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F LARGE SPARSE LINEAR SYSTEMS

FAST APPROXIMATE INVERSION O

Paul O. Frederickson*

SUMMARY: The algorithm FAPIN solves large sparse linear systems of a
speeial but important class in 0{n) operations. In particular, 1t
solves all finite-element or Raleigh-Ritz-Galerkin approzimations,
over a sufficiently regular mesh, to second order elliptic boundary
value problems. Like most iterative algorithms, FAPIN has a highly
parallel structure which allows effictent implementation on parallel
or vector processors. The main advantage of FAPIN is a rate of conver-
gence independent of n for equations in the class considered; this
is proved in Theorem 2. Another advantage, stability and insensitivity
to perturbations of the system, has been demonstrated by several num-
erical examples. '
1. APPROXIMATE INVERSION

We suppose we have been given a large sparse linear operator
A:X>Y and an element y ¢ Y and have been asked to construct a

solution x ¢ X to the linear system
(1) Ax = vy,

We are interested in constructing a numerical solution, rather than an
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exact, or rational arithmetic, solution. Thus we will assume we have

also been given a tolerance € < 1 and have as goal the construction

of an element x ¢ X satisfying

(2) |ly-ax|| < €ll¥!l

Any such x will be called an e-approximate solution to (1}.

Linear operators B : Y * X with the property that the operator

I-AB : Y+ Y has a spectral radius p < 1 will play an important

role in the theory which follows; we will refer to such

an opefiaor

B as a p-approximate inverse to A. In case p < ¢ the element

By ¢ X is already an e-approximate solution to equation (1). Usually,

though, € is smaller than p and we must iterate, improving the ap-

proximation X" by computing

r+y - AX

@ : N AT
X « X + Br =" agr” e (T AB) T

It follows directly from (3) that the mth iterate
m m_0
(4) r = (I-AB)'r ,

and thus a solution to (2) has been constructed after a
jterations if pM < e, or equivalently if M2 (-log ¢
(See chapter 3 of either Varga [1] or Young [2] for mor

We will describe one pass of the algorithm FAPIN a

M satisfies

t most M

)/ (-log p)-
e detail.)

s one iteration



of equation (3) for a suitable operator B. Although the description

of B 1is somewhat complex the cost of one iteration, at 89n arithme-
tic operations for a general nine-point operator A and 54n for the
constant coefficient nine point operatoT is only about five times that
of SOR, for example. This higher cost 1is justified, for n greater

than 2000, by the increased rate of convergence alone.

2. LOCAL OPERATORS

The classical five-point discrete Laplacian is an example of the
type of linear operator A that FAPIN is able to invert.- A more sig-
nificant example is a nine-point discrete Laplacian; for the primary
restriction on A, which we make precise in this section, amounts to
the requirement that the graph of A be contained in the graph of a
nine-point Laplacian, OT that the matrix representation of A have
zeros where the mnine point operator does. We will not restrict A to
be a constant coefficient operator; in fact, FAPIN is surprisingly
insensitive to variations in the coefficients of A. We will, howeverT,
require A' to be a differential opera£or. (For the sake of clarity
we have restricted our discussion, throughout the paper, to the planar
case.)

Denote by @ a finite subset of the integer lattice in the plane,
denote by X the space of real functions on Q, and let Y be a
subspace of X. We say that the linear operator A : X+Y 1is a

g-local operator for some integer 4q if the value of Ax at a point

i = (iy,i2) € & depends only on the values of x 1in 2 q-neighborhood



of i; more precisely, if

(5) [(ax); # 0] => [J 5 enq li-j| < a, and x4 £ 0].

The norm in equation (5) is the & or Sup-norm, defined for any lat-
tice point i = (i;,ip) by il = ma;?likljligl}. Thus a nine-point
Laplacian is, in particular, 1-local.

We consider, from now on, only 1-local operators A. We note
that the nested disection algorithm of Alan George [3], the best of
the exact algorithms, requires the same restriction on A, Fortunately,
the usual discretizations of linear second order elliptic boundary value
problems in the plane, including Raleigh—Ritz-Galerkin discretizations
OVer either bilinear or linear splines, are jncluded.

Denote by n the number of points in §&, SO that X is isomoT-
phic to R™. Then any l-local operator A is represented, through
this isomorphism, by a sparse matrix having at most nine nonzero ele-
ments in each row. We don't find this usual sort of matrix representa-
tion as useful for our computational pufposes, however, as a more Ccom-
pressed representation which follows directly from equation (5). Cor-
responding to every 1-local operator A : X Y there is an array

Ai j such that for any point i

]

(6) (Ax); =

1

The sum extends, of course, OVeT only those j for which i+j e Q.

