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1 Introduction

In order to fulfill everybody’s electricity needs, a complex electricity network exists. A lot of
generators and cables are needed for generation and tranportation of the electrical current.
If there is a problem, say a power cut, then it is important that the network is functioning as
good as possible. In order to get this done, we will solve load flow problems. Ideally, when a
transmission line of an electrical network is broken, the system must continue to operate. It
takes a lot of time to compute a solution of this problem, since the network can be very large.
Programming this problem on the GPU might be a solution, since many algoritms work a lot
faster when they are parallel programmed on the GPU.

There has been more research to solve the load flow problem by using the GPU. We will refer
to the thesis of Shiming Xu [1].

In chapter 2 we will look at what is a power system model and which matrices are used.

In chapter 3 we will describe what is a load flow problem, i.e. the problem we want to solve.
We will use the Newton-Rapshon method to solve the resulting non-linear system.

In chapter 4 we describe two iterative methods, Bi-CGSTAB and GMRES. Further in this
document we will only work with the Bi-CGSTAB method, but we will also give another
option. We give here also a couple of preconditioners.

In chapter 5 we give a short description of a GPU. In this chapter we shall in particular
discuss how we use the GPU in MATLAB and the MATLAB tool arrayfun. We shall here,
and also in the following chapters, use the Poisson matrix and describe how we can program
the preconditioners in parallel.

We get examples of load flow problems by the program Matpower, which we give in chapter
6. With the results of the last chapter we know that using full matrices we do not speed up if
we use the GPU in MATLARB, it is even slower. So we give in this chapter a negative result.

The admittance matrix is a sparse matrix (the matrix we use by solving the load flow prob-
lem). The matrix appears to be unstructured. What if the matrix have a clear structure, is
it possible using the GPU and only MATLAB to have speed up? This is the reason why we



use in the next chapters the Poisson matrix. So in chapter 7 we use an important and sparse
matrix with a clear structure, the Poisson matrix. We describe in this chapter the speed of
computation of (multiple) matrix vector multiplications by using the GPU or the CPU. We
give a couple of codes and look what gives us the most speed up.

The results that we found in the last chapter, will be used in chapter 8. We want to solve a
linear system Ax = b, where A is the Poisson matrix. There is a code for the Bi-CGSTAB
method in MATLAB, but we want find a faster code in MATLAB with using the GPU. In
this chapter we use the structure of the Poisson matrix.

In chapter 9 we conclude that we do not found a faster code in MATLAB to solve the load
flow problem by using the GPU. In the last chapter we have a code that is faster than the
standard code for Bi-CGSTAB method in MATLAB, but only when we use the diagonal
scaling preconditioner. Our code is faster if we used the CPU. So we conclude that when we
use MATLAB to solve a linear system Az = b , using the GPU is not a good option if you
want speed up our code.

In this document we compare the time of different codes to compute the solution of a linear
system, with and without using the GPU. The results depend on the type of CPU and GPU
we use. The CPU we use is an 8 core i7 CPU 920 @2.67GHz and has the following memory
specifications: maximum memory size of 24 GB, three channels and a max bandwidth of 25.6
GB/sec.The computer has 6 GB RAM memory.

The GPU we use is an NVIDIA GeForce GTX 650 with the specifications: Clock 5.0 Gbps,
bandwidth 80.0 GB/sec and a standard memory configuration of 1 GB.

If we had used another CPU or GPU, the results maybe different.
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2 Powersystems

A network of electrical components where electric current is transported, is called a power
system. A power system can described as a grid, where generators supply power and the
transmission system carries that power to the loads. In this chapter we make a simple form
of a power system model. First we use Euler’s identity for descriping the sinusoidal voltage
and current, whereupon we give the complex representation of voltage and current. We give
an explanation of buses and give the admittance matrix.

2.1 Power, Voltage and Current

In a DC circuit (Direct current circuit) the circuit voltages and currents are constant, so
independent of time. We can say that a DC circuit has no memory, the circuit voltage or
current is independent of the past values of voltage or current. In a DC circuit the following
expression holds:
P= Ve I’R
=5 =

where P is the power, V' the voltage, I the current and R the resistance.

In an AC circuit (Alternating current circuit) the circuit voltages and currents are time-
dependent. All the voltages and currents are sinusoidal and have the same frequency:

v(t) = V2|V|sin (wt) and i(t) = V2|I|sin (wt)

where w the angular frequency is (w = 2nf) [rad/s]. The power in an AC circuit is:

t) = =i’ ()R
plt) = 2 = (1)
and the avarage power is:

1

P=_ —dt — [ *Rdt

J I
where T the period of the sine wave is (T = % = 27) [s]. When the average power in the DC
circuit and the average power in the AC circuit are assumed to be equal, then

9 1 T 2 2 1 T.2
Ve =— vidt and I = — 1“dt.
T Jy T Jo

With substitution we get

e T, 1
V=4l v2dt = V2|V || = sin? (wt)dt = V2|V|{ /= = |V|
T Jo T J, 2
- 1/T 2dt = V2] 1/Ts' 2 ( t)dt—\@m\/T—m
— T 0 2 == T 0 m- (W = 5 =

|V| is the RMS or effective value of the alternating voltage.
|I| is the RMS or effective value of the alternating current.

and
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The voltage and current of a single-phase inductive load can writen as
v(t) = V2|V |cos (wt) and i(t) = V2|I|cos (wt — @)
Now we use Euler’s identity ‘
7 = cos () + jsin ()

and the sinusoidal voltage and current can written as:

v(t) = Re{V2|V]e!"'} = Re{V2Ve/"'} with V =|V| (1)
i(t) = Re{V2/I|/™#)} = Re{V2IeM"} with I =|I|e™7% 2)

2.2 Active and Reactive Power

We know that v(t) = v/2|V|cos (wt) and i(t) = v/2|I| cos (wt — ¢). The value ¢ = &y — d5 is
called the power factor angle. So we can find the instantaneous power p(t):

p(t) = w(t)it)

= V2|V|cos (wt)V2|I| cos (wt — ¢)

= 2|V||I] cos (wt) cos (wt — ¢)

= 2|V||I] cos (wt)]cos ¢ cos (wt) + sin ¢ cos (wt)]

= |V||I|[2cos ¢ cos? (wt) + 2sin psin (wt) cos (wt)]

= |V||I|cos p[2cos® (wt)] + | V||| sin p[2sin (wt) cos (wt)]

= |V||I]|cosp[l + cos (2wt)] + |V||I] sin ¢[sin (2wt )]

= P[1 + cos (2wt)] + Q]sin (2wt )] (3)
P = |V||I|cosy and Q = |V||I]|sin .

The term P[1 + cos (2wt)] describes an unidirectional component of the instantaneous power
with average value P. This value is called the active power or also real or average power.
The cosine represents the phase shift between the voltage and current. We might also say:
the cosine of the phase angle between the voltage and current phasor. The active power is
defined as P = |V||I| cos ().

The term Qsin (2wt)] is alternately positive and negative and has an average value of zero.
When this term has a positive sign, the power flow is toward the load. When it is negative,
the power flows from the load back to the source of supply. The amplitude of this oscil-
lating power is called reactive power or imaginary power. The reactive power is defined as
Q = V|1 sin ().

Now we can use the complex representation of voltage and current. Remember that V = |V/|
and I = [I|e77%.

P = ]VHI[cosgo:Re<\VHI\ej“’):Re(VT>, (4)
Q = ]V||I]sing0:Im(|V||I|ej"°):Im(VT). (5)

Where I is the complex conjugate of I. Let S = V1.
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2.3 Impedance and Admittance

Impedance is the measure of the opposition that a circuit presents of a current when a volt-
age is applied. An impedance is the extention of the notion resistance and is denoted by
Z = R+ jX and measured in Ohm (£2). We call R the resistance and X the reactance, where
R > 0.

If X > 0, then the reactance is called inductive and we can write jX = jwL, where L > 0
and called the inductance.

If X < 0, then the reactance is called capactive and we can write j X = jw#c” where C' > 0
and called the capacitance.

The inverse of impedance is called the admittance and is denoted by ¥ = G + jB. We can

write Y = £ = % - j% and the measure is siemens (5). We call G = % > 0 the
conductance and B = — jw% the susceptance.

The voltage drop over an impedance Z is equal to V = ZI. This is the extension of Ohm’s
law to AC circuits. We can also write

1
I==-V=YV.
Z
The power consumed bij the impedance is

S=VI=2zII =|I*Z = |I]*R + j|I|*X.

2.4 Kirchhoff’s circuit laws

To calculate the voltage and current in an electrical circuit, we use Kirchhoff’s circuit laws.

Kirchhoff’s current law (KCL)
At any point in the circuit that does not represent a capacitor plate, the sum of currents
flowing towards that point is equal to the sum of currents flowing away from that point, i.e.,

S I = 0.

Kirchhoff’s voltage law (KVL)
The directed sum of the electrical potential differences around any closed circuit is zero. i.e.,

2.5 Power System Model

A power system model as a network of buses (nodes) and lines (edges). At each bus i for
electrical magnitudes are of importance:

|Vi| , the voltage amplitude,
d; , the voltage phase angle,
P; , the injected active power,

Q; , the injected reactive power.

In the network we have generators and loads. In the model are generator buses (or PV-buses),
where P; and |V;| are specified and @Q); and §; are unknown. And in the model are load buses
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(or PQ-buses) where P; and Q; are specified and |V;| and §; are unknown. A load will have
specified negative injected active power P, and specified reactive power Q).

A generator should control P and |V|. However there are generators who can not control
them. An example of the latter is a wind turbine. So we modeled those ones as a load with a
positive injected active power P. In case that a PV generator and a PQ load are connected
to the same bus, this results in a PV-bus with:

e a voltage amplitude equal to that of the generator,
e an active power equal to the sum of the active power of the generator and the load.

Buses without a generator or load connected (such as transmission substations) are modeled
as load with P = Q = 0.

In a power system we deal with system losses. These losses have to be taken into account.
They are dependent on the power flow, but these losses are not known in advance. So a
generator bus has to be assigned to supply these unknown losses, called slack bus. For the
slack bus we cannot specify the real power P, but we can specify the magnitude |V|. For a
slack bus it is generally specified that § = 0.

Lines are the network representation of the transmission that connect buses in the power
system. A transmission line from i to j has some impedance. The total impedance over
the line is modeled as a single impedance z;; of the line. From section 2.3 we know that
the admittance of that line is y;; = % There is shunt admittance from the line and the
ground. For the model we distribute this total shunt admittance over buses ¢ and j. There
is no conductance between line and ground, but there are losses. This means that the shunt
admittance is only due to the electrical field between line and ground. So we have ys = jbs

with bs > 0. See Figure 1.

e
«

g
[

I
I—

Figure 1: Transmission line model

There are also three other devices in power systems: shunts, tap transformers and phase
shifters.

Shunt capacitors can be used to inject reactive power (resulting in a higher node voltage)
and shunt inductors consume reactive power (resulting in a lower node voltage). A shunt is
modeled as a reactance zs = jxs between de bus and the ground. The shunt admittance is

Ys = Z—IS = —ji = jbs. The shunt is inductive if x5 > 0, and is capacitive is x; < 0.
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A tap transformer is a transformer that can be set to different turns ratios. Tap transformers
are generally used to control the voltage magnitude, dealing with fluctuating industrial and
domestic demands or with the effects of switching out a circuit for maintenance.

Phase shifters are devices that can change the voltage phase angle, while keeping the voltage
magnitude constant. They can be used to control the active power.

2.6 Admittance Matrix

Let I be the vector of injected currents at each bus and V' the vector of bus voltages. from
section 2.3 we know that I = YV. So we say that matrix Y is the admittance matrix. We
also know that Z = Y !, the impedance matrix.

