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Skin Burns and Scarring

I Scarred skin tissue does not maintain the same mechanical
properties of healthy skin. This is particularly relevant in skin
burns where the damaged area can be very extensive and lead to
serious impediments for the patient.

I The healing and scarring process of skin is very complex. It is
therefore difficult to predict its outcome.

I Mathematical modelling and simulation can clarify the influence
which certain parameters have on the healing process.

I End goal is to devise an ‘optimal’ treatment approach for skin
burns. This is only possible through thorough understanding of
the underlying processes.
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I Tissue deformation of healing burns has both plastic (permanent)
and elastic (temporary) components. This can lead to the
formation of residual stresses in the tissue at the end of the
healing process.

I We couple an elastic model with an evolving zero stress state.
This state evolution will be described by the evolution equations
of strain.
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Equations



σ = µ
∂v

∂x
+ Eε,

D(ρv)

Dt
+ ρv

∂v

∂x
=
∂σ

∂x
+ Fb in Ωt × [0, T ] (momentum) ,

Dε

Dt
+ (ε− 1)

∂v

∂x
= −g in Ωt × [0, T ] (strain) ,

v =
Du

Dt
.

(1)

Equations are discretized in space using linear FE and in time using
backward Euler (implicit). In our case we have g = ζε.
Note: The operator D/Dt represents the material derivative:
D()/Dt = ∂()/∂t+ v · ∇().
We will be using a moving mesh method.
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Example

Example of tissue deforming under contracting forces acting until
t = 22, where ζ = 0 represent purely elastic response.
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Equations

As an intermediate step before 2D-morphoelasticity we first tackled 2D
viscoelasticity as it has the same momentum equations but simpler
strain equations.

σ = µ1 sym(∇v) + µ2(∇ · v)I +
E
√
ρ

1 + ν

(
ε+

ν

1− 2ν
Tr(ε)I

)
,

D(ρv)

Dt
+ ρv(∇ · v) = ∇ · σ + f in Ωt × [0, T ],

ε =
1

2

(
∇u+ (∇u)T

)
in Ωt × [0, T ],

Du

Dt
= v.

(2)

Equations are discretized in space using quadrilateral bilinear FE and
in time using backward Euler (implicit).
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Example

Tissue under shear and contracting forces along the x-axis. We see the
deformation of a subdomain in the centre of the tissue.

Figure: ε11 in our modelled tissue under contracting forces.

Figure: Contracting forces along x-axis. Subdomain at t = 0 in blue and at
t = 5 in red.
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Example

Figure: Contracting forces along x-axis. Subdomain at t = 0 in blue and at
t = 5 in red.
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Figure: Shear forces along x-axis. Subdomain at t = 0 in blue and at t = 5 in
red.
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Equations



σ = µ1 sym(∇v) + µ2(∇ · v)I +
E
√
ρ

1 + ν

(
ε+

ν

1− 2ν
Tr(ε)I

)
,

D(ρv)

Dt
+ ρv(∇ · v) = ∇ · σ + f in Ωt × [0, T ],

Dε

Dt
+ ε skw(∇v)− skw(∇v)ε+

(
Tr(ε)− 1

)
sym(∇v) = −g

in Ωt × [0, T ],

Du

Dt
= v.

(3)

Again we use g = ζε.
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Equations

We discretize as before. However, there are nonlinear terms arising
from the strain evolution equations. These are linearized using Picard
iterations.

Nx(vk)e,t =

∫
e,t
ϕiϕj

∂vhk
∂x

dΩ

=

∫
e,t
ϕiϕj

4∑
m=1

(vk)m
∂ϕm
∂x

dΩ

=

∫
Ω̂el

ϕ̂iϕ̂j

4∑
m=1

(vk)m(J−T
1· · ∇ϕ̂m)|det J | dΩ̂

≈
2∑
s=1

2∑
t=1

ωsωtϕ̂i(ξs, ηt)ϕ̂j(ξs, ηt)| det J(ξs, ηt)|S(ξs, ηt),

I Equations are discretized in space using quadrilateral bilinear FE
and in time using backward Euler (implicit).

I It can be proven that the strain tensor remains symmetric. We
can thus omit one of the equations for ε12, ε21.
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Two brief movies.
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Constitutive equations

Coupled with the morphoelasticity equations, we will now keep track of
four concentrations in our tissue: fibroblasts N , myofibroblasts M ,
generic signalling molecule c and density of collagen molecules ρ.

