attack traces. We analyzed the key rank histogram for all at-
tacks, and outliers (failed attacks) have a significant influence on the arithmetic mean (and
to a smaller extent, geometric mean), as they consider all attack results. On the other hand,
the median mean is equivalent to the attack performance of a medium-performing model,
and thus can reliably represent the attack performance. To demonstrate this, Figure 4.4
shows the GE histogram of 100 trained models with the smallest and largest averaging
performance differences (see Figures 4.3b and 4.3d). Clearly, GE calculated with the
arithmetic mean tends to have larger values.

The behavior for a different number of attacks remains stable with no differences
when using more than 40 attacks. This result indicates that instead of averaging 100
times as commonly done in the literature [110, 96], the dataset randomness can be suffi-
ciently countered with less computation effort. Notice how the arithmetic mean can lead
to comparable or even better attack performance than its counterparts with a small num-
ber of attacks. We hypothesize this happens due to the random shuffling of attack traces
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(a) Random MLP with the ID leakage model. (b) Random CNN with the ID leakage model.

Figure 4.4: Histograms of guessing entropy.

and the insufficient number of experiments to assess the average behavior properly. In-
deed, with more attacks being performed, the increasing number of outliers introduced by
data randomness can degrade the attack performance, resulting in less favorable results
for the arithmetic mean. With a larger number of attacks, the standard deviation results
are comparable regardless of the number of attacks, again confirming that outliers are the
main contributors to the reduced attack performance for the arithmetic mean and geomet-
ric mean. From a different perspective, this indicates that random models perform well
for this dataset and that more elaborate tuning mechanisms are not needed [146]. MLP
for the ID leakage model shows the best results and the smallest standard deviation. We
postulate that this happens as the model’s capacity is well aligned with the characteristic
of the dataset, so most of the experiments end up with a rather similar attack performance.

We also show averaged success rate results in Figure 4.5. Arithmetic mean shares
the same tendency with the geometric mean, so the lines are overlapping. The rest of
the results are omitted as the success rate results are the same for the three averaging
methods. Compared with TGE0, the success rate metric is less sensitive to the variation
of the averaging methods since it uses information about the best guess only. We see a
drop for both geometric and arithmetic mean with more attack results averaged, while
the median remains stable. This behavior indicates that the influence of outliers when
considering more attacks becomes more significant, as it skews the distribution.

Next, we investigate the performance of four state-of-the-art models. The results are
shown in Figure 4.6. The green dashed line represents the attack performance reported
in the original papers [146, 110]. For MLP, the median gives the best results, while the
arithmetic mean indicates significantly worse behavior (around twice as many traces re-
quired to reach a GE of zero). Aligned with previous experiments, the increased number
of attacks (i.e., larger than 50) has a limited effect on the performance of each averaging
method. In terms of the attack performance of each model, the results reported in related
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(a) Random MLP with the HW leakage model. (b) Random CNN with the ID leakage model.

Figure 4.5: Success Rate: attack on ASCAD F with random MLP and CNN models.

works are better than the averaged performance from multiple models, meaning that ob-
taining the results on the level of those reported in related works requires a significant
number of experiments (until the appropriate weights of a model are found). Large stan-
dard deviation values confirm this as many of the found models do not even approach the
reported performance. Therefore, we argue that averaging with multiple models initial-
ized with random weights should be mandatory to report their performance reliably.

The median performs the best for CNN results, aligned with the previous results. The
number of attacks shows only a marginal influence, and the deviation is large for the HW
leakage model while small for the ID leakage model. We hypothesize this happens as
with fewer classes scenario (as it is for the HW leakage model), the profiling model has
more capacity (recall that these optimized models are already quite small from the per-
spective of the number of trainable parameters), and more choice to end up with different
performing architectures. The model capacity seems better aligned with the task for the
ID leakage model, so most of the experiments end up with similar attack performance. In-
terestingly, we can reach an even better performance than reported in related works. We
believe this happens as we (in essence) show results for ensembles of classifiers (recall,
we train a single architecture but with different parameters), which is reported to work
better than a single classifier [96].

In general, there is a significant deviation even when using a single optimized model,
indicating that reporting the attack performance for a single setup can be misleading. On
the other hand, our results suggest that the standard deviation correlates with the model’s
fitness to the dataset. For example, in Figure 4.6b, the models had high standard deviation,
and the performance was significantly worse than the literature’s performance in the green
curve. Meanwhile, when looking at Figure 4.6d, the standard deviation was very small,
and the performance was better than the performance presented in the literature.
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(a) State-of-the-art MLP with the HW leakage
model.

(b) State-of-the-art MLP with the ID leakage
model.

(c) State-of-the-art CNN with the HW leakage
model.

(d) State-of-the-art CNN with the ID leakage
model.

Figure 4.6: TGE0: attack on state-of-the-art MLP and CNN models with the ASCAD F
dataset.

Results for the ASCAD R Dataset

Recall that the profiling traces for this dataset contain random keys while the attack set
contains a fixed but unknown key. This setting is closer to the real attack scenario as
it increases the difficulty of retrieving the correct key from the attack set. Figure 4.7
presents the attack results for 100 random models. Compared with ASCAD F, we see
performance degradation, especially when attacking the ID leakage model. For instance,
when attacking with random MLP for the ID leakage model, 74% of the models failed
to converge GE to zero within 5 000 attack traces. Still, even in the worst attack cases,
the median reliably represents the attack result and requires the smallest number of attack
traces to obtain the correct key. Aligned with the previous results, there is a limited
influence of the number of attacks, while the standard deviation is large for all cases
except one (MLP with the ID leakage model). This result indicates that several randomly
selected models perform poorly and need to be optimized.

Aligned with the previous experiment, in Figure 4.8, we observe a drop in success
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(a) Random MLP with the HW leakage model. (b) Random MLP with the ID leakage model.

(c) Random CNN with the HW leakage model. (d) Random CNN with the ID leakage model.

Figure 4.7: TGE0: attack on ASCAD R with random MLP and CNN models.

rate for the arithmetic and geometric means when the number of attacks increases, indi-
cating the influence of outliers. The median reaches the highest success rate of all tested
averaging methods in all scenarios. We also observe a slight increase in SR for the ID
leakage model with the increase in the number of attacks, suggesting significant differ-
ences among specific attacks and requiring more experiments to stabilize them. We omit
other results for SR as they are similar to the presented ones.

Moving to the results for the state-of-the-art models (Figure 4.9), the attack perfor-
mance is significantly improved compared to the previous result on random models. This
means that using random models will not suffice to reach the top attack performance due
to a more difficult dataset. Again, the median performs the best, consistently indicat-
ing the superiority of this averaging method. When comparing our results with the one
reported in the original papers [146, 110] (green dashed line), we again see a slight mis-
match between them. Specifically, the reported results for CNN with the HW leakage
model act as an outlier in Figure 4.9c, again emphasizing the influence of the random
weight initialization and the need to provide averaged results over a number of profiling
models.

The number of attacks has a small influence, but there is no reason to use more than 50
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(a) Random MLP with the HW leakage model. (b) Random CNN with the ID leakage model.

Figure 4.8: Success Rate: attack on ASCAD R with random MLP and CNN models.

(a) State-of-the-art MLP with the HW leakage
model.

(b) State-of-the-art MLP with the ID leakage
model.

(c) State-of-the-art CNN with the HW leakage
model.

(d) State-of-the-art CNN with the ID leakage
model.

Figure 4.9: TGE0: attack on state-of-the-art MLP and CNN models with the ASCAD R
dataset.

attacks in the experiments. We see a very large standard deviation for the CNN architec-
ture and the ID leakage model, indicating that the profiling model is not stable, so multiple
experiments should be done to assess the attack performance properly. Finally, for CNNs,
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there is the synergistic effect of using multiple profiling models as we effectively develop
an ensemble. An interesting perspective is that we can improve state-of-the-art archi-
tectures’ results by making ensembles of the same architectures with different trainable
parameters. We consider this relevant as it allows easy construction of ensembles based
on the available architectures from the literature.

Results for the CHES CTF Dataset

Note that CHES CTF with the ID leakage model results in attack failure according to
to [110, 146], so we consider only the HW leakage model. The results from random model
attacks are shown in Figure 4.10. The performance of the median and the geometric mean
is similar, and both of them outperform the arithmetic mean that is commonly used by
researchers and evaluators. The random CNNs show unsuccessful attacks, which means
that the random selection of profiling architectures is not appropriate for this dataset.
The number of attacks does not show a difference if using more than 40 attacks, and
the deviation for MLP is large, as many profiling models do not succeed in breaking the
target.

(a) Random MLP with the HW leakage model.
(b) Random CNN with the HW leakage model

(most of the attacks failed to converge).

Figure 4.10: TGE0: attack on CHES CTF with random MLP and CNN models.

When attacking with state-of-the-art profiling models, the attack efficiency is dramat-
ically improved. As shown in Figure 4.11, for both MLP and CNN, the median performs
better than the geometric and arithmetic means. Therefore, we can conclude that the me-
dian should be the preferred way of calculating GE. Comparing our results and [146, 110]
(green dashed line), the latter performs significantly better. As mentioned before, since
20-model averaging compensates for the effect of the random weight initialization, we
believe that our results reflect the real performance compared to the results reported in
related works. A large deviation value additionally confirms those observations. Aligned
with all previous cases, we do not see a significant impact of the number of attacks.
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(a) State-of-the-art MLP with the HW leakage
model.

(b) State-of-the-art CNN with the HW leakage
model.

Figure 4.11: TGE0: attack on state-of-the-art MLP and CNN models with the CHES CTF
dataset.

4.2.4 Discussion

Based on the experimental results, we provide several general observations. First, deep
learning-based SCA can show different attack results due to algorithmic randomness and
skewed distribution of attack results. This, in turn, makes the proper attack assessment
potentially tricky, requiring the usage of summary statistics when reporting the attack per-
formance. Naturally, if the number of models that do not converge is significantly larger
than those of converging models, even the median will indicate poor attack performance.
Still, we do not consider this a problem as, in such cases, the attack is complex, and the
attack performance is generally poor. Next, the arithmetic mean should not be used as the
average attack performance estimate as it suffers from a skewed distribution. Our experi-
ments show that the median is the best choice since it is not affected by outliers and thus
represents a resistant measure of a center.

A large number of independent experiments to average the attack performance does
not increase the stability of results, indicating this is a simple option to speed up the eval-
uation process. According to our results, the averaged results from 40 attacks are stable
and representative in all cases. Besides, a large standard deviation with random models
is expected as we use (radically) different profiling models. For state-of-the-art models, a
large standard deviation indicates the low stability of the model. Thus, the performance
of such models could be questionable when facing challenges from the real-world such
as devices’ portability [15]. In many research works, the attack performance is presented
for an optimized model (regardless of the technique to achieve it) with specific hyperpa-
rameters. However, even for a fixed model, we emphasize the necessity of reporting the
averaged performance over several profiling models with different weight initialization so
that the actual attack performance can be reliably estimated.
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Finally, it is possible to build strong attacks using ensembles where we use different
profiling models (as done in related works) and a single model trained several times (thus,
having different trainable parameters).

(a) State-of-the-art CNN with the HW leakage
model.

(b) State-of-the-art CNN with the ID leakage
model.

Figure 4.12: Guessing entropy in a boxplot representation: attack on state-of-the-art CNN
models with the ASCAD F dataset.

Note that the median is preferred if a dataset contains outliers or the underlying dis-
tribution is skewed. Thus, it could be stated that the results are not surprising. While
we agree, related works do not commonly consider or report the media or standard de-
viation results. Additionally, since the results show that algorithmic randomness plays a
significant role, extending the discussion outside metrics and including appropriate rep-
resentations is possible. For instance, instead of showing line plots as commonly done
in the SCA community, a better option could be to use boxplots. A boxplot provides the
minimum, the maximum, the sample median, and the first and third quartiles, allowing
better representation for spread and skewness. At the same time, with boxplots, it would
be less straightforward to provide results for many values on the x-axis. As a demonstra-
tion, we attack ASCAD F with the HW and ID leakage models 20 times and compare the
boxplot of three averaging methods with different numbers of attack traces. As shown in
Figure 4.12, median averaging performs the best compared to other averaging methods.
For Figure 4.12b, the results that are not visible indicate the attack reached GE of 0, and
there is no variance.

4.3 Distributed Label and Augmented Guessing Entropy

4.3.1 Label Distribution

The conventional DL-based SCA represents a multi-label classification task aiming to
describe a measurement with a unique cluster/label. To train a deep learning model, the
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label is one-hot encoded (see Figure 4.13b) using binary variables. However, due to
noise/countermeasure, the one-hot encoded label cannot describe a trace’s ’true’ charac-
teristic. For illustration, Figure 4.13 shows the Probability Density Function (PDF), and
trace distributions from 1 000 measurements 4. The color of each point is attributed based
on their cluster label. Using the HW leakage model, nine PDFs representing nine HW
clusters are built during the profiling phase. Each PDF is represented by two ellipses
representing 0.5 (low) and 0.9 (high) of the maximum probabilities. 5
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Figure 4.13: PDFs and a demonstration of distributed labels.

From Figure 4.13a, thanks to the clear separability of each PDF, template attack can
reach excellent attack performance. However, the overlap between each PDF cannot be
ignored. For the traces that stand in the middle between two PDFs, although they have
deterministic (single) labels equal to the real intermediate data being processed, they are
also geometrically close(r) to their neighboring clusters. Indeed, a precise description of
these traces should also involve the ’incorrect’ labels. Since their similarity to each clus-
ter is inversely correlated with their label distance, as demonstrated in Figure 4.13b, the
traces are represented by the correct label as well as labels nearby but with reduced prob-
ability. We denote this label representation as the distributedlabel. Since the distributed
label is a more accurate representation of the traces, learning from the label distribu-
tion helps achieve a more robust performance than training with one-hot encoded labels.
On the other hand, the relationship between the traces and distributed labels can be eas-
ier mapped, thus effectively relaxing the conditions on the required number of training
traces. Indeed, for a side-channel analysis, the number of profiling traces is restricted by

4ChipWhisperer dataset [92] is used as it represents measurements obtained from a physical device, where
two point-of-interests are selected to represent the traces. Note that this dataset is not noiseless, but it is difficult
to obtain less noisy measurements without resorting to simulations.

5This section is based on the paper: AGE Is Not Just a Number: Label Distribution in Deep Learning-based
Side-channel Analysis. Wu, L., Weissbart, L., Krček, M., Li, H., Perin, G., Batina, L., & Picek, S. (2022).
Cryptology ePrint Archive.
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the time constraint of security evaluation as well as the accessibility and availability of
the profiling devices. Profiling with fewer profiling traces would not only speed up the
profiling phase but ease the requirement of training a good profiling model as well.

Normal distribution f(l) = 1
σ
√
2π

exp

(
− 1

2

(
l−µ
σ

)2 )
is a natural choice to form

distributed labels. Still, deploying such a learning framework has two aspects to be con-
sidered. First, two new hyperparameters µ and σ are introduced. Although µ equals the
label representing the intermediate data, σ depends on the data property, and there is no
straightforward way to measure such a value. In section 4.3.4, we systematically analyze
the influence of σ with different datasets and leakage models and then give suggestions
on the value selection. Second, during the training process, given a trace-label pair (x, y)
sampled from T, the goal is to learn a function f so that the outputted ŷ has a similar dis-
tribution to y. Therefore, instead of using conventional loss functions such as categorical
cross-entropy or mean squared error, Kullback-Leibler (KL) divergence is used as the loss
function to measure the similarity between the predicted and ground truth distribution.

4.3.2 Key Distribution

One essential assumption of the distributed label is that the label closer to the correct
label has a higher probability of being selected. Following this, the similarity of different
key candidates can be represented by the distance of possible hypothetical leakage data
generated by these keys as well. Using AES as an example, we calculate hypothetical
leakage data (i.e., the S-box output) for each key candidate with all possible plaintexts.
This distribution is denoted as the leakage distribution. The key distribution (KD) is
measured by calculating the leakage distribution difference between the key candidates.

