
Ankit Mittal (TU Delft) August 12, 2016 1 / 60

Parallelization Of An Experimental
Multiphase Flow Algorithm
Delft University of Technology

Ankit Mittal

August 12, 2016



Introduction

1 Multiphase flows are one of the most widely occurring flows
in nature.

2 Have two or more immiscible fluids separated by an interface.

3 Of particular interest to the petroleum industry, such flows
often occur in wells and pipelines during oil and gas
production.

4 Working code to simulate multiphase flows in pipes available.

Ankit Mittal (TU Delft) August 12, 2016 2 / 60



Aim

1 Understand the code.

2 Speed it up.

Ankit Mittal (TU Delft) August 12, 2016 3 / 60



Part 1

Understanding the code...

Ankit Mittal (TU Delft) August 12, 2016 4 / 60



Study the code

1 Physics of the problem and governing equations were studied

2 Discretization and time integration techniques.

3 Code implementation was thoroughly understood

4 Implemented solvers were studied.

Ankit Mittal (TU Delft) August 12, 2016 5 / 60



Physics of the problem - Flow [1]

1 Consider a multiphase flow between the two fluids separated
by a sharp interface.

2 Assume incompressible flow: the fluids on either side have
different but constant densities and viscosity,

3 Also assume the flow to be isothermal and Newtonian.

4 The flow is governed by the 3-d unsteady incompressible
Navier-Stokes equations [1].

5 Do not solve Energy equation.

Ankit Mittal (TU Delft) August 12, 2016 6 / 60



Physics of the problem - Interface

1 Mark the two fluids as zero and one,

2 To separate the two fluid regimes, introduce a so-called color
function χ defined as

χ(x) =

{
0, x ∈ fluid 0
1, x ∈ fluid 1

3 subscript 0 and 1 indicate the respective fluids.

Ankit Mittal (TU Delft) August 12, 2016 7 / 60



Physics of the problem - Interface

1 Volume Tracking methods - For numerical treatment of the
interface.

2 Can be sub-categorized into the Level Set (LS) [2] method
and the Volume of Fluid (VOF) [3] method.

3 LS not mass conserving. VOF is mass conserving but
computationally very expensive.

4 We use MCLS method - combination of LS and VOF

Ankit Mittal (TU Delft) August 12, 2016 8 / 60



Discretization & Linearization

1 Variables stored In Staggered formation [4] to avoid the so
called Checkerboard modes

Figure : Arrangement of variables in Arakawa C grid.

2 2nd Order space and time discretization (for the flow part) is
used, for the interface 1st order.

3 Presently Newton’s linearization [5] is used

Ankit Mittal (TU Delft) August 12, 2016 9 / 60



Time Integration

1 The integration of flow and interface are staggered in time.

2 Interface is advected using MCLS method.

3 For flow integration two approaches can be used.

1 Pressure velocity decoupled
2 Fully coupled

Ankit Mittal (TU Delft) August 12, 2016 10 / 60



Time Integration - Decoupled
1 Predictor

û− un

∆t
+ F̂ û = − 1

ρn− 1
2

BTpn− 1
2 + τ n +

(
1

ρ
fs

)n− 1
2

+ hn− 1
2

2 Poisson

− B
1

ρn+ 1
2

BTpn+ 1
2 =

B

(
− 1

∆t
û−

(
1

ρ
fs

)n+ 1
2

− 1

ρn− 1
2

BTpn− 1
2 +

(
1

ρ
fs

)n− 1
2

+
1

∆t
g

)
.

3 Corrector

un+1 − û

∆t
= − 1

ρn+ 1
2

BTpn+ 1
2 +

(
1

ρ
fs

)n+ 1
2

+
1

ρn− 1
2

BTpn− 1
2−
(

1

ρ
fs

)n− 1
2

.

