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Introduction

1 Multiphase flows are one of the most widely occurring flows
in nature.

2 Have two or more immiscible fluids separated by an interface.

3 Of particular interest to the petroleum industry, such flows
often occur in wells and pipelines during oil and gas
production.

4 Working code to simulate multiphase flows in pipes available.
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Aim

1 Understand the code.

2 Speed it up.
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Part 1

Understanding the code...
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Study the code

1 Physics of the problem and governing equations were studied

2 Discretization and time integration techniques.

3 Code implementation was thoroughly understood

4 Implemented solvers were studied.
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Physics of the problem - Flow [1]

1 Consider a multiphase flow between the two fluids separated
by a sharp interface.

2 Assume incompressible flow: the fluids on either side have
different but constant densities and viscosity,

3 Also assume the flow to be isothermal and Newtonian.

4 The flow is governed by the 3-d unsteady incompressible
Navier-Stokes equations [1].

5 Do not solve Energy equation.
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Physics of the problem - Interface

1 Mark the two fluids as zero and one,

2 To separate the two fluid regimes, introduce a so-called color
function χ defined as

χ(x) =

{
0, x ∈ fluid 0
1, x ∈ fluid 1

3 subscript 0 and 1 indicate the respective fluids.
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Physics of the problem - Interface

1 Volume Tracking methods - For numerical treatment of the
interface.

2 Can be sub-categorized into the Level Set (LS) [2] method
and the Volume of Fluid (VOF) [3] method.

3 LS not mass conserving. VOF is mass conserving but
computationally very expensive.

4 We use MCLS method - combination of LS and VOF
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Discretization & Linearization

1 Variables stored In Staggered formation [4] to avoid the so
called Checkerboard modes

Figure : Arrangement of variables in Arakawa C grid.

2 2nd Order space and time discretization (for the flow part) is
used, for the interface 1st order.

3 Presently Newton’s linearization [5] is used
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Time Integration

1 The integration of flow and interface are staggered in time.

2 Interface is advected using MCLS method.

3 For flow integration two approaches can be used.

1 Pressure velocity decoupled
2 Fully coupled
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Time Integration - Decoupled
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Time Integration - Decoupled

1 Robust and computationally cheap.

2 Used in the current code.

3 Does not preserve Kinetic energy of the fluid.

4 Preservation of Kinetic energy interesting for the turbulent
flows.

5 If the Kinetic energy is not conserved, the size of eddies will
not be accurately predicted.

6 To preserve Kinetic energy use Coupled solvers.
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Description of the available code -

Overall algorithm

Figure : Overall flow chart of the algorithm.
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Description of the available code - Flow

Integration

Figure : Brief flowchart of the flow algorithm.
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Description of the available code -

Interface Integration

Figure : Brief flowchart of the interface advection algorithm.

Ankit Mittal (TU Delft) August 12, 2016 15 / 60



Solvers Used

1 For solving the predictor, unpreconditioned restarted GMRES
[6] is used.

2 Preconditioned CG [7] is used for symmetric pressure
Poisson equation.

3 Incomplete Cholesky [8] is used as a preconditioner.
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Part 2

Improving the performance of
the available code.
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Improving the performance of the

available code.

1 Based on the profiling results appropriate solvers and
preconditioners were studied and implemented

2 Parallelization was implemented.

3 Deflation was implemented to improve the performance
further.
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Profiling of the code
for different density to viscosity ratios

Figure : Scaling for the rising bubble problem.
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Profiling

1 The predictor part takes the longest time followed by the
interface calculation part.

2 The Poisson solver took much less time.

3 We must focus our attention on the Predictor part.
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Solvers Proposed

1 IDR(s) [1] in place of restarted GMRES to reduce the
overhead of GMRES.

2 The convergence of IDR(s) against the restarted GMRES for
the problem at hand will have to be tested.

3 The reduction of overhead in IDR(s) should not come at a
cost of stalled convergence.

4 Hence a comparison study has is performed.
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Preconditioners Proposed - Jacobi

