Synthesis of Mealy Machines Using Derivatives

Helle Hvid Hansen1,2 \quad David Costa2 \quad Jan Rutten1,2

1Section Theoretical Computer Science
Vrije Universiteit Amsterdam (VUA)

2SEN3
Centrum voor Wiskunde en Informatica (CWI)

March 25, 2006 / Coalgebraic Methods in Computer Science
Main reference:

- Mealy machines are coalgebras.
- Abstract implementation via final Mealy coalgebra.
- Symbolic computation of derivatives.

Our contributions:
- Implementation (Haskell),
- Decision procedure for deciding equivalence of expressions,
- Results on rational 2-adic stream functions
 - automaton size,
 - complexity.
Outline

1. Mealy Machines and Coalgebras
2. Synthesis Using Derivatives (I)
 - Main Idea
3. Arithmetic Bitstream Specifications
 - 2-Adic Bitstream Algebra
 - Mod-2 Bitstream Algebra
4. Synthesis Using Derivatives (II)
 - Deciding Equivalence
5. Rational 2-Adic Functions
6. Mealy Synthesis Tool (incl. Demo)
Mealy Machines

- Finite State Machine (FSM): states, I/O-transitions:

![Diagram](attachment: FSM_diagram.png)

In state s, reading input a, the machine produces an output b, and moves to a new state t.

- Example:
Mealy Coalgebras

- **Mealy coalgebra (input in A, output in B):**

 Set-functor $M(X) = (B \times X)^A$

 $\delta : S \rightarrow (B \times S)^A$

 $s \mapsto (o_s, d_s)$

 $o : S \times A \rightarrow B$ is the output function,

 $d : S \times A \rightarrow Q$ is the next-state function.

- **Mealy homomorphism** $h : (S, \delta) \rightarrow (U, \rho)$:

 for all $s, t \in S$:

 $s \xrightarrow{a|b} t$ iff $h(s) \xrightarrow{a|b} h(t)$.

- **Mealy machine** $(S, \delta, s_0) = \text{(finite) Mealy coalgebra} \ + \ \text{initial state.}$
Causal Behaviour

- **Behaviour of** (S, δ, s_0): deterministic transformation of input stream to output stream (transducer).

- Behaviour of a state s_0 in (S, δ): $\text{Beh}(s_0) : A^\omega \rightarrow B^\omega$.

 For $\sigma = (a_0, a_1, a_2, \ldots) \in A^\omega$, $\text{Beh}(s_0)(\sigma) = (b_0, b_1, b_2, \ldots) \in B^\omega$

 where

 $S_0 \xrightarrow{a_0|b_0} S_1 \xrightarrow{a_1|b_1} \ldots \xrightarrow{a_{k-1}|b_{k-1}} S_k \xrightarrow{a_k|b_k} S_{k+1} \ldots$

 $\text{Beh}(s_0) : A^\omega \rightarrow B^\omega$ is causal (b_n depends only on a_0, \ldots, a_n).
Let \(\Gamma = \{ f : A^\omega \rightarrow B^\omega \mid f \text{ causal} \} \).

Theorem[Rutten]: \(\Gamma \) carries a final Mealy coalgebra structure.

For \(f \in \Gamma \) define \(\pi(f) = \langle o_f, d_f \rangle : A \rightarrow B \times \Gamma \) as

- initial output of \(f \) (on input \(a \)):
 \[
o_f(a) := f[a] = f(a : \sigma)(0) = \text{head } f(a : \sigma)
 \]

- (stream function) derivative of \(f \) (on input \(a \)):
 \[
d_f(a) := f_a : A^\omega \rightarrow B^\omega
 \]
 \[
 \sigma \mapsto f(a : \sigma)' = \text{tail } f(a : \sigma)
 \]
Abstract Implementations

- States \(s, t \) in \((S, \delta)\) are equivalent \((s \sim t)\) iff \(\text{Beh}(s) = \text{Beh}(t)\).
- Mealy machine \((S, \delta, s_0)\) implements \(f : A^\omega \to B^\omega\) iff \(\text{Beh}(s_0) = f\).