KD provides an estimation of the hypothetical distance between key candidates. For a
model built in a successful profiling attack (the correct key k∗ is the best guess), suppose
KD is large between a specific key k ∈ K and k∗. Then, k will be the most likely ranked
low (i.e., with guessing entropy close to 2b − 1) as it has a negligible probability to be
selected. Consequently, KD can be considered an ideal key rank 6 metric indicating the
best possible scenario where the correct key is maximally separated from all the other
keys.

In Eq. (4.1), we calculate KD based on the Euclidean distance (L2 norm) between the
leakage distribution of all key hypotheses k ∈ K and the reference key candidate kref .
We also investigated the Manhattan distance and found the results to be in line but with
somewhat smaller discriminate power.

KD(kref , k) =
∥∥f(di, kref )− f(di, k)∥∥2 , k ∈ K. (4.1)

6Here, ’ideal’ means the perfect fit between an attack model and the leakage. Under this circumstance, the
resulting key rank is equivalent to KD as discussed in section 4.3.3.
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Here, f is the leakage model function that returns the leakage value according to a key
candidate k and data value di. Note that when it is clear from the context, we use the
notations KD(kref , k) and KD interchangeably.

KD gives a unique distribution of all key candidates k based on their difference to the
reference key kref . The selection of kref , therefore, determines the KD value for each
key candidate. The reference key candidate has a distribution difference equal to zero
with itself, and the lower the distribution difference, the more similar the key candidate
is to the reference key. In practice, the reference key can be set to the correct key or the
key with the highest probability. Besides, the selection of f also influences the KD value.
For instance, if the leakage function relies on the Hamming weight of a target byte in an
S-box output, KD can be calculated by:

KD =
∥∥HW (Sbox(di ⊕ kref ))−HW (Sbox(di ⊕ k))

∥∥2 , (4.2)

where ⊕ is the exclusive OR operation. Similarly, KD can also be extended when the
target state is the S-box output. In this case, the leakage function equals Sbox(di⊕ k) and
KD for the reference key candidate kref and a key candidate k is:

KD =
∥∥Sbox(di ⊕ kref )− Sbox(di ⊕ k)∥∥2 . (4.3)

Figure 4.14 illustrates KD with the HW and ID leakage models for the key candidates
kref = 34 (correct key for the ASCAD dataset with random keys) and kref = 224

(correct key for the ASCAD dataset with a fixed key). KD values between two wrong
key guesses are much smaller than the one with kref . Even when considering a perfect
classifier and no noise scenario, KD shows various key candidates have different geometry
distances. Since the publicly available datasets leak mostly in the HW leakage model, we
calculate KD with the HW leakage model throughout the section.

4.3.3 Augmented Guessing Entropy

Key distribution defines the distance between kref and other key candidates. Naturally, a
perfectly fitted model should output a key rank similar to KD. Following this, we define
a profiling model fitting metric by correlating KD with the predicted probability for all
k ∈ K. Since this metric is based on GE but takes into consideration other key candi-
dates besides the correct key, we denote it as Augmented Guessing Entropy (AGE), as a
function of KD and the key guessing vector g:

AGE = corr(KD,g). (4.4)

Eq. (4.4) defines how well a profiling model fits the data concerning a key candidate
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(a) KD for the HW leakage model.
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(b) KD for the ID leakage model.

Figure 4.14: Illustration for the Key Distribution for the HW/ID leakage models and key
candidates 34 and 224.

kref for a chosen leakage model. The notation corr represents the Spearman correlation
that evaluates the monotonic relationship with two inputs. We also considered Pearson
correlation, but as shown in Figure 4.14b, KD for the kref and other keys is around
three million. Commonly used correlation methods such as Pearson correlation would
be dominated by this high value, thus producing low correlations. Following Eq. (4.4),
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(b) ID leakage model.

Figure 4.15: “Perfectly” fitted profiling model with template attack.

if the profiling model outputs the correct key as the most likely key, one could expect
a stronger correlation between KD and g. Conversely, if the profiling model fails to fit
the data, the outputted random, most likely key, would lead to a low correlation between
KD and g. As a demonstration, Figure 4.15 depicts the “almost” perfectly fitted profiling
model for the HW and ID leakage models. We use simulated measurements with strong
HW and ID leakages and a controlled Gaussian noise level, normally distributed with a
variance of 0.01 around a mean of zero. The simulated traces have two features that hold
the leakage, which is proportional to HW (Sbox(d ⊕ k)) and Sbox(d ⊕ k), to simulate
the ideal HW and ID leakages, respectively. The profiling set has plaintexts d and keys
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k chosen from a uniformly random distribution. The attack set’s plaintexts are selected
uniformly at random, while the attack key is the same for the whole dataset. We use the
template attack and consider the increasing number of profiling traces N . In both figures,
AGE increases w.r.t. the number of profiling traces and reaches 0.999 and 0.998 for the
HW and ID leakage models. The results confirm that the correlation between KD and g

tends to increase with better (fitter) models (since we use template attack, better models
are those that are trained with more traces).

4.3.4 Experimental Results

Profiling with Distributed Labels

In section 4.3.1, we argue that the distributed label could represent the ’true’ character-
istic of the traces, which can lead to more efficient learning even with a reduced num-
ber of training examples. We validate this assumption by training the state-of-the-art
CNNs [110] and MLPs [146] with a different number of profiling traces. The models’
hyperparameters are listed in Tables 4.4 and 4.5. All of the non-listed hyperparameter
settings are aligned with the original papers [110, 146]. The convolution layer is denoted
by C; averaging pooling layer is denoted by P. FLAT and FC denote the flatten layer and
fully connected layer. SM denotes the output layer with the softmax activation function.
Besides, we tune the σ value of the distributed label to find the optimal value for different
training settings. To obtain the most representative performance, the attack results of each
training setting (σ and profiling traces number) are averaged from 20 independent training
(and attacks) with random weight initialization [147].

Dataset Leakage
model Architectures lr Batch

size

ASCAD F HW
C(2,25,1), P(4,4), FLAT,

FC(15, 10, 4), SM(9) 5e-3 50

ID
C(128,25,1), P(25,25), FLAT,

FC(20, 15), SM(256) 5e-3 50

ASCAD R HW
C(4,50,1), P(25,25), FLAT,

FC(30, 30, 30), SM(9) 5e-3 128

ID
C(128,3,1), P(75,75), FLAT,

FC(30, 2), SM(256) 5e- 128

CHES CTF HW
C(2,2,1), P(7,7), FLAT,

FC(10), SM(9) 5e-3 128

Table 4.4: CNN architecture used for the attack [110].

Figures 4.16, 4.17, and 4.18 show the results for the ASCAD F, ASCAD R, and
CHES CTF datasets, respectively. The conventional training method (one-hot encoded
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Dataset Leakage
model Architectures lr Batch

size

ASCAD F HW
FC(496, 496, 136, 288, 552, 408, 232, 856),

SM(9) 5e-4 32

ID
FC(160, 160, 624, 776, 328, 968),

SM(256) 1e-4 32

ASCAD R HW
FC(200, 200, 304, 832, 176, 872, 608, 512),

SM(9) 5e-4 32

ID
FC(256, 256, 296, 840, 280, 568, 672),

SM(256) 5e-4 32

CHES CTF HW
FC(192, 192, 616, 248, 440),

SM(9) 1e-3 32

Table 4.5: MLP architecture used for the attack [146].

label) is represented with var = 0.0 (blue bar). When training with the conventional
method, we used the categorical cross-entropy loss. When learning from the label distri-
bution, the KL divergence loss is used.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

(c) CNN with the HW leakage model. (d) CNN with the ID leakage model.

Figure 4.16: Label distribution learning on the ASCAD F dataset.

For the ASCAD F dataset, as shown in Figure 4.16, by distributing HW-based labels,
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GE of zero can be reached with up to 3 000 profiling traces for both MLP and CNN within
the given number of attack traces, which is more than ten times less than the number of the
profiling traces commonly used in literature. At the same time, more than 10 000 profiling
traces are not sufficient when considering the conventional training method. Using the ID
leakage model, although the guessing entropy zero is not reached with 5 000 attack traces,
the distributed labels lead to faster GE convergence.

When looking at the influence of the label distribution variation σ (Figure 4.16), al-
though different profiling traces, leakage models, and attack models are considered, the
optimal settings show consistency: for the HW leakage model, σ ranges from 1 to 2 can
lead to the best attack performance. This value increases to 40 to 80 for the ID leakage
model. Thanks to the wide range of optimal σ values, it would be relatively easy to adapt
this learning scheme to other datasets.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

(c) CNN with the HW leakage model. (d) CNN with the ID leakage model.

Figure 4.17: Label distribution learning on the ASCAD R dataset.

Although ASCAD R is considered a dataset difficult to break [146], as shown in Fig-
ure 4.17, the distributed label boosts the attack performance significantly. For the HW
leakage model, around 6 000 profiling traces are sufficient for MLP and CNN models to
reach GE of zero, at least ten times less than the literature. For the ID leakage model,
aligned with the attack on the ASCAD F dataset, although none of the training settings



4.3 Distributed Label and Augmented Guessing Entropy 149

can retrieve the secret information with 5 000 attack traces, label distribution learning
halves the GE value compared with its one-hot encoded counterpart, indicating a faster
GE convergence with our learning scheme.

Finally, similar results can be obtained when attacking the CHES CTF dataset. Since
this dataset leaks limited ID leakage according to literature [146, 110], we attack with the
HW leakage model only. With the MLP model, 4 000 profiling traces are needed to break
the target, which is again more than ten times less than the traces used in the literature
(45 000 traces). Interestingly, the optimal σ setting shows similarity for the three tested
datasets. Therefore, we can conclude that label distribution learning has a high tolerance
for σ selection. When attacking with other datasets, one can consider selecting label
variation within this range.

(a) MLP with the HW leakage model. (b) CNN with the HW leakage model.

Figure 4.18: Label distribution learning on the CHES CTF dataset.

To better illustrate the pros and cons of label distribution learning, we benchmark
the attack performance of previously used state-of-the-art (SotA) MLPs and CNNs with
two profiling settings: 50 000 traces, which is the number of the profiling traces used in
literature, and 10 000 profiling traces. For label distributed learning, γ is set to 2 and
40 for HW and ID leakage models. The attack performance is evaluated by calculating
the required number of attack traces to reach GE of zero, denoted as TGE0. The results
presented are the averaged TGE0 from 20 independently trained models.

Profiling traces Label ASCAD F ASCAD R CHES CTF

10 000 One-hot -/- -/- -
Distributed 1618/4 964 3623/4892 2337

50 000 One-hot 1219/182 970/2625 567
Distributed 1421/3 530 919/- 905

Table 4.6: Benchmark the attack performance (TGE0) with SotA MLP. Attack results for
the HW and ID leakage models are separated by ’/’.
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Profiling traces Label ASCAD F ASCAD R CHES CTF

10 000 One-hot 2940/- -/- -
Distributed 1252/4050 1939/3 753 2 182

50 000 One-hot 544/87 650/487 455
Distributed 779/- 553/3 684 450

Table 4.7: Benchmark the attack performance (TGE0) with SotA CNN. Attack results for
the HW and ID leakage models are separated by ’/’.

The benchmark results are shown in Table 4.6 and Table 4.7. The best results for each
profiling setting are marked in bold. Clearly, with limited (10 000) profiling traces, dis-
tributed labels bring a significant performance boost with both attack models and leakage
models. On the other hand, with more profiling traces, one-hot encoded labels generally
produce better results.

Evaluating with Augmented Guessing Entropy

In this section, we investigate the effectiveness of the AGE metric for different use cases.
Specifically, we consider network architecture search (NAS) and overfitting prevention
as they have a major influence on the attack performance with DL-based SCA. Indeed,
adjusting the profiling model size will directly influence its learning capacity. On the
other hand, a properly set training epoch could improve the model’s fitness to the dataset.
Since these two aspects rely on well-performing evaluation metrics [110, 96], we show
the performance of AGE in various settings and benchmark it with other common metrics.

As an evaluation metric, AGE can be used as early stopping regularization or as an
indicator of when to save the best model. For illustration, we evaluate state-of-the-art
models by training with different epochs ranging from 1 to 150 in steps of 10. The attack
performance is assessed by TGE0. Besides, three metrics, accuracy, key rank, and AGE,
are calculated per epoch with 5 000 validation traces 7. One may argue that TGE0 can
be used as an evaluation metric. However, TGE0 can only be calculated when GE equals
zero. For a model that cannot break the target with a given number of attack traces, TGE0

is not indicative.
The results for three datasets and two leakage models are shown in Figures 4.19, 4.20,

and 4.21. Since the metrics and TGE0 have different scales, multiple Y-axes are used to
scale the results data. The optimal training epoch proposed in the literature is marked by
green vertical lines (10 for MLPs and 50 for CNNs). Aligned with the previous section,
all of the presented results are averaged from 20 independent pieces of training.

For ASCAD F, using TGE0 as a reference, AGE perfectly reflects the variation of
the model’s generalization with different training epochs. For instance, in Figure 4.19a,

7If GE is larger than 0, TGE0=5 000
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TGE0 starts to increase when the training epoch exceeds 50, indicating that the model is
overfitting. Interestingly, AGE indicates the overfitting effect even earlier than the attack
performance starts to degrade. Indeed, unlike GE or related metrics that only focus on the
correct key, AGE evaluates the order of the key candidates. Intuitively, when the model
starts to align to a limited set of traces and the corresponding labels, the key order would
be gradually perturbed. Based on Figure 4.14, the key candidates with closer KD values
would more likely be influenced. Only after the overfitting effect accumulates to a certain
level (i.e., with more training epochs) the disorder of the key candidate would propagate to
the correct key, finally captured by the GE-related metrics. From the practical perspective,
due to its high sensitivity to overfitting, AGE can be a good candidate as an early stopping
indicator. For the key rank metric, the overfitting effect can only be observed in the late
training stage (Figure 4.19a) or not observable at all. In terms of the accuracy metric,
since it remains almost stable with a different number of training epochs, it performs the
worst as an evaluation metric. Finally, when looking at the optimal training epoch, the
ones used in the literature are not optimal for Figures 4.19a and 4.19d. On the other hand,
AGE indicates the epoch that reaches the best attack performance.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

(c) CNN with the HW leakage model. (d) CNN with the ID leakage model.

Figure 4.19: Metrics performance on the ASCAD F dataset.

Attacks on ASCAD R and CHES CTF show consistent results with ASCAD F. AGE
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performs the best among all evaluated metrics, representing the attack performance pre-
cisely. As an evaluation metric, AGE combines the advantages of key rank and TGE0 with
limited computation overhead, thus becoming a reliable metric for the applications such
as early stopping.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

(c) CNN with the HW leakage model. (d) CNN with the ID leakage model.

Figure 4.20: Metrics performance on the ASCAD R dataset.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

Figure 4.21: Metrics performance on the CHES CTF dataset.

Network architecture search (NAS) is essential in DL-SCA. A smartly designed neural
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network can not only break the target but reduce the training complexity as well [156,
110]. To better illustrate the advantage of the AGE metric, we use CNN listed in Table 4.8
with a tunable α parameter to control the size of the deep learning model. Specifically, a
determines the number of filters in convolutional layers and neurons in the fully connected
layers. We use a (range from 1 to 64) to estimate the complexity of a profiling model.
Note, for the CNN best from [12], a equals 64. The training epoch is set to be optimal
(75) based on [12], which is represented by the green vertical line in the plot. This section
presents the results for the ASCAD F and ASCAD R datasets only. Since CHES CTF
produce similar results, we omit them in this section.

Layer Filter size # of filters Pooling stride # of neurons

Conv block 11 a*1 2 -
Conv block 11 a*2 2 -
Conv block 11 a*4 2 -
Conv block 11 a*8 2 -
Flatten - - - -
Fully connected (2×) - - - a*64

Table 4.8: CNN architecture used for the attack.