First we look at the injected current I; at each bus ¢. Is I; > 0 power is generated, if I; < 0
power is consumed and if I; = 0 there is no current injected. The Kirchoff’s current law says

I, = Zlk
k

Let y;; be the admittance of the line between buses i and j. If there is no line between
buses i and j, then y;; = 0. If there is only one line between buses 7 and j, then we have
Ii; = yi;(Vi — V;). In this situations it also holds that I;; = —I;. We can write it in matrix

notation
Ly | 1 -1 Vi
Li | =% -1 1 v

If the power system only consists of simplified lines, then the admittance matrix for that
system is a Laplacian matrix [3], given by

Y--—{ Ek#yik if 1 = 7,
ij = p - .
—yi; i

Then we have

L= Ti=> vir(Vi=Vi) =D yaVi— > vV = Y YV = (YV);
k k P P ks

If a shunt s is connected to bus i, then I;3 = ys(V; — 0) = ysV;. This means that in the
admittance matrix Y, an extra term ys has been added to Yj;.

Knowing how to deal with shunts, it is easy to incorporate the line shunt admittance model
as depicted in Figure 1. For a transmission line with shunt admittance ys we find

)=l e[S T

The influence on the admittance matrix of a device ¢t between buses 7 and j is either a tap
transformer or a phase shifter. Let E be the voltage induced by ¢, then V; = TFE.

N

Then the current from bus j to ¢ in the direction of bus ¢ is:

15



Vi

Lji = yig(V; = Vi) = yi3 (V; — E) = yi(V; = 75)-

With the conservation of power we get
Then the current from bus ¢ to ¢ in the direction of bus j is:

I..
I; = —% = i (

Vi v
T T

If the device ¢ that connects bus i to bus j is a tap transformer, then T = T and |T|?> = T2.

Then we find ) )
Lyl _ .| 72 —7 ||V
i) =" - v lv ]

If instead, ¢ is a phase shifter, then T = 777 = L and |T|? = 1. Then we find

]-nl s T
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3 Load Flow Problem

Computing the flow of electrical power in a power system in steady state is called the load
flow problem. This means that we calculate all node voltages and line currents in the power
system. First we describe the load flow model, what gives us a system of non-linear real
equations. To solve this system of non-linear equations we use an iterative technique to
approximate the solution, the Newton-Raphson method.

3.1 Load Flow Model

The power consumed by the impedance is given by matrix S. From section 2 we can find

The admittance matrix Y is easy to obtain and generally very sparse. We know that V = Z1,
where Z is the impedance matrix. The impedance matrix is generally not sparse and harder
to obtain. For each bus i where S; = 0 (i.e. no injected power), the injected current I; = 0.
So we use the lineair (Y'V'); = 0 and then we eliminate the variable V;.

We know that Y = G + jB. Let &;; = di — 6, such that V; = |V;|e/%" (from which follows that
I; = |I;|e™7%, see section 2.1). This gives

N
Si = |Vile" Y (G — jBik)|Vile 7
k=1
N
= > [Vil[Vil(cos 6k + j sin 6ix)(Gix — jBir)
k=1
N N
= > VillVil(Gik cos ik + Birsin i) + 5 Y _ |Vil|Vi| (Gik sin 6 — Big cos diz,).
k=1 k=1

Now we define a real vector of the voltage variables of the load flow problem as
V =1[01,....0n5, Vi],..., |VN|)T.
We define, for a more comfortable notation

Pi(V) = |Vil[Vk|(Gik cos 0i, + Bij sin diz;),
Qi(V) = [VillVi|(Gik sin b1, — Byy cos ).

And so we get
N N
Si = szk(v) +J Z Qik(V).
k=1 k=1

17



Now we have a real and an imaginary part:

N
P, = B(V)=) Py(V),
k=1

N
Qi = Qi(V)=>_ Qu(V).
k=1

These equations relate the complex power in each node to the node voltages, using the ad-
mittance matrix of the power system network. We now have 2N non-linear real equations.
Each node has four variables: |V;],d;, P; and Q;. In section 2.5, we say that in each node two
of these have a specified value. So we have 2N non-linear real equations and 2N unknowns
variables.

3.2 Newton-Rapshon method

To solve this system of non-linear equations we use an iterative technique to approximate the
solution. We will use the Newton-Raphson method to obtain a solution. We define a real
vector of the voltage variables of the load flow problem:

V=1[01,....0n5 Vi],..., |VN|)T.

Now we define a set of functions F; as:

E(V):[AB‘(V)] { P—P(V), i= 1...N,

AQ;(V) Qi —Qi(V), i= N—i—l.... .2 N.

The function F is called the power mismatch.

We start with a vector VO and update it iteratively with a function ®, such that:
1. VKl — o(Vk)
2.9(V)=V& F(V)=0

with F the vector of functions F;.

So there is a non-singular matrix A(V) such that ®(V) =V — A(V)~"LF(V). The Newton-
Raphson’s method is based on the first order Taylor expansion of F, so A(V) = J(V), where
J the Jacobian of F is.

The Newton-Rapshon method is defined as

VETL = Ve 4 AV,
where AVK is the solution of the linear system of equations
—J(VK)AVE = F(VE),
So
vkt — vk _ gL vk FvE). (6)

18



In the case of the linear system, each bus ¢ of the power system gives two equations, row i
and row N + i. In the linear system of equations, the J; and |V;| are unknown. If bus 7 is a
load bus, then §; and |V;| are unknown. In case we have a generator bus or a slack bus we
have another situation.

For a slack bus, ¢; and |V;| are known and P; and @Q; are unknown. We can eliminate the
variables §; and |V;| from the system and substistute their values into the coefficient matrix.
Row i corresponds to the equation for P;, and row N + ¢ corresponds to the equation for
Q;- As soon the Newton-Rapshon process has converged, P; and @Q; are easily calculated by
substituting the found solution into the original equations ¢ and N + i.

If we have a generator bus, then P; and |V;| are known and @); and §; are unknown. With |V}
known, we can eliminate this variable and the column N + ¢ from the linear system. The @),
is unknown, so we take row N + ¢ out of the system like we did in the case of a slack bus.

Now we calculate the Jacobian. Let N7 and Ny be the dimensions after the elimination of
the slack and generator buses. The strucure of the Jacobian is

r 9P(V) OP (V)  9PL(V) OP (V) ]
061 e 851\71 6‘V1| e 3|VN2‘
BPN; (V) 8PN.1 (V) aPN'1 (V) aPN'1 (V)
30 e Ta v, A,
JV)=—1 s0,(v) 9Q1(V) 8@‘1&") 86'217\27‘) : (7)
a5, s N, oV OV,
Qi (V) 0Qny (V) 9Quy (V) 9Qny (V)
061 e 861\[1 6‘V1| e 8|VN2‘
Let i # j.
oF,(V .
a(g. ) - VillVjl(Gij sin dij — Bij cos 6i5) = Qij(V)
J
0P, (V .
aé ) - > [VillVi|(—Gir sin 3% + Big, cos di) = —Qi(V) — |Vi[* Bis
¢ ki
0Q;(V .
Qaé L = VIV I(=Gy cos 8 — Byysindy) = —Py(V)
J
0Qi(V :
V) S VIV Gt cosdis + Bssind) = PV) ~ VG
v ki
OP;(V) . P;(V)
= |Vi|(Gjj cos d;; + Bi;sin6;;) = —2
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. (V) )

OR(V) _ 2|Vi|Gy + Z |Vi|(Gik, cos 8, + Bk sin §,) = V| + Vil Bis

oVj| Py

Qi; (V)

9Qi(V) = |Vi|(Gijsiné;j — Byj cos 6;5) = ﬁ”

o] ; .
an(V) _ —2"/7,|B“ -+ Z |Vk‘(sz sin 5ik — By, cos 5Zk) = H/z’ 1|

Vil

ki
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4 Linear solvers
In the previous chapter we have seen that
vkt — vk _ oL v FvE),

To compute the iteration we have to solve the linear equations as given in chapter 3. We can
use the iterative methods Bi-CGSTAB or GMRES. For this, we use a preconditioner.

4.1 Preconditioners

A preconditioner is a matrix that transforms the linear system. The transformed system has
the same solution as the original system. The transformed coefficient matrix (the precondi-
tioner) has a more favorable spectrum. Assume that we have the linear system Au = b, then
the transformed system is given by

M YAy = M.

These systems have the same solution. For matrix M it must hold that the eigenvalues of
M~1A should be clustered around 1 and it should be possible to obtain M 'y at low cost.

When we change the linear system Au = b such that the eigenvalue distribution becomes
more favorable with respect to the CG convergence, we speak about the preconditioning of a
linear system. The idea is to write the system as Ag = b, where A = P~1AP~T = P~ Ty
and b = P~'b. The matrix P is non-singular and the preconditioner matrix M is given by
M = PPT. In the next subsections we describe three preconditioners.

4.1.1 Diagonal scaling

We can choose for P a diagonal matrix, where p;; = /a;;. It has been shown that this Matrix
P is such that it minimizes the condition number of P! AP~ [2] within the class of diagonal
matrices. An advantage is that A = P~ AP~ is easily to calculate and diag(P~'AP~T) =1,
so this saves us n multiplications in the matrix vector product.

4.1.2 Basic iterative method

In the basic iterative method we compute the iterates by the following recursion:
- . o
uz—l— — ’LLZ + B 7“2,

where 7 = b—Au’. So it holds that v’ € u%+span{B~1r0, B=1A(B~1+Y),... (B~tA)~1(B~1r0)}.
We call subspace K*(A4;7°) := span{r?, Ar0 ... A"~1r9} the Krylov-space of dimension i cor-
responding to matrix A and initial residual r%. When u’ is calculated bij a basic iterative
method, then v’ € u® + K*(B~1A; B~1r0).

The basic iterative methods uses a splitting of the matrix A = B — R. So the i-th iteration

y' from the basic method is an element of u* € u® + K*(B~'A; B~'r%). Two examples for a
splitting are the Jacobi and the Gauss-Seidel methods.
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Let A € RVYN with A = (apmn),m,n=1,...,N and amm #0(m =1,...,N),bc RV,

In the Jacobi method we start with a guess 2, and find recursively the vectors u', ..., u? by:
1 N
utt = ——(by, — Z AmkUy,), m=,1,...,N.
Gmm k=1(k#m)

The Jacobi Method
This is for one iteration
form=1:N

gm = (bm - Z/@gm amkuk)/amm

u=q
end

With Jacobi’ s method we find a splitting A = B — R, with a diagonal matrix B and a matrix
R with zeros on the diagonal. The Jacobi method in matrix notation is Bu‘t' = Ru'+b.

In Gauss-Seidel’s method we use the iteration

1 m—1 N
+1 __ i+1 % —
Uy = @ (bm — AmiUy, — — E amkuk), m=,1,...,N.
mm k=1 k=m-+1

The Gauss-Seidel Method
This is for one iteration

form=1:N

Um = (bm — X pzm GmkUk) /G
end

4.1.3 Incomplete decomposition

Here we use a combination of an iterative method and an approximate direct method. Let
A € RNXN e the coefficient matrix of the problem. The matrix A has at most 5 non-zero
elements per row. The matrix is symmetric and positive definite. The structue of the matrix

is [4](pag. 69)
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(a1 by c1 1
b1 a9 b2 Cc2
A= ©
C1 bm Am+1 bm+1 Cm+1
. - . . Q
L @ -

Take the lower triangular matrix L such that A = LTL and P = L. The matrix L is a good
choice with respect to convergence. The zero elements in the band of A become non-zero el-
ements in the band of L. It can be a lot of work to construct L. Make the non-zero elements

of L on the positions where the elements of A are zero also zero. Now it is less work to find
L.

Denote the set of all pairs of indices of the off-diagonal matrix by:
Qn ={(i, )i #j,1 <i<N,1<j< N}
Let @ a subset of @y, where @) are the places (7, j) where L should be zero.