Dzi
Dt

+ zi (∇ · v) = −∇ · Ji +Ri in Ωt × [0, T ],

D(ρtv)

Dt
+ ρtv(∇ · v) = ∇ · σ + f in Ωt × [0, T ],

Dε

Dt
+ ε skw(∇v)− skw(∇v)ε+

(
Tr(ε)− 1

)
sym(∇v) = −g

in Ωt × [0, T ],

(4)

where zi is the concentration of each cell constituent i ∈ {N,M, c, ρ}.
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Fibroblasts and Myofibroblasts

Dzi
Dt

+ zi (∇ · v) = −∇ · Ji +Ri

JN = −DFF∇N + χFN∇c,
JM = −DFF∇M + χFM∇c,

RN = rF

[
1 +

rmax
F c

aIc + c

]
[1− κFF ]N1+q − kF cN − δNN,

RM = rF

{
[1 + rmax

F ] c

aIc + c

}
[1− κFF ]M1+q + kF cN − δMM,

where F = M +N .
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Signalling Molecule

Dzi
Dt

+ zi (∇ · v) = −∇ · Ji +Ri

Jc = −Dc∇c,

Rc = kc

[
c

aIIc + c

] [
N + ηIM

]
− δcg(N,M, c, ρ)c,
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Collagen Density

Dzi
Dt

+ zi (∇ · v) = −∇ · Ji +Ri

Jρ = 0,

Rρ = kρ

{
1 +

[
kmax
ρ c

aIVc + c

]} [
N + ηIM

]
− δρg(N,M, c, ρ)ρ.
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Momentum and Strain Evolution Forces

D(ρtv)

Dt
+ ρtv(∇ · v) = ∇ · σ + f

f = ∇ ·ψ

ψ = ξM
ρ

R2 + ρ2
I.

Dε

Dt
+ ε skw(∇v)− skw(∇v)ε+

(
Tr(ε)− 1

)
sym(∇v) = −g

The rate of change of the strain tensor is given by:

g = ζ

[
g(N,M, c, ρ)c

ρ

]
ε = ζ

{[
N + ηIIM

]
c

1 + aIIIc c

}
ε.

Antonio Barion (Delft) MorphoEl Modelling with IGA June 4, 2020 23 / 32



Nonlinearity and Source/Sink Separation

I Nonlinear terms are again linearized using Picard iterations.

I To ensure positivity of the non-negative variables we apply
Patankar’s source/sink separation technique. Consider a PDE of
the unknown u of the form L(u) + S = 0. Let S be the source
term (for us it will be −Ri), we consider its source S1 > 0 and sink
S2 > 0 parts s.t. S = S1 − S2. The proposed technique sets

S = S1 −
S2

u
u ≈ S1 −

S2

u∗
u.
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Nonlinearity and Source/Sink Separation

Since for our set of equations the term S = S(u) = S1(u)− S2(u), this
steps would lead to nonlinearity. As such we first set S = S(u) ≈ S(u∗)
and then proceed with Patankar’s technique. We show as an example
when it is applied to RN :

−RN ≈ −R∗
N = −rF

[
1 +

rmax
F c

aIc + c

]
[1− κFF ]N∗1+q︸ ︷︷ ︸

−S2

+ kF cN
∗ + δNN

∗︸ ︷︷ ︸
S1

,

Patankar: − rF
[
1 +

rmax
F c

aIc + c

]
[1− κFF ]N∗1+q N

N∗ + kF c
∗N∗ + δNN

∗,

Picard: − rF
[
1 +

rmax
F c∗

aIc + c∗

]
[1− κFF ∗]N∗1+q N

N∗ + kF c
∗N∗ + δNN

∗;
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Stabilization

I Convection-diffusion equations can give rise to spurious oscillations
in the solution. These are detrimental to the quality of our
solution, especially given the restriction of being always-positive.

I Different stabilization techniques can be applied to avoid this. In
the paper of V. John and E. Schmeyer, Finite element methods for
time-dependent convection–diffusion–reaction equations with small
diffusion (2008) a comparison among common techniques has been
made and the most promising appears to be the algebraic flux
correction.
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Positivity Preserving Algebraic Flux Correction

In the paper of O. Boiarkine et al, A positivity-preserving ale finite
element scheme for convection–diffusion equations in moving domains
an algorithm is proposed which appears to be well suited for our
problem. The main steps are:

I Construct a positivity preserving low order solution of the problem
by manipulation of the convection matrix. Zero row and column
sums to have discrete mass conservation. Time discretization with
implicit midpoint rule.

I Approximate the nodal derivatives.

I Recover high order solution by adding anti-diffusive terms.
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Remarks and Open Questions

I The solution still presents oscillatory components.

I We have a strong mesh dependency. Higher resolution leads to
smaller oscillations/peaks, but it introduces negative terms which
are then suppressed (non positivity-preserving diffusion matrix).

I θ-time integration method for low order solution is much more
diffusive. Why?

I In aforementioned comparison paper the flux correction (altough
different algorithm) has been applied on all the matrices. Could
this improve the quality of the solution and making it less mesh
dependent?
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Results
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Isogeometric Analysis

Next step is to utilize Isogeometric Analysis to solve the problem at
hand. In order to achieve this task, we will take advantage of the C++
library G+Smo. G+Smo has specifically been designed to enable
efficient and accessible applications of the IGA theory.

I More accurate domain approximation (B-splines). Potentially no
error in the discretization of the boundary surface.

I Less need for remeshing.

I Reduction in the size of the system of equations while maintaining
comparable accuracy to traditional FEM.
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