Implementation of (6) allows storage of A in 9n locations and



evaluation of Ax in 9n multiplications, both with low overhead.

Moreover, parallel or vector operation 1is facilitated. :
An inner loop of FAPIN requires an approximate inverse B:Y-+X

to A which is jtself 1-local; thus we will use representation (6)

for B as well as A. Among all 1-local approximate inverses there is

an optimum one for our purposes, as one can show using compactness

arguments. Their construction is feasible only in the constant coeffic-

jent case, however. In general we recomnend a sub-optimal approximate

inverse referred to in Benson [4] and in Benson and Frederickson [5] as

the DBq-appromimate inverse. It is constructible, for each i ¢ &, by

the linear system of 9 equations

7 lj%q Mag i) T S0 KEED

where & denotes the Kronecker delta, or the identity operator in no-

tation (6).

3. COLLECTION

Local approximate inverses alone are not adequate, however, when
n becomes large. The reason is not hard to understand if one observes
that a discrete Dirichlet problem of second order in the plane has an
exact inverse with the logarithmic character of the plane potential
function. No local approximate inverse can come close to this when n
is large, which explains the poor convergence rate of thé usual itera-

tive methods on such problems. This global character of the exact



inverse means that construction of an approximate solution requires

the passing of a considerable amount of information from every point of
Q to every other point, a task which can be carried out in 0(n} op-
erations only if this information is collected, in some way, and dis-

tributed in bulk. We now describe how FAPIN does this collection and

distribution.

There is a least integer & such that Ji| < 2+l for every

. . 2 . .
Lﬁ\e ; we write @ for @ and define, using the recurrence

(8) 20 = (i 5, [ < 1, 2i+5 € @5,
?
the sets Qk for 1 <k < &. We note that |i| s 21(-l if i€ Qk

]
and in particular, 0l has at most 9 points. From the programming '
standpoint the easiest implementation of FAPIN occurs when 91 is a
square ‘region with exactly (1+2£)2 points. The algorithms of George
[3], Schroeder and Trottenburg [6], 6r Buzbee, Golub and Nielsen [7]

are also most easily implemented in this case.

Denote by Xk the linear space of real functions on Qk, and

define the collection operator pk : Xk + Xk_l by

k-1
9) r; o« § TSI

Here the coefficients tj are normalized binomial coefficients

: _ 1 2 2
(10) 8 =7 GG



and thus vanish for |51 > 1. We then use the same coefficients to

define the sequence of interpolation operators Qk : Xk_l e Xk through

)

-2

- (1 &« z t
j

1

k k pk+l

We define the subspace Yk of X by Y = Yk+1

{ ), beginning
. 2 . k k k
with Y* =Y, and we define the sequence of operators A : X Y

by
k-1 k s o iz
(12) Ai,j © E Z tu AZi+u,2j+u—v tv' ’
u v (8]

2

Implementation of Pk requires only 3x(n/3) multiplications and
8x(n/3) additions for all k in the range 1 < k s 2 if (10) 1is

coded as

(13)

+ .5%(

r. . * 1, : . .ot L.
11,12 2i,,21» r211-1,212 )

and Qk requires only 6n/3 operations if it is well coded. Similarly,
construction of all of the operators Ak from the given Al = A rTe-

quires about 56n operations.

4. BEST APPROXIMATION
Theorem 1. The operator ak-1 defined by equation {(12) satisfies the

identity
(14) k-l pk pk Qk.

and is the Raleigh-Rita-Galerkin best approximation to AK  in the



k

subspace ok - Qk(x '1) of X,

The proof of equation (14) involves comparing (12) with the expres-
sion which results when the right hand side is expanded, using (11),
(6}, and then (9). The rest is familiar. Theorem 1 can be restated

by saying that the ladder diagram
’ '3

Q Q?
e xrle— ., 2e— xt
l At -l Akl A2 Al
Y — Yl oy —— !
pt p2

commutes in any square. It follows immediately that the whole diagram

commutes, OTr

Corollary 1.1: The operator A s the RaZeigh-Ritz—Galerkin best

approximation to A* in the subspace Ql...Qk+1(xk) of XL.

We make use of Theorem 1 primarily in the form of

Corollary 1.2: If ST yk"l and yk-l = Pkyk, then Qkxk-I

is the best approximate solution to Akxk = yk n Uk

that  PXR-a¥ ¥ 1y) = 0.