Theorem 1. [8] if A is a symmetric M-matriz, there exist for each Q@ C Qn (with the
property that (i,7) € Q implies (j,i) € @), a uniquely defined lower triangular matriz L and
a symmetric nonnegative matriz R with l;; = 0 if (1,7) € Q and rij = 0 if (i,7) ¢ Q, such
that the splitting A = LL™T — R leads to convergent iterative process

LIy = Rul + b for each choise u°,

where u* — v = A~ 1b.

4.2 Bi-CGSTAB
We give the description of the method [5]:

Bi-CGSTAB method

u? is an initial guess; r° = b — Au;

70 is an arbitrary vector, such that (7°,7%) # 0, e.g., 7 =7
p-1=0-1 =w_1 =1;
v i=pl=0;
fori=0,1,2,... do
pi = (T0,7); Bic1 = (pi/ pi-1)(@ic1/wi1);
pr=r4 Bica(p! —wimvh);
p=M"p"
vt = Ap;
a; = pi/ (7, v°);
s=r"— av’
if ||s|| small enough then

0.
)
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wt = u? + a;p; quit;
z=M"1s;
t= Az

Wi = (t, S)/(t, t)§
ut =t + ap + wiz;
if u'*! is accurate enough then quit;
ritl =5 — wit;
end for

Here the matrix M is the preconditioning matrix.
This method uses short recurrences. But small changes in the algorithm can lead to instabil-
ities.

4.3 GMRES

This is the second iterative method that we look into. Here we used Arnoldi’s method for com-
puting an orthonormal basis v, ..., v* of the Krylov subspace K*(A; %) := span{rg, Aro, ... A¥ 1rg}.
We give here the description [6].

GMRES method

Start: choose u’ and compute 70 = b — Au® and v! = r%/||r0||5.
Iterate: for j =1,...,k do:

It = Ayd

fori=1,...,j do:

hij i= (VT Tyt i Fl = il — pyf,
end for
hjvig = [0 |2, 074 = v Ry
end for

The entries of (k + 1) x k the upper Hessenberg matrix H}, are the scalars hij.

The form of the Hessenberg matrix Hj; is

hiv oo .. hy
H = ha1 :
0O hjj—1  hjj

The GMRES method is based on long recurrences, but it has optimality properties. The
disadvantage is that the j** iteration takes more time to compute than the j — 1** iteration.
So it is not possible to run the full algoritm for large number of iterations. For the GMRES
method there exists a convergence proof and for the Bi-CGSTAB there does not.
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5 GPU Parallel programming with MATLAB on the GPU

In this chapter we start with a brief explanation about the disign of a GPU. Then we will
describe how we can program with MATLAB on the GPU. We want to solve a linear system
Az = b. The admittance matrix is a sparse matrix (the matrix we use by solving the load
flow problem). The matrix appears to be unstructured. So in this chapter we will focus
on programming the Bi-CGSTAB method where matrix A is the Poisson matrix instead of
the admittance matrix. Choosing the Poisson matrix makes programming easier, because of
the known structure of the Poisson matrix. In the next chapter we will use the admittance
matrix.

The iterative method uses a preconditioner, so we will describe two of them: diagonal scaling
and incomplete decomposition. The reason that we will use the GPU is that we want speed
up. So we shall look if we can achieve speed up.

5.1 The Design of the GPU

Historically, computer users have the expectation that programs run faster with each new
generation of microprocessors. However, sequential programs will only run on one of the pro-
cessor cores and will not become significantly faster than before if a multi-core machine is used.

By a parallel program, multiple threads of execution cooperate to complete the work faster.
So application software can be faster when it is a parallel program.

We use a many-core trajectory which focuses more on the execution throughput of parallel
applications. Here we have a large number of simple cores. The GPU (graphics processing
unit) is an example of a many-core machine. A many-core machine has the advantage of more
GFLOPS (giga floating-point operations per second) than a Dual-core or a Quad-core on a
CPU (central processing unit).

The reason that there is a large performance gap between many-core GPU and a multicore
CPU, is the design between the two types. The designs are illustrated in figure 2

Contral ALU AL

ALU ALl

CPU GPU

Figure 2: Disign of a CPU and a GPU [9].

The design of a CPU is optimized for sequential code performance. The large cache memories
are provided to reduce the instructions. But there is no contribution to calculation speed.

Then we have also the memory bandwidth. The bandwidth of a Graphic chip is more (say 10
times) than the bandwidth of a presently available CPU chip. We speak here about moving
data (GB/s) in and out of its main dynamic random access memory (DRAM). Small cache
memories are provided to help control the bandwidth requirements of these applications, so
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multiple threads that access the same memory data do not need to go all to the DRAM. So
there is more space on the chip for floating-point calculations.

5.2 MATLAB on the GPU

We can use MATLAB for programming on the GPU. We create a matrix A with MATLAB
in the standard way. If we use the code class(A), then the output is double. Now we say B =
gpuArray(A) and then we use the code class(B). The output is parallel.gpu.GPU Array.
So we can set a matrix on the GPU. With the code C' = gather(B) we can copy the matrix
to the CPU.

Say that the matrices A and B are both on the GPU. When we create a new matrix in
MATLAB with the code C = A 4+ B, then matrix C is also placed on the GPU.

With an example we can see that there are time savings when we use the GPU.

X=rand(n,1);
Y=rand(n,1);
Z=rand(n,1);

tic

for i=1:m
X=plus(Y,X); %the sum of X and Y
X=plus(Z,X);
X=6%*X;

end

timeCPU=toc;

We do not put the vectors X,Y and Z on the GPU.

The next vectors P, G and @ are placed on the GPU.

G = gpuArray(X);
P = gpulArray(Y);
Q = gpuArray(Z);
tic

for i=1:m
G=plus(P,G);
G=plus(Q,Q);
G=6%G;

end

timeGPU=toc

k=timeCPU/timeGPU



Let k be the ratio between timeCPU and timeGPU. In table 1 we can see an approximation
of k = UmeCPU with different values of n.

timeGPU
n (x10°) | 0.1 05 | 1 [ 10 | 15| 20 | 25 30
k 0.013 | 0.013 | 2.7 | 3.6 | 3.6 | 3.7 | 0.9 | not enough memory

Table 1: k£ = % en m = 100.

If the size of the vectors is larger, the factor k is larger. But there is a maximum size of the
vectors in case there is not enough space on the GPU. The highest value of k is approximately
3,7. If we change m, we see little difference.

We can also use the code arrayfun. This code ensures that the entire calculation takes place
on the GPU. All the data are placed on the memory of the GPU and the calculations are
performed on the GPU. First we make a single program.

function tell = testPlus(X0,Y0,Z0,m0)
tell=1;
while (tell <= mO)

X0=X0+YO0;

X0=X0+Z0;

X0=6%X0;

tell=tell+l;

tic
tell = arrayfun(@testPlus, G, P, Q, m);
tijdGPU2 = toc;

k=timeCPU/timeGPU2;

Let k be the ratio between timeCPU and timeGPU2. In Table 2 we can see an approximation
of k = HmeClU o1 different values of n.

timeGPU2
n(x10% | 01 | 05 | 1 10 | 15 | 20 | 25 30
k 0.21 | 0.21 | 26.4 | 29.4 | 29.5 | 29.4 | 29.6 | not enough memory

Tabel 2: k = HmeClU en m = 100.
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This time the factor k£ can be 30, see figure 3 . So when we program on the GPU using ar-
rayfun, the program is much faster. However, the limited size of the memory can be a problem.

Time in sec

— tidCPU

0 [ E e e, ——  tidGPUZ
a 10 20 30 40 a0 B0 70 a0 an 100
n

Figure 3: timeCPU, timeGPU2 and k with different n, where the size of the vector is n x 106.

So the code is much faster when we can use arrayfun, because the operations supported by
arrayfun are strictly element-wise. The problem is that only a restricted amount of functions
and operators can be combined with arrayfun in MATLAB. For instance, when we want
to multiply two vectors, MATLAB gives an error. Let vector V = [v1,v9,v3,...,v,]. With
arrayfun, MATLAB gives an error when we calculate V7V, But when we use VV, we get
[v1v1, V2v2, V33, ..., Uy Uy]. This problem is easy to fix. But if we multiply two matrices A and
B, then arrayfun gives a matrix where on row ¢ and column j the value is A(3, j) x B(4, 7). So
we get a componentwise form of a matrix-matrix multiplication. When we want to multiply
matrices in the normal way with arrayfun, it takes a lot of time and memory. Note that we
do not need to multiply in our method. But we have to multiply a matrix and a vector, which
gives the same problems.

5.3 Bi-CGSTAB with the Poisson matrix

The easiest way to compute the system Az = b with Bi-CGSTAB is with the code z=bicgstab(A,b).
When we use this code, we do not use the GPU. If the matrix A and vector b are placed on
the GPU, we get an error.

First we start make a Possion matrix. In MATLAB we can use the code A=gallery(’poisson’,n).
MATLARB gives us:
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1, 4
(2,1) -1
3,1 -1
(1,2) -1
(2,2) 4
(4,2) -1
(1,3) -1
(3,3 4
(4,3) -1
(2,4) -1
(3,4) -1
(4,4) 4

We get an error if we enter G = gpuArray(A). On the GPU, Matlab does not recognize the
matrix stored in a sparse format. We can ”fix” it if we use the next code, where the matrix
is stored as a full matrix.

P = gallery(’poisson’,n)

m=nx*n;

A=zeros(m) ;

for i=1:m
for j=1:m

A1,j)=P(1i,]);

end

end

G = gpulArray(A)

The problem here, is that MATLAB recognizes the matrix as a full matrix with a lot of zeros.

5.4 Programming the Preconditioners

We gave a couple of options for preconditioners in section 4.3. We can choose for diagonal
scaling, where the matrix D = diag(A) with a;; # 0. (When we use the Jacobi method,
we find the same diagonal matrix). This matrix is easy to compute and it is parallel pro-
grammable.
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Matlab code for diagonal scaling

D(i,i)=A(i,i) ;
end

We do not use the Gauss-Seidel method here, because the preconditioner is not SPD.

5.4.1 Incomplete Decomposition Preconditioner
We can also use incomplete decomposition. When we want to use this method, matrix A

must be sparse, symmetric and positive definite.

The next code is the Matlab code with which we compute the lower triangle matrix we want.

for p=1:n
A(p,p)=sqrt(A(p,p));
for i=p+l:n

if A(i,p)~=0
A(i,p)=A(i,p)/A(p,p);
end
end
for j=p+l:n
for i=j:n
if A(i,j)"=0
AGi,3)=A(1,3)-AL,p)*A(G,p);
end
end
end
end

for i=1:n
for j=i+l:n
A(i,j)=0;
end

It is easy to construct an n x n Poisson matrix in Matlab by entering A = gallery(’poisson’,n).
With the code L=ichol(A), Matlab gives the matrix L. In case matrix A is not sparse enough,
Matlab gives an error message.
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For an incomplete decomposition we saw that A ~ LL”. If we want to approximate A~!, we
can use the next expression:

Afl ~ (LLT)fl _ (LT)flLfl — (Lfl)TLfl.

So if we can compute L~!, we have an approximation of A1
Note: L~! is not parallel.

Let D be the diagonal matrix of L, matrix N a lower triangle matrix with zeros on the
diagonal and I be the identity matrix. Then we can write the matrix L as follows:

L=D(I+N).
Now we have also matrix N:

L=DI+ DN

DN =L - DI

N =DYL-DI)

Now we can write the inverse of L:
L'=(MDUI+N)'=U+N)'DL

It is easy to compute D~1, but (I + N)~! is difficult to calculate in a parallel way. Because
matrix N has zeros on the diagonal and is a lower triangular matrix, it holds that N™ = 0 if
n — 00. So (I — N™) =1 if n — co. Now we use the next rule:

(I-N")Y=(I+N)(I-N+N?>-N3+. . .+ ()N =T

Now it follows that:

n—1
(I+N)'=(I-N+N=N°4 . 4 (-1)"'N"1) =) (-1)"N*.
k=0

This is called a Neumann series. The rate of convergence is defined in the next theorem.