Ankit Mittal (TU Delft) August 12, 2016 11 / 60



Time Integration - Decoupled

1 Robust and computationally cheap.

2 Used in the current code.

3 Does not preserve Kinetic energy of the fluid.

4 Preservation of Kinetic energy interesting for the turbulent
flows.

5 If the Kinetic energy is not conserved, the size of eddies will
not be accurately predicted.

6 To preserve Kinetic energy use Coupled solvers.

Ankit Mittal (TU Delft) August 12, 2016 12 / 60



Description of the available code -

Overall algorithm

Figure : Overall flow chart of the algorithm.

Ankit Mittal (TU Delft) August 12, 2016 13 / 60



Description of the available code - Flow

Integration

Figure : Brief flowchart of the flow algorithm.

Ankit Mittal (TU Delft) August 12, 2016 14 / 60



Description of the available code -

Interface Integration

Figure : Brief flowchart of the interface advection algorithm.

Ankit Mittal (TU Delft) August 12, 2016 15 / 60



Solvers Used

1 For solving the predictor, unpreconditioned restarted GMRES
[6] is used.

2 Preconditioned CG [7] is used for symmetric pressure
Poisson equation.

3 Incomplete Cholesky [8] is used as a preconditioner.

Ankit Mittal (TU Delft) August 12, 2016 16 / 60



Part 2

Improving the performance of
the available code.

Ankit Mittal (TU Delft) August 12, 2016 17 / 60



Improving the performance of the

available code.

1 Based on the profiling results appropriate solvers and
preconditioners were studied and implemented

2 Parallelization was implemented.

3 Deflation was implemented to improve the performance
further.

Ankit Mittal (TU Delft) August 12, 2016 18 / 60



Profiling of the code
for different density to viscosity ratios

Figure : Scaling for the rising bubble problem.
Ankit Mittal (TU Delft) August 12, 2016 19 / 60



Profiling

1 The predictor part takes the longest time followed by the
interface calculation part.

2 The Poisson solver took much less time.

3 We must focus our attention on the Predictor part.

Ankit Mittal (TU Delft) August 12, 2016 20 / 60



Solvers Proposed

1 IDR(s) [1] in place of restarted GMRES to reduce the
overhead of GMRES.

2 The convergence of IDR(s) against the restarted GMRES for
the problem at hand will have to be tested.

3 The reduction of overhead in IDR(s) should not come at a
cost of stalled convergence.

4 Hence a comparison study has is performed.

Ankit Mittal (TU Delft) August 12, 2016 21 / 60



Preconditioners Proposed - Jacobi

1 Multiphase flows have a jump in diffusion coefficients across
the interface.

2 This jump slows down the convergence of the iterative
solvers.

3 Diagonal scaling for the predictor step.

4 Suitable for problem having discontinuous coefficients [2].

5 Lends itself well for parallelization.

6 Already implemented, gave 1.5-2 times speed up.

7 Moreover, the structure of the code was changed.

8 Instead of forming matrix in each GMRES iteration, we form
it once and store it.

Ankit Mittal (TU Delft) August 12, 2016 22 / 60



Parallelization

1 Parallelization by decomposing the domain axially.

2 For clusters (using MPI).

3 Deflation to improve the convergence on parallel system.

Ankit Mittal (TU Delft) August 12, 2016 23 / 60



Preconditioners Proposed - Deflation

1 The convergence behavior of the preconditioner deteriorates
as the domain is split into high number of sub-domains [3].

2 Hence, higher number of iterations need to be performed.

3 The loss of convergence is attributed to small eigenvalues
arising from the domain decomposition.

4 This motivates the use for deflation [3, 4] for improving the
convergence of preconditioned CG method in the Poisson
equation.

5 Deflation can also be used as a preconditioner for coarse grid
correction (predictor equation).

Ankit Mittal (TU Delft) August 12, 2016 24 / 60



Steps taken for achieving a speedup

1 The structure of the code was changed.

2 Jacobi preconditioning applied.

3 Parallelization was implemented to reduce the computational
time further.

4 IDR(s) and Deflation were also implemented.

Ankit Mittal (TU Delft) August 12, 2016 25 / 60



Results and Discussion

1 Academic test cases

1 To prove the accuracy of the code,
2 Derive speedup characteristics of parallelization
3 Speedup results for different solvers and preconditioners.