1 Multiphase flows have a jump in diffusion coefficients across
the interface.

2 This jump slows down the convergence of the iterative
solvers.

3 Diagonal scaling for the predictor step.

4 Suitable for problem having discontinuous coefficients [2].

5 Lends itself well for parallelization.

6 Already implemented, gave 1.5-2 times speed up.

7 Moreover, the structure of the code was changed.

8 Instead of forming matrix in each GMRES iteration, we form
it once and store it.
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Parallelization

1 Parallelization by decomposing the domain axially.

2 For clusters (using MPI).

3 Deflation to improve the convergence on parallel system.
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Preconditioners Proposed - Deflation

1 The convergence behavior of the preconditioner deteriorates
as the domain is split into high number of sub-domains [3].

2 Hence, higher number of iterations need to be performed.

3 The loss of convergence is attributed to small eigenvalues
arising from the domain decomposition.

4 This motivates the use for deflation [3, 4] for improving the
convergence of preconditioned CG method in the Poisson
equation.

5 Deflation can also be used as a preconditioner for coarse grid
correction (predictor equation).
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Steps taken for achieving a speedup

1 The structure of the code was changed.

2 Jacobi preconditioning applied.

3 Parallelization was implemented to reduce the computational
time further.

4 IDR(s) and Deflation were also implemented.
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Results and Discussion

1 Academic test cases

1 To prove the accuracy of the code,
2 Derive speedup characteristics of parallelization
3 Speedup results for different solvers and preconditioners.

2 Practical test case

1 To demonstrate the capabilities of the new code.
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Academic Cases : Accuracy

1 To prove the accuracy of the code Rise velocities were
compared for two cases.

2 Normalized mass of one fluid was also compared.
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Accuracy : Rising Bubble

1 We initially have an axisymmetric bubble of one fluid in the
other fluid.

2 As the time progresses, the bubble rises due to the buoyancy
effect.

3 Initially the bubble behaves fine, but after some time the
bubble is not axisymmetric anymore.

4 Due to the numerical inaccuracies and insufficient grid size.

5 These numerical inaccuracies give rise to instabilities, which
causes different codes to behave differently.
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Accuracy : Rising Bubble

Figure : Movement of the bubble.

Ankit Mittal (TU Delft) August 12, 2016 29 / 60



Accuracy : Rising Bubble

(a) Difference in Rise velocity
obtained by modified serial
and parallel codes.

(b) Difference in Rise velocity
obtained by using deflation
and IDR(s) solver.

Figure : Difference in Rise velocity for the rising bubble.
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Accuracy
1 Normalized mass given by mass(t)−mass(0)

mass(0)
of one fluid given

by all the codes is also compared.
2 Due to the mass conservation the normalized mass should

ideally be 0.
3 Mass is below the specified tolerance of 1x10−8.

Figure : Normalized Mass obtained by different codes.
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Speedup : Serial code modification and

Jacobi diagonalization

1 Restarted GMRES is used to solve the predictor part.

2 In the available code, the calculations of matrix entries are
performed in each iteration.

3 We saved the matrix in diagonal form.

4 A speedup of 4 times was achieved.

5 The Jacobi preconditioner was used to speed up the
predictor module.

6 It was chosen because it is easy to implement, delivers
considerable speedups for our case [2]
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Speedup : Serial code modification and

Jacobi diagonalization
Density to viscosity ratio for the two fluids 1 - 1e2 & 1e4

2 - 1e2 & 1e3

(a) No. of iterations (b) Time [s]
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Table : Number of iterations and time taken by GMRES method to
solve a single predictor step.

Rising bubble

Density to viscosity ratio
Original code Storing Matrix

# Iter. Time [s] # Iter. Time [s]
1e2 & 1e4 78 3.1 78 0.66
1e2 & 1e3 100 4.1 100 0.9

Table : Number of iterations and time taken by the improved GMRES
method to solve a single predictor step with and without
preconditioning.

Rising bubble

Density to viscosity ratio
No Precond. Precond.