The results are shown in Figure 4.22. Aligned with the previous section, accuracy,
AGE, and key rank are used as evaluation metrics. As a reference, TGE0 represents the
attack performance. Among the three considered metrics, AGE best represents the at-
tack performance. For instance, in Figure 4.22a, TGE0 reaches minimum when α equals
around 40. Further increase of the profiling model size would degrade the attack perfor-
mance, meaning the fitness reduction of the model towards the dataset. This tendency is
perfectly represented by the AGE metric, as it reaches the maximum when α is around 40,
then decreases gradually. When looking at other metrics, accuracy keeps on decreasing
with an increased α (i.e., Figures 4.22a and 4.22c), however, it does not correctly reflect
the attack performance. Key rank, on the other hand, failed in representing the fitness of
the model with all training settings (GE=0). Finally, the training epoch suggested in the
literature is still sub-optimal when looking at the results (i.e., Figure 4.22b). Using AGE
as an evaluation metric can help better monitor the attack performance in various settings.

In conclusion, the AGE metric reliably reflects the generality of the profiling model
in various training conditions. Compared with the conventional metrics, evaluating the
keys’ order helps increase the sensitivity of the AGE metric in measuring the model’s
performance. Indeed, in almost all of the experimental results, AGE is the first metric that
indicates the overfitting effect. Additionally, due to its computation simplicity, we believe
AGE is an ideal candidate as an evaluation metric.

Moreover, by comparing AGE changes with 100 and 5 000 attack traces in these two
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(a) ASCAD F with the HW leakage model. (b) ASCAD F with the ID leakage model.

(c) ASCAD R with the HW leakage model. (d) ASCAD R with the ID leakage model.

Figure 4.22: Metrics performance with different model sizes.

figures, some of the attacks with higher noise variation could reach similar AGE by in-
creasing the number of attack traces. Indeed, the accumulation of the model’s output class
probabilities with more attack traces benefits the classification performance [96]. How-
ever, if the model failed to learn from the leakage (e.g., due to the high noise variation),
adding more attack traces would not help retrieve the correct key.

4.4 Conclusions

This chapter investigates the approaches for efficient deep learning-based attacks and eval-
uations. First, we investigate the difficulty of assessing the attack performance for deep
learning-based side-channel analysis. We also provide a way to determine if selected ran-
dom hyperparameters are well-selected (i.e., they result in models where GE converges).
Based on the experimental results, the most appropriate summary statistics for evaluat-
ing deep learning-based SCA are the median, not the arithmetic mean. We show that
the number of attacks (independent experiments) plays only a marginal role where it is
enough to use a small number of attacks (e.g., around 40 separate attacks) to assess the
attack performance properly. Naturally, this holds under the assumption that the ranges
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for random search are optimized. Next, we demonstrate that algorithmic randomness has
a significant effect on the results, and to properly assess them, it is necessary to show av-
eraged results and not only a single one (as commonly done). Thus, while it is common to
run multiple experiments to evaluate the data randomness (e.g., averaging with guessing
entropy), algorithmic randomness also plays an important role (possibly, even being more
important), and the results should be reported in such a way to account for it, e.g., using
the median over several independent training phases.

Next, we introduce distributed labels as a new learning approach that can effectively
reduce the required number of profiling traces. Then, based on the relationship between
each key candidate, we define the Key distribution (KD) metric and use it to form a novel
AGE metric. Our results show that the AGE metric can be a reliable candidate for evaluat-
ing the generality of a model, which has been validated with two use cases: early stopping
and network architecture search. Our findings are confirmed for several experiments con-
sidering various usage cases, attack methods, leakage models, and datasets.

Since this chapter dealt only with algorithmic randomness, it would be relevant to
consider dataset randomness and use more summary statistics for future work. For in-
stance, while reporting average results over multiple experiments is standard, no other
summary statistics are reported. Reporting standard deviation is a good option. Indeed,
when comparing several deep learning algorithms, one can often see somewhat similar
results. On the other hand, we plan to examine the usability of the distributed label in
“conventional” profiling SCA methods such as template attacks. It would be interesting
to explore AGE in the context of leakage assessment. Finally, applying our results to the
non-profiling SCA would be an exciting research direction.





Chapter 5

Noise and Countermeasures

5.1 Introduction

SCA deals with a commonly neglected phenomenon in other domains - noise. Indeed,
noise comes typically from the environment or uncertainty of the process in most cases.
Even worse, countermeasures are introduced intentionally to reduce the leakage of sensi-
tive information. Countermeasures aim to break the statistical link between intermediate
values and traces (e.g., power consumption or EM emanation). There are two main cate-
gories of countermeasures for SCA: masking and hiding. In modern devices, a common
practice of developers is to adopt multiple countermeasures to strengthen the security
assurance of their implementations.

Since the objective of SCA is to conduct a successful attack despite the environment
or countermeasures, it would be crucial to understand how machine learning algorithms
process noise/countermeasures and reduce their effect on the final results. One may doubt
the importance of explaining neural networks in SCA, especially if they can break the
target, which is a (relatively) typical case in academia. We argue that there are multiple
motivations: 1) if the neural networks can effectively break the target, from the evaluators’
point of view, we want to understand why and how to make them even more powerful;
from the developers’ point of view, we want to understand what represents the main diffi-
culties for them to design better SCA countermeasures. 2) if the neural networks perform
mediocrely, it is essential to understand the problem and how to resolve it. Besides,
we see a steady continuation of a trend where researchers manage to find smaller and
shallower neural networks that perform well on specific datasets [144, 110], while under-
standing how (interpretability) and why (explainability) deep learning-based attacks work
does not improve. Not unique for SCA, explainability and interpretability are questions
heavily researched in other domains (e.g., image classification [116, 27, 2]) but without
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substantial success or explicit directions to follow. In 2017, DARPA launched a four-
year program on explainable artificial intelligence (XAI) [49] to investigate how XAI can
improve the understanding, trust, and performance of AI systems. Few efforts towards
assessing security-related applications have also been reported focusing on classification
accuracy [51]. As there are no general findings, it is difficult to expect the security com-
munity to solve these problems for a specific domain like the profiling SCA. Still, the neu-
ral networks used in profiling SCA are not very deep (compared to neural networks used
in other domains) and with a trend to become even more shallow (and narrow) [156, 144],
there is hope that it could be easier to understand such neural networks.

Besides, knowing that deep learning is a compelling option for profiling SCA, there
are only sporadic improvements from the defense perspective, and almost no research
aimed to protect against deep learning-based SCA. We consider this an important re-
search direction. If deep learning attacks are the most powerful ones, an intuitive direction
should be to design countermeasures against such attacks. We propose a novel reinforce-
ment learning approach with custom reward functions to construct low-cost hiding coun-
termeasure combinations, making deep learning-based SCA challenging to succeed. We
conduct extensive experimental analysis considering four countermeasures, two datasets,
and two leakage models. Several countermeasures are reported that indicate strong re-
silience against the selected profiling SCAs. With our methods, an evaluator/developer
with no deep learning knowledge can, for instance, optimize his model with a clear direc-
tion or design more resilient countermeasures.

Following these motivations, in section 5.2, we propose a novel SCA methodology
based on the ablation paradigm to explain how a neural network processes countermea-
sures. Our results show that the ablation of neural networks is a powerful tool as it allows
us to understand 1) in which layers various countermeasures are processed, 2) whether
it is possible to use smaller neural network architectures without performance penalties,
and 3) how to redesign neural networks to improve the attack performance when the re-
sults indicate that the target cannot be broken. We mount more powerful attacks with
the ablation-based approach or use simpler neural networks without attack performance
degradation. We hope this is just the first of the works in the direction of explainability
for deep learning-based SCA.

Then, in section 5.3, we propose a novel reinforcement learning approach to construct
low-cost hiding countermeasure combinations, making deep learning-based SCA chal-
lenging to succeed. Note that the goal in section 2.2 is to remove the noise and counter-
measure effect. In this section, on the other hand, we want to design stronger countermea-
sures. Specifically, we motivate and develop custom reward functions for countermeasure
selection to increase the SCA resilience, then conduct extensive experimental analysis
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considering four countermeasures, two datasets, and two leakage models. Finally, We re-
port on several countermeasures that indicate strong stability against the selected profiling
SCAs. The optimized combinations of countermeasures work in both amplitude and time
domains and could be easily implemented in real-world targets. From a developer’s per-
spective, the optimized combination can become the development guideline of protection
mechanisms.

5.2 Understanding the Noise Influence

Ablation is a process long used in neuroscience, where controlled damages are introduced
in neural tissue to investigate the impact of damages on the brain’s capabilities to perform
assigned tasks. This approach provides deep insights and explanations about each part of
the tissue’s structure and role when reacting to external stimuli [117]. As the complexity
of artificial neural networks increases, the explainability of models has become an open
question. As a natural extension, an ablation study investigates the performance of the
system by removing certain components to understand the contribution of the component
to the system [86]. Ablation requires that the system shows slow degradation, i.e., that
the system continues to work even when specific components are missing or reduced. 1

There is a connection between ablation and an approach called pruning, corresponding
to the systematic removal of parameters from an existing system [53]. However, unlike
ablation, which removes a part of the neural network directly, pruning is commonly per-
formed based on the magnitude of the weights - neurons with weights under a threshold
value being disabled. Besides, the underlying idea between ablation and pruning is dif-
ferent. Pruning is commonly used to speed up inference/prediction while minimizing the
impact on the network’s performance. On the other hand, ablation reduces trainable pa-
rameters to gain insights and explain the trained network’s inner workings. The training
speed is also increased as a consequence of a smaller model. As we are interested in
understanding how neural networks work in profiling SCA and how they deal with vari-
ous countermeasures, ablation is a proper technique for our objective. We emphasize that
there are no widely accepted techniques for AI explainability, but ablation represents a
viable choice [137]. What is more, to the best of our knowledge, there are no researches
providing theoretical results for explainability that cab also be used in practice.

5.2.1 SCA Ablation Methodology

We approach our analysis with a natural assumption that countermeasures increase the
difficulties in breaking the target. From there, it is intuitive to assume that this difficulty

1This section is based on the paper: Explain some noise: Ablation analysis for deep learning-based physical
SCA. Wu, L., Won, Y. S., Jap, D., Perin, G., Bhasin, S., & Picek, S. (2021). Cryptology ePrint Archive.
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Figure 5.1: A demonstration of our ablation method.

is transferred into how a neural network processes the countermeasures. More precisely,
based on a specific countermeasure, we assume that the neural network will 1) start to
process a countermeasure at a different time (layer), 2) require a different time (number
of layers) to fit the countermeasure, and 3) depending on how well the neural network
fitted the data, give different attack performance. While the assumption of the varying
difficulty of different countermeasures is well established, and numerous experimental
results show different neural network performance for different targets, steps 1) and 2)
are, to the best of our knowledge, never investigated before. Consequently, it is intuitive
to select a technique capable of pinpointing the differences in the processing in various
layers.

Algorithm 6 represents our methodology for a single neural network layer and is re-
peated for each layer.2 A graphical depiction of the SCA ablation process is shown in
Figure 5.1. The basic idea of the algorithm is: first, the original model under evaluation
is trained with a specific dataset. We consider MLP and CNN architectures as profiling
models, but our approach is architecture-agnostic. Once training is finished, the neu-
rons/convolution filters of a layer are randomly ablated. Finally, we add perturbation to
the dataset and perform a recovery training with the ablated model. As a consequence, the
ablated neural network should adapt to the added noise. By comparing the performance
before and after ablation and recovery training, we can understand what adjustments are
done within the neural network model to adapt to the noise/countermeasures. This proce-
dure is repeated for every required layer.

To be more specific, the ablation procedure starts by randomly selecting and ablating
ρ% of the neurons/convolution filters from layer l within a pre-trained model Mpre (line
5). Next, the neural network is reconstructed with a reduced convolution filter/neuron

2Although ablation can be performed in a neuron/convolution filter manner, we argue that each neu-
ron/convolution filter’s contribution can fluctuate due to the random weight initialization. As a result, it is
difficult to reach a consistent conclusion when one repeats the proposed ablation methodology with a different
pre-trained model.
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number, then it re-initializes the corresponding weights to the original weights W ρ
pre. We

randomly select neurons/convolution filters in layer l to be ablated as, in general, one does
not know what part of the neural network contributes to the final neural network output.
After ablation, we calculate guessing entropyGEρ,ipre. The weightsW ρ,i

pre are also recorded
for each layer. Then, the ablated model is trained for τ epochs to adjust the weights (line
7). We denote this process as the recovery training. Indeed, as there was a change in the
neural network model (due to ablation), we must allow additional training to adjust for the
changes. Finally, we calculate GEρ,iabl to evaluate the ablation effect (recovery capability)
of the model. The whole process is repeated σ times to cover most of the elements in
a specific layer, and the results (guessing entropy and weights) are averaged to generate
representative results for a certain network layer l. The GE and weights differences are
calculated by subtracting the values before and after the recovery training.

Since Algorithm 6 is performed per layer, more layers lead to higher time consump-
tion (as we repeat the procedure layer-wise). Fortunately, the recovery training is time-
efficient due to the small number of the required training epochs to adjust the model.
Although this is more computationally expensive than calculating GE for the original
model only, we argue that the information obtained through ablation could lead to the
understanding of the model and is helpful for future model adjustments.

Algorithm 6 SCA Ablation Methodology (for layer l).
1: procedure ABLATE LAYER(randomly initialized model M , original dataset T , coun-

termeasure level (intensity) γ, repeat time σ, ablation rate ρ)
2: Mpre,W

ρ
pre← Train(M , T )

3: Tγ ← T + Noise(γ)
4: for i = 1 to σ do
5: Mρ

pre,W
ρ,i
pre← Ablate(Mpre, ρ)

6: GEρ,ipre← Attack(Mρ
pre, Tγ)

7: Mρ
abl,W

ρ,i
abl ← Train(Mρ

pre, Tγ) ▷ Train for τ epochs
8: GEρ,iabl ← Attack(Mρ

abl, Tγ)

5.2.2 Experimental Setup

Threat Model

We consider a common profiling side-channel setting focusing on power/EM side-channel
analysis targeting secret key recovery from cryptographic algorithms. This threat model is
standard and realistic as numerous certification laboratories evaluate hundreds of security-
critical products under this model daily. Power/EM side-channel is often exploited for ex-
ploiting modern communication devices [21] or even used for program flow tracking [54].
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We assume an adversary with access to a clone device running the target cryptographic
algorithm, normally on an embedded device. This clone device can be queried with
known/chosen parameters (keys, plaintext, etc.) while the corresponding leakage mea-
surements, like power or electromagnetic emanation, are recorded. A profiling model is
built based on mapping the relationship between the leakages and the key-related inter-
mediate data. This constitutes the profiling phase.

Next, the adversary queries the device under attack with known plaintext to recover the
secret key by querying the characterized model with corresponding side-channel leakage
traces. This represents the attack phase. We investigate both the single device setup,
where the measurements in both phases are done on the same device and the portability
setup, where the clone device and the device under attack differ.

General Settings

While one could ablate the neurons/convolution filters for any percentage, we give results
for three levels: ρ = {10%, 50%, 90%}, to investigate the behavior of neural networks
for various settings (i.e., when we do a small change, medium change, or a large change
to the neural network architecture). Based on our preliminary experiments, the ablated
model does not require significant training to adapt to the changes (as the models are pre-
trained). Therefore, we run the recovery training for ten epochs. GE is calculated over 100
attacks with a random shuffling of the attack traces to obtain statistically significant re-
sults. Finally, GE and weight variation presented in the experiments are averaged over five
independent ablation experiments for each layer. All of the experiments are implemented
with the TensorFlow [1] computing framework and Keras deep learning framework [28].
The training of the model was executed on an Nvidia GTX 1080 graphics processing unit
(GPU), managed by Slurm workload manager version 19.05.4.