Generating Abstract Implementations

Let \(\langle f \rangle\) be the subcoalgebra generated by \(f\) in \((\Gamma, \pi)\);
i.e., \(f \in \langle f \rangle \subseteq \Gamma\) is minimal, derivative-closed.
Then by finality of \((\Gamma, \pi)\):
- \(\langle f \rangle\) implements \(f\). (Because \(\text{Beh}(f) = f\).)
- \(\langle f \rangle\) is a minimal-state implementation.
 If \((S, s)\) implements \(f\), then \(\text{Beh}[\langle s \rangle] = \langle f \rangle\).
Synthesis of Mealy Machines Using Derivatives

Basic Idea:
Symbolic computation of $\langle f \rangle$.
- Specify causal stream functions algebraically (language \mathcal{L}).
- Define output and derivatives of expressions (cf. Brzozowski).

$$\mathcal{L} \xrightarrow{\langle o,d \rangle} (B \times \mathcal{L})^A.$$

- $\theta \in \mathcal{L}$ defines/specifies a function $Beh(\theta) = f_\theta : A^\omega \rightarrow B^\omega$.
- Compute representation of $\langle f_\theta \rangle$ as least fixpoint.

Questions:
- Realisability: is $\langle f \rangle$ finite? *Rational bitstream functions.*
- Equivalence: how to decide $\theta \sim \phi$? *Normal forms.*
Synthesis of Mealy Machines Using Derivatives

Basic Idea:
Symbolic computation of \(\langle f \rangle \).
- Specify causal stream functions algebraically (language \(\mathcal{L} \)).
- Define output and derivatives of expressions (cf. Brzozowski).

\[
\mathcal{L} \xrightarrow{\langle o,d \rangle} (B \times \mathcal{L})^A.
\]

- \(\theta \in \mathcal{L} \) defines/specifies a function \(\text{Beh}(\theta) = f_\theta : A^\omega \rightarrow B^\omega \).
- Compute representation of \(\langle f_\theta \rangle \) as least fixpoint.

Questions:
- Realisability: is \(\langle f \rangle \) finite? *Rational bitstream functions.*
- Equivalence: how to decide \(\theta \sim \phi \)? *Normal forms.*
Outline

1. Mealy Machines and Coalgebras
2. Synthesis Using Derivatives (I)
 - Main Idea
3. Arithmetic Bitstream Specifications
 - 2-Adic Bitstream Algebra
 - Mod-2 Bitstream Algebra
4. Synthesis Using Derivatives (II)
 - Deciding Equivalence
5. Rational 2-Adic Functions
6. Mealy Synthesis Tool (incl. Demo)
Arithmetic Bitstream Specifications

Semantic Domain:
- Bitstreams 2^ω (i.e. $A = B = 2 = \{0, 1\}$),
- Bitstream functions $f : 2^\omega \rightarrow 2^\omega$.

Arithmetic Bitstream Expressions:
- Constants $[0] = (0, 0, 0, 0, \ldots)$,
 $[1] = (1, 0, 0, 0, \ldots)$,
 $X = (0, 1, 0, 0, \ldots)$,
 $X^n = (0, \ldots, 0, 1, 0, 0, \ldots)$;
- Bitstream variable σ;
- Arithmetic operations: addition, multiplication, minus, division.
 - 2-Adic: infinitary binary arithmetic.
 - Mod-2: infinitary modulo-2 arithmetic.
Stream Behaviour of Expressions

Mimic semantics:

Recall in final Mealy coalgebra:

$$o_f(a) = f(a : \sigma)(0)$$

$$d_f(a) = f(a : \sigma)'$$

– Instantiating σ with bit $a \in 2$ (later),
– Stream behaviour (head, tail).

Stream behaviour of constants:

<table>
<thead>
<tr>
<th>initial value (head)</th>
<th>derivative (tail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = 0</td>
<td>[0]' = [0]</td>
</tr>
<tr>
<td>1 = 1</td>
<td>[1]' = [0]</td>
</tr>
<tr>
<td>X(0) = 0</td>
<td>X' = [1]</td>
</tr>
<tr>
<td>X^n(0) = 0</td>
<td>(X^n)' = X^{n-1}, n \geq 1, (X^0 = [1])</td>
</tr>
</tbody>
</table>
Mimic semantics:

Recall in final Mealy coalgebra:

\[o_f(a) = f(a : \sigma)(0) \]
\[d_f(a) = f(a : \sigma)' \]

– Instantiating \(\sigma \) with bit \(a \in 2 \) (later),
– Stream behaviour (head, tail).