Theorem 2 (Neumann series). [10]
Is A is a square matriz, ||A|| < 1, then I — A is nonsingular and (I —A) ™' = [+ A+ A% ... =
S 52 A¥. This is the Neumann series. The speed of convergence depends on the size of ||Al|.

Now we can approximate L~! by a small number of terms of the Neumann series. Since
matrix vector products can be computed in parallel, we now have a parallel approximation
of (L™HT, and so we find an approximation of matrix A~

Note that N is a sparse matrix, but (I — N + N?2) can become a less sparse matrix. So the
multiplication (I — N 4+ N?) directly with a vector v costs a lot of memory when we program
it in parallel. So (I — N + N?)v = Iv — Nv + N(Nwv). In the right part of the equation we
can use the sparse property in each multiplication.
The following code represents the rest of the code.
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D(i,i)=L(i,1i);
end
JWe can also D=diag(L), but it can give problems on the GPU.
#MATLAB recognize only arrays/vectors on GPU.
invD=0%*L;
for i=1:n
invD(i,i)=1/L(i,1);
end

N=invD* (L-D) ;
I=eye(n);
invT=I-N+Nx*N;
invL=invT*invD;
invA=invL’*invL;

We put this code into a function called "IPofPoisson”. When we put the matrices on the
GPU with the code "gpuArray(...)”, we must use a full matrix A. This costs a lot of time, so
this is not a good option.

5.4.2 Bi-CGSTAB with Incomplete decomposition preconditioner

In appendix B you can read the code. We used the function ”IPvanPoisson” that can be
found in appendix A. This function does not use the GPU. We also used the function ”IP-
vanPoissonGPU”. This code does practically the same, but in addition to the code gpuArray
it copies the matrices and vectors to the GPU.

A = gallery(’poisson’,N);
n=N*N;
A=gpulArray(zeros(n)+A) ;

When we use this code, we must make matrix A full with a lot of zeros. This costs memory
and speedup. Off course we do not want a full matrix, however this is necessary otherwise we
can not use the GPU (see section 5.2)

In the code of the Bi-CGSTAB we compute the residual with ||Au’ — b||o. First we solve the
linear system with the MATLAB code z=bicgstab(A,b) (here matrix A is a sparse matrix)
and error=norm(b-A*z,2)/norm(b,2). We find the residual with this command, so it is fair
to compare. In Table 3 we see the results.
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N x Ngrid | time code z=bicgstab(A,b) | time CPU | time GPU | iterations
2 0.0174 0.0050 0.150 20
3 0.0016 0.0033 0.0523 6
4 0.00189 0.0009 0.0277 4
5) 0.0023 0.00114 0.0368 )
6 0.0026 0.0012 0.0428 )
7 0.0029 0.0014 0.0557 6
8 0.0045 0.0015 0.0654 6
9 0.0038 0.0017 0.0808 7
10 0.0044 0.0018 0.0928 7

Tabel 3: time Bi-CGSTAB with IDP (incomplete decomposition preconditioner)

We see that solving the linear system on the CPU is a lot faster than solving it on the GPU.
The reason is that we must use a full matrix A when programming on the GPU. We see that
20 iterations are needed when we use a 2 X 2 — grid. I can not explain this large number of
iterations.

5.4.3 Bi-CGSTAB with diagonal scaling preconditioner

The MATLAB code for Bi-CGSTAB with a diagonal scaling preconditioner can be found in
appendix C. In table 4 we see the results of Bi-CGSTAB with a diagonal scaling precondi-
tioner. The same results are also given in figure 4.

N x Ngrid | time code z=bicgstab(A,b) | time CPU | time GPU | iterations
2 0.0815 0.0159 0.0426 3
3 0.0076 0.0031 0.0489 )
4 0.0019 0.0016 0.0722 7
5 0.0034 0.0028 0.1018 10
6 0.0026 0.0032 0.1371 13
7 0.0029 0.0032 0.1589 14
8 0.0033 0.0033 0.1328 18
9 0.0036 0.0033 0.1550 20
10 0.0036 0.0035 0.1670 20

Tabel 4: time Bi-CGSTAB with DSP (diagonal scaling preconditioner)
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Tirme code x=hicgstab(A b
“TimeCPU
TimeGPLU

Time(sec)

Figure 4: time MATLAB code, CPU and GPU

We see that when we use the GPU, the program is much slower. A reason for this result is
that when we use the GPU, we have to use a full matrix A.

When we use a diagonal scaling preconditioner, the number of iterations increases. The
maximum of iterations in MATLAB is 20 when we use the code z=bicgstab(A,b), so that is
also our maximum number of iterations.

There is an option using the code z=bicgstab(A,b,tol,maxit). The value of tol specifies the
tolerance of the method. The value of mazxit specifies the maximum number of iterations. In
this document we do not use these two options. We see that the program with the GPU is
much slower, when we have a ”large” number of iterations. So in this document the maximum
number of iterations is 20.

Notice the difference between the number of iterations when using the incomplete decompo-
sition preconditioner (see Table (3)) or the diagonal scaling preconditioner (see Table (4)).
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6 Results for Load Flow Problems

In chapter 2 and 3 we build the admittance matrix, but we can also use Matpower, a package
in MATLAB. First we give a short description of Matpower. We shall see that using the GPU
in this case do not give us any speed up.

6.1 Matpower

There is a package in MATLAB, named Matpower, to employ Newtons method for solving
power flow problems. This package give us examples of networks including the matrices.
There are a couple of case-files. These files contain admittance matrices, that we can use for
computing. It is also possible to find the bus-matrix, the generator-matrix, the branch-matrix
(the specifications of the transmission lines between the buses).

With the next code we get an admittance matrix of a case.

With loadcase we can get a lot of cases belonging to different sizes of networks.

6.2 Matpower and Bi-CGSTAB

Instead of the Poisson matrix we used before, we use an admittance matrix Y from Matpower.
We have seen that an incomplete decomposition preconditioner is a better option than a di-
agonal scaling preconditioner. So we use an incomplete decomposition preconditioner. We
see the results of a couple of cases in table 5 .

From the results we see that the code of MATLAB, = = bicgstab(A, b) is faster than our code
on the CPU. The code is very slow by using the GPU, because we have to use a full matrix.

Note: There are other cases which do not give a solution with our code.

case n time MATLAB code | time CPU | time GPU | iterations
caselOac 10 0.0411 0.02337 0.51056 10
case30Q 30 0.04185 0.02428 5.07543 10
case39 39 0.04269 0.02566 9.06620 10
casell8 118 0.0437 0.05071 188.9014 16
case3120sp | 3120 0.90768 3.53407 too long 20

Tabel 5: time of a couple of cases

35




6.3 CUDA kernel

We want solving the load flow problem by only using MATLAB. We have seen that using the
GPU in MATLAB does not give us any speed up. The choise for arrayfun was not correct,
because arrayfun is usefull when there are only element-wise operations. The Bi-CGSTAB
method we need uses matrix-vector multiplications, so arrayfun is not very usefull.

There is a command in MATLAB, parallel.gpu. CUDAkernel(-,-), which can operate on MAT-
LAB array or gpuArray variables. To use this code, you should still program in CUDA.
In this thesis we only want programming in MATLAB without using knowledge of other
programming languages. With the command parallel.gpu. CUDAkernel(-,-) MATLAB use a
CUDA code, it means that we must first programming in CUDA. In this thesis we only use
MATLAB, so the command parallel. gpu. CUDAkernel(-,-) is not an option.

The admittance is a sparse matrix, but the we do not see a structure in the matrix. What
if the matrix have a clear structure? It is possible to use the GPU and only MATLAB to
obtain speed up? This is the reason why we use in the next chapters the Poisson matrix. The
Poisson matrix is a sparse matrix and have a simple structure.
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7 Parallel Programming of a matrix vector multiplication with
the Poisson matrix

We have seen in the previous chapters that computing becomes very slow when we use a full
matrix instead of a sparse matrix. In this chapter we use a commonly used sparse matrix,
the Poisson matrix. We use the structure of this matrix in our program to obtain speed up.
First we look at the structure of the Poisson matrix. We want compute A* xb, where A is the
Poisson matrix and k£ € N. We use arrayfun in our code, because we have seen that arrayfun
can give us speed up. We make a couple of codes and compare them. Finally we have three
codes: the MATLAB code z=bicgstab(A,b), a code on the CPU and a code on the GPU. This
codes we shall compare in chapter 8.

7.1 The Structure of the Poisson matrix

In this chapter we focus on the scaled Poisson matrix. We give an example of a Poisson
matrix:

o 0 -1 0 -1 4 -1
o o0 o0 -1 0 -1 4

We can see the Poisson matrix as a block tridiagonal matrix:

T —-I 0
A=| -1 T -I|, (8)
0 —I T

where matrix I is the identity matrix and matrix 7" has the form:

T - R ©)

First we try a multiplication of matrix A and a vector b. In case we want to program on
the GPU with MATLAB and use the Poisson matrix, it is not meaningful to only use the
gpuArray code. The code can be faster if we use the arrayfun code, but we have seen that

there is a problem when there is a multiplication of a matrix and a vector. So we do not use
the code A *b.
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The first idea is to calculate each component separately by only using the CPU
code is not an explicit matrix vector product, but the result is the same as A x b.

Name code: CPU1

%NxN-matrix and n=NxN

ans=zeros(n,1);

ans(1,1)=-b(2,1)-b(N+1,1);
ans(n,1)=-b(n-1,1)-b(n-N,1);
ans(N,1)=-b(N-1,1)-b(N+N,1);
ans(n-(N-1),1)=-b(n-(N-1)+1,1)-b(n-(N-1)-N,1);

for i=2:N-1 %first blok
ans(i,1)=-b(i-1,1)-b(i+1,1)-b(i+N,1);
end

for i=N*N-(N-2):n-1; %last blok
ans(i,1)=-b(i-1,1)-b(i+1,1)-b(i-N,1);
end

for i=1:N-2 Yfirst component others bloks
f=1*N+1;
ans(f,1)=-b(f+1,1)-b(£+N,1)-b(£f-N,1);
end

for i=1:N-2 %last component others bloks
f=(i+1)*N;
ans(f,1)=-b(f-1,1)-b(£-N,1)-b(f+N,1);
end

for i=1:N-2
f=1ixN;
for j=1:N-2
p=f+(j+1);
ans(p,1)=-b(p+1,1)-b(p+N,1)-b(p-1,1)-b(p-N,1);
end
end

ans=ans+4x*b; %the diagonal
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7.2 Multiplication Poisson matrix with arrayfun

We want to use the code arrayfun, so the code above is not useful because arrayfun cannot
work with the command b(n,m). First start with a simple version of the Poisson matrix. Let
matrix B:

NOTE: there are no zeros on B(i,i+ 1) and B(i + 1,1).
Now we make the multiplication B * b.

4 -1 0 0 b b [ b2 ] [ O ]
b2 b2 b3 b1
Bxb= L4 0 * : =4 x% : — : - ba (10)
0 0 -4 ]|, |l Lol Leo

function UitPoisl = VermenigPoison(b0,b10,b20)

UitPois1=4*xb0-b10-b20;

b=rand(n,1); bl=zeros(n,1); b2=zeros(n,1);

b1(2:n)=b(1:n-1);
b2(1:n-1)=b(2:n);

bO=gpuArray(b) ;

b10=gpuArray (b1) ;

b20=gpulrray (b2) ;
UitPoisl=arrayfun(@VermenigPoison,b0,b10,b20);
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We give also the code without using the GPU:

b=rand(n,1); bl=zeros(n,1); b2=zeros(n,1);

b1(2:n)=b(1:n-1);
b2(1:n-1)=b(2:n);
AnsCPU=4%b-b1-b2;

bO=gpuArray (b) ;
b10=gpulrray(bl);
b20=gpulrray (b2) ;
AnsCPU=4%b0-b10-b20;

We compare the computing time for running these codes for different values of n. We give
the results in table 6.

n 10° 10% 10° 10° 107
Time CPU 0.000007 | 0.00004 | 0.00036 | 0.0037 | 0.034

Time GPU without arrayfun | 0.0028 0.0039 | 0.0056 | 0.016 | 0.12
Time GPU with arrayfun 0.0015 0.0018 | 0.0040 | 0.011 | 0.075

Tabel 6: Time of computing the multiplication of the n x n matrix B with vector b.
Note: The time corresponding to the GPU is always include the time of copy data.