, 1in the sense

S. THE ALGORITHM

'FAPIN should be viewed as an iterative algorithm. At the beginning
of each pass one has an approximation x to the solution to equation
(1), which may or may not be zero during the first pass, and one has

evaluated the residual vector r « y-Ax. The pass really begins when



one applies (9) repeatedly, creating rg_l,...,rl from r° = r. Next

x! = Bl¥! is computed, and then one works back up from k = 2 to

k = -1, first interpolating and then refining this approximation:
xk - Qkxk—l

(15)
.xk < xk + Bk(rk-Akxk)

At the top level, k = £, these assignments are replaced by

£

L 2-
x =+ xg + Qx 1

(16)
Foe s Bz(y_Aaxa)
To be more precise, we state this in an ALGOL like notation, the seman-

tics of which should be obviocus. Note that the array xk has dimen-

sion different from that of the array x , for example, which means

that the actual ALGOL or FORTRAN programs are considerably more complex.

FOR it <« 1 STEP 1 UNTIL nit DO
BEGIN
eyt At
FOR k <« % STEP -1 UNTIL 2 DO
Kol kK
x « B} (r!);
FOR k < 2 STEP 1 UNTIL %-1 DO
_ BEGIN
Xk - Qk(xk—l);
rk “+ rk - Ak(xk);
xk < xk + Bk(rk)

END;



Tty Qz(xf.—l);
Aoyt Aoty
&t s Bt eh

END

The actual programs evaluate the horm of rg while evaluating rpv
in the third line, and this is used to allow an early exit when the
tolerance ¢ has been achieved. The above statement of the algorithm,
with this WHILE clause omitted, defines the linear approximate inverse
operator B advertised in section 2,

The above program segment must be preceded by two more FOR loops
which first collect (or project) the Ak - using equation (12) and then
use equation (7), or a more nearly optimum algorithm, to define the ap-
proximate inverse operators Bk. These steps are considerably simpli-
fied in the constant coefficient case, of course. Moreover, they need
not be re-executed if only the right hand side y of equation (1) has
been modified.

At this point the similarities between FAPIN and the algorithm of
Brandt [8] or Fedoremko [9] is apparent. In particular, the idea of
interpolating a solution to a coarser problem as a first approximation

is common to all three.

7. NUMERICAL EXPERIENCE
The following data, taken from runs made in April 1974 using an

ALGOL implementation on the Telefunken TR 400 computer of Leibniz
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Rechenzentrum in Minchen, are presented as primary evidénce that FAPIN
has a spectral radius p < 1/2 when applied to a discrete Poisson pro-
blem on a square; Theorem 1 and its proof are included only to make
this evidence believable. Here T denotes CPU time per iteration on
the TR 440, in seconds, and n = (2£+1)2 is the total number of equa-

tions.

L 2 3 4 5 6

n 25 81 289 1089 4225

T .10 .45 2.0 8.3 32

p .35 .44 .47 .43 .48
fig. 1

More detail is given by Broy [10], who has also found modifications of
FAPIN with even faster convergence.

We have claimed that FAPIN is not sensitive to perturbations of
the operator A or, more generally, to the region Q. The following
data, taken from runs made in the summer of 1975 using FORTRAN imple-
mentations on the IBM 360/50 at Lakehegd University and the CDC 7600

at Los Alamos demonstrate this independence.

2?: L = ///
» P P ‘_

7 s
A = =20 A = +20
p = .450 .496 .494 .444 467

0
"
\\
N
N
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In each case & was the indicated part of a 33x33, or R =5, grid.
In the last two cases the equation being solved was v2u + Aq(x)u = £(x),
with q(x) = 1 within the inner square and zero elsewhere. In the

first three cases q(x) was identically zero within Q, and zero
boundary conditions were used in each case.

An even more striking demonstration is provided by an extension of
the last two examples of fig. 2 above to show the behaviour as A passés
the first eigenvalue Ay of the discrete (n = 4225) problem. There
is no need for A to be positive definite for FAPIN to work, and A

can be very nearly singular.