Stream behaviour of constants:

<table>
<thead>
<tr>
<th>initial value (head)</th>
<th>derivative (tail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 = 0)</td>
<td>([0]' = [0])</td>
</tr>
<tr>
<td>(1 = 1)</td>
<td>([1]' = [0])</td>
</tr>
<tr>
<td>(X(0) = 0)</td>
<td>(X' = [1])</td>
</tr>
<tr>
<td>(X^n(0) = 0)</td>
<td>((X^n)' = X^{n-1}, n \geq 1, (X^0 = [1]))</td>
</tr>
</tbody>
</table>
2-Adic Bitstream Algebra

2^ω as the 2-adic integers:

$$(a_0, a_1, a_2, \ldots) \in 2^\omega \iff a_0 + a_1 2 + a_2 2^2 + a_3 2^3 + \ldots = \sum_{i=0}^{\infty} a_i 2^i.$$

2-adic operations (signature $\Sigma_{2adic} = \{+\times,-,\}/\}$):

- infinitary binary addition (carry-bits propagate indefinitely):

 E.g. $(1, 0, 0, \ldots) + (1, 1, 1, \ldots) = (0, 0, 0, \ldots)$.

- stream differential equation:

$$(\alpha + \beta)(0) = \alpha(0) \oplus \beta(0)$$

$$(\alpha + \beta)' = (\alpha' + \beta') + [\alpha(0) \land \beta(0)]$$
2-Adic Bitstream Algebra

2\omega as the 2-adic integers:

\((a_0, a_1, a_2, \ldots) \in 2\omega \iff a_0 + a_1 2 + a_2 2^2 + a_3 2^3 + \ldots = \sum_{i=0}^{\infty} a_i 2^i.\)

2-adic operations (signature \(\Sigma_{2adic} = \{+, \times, -, /\}\)):

Cauchy product:

\((\alpha \times \beta)(n) = \sum_{i=0}^{n} \alpha(i) \land \beta(n-i) \quad (2\text{-adic sum}).\)

Stream differential equation:

\begin{align*}
(\alpha \times \beta)(0) &= \alpha(0) \land \beta(0) \\
(\alpha \times \beta)' &= \alpha' \times \beta + [\alpha(0)] \times \beta'
\end{align*}
2-Adic Bitstream Algebra

2^{ω} as the 2-adic integers:

$$(a_0, a_1, a_2, \ldots) \in 2^{\omega} \iff \sum_{i=0}^{\infty} a_i 2^i = a_0 + a_1 2 + a_2 2^2 + a_3 2^3 + \ldots.$$)

2-adic operations (signature $\Sigma_{2adic} = \{+, \times, -, /\}$):

infinitary two’s complement:

E.g. $-(1, 0, 0, \ldots) = (1, 1, 1, \ldots)$.

stream differential equation:

$$(-\alpha)(0) = \alpha(0)$$
$$(-\alpha)' = -\alpha' + [\alpha(0)]$$
2-Adic Bitstream Algebra

2^\omega as the 2-adic integers:

\[(a_0, a_1, a_2, \ldots) \in 2^\omega \iff a_0 + a_12 + a_22^2 + a_32^3 + \ldots = \sum_{i=0}^{\infty} a_i 2^i.\]

2-adic operations (signature \(\Sigma_{2adic} = \{+, \times, -, /\}\)):

multiplicative inverse: \(\beta \times (1/\beta) = [1]\) (well-def’d if \(\beta(0) = 1\)).

division:

\[\alpha / \beta = \alpha \times (1/\beta)\]

stream differential equation:

\[\frac{d}{dt} \left(\frac{\alpha}{\beta}\right)(0) = \frac{\alpha(0)}{\beta(0)}\]
\[\frac{d}{dt} \left(\frac{\alpha}{\beta}\right) = \frac{\alpha' - [\alpha(0)] \times \beta'}{\beta}\]
2-Adic Bitstream Algebra

2ω as the 2-adic integers:

\[(a_0, a_1, a_2, \ldots) \in 2^{\omega} \iff a_0 + a_1 2 + a_2 2^2 + a_3 2^3 + \ldots = \sum_{i=0}^{\infty} a_i 2^i.\]

2-adic operations (signature \(\Sigma_{2adic} = \{+, \times, -, /\}\)):

- \((2^{\omega}, +, \times, -, /, [0], [1])\) is integral domain, (i.e. commutative ring with no zero divisors).
- Since \(X = (0, 1, 0, 0, \ldots) \iff 2\), we have for \(\alpha \in 2^{\omega}:\)
 - \(\alpha + \alpha \sim X \times \alpha,\)
 - \(X^n + X^n \sim X^{n+1}.\)
Mod-2 Bitstream Algebra

2^ω as formal power series over \mathbb{Mod}_2-ring $(2, \oplus, \land, id, 0, 1)$:

$$(a_0, a_1, a_2, \ldots) \in 2^\omega \iff \sum_{n=0}^{\infty} a_n x^n$$
Mod-2 Bitstream Algebra