Datasets

We first consider two popular datasets widely adopted in SCA research: ASCAD with
the fixed key (ASCAD F) and ASCAD with random keys (ASCAD R)3. In addition, two
portability-specific datasets, Portability 2020 and CHES CTF are considered to demon-
strate the application of the ablation in tackling portability issues for profiling SCA. The
detailed setup for these datasets is summarized in Table 5.1. Note that for the CHES CTF
dataset, we focus on a window of 600 points representing the leakages of the target exe-
cution.

3https://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD
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Dataset Device Key Type Key Notation

Portability 2020 [15] B1 Fix K1 B1 K1
B2 Fix K2 B2 K2
B3 Fix K1 B3 K1
B4 Fix K3 B4 K3

CHESCTF 2018 [90] Device A Random - A RN
Device B Random - B RN
Device C Random - C RN
Device C Fix K4 C K4
Device C Fix K5 C K5
Device D Fix K6 D K6

Table 5.1: The target datasets for portability settings.

Attack Architectures

In Table 5.2, we depict the neural network hyperparameters we selected after a tuning
phase. Here, modified MLP and CNN [12] are used for evaluation. The architectures can
be easily tuned based on specific requirements. The input layer is adapted based on the
dataset tested; the output layer is adjusted based on the used leakage model. For CNN
models, the size of the convolution filters is set to 11. An average pooling layer follows
each convolutional layer with both pooling size and stride set to two. The experiments are
conducted under the Hamming Weight (HW) and the Identity (ID) leakage models. In the
case of the AES cipher, this results in either 9 or 256 classes, respectively.

Network Leakage
Model Architecture Learning

Rate Epochs Batch
Size

MLP HW Dense(200)*8 1e-4 100 100ID 3e-5 200

CNN HW Conv(64,128,256,512,512)
+ Dense(1 024)*2 1e-4 75 200ID

Table 5.2: Baseline deep learning architectures. When using a certain type of network,
only the size of the output layer would change according to the used leakage model.

5.2.3 Experimental Results

Recall that in Algorithm 6, a model Mpre is generated by training with the original (be-
fore adding noise) SCA dataset. Here, we denote Mpre as the reference model (Ref),
as all of the following analysis is based on this model. Two scenarios, before and after
the recovery training, are considered and presented in the GE difference plots (e.g., Fig-
ure 5.2). Specifically, for the reference models (non-ablated, ρ = 0), we use the following
notations in the figure:
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• Ref before (in the title): GEρ=0
pre , denoting the GE value for the reference model

(line 2 in Algorithm 6). Note that this value is calculated before recovery training.
• Ref after (in the title): GEρ=0

abl , denoting the GE value for the reference neural
network after the recovery training (line 7 in Algorithm 6).

For the ablated model (ρ > 0), we use:
• Before: GEρ=0

pre -GEρ=ρpre , denoting the GE difference between the reference model
and the ablated model before the recovery training.

• After: GEρ=0
abl - GEρ=ρabl , denoting the GE difference between the reference model

and the ablated model after the recovery training.
Clearly, the pairs “Ref before” - “Ref after” and “Before” - “After” are separated

by the execution of the recovery training. When the GE difference is below zero, the
ablation (or ablation with recovery training) of the network introduces negative effects
when compared to the performance of the original model Mpre. When positive, the new
model after ablation/recovery training performs better than the original one. Additionally,
we show each neural network layer’s weight differences, comparing the weight values
before and after the recovery training procedure with different ablation percentages. For
example, consider Figure 5.3 (a) where the value i on the x-axis represents the differences
in weights connecting layeri and layeri+1. When i equals zero, the weights between the
input and the first hidden layers are averaged and compared. When i equals five, we
process the weight shared by the last hidden layer and the output layer.

Results for the ASCAD with the Fixed Key Dataset

Figure 5.2 presents results for the GE differences (Y-axis) when considering Gaussian
noise with a standard deviation of 1. First, observe that both models (MLP and CNN)
have a strong capability in handling the noise with no ablation, as both “Ref before” and
“Ref after” are zero or close to zero. This means that the training process is sufficiently
long, and it is easy for a neural network to adapt to changes in the test set if those changes
come in the form of a moderate level of Gaussian noise.

In terms of the effect of the Gaussian noise on each layer for MLP architectures, more
significant changes are caused in the first layers. This tendency becomes clearer when
the ablation percentage ρ becomes larger. Note that while it seems there are significant
GE changes in the beginning layers for ρ = 10%, the scale is different, so the changes
are limited. Thus, a designer who wants to optimize these MLP architectures (i.e., re-
duce their size) should start by tuning the neurons in the final layers of MLP (as they
contribute less). Meanwhile, increasing the capacity of shallower layers (by adding more
neurons/layers) would increase the robustness of the model. For CNN, when increasing
the ablation rate, similar to MLP models, deeper layers are, on average, more resilient
to the ablation. Moreover, due to the high complexity of the model, the side-effect of
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(d) CNN : ρ = 10%
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(e) CNN : ρ = 50%
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(f) CNN : ρ = 90%

Figure 5.2: GE difference: Gaussian noise (γ = 1.0) for the HW leakage model on
ASCAD F.

ρ = 90% ablation in one layer can be easily compensated by recovery training. Inter-
estingly, as shown in Figure 5.2d, GE can be even slightly better (0.01) when ablating
the deeper layers. This is because models with extra capacity would learn from the noise
easily and finally trigger the overfitting. The ablation and recovery training helps the net-
work to “lose weights”, providing a regularization effect and thus, increasing the attack
performance. For instance, when looking at the model from the ASCAD paper [12], it
is rather large compared with the state-of-the-art and performs less stable when training
multiple times with random weight initialization. By reducing the model’s size carefully,
the model can indeed perform more reliably [144].

In Figure 5.3, we depict the weight differences for considered neural networks. The
most significant changes occur in the last layer for MLP architectures. Indeed, this is the
neural network part when building the final probabilities, and we expect those to change
(if only slightly) whenever we change the neural network architecture. Interestingly, we
also observe larger weight differences in the layer after the ablation (see, e.g., Figure 5.3
(c)), indicating that the next layer is helpful in adjusting to the new architecture. We
expect this layer to have a larger contribution when further shrinking the neural network
size. For CNN, the most significant differences happen in the convolutional layer, which
means that the feature extraction block mainly contributes to Gaussian noise adaptation,
but the classification layers can process the information in a very similar manner (as the
extracted features are very similar). Considering the drop in the weight differences for
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deeper layers, we can conclude that the neural network model still has enough capacity to
adapt.
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(f) CNN: ρ = 90%

Figure 5.3: Weight difference: Gaussian noise (γ = 1.0) for the HW leakage model on
ASCAD F.

Next, as shown in Figure 5.4, we consider the desynchronization countermeasure. For
MLP, the significant value difference between “Ref before” and “Ref after” suggests that
additional training epochs are rather helpful in fighting the added countermeasure. It is
worth noting that “Ref before” is above 200 in all three MLP cases, indicating the oc-
currence of “deceptive” guessing entropy [150]. In this case, more attack traces is not
helpful in improving the GE value. Interestingly, the ablation of MLP layers (blue bars)
causes a positive effect on the GE performance, indicating that the ablation eases the bias
introduced by the added countermeasure. When looking at the GE difference of each
layer, shallower layers have a higher contribution to the noise fitting. After the recov-
ery training (orange bars), the ablation has a more significant impact on each layer when
compared with the results of Gaussian noise, suggesting that the handling of desynchro-
nization requires more layers and deeper architectures when using MLP as the profiling
model.

CNN performs significantly better than MLP in dealing with desynchronization. Still,
ablating the convolutional layer could cause considerable GE degradation (Figure 5.4c),
which means that CNN’s spatial invariance is the determining factor for its success. Com-
pared with its counterpart, the ablation of the fully connected layers causes minor perfor-
mance variation. After recovery training, interestingly, the attack performance slightly
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(e) CNN: ρ = 50%
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(f) CNN: ρ = 90%

Figure 5.4: GE difference: Desynchronization (γ = 5.0) for the HW leakage model on
ASCAD F.

increases when ρ = 10%. Furthermore, even the maximum ablation rate (ρ = 90%) has a
negligible influence on GE performance. These observations confirm the assumption we
made before: the CNN network capacity is more than sufficient, so various changes are
easily adjusted for in the rest of the architecture.

Figure 5.5 presents the weight differences for the desynchronization scenario. The
MLP results are similar to the weight difference with Gaussian noise: the model adap-
tation mainly occurs in the last layers. For CNN, the largest differences happen in the
convolutional layer. This again confirms the importance of a convolution when dealing
with a countermeasure working in the time domain, like desynchronization. Additionally,
compared with Gaussian noise results, we observe smaller weight differences in layers,
showcasing that the neural network has more than enough capacity to model the desyn-
chronization countermeasure, resulting in easy adaptation to ablation. At the same time,
this also means we can significantly reduce the network’s size and maintain the perfor-
mance level.

Figures 5.6 and 5.7 give the results for the Gaussian noise with γ = 1 for the ID
leakage model. The results for desynchronization are given in Supplementary Material.
For Gaussian noise, the results are aligned with the results for the HW leakage model.
Additionally, we observe a larger influence of the countermeasure, implying that more
classes make the classification problem more difficult (as expected). For CNN, we see a
minimal influence on the convolutional layer even without the recovery training (e.g., L1
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(b) MLP: ρ = 50%
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(f) CNN: ρ = 90%

Figure 5.5: Weight difference: Desynchronization (γ = 5.0) for the HW leakage model
on ASCAD F.

to L3), confirming that the tested model has too much capacity. In terms of weight dif-
ference, MLP results clearly show that the ablation effect of one layer is mainly resolved
by its successive layers. On the other hand, compared with the HW results, the weight
variation is significantly increased for each layer for CNN. Indeed, a combined effect of
more classes (9 to 256) and a more difficult countermeasure results in more layers and
effort in dealing with the countermeasure.

Results for the ASCAD with Random Keys Dataset

Figure 5.10 presents the results for Gaussian noise with a standard deviation of one. Ac-
cording to “Ref before” and “Ref after”, aligned with the ablation experiment performed
for ASCAD F, the trained MLP and CNN easily adapt to Gaussian noise in the test set.
In terms of GE variation before the recovery training (blue bars), ablation on the shal-
lower MLP layers causes more damage to the model than the deeper layer. Indeed, even
90% of the ablation could result in limited performance degradation in the last layer (Fig-
ure 5.10c), confirming the extra capacity in these layers. In contrast, for CNN, ablation
in deeper layers (L5/L6/L7) introduces more GE variation before recovery training (Fig-
ure 5.10f), indicating that the deeper layers are more critical in the classification process
for ASCAD R. This observation is well-aligned with established CNN designs such as
VGG16 [121]: the number of convolution filters increases when adding more convolu-
tional layers, while the dense layer also has a large number of neurons.
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(a) MLP: ρ = 10%
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(b) MLP: ρ = 50%
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(c) MLP: ρ = 90%
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(d) CNN: ρ = 10%
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(e) CNN: ρ = 50%
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(f) CNN: ρ = 90%

Figure 5.6: GE difference: Gaussian noise (γ = 1.0) for the ID leakage model on AS-
CAD F.
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(c) MLP: ρ = 90%
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(d) CNN: ρ = 10%
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(e) CNN: ρ = 50%
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(f) CNN: ρ = 90%

Figure 5.7: Weight difference: Gaussian noise (γ = 1.0) for the ID leakage model on
ASCAD F.
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(b) MLP: ρ = 50%
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(c) MLP: ρ = 90%
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(d) CNN: ρ = 10%
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(e) CNN: ρ = 50%

L1 L2 L3 L4 L5 L6 L7

100

80

60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:0.02/Ref_after:0.00

Before
After

(f) CNN: ρ = 90%

Figure 5.8: GE difference: Desynchronization (γ = 5.0) for the HW leakage model on
ASCAD F.
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(b) MLP: ρ = 50%

0 1 2 3 4 5 6 7 8
Layer

0.0001

0.0002

0.0003

0.0004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7
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Figure 5.9: Weight difference: Desynchronization (γ = 5.0) for the ID leakage model on
ASCAD F.
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(b) MLP: ρ = 50%
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(c) MLP: ρ = 90%
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(d) CNN: ρ = 10%
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(e) CNN: ρ = 50%
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(f) CNN: ρ = 90%

Figure 5.10: GE difference: Gaussian noise (γ = 1.0) for the HW leakage model on
ASCAD R.

The above conclusions can also be validated by the GE difference after the recovery
training. Although the model can adapt to the ablation effect in most cases, its recovery
capability varies when ablating different layers. For MLP, ablating the shallower layers
with a greater ablation rate, as shown in Figure 5.10c, results in the performance degra-
dation. However, when controlling the ablation rate in the reasonable range, the attack
performance can be even improved (Figure 5.10a). For CNN, the ablation effect can be
minimal for almost all layers. Following this, the evaluator/designer can simplify the
network without harming the attack performance.

Figure 5.11 shows the weight variation before and after the recovery training. Since
ASCAD R is considered a more complex dataset than ASCAD F, the weight variation is
increased more than ten times for both models. Still, similar to the ASCAD F results,
with an increasing ablation ratio ρ, the overall weight variation increases no matter what
layer is ablated. For MLP, the biggest changes occur in the deeper layers (Figure 5.11f),
indicating their greater contribution to the attack performance. For CNN, the adaptation
is more concentrated in the shallower layers. In terms of model optimization, one can
significantly reduce the complexity of L6/L7 for MLP and L4/L5 for CNN, as the weight
variation of these layers has almost no changes compared to the reference.

Next, we add desynchronization countermeasure to the dataset; the results are shown
in Figure 5.12. Since the performance of Ref before is similar to random guessing,
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(f) CNN: ρ = 50%

Figure 5.11: Weight difference: Gaussian noise (γ = 1.0) for the HW leakage model on
ASCAD R.

random removal of parts of the neural network again results in random behavior. How-
ever, as can be seen from the blue bars (i.e., Figure 5.12c), the ablation makes the model
behaves less deceptive [150], while this effect reduces in general when the ablated layer
goes deeper. For CNN, the observation is inverted. Although GE is not diverging, ab-
lation in the deeper layer causes more damage to the model than the shallower layers,
which indicates that the deeper layers are more crucial for the CNN’s performance when
attacking ASCAD R.

After the 10-epoch recovery training, both models managed to adapt to the added
noise. However, compared with the results of Gaussian noise, the GE degradation tends
to become more ’uniform’ no matter ablating which MLP layer. CNN results show the
capability of convolution layers in dealing with perturbation. Nevertheless, aligned with
the observation before the recovery training, deeper layers are more ”vulnerable” to both
desynchronization and ablation than the shallower layers.

Figure 5.13 shows the weight differences for the desynchronization countermeasure.
For MLP, compared with Gaussian noise, desynchronization introduces greater weight
changes, indicating that more layers would be involved in adapting to this type of noise.
For CNN, since ASCAD R is more difficult to attack than ASCAD F, the bigger weight
changes are in both convolution layers and the final dense layer. Still, as is the case
for desynchronization, we confirm the importance of a convolution when dealing with a
time-domain countermeasure.
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(b) MLP: ρ = 50%
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(c) MLP: ρ = 90%
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(d) CNN: ρ = 10%
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(e) CNN: ρ = 50%
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(f) CNN: ρ = 90%

Figure 5.12: GE difference: Desynchronization (γ = 5.0) for the HW leakage model on
ASCAD R.
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(c) MLP: ρ = 90%
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(f) CNN: ρ = 90%

Figure 5.13: Weight difference: Desynchonization (γ = 5.0) for the HW leakage model
on ASCAD R.
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What Could We Explain?

Based on the extensive investigations (testing different datasets, neural networks, leakage
models, and countermeasures) in previous sections4, we reach the following key take-
aways about deep learning-based profiling SCA.