2 Practical test case

1 To demonstrate the capabilities of the new code.

Ankit Mittal (TU Delft) August 12, 2016 26 / 60



Academic Cases : Accuracy

1 To prove the accuracy of the code Rise velocities were
compared for two cases.

2 Normalized mass of one fluid was also compared.

Ankit Mittal (TU Delft) August 12, 2016 27 / 60



Accuracy : Rising Bubble

1 We initially have an axisymmetric bubble of one fluid in the
other fluid.

2 As the time progresses, the bubble rises due to the buoyancy
effect.

3 Initially the bubble behaves fine, but after some time the
bubble is not axisymmetric anymore.

4 Due to the numerical inaccuracies and insufficient grid size.

5 These numerical inaccuracies give rise to instabilities, which
causes different codes to behave differently.

Ankit Mittal (TU Delft) August 12, 2016 28 / 60



Accuracy : Rising Bubble

Figure : Movement of the bubble.

Ankit Mittal (TU Delft) August 12, 2016 29 / 60



Accuracy : Rising Bubble

(a) Difference in Rise velocity
obtained by modified serial
and parallel codes.

(b) Difference in Rise velocity
obtained by using deflation
and IDR(s) solver.

Figure : Difference in Rise velocity for the rising bubble.

Ankit Mittal (TU Delft) August 12, 2016 30 / 60



Accuracy
1 Normalized mass given by mass(t)−mass(0)

mass(0)
of one fluid given

by all the codes is also compared.
2 Due to the mass conservation the normalized mass should

ideally be 0.
3 Mass is below the specified tolerance of 1x10−8.

Figure : Normalized Mass obtained by different codes.

Ankit Mittal (TU Delft) August 12, 2016 31 / 60



Speedup : Serial code modification and

Jacobi diagonalization

1 Restarted GMRES is used to solve the predictor part.

2 In the available code, the calculations of matrix entries are
performed in each iteration.

3 We saved the matrix in diagonal form.

4 A speedup of 4 times was achieved.

5 The Jacobi preconditioner was used to speed up the
predictor module.

6 It was chosen because it is easy to implement, delivers
considerable speedups for our case [2]

Ankit Mittal (TU Delft) August 12, 2016 32 / 60



Speedup : Serial code modification and

Jacobi diagonalization
Density to viscosity ratio for the two fluids 1 - 1e2 & 1e4

2 - 1e2 & 1e3

(a) No. of iterations (b) Time [s]

Ankit Mittal (TU Delft) August 12, 2016 33 / 60



Table : Number of iterations and time taken by GMRES method to
solve a single predictor step.

Rising bubble

Density to viscosity ratio
Original code Storing Matrix

# Iter. Time [s] # Iter. Time [s]
1e2 & 1e4 78 3.1 78 0.66
1e2 & 1e3 100 4.1 100 0.9

Table : Number of iterations and time taken by the improved GMRES
method to solve a single predictor step with and without
preconditioning.

Rising bubble

Density to viscosity ratio
No Precond. Precond.

# Iter. Time [s] # Iter. Time [s]
1e2 & 1e4 78 0.66 62 0.54
1e2 & 1e3 100 0.9 64 0.56

Ankit Mittal (TU Delft) August 12, 2016 34 / 60



Speedup : Serial code modification and

Jacobi diagonalization

1 Restructuring gave a speedup of 4 times irrespective of the
Reynolds number.

2 The Jacobi preconditioner gave a speedup of 1.5-2 time for
low Reynolds number flow.

3 Target applications have low Reynolds number.

4 In total a speed up of 7-9 times was obtained for low
Reynolds number flows.

Ankit Mittal (TU Delft) August 12, 2016 35 / 60



Speedup : Parallelization (Rising

Bubble)

Table : Total computational time taken to solve Rising bubble for 2
grids on different number of processors.