With n = 10% we get the comment ”OQut of memory on device. You requested: 762.94Mb,
device has 53.71Mb free”.

In this case the code on the CPU is faster. But we see that if n is a larger number, the
difference between Time CPU and Time GPU with arrayfun decreases. So when we have a
GPU with much more memory, it can be that the code on the GPU is faster. But maybe we
can save more time if we extend the calculation.

We will now change matrix B, so that it is more similar to the Poisson matrix. We call the
new matrix C.

T -1 0
C=|-1" 17 -I|. (11)
o -—-I' T
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Here matrix 7 is the same matrix of (9) and matrix I:

10 .0
01 0 ...0
I= 0 (12)
0 L0
10 0 1

NOTE: matrix I is not a diagonal matrix.
Matrix C is almost the same matrix as the Poisson matrix A (8), but there are no zeros on

C(iyi+1) and C(i + 1,7). An example of matrix C":

4 -1 0 -1 0 0 0 0 0 7
-1 4 -1 0 -1 0 0 0 0O
o -1 4 -1 0 -1 0 0 O
-1 0 -1 4 -1 0 -1 0 O
C= o -1 0 -1 4 -1 0 -1 0
o 0 -1 0 -1 4 -1 0 -1
o o o0 -1 0 -1 4 -1 0
o o o o0 -1 0 -1 4 -1
L 0 0 o o o0 -1 0 -1 4 ]
Let C be an n X n-matrix, where n = N x N, N € N.
o] [ O] [ewa] [0
by b3 by bn42 :
. . b . .
_2 : 0
Cxb=14x — - — by, — b1 (13)
: 0 by
bn i 0 ] bn—1 ] | 0 i L bn—nN

n=Nx*N
b=rand(n,1);
bl=zeros(n,1);

b1(2:n)=b(1:n-1);
b2(1:n-1)=b(2:n);
b3(1:n-N)=b(N+1:n);
b4 (N+1:n)=b(1:n-N);

AnsCPU=4%b-b1-b2-b3-b4;

b2=zeros(n,1);

b3=zeros(n,1);

b4=zeros(n,1);



n 107 101 105 [ 4 x 108

Time CPU 0.0000038 | 0.000066 | 0.0049 | 0.020

Time GPU without arrayfun 0.0035 0.0039 0.020 0.059
Time GPU with arrayfun 0.0022 0.0023 0.018 0.053

Tabel 7: Time of multiplication of the n x n matrix C' with vector b..

The codes for the GPU with and without arrayfun are almost the same. We can read the
results in table 7. If we look at the results with matrix B, we do not see much difference.
MATLAB needs much time to copy the vectors on the GPU.

We will construct the code such that it is the same as a multiplication with the Poisson matrix.
Let matrix A be the same matrix as the Poisson matrix A (8). If we change matrix C such
that it is the same as matrix A, then we have C(kxN+1,k*N) = 0and C(k+«N,kxN+1) =0
where k < n and k € N. If we change two vectors in (13), we obtain the multiplication that
we want to have, namely A * b.

In the second vector of (13), say vector by, we want that every (k* N 4+ 1) element is equal
to 0, where kK < n and k£ € N. We also want that in the third vector, say vector by, every
(k + N)* element is equal to 0. When we write this in the code:

Name code: GPU1

b1(2:n)=b(1:n-1);
b2(1:n-1)=b(2:n);
b3(1:n-N)=b(N+1:n);
b4 (N+1:n)=b(1:n-N);

for i=1:N-1
b1 (i*N+1,1)=0;
b2(i*N,1)=0;

For calculating A % b, we only need one for loop. When we have multiple matrix vector
multiplications, it is convenient to use arrayfun. Say,

Vector b is different in every loop, so in every loop we must use the for loop in the code above.
Note: we give the notation AP % b for this code.
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In arrayfun it holds that:

al b1 al * b1
as bQ ag * b2

x| .| = ) . (14)
an by, an * by,

We can use this equality to change vectors b; and be (see code GPU1). To do this, we first
write the next function:

function UitPois3 = VermenigPoison3(b0,b10,b20,b30,b40,e10,e20)

UitPois3=4*b0-b10*e10-b20*e20-b30-b40;

Now we have the next code:

Name code: GPU2

n=Nx*N;

bO=gpuArray(b) ;

bl0=gpuArray(bl); b20=gpuArray(b2); b30=gpuArray(b3); b40=gpulArray(bd);

el=ones(n,1);
e2=el;
for i=1:N-1
el (i*N+1,1)=0;
e2(i*N,1)=0;
end
el=gpulrray(el) ;
e2=gpulrray(e2) ;

UitPois3=arrayfun(@VermenigPoison3,b0,b10,b20,b30,b40,el,e2);

If we multiplicate matrix A with vector b with this code, we do not save time. In case the
amount of multiplications is higher, we could get better performance.

We gave two codes a name: GPU1 and GPU2. We are going to compare the speed of these
codes. We choose to compute A?° % b. In the chapters before, we see that we have used 20 as
the maximum number of iterations for the Bi-CGSTAB.

We know that Bi-CGSTAB has two matrix-vector multiplications using matrix A in each
iteration.
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We use a for loop in both codes. In code GPU1, we must change the vectors b1, b2, b3, b4
in every loop and also a new vector b. But changing the vectors b1 and b2 cost more time
because of the extra for loop. In the code GPU2 we must also change the vectors b1, b2, b3, b4
and b, but we have to construct the vectors el and e2 just once.

Let timeGPU1 be the time to run code GPU1 for computing A?° b and let timeGPU2 be
the time to run code GPU2. Now we have factor f = “meGPUL e see the results in table

timeGPU2"
(8) of factor f for different sizes of matrix A.
n(x10%) 11419 (16|25]36|49 |64 |81 | 100
f="tmeClU [ 5716264 ]62|50[38]|32]28]26] 24

Tabel 8: f = % of compute A%° x b, where A is a n x n matrix.

We conclude that code GPU2 is much faster than code GPUL. From table (8) we could
conclude that the time difference between running GPU1 and GPU2 decreases, because the
factor decreases. Also for large values of n the code GPU2 is much faster.

time compute A2 where Ais a nxn-matrix, =100

w
m

timeGPU1
timeGPL2

w
=]
T

tirne in sec

— L] [ ]
m [=] (53]
T T T

=]
T

m
T

Figure 5: Time code GPU1 and GPU2 with different sizes of matrix A.

Now we are also going to look at the difference between runtimes of code GPU1 and code
GPU2 when size of matrix A remains the same, but the number of iterations is changed. Let
k be the number of iterations and factor f = %. Let A be a 10* x 10*-matrix. In table
(9) we can see the results. We see that factor f stays more or less constant and remains at
about 60. In figure (6) we see the time of code GPU1 and code GPU2 and we see that code

GPU2 is much faster.
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k 102030405060 [70]80 [ 90 100
f=tmeGEUL [ 54|56 | 57 [ 58 | 58 | 59 | 59 | 57 | 59 | 59

Tabel 9: f = % of compute A* x b, where A is a 10* x 10* matrix.

Tirne cornpute A% where A iz a 10000 matrix

tirmeGPU1
timeGPLUZ

Time in sec

u] 10 20 30 40 a0 EO 70 80 a0 100
k = number of iterations

Figure 6: Time code GPU1 and GPU?2 for different numbers of iterations.

We can conclude that code GPU2 is faster than code GPU1. So from now on we use code
GPU2.
7.3 Computing matrix-vector multiplication without using the GPU

We want to compute a matrix-vector multiplication A* x b, where A is a Poisson matrix and
k € N. Of course we use the for loop instead of the code A* x b, because of the number of
operations.

A = gallery(’poisson’,N);
for i=1:k
b=AxDb;

Note: we give the notation A* x b for this code.

We are going to compare the iteration time of a couple of codes. The first code we are going
to use is a code that looks like the code GPU1, but without using the GPU.
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name code: CPU2
n=N*N; %size of the matrix
k %number of iterations

b=rand(n,1); bl=zeros(n,1); b2=zeros(n,1); b3=zeros(n,1); bd=zeros(n,1);

b1(2:n)=b(1:n-1);
b2(1:n-1)=b(2:n);
b3(1:n-N)=b(N+1:n);
b4 (N+1:n)=b(1:n-N);

for i=1:N-1
b1 (i*N+1,1)=0;
b2(i*N,1)=0;

end
for i=1:k
b=4*b-bl-b2-b3-b4;
if i<k
b1(2:n)=b(1:n-1);
b2(1:n-1)=b(2:n);
b3(1:n-N)=b(N+1:n);
b4 (N+1:n)=b(1:n-N);
for i=1:N-1
b1 (i*N+1,1)=0;
b2(i*N,1)=0;
end
end
end

At the beginning of this chapter we gave a code with a lot of for loops, named code CPUL.
Before we compare the time iteration of different types of codes, we must know which of these
two codes is the fastest. First we look at the time difference between running code CPU1
and code CPU2 when the size of matrix A remains the same, but the number of iterations is
changed. We see the results in table (7).
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iteration time of compute A whera A i a 10%10% matrix
0.03 T T T T T T T T T

ime CPLU1
time CPLZ2

0o0zaf

002r

ooiaf

time in sec

0o1r

0.005

0 5 10 15 20 2% 30 35 40 45 50

Figure 7: Time code CPU1 and CPU2 for different numbers of iterations.

These results give us the idea that code CPU2 is a better choice. However, it is more important
to look at different sizes of matrix A than the high number of iterations. So we are now going
to look at the runtimes, with the number of iterations fixed on £ = 20 and an increasing size
of matrix A. In figure (8) we see the results.

iteration time of cornpute A% where A e 3 1001 00v-matrix

me CPUT
time CPLZ

351

tirne in gec
ra
(5]
T

L I L I L
u] 20 40 60 a0 o0 1200 1400 1800 1800 200
W

Figure 8: Time code CPU1 and CPU2 for different sizes of matrix A.

We conclude from this figure, that code CPU1 is faster when the size of matrix A increases.
We want use this codes for large matrices, so we choose to use code CPU1 instead of CPU2.
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7.4 Compare different ways of a matrix-vector multiplication with a Pois-

son matrix

The three codes we compare to compute A* x b are: type2, CPU1 and GPU2. In figure (9),

(10), (1

1), (12) en (13) we can see the results in case we compute 1, 5, 10, 20 or 30 iterations

respectively. Poisson matrix A is a 100v? x 100v%-matrix.

iteration time of cornpute A where A is 3 10047 5100w - matrix

35
time type2
3l time CPU1 .
time GPLUZ
25+ 4
z 2r 7
&
=
w
E 15t E
1 e =
05F B
0 e 7

1] 20 40 60 a0 oo 120 1400 1800 1800 200
W

Figure 9: Time code type2, CPU1 and GPU2 for different sizes of matrix A, computing A *b

Figure
A5 xb

iteration time of A™h where A is a 100100 matrix

-time type2
351 time CPU Val
time GPUZ
3 F o
281 B
o
I
o
= 4
o
£
151 B
1 .
0sf
1}

e L I L I L
u] 20 40 60 a0 o0 1200 1400 1800 1800 200
W

10: Time code type2, CPUl and GPU2 for different sizes of matrix A, computing
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iteration time of cormpute A% whera A s a 1001 00v-matrix

-time type2
time CPLU1 Ao
time GPLU2

EXa

time in sec
L]
T
L

] i L L L L L L L
0 2 40 60 a0 100 120 140 160 180 200
¥

Figure 11: Time code type2, CPU1 and GPU2 for different sizes of matrix A, computing
A% p

iteration time of compute A% where A is a 1001 00v-matrix

tirne typez
ab tirme CPU1 i
time GPUZ
at
o
@
&
s 3t
@
£
2k
1F
0 | . L

L L L L L
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Figure 12: Time code type2, CPUl and GPU2 for different sizes of matrix A, computing
A % b
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iteration time of cormpute A% whera A s a 100 x100v-matrix

-tirme typel
time CPLU1 N
time GPLZ

time in sec
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0 2 40 60 a0 100 120 140 160 180 200
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Figure 13: Time code type2, CPU1 and GPU2 for different sizes of matrix A, computing
ANV % b

Code GPU2 gives the best results for low amounts of iterations. Code CPU1 is the fastest
after 20 iterations, but it does not differ much with code type2. When we have 30 iterations,
code type2 is the fastest.