# Iter. Time [s] # Iter. Time [s]
1e2 & 1e4 78 0.66 62 0.54
1e2 & 1e3 100 0.9 64 0.56
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Speedup : Serial code modification and

Jacobi diagonalization

1 Restructuring gave a speedup of 4 times irrespective of the
Reynolds number.

2 The Jacobi preconditioner gave a speedup of 1.5-2 time for
low Reynolds number flow.

3 Target applications have low Reynolds number.

4 In total a speed up of 7-9 times was obtained for low
Reynolds number flows.
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Speedup : Parallelization (Rising

Bubble)

Table : Total computational time taken to solve Rising bubble for 2
grids on different number of processors.

Grid size
Time [s]

avail. code mod. serial
parallel modified (# cores)

2 4 8 12 16 20 24 28
50x60x84 13500 1186.6 597.3 302.9 192.1 140.2 106.7 89.3 82.4 108.5
60x70x124 27940 2606.1 1344.7 695.6 349.7 281.4 233.7 183.8 177.1 198.2
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Speedup : Parallelization (Rising

Bubble)

(a) Scaling of Speedup (b) Scaling of Efficiency

Figure : Scaling for the rising bubble problem.
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Speedup : Parallelization (Rising

Bubble)

1 A maximum speedup of around 15 times is obtained on 24
processors

2 Scaling does not improve much as the problem size increases.

3 As the grid is refined, the problem behavior changes due to
which the solvers behave differently.

4 non-monotonicity in the parallelization efficiency comes

1 Multiple levels of memory (cache)
2 Load on the cluster is different at different times.
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Speedup : Deflation (Predictor step)
1 No speedup gained.

2 Deflation not required.

Figure : Smallest 50 eigenvalues of a typical diagonally scaled system
matrix.
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Speedup : Deflation (Poisson step)

Figure : Convergence history of ICCG and deflated ICCG.
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Speedup : Deflation (Poisson step)

1 Useful in improving the convergence properties of the incomplete
Cholesky preconditioner.

Table : Time and iterations taken by the Poisson solver for a single
integration step (Rising bubble).

Rising bubble
# cores

8 12 16 20
ICCG # iterations 274 278 285 295

Deflated ICCG # iterations 225 229 233 237
ICCG Time(s) 0.73 0.478 0.37 0.34

Deflated ICCG Time(s) 0.76 0.57 0.5 0.48
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Speedup : Deflation (Poisson step)

1 But does not help in saving time.

2 ICCG does not perform particularly bad as number or
processors increases.

3 Hence, deflation does not improve the convergence by much.

4 Deflation takes more time than it saves.
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Speedup : IDR(s)

1 For Rising bubble problem we get speedup

2 GMRES takes more time to converge.

3 If for some case GMRES converges faster, IDR(s) may not
be useful.
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Speedup : IDR(s)

Table : Restarted GMRES versus IDR(s) for solving one predictor step
on different number of processors (Rising bubble).

Timestep 0.01ms
No. of cores Fastest Restarted GMRES Fastest IDR(s)

#
iterations
(time(s))

4 17 (0.85) 18 (0.82)
8 17 (0.45) 18 (0.41)

16 17 (0.35) 18 (0.32)
Timestep 0.5ms

No. of cores Fastest Restarted GMRES Fastest IDR(s)
#
iterations
(time(s))

4 125 (7.6) 122 (4.2)
8 125 (4.1) 117 (2.4)

16 125 (2.7) 110 (1.6)
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Speedup : IDR(s)

For Rising bubble (0.5ms) case

1 The fastest IDR solver is nearly 2 times faster than the
fastest restarted GMRES solver (per predictor equation
solve)

2 In terms of overall speedup a factor of nearly 1.5 is obtained
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Practical Capabilities of The Modified

Code
1 We simulate the flow field inside a pipe as indicated.

2 Initially, the pipe is assumed to be filled with stagnant oil

3 At t=0, water is provided at the inlet to flush the oil out.

4 After water reaches the bend, it instead of rising further at
the same speed, creeps horizontally displacing the oil.

Figure : Geometry and configuration of the simulated pipe.
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Practical Capabilities of The Modified

Code

1 The resulting interface is difficult to capture numerically.

2 Previous simulations suggests that a no-slip boundary
condition gives an unphysical interface shape [5]

1 An oil film is formed between water and the wall

3 While a slip boundary condition over-predicts the speed of
the interface [5].

4 In our simulation the bend is approximated by fixing an
appropriate gravity vector.
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Practical Capabilities of The Modified

Code : Full scale Model
1 We saw that 40 processors gives the best performance for

this case.
2 Deflation improved the convergence.