1.0
.8 i
a
. -
a2 -
]
o .
=
— N
o
“ ..
5, 5
6 .2
juh 9 y
(2]
::l:’:l:;'ll\_:llllllg}:'.;ll“l‘l’LjLAln
A= 10 20 30 40 50

8. ORTHOGONAL DECOMPOSITION

Denote by Vk the nullspace of Pk if k > 1, with vl = vl

k . k

and denote by Uk the orthogonal complement of V= in Y ; we will

use the orthogonal decomposition
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(17) VORSTLINRTL

. . . . k
in the error analysis. Because of the close relationship between P

and Qk the subspace Uk has an alternative representation
VY S X
(18) uk = YK g Qk(xk'l), P~3' =@ [ X )

(In fact, 2Pk is an approximate inverse to Qk, being an example of

a quasi-interpolation as defined by de Boor and Fix [11] or Frederick-

Yk—l k k k

son [2}.) Denote by Sk : + {7 the exact inverse to P on U,

so that SkPk : Yk -+ Uk and I-SkPk :,Yk -> Vk are orthogbnal projeé-
tions,

We now extend (17} to the decomposition

(19) K= Rk g yRokel g g Kl

' . k,j . . . K,k k

in which the subspaces V are defined inductively by V =V 0 yT
f{,/{‘(-hi &'i"f a*“""" ,"Ir: .-\'N ' ;

and v =58 -8 ¥ v gty

(20) vKoJ o gkyk-1.

We also re-norm Yk at this time, leaving it unchanged on Vk’k and

by induction on Vk’J through (20) and the requirement that Sk be
an isometry. This we extend to Yk in such a way that the decomposi-
tion (19) is orthogonal. Finally, we define the orthogonal projection

WOT K ke

Yo+ v by induction, using

(21) Mk o opgkpk, T o gl dpk o <k,
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9. CONVERGENCE

We want to develop a bound on the maximum error or residual e
which can remain after a single pass of FAPIN which begins with a resi-
dual r. If we represent this single pass as a linear operator
B:Y—>X we are interested in the spectral radius of I-AB : Y -+Y,
since e = {I-AB)r. Since this global approximate inverse B does not
have a simple representation, we find that we must trace the development

of the error

(22) k k kxk

as it moves upward from k = 1. In our computations we also use this

equation in the form

(23) N N S TeL s S

To measure the accuracy of the approximate inverse Bk on Vk’k we

define, for 1 £ k £ 2, the constants

k,k-i Kok |

(24) mi = | [M (I—AkBk)M

We also need to use a measure of how well Skxl\k-1 approximates Aka;

this is done by defining, 1 < k £ &, the constants

_ Ile,k—i

=
1

(-8 (AN (T T RY |

=)
A
b
IA
-
—

(25)

n

C.

-3 k-1.- -3
l’j k,k 1 k k. k k 1 1PkMk,k Jll

| [M (I-ABOAQ (A7)

Finally, in order to put our convergence bound in a simple form, we
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define
J m = sup *‘J,im.l 1<i, 1£k<2§
(26) n = sup 4imi 1 2i, 1 <k<?
¢ = sup 4iZj(ci.j—6...) 1<i,j, 1 <k=2

1-]
where 61 denotes the Kronecker delta.
Theorem 2. The spectral radius p of FAPIN satisfies

(27) P <'m0+.1-n—+n'0+ﬁ + ?TZZ-ET (2(]101_;/7) + (5/2+8E/7) (mo_'_a/.?))

provided that ¢ < 7/16.

Proof: We will consider a real positive matrix E2 with the property

.
that the error e after any pass of FAPIN satisfies

e~

_ . L
(28) (MRt = Ey 5 |l e,
j=1

>

where r2 is the residual before that pass. It follows from the ortho-

gonality of the projections M) that [|e2l| < |]E£||- |r£|‘, or
4
f‘.} ‘“M‘! '.'1
(29) "o s |[EY |

L .
In order to bound the norm of E~ we will construct a sequence

F = {Fs}s=i:’ independent of &, with the property that
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2
0 Fi,5 % Fjua

from which it follows that, for the corresponding normalization of v,

(31) HE*] < Fx) = F x® x>0
: 5=~

Since it is very near to the infinum of F(x) we use F(2) as the
bound in Theorem 2. Using the notation of inequality (28) but with k
replacing 2, we will denote by Ek a matrix bounding the error ek

at the kth level during any pass of FAPIN. We will also consider a

sequence Fk = {Fg} with the property that E? 3 62 F?—l’ as in (30),

and the associated function Fk(x) for x = 2. The linearity of FAPIN

allows us to assume, with no loss of generality, that !|r£|| = 1 and

that, for some m, I]Mg‘jrzll =0 if j # m. Thus

. 1 if j=1,k>m
k,j k ¢
(32) e | =

0 otherwise

This means that we are interested only in the mth column of the matrix
E .(but for artibrary m). In particular, it is sufficient to construct

