### Parallelization of iterative solvers

Kees Vuik

Delft University of Technology

J.M. Burgerscentrum CFD II, 2019

**ft** 

Delft University of Technology / Numerical Analysis

C. Vuik, J.M. Burgerscentrum CFD II 1 – p. 1/13

### Convergence

Fixed grid  $300 \times 300$ , strong scalability

| p increases                                  |       |       |        |  |  |  |
|----------------------------------------------|-------|-------|--------|--|--|--|
| ↓                                            |       |       |        |  |  |  |
| outer iter. increase<br>inner iter. decrease |       |       |        |  |  |  |
|                                              | p = 1 | p = 4 | p = 25 |  |  |  |
| RILU                                         | 160   | 341   | 437    |  |  |  |

**ft** 

### Wall clock time

Fixed grid  $300 \times 300$ , strong scalability

|      | p = 1 | p = 4 | p = 25 |
|------|-------|-------|--------|
| RILU | 119   | 65    | 15     |

**ft** 

Delft University of Technology / Numerical Analysis

C. Vuik, J.M. Burgerscentrum CFD II 3 – p. 3/13

# Overlapping subdomains

• • • • • • • • • • • • • • • • • • • • • • • • • •

Subdomain  $\Omega_1^*$  for  $n_{over} = 2 n_{over}$  is the number of overlapping grid points

Delft University of Technology / Numerical Analysis

**ft** 

# Overlapping preconditioner

given r, approximate  $v = K^{-1}r$ 

- 1.  $r_m^* = \text{restrict } r \text{ to } \Omega_m^*$ ,
- 2. solve  $A_{mm}^* v_m^* = r_m^*$  approximately,
- 3.  $v_m$  = restrict  $v_m^*$  to  $\Omega_m$ .

### **Properties**

- The amount of work increases proportional to nover
- The convergence is nearly independent of the subdomain grid size when the physical overlap region is constant

### Poisson problem

- $A_{mm}^{-1}$  is used in the block preconditioner
- $3\times3$  subdomains are used

|                      | overlap |    |    |  |  |  |
|----------------------|---------|----|----|--|--|--|
| subgrid size         | 0       | 1  | 2  |  |  |  |
| $5 \times 5$         | 10      | 8  | 7  |  |  |  |
| $10 \times 10$       | 14      | 9  | 8  |  |  |  |
| $20 \times 20$       | 19      | 13 | 10 |  |  |  |
| $40 \times 40$       | 26      | 18 | 14 |  |  |  |
| Number of iterations |         |    |    |  |  |  |

### Deflated ICCG

$$x = (I - P^T)x + P^T x$$
$$(I - P^T)x = ZE^{-1}Z^T Ax = ZE^{-1}Z^T b$$
$$AP^T x = PAx = Pb$$

#### DICCG

$$\begin{split} k &= 0, \ \hat{r}_0 = Pr_0, \ p_1 = z_1 = L^{-T} L^{-1} \hat{r}_0; \\ \text{while} & \| \hat{r}_k \|_2 > \varepsilon \text{ do} \\ & k = k + 1; \\ & \alpha_k = \frac{(\hat{r}_{k-1}, z_{k-1})}{(p_k, PAp_k)}; \\ & x_k = x_{k-1} + \alpha_k p_k; \\ & \hat{r}_k = \hat{r}_{k-1} - \alpha_k PAp_k; \\ & z_k = L^{-T} L^{-1} \hat{r}_k; \\ & \beta_k = \frac{(\hat{r}_k, z_k)}{(\hat{r}_{k-1}, z_{k-1})}; \end{split} \quad p_{k+1} = z_k + \beta_k p_k; \end{split}$$

#### end while

ft

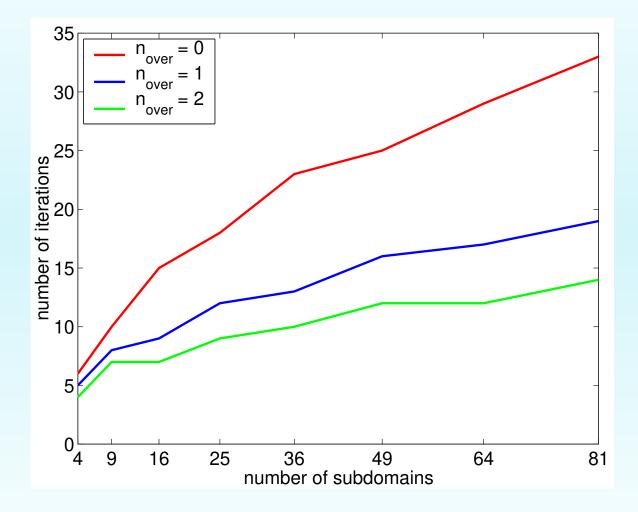
# Parallelization of DICCG

Compute and store the sparse vectors

$$c_j = A z_j$$

Compute  $E^{-1} = (Z^T A Z)^{-1}$  and store it on each processor To compute PAv:

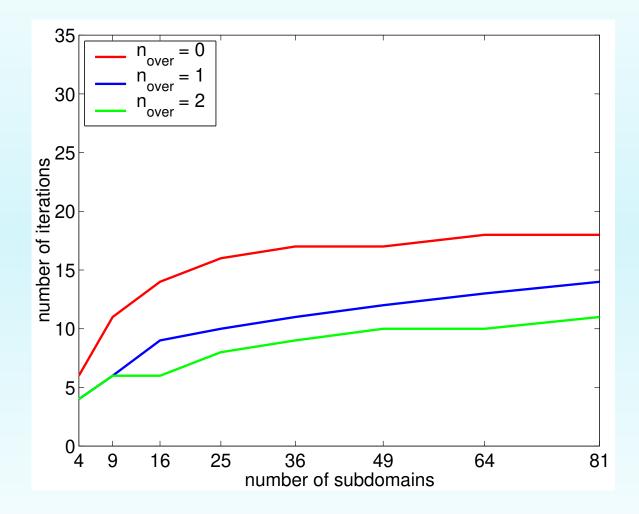
**1.** w = Av


2. Compute the inner products  $\tilde{w} = Z^T w$ 

3.  $\tilde{e} = (Z^T A Z)^{-1} \tilde{w}$  on each processor

4. form  $v - [c_1...c_m]\tilde{e}$ 

ft


### Numerical experiments (subgrid $5 \times 5$ )



**ft** 

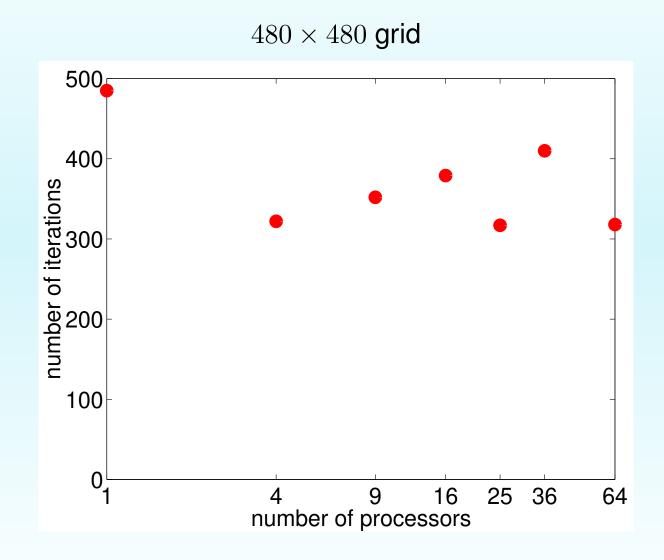
Delft University of Technology / Numerical Analysis

### Numerical experiments (subgrid $5 \times 5$ )



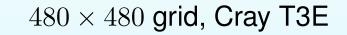
**ft** 

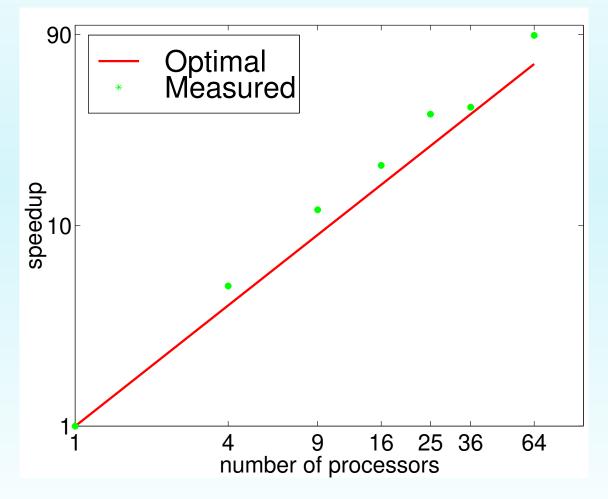
Delft University of Technology / Numerical Analysis


### Parallel scalability (weak)

15<sub>1</sub> BILU BILU + CGC 10 wall clock time 5 0 16 9 25 36 49 64 4 number of subdomains

subdomain grid size  $50 \times 50$  no overlap, wall clock time


ft nology


### Parallel speedup (strong)



ft

## Parallel speedup (strong)





**ft**