1. Gaussian noise can be mostly handled with shallower layers (regardless of type),
and it requires fewer layers to cope with, while desynchronization requires more
layers. This property may lead to the model’s complexity variation when dealing
with different types of countermeasures.

2. The convolutional layer mostly handles desynchronization.
3. With the weight differences results, we observe that the impact of ablation is mostly

handled by the layer immediately following the ablated layer.
4. When working with more classes (e.g., ID instead of the HW leakage model), we

observe that more effort is required for the model to adapt to the ablation procedure.

All of the above conclusions can be easily interpreted with our ablation framework. When
used in practice, we believe that the proposed framework is effective as well.

5.2.4 Application to the Multiple Device Model

Benefiting from the interpretability and explainability provided by our ablation method-
ology, we now tackle a more realistic problem: portability issues for the profiling SCA.
While the adoption of the Multiple Device Model (MDM) was proposed as a practical
solution to portability in [15] (i.e., train and validate on multiple copies of the training de-
vice rather than just one), the availability of multiple copies of a device remains a practical
constraint. The availability of multiple devices is a scoring criterion in common criteria
evaluations [78]. A worst-case adversary assumes the availability of multiple copies of
the device. The main goal of this section is to eliminate/mitigate the multiple device as-
sumptions but still generalize and address the portability issue while achieving the same
or similar performance as MDM, thus performing a worst-case analysis. To this end, we
propose Multiple Device Model from Single Device (MDMSD).

It was hypothesized in [15] that portability could be seen as additive Gaussian noise.
Thanks to the ablation method proposed in Algorithm 6, we can now empirically validate
this. In particular, we show that ablating layers in portability have similar behavior to
the Gaussian noise countermeasure in the previous section. The understanding of the
profiling model, in turn, allows us to optimize the model and, more importantly, bridge
the gap between the single-device model and MDM with our proposed MDMSD.

4Spanning several hundred experiments.
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Adapting Ablation Methodology for Portability Setting

As shown in Algorithm 7, we tune the previously proposed methodology in section 5.2.1
for the MDMSD setting. The basic procedure is: 1) partially damage the model trained
on the original device with ablation. This step helps force the model to less overfit the
original device while keeping most of the predicting capability. 2) the ablated model is
recovery-trained and tested with perturbed leakages from the original device to simulate
the portability effect. The new model can generalize to a range of devices.

Specifically, the adversary collects the traces for training and testing based on the
original device o, denoted as Traino and Testo, respectively. The original model, MLo,
is first trained for τo epochs with Traino on this device. The GE for pre-trained model
GEo is then computed based on model MLo and Testo dataset with additional noise α.
The adversary then ablates MLo with a rate ρ and conducts the recovery training for τr
epochs to obtain the new ablated model MLρr . The GE for the ablated model GEρr is
computed from model MLρr and dataset Testo +Noise(β). Next, the adversary defines
the threshold margin m. While the condition GEρr > (m · GEo) holds, the adversary
repeats the while loop in Algorithm 7 starting from MLo.

Algorithm 7 Methodology for MDMSD.
1: procedure MDMSD(The original device o with train, test dataset Traino, T esto

and training epoch τo, Victim device v with test dataset Testv and training epoch τr,
threshold margin m, Noise value for train and test α, β, Ablation rate ρ)

2: MLo← Pre-train Model with Traino, epoch τo
3: (GEρr , GEo)← (∞, 0)
4: while GEρr > (m ·GEo) do
5: MLr ←MLo
6: GEo← Attack(MLo, Testo +Noise(β))
7: MLρr ← Ablate(MLr, ρ)
8: MLρr ← Train(MLρr , Traino +Noise(α))
9: GEρr ← Attack(MLρr , Testo +Noise(β))

10: GEρv ← Attack(MLρr , Testv)
11: Return GEρv

Aligned with Algorithm 6, we tested three different ablation rate (10%, 50%, and
99%) for Portability 2020 dataset. 99% ablation gave the best result, about 6× better than
other ablation rates (see Figure 5.14). By 99% ablation, we consider ablating the whole
layer except for a single neuron (to maintain the connectivity between layers), which is
equivalent to creating a bottleneck layer. We hypothesize that portability can easily cause
overfitting, affecting the whole layer. Thus, ablating the full layer (99%) could resolve
the issues. Consequently, we use this configuration in the following experiments.

Noise parameters α and β must be chosen carefully to better represent noise from
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Figure 5.14: Results of averaged GE for (B1 K1)
—(B2 K2) and (B1 K1)—(B4 K3).

portability. If α and β take a similar value and are too small, the resulting GEo and GEρr
will be too similar and would not address the portability issue. By setting a larger α,
both MLo and MLρr will not learn much information, so the attack on the test dataset
will also fail even with ablation and recovery training. Therefore, we use relatively small
α to ensure the model will work and then use ablation to fight large β representing the
portability-induced noise. Finally, if the conditionGEρr ≤ (m ·GEo) is satisfied, we stop
the Algorithm 7 and obtain the final GE from Testv dataset of the victim device. If m
is 1, the recovery-trained model MLρr is better than MLo because GEρr is smaller than
GEo. However, as shown in the previous experiments, ablation can lead to cases where
GEρr could be slightly higher than GEo. To counter such scenarios, we empirically set a
5% leverage to GEρr , thus m = 1.05.

Evaluation Results

We use the MLP2 architecture 5 proposed in [15] for the following experiments. This
architecture is selected as the best-performing one since it has sufficient capacity to model
the data and yet does not overfit as easily as the previously investigated CNNs. For the
test settings, to simulate noise behavior for portability issues, we generate 20× α for the
β value (α = 5 · 10−4). This is based on the assumption that the additional noise due to
portability will be larger than the measurement noise. We use 50 epoch for training (and
recovery training) as in [15].

For the Portability 2020 Dataset, we train MLP2 (MLo) for the dataset (Line 2 of
Algorithm 7), with the (train) - (test) datasets as follows: (B1 K1) - (B1 K1), (B2 K2) -
(B2 K2), (B3 K1) - (B3 K1), (B4 K3) - (B4 K3).

The results of Lines 6 and 9 in Algorithm 7 for each dataset are shown in Figure 5.15.

5This architecture has four hidden layers where each layer has 500 neurons, the ReLU activation function,
the batch size is 256, the number of epochs is 50, the loss function is categorical cross-entropy, and the optimizer
is RMSprop with a learning rate of 0.001.
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Figure 5.15: GE difference before and after the recovery training for the[15] dataset.

The ablated second layer (L2) seems to achieve better performance sinceGEr is less than
1.05 × GEo for all experiments. Therefore, we utilize the recovery-trained architecture
(MLρr) by ablating the second layer (L2). To directly compare with previous results [15],
we plot the progression of GE for recovery-trained architecture in Figure 5.16b. Fig-
ure 5.16a benchmarks the original result from [15]. We see that MDMSD result outper-
forms the original result. Except for (B4 K3)—(B2 K2), it mostly only requires 10-20
traces to recover the correct key. To better represent the results, we also compute the
averaged GE for the eight results reported in Figures 5.16a and 5.16b [15]. The averaged
results are shown in Figure 5.19a. MDMSD requires half the traces (about 30) as com-
pared to the original results (about 60 traces) to break the target. Note that MDMSD is
proposed to bridge the gap between MDM and a single-device threat model. If multiple
devices are available, MDM should always be preferred.

Next, for the CHESCTF 2018 dataset, we focus on the KeySchedule leakage rather
than S-box operation as reported in [35]. Specifically, we aim to recover the first byte of
the round key in the KeySchedule operation. As the leakage is the HW, the range for GE
is between 0 and 8.

In Figure 5.17, ablating L4 satisfies GEr ≤ 1.05×GEo. We first perform the cross-
device attack on the CHESCTF 2018 dataset. As seen in Figure 5.18a, we cannot recover
the subkey when we train the B RN dataset. Our method recovers all secret information
using less than 50 traces (see Figure 5.18b). Significantly, except for (B RN)—(D K6),
only ten traces are needed to recover the round key (about 5 on average considering all
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Figure 5.16: Result for the [15] dataset.
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Figure 5.17: GE difference before and after the recovery training for the [90] dataset.

experiments), while the single device results never converge. As the dataset is reasonably
simple to attack, changes observed for all layers in Figure 5.17 are tiny, and ablating other
layers had a similar effect (we considered L4 as it gave the best results).

Based on the experimental results on two datasets, we confirm the effectiveness of
our method in dealing with the portability problem. One may argue that pruning can be
an alternative to ablation. However, it is impossible to know which neuron/convolution
filter contributes to the device overfitting by only seeing the weights. Compared with the
conventional approach that always uses the same model, ablation prevents the model from
overfitting on a specific device, thus allowing more accessible adaptation to other devices.
Since most weight info is kept after ablation, a reduced effort is required to rebuild the
link between the leakages and labels.

5.2.5 Discussion

When the deep learning-based SCA breaks the target, our methodology allows 1) to un-
derstand in what layers the noise is handled, 2) give intuition of how difficult the coun-
termeasure is, and 3) to understand whether the neural network can be optimized while
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Figure 5.18: Result for the [90] dataset.
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Figure 5.19: Results for the two datasets considering portability.

reaching the same performance. When deep learning-based SCA cannot break the target,
our methodology allows us to understand in what layers is the largest influence of noise,
thus indicating the architectural parts that should be redesigned.

We enumerate the most important findings that we consistently observed in the exper-
iments:

1. Gaussian noise is handled in the first MLP layers (indicating rather shallow archi-
tectures are sufficient), while desynchronization requires more layers and deeper
architectures.

2. Convolutional layers mainly handle desynchronization but still impact Gaussian
noise. Desynchronization requires more convolutional layers than the Gaussian
noise. This confirms the results of Zaid et al. [156] where the AES HD architecture
is shallow with two dense layers. At the same time, ASCAD (Desync=100) has a
deeper architecture with both convolutional and dense layers.

3. A neural network aims to adapt its weights in the layer where ablation happens and
in the next layer (less influenced layers means adapting is easier).

4. Ablation indicates where countermeasures are processed and whether a neural net-
work can be made smaller. On the other hand, the ablation results also indicate
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the relative difficulties of countermeasures. For instance, our results suggest that
time-domain variation requires more adjustment effort for a neural network. For
the countermeasure design, one could start from the setting that causes the most
performance fluctuations for each layer after ablation.

5. We require at least some model learnability for ablation to provide meaningful re-
sults. If the trained model performs on the level of random guessing, it is hard to
explain such a neural network’s inner workings. Still, the ablation study can serve
as a strong indication of such behavior, especially considering that recently, Wu et
al. showed how guessing entropy could be a misleading metric [150]. If GE shows
poor performance (e.g., on the level of random guessing) and ablating a neural net-
work does not show any differences in weights, it is clear that the model did not
learn anything.

6. Ablation is a useful tool in understanding how neural networks work and how SCA
countermeasures are processed. Still, that does not mean every ablation experiment
will be equally easy to explain.

7. Ablation can help bridge the gap between the single-device model and MDM when
multiple devices are unavailable. Ablating layers responsible for overfitting net-
works to a single device can help the model generalize better. Large ablation values
are preferable to avoid overfitting.

5.3 Countermeasures Against DL-SCA

Designing low-cost countermeasures against DL-based SCA is a difficult research per-
spective. We can find several reasons for it: 6

• As other domains do not consider countermeasures in the same shape as in SCA, it
is not straightforward to use the knowledge from other domains.

• While adversarial machine learning is an active research direction and intuitively,
adversarial examples are a good defense against deep learning-based SCA, it is far
from trivial to envision how such defenses would be implemented in cryptographic
hardware. Additionally, adversarial examples commonly work in the amplitude
domain but not in the time domain.

• It can be easier to attack than to defend in the context of masking and hiding coun-
termeasures. Validating that an attack is successful is straightforward as it requires
assessing how many attack traces are needed to break the implementation. Unfor-
tunately, confirming that a countermeasure works would, in an ideal case, require
testing against all possible attacks (which is not possible).

6This section is based on the paper: Reinforcement Learning-Based Design of Side-Channel Countermea-
sures. Rijsdijk, J., Wu, L., & Perin, G. (2021, December). In International Conference on Security, Privacy, and
Applied Cryptography Engineering (pp. 168-187). Springer, Cham.
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There are only a few works considering countermeasures against machine learning-
based SCA to the best of our knowledge. Inci et al. used adversarial learning as a defen-
sive tool to obfuscate and mask side-channel information (concerning micro-architectural
attacks) [61]. Picek et al. considered adversarial examples as a defense against power and
EM side-channel analysis [103]. While they reported the defense works, how would such
a countermeasure be implemented is still unknown. Gu et al. used an adversarial-based
countermeasure that inserts noise instructions into code [48]. The authors report that their
approach also works against classical side-channel analysis. However, such a counter-
measure cannot be implemented at zero cost. From a designer’s perspective, knowing
the trade-off between the countermeasures’ complexity and the target’s performance (i.e.,
running speed and power consumption), the countermeasure should be carefully selected
and tuned. Finally, Van Ouytsel et al. recently proposed an approach they called cheating
labels, which would be misleading labels that the device is trying to make obvious to the
classifier [91]. Differing from the previously-listed works, this work aimed at showing
the limitations analysis in the SCA context, regardless of the specific technique.

In this work, we do not aim at finding a more powerful countermeasure with adversar-
ial examples. Instead, with the help of the reinforcement learning paradigm, our goal is to
find an optimal combination of hiding countermeasures that have the lowest performance
cost but still ensure that the deep learning-based SCA is difficult to succeed. Although the
random search can reach similar goals, we argue that our SCA-optimized reinforcement
learning method can consistently evolve the countermeasure selection, thus outputting
reliable results. We emphasize that we simulate the countermeasures to assess their influ-
ence on a dataset. This is why we concentrate on hiding countermeasures, as it is easier
to simulate hiding than masking (and there are also more options, making the selection
more challenging). As we attack datasets that are already protected with masking, we
consider both countermeasure categories covered. What we provide is an additional layer
of resilience besides the masking countermeasure. The optimized combinations of coun-
termeasures work in both amplitude and time domains and could be easily implemented
in real-world targets. From a developer’s perspective, the optimized combination can be-
come the development guideline of protection mechanisms. In this section, we conduct
experiments with results indicating the time-based countermeasures as the key ingredient
of strong resilience against deep learning-based SCA.

5.3.1 Countermeasure Design Scheme

We propose a Tabular Q-Learning algorithm based on MetaQNN that can select coun-
termeasures (similar to the reinforcement learning method used in chapter 2), including
their parameters, to simulate their effectiveness on an existing dataset against an arbitrary
neural network. To evaluate the effectiveness of the countermeasures, we use guessing
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entropy. There are several aspects to consider if using MetaQNN:

1. We need to develop an appropriate reward function that considers the particularities
of the SCA domain. Thus, considering only machine learning metrics would not
suffice.

2. MetaQNN uses a fixed α (learning rate) for Q-Learning while using a learning
rate schedule where α decreases either linearly or polynomially are the normal
practice [38].

3. One of the shortcomings of MetaQNN is that it requires significant computational
power and time to explore the search space properly. As we consider several dif-
ferent countermeasures with its hyperparameters, this results in a very large search
space.

We model the selection of the right countermeasures and their parameters as a Markov
Decision Process (MDP). Specifically, each state has a transition towards an accepting
state with the currently selected countermeasures. Each countermeasure can only be ap-
plied once per Q-Learning iteration, so the resulting set of chosen countermeasures can be
empty (no countermeasure being added) or contain up to four different countermeasures
in any order. 7 One may consider that the larger number of countermeasures being added
to the traces, the more difficult the secret information to be retrieved by the side-channel
analysis. However, one should note that the implementation of the countermeasure is
not without any cost. Indeed, some software-based countermeasures add overhead in the
execution efficiency (i.e., dummy executions), while others add overhead in total power
consumption (i.e., dedicated noise engine).