In figure (14) we give the results when we let the Poisson matrix A be a 10° x 105-matrix and
use diffent number of iterations. Code GPU?2 is slower than code CPU1 after 4 or 5 iterations.
We also see that code type2 is faster than code CPU1 after 20 iterations.

iteration ime of A where A is a 105x10%matrix

25

time type2
tirme CPL1
time GPL2

time in sec

04

Figure 14: Time code type2, CPU1l and GPU2 for different number of iterations, where
Poisson matrix A is a 106 x 10-matrix, computing A3Y % b

In the next chapter we use the codes in a Bi-CGSTAB code. It seems reasonable that we use
the code CPU1 in case we have more than 5 iterations. However, when we integrate it into a
different code, the results can be different.
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8 Parallel Programming of the Bi-CGSTAB with the Poisson
matrix

We want to compute the system Az = b with the Bi-CGSTAB method. In Chapter 5 matrix
A is the Poisson matrix. We have seen that the MATLAB code z=bicgstab(A,b) is faster than
our code, whether we use CPU or GPU. In this chapter we are going to use the structure of
the Poisson matrix to speed up our code on the CPU or GPU. We know that there are better
and faster algorithms for computing the system Az = b if A is a Poisson matrix, but for a
power flow problem we used the Bi-CGSTAB algorithm. For the moment we do not know if
there is a structure in the admittance matrix Y. This is the reason that we use the algorithm
Bi-CGSTAB and also use the preconditioners: diagonal scaling predonditioner (DSP) and
parallel incomplete decomposition preconditioner (IDP). As in Chapter 7 the Poisson matrix
A is scaled, so we do not write the factor h%

8.1 Bi-CGSTAB with the Poisson matrix and the diagonal scaling pre-
donditioner

We give the description of the Bi-CGSTAB method in Chapter 4, but for convenience we
state it again:

Bi-CGSTAB method

u? is an initial guess; ¥ = b — Au;
70 is an arbitrary vector, such that (7°,r%) # 0, e.g., 7 = ;
po1=a_1=w_1=1;
v i=p =0
fori=0,1,2,... do
pi = (T0,7); Bic1 = (pi/ pi-1) (i1 /wi1);
pr=r+Bia(p! —wi0'h);
p=M"'ph;
vt = Ap;
a; = pi/ ([, 0°);
s =rt— v’
if ||s|| small enough then
Wt = u? + aup; quit;
z=M"1s;
t= Az
Wi = (ta S)/(tat);
u ™t =t + ap + wiz;
if 4! is accurate enough then quit;
ritl =5 — wit;
end for

This method uses a matrix-vector multiplication three times, where A is a Poisson matrix.
For this multiplication we can use the results of Chapter 7.
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8.1.1 Substantiation code

In the description we see also two matrix-vector multiplications with matrix M ~!. We know
that matrix M is the preconditioner. Here, matrix M is a DSP and has the form:

4 C)
M = (15)
C) 4
So matrix M~ has the form:
: S}
Mt = (16)
© i

Seeing the structure of matrix M1, we can say:

M_l*g: *q.

=

The parts of the code where we do not use GPU, should now be changed such that it can be
used by the GPU.

We must also compute dotproducts, like (¢, s). In MATLAB we can use the code c=dot(t,s),
but we can also compute this with the code c¢=¢"*s. We will first find out which command
computes the dotproduct faster. We see the results in figure (15).

Tirne of compute (t,5) , where dim(tj=d\m(s)=k*105
0.035 T T T T T T T

Time code c=dotit,s)
003r Time code c=t*s

0o0zaf

002k

05|

Time in sec

0o1r

0.005 w
0 T

Figure 15: Time code by using type2, CPUl and GPU2 for different sizes of matrix A,
computing A% x b

We see that the command c¢=t’*s is faster than the MATLAB function c¢=dot(t,s). So we use
the command c¢=t’*s to compute the dotproduct.
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Then we make function PoissonAwithCPU. In Appendix E can we read the whole code and
also the associated functions.

Now we have everyting for the code without using the GPU and using the codes type2 and
CPU1. For the part with the GPU we have other functions. We make function PoissonAwithGPU,
where we use the code GPU2. This function can be found in Appendix E. We use functions
Vectorl, Vector?2 and Vector3. These are small codes where we compute simple vector calcu-
lations and where we use arrayfun. These codes can also be found in Appendix E.

Let o' the transpose vector of vector b. Now we are going to look what is the fastest code to
compute the dotproduct with the GPU. We can use three codes: using command ¢ = b’ x d,
using an arrayfun code or using c=dot(b,d). Let vetor b and d be two vecors on the GPU,
b=gpuArray(b); d=gpuArray(d);. The codes b’ * d and dot(b,d) are straightforward. We give
the function DotPro, which can be used with arrayfun code:

Function DotPro
function DotPro = DotProduct(b0,d0)
DotPro=b0*d0;

Note: in this function we write b0 * d0 and not b0’ x d0, because we want to use arrayfun. The
explanation can be found in section 7.2, see equation (14).

code dotproduct with arrayfun
dotBD=arrayfun(@DotProduct,b,d);
x=sum(dotBD) ;

In Figure (16) can we see the results. It is clear that code b’ % d is the slowest. Figure (17)
gives the results without the code o' x d.

Time of compute dotproduct of

vactor b and d with dimension=k*10%
0.18

Tirne code with arrayfun
Time code b™d t
- Tirme code dot(b,d)
014 B

016 F

012F =

oir b

Time in sec

006 - =

0.06 B

0.04 - B

0o0zr =

Figure 16: Time computing, on the GPU, dotproduct of vectors b and d with different
dimensions.
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Tirme of compute dotproduct of
w107 vector b and d with dimension=k*10°

Time code with arrayfun
Tirne code dotib,d)

Time in sec

L L L L L L L L L
0 10 20 30 40 50 =i 70 a0 a0 100

Figure 17: Time computing, on the GPU, dotproduct of vectors b and d with different
dimensions.

We conclude that the code dot(b,d) is the fastest.

8.1.2 Results

We compare four codes:
e the MATLAB code z=bicgstab(A,b),
e the Bi-CGSTAB code where we use code CPU1,
e the Bi-CGSTAB code where we use code type2 (CPU),
e the Bi-CGSTAB code where we use the GPU.

We want to make a fair comparison, so every code has the same number of iterations. We
start with the code z=bicgstab(A,b). For computing the number of iterations, we write the
next code:

[x,flag,relres,iter]=bicgstab(A,b);
k=iter

Here, k is the number of iterations of the code x=bicgstab(A,b). For the other codes we will
use the same number of iterations.

Now we look which code is faster for different sizes of Poisson matrix A. Figure (18) shows
the results.
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Time of compute Ax=b with Bi-CGSTAB method
where Poisson mattix A is a 100v2x100vE-matrix

Time code x=hicgstab(#A,b) P
Time with code CPU1 fiin)
Tirne with code type2

Time code on the GPU

Time in sec

2t = .

1
0 2D 40 60 a0 100 120 140 160 180 200
¥

Figure 18: Time of computing the system Ax = b with the Bi-CGSTAB with different sizes
of Poisson matrix A.

We see that every code is faster than the MATLAB code z=bicgstab(A,b) when the size of
the Poisson matrix A increases. However, we can not yet make this conclusion. Note that v
says something about the size of the matix A (see Figure (18)). If we look at the number of
iterations, we see that the code z=bicgstab(A,b) needs 20 iterations when v < 10, but when
v > 10 the code uses 1 iteration (A4 is a 100v? x 100v%-matrix). I do not know the reason
of this choice. We let the number of iterations of the other codes equal to the number of it-
erations of code z=bicgstab(A,b). We can use the relative residual to say it is a fair comparison.

8.1.3 Relative Residual

Suppose z is an approximation of the solution of the linear system defined by Az = b. The
relative residual is:

_[lb— AZ|
el

Except for the code z=bicgstab(A,b), the € of the codes are the same. In figure (19) we can
see the difference of the values of the relative residual e.
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The relative residual where Poisson matrix A is a 100v 00w -matrix
0.9

code x=hichstab(s,b)
other codes

0ar

07

0B

0sf

04t

relative residual

03r

02r

01p

Figure 19: The relative residual of different sizes of Poisson matrix A.

We see that the relative residual of the other codes is lower than the relative residual of the
MATLAB code z=bicgstab(A,b). With this result and figure (18) we can conclude that our
code is faster than the MATLAB code z=bicgstab(A,b). We see also that the relative residual
increase till 1. This means that Z is not a good approximation of the linear system Az = b
when the size of Poisson matrix A increase. In figure (20) we see what is happend if v increase.

The relative residual where Poisson matrix A is a 1001 00 -matrix

0ar

relative residual

0B6F

code x=hicgstab(s,b)

other codes
04F B

02r b

Figure 20: The relative residual of different sizes of Poisson matrix A.
The relative residual of code z=bicgstab(A,b) is close to 1 when v increase, but the relative

residual of the other codes is higher than 1. This is a strange and undesirable result. We do
not know why both methods gives this bad results for large sizes of Poisson matrix A.
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8.2 Bi-CGSTAB with the Poisson matrix and the incomplete decomposi-
tion preconditioner

The code that we use in this section is almost the same as in the previous section, but now we
use another preconditioner M. In section 8.1, M (the DSP) has a convenient structure. We
can make a scalar vector multiplication for computing M ~1'v. In this section, where we use
an IDP, the structure of matrix M is not like that. Section 4.3.3 describes how we find the
IDP. In the Bi-CGSTAB method we need matrix M ~!. In case we use the ISP, the matrix
M~ is a full matrix. So we can not compute M v as a scalar vector multiplication, but we
must use the whole matrix M. The problem is that a matrix-vector multiplication costs
a lot of time. Appendix F describes the function IPvanPoissonGPU where we compute the
matrix M~!. In the first part of the code of the function we do not use the GPU, because
it is not a parallel computation. After the matrices L, D and invD have been computed, we
use the GPU.

In figure (21) can we see the results.The time of the code on the GPU is much larger then the
other codes. We can conclude that it is not a good idea use the GPU when we use the IDP.

Tirne of compute Ax=b with Bi-CGSTAB method
where Poisson matrix A is & v x v>-matrix

o
=]

Time code ¥=hicgstab(A,b)
Time with code CPU1
Tirne with code type2
Time code on the GPU &

~
a
T

@
fon]
T

Tirne in gec
ol = m
221 o il
T T T

)
fas]
T

o
T

o

Figure 21: Time of compute the system Az = b with the Bi-CGSTAB with different sizes of
Poisson matrix A, use the IDP.