Ek and Fk to satisfy

k,i k k k
(33) [IM27e™]] < Eim S Fng
3 . k k k
Now a particular consequence of (32) is that for k < m r =x =e =

Thus x™ = erm, and
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(34) e" = (1-ATp™ "
It follows immediately from (24) and (34) that E™ satisfies (33) if
we define it by

m _ . _
(35) Em-i,m =m i=40, ..., m-1

and F" satisfies (33), because of (26), if we define it by

mp i=0
(36) F? ={mat i>0
0 i<o0

For general k we apply (22) in (16) to get

(37) e = (1-aKBX) (K. akQkxk-1y

We substitute (23) in (37), and use the fact that rk’k = rk~SkPk LS 0

for k > n, which puts it in the form

= (1-A%BK) (sK_akqk (ak-1y -1y pk

¢ (1-AKgky (aKgK (a1 -1 pky gk k-1

applying (25) and (32) in (38) we have

I A R I el

By (21) and the re-normalization of YX ||Mk k_jSkek_lH = ]|Mk-l’k-jek_1|[1

using this and equation (26) we can show by induction that (33) is
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satisfied if we define

(40) E, . _=mn,+ ) C..E

Thus F§ satisfies (33) if we define it by induction, beginning with

{36) and extending with

ng + ¢ F -1 i=o0
k _ k-1 -1i,—— k-1 ‘

(41) Fi-(k-m) = Fi-(k-m) + 4 “(n+c F ) i>0

0 i<0
in which we use

k-1 .
=k -j .k

42 F- = 2 F.
( ) JEO J"(k'm)

The combination of (36) and (41) with (42) yields the recurrence.

mg + m/7 k

It
E]

(43) =

(o+i/7) + (1/2+8/7)F 1

v
=

which has the solution

k _ mg+ul‘i1-/7+n +n/7 n +H/7+‘Y(m0+ﬁ/7) k-m
(44) F = 0 L] y
1-y 1-v

in which v = 1/2 + 8¢/7. We may also use (41) to construct a recurrence

on Fk[Z); simplifying this with (44) gives
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1

(45) Fk(2) Fk‘l(z) + g~ Ck-m) (ng+n+2c Fr- )

Fk_l(Z) + 2_(k-m)(n0+5;23-m0+m/1t$0+n/7)

(/20 27 DTy Cagei )

Mg+m+ng+n + %%? (ng+n/7) + 2¢(2+y) (mg+m/7)

2-y

1A

which we wish to bound, independent of k. The least such is

(46) FR(2) < mo+menp+d + S5 (ng+n/7)

+ 57— (2+Y) (mo+m/7),

from which the conclusion of Theorem 1 follows, if y < 1, completing |,
the proof.
- The content of Theorem 2 is best demonstrated by applying it to

the constant coefficient discrete Laplacian operator A with represen-

tation ,
]
(47) o1 1 1
A= 1 -8 1
1 1 1

This is the unique discrete Laplacian which is invariant under collec-
tion, or Ak = A for all k, which follows from the fact that it is
the Raleigh-Ritz-Galerkin discretization over bilinear splines of the
Laplacian. For a constant coefficient operator we are able to use

Fourier transforms, and thus evaluate




(48) my = 0.045 m = 0.432
c=0.118

ng = 0.044 n = 0,342

To get these constants this small we used a somewhat better approximate

inverse than the DBq one, namely

(49) 5 6 5
-400 B = 6 52 6
5 6 5

Applying these constants in Theorem 2 we have

Corollary 2.1: The algorithm FAPIN has a spectral radius

(50) p < 0.855

when solving the discrete Dirichlet problem with operator A of equa~
tion (47) provided the approximate inverse B with respresentation
(29) is used.

Experiments indicate that p 1is actually considerably less
than 0.20, but the above estimate is sharp enough for theoretical pur-
poses.

Economizing in operations, as we did in (13), we find 54n additions
and multiplications per iteration are required for the constant coeffic-
ient case and 89n operations for the general, variable coefficient case.
Thus a bit of accuracy costs us, in actuality, fewer than 23n arithmetic

operations, in this case, The best we can state theoretically, however,

is
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Corollary 2.2: FAPIN solves the discrete Dirichlet problem to an accur-

acy € 1in at most (239/(1-10g29))n operations, and using fewer than

4n words of storage.
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