To select optimal countermeasure combinations with a limited burden on the device, a
cost function that can approximate the implementation costs should balance the strength
of the countermeasure implementation and the security of the device. Thus, such a func-
tion is also a perfect candidate as a reward function to guide the Q-learning process. While
we try to base the costs on the real-world implications of adding each of the countermea-
sures in a chosen configuration, translating the total cost back to a real-world metric is
nontrivial. Therefore, we design a cost function associated with each countermeasure,
where the value depends on the chosen countermeasure’s configuration. The total cost of
the countermeasure set, ctotal, is defined as:

ctotal =

|C|∑
i=1

ci. (5.1)

7The countermeasures set is an ordered set based on the order that the RL agent selected them. Since the
countermeasures are applied in this order, sets with the same countermeasures but a different ordering are treated
as disjoint.
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Here, C represents the set of applied countermeasures, and ci is the cost of the indi-
vidual countermeasure defined differently for each countermeasure. Based on the values
chosen by Wu et al. [148] for the ASCAD fixed key dataset, we set the total cost budget
cmax to five, but it can be easily adjusted for other implementations. cmax set the upper
limit of the applied countermeasure so that the selected countermeasure is in a reasonable
range and avoid the algorithm to ’cheat’ by adding all possible countermeasures with the
strongest settings. Only countermeasure configurations within the remaining budget are
selectable by the Q-Learning agent. If the countermeasures successfully defeat the attack
(GE does not reach 0 within the configured number of attack traces), any leftover budget
is used as a component of the reward function. By evaluating the reward function, we can
find the best budget-effective countermeasure combinations, together with their settings,
to protect the device from the SCA with the lowest budget.

We evaluated four countermeasures: desynchronization, uniform noise, clock jitter,
and random delay interrupt (RDI), and applied them to the original dataset. The perfor-
mance of each countermeasure against deep learning-based SCA can be found in [148].
The countermeasures are all applied a-posteriori to the chosen dataset in our experiments.
Note that the implementations of the countermeasure are based on the countermeasure
designs from Wu et al. [148]. Already that work showed that a combination of counter-
measures makes the attack more difficult to succeed.

Some of these countermeasures generate traces of varying length. To make them all
of the same length, the traces shorter than the original are padded with zeroes, while any
longer traces are truncated back to the original length. The detailed implementation and
design of each countermeasure’s cost function are discussed in the following sections. We
emphasize that the following definitions of the countermeasure cost are customized for the
selected attack datasets. They can be easily tuned and adjusted to other implementations
based on the actual design specifications.

Desynchronization

We draw a number uniformly between 0 and the chosen maximum desynchronization for
each trace in the dataset and shift the trace by that number of features. In terms of the
cost for desynchronization, Wu et al. showed that a maximum desynchronization of 50
greatly increases the attack’s difficulty. This leads us to set the desynchronization level
(desync level) ranges from 5 to 50 in a step of 5 (thus, not allowing the desynchronization
value so large that it will be trivial to defeat the deep learning attack). The cost calculation
for desynchronization is defined in Eq. (5.2). Note that the maximum cdesync is five,
which matches the cmax we defined as the total cost of countermeasures (which is why
cdesync needs to be divided by ten).
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cdesync =
desync level

10
. (5.2)

Uniform noise

Several sources, such as the transistor, data buses, the transmission line to the record
devices such as oscilloscopes, or even the work environment, introduce noise to the am-
plitude domain. Adding uniform noise amounts to adding a uniformly distributed random
value to each feature. To make sure the addition of the noise causes a similar effect on
different datasets, we set the maximum noise level based on the dataset variation defined
by Eq. (5.3):

max noise level =

√
V ar(T )

2
. (5.3)

Here, T denotes the measured leakage traces. Then, max noise level is multiplied
with a noise factor parameter, ranging from 0.1 to 1.0 with steps of 0.1, to control the
actual noise level introduced to the traces. Since the noise factor is the only adjustable
parameter, we define the cost of the uniform noise in Eq. (5.4) to make sure that the
maximum cnoise equals to cmax.

cnoise = noise factor × 5. (5.4)

Clock Jitter

One way of implementing clock jitters is by introducing the instability in the clock [20].
While desynchronization introduces randomness globally in the time domain, the intro-
duction of clock jitters increases each sampling point’s randomness, thus increasing the
alignment difficulties. When applying the clock jitter countermeasure to the ASCAD
dataset, Wu et al. chose eight as the jitter level, but none of the attacks managed to re-
trieve the key in 10 000 traces.Thus, we decide to tune the jitter level (jitter level) with
a maximum of eight. The corresponding cost function is defined in Eq. 5.5. In the fol-
lowing experiments, we set the jitter level ranging from 2 to 8 in a step of 2. Again, the
maximum cjitter value matches the cmax value we defined before.

cjitter = jitter level × 1.6. (5.5)

Random Delay Interrupts (RDIs)

Similar to clock jitter, RDIs introduce local desynchronization in the traces. We imple-
ment RDIs based on the floating mean method [32]. More specifically, we add RDI for
each feature in each trace with a configurable probability. If an RDI occurs for a trace



5.3 Countermeasures Against DL-SCA 185

feature, we select the delay length based on the A and B parameters, where A is the
maximum length of the delay and B is a number ⩽ A. Since RDIs in practice are im-
plemented using instructions such as nop, we do not simply flatten the simulated power
consumption but introduce peaks with a configurable amplitude. Since the RDI coun-
termeasure has many adjustable parameters, it will, by far, have the most MDP paths
dedicated to it, meaning that during random exploration, it is far more likely to select it
as a countermeasure. To offset this, we reduce the number of configurable parameters by
fixing the amplitude for RDIs based on the max noise level defined in Eq. 5.3 for each
dataset. Furthermore, we add 1 to the cost of any random delay interrupt countermeasure,
as shown in Eq. 5.6, defining the cost function for RDIs.

crdi = 1 +
3× probability × (A+B)

2
, (5.6)

where A ranges from 1 to 10, B ranges from 0 to 9, and probability ranges from 0.1 to 1
in a step of 1. We emphasize that we made sure the selected B value is never larger than
A.

When looking at the parameters Wu et al. [148] used for random delay interrupts
applied on the ASCAD fixed key dataset, A = 5, B = 3, and probability = 0.5, none of
the chosen attack methods show any signs of converging on the correct key guess, even
after 10 000 traces. With our chosen crdi, this configuration cost equals seven, which we
consider appropriate.

We emphasize that we selected the ranges for each countermeasure based on the re-
lated works, while the cost of such countermeasures is adjusted based on the maximum
allowed budget. While these values are indeed arbitrary, they can be easily adjusted for
any real-world setting. We do not give each countermeasure the same cost, but normalize
it so that the highest value for each countermeasure represents a setting that is difficult to
break and consumes the whole cost budget.

Reward Functions

To allow MetaQNN to be used for the countermeasure selection, we use a relatively com-
plex reward function. This reward function incorporates the guessing entropy and is com-
posed of four metrics: 1) t′: the percentage of traces required to get the GE to 0 out of
the fixed maximum attack set size; 2) GE′

10: the GE value using 10% of the attack traces;
3) GE′

50: the GE value using 50% of the attack traces and 4) c′: the percentage of coun-
termeasures budget left over out of the fixed maximum budget parameter. The formal
definitions of the first three metrics are expressed in Eqs. (5.7), (5.8), (5.9), and (5.10).
We note this is the same reward function as used in [110].
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t′ =
tmax −min(tmax, QtGE

)

tmax
. (5.7)

GE′
10 =

128−min(GE10, 128)

128
. (5.8)

GE′
50 =

128−min(GE50, 128)

128
. (5.9)

c′ =
cmax − ctotal

cmax
. (5.10)

The first three metrics of the reward function are derived from the GE metric, aiming
to reward neural network architectures based on their attack performance using the con-
figured number of attack traces.8 Since we reward countermeasure sets that manage to
reduce the SCA performance, we incorporate the inverse of these metrics into our reward
functions, as these metrics are appropriate in a similar setting [110]. Combining these
three metrics allows us to assess the countermeasure set performance, even if the neural
network model does not retrieve the secret key within the maximum number of attack
traces. We incorporate these metrics inversely into our reward function by subtracting
their value from their maximum value. Combined, the sum of the maximum values from
which we subtract (multiplied by their weight in the reward function) equals 2.5, as shown
in Eq. (5.11). The weight of each metric is determined based on many experiments.

In terms of the fourth metric c′, recall C is the set of countermeasures chosen by
the agent, and ctotal equals five. We only apply this reward when the key retrieval is
unsuccessful in tmax traces, as we do not want to reward small countermeasure sets for
their size if they do not adequately decrease the attack performance. Combining these
four metrics, we define the reward function as in Eq. (5.11), which gives us a total reward
between 0 and 1. To better reward the countermeasure set performance, making the SCA
neural networks require more traces for a successful break, a smaller weight is set on
GE′

50.

R =
1

3
×

2.5− t′ −GE′
10 − 0.5×GE′

50, if tGE=0 < tmax

2.5−GE′
10 − 0.5×GE′

50 + 0.5× c′, otherwise
(5.11)

We multiply the entire set of metrics by 1
3 to normalize our reward function between 0

and 1. While this reward function does look complicated, it is derived based on the results

8Note that the misleading GE behavior as discussed in [150] may happen during the experiments. Although
one could reverse the ranking provided by an attack to obtain the correct key, we argue it is not possible in reality
as an attacker would always assume the correct key is the one with the lowest GE (most likely guess).
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from [110] and our experimental tuning lasting several weeks. Still, we do not claim the
presented reward function is optimal, but it gives good results. Further improvements are
always possible, especially from the budget perspective or the cost of a specific counter-
measure.

5.3.2 Obtain the Most Effective Countermeasure

To assess the performance of the selected countermeasures for each dataset and leakage
model, we perform experiments with different CNN models (as those are reported to
reach top results in SCA, see, e.g. [65, 156]). Those models have been tuned for each
dataset and leakage model combination without considering hiding countermeasures that
we simulate. One could consider this unfair as those architectures do not necessarily work
well with countermeasures. Still, there are two reasons to follow this approach as we 1)
do not know a priori the best set of countermeasures, and we do not want to optimize both
architectures and countermeasures at the same time, and 2) evaluate against state-of-the-
art architectures that are not tuned against any of those countermeasures to allow a fair
assessment of all architectures.

Specifically, the model’s hyperparameters are tuned by reinforcement learning [110].
We execute the search algorithm for every dataset and leakage model combination and
select the top-performing models over 2 500 iterations. To assess the performance of the
Q-Learning agent, we compare the average rewards per ε. For instance, a ε of 1.0 means
the network was generated entirely randomly, while an ε of 0.1 means that the network
was developed while choosing random actions 10% of the time. We use an NVIDIA
GTX 1080 Ti graphics processing unit (GPU) with 11 Gigabytes of GPU memory and
3 584 GPU cores for the test setup. All the experiments are implemented with the Tensor-
Flow [1] computing framework and Keras deep learning framework [28].

The details about the specific architectures can be found in Table 5.3. Note that Rijs-
dijk et al. implemented two reward functions: one that only considers the attack perfor-
mance and the other that also considers the network size (small reward function) [110].
We consider both reward functions aligned with that paper, leading to two models used
for testing; the one denoted with RS is the model optimized with the small reward func-
tion. We use he uniform and selu as kernel initializer and activation functions for all
models.

ASCAD Fixed Key Dataset (ASCAD F)

Figure 5.20 shows the scatter plot results for the HW and ID leakage models for both
the regular and RS CNN. The vertical red line indicates the highest Q-learning reward
for the countermeasure set within 2 000 traces, which could not prevent the CNN from
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Model Convolution layer
(filter number, size)

Pooling layer
(size, stride) Fully-connected layer

ASCADHW Conv(16,100) avg(25,25) 15+4+4

ASCADHW RS Conv(2,25) avg(4,4) 15+10+4

ASCADID Conv(128,25) avg(25,25) 20+15

ASCADID RS Conv(2+2+8, avg(25+4+2, 10+4+2
75+3+2) 25+4+2)

ASCAD RHW Conv(4, 50) avg(25, 25) 30+30+30

ASCAD RHW RS Conv(8, 3) avg(25, 25) 30+30+20

ASCAD RID Conv(128, 3) avg(75, 75) 30+2

ASCAD RID RS Conv(4, 1) avg(100, 75) 30+10+2

Table 5.3: CNN architectures used in the experiments [110].

(a) HW (192 hours). (b) ID (204 hours).

(c) HW (RS) (196 hours). (d) ID (RS) (198 hours).

Figure 5.20: An overview of the countermeasure cost, reward, and the ε value for AD-
CAD F.
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Model Reward Countermeasures c′

ASCADHW 0.967 Desync(desync level=10) 1.00

ASCADHW RS 0.962 RDI(A=1,B=0,probability=0.10,amplitude=12.88) 1.15

ASCADID 0.957 RDI(A=2,B=0,probability=0.10,amplitude=12.88) 1.30

ASCADID RS 0.962 RDI(A=1,B=0,probability=0.10,amplitude=12.88) 1.15

Table 5.4: Best performing countermeasures for ASCAD F.

retrieving the key within the configured 2 000 attack traces. Notably, a sharp line can be
found on the right side of the Q-Learning reward plots, solely due to the c′ component
of the reward function. Although the selected CNNs can retrieve the secret key when no
countermeasures were applied (c′ = 0) for all experiments with both HW and ID leakage
models, as soon as any countermeasure is applied, the attack becomes unsuccessful with
2 000 attack traces. Indeed, we observe that few countermeasures seem inefficient in
defeating the deep learning attacks from the result plots.

The top countermeasures for ASCAD using different profiling models are listed in
Table 5.4. Notably, the best countermeasure set in terms of performance and cost for this
CNN consists of desynchronization with a level equal to ten, which could be caused by
the lack of sufficient convolution layers (only one) in countering such a countermeasure.
The rest of the top 20 countermeasure sets consist of random delay interrupts. This obser-
vation is also applied to other profiling models and ID leakage models. The amplitude for
RDI is fixed for each dataset, as explained in section 5.3.1. Regarding the parameters of
RDIs, B stays zero for all three profiling models, indicating that A solely determines the
length of RDIs. Indeed,B varies the mean of the number of added RDIs and enhances the
difficulties in learning from the data. However, a larger B value would also increase the
countermeasure cost, which is against the reward function’s principle. From Table 5.4,
we can observe both low values of A and probability being applied to the RDIs counter-
measure, indicating the success of our framework in finding countermeasures with high
performance and low cost.

Next, we compare the general performance of the countermeasure sets between CNNs
designed for the HW and ID leakage model. We observe that the ID model appears to be
at least a little better at handling countermeasures. Specifically, for the ID leakage model
CNNs, the countermeasures’ Q-Learning reward variance is higher, indicating that the ID
model CNNs can better handle countermeasures, making the countermeasure selection
more important. This observation is confirmed by the c′ value listed in Table 5.4: to reach
a similar level of the reward value, the countermeasures are implemented with a greater
cost.

Considering the time required to run the reinforcement learning, around 200 hours are
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(a) HW. (b) ID.

Figure 5.21: An overview of the Q-Learning performance for the ASCAD F experiments.

required on average, which is double the time Rijsdijk et al. need when finding neural
networks that perform well [110]. In Figure 5.21, we show the rolling average of the
Q-learning reward and the average Q-learning reward per epsilon for the ASCAD fixed
key dataset. The blue line indicates the rolling average of the Q-Learning reward for
50 iterations, where at each iteration, we generate and evaluate a countermeasure set.
The bars in the graph indicate the average Q-Learning reward for all countermeasure sets
generated during that ε. The results for RS experiments are similar. As can be seen, the
reward value for countermeasure gradually increases when more iteration is performed,
indicating that the agent is learning from the environment and becoming more capable
of finding effective countermeasure settings with a low cost. Then, the reward value
is saturated when ε reaches 0.1, meaning that the agent is well-trained and constantly
finds well-performing countermeasures. One may notice that the number of iterations
performed is significantly higher than the configured 1 700 iterations. This is because
we only count an iteration when generating a countermeasure set that was not generated
before.