Grid size
Time [s]

avail. code mod. serial
parallel modified (# cores)

2 4 8 12 16 20 24 28
50x60x84 13500 1186.6 597.3 302.9 192.1 140.2 106.7 89.3 82.4 108.5
60x70x124 27940 2606.1 1344.7 695.6 349.7 281.4 233.7 183.8 177.1 198.2

Ankit Mittal (TU Delft) August 12, 2016 36 / 60



Speedup : Parallelization (Rising

Bubble)

(a) Scaling of Speedup (b) Scaling of Efficiency

Figure : Scaling for the rising bubble problem.

Ankit Mittal (TU Delft) August 12, 2016 37 / 60



Speedup : Parallelization (Rising

Bubble)

1 A maximum speedup of around 15 times is obtained on 24
processors

2 Scaling does not improve much as the problem size increases.

3 As the grid is refined, the problem behavior changes due to
which the solvers behave differently.

4 non-monotonicity in the parallelization efficiency comes

1 Multiple levels of memory (cache)
2 Load on the cluster is different at different times.

Ankit Mittal (TU Delft) August 12, 2016 38 / 60



Speedup : Deflation (Predictor step)
1 No speedup gained.

2 Deflation not required.

Figure : Smallest 50 eigenvalues of a typical diagonally scaled system
matrix.

Ankit Mittal (TU Delft) August 12, 2016 39 / 60



Speedup : Deflation (Poisson step)

Figure : Convergence history of ICCG and deflated ICCG.

Ankit Mittal (TU Delft) August 12, 2016 40 / 60



Speedup : Deflation (Poisson step)

1 Useful in improving the convergence properties of the incomplete
Cholesky preconditioner.

Table : Time and iterations taken by the Poisson solver for a single
integration step (Rising bubble).

Rising bubble
# cores

8 12 16 20
ICCG # iterations 274 278 285 295

Deflated ICCG # iterations 225 229 233 237
ICCG Time(s) 0.73 0.478 0.37 0.34

Deflated ICCG Time(s) 0.76 0.57 0.5 0.48

Ankit Mittal (TU Delft) August 12, 2016 41 / 60



Speedup : Deflation (Poisson step)

1 But does not help in saving time.

2 ICCG does not perform particularly bad as number or
processors increases.

3 Hence, deflation does not improve the convergence by much.

4 Deflation takes more time than it saves.

Ankit Mittal (TU Delft) August 12, 2016 42 / 60



Speedup : IDR(s)

1 For Rising bubble problem we get speedup

2 GMRES takes more time to converge.

3 If for some case GMRES converges faster, IDR(s) may not
be useful.

Ankit Mittal (TU Delft) August 12, 2016 43 / 60



Speedup : IDR(s)

Table : Restarted GMRES versus IDR(s) for solving one predictor step
on different number of processors (Rising bubble).

Timestep 0.01ms
No. of cores Fastest Restarted GMRES Fastest IDR(s)

#
iterations
(time(s))

4 17 (0.85) 18 (0.82)
8 17 (0.45) 18 (0.41)

16 17 (0.35) 18 (0.32)
Timestep 0.5ms

No. of cores Fastest Restarted GMRES Fastest IDR(s)
#
iterations
(time(s))

4 125 (7.6) 122 (4.2)
8 125 (4.1) 117 (2.4)

16 125 (2.7) 110 (1.6)

Ankit Mittal (TU Delft) August 12, 2016 44 / 60



Speedup : IDR(s)

For Rising bubble (0.5ms) case

1 The fastest IDR solver is nearly 2 times faster than the
fastest restarted GMRES solver (per predictor equation
solve)

2 In terms of overall speedup a factor of nearly 1.5 is obtained

Ankit Mittal (TU Delft) August 12, 2016 45 / 60



Practical Capabilities of The Modified

Code
1 We simulate the flow field inside a pipe as indicated.