Figure (22) shows all the results, except the results for the code on the GPU.
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Tirme of compute Ax=b with Bi-CGSTAB method

where Poisson matrix A is & 100V % 100v* - matrix
45 T T T T T T T

Time code x=hicgstab(A,b)

A0y Tirme with code GPU1
Tirne with code typez

30F

25+

20+

Time in sec

Figure 22: Time of compute the system Az = b with the Bi-CGSTAB with different sizes of
Poisson matrix A, use the IDP.

We see that code z=bicgstab(A,b) is much faster. The other codes have also one iteration

and the relative residual is not lower. So using the IDP is not an option when we work in
MATLAB.
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9 Conclusion and Discussion

This document can be separated into two topics: solve a load flow problem with MATLAB by
using the GPU and speed up the code for solve the linear system Az = b with Bi-CGSTAB
in MATLAB where A is the Poisson matrix. First we discuss the results of the part about
the load flow problem. After that we discuss the second part.

In chapter 2 and 3 we describe what is a load flow problem and how it can be solved. This
subject was part of my literature review, where an important source was the document of
R. Idema [3]. These chapters were especially background information, because there is a
program Matpower that gives us the admittance matrices. In chapter 4 we give two itera-
tive methods and three preconditioners, but we made the choice to choose the Bi-CGSTAB
method and use two preconditioners. In chapter 5 we start programming on the GPU with
MATLAB, first with the Poisson matrix. We saw that the code be slower when we use full
matrices, especially when we use the GPU. In chapter 5 can one read that MATLAB works
fine with sparse matrices, but when we put this sparse matrix on the GPU, MATLAB can
only work with it when it is a full matrix (with a lot of zeros). The other problem was that
the admittance matrix does not have a convenient structure, like the Poisson matrix. So we
conclude in chapter 6 that it gives us not the speed up we want. We have not found a fast
code in MATLAB by using the GPU, because of the full matrices. This was the reason of the
second part: can we speed up the code if matrix A has a convenient structure.

In chapter 7 we start with the structure of a Poisson matrix A. We have seen that the tool
arrayfun can give us a lot of speed up, dependent on the type of the calculation. The problem
is that arrayfun does not work well with matrices and the standard vector multiplication is
not supported. So we must find tricks to remedy this. By these tricks the code has not been
faster. Nevertheless, we succeeded to make the Bi-CGSTAB code faster than the MATLAB
code z=bicgstab(A,b), but only when we use a DSP. This preconditioner can be translated to
a vector seeing the structure of the matrix. When we use the IDP, then we have again the
problem that we must use a full matrix. But when we use an IDP, our codes were faster, but
the code with the CPU was faster than the code with the GPU. So we have to find a faster
code, but using the GPU in MATLAB does not give us any speed up.

We can not conlude that using the GPU in MATLAB is senseless. In our method we have
the situation that we work with matrices and multiple vectors. This costs memory and time
because of the placing of vectors to the GPU. In other problems and methods it is possible
that using the GPU gives time savings, see the easy example in chapter 5. But for solving
the linear system Az = b we think that using the GPU in MATLAB in general is not a
good idea. The disadvantage of using MATLAB is that we do not exactly know how de code
z=bicgstab(A,b) in MATLAB works, and how MATLAB moved vectors on the GPU.

There is a command in MATLAB, parallel.gpu. CUDAkernel(-,-), which can operate on MAT-
LAB array or gpuArray variables. To use this code, you should still program in CUDA. In
this case, using MATLAB is then unnecessary.
If you really want more speed up, you can read it in a lot of literature, program in CUDA
(programming in C) and not using MATLAB.
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function IPvanPoisson

function [A,L,invL,invM,n]=IPvanPoisson(N);
A = gallery(’poisson’,N);
L=A; n=N*N;
for p=1:n
L(p,p)=sqrt(L(p,p));
for i=p+1:n

if L(i,p)"=0
L{i,p)=L(i,p)/L(p,p);
end
end
for j=p+l:n
for i=j:n
if L(i,j)"=0
L(i,j)=L(i,j)-L,p)*L(j,p);
end
end
end

end

for i=1:n
for j=i+l:n
L(i,j)=0;
end
end
D=0%L;
invD=0%*L;
for i=1:n
D(i,i)=L(i,i);
invD(i,i)=1/L(i,1);
end

N=invD* (L-D) ;
I=eye(n);
L=Dx*(I+N) ;
T=I+N;
invT=zeros(n) ;
for i=0:3
invT=invT + (-1)7i*x(N)"i;
end
invL=invT*invD;
invM=invL’*invL;
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Bi-CGSTAB with IP on the CPU and GPU

s=rng(’default’);
format long;
aantaltell=7

TijdDirect=zeros(aantaltell,1);
TijdmetIP=zeros(aantaltell,1);
TijdmetIPGPU=zeros(aantaltell,l);

for tell=1l:aantaltell
N=tell;
%With MATLAB code bicgstab
tic
A = gallery(’poisson’,N);
n=Nx*N;
k=3;
b=ones(n,1);
for i=1:n
b(i,1)=b(i,1)*rand;
end
x=bicgstab(A,b);
tijddirect=toc;
error=norm(A*x-b,2) /norm(x,2);
if error == Inf
error = 107-8
end
%code without GPU

[A,L,invL,invM,n]=IPvanPoisson(N) ;
tic
uO=rand*ones(n,1);
rO=b-A*u0;
r_0=r0;
c=0;
for i=1:n
c=c+r_0(i,1)*r0(i,1); %inner product (r_0,r0)
end

RowiMinil=1;
AlphaiMinil=1;
OhmiMini1=1;
viMinl=zeros(n,1);
piMinl=zeros(n,1);
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rowi=1;

alphai=1;

ohmi=1;
vi=zeros(n,1);
pi=zeros(n,1);
ri=r0;

ui=ul;
errorCPU=1000000;
k=0;

while errorCPU>=error && k<20
k=k+1;
rowi=dot(r_0,ri);
betaiMinl=(rowi/RowiMinl)*(AlphaiMin1/0hmiMinl1) ;
pi=ri+betaiMinl*(piMinl1-OhmiMinl*viMinl);
pdak=invMx*pi;
vi=Axpdak;
alphai=rowi/dot (r_0,vi);
s=ri-alphaix*vi;
z=invMx*s;
t=Axz;
ohmi=dot (t,s)/dot(t,t);
ui=ui+alphai*pdak+ohmi*z;
ri=s-ohmi*t;
RowiMinl=rowi;
AlphaiMinl=alphai;
OhmiMinl=ohmi;
viMinl=vi;
piMinl=pi;
errorCPU=norm(A*ui-b,2) /norm(b,2) ;
end
CPUui=ui;
tijdmetIP=toc;

%code with GPU
[A,L,invL,invM,n]=IPvanPoissonGPU(N) ;
tic
uO=rand*ones(n,1);
rO=b-A*u0;
r_0=r0;
c=0;
for i=1:n
c=c+r_0(i,1)*r0(i,1); Yinner product (r_0,r0)
end
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RowiMinl=1;
AlphaiMinl=1;
OhmiMin1=1;
viMinl=zeros(n,1);
piMinl=zeros(n,1);
rowi=1;

alphai=1;

ohmi=1;
vi=zeros(n,1);
pi=zeros(n,1);
ri=r0;

ui=ul;
errorGPU=1000000;
k=0;

while errorGPU>=error && k<20
k=k+1;
rowi=dot(r_0,ri);
betaiMinl=(rowi/RowiMinl)*(AlphaiMin1/0hmiMinl1) ;
pi=ri+betaiMinl* (piMinl-OhmiMinl*viMinl);
pdak=invM*pi;
vi=Ax*pdak;
alphai=rowi/dot(r_0,vi);
s=ri-alphaix*vi;
z=invMx*s;
t=Axz;
ohmi=dot (t,s)/dot(t,t);
ui=ui+alphai*pdak+ohmi*z;
ri=s-ohmi*t;
RowiMinl=rowi;
AlphaiMinl=alphai;
OhmiMinl=ohmi;
viMinl=vi;
piMini=pi;
errorGPU=norm(A*ui-b,2) /norm(b,?2);
end
GPUui=ui;
tijdmetIPGPU=toc;
end

plot(TijdDirect,’r’)
hold on
plot(TijdmetIP,’g’)
hold on
plot(TijdmetIPGPU, ’b’)
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Bi-CGSTAB with diagonal scaling on the CPU and GPU

s=rng(’default’);
format long;
aantaltell=7;
TijdDirect=zeros(aantaltell,1);
TijdmetDP=zeros(aantaltell,1);
TijdmetDPGPU=zeros(aantaltell,1);
for tell=2:aantaltell
N=tell;
%With MATLAB code bicgstab
tic
A = gallery(’poisson’,N);
n=Nx*N;
k=3;
b=ones(n,1);
for i=1:n

b(i,1)=b(i,1)*rand;
end
x=bicgstab(A,b);
tijddirect=toc;
error=norm(A*x-b,2) /norm(x,2);

if error == Inf
error = 107-8

end

%code without GPU

invM=A;

for i=1:n
invM(i,i)=1/A(i,1i);

end

tic

uO=rand*ones(n,1);

rO0=b-A*u0;

r_0=r0;

c=0;

for i=1:n
c=c+r_0(i,1)*r0(i,1);

end

RowiMinil=1;

AlphaiMinl=1;

OhmiMini=1;

viMinl=zeros(n,1);

piMinl=zeros(n,1);

rowi=1;
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alphai=1;
ohmi=1;
vi=zeros(n,1);
pi=zeros(n,1);
ri=r0;
ui=ul;
errorCPU=1000000;
k=0;
while errorCPU>=error && k<20
k=k+1;
rowi=dot(r_0,ri);
betaiMinl=(rowi/RowiMin1)*(AlphaiMinl/0hmiMin1) ;
pi=ri+betaiMinl*(piMinl-0hmiMinl*viMinl1) ;
pdak=invMx*pi;
vi=Ax*pdak;
alphai=rowi/dot (r_0,vi);
s=ri-alphaix*vi;
z=invMx*s;
t=Axz;
ohmi=dot (t,s)/dot(t,t);
ui=ui+alphai*pdak+ohmi*z;
ri=s-ohmi*t;
RowiMinl=rowi;
AlphaiMinl=alphai;
OhmiMinl=ohmi;
viMinl=vi;
piMinl=pi;
errorCPU=norm(A*ui-b,2) /norm(b,?2);
end
CPUui=ui;
tijdmetDP=toc;
%code with GPU
A=zeros(n)+A; %here we make a full matrix
A=gpulrray(4);
invM=gpuArray (zeros(n)) ;
for i=1:n
invM(i,i)=1/A(i,1);
end
b=gpuArray(b); %place the vector on the GPU
tic
uO=gpuArray (rand*ones(n,1));

r0=b-A*xu0;
r_0=r0;
c=0;

for i=1:n
c=c+r_0(i,1)*r0(i,1);
end
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RowiMinl=1;
AlphaiMinl=1;
OhmiMinl=1;
viMinl=gpuArray(zeros(n,1));
piMinl=gpuArray(zeros(n,1));
rowi=1;
alphai=1;
ohmi=1;
vi=gpuArray(zeros(n,1));
pi=gpuArray(zeros(n,1));
ri=r0;
ui=ul;
errorGPU=1000000;
k=0;
while errorGPU>=error && k<20
k=k+1;
rowi=dot(r_0,ri);
betaiMinl=(rowi/RowiMin1)* (AlphaiMinl/0OhmiMin1) ;
pi=ri+betaiMinl*(piMinl1-OhmiMinl*viMinl);
pdak=invMx*pi;
vi=Axpdak;
alphai=rowi/dot (r_0,vi);
s=ri-alphai*vi;
z=invMx*s;
t=A*z;
ohmi=dot (t,s)/dot(t,t);
ui=ui+alphai*pdak+ohmi*z;
ri=s-ohmi*t;
RowiMinl=rowi;
AlphaiMinl=alphai;
OhmiMinl=ohmi;
viMinl=vi;
piMinl=pi;
errorGPU=norm(A*ui-b,2) /norm(b,2) ;
end
GPUui=ui;
tijdmetDPGPU=toc;
TijdDirect(tell,1)=tijddirect;
TijdmetDP(tell,1)=tijdmetDP;
TijdmetDPGPU(tell, 1)=tijdmetDPGPU;

end
plot(TijdDirect,’r’)
hold on
plot(TijdmetIP,’g’)
hold on

plot(TijdmetIPGPU, ’b’)