ASCAD Random Keys Dataset (ASCAD R)

The scatter plot results for both the HW and ID model for both the regular and RS CNN
are listed in Figure 5.22. Aligned with the ASCAD fixed key dataset observation, the
vertical red line in the plots is far away from the dots in the plot, indicating that the coun-
termeasure’s addition effectively increases side-channel analysis difficulty. Furthermore,
we again see the sharp line on the right side of the Q-Learning reward, which is caused
by the c′ component of the reward function.

Compared with the ASCAD results for both leakage models (Figure 5.20), we see a
greater variation of the individual countermeasure implementations: even with the same
countermeasure cost, a different combination of countermeasures and their corresponding
setting may lead to unpredictable reward values. Fortunately, we see this tendency with
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the RL-based countermeasure selection scheme and can better select the countermeasures’
implementation with a limited budget. Finally, we observe that the later leakage model is
more effective in defeating the countermeasure when comparing the HW and ID leakage
models. In other words, to protect the essential execution that leaks the ID information,
more effort may be required to implement countermeasures. The top-performing coun-
termeasures for different profiling models are listed in Table 5.5. From the results, RDIs
again become the most effective one among all of the considered countermeasures. The
RDI amplitude is fixed at 16.95 for this dataset, as explained in section 5.3.1.

Interestingly, the countermeasures are implemented with higher costs when compared
with the one used for ASCAD with a fixed key. The reason could be that training with
random-key traces enhances the generalization of the profiling model. What is more, we
also observe that we require a significantly longer time to run the reinforcement learning
framework: on average, 300 hours, which is more than 12 days of computations. Interest-
ingly, we see an outlier with the ASCAD random keys for the ID leakage model, where
only 48 hours were needed for the experiments.

Model Reward Countermeasures c′

ASCAD RHW 0.940 RDI(A=1,B=0,probability=0.20,amplitude=16.95) 1.30

ASCAD RHW RS 0.952 RDI(A=2,B=1,probability=0.10,amplitude=16.95) 1.45

ASCAD RID 0.942 RDI(A=5,B=0,probability=0.10,amplitude=16.95) 1.75

ASCAD RID RS 0.962 RDI(A=1,B=0,probability=0.10,amplitude=16.95) 1.15

Table 5.5: Best performing countermeasures for ASCAD R.

The rolling average of the Q-learning reward and the average Q-learning reward per
ε for the ASCAD random keys dataset are given in Figure 5.23. Interestingly, at the
beginning of Figure 5.23a, there is a significant drop in Q-learning reward, followed by a
rapid increase in the ε update from 0.4 to 0.3. A possible explanation could be that our
model is powerful in defeating the selected countermeasures at the early learning stage.
Still, the algorithm learned from each interaction, selecting powerful countermeasures. In
contrast, selecting countermeasures to defeat ASCAD RID is an easy task: the reward
value reaches above 0.8 at the very beginning, and it stops increasing regardless of the
number of iterations. Since each test consumes 300 hours on average, we stopped the
tests after around 3 000 iterations. There is a similar performance for settings with the
RS objective in the ASCAD with the fixed key dataset: the RL algorithm is constantly
learning. The highest reward value is obtained when ε reaches the minimum.
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(a) HW (280 hours). (b) ID (48 hours).

(c) HW (RS) (296 hours). (d) ID (RS) (309 hours).

Figure 5.22: An overview of the countermeasure cost, reward, and the ε value for AS-
CAD R.

(a) HW. (b) ID.

Figure 5.23: An overview of the Q-Learning performance for the ASCAD R experiments.
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Model Reward Countermeasures c′

CHES CTFHW 0.962 RDI(A=1,B=0,probability=0.10,amplitude=0.50) 1.15

CHES CTFHW RS 0.947 RDI(A=2,B=0,probability=0.20,amplitude=0.50) 1.60

Table 5.6: Best performing countermeasures for the CHES CTF dataset.

CHES CTF Dataset

Finally, we test the CHES CTF dataset by adding different types of countermeasures. The
results are presented in Figure 5.24. CHES CTF leaks in HW only, and following this,
we only attack the dataset with the HW leakage model. First, compared to the other two
datasets, the highest Q-learning reward with GE equals zero with 2 000 traces (red line)
becomes significantly higher ( 0.4), indicating a stronger CHES CTF vulnerability dataset
towards deep learning attacks. This observation can also be confirmed when looking at
the dots’ distribution (representing different combinations of countermeasures) within the
plot: for both tested models, compared with the other two datasets, we see a greater vari-
ation of the Q-learning reward with the same countermeasure costs. Nevertheless, with
our RL-based countermeasure selection framework, the best countermeasure combination
with the least cost can be found in the right corner of the graph.

Furthermore, we list the best countermeasure selected by the RL framework in Ta-
ble 5.6. Aligned with the previous two datasets, RDIs become the most effective coun-
termeasure for both profiling models. This dataset’s RDI amplitude is fixed at 0.50, as
explained in section 5.3.1. In terms of countermeasure configurations, both parameters
are kept in low values.

Interestingly, we obtain RDI as the member of the countermeasure set performing the
best for all datasets and leakage models. This indicates that RDI is very powerful, but
it requires careful tuning of parameters. Indeed, Wu and Picek reported that clock jitter
represents the biggest obstacle in the deep learning-based SCA [148], which indicates that
the selection of RDI parameters was made in a sub-optimal way.

5.4 Conclusions

This chapter aims to understand the influence of noise and countermeasures on DL-SCA,
then design light-weighted but robust DL-resilient countermeasures. We first present the
ablation methodology for deep learning-based SCA. We concentrate on the behavior of
two types of noise commonly in side-channel leakages (Gaussian noise, desynchroniza-
tion) and investigate many experimental settings (neural networks, datasets, leakage mod-
els). Our results indicate how various types of noise affect different neural networks, al-
lowing us to understand the inner working of neural networks better. Additionally, we
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(a) HW (125 hours). (b) HW (RS) (107 hours).

Figure 5.24: An overview of the countermeasure cost, reward, and the ε value for the
CHES CTF dataset.

use the ablation methodology to improve the performance of deep learning-based SCA in
portability. With it, we manage to get significantly better results than state-of-the-art.

Next, we present a novel approach to designing side-channel countermeasures based
on reinforcement learning. We consider four well-known countermeasures (one in the
amplitude domain and three in the time domain) and aim to find the best combinations of
countermeasures within a specific budget. We conduct experiments on two datasets and
report several countermeasure combinations providing significantly improved resilience
against deep learning-based SCA. Our experiments show that the best-performing coun-
termeasure combinations use the random delay interrupt countermeasure, making it a
natural choice for real-world implementations. While the specific cost for each counter-
measure was defined arbitrarily (as well as the total budget), the whole approach is easily
transferable to settings with real-world targets.

For future works, it will be interesting to optimize models or design more resilient
countermeasures with the insight of the model from our method. Besides, we considered
ablation performed in a layer-wise manner in this section. While we are confident that
such an approach gives the most explainable results, future works could examine ablating
multiple layers simultaneously. This is especially interesting for CNNs, where we can ab-
late convolutional and fully connected layers. Finally, as the current deep learning-based
SCA trend uses relatively small neural networks, we consider our work perfectly aligned
with the state-of-the-art. Still, it would be interesting to investigate ablation on larger
neural network architectures, as such architectures will become increasingly important
with the improvements in the countermeasures and larger corresponding datasets (more
features and more profiling traces, which will necessitate larger neural network models).
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In the DL-resilient countermeasure design, the experiments performed currently take
significantly longer than necessary, as we generate a fixed number of unique countermea-
sure sets. In contrast, the chance of developing special countermeasures set towards the
end of the experiments is significantly smaller (due to the lower ε). For future work, we
plan to explore how to detect this behavior. Besides, it would be interesting to benchmark
our method with Dynamic Programming or random solutions. We plan to consider mul-
tilayer perceptron architectures and countermeasures that work well for different datasets
and leakage models. Moreover, this work only evaluates existing countermeasures. It
would also be interesting to investigate if reinforcement learning can be used to develop
novel countermeasures.





Chapter 6

Conclusions

6.1 Discussion

Deep learning-based side-channel analysis (DL-SCA) is powerful yet fragile. The flexi-
bility of the deep learning model gives attackers the freedom for customization, but ob-
taining optimal performance for different attack scenarios becomes cumbersome. The
results in this thesis pave the way toward a more powerful, easy-to-use, and efficient DL-
SCA. We cover the circle of DL-SCA and give multiple solutions from various aspects.
The practitioners can freely choose different solutions that suit their test scenarios. On
the other hand, the most vigorous attack makes the most robust protection. The advance
of the DL-SCA offers developers a new view from the attacker side, thus helping develop
more secure products. The contributions of this thesis are divided into four parts: pre-
processing, hyperparameter tuning, attack evaluation, and countermeasures. Our answers
are based on the research questions raised in each step.

In chapter 2, we give solutions to the first research question, how to generate a good
representation of the leakage trace, from different perspectives. The importance of this
question comes from the increasingly complicated design of the chip and security counter-
measures. Before launching attacks, an evaluator requires the leakage traces to be as leaky
as possible to reduce the attack efforts. Conventional pre-processing approaches such as
low-pass filters, correlation-based alignment, and FFT are helpful in various cases. How-
ever, a combination of the countermeasures, which is common in modern devices, would
significantly reduce their effectiveness. Although DL-SCA minimizes the requirement for
input pre-processing compared with conventional SCA approaches, the raw inputs would
increase the demand for DL models’ capability. Eventually, an evaluator would spend
more time and computation resources training DL models that can break the targets.

A natural solution to release the burden of the DL model is to split pre-processing
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and classification into two separate tasks. Indeed, the attack phase would be much more
straightforward if one could generate a good representation of the leakage traces than
attacking the raw leakages directly. Following this idea, in this chapter, we first developed
a method:

• Remove the noise with denoising autoencoder: We use denoising autoencoder to
reduce the noise and countermeasure effect while keeping the traces’ characteriza-
tion (the shape). The denoising autoencoder can reduce or completely remove the
countermeasures by empirically verifying several countermeasures.

From the practical perspective, the attack assumption of this approach is the same
as the profiling SCA: an attacker has complete control of a cloned device that is identi-
cal to the target device. An attacker cannot only vary the input and key of a cipher but
also control the countermeasures’ on and off. This attack assumption may be unrealistic.
However, it is prevalent for white-box evaluations where an evaluator first disables all
countermeasures to characterize the leakage behavior, then enables countermeasures to
perform the actual attacks. The usage of denoising autoencoder can be seen as another
form of profiling attack, but we are not profiling on data leakage but on noise. Specif-
ically, when performing the leakage pre-processing, an evaluator first acquires a certain
number of clean (countermeasure off) - noisy (countermeasure on) leakage pairs to train a
denoising autoencoder. Once trained, the newly measured traces with countermeasure-on
can be automatically cleaned by feeding them to the denoising autoencoder. Besides that,
the current SCA will likely be supervised, meaning that leakage-label pairs are needed to
launch attacks. Knowing that the knowledge of labels can be impractical in realistic at-
tack scenarios, this paper acts as a starting work for the semi-supervised or unsupervised-
learning-based SCA with significantly lower label reliance.

From an industrial perspective, this paper warns security developers to focus on se-
curing the implementation and be aware of the countermeasures’ weaknesses, as a naive-
designed countermeasure implementation can be easily removed with our method. On
the other hand, high security-assurance evaluations examine the design of the Target of
Evaluation in a white-box manner; an SCA evaluator can precisely estimate the poten-
tial leaking locations and attack timing by checking the hardware design document and
source code. This work opens a new option for this type of evaluation. Besides follow-
ing the conventional SCA evaluation method and trying to exploit the vulnerability of the
security implementations (i.e., attack the acquired leakage traces directly), the evaluator
should also consider exploiting the countermeasure implementation’s weaknesses. If the
countermeasure effect can be reduced or removed, a secure implementation resilient to
SCA is no longer secure.

The second approach we proposed in chapter 2 does not solely focus on noise removal
as the denoising autoencoder. This time, we move a step forward, aiming at generating
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features that are easier to be classified:

• Feature extraction with similarity learning: We introduce similarity learning to ex-
tract high-level features with greater inter-class and smaller intra-class differences.
These approaches can be better solutions or alternatives to conventional methods
such as PCA, LDA, or SOST.

Similarity learning does not require countermeasures control compared to the previ-
ous approach - a standard profiling SCA setup would meet its requirements. Moreover,
knowing that the computation speed is one of the main requirements for feature selection,
our approach stands out, as one epoch training (less than a minute with a consumer CPU)
is sufficient for our algorithm. More importantly, the increasing complexity of modern de-
vices makes it increasingly challenging to acquire leakage features that precisely reflect
the processing of the target data with conventional methods such as PCA and SOST. We
foresee a strong demand for better feature selection methods and a DL-based approach as
an optimal candidate. This paper is one of the first to apply DL in SCA feature extrac-
tion and lead to SotA performance. We expect more researchers will follow this path in
developing more efficient methods. Currently (Nov 2022), this work got the attention of
different industry parties such as the Federal Office for Information Security (BSI) and
JIL Hardware-related Attacks Subgroup (JHAS). Although more investigation is required
for realistic attack scenarios, this approach would be more powerful and flexible than
most conventional feature selection approaches.

Next, in chapter 3, answering how to design an efficient deep learning model for
profiling side-channel analysis becomes our main target. Indeed, every DL-based appli-
cation would face this problem. For SCA, tuning the DL model requires cryptography and
machine learning expertise. Practitioners would only involve a few pre-designed neural
networks and hyperparameter combinations. Considering the variation of devices’ imple-
mentations (e.g., clock frequency, data bus bandwidth, and countermeasures) and leakage
acquisition method (e.g., EM coil location, sampling rate), relying on a fixed neural net-
work would dramatically reduce the possibility of retrieving the secret information. This
chapter answers the question from two perspectives: 1) automate the design of a deep
learning model; 2) find the better choice for selected hyperparameters. Following this,
firstly, to lower the bar of deploying DL-SCA and, in the meantime, increase its effec-
tiveness, two solutions are proposed to realize the automatic hyperparameter tuning in
SCA.

• Bayesian optimization-based hyperparameter tuning: We build a custom frame-
work based on Bayesian Optimization that supports machine learning and side-
channel metrics. We optimize neural networks (multilayer perceptrons and convo-
lutional neural networks) to achieve excellent performance for several commonly
used SCA datasets.
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• Reinforcement learning-based hyperparameter tuning: We use a well-known Q-
Learning paradigm and devise SCA-oriented reward functions. With this frame-
work, we can obtain top-performing convolutional neural networks with great at-
tack performance and small network size.

Both approaches only require a pre-defined searching space as input. The algorithm
would gradually evolve via iterations and output the best neural network architecture for
the given dataset. Upon publication, these two works received considerable attention
from academia. We see two reasons for this: 1) although some papers offer methodolo-
gies to tune the neural network for a specific dataset, the generality of such approaches
has yet to be discovered. The evaluators need to spend additional efforts validating these
methods on their dataset. 2) Our method is straightforward to use and adapt. Indeed,
compared with conventional DL-SCA, these approaches only require a search space as
input; the algorithm does the rest. Ideally, a fixed search space can be transferred for
leakages from different devices. From a security evaluation perspective, one would be
more confident about the device’s security level. Indeed, the attack performance is less
likely influenced by the model architecture due to an extensive range of tested hyperpa-
rameter combinations during the network architecture search. It is possible to criticize
these methods for their high computation time. However, the computation time to find
a suitable model positively correlates with the security level of the targeted implemen-
tations. Following this, we could even think about a new DL-SCA evaluation scheme:
given a certain amount of time, if search algorithms cannot find a good DL model that
can reach a success rate/guessing entropy of a certain level, then this attack scenario is
considered passed.