2^ω as formal power series over \mathbb{Mod}_2-ring $(2, \oplus, \wedge, id, 0, 1)$:

$$(a_0, a_1, a_2, \ldots) \in 2^\omega \iff \sum_{n=0}^{\infty} a_n x^n$$

Mod-2 operations (signature $\Sigma_{mod2} = \{\oplus, \otimes, \ominus, \oslash\}$):

- bitwise mod-2 sum: $(\alpha \oplus \beta)(n) = \alpha(n) \oplus \beta(n)$,
- cauchy product w.r.t. mod-2 sum.
- minus $= id$: $\ominus \alpha = \alpha$ (since $\alpha \oplus \alpha = (0, 0, 0, \ldots)$),
- multiplicative inverse: $1 \oslash \alpha$
- fraction: $\alpha \oslash \beta = \alpha \otimes (1 \oslash \beta)$ (well-def’d when $\alpha(0) = 1$).
Mod-2 Bitstream Algebra

2^ω as formal power series over \(\mathbb{Mod2}\text{-}\text{ring} (2, \oplus, \wedge, id, 0, 1) \):

\[
(a_0, a_1, a_2, \ldots) \in 2^\omega \iff \sum_{n=0}^{\infty} a_n x^n
\]

Mod-2 operations (signature \(\Sigma_{mod2} = \{\oplus, \otimes, \ominus, \oslash\} \)):

- \((2^\omega, \oplus, \otimes, \ominus, \oslash, [0], [1]) \) is integral domain in which \(\alpha \oplus \alpha \sim [0] \) (nilpotent).
- operations definable using stream differential equations.
Outline

1. Mealy Machines and Coalgebras
2. Synthesis Using Derivatives (I)
 - Main Idea
3. Arithmetic Bitstream Specifications
 - 2-Adic Bitstream Algebra
 - Mod-2 Bitstream Algebra
4. Synthesis Using Derivatives (II)
 - Deciding Equivalence
5. Rational 2-Adic Functions
6. Mealy Synthesis Tool (incl. Demo)
Compute output and derivative on input \(a \in 2 \):

Instantiating with bit \(a \in 2 \):

Recall in final Mealy coalgebra:

\[
\begin{align*}
o_f(a) &= f(a : \sigma)(0) \\
d_f(a) &= f(a : \sigma)'
\end{align*}
\]

We have for all \(\alpha \in 2^\omega \):

\[
\begin{align*}
0 : \alpha &= X \times \alpha = X \otimes \alpha \\
1 : \alpha &= [1] + X \times \alpha = [1] \oplus X \otimes \alpha
\end{align*}
\]

For \(\theta(\sigma) \in \Sigma_{2\text{adic}}(\sigma) \):

\[
\begin{align*}
o_\theta(0) &= (\theta[X \times \sigma])(0) \\
o_\theta(1) &= (\theta[[1] + X \times \sigma])(0) \\
d_\theta(0) &= (\theta[X \times \sigma])' \\
d_\theta(1) &= (\theta[[1] + X \times \sigma])'
\end{align*}
\]

Similarly, for \(\theta \in \Sigma_{\text{mod}_2}(\sigma) \).
Deciding Equivalence of Expressions

Normal forms in integral domains:

Normal form of $\theta \in \text{Expr}_\Sigma(\sigma)$ is $\text{NF}(\theta) = \frac{p}{q}$ where p, q in distributive polynomial normal form (PNF).

Reducing Constant Coefficients:

- **2-Adic:** Use numeric interpretation: signed, binary expansion. E.g.

 $$X \times ([1] - X^2) \iff 2(1 - 4) = -6$$

 $$\text{NF}(X \times ([1] - X^2)) = -(X + X^2).$$

- **Mod-2:** Use ring laws and nilpotency: E.g.

 $$X \otimes ([1] \ominus X^2) \oplus X = X \ominus X^3 \oplus X = X^3.$$
Deciding Equivalence of Expressions

Normal forms in integral domains:

Normal form of $\theta \in \text{Expr}_\Sigma(\sigma)$ is $\text{NF}(\theta) = \frac{p}{q}$ where p, q in distributive polynomial normal form (PNF).