Matpower en Bi-CGSTAB

clear all;

close all;

clc

format long;

% Functions below come from "runpf()"

n=10;

mpc = loadcase(’caselOac’); %mpc = loadcase(’case3120sp’); Y%mpc = loadcase(’case30Q’);
Jmpc = loadcase(’case39’); Ympc = loadcase(’casell8’);

% Make admittance matrix
[Y,”,”] = makeYbus(mpc.baseMVA, mpc.bus, mpc.branch);
A=zeros(n);
for i=1:n
for j=1:n
A(i,j)=Y(1,7);
end
end
%With MATLAB code bicgstab
tic
b=rand(n,1);
x=bicgstab(A,b);
tijddirect=toc;
%code without GPU
[A,L,invL,invM]=aaaIPvanCPU(A,n);
tic
uO=rand*ones(n,1) ;
UO=u0;
rO0=b-A*u0;
r_0=1r0;
c=0;
for i=1:n
c=c+r_0(i,1)*r0(i,1);
end
RowiMinl=1;
AlphaiMinl=1;
OhmiMinl=1;
viMinl=zeros(n,1);
piMini=zeros(n,1);
rowi=1;
alphai=1;
ohmi=1;
vi=zeros(n,1);
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pi=zeros(n,1);
ri=ro0;

ui=ul;

k=0;

while k<20

end

k=k+1;

rowi=dot(r_0,ri);
betaiMinl=(rowi/RowiMinl)*(AlphaiMin1/0hmiMinl1) ;
pi=ri+betaiMinl* (piMinl-OhmiMinl*viMinl);
pdak=invMx*pi;

vi=Ax*pdak;

alphai=rowi/dot(r_0,vi);

s=ri-alphaix*vi;

z=invMx*s;

t=Axz;

ohmi=dot (t,s)/dot(t,t);
ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMinl=rowi;

AlphaiMinl=alphai;

OhmiMinl=ohmi;

viMinl=vi;

piMini=pi;

tijdmetIP=toc;
%code with GPU

tic

u0=U0;
rO0=b-A*u0;

r_0=

c=0;
for

r0;

i=1:n

c=c+r_0(i,1)*r0(i,1);

end

RowiMinil=1;
AlphaiMinil=1;
OhmiMini1=1;
viMinl=zeros(n,1);
piMinl=zeros(n,1);
rowi=1;

alphai=1;

ohmi=1;
vi=zeros(n,1);
pi=zeros(n,1);
ri=r0;

ui=ul;

k=0;
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while k<20
k=k+1;
rowi=dot(r_0,ri);
betaiMinl=(rowi/RowiMinl)*(AlphaiMin1/0hmiMinl1) ;
pi=ri+betaiMinl*(piMinl1-OhmiMinl*viMinl1);
pdak=invMx*pi;
vi=Axpdak;
alphai=rowi/dot (r_0,vi);
s=ri-alphaix*vi;
z=invMx*s;
t=Axz;
ohmi=dot (t,s)/dot(t,t);
ui=ui+alphai*pdak+ohmi*z;
ri=s-ohmi*t;
RowiMinl=rowi;
AlphaiMinl=alphai;
OhmiMinl=ohmi;
viMinl=vi;
piMinl=pi;

end

tijdmetIPGPU=toc;
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E
Poisson matrix en Bi-CGSTAB with DSP, with functions

Function PoissonAwithCPU

function AkeerZcpu = PoissonAwithCPU(N,c)
d=c;
n=N*N;
c(1,1)=-d(2,1)-d(N+1,1);
c(n,1)=-d(n-1,1)-d(n-N,1);
c(N,1)=-d(N-1,1)-d(N+N,1);
c(n-(N-1),1)=-d(n-(N-1)+1,1)-d(n-(N-1)-N,1);

for i=2:N-1
c(i,1)=-d(i-1,1)-d(i+1,1)-d(i+N,1);
end

for i=N*N-(N-2):n-1;
c(i,1)=-d(i-1,1)-d(i+1,1)-d(i-N,1);
end

for i=1:N-2
f=i%N+1;
c(f,1)=-d(£f+1,1)-d(f+N,1)-d(£f-N,1);
end

for i=1:N-2
f=(i+1)*N;
c(f,1)=-d(£f-1,1)-d(£-N,1)-d(f+N,1);
end

for i=1:N-2
f=i%*N;
for j=1:N-2
p=f+(j+1);
c(p,1)=-d(p+1,1)-d(p+N,1)-d(p-1,1)-d(p-N,1);
end
end

AkeerZcpu=c+4x*d;

function AkeerZgpu = PoissonAwithGPU(N,b00,el,e2)
n=N*N;
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b10=0%b00; b20=0%b00; b30=0%b00; b40=0%b00;

b10(2:n)=b00(1:n-1);
b20(1:n-1)=b00(2:n);
b30(1:n-N)=b00(N+1:n);
b40(N+1:n)=b00(1:n-N);

AkeerZgpu=arrayfun(@VermenigPoison3,b00,b10,b20,b30,b40,el,e2);

function V1 = Vectori(a0l,g,b0)

V1=a0-g*b0;

function V2 = Vector2(a0l,gl,b0,g2,c0)

v1=gl*b0;
v2=g2*c0;
V2=a0+v1+v2;

function V3 = Vector3(a0,gl,b0,g2,c0)

v=b0-g2*c0
V3=a0+glx*v;

clc;
clear all;
s=rng(’default’);

format long;

N=1000;
n=NxN;
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b=rand(n,1);

%code MATLAB bicgstab

tic

A = gallery(’poisson’,N);
[x,flag,relres,iter]=bicgstab(A,b);

k=iter %number of iteraties
matlabcode=toc

% code cpu with CPU1

tic

u0=ones(n,1);

Au=PoissonAwithCPU(N,u0); %Poissonmatrix * u0

rO=b-Au;

r_0=1r0;

RowiMinl=1;

AlphaiMinl=1;

OhmiMini1=1;

viMinl=zeros(n,1);

piMinl=zeros(n,1);

rowi=1;

alphai=1;

ohmi=1;

vi=zeros(n,1);

pi=zeros(n,1);

ri=r0;

ui=ul;

for i=0:k
rowi=r_0’*ri;
betaiMinl=(rowi/RowiMinl)*(AlphaiMin1/0hmiMinl1) ;
pi=ri+betaiMinl* (piMinl-OhmiMinl*viMinl);
pdak=1/4*pi; %invMxpi
vi=PoissonAwithCPU(N,pdak) ;
Dotr_Ovi=r_0’*vi;
alphai=rowi/Dotr_Ovi;
s=ri-alphaix*vi;
z= 1/4%s;  %invM*pi
t=PoissonAwithCPU(N,z) ;
Dotts=t’*s;
Dottt=t’*t;
ohmi=Dotts/Dottt;
ui=ui+alphai*pdak+ohmix*z;
ri=s-ohmix*t;
RowiMinl=rowi;
AlphaiMinl=alphai;
OhmiMinl=ohmi;
viMinl=vi;
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end

piMini=pi;

CPUlcode=toc

%code cpu with type2

tic
A:

gallery(’poisson’,N);

uO=ones(n,1);
Au=A*uQ; Y%Poissonmatrix * u0
rO=b-Au;

r_0O=

r0;

RowiMinil=1;
AlphaiMinl=1;
OhmiMin1=1;
viMinl=zeros(n,1);
piMinl=zeros(n,1);
rowi=1;

alphai=1;

ohmi=1;
vi=zeros(n,1);
pi=zeros(n,1);
ri=r0;

ui=ul;

for

end

i=0:k

rowi=r_0’*ri;
betaiMinl=(rowi/RowiMinl)*(AlphaiMin1/0hmiMin1) ;
pi=ri+betaiMinl*(piMinl1-OhmiMinl*viMinl);
pdak=1/4*pi; % invM*pi
vi=Axpdak;
Dotr_Ovi=r_0’*vi;
alphai=rowi/Dotr_Ovi;
s=ri-alphai*vi;

z= 1/4xs;  JinvM*pi
t=A*z;

Dotts=t’*s;

Dottt=t’*t;
ohmi=Dotts/Dottt;
ui=ui+alphai*pdak+ohmix*z;
ri=s-ohmi*t;
RowiMinl=rowi;
AlphaiMinl=alphai;
OhmiMinl=ohmi;

viMinl=vi;

piMinl=pi;

type2code=toc
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%code gpu with GPU1

tic

u0=gpuArray(ones(n,1));

/%we make one time el and e2
el=ones(n,1);

e2=el;
for i=1:N-1
el (i*N+1,1)=0;
e2(ix*N,1)=0;
end

el=gpulrray(el);
e2=gpulrray(e2) ;

Au=PoissonAwithGPU(N,u0,el,e2); %Poissonmatrix * u0

rO=gpulrray (b)-Au;

r_0=r0; %ones(n,1);
RowiMinl=gpuArray(1);
AlphaiMinl=gpuArray(1);
OhmiMinl=gpuArray (1) ;
viMinl=gpulArray(zeros(n,1));
piMinl=gpuArray(zeros(n,1));
rowi=gpuArray (1) ;
alphai=rowi;

ohmi=rowi;

vi=viMini1;

pi=piMinil;

ri=r0;

ui=u0;

for i=0:k
rowi=r_0’*ri; %dot(r_0,ri);
betaiMinl=(rowi/RowiMin1)* (AlphaiMinl/0OhmiMin1) ;
pi=arrayfun(@Vector3,ri,betaiMinl,piMinl,OhmiMinl,viMinl) ;
pdak=1/4%pi; % invM*pi
vi=PoissonAwithGPU(N,pdak,el,e2);
Dotr_Ovi=dot (r_0,vi);
alphai=rowi/Dotr_Ovi;
s=arrayfun(@Vectorl,ri,alphai,vi);
z=1/4%s;  Y%invM#*pi
t=PoissonAwithGPU(N,z,el,e2);
Dotts=dot(t,s);
Dottt=dot (t,t);
ohmi=Dotts/Dottt;
ui=arrayfun(@Vector2,ui,alphai,pdak,ohmi,z) ;
ri=arrayfun(@Vectorl,s,ohmi,t);
RowiMinl=rowi;
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AlphaiMinl=alphai;
OhmiMinl=ohmi;
viMinl=vi;
piMinl=pi;

end

GPU2code=toc
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F
Function ISP on the GPU

Function IPvanPoissonGPU
function [L,invL,invM,n]=IPvanPoissonGPU(N) ;
n=Nx*N;
A = gallery(’poisson’,N);
L=A;
for p=1:n
L(p,p)=sqrt(L(p,p));
for i=p+1l:n

if L(i,p)"=0
L{i,p)=L(i,p)/L(p,p);
end
end
for j=p+l:n
for i=j:n
if L(i,j)"=0
L(i,3)=L(i,3)-L(i,p)*L(j,p);
end
end
end

end
for i=1:n

for j=i+l:n

L(i,j)=0;

end
end
D=0%L;
for i=1:n

D(i,i)=L(i,1);
end
invD=0%*L;
for i=1:n

invD(i,i)=1/L(i,1);

end
D=gpulrray(zeros(n)+D) ;
L=gpuArray(zeros(n)+L);
invD=gpuArray(zeros(n)+invD) ;
N=invD* (L-D) ;
I=gpuArray(eye(n));
invT=I-N+Nx*N;
invL=invT*invD;
invM=invL’*invL;
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