It is important to note that a ’sufficiently’ large search space could easily become an
’overly’ large space, where too many (unnecessary) hyperparameters would not lead to
a successful attack but are taken into consideration. Therefore, we see the necessity of
investigating specific hyperparameters. In the rest of chapter 3, we study the influence of
pooling layers and loss functions:

• Pooling layer investigation: We confirm the advantages of the average pooling layer
in DL-SCA and offer suggestions on hyperparameter selections with different layer
depths.

• Loss function optimization: We propose a novel loss function: focal loss ratio
(FLR), which helps learn from the hard samples and increases the attack efficiency.

Our research gives concrete results for both investigated hyperparameters, also bench-
marks of various possible choices. The conclusions are generalized on different datasets
and leakage models. We expect two usage cases from these two research: 1) for an evalu-
ator who (unfortunately) has to use a fixed neural network to evaluate different leakages,
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the evaluator can now optimize the network with a more precise direction instead of trial
and error; 2) these works could contribute to network architecture search, as they ef-
fectively reduce the search space (thus reducing the computation time). In this case, an
evaluator may require less time to find an excellent model to break the target.

To answer how to evaluate and improve the efficiency of deep learning-based side-
channel analysis, in chapter 4, we separate the answer into two sub-questions: 1) how
to evaluate DL-SCA and 2) how to improve DL-SCA. We first give efficient and reliable
evaluation solutions for DL-SCA. Indeed, the algorithmic randomness of the DL model
can introduce significant performance variation, leading to unstable attack performance.

• Investigate the algorithmic randomness of the DL model: We suggest not relying
on the result from a single training. A fair evaluation of the attack performance
should be based on the median mean and variance of guessing entropy from multi-
ple independent attacks.

Most of the research used the arithmetic mean by default before this research. Now,
more researchers know there are better choices than the arithmetic mean for guessing en-
tropy calculation. Calculating guessing entropy with median mean would directly impact
the attack outcomes during security evaluations. Compared with the de-facto arithmetic
mean, it further decreases the entropy of unknown bits, thus reducing the remaining brute-
force efforts and potentially decreasing the final rating of an evaluation. In terms of model
training, although the randomness of the DL model and the importance of cross-validation
are widely known and accepted, they are rarely followed in industry and academia due
to time constraints. Our research shows that a model that fails to break the target in the
current training does not necessarily mean the target implementation is not breakable.
This evidence encourages the evaluator to train the model multiple times so that a fair (or
better) evaluation outcome of the target dataset can be given.

The second sub-question is answered by optimizing the profiling efficiency from two
perspectives. First, we aim to reduce the required number of profiling traces while keeping
the attack performance:

• Learning from distributed labels: Based on the assumption that the labels closer to
the actual label is more likely to be selected, we reform the one-hot encoded label to
the Gaussian-distributed labels. Such a method significantly increases the learning
efficiency: the required number of profiling traces can decrease by more than ten
times with label distribution learning.

Surprisingly, there is a minimal research effort into reducing the number of profiling
traces because researchers assume that an attacker can measure unlimited leakages. How-
ever, we argue that this assumption is unrealistic for several reasons: 1) most devices have
a life cycle, meaning their functionality is terminated after, for example, a certain number
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of executions or a specific period. For instance, the maximum number of transactions
for a credit card is 65 536 (0xFFFF). When exceeded, a cardholder must get a new one.
For an average attacker who wants to measure ten million leakage traces from a partic-
ular type of credit card, the attacker will need 160 credit cards from the bank to finish
the measurements. 2) Even for security labs with all implementation white-boxed and
controllable, the number of leakages is limited due to time constraints. Of course, one
could spend years measuring the traces, but the final evaluation rating could exceed the
threshold (e.g., above 31, meaning the attack potential is low). 3) More leakages increase
the effort in measuring, processing, and analyzing. Thus, computation resources could
be a new limitation. Indeed, unlike the deep learning community that believes in more
data-better results, more leakages may only sometimes benefit SCA researchers. Our ap-
proach can effectively reduce the number of profiling traces by simply changing the form
of the label from one-hot encoded to distributed, leading to enhanced attack capability
of an evaluator given a specific time budget. Besides, this method is more realistic con-
sidering the time and computation constraints. Even if the countermeasures or available
profiling devices limit the number of profiling traces, the capability of building a good
profiling model with fewer profiling traces would significantly increase the possibility of
exploiting the potential vulnerability.

Second, we improve the well-known guessing entropy (GE):

• A better SCA metric: We develop a new metric based on the rank order of all
possible keys: augmented guessing entropy (AGE). Compared with guessing en-
tropy, which solely focuses on the correct key, augmented guessing entropy is more
sensitive to the generality of the profiling model. It is an optimal metric for early
stopping and network architecture search.

AGE can accurately reflect the model’s performance with a slight computation over-
head. Since AGE is closely related to the attack performance, an evaluator can assess the
model training progress with high confidence. In addition, validation accuracy is widely
used in practice to monitor the training progress due to its simplicity. However, it is dif-
ficult, or even unrealistic, to correctly classify most of the side-channel data due to low
(in terms of value) and limited (in terms of leaking positions) leakage-data correlation.
A model with no increase in validation accuracy does not mean it stops learning, and the
AGE metric can reflect a model’s learning progress.

Our last research question is: how does a deep learning model interact with noise and
countermeasures? We answer this question by first understanding the influence of noise
on each layer. Based on this knowledge, we design DL-SCA-resilient countermeasures in
an automated manner.

• Understand the countermeasure effect with ablation study: we use the ablation
study to learn the influence of noise and countermeasures of a deep learning model
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per layer. Besides understanding their impact on each layer, the observations give
us model design guidelines to counter such effects.

• Design countermeasures that are more resilient to DL-SCA: We employ reinforce-
ment learning schemes to design low-cost countermeasures resilient to DL-SCA.
Our results show that specific countermeasures are always more potent in hiding
secret information. The outcome of this research can give hints to the developers
on the countermeasure selection and implementations.

Our study on the noise shows that vertical noise (e.g., environmental noise) is more
likely to be handled in shallower and fewer layers. More layers are involved when deal-
ing with horizontal noise (e.g., time jitters). This research opens up multiple research
directions, such as 1) optimizing the neural network when facing these countermeasures.
2) simplifying the redundant layers or neurons within a neural network. From the secu-
rity evaluation perspective, these works again highlight the importance of leakage pre-
processing, such as noise removal and trace alignment. Specifically, knowing that align-
ing on specific reference locations does not ensure the same alignment quality in the later
part of traces, local alignment becomes mandatory to reduce the burden of the DL models
in processing the misalignment. Knowing that trace alignment highly depends on human
effort and expertise, finding solutions to align traces at multiple locations or completely
automate the process would be interesting. From a security developer’s perspective, a
low-cost countermeasure would be more SCA-resilient when introducing more time ran-
domness. Indeed, the optimal countermeasures output by our framework is always desyn-
chronization or time jitters.

6.2 Limitations

Although this thesis covers the entire DL-SCA process from leakage pre-processing to
evaluation, several limitations still need to be addressed. First, the experiment of this
thesis is based on publicly available datasets. Although this is considered a ’standard’
benchmark, these datasets are well-studied and ”broken”. Therefore, we need practi-
cal evidence showing that the proposed approaches work effectively. Next, the attacked
datasets have a refined time window with limited features. From the practical point of
view, it could be challenging to reduce the number of features to a few hundred, even
for a white-box evaluation. Although we attack datasets with an extended time window
in some sections, such limitations apply to most works. Some conclusions are heavily
based on experimental results or observations. The generality of the proposed methods
and suggestions should be further investigated. Finally, all the experiments in this thesis
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are done on the AES cipher. While this is a common option in the SCA research do-
main, it leaves some questions about whether the proposed techniques would generalize
to other cryptographic algorithms, e.g., lightweight or post-quantum ones. Still, most of
our approaches would be easily adapted for lightweight ciphers, and some techniques,
like feature engineering, could work well for post-quantum algorithms.

6.3 Future Work

In this thesis, we offer multiple competitive solutions to improve DL-SCA’s performance
from different aspects. However, knowing the complexity and flexibility of DL applica-
tions, they could only be universal to some attack scenarios. Thus, there are many inter-
esting new directions. We discuss some open problems in DL-SCA that would increase
the value of our techniques for potential applications.

DL-based non-profiled SCA The entire thesis focuses on profiling SCA, while the DL
application for non-profiled SCA needs to be included. Indeed, non-profiled SCA
does not require a clone device and thus has lower requirements for launching
attacks. Since recent advances show that DL is also applicable for non-profiled
SCA [131], it would be interesting to explore that area further. For instance, is the
metric used in [131] an optimal solution? How do we reduce the training com-
plexity of such methods? From a more abstract perspective, the DL application in
non-profiled SCA is still based on a ’divide-and-conquer’ strategy, shared by all
other non-profiled methods such as DPA and CPA. Is it possible to develop a new,
standalone solution for non-profiled attacks based on unsupervised learning?

Unsupervised learning-based leakage assessment Current leakage assessment relies on
an imperfect leakage model. In contrast, the unsupervised clustering-based leakage
assessment is not constrained by labels but focuses on the leakages’ characteris-
tics. In the ideal case, only key or key-dependent processing would contribute to
separating each cluster. Following this, it would be interesting to know if the clus-
ters built by unsupervised learning could be used for leakage assessment. Besides,
unsupervised clustering could help detect high-order leakages while conventional
methods cannot.

Raw traces pre-processing Recent research [79, 98] shows the advantages of attacking
raw traces. 1 Indeed, DL can detect and combine features that lead to some forms of
high-order attack, but as a trade-off, the model complexity could become a problem.
We believe it would be necessary to add a pre-processing step before launching

1Actually, the leakages are not ”raw”: they represent the first round of AES, which have already been pre-
processed. Still, these works consider a significantly larger input dimension, a novelty in the SCA community.
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attacks when considering even longer traces. Investigating the DL attention module
could be an exciting starting point.

Outlier traces filtering Some traces are consistently misclassified with high confidence
during the attack phase. These leakages can be seen as adversarial data toward DL
models that could lead to the model not converging in the worst case. Therefore,
filtering these traces could significantly help the profiling and attack phases.

Fast hyperparameter tuning This thesis proposes two methods for hyperparameter tun-
ing. However, from a higher level, both techniques rely on conventional DL-SCA
feedback, which can be time-consuming. One exciting research direction is to find
methods for more time-efficient profiling in each search iteration so that the auto-
mated hyperparameter tuning could become more applicable for realistic settings
containing millions of noisy and protected side-channel traces and ample search
space. Applying distributed label learning introduced in chapter 4 could be a pos-
sible approach.

Model tuning-based security evaluation Model tuning can also serve as a new security
evaluation scheme. For instance, a security assessment can be considered a ”pass”
if a well-performed DL model cannot be found in a specific time. Of course, many
aspects should be defined, such as determining when a model is ”good” and set-
ting the search time and range. However, such a method could be better than the
conventional DL-based security evaluation that solely relies on a few fixed models
trying to break leakages from different devices.

New DL/ML model for SCA DL-SCA commonly uses MLP and CNN for attacks. There
needs to be more research exploring new architectures or newly-emerged DL mod-
ules in SCA. Due to the increasing complexity of modern devices, we see strong
demand for updating the current DL-SCA from the profiling model’s perspective.





Appendix A

Datasets

A.1 ChipWhisperer

The Chipwhisperer dataset is designed to evaluate various algorithms by providing a stan-
dard comparison base [92]. The dataset we consider contains 10 000 side-channel power
traces measured by the ChipWhisperer CW308 Target running an unprotected AES-128
implementation. Each trace contains 5 000 sample points (features). In our experiment,
we use 7 500 traces for profiling and 2 000 traces for validation. We use key byte two as
the target secret data.

A.2 ASCAD

The ASCAD datasets represent a common target for profiling SCA as they contain mea-
surements protected with a masking countermeasure and settings with fixed or random
keys [12]. More precisely, the ASCAD datasets contain the measurements from an 8-
bit AVR microcontroller running a masked AES-128 implementation. Currently, there
are two versions of the ASCAD dataset. The datasets are available at https://github.com/
ANSSI-FR/ASCAD.

ASCAD F: This dataset version has a fixed key and consists of 50 000 traces for pro-
filing and 10 000 for the attack. Note that traces with 700 features (requires knowledge of
r mask share) are commonly used in related works. To make our work closer to realistic
settings, we increase the time window, including the signal-to-noise ratio (SNR) peaks of
both secret shares sr,2 = Sbox(p2 ⊕ k2)⊕ r2 and r2 (shown in Figure A.1a).

ASCAD R: This dataset version has random keys, with 200 000 traces for profiling
and 100 000 for the attack. Similarly, instead of attacking traces with 1 400 features that
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rely on knowledge of r mask share (commonly used in literature), we extend the pre-
selected window to 4 000 features corresponding to the processing of third masked key
byte based on SNR of the Sbox output. The corresponding SNR is shown in Figure A.1b.
We use 50 000 traces for profiling, and 10 000 traces for the attack for both datasets.

A.3 AES HD

This dataset is first introduced in [65], targeting an unprotected hardware implementation
of AES-128 written in VHDL in a round-based architecture. Side-channel traces were
measured using a high sensitivity near-field EM probe, placed over a decoupling capacitor
on the power line on Xilinx Virtex-5 FPGA of a SASEBO GII evaluation board. In this
paper, the Hamming distance (HD) leakage model is used, and it considers Sbox−1(c7 ⊕
k7)⊕ c11 in the last AES round. 45 000 traces are used for profiling, and 5 000 traces are
used for the attack. Each trace has 1 250 features. The SNR is shown in Figure A.1c. The
dataset is available at http://aisylabdatasets.ewi.tudelft.nl/aes hd.h5.

(a) ASCAD F. (b) ASCAD R. (c) AES HD.

Figure A.1: SNR of the three datasets.

A.4 CHES CTF

This dataset refers to the CHES Capture-the-flag (CTF) AES-128 trace set running on an
STM32 microcontroller, released in 2018 [90]. It consists of different sets of power traces
of masked AES-128, with 650 000 sample points per trace. The first four sets contained
10 000 power traces. The first three sets (Set 1 to 3) were collected from three devices
(denoted by A, B, and C), and each trace corresponds to encryption with a randomly
chosen key. Set 4 contains power traces from Device C with a single fixed key (K4). Set
5 contained 1 000 power traces collected from device C with a fixed key K5, and Set 6
included 1 000 from a new device D with a fixed key K6. In most of our experiments,
we consider 45 000 traces for the training set (K4), which contains a fixed key. The
attack set consists of 5 000 traces. The key used in the training and validation set differs

http://aisylabdatasets.ewi.tudelft.nl/aes_hd.h5
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from the key configured for the test set. Each trace consists of 2 200 features with traces
preprocessing. This dataset is available at https://chesctf.riscure.com/2018/news.

A.5 Portability 2020

This dataset was introduced in [15]. The dataset contains measurements from four copies
of the target, AVR Atmega328p 8-bit microcontroller, set up in parallel. It measures
50 000 power side-channel traces corresponding to 50 000 random plaintexts. A trace
comprises 600 sample points (features), containing only the execution of the first Sub-
Bytes operation of an unprotected AES-128. The dataset was then collected based on the
measurements from four boards (B1, B2, B3, B4) with three randomly chosen secret fixed
keys (K1, K2, K3).

https://chesctf.riscure.com/2018/news
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and Pankaj Rohatgi, editors, Smart Card Research and Advanced Applications - 12th In-
ternational Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised
Selected Papers, volume 8419 of LNCS, pages 253–270. Springer, 2013.

[30] Anurag Chowdhury and Arun Ross. Fusing mfcc and lpc features using 1d triplet cnn for
speaker recognition in severely degraded audio signals. IEEE transactions on information
forensics and security, 15:1616–1629, 2019.
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