2 Initially, the pipe is assumed to be filled with stagnant oil

3 At t=0, water is provided at the inlet to flush the oil out.

4 After water reaches the bend, it instead of rising further at
the same speed, creeps horizontally displacing the oil.

Figure : Geometry and configuration of the simulated pipe.

Ankit Mittal (TU Delft) August 12, 2016 46 / 60



Practical Capabilities of The Modified

Code

1 The resulting interface is difficult to capture numerically.

2 Previous simulations suggests that a no-slip boundary
condition gives an unphysical interface shape [5]

1 An oil film is formed between water and the wall

3 While a slip boundary condition over-predicts the speed of
the interface [5].

4 In our simulation the bend is approximated by fixing an
appropriate gravity vector.

Ankit Mittal (TU Delft) August 12, 2016 47 / 60



Practical Capabilities of The Modified

Code : Full scale Model
1 We saw that 40 processors gives the best performance for

this case.
2 Deflation improved the convergence.

Figure : Convergence history for ICCG and deflated ICCG method for
the full scale model.
Ankit Mittal (TU Delft) August 12, 2016 48 / 60



Practical Capabilities of The Modified

Code : Full scale Model

1 Deflation gave a speedup of nearly 2 times.

2 For bigger problems, bigger gains from deflation could be
expected.

Table : No. of iterations and time taken by (deflated) ICCG to solve
the Poisson equation.

ICCG deflated ICCG
Number of iterations Time [s] Number of iterations Time [s]

1167 3.3 129 1.7

Ankit Mittal (TU Delft) August 12, 2016 49 / 60



Practical Capabilities of The Modified

Code : Full scale Model

1 A speedup of 75 times was achieved by running the deflated
code on 40 processors.

2 Available code takes 2818.51s for 10 iterations, modified
code takes 37.29s.

Table : Total time taken by available code and deflated ICCG code on
40 processors to integrate 10 time steps.

available code deflated ICCG on 40 procs
Time [s] 2818.51 37.29

Ankit Mittal (TU Delft) August 12, 2016 50 / 60



Practical Capabilities of The Modified

Code : Full scale Model
Profiling the modified parallel code on 40 processors.

1 Poisson step is the new bottleneck.

(a) Profiling : available code (b) deflated ICCG (40 procs.)

Ankit Mittal (TU Delft) August 12, 2016 51 / 60



Full scale model : Physical results

Figure : Movement of the interface with time.

Ankit Mittal (TU Delft) August 12, 2016 52 / 60



Full scale model : Physical results

Comparison of the physical results with the reported results.

1 The reported results are for 2-d channel flow, while we have
a 3-d pipe flow.

2 The reported results are obtained by implementing an
adaptive grid refinement, while uniform grid is used in the
current endeavor.

3 The initial conditions are different for our case.

4 The interface is captured using the VOF method in [5], while
in the present study we use the MCLS method.

5 The length of the horizontal part for the current test case is
3.2 m, while in [5] it was 15 m.

Ankit Mittal (TU Delft) August 12, 2016 53 / 60



Full scale model : Physical results

Figure : Shape of the interface head captured by the current
simulation and as reported in [5].

Table : Interface velocity obtained from experiments and simulations.

experiments current
(no-slip)

reported
(no-slip)

reported
(slip)

velocity [m/s] 0.143 0.15 0.11 0.165

Ankit Mittal (TU Delft) August 12, 2016 54 / 60



Conclusion

1 Aim.

2 Profiling results revealed that predictor step is the heaviest.

3 The diagonal scaling of the predictor matrix gave a speedup
of nearly 1.5-2 times.

4 Storing the matrix in the predictor step, further gave a
speedup of 4 times.

5 In total 4.5-9 times speedup was obtained in the predictor
step, due to the above modifications!

6 Parallelization was reduced the computational time
drastically.

7 A speedup of nearly 15 times was achieved on 24 processors
for the rising bubble problem.

Ankit Mittal (TU Delft) August 12, 2016 55 / 60



Conclusion
1 Deflation did not help for the predictor equation owing to

the presence of 1
timestep

term on the diagonal of the system
matrix.