Example

$$\theta = \frac{[1]}{[1] + X} + \sigma + [1] \leadsto \frac{([1] + [1] + X) + ([1] + X) \cdot \sigma}{[1] + X}$$

- Normal form in 2-adic algebra: $X^2 + \frac{([1] + X) \times \sigma}{[1] + X}$
- Normal form in mod-2 algebra: $X \oplus \frac{([1] \oplus X) \otimes \sigma}{[1] + X}$
Deciding Equivalence of Expressions

Equivalence in integral domains:

Given two expressions in normal form, $\theta_1 = \frac{p_1}{q_1}$ and $\theta_2 = \frac{p_2}{q_2}$,

$$\theta_1 \sim \theta_2 \text{ iff } \frac{p_1}{q_1} \sim \frac{p_2}{q_2}$$

$$\text{iff } PNF(p_1 \times q_2) = PNF(p_2 \times q_1)$$

Complexity:

- computing $PNF(\theta)$ is exponential: $2^{O(|\theta|)}$.
- deciding $\theta \sim \phi$ is exponential: $2^{O(|\theta| + |\phi|)}$.
Synthesis Example: $\theta(\sigma) = \frac{6 \times \sigma}{9}$

\[
\theta(\sigma) = \frac{(X + X^2) \times \sigma}{[1] + X^3} \quad \sim \sim \sim \quad \frac{6 \times \sigma}{9}
\]

\[
\theta = \frac{6\sigma}{9} = \frac{(X+X^2) \times (\sigma)}{1+X^3}
\]

\[
\theta_1 = \frac{3+6\sigma}{9} = \frac{(1+X)+(X+X^2) \times (\sigma)}{1+X^3}
\]

\[
\theta_{10} = \frac{-3+6\sigma}{9} = \frac{-(1+X)+(X+X^2) \times (\sigma)}{1+X^3}
\]

\[
\theta_{100} = \frac{-6+6\sigma}{9} = \frac{-(X+X^2)+(X+X^2) \times (\sigma)}{1+X^3}
\]

\[
\theta_{1001} = \frac{6+6\sigma}{9} = \frac{(X+X^2)+(X+X^2) \times (\sigma)}{1+X^3}
\]
Rational 2-adic function:

\[f(\sigma) = \frac{n}{m} \times \sigma \]

where \(n, m \) are constant, polynomial (i.e. integers), \(m \) odd.

Example specification:

\[\theta(\sigma) = \frac{1 - X^2}{1 - X + X^3} \times \sigma \left(-\frac{3}{7} \times \sigma \right) \]

Note: In \(NF(\theta) = \frac{p \times \sigma}{q} \), denominator \(q \) is constant

- all derivatives have denominator \(q \),
- equivalence of derivatives in linear time,
- (syntactic equality of numerators).
Rational 2-Adic Automaton Size and Complexity

Theorem:

For rational 2-adic stream function $f(\sigma) = \frac{n}{m} \times \sigma$,

$$\text{AutSize} \left(\frac{n}{m} \times \sigma \right) \leq \begin{cases} \frac{|n| + |m|}{\gcd(n, m)} - 1 & \text{if } \frac{n}{m} > 0 \\ \frac{|n| + |m|}{\gcd(n, m)} & \text{if } \frac{n}{m} \leq 0 \end{cases}$$

Conjecture (based on experiments): Upper bound is also lower bound.

Corollary: A Mealy machine implementing a rational 2-adic specification $\theta(\sigma) = \frac{n}{m} \times \sigma$ can be constructed in time $2^{O(|\theta|)}$.
Mealy Synthesis Tool (Haskell)

Input specifications θ in:
- 2-adic arithmetic
- mod-2 arithmetic

Output:
- LaTeX-document: automaton states and transitions,
- DOT-file: graph representation of automaton

Source code, executable, documentation:
http://www.cwi.nl/~costa/diffcal
Tool Demo
Related Work

Derivative Constructions

- Raney (1958): stream function derivative (semantics only).
- Brzozowski (1964): DFA from regex.
- Redziejowski (1999): \(\omega\)-DFA from \(\omega\)-regex (related to Safra).
Related Work

Logic Synthesis

- Büchi\&Landweber (1969): S1S.
- Pnueli\&Rosner (1989): LTL.
- Kupferman\&Vardi (2004):
 - distributed synthesis from LTL and CTL specs.
 - imperfect information.

- Uses theory of automata, alternation, games:
 - determinization,
 - constructive non-emptiness test.
Concluding

Summary

- Mealy synthesis using derivatives: direct symbolic construction of deterministic automaton.
- 2-Adic and Mod-2 equivalence is decidable.
- Synthesis for rational (2-adic) functions:
 - EXPTIME in size $|\theta|$ of specification θ,
 - Automaton size.
- Haskell tool available.

Future work:

- Extend approach to more general types of transducers and stream functions,
- Closer investigation of logic vs coalgebraic synthesis,
- Develop coinductive stream languages.