Figure : Convergence history for ICCG and deflated ICCG method for
the full scale model.
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Practical Capabilities of The Modified

Code : Full scale Model

1 Deflation gave a speedup of nearly 2 times.

2 For bigger problems, bigger gains from deflation could be
expected.

Table : No. of iterations and time taken by (deflated) ICCG to solve
the Poisson equation.

ICCG deflated ICCG
Number of iterations Time [s] Number of iterations Time [s]

1167 3.3 129 1.7
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Practical Capabilities of The Modified

Code : Full scale Model

1 A speedup of 75 times was achieved by running the deflated
code on 40 processors.

2 Available code takes 2818.51s for 10 iterations, modified
code takes 37.29s.

Table : Total time taken by available code and deflated ICCG code on
40 processors to integrate 10 time steps.

available code deflated ICCG on 40 procs
Time [s] 2818.51 37.29
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Practical Capabilities of The Modified

Code : Full scale Model
Profiling the modified parallel code on 40 processors.

1 Poisson step is the new bottleneck.

(a) Profiling : available code (b) deflated ICCG (40 procs.)
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Full scale model : Physical results

Figure : Movement of the interface with time.
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Full scale model : Physical results

Comparison of the physical results with the reported results.

1 The reported results are for 2-d channel flow, while we have
a 3-d pipe flow.

2 The reported results are obtained by implementing an
adaptive grid refinement, while uniform grid is used in the
current endeavor.

3 The initial conditions are different for our case.

4 The interface is captured using the VOF method in [5], while
in the present study we use the MCLS method.

5 The length of the horizontal part for the current test case is
3.2 m, while in [5] it was 15 m.
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Full scale model : Physical results

Figure : Shape of the interface head captured by the current
simulation and as reported in [5].

Table : Interface velocity obtained from experiments and simulations.

experiments current
(no-slip)

reported
(no-slip)

reported
(slip)

velocity [m/s] 0.143 0.15 0.11 0.165
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Conclusion

1 Aim.

2 Profiling results revealed that predictor step is the heaviest.

3 The diagonal scaling of the predictor matrix gave a speedup
of nearly 1.5-2 times.

4 Storing the matrix in the predictor step, further gave a
speedup of 4 times.

5 In total 4.5-9 times speedup was obtained in the predictor
step, due to the above modifications!

6 Parallelization was reduced the computational time
drastically.

7 A speedup of nearly 15 times was achieved on 24 processors
for the rising bubble problem.
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Conclusion
1 Deflation did not help for the predictor equation owing to

the presence of 1
timestep

term on the diagonal of the system
matrix.

2 Deflation improved the convergence for the predictor step,
but time saving depends on the case.

3 IDR(s) was quite helpful in reducing the computational time
if the matrix had slightly poor spectral properties.

4 For TNO test cases,
1 Deflation reduced the computational time of the Poisson

equation substantially.
2 The IDR(s) method was of no advantage for these cases

since the GMRES method converged quickly.
3 6 days on 40 cores - full scale.
4 An overall speedup of nearly 75 times was obtained.
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Conclusion

1 The speedup gained by using different solvers,
preconditioners and parallelization makes it possible to
simulate the real world problems in a reasonable amount of
time.

2 This code can definitely help a researcher carry out the
numerical simulations for pipe flows in much less time.
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Future Recommendations

1 In this endeavor we achieved considerable speedups, and
improved the performance of the original code many folds.

2 Reduce the computational time of Poisson equation (the
new bottleneck).

1 Different solvers/preconditioners.
2 The structure of the Poisson solver could be modified to

reduce the computational time.

3 Second future research direction - coupled solver to have a
more accurate kinetic energy conserving solution.
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