2 Deflation improved the convergence for the predictor step,
but time saving depends on the case.

3 IDR(s) was quite helpful in reducing the computational time
if the matrix had slightly poor spectral properties.

4 For TNO test cases,
1 Deflation reduced the computational time of the Poisson

equation substantially.
2 The IDR(s) method was of no advantage for these cases

since the GMRES method converged quickly.
3 6 days on 40 cores - full scale.
4 An overall speedup of nearly 75 times was obtained.

Ankit Mittal (TU Delft) August 12, 2016 56 / 60



Conclusion

1 The speedup gained by using different solvers,
preconditioners and parallelization makes it possible to
simulate the real world problems in a reasonable amount of
time.

2 This code can definitely help a researcher carry out the
numerical simulations for pipe flows in much less time.

Ankit Mittal (TU Delft) August 12, 2016 57 / 60



Future Recommendations

1 In this endeavor we achieved considerable speedups, and
improved the performance of the original code many folds.

2 Reduce the computational time of Poisson equation (the
new bottleneck).

1 Different solvers/preconditioners.
2 The structure of the Poisson solver could be modified to

reduce the computational time.

3 Second future research direction - coupled solver to have a
more accurate kinetic energy conserving solution.

Ankit Mittal (TU Delft) August 12, 2016 58 / 60



References

S. van der Pijl. Computation of bubbly flows with a Mass-Conserving Level-Set Method. PhD Thesis, TU-Delft

(2005).

S. Osher, J.A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on HamiltonJacobi

formulations. J. Comput. Phys. 79, (1988) pp. 1249.

D. Gueyffier, J. Li, A. Nadim, S. Scardovelli, S. Zaleski. Volume of Fluid interface tracking with smoothed

surface stress methods for three-dimensional flows. J. Comput. Phys. 152, (1999) pp. 423456

Y. Morinishi, O.V. Vasilyev, Takeshi Ogi. Fully Conservative finite difference scheme in cylindrical coordinates for

incompressible flow simulations. Journal of Computational Physics 197, (2004) pp. 686-710.

T.W.H Sheu, R.K. Lin. Newton linearization of the incompressible NavierStokes equations. Int. J. Numer. Meth.

Fluids 44, (2004) pp. 297-312.

Y. Saad, M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-symmetric linear

systems. SIAM J. Sci. Stat. Comput., 7, (1986) pp. 856-869.

Magnus R. Hestenes, Eduard Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. Journal of

Research of the National Bureau of Standards. 49, (1952) pp. 409436.

J.A. Meijerink, H.A. van der Vorst. An iterative solution method for linear systems of which the coefficient matrix

is a symmetric M-matrix. Math. Comp., 31, (1977) pp. 148162.

Ankit Mittal (TU Delft) August 12, 2016 59 / 60



References

P. Sonneveld, M.B. van Gijzen. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric

Stsrems of Linear Equations. SIAM J. Sci. Comput., 31 (2), (2008) pp. 1035-1062.

A. J. Wathen. Preconditioning. Acta Numerica, 24, (2015) pp. 329-376.

T.B. Jonsthovel, M.B. van Gijzen, C. Vuik, A. Scarpas. On The Use Of Rigid Body Modes In The Deflated

Preconditioned Conjugate Gradient Method. SIAM J. Sci. Comput., 35 (1), (2012) pp. B207-B225.

J. Frank, C. Vuik, A. Segal. On The Construction of Deflation-Based Preconditioners. SIAM J. Sci. Comput., 23

(2), (2001) pp. 442-462.

B. de Jong. Contact Line Dynamics in Oil Water Simulations. Internship Report, TNO (2015).

Ankit Mittal (TU Delft) August 12, 2016 60 / 60


