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1 Introduction

In order to fulfill everybody’s electricity needs, a complex electricity network exists. A lot of
generators and cables are needed for generation and tranportation of the electrical current.
If there is a problem, say a power cut, then it is important that the network is functioning as
good as possible. In order to get this done, we will solve load flow problems. Ideally, when a
transmission line of an electrical network is broken, the system must continue to operate. It
takes a lot of time to compute a solution of this problem, since the network can be very large.
Programming this problem on the GPU might be a solution, since many algoritms work a lot
faster when they are parallel programmed on the GPU.
There has been more research to solve the load flow problem by using the GPU. We will refer
to the thesis of Shiming Xu [1].

In chapter 2 we will look at what is a power system model and which matrices are used.
In chapter 3 we will describe what is a load flow problem, i.e. the problem we want to solve.
We will use the Newton-Rapshon method to solve the resulting non-linear system.
In chapter 4 we describe two iterative methods, Bi-CGSTAB and GMRES. Further in this
document we will only work with the Bi-CGSTAB method, but we will also give another
option. We give here also a couple of preconditioners.
In chapter 5 we give a short description of a GPU. In this chapter we shall in particular
discuss how we use the GPU in MATLAB and the MATLAB tool arrayfun. We shall here,
and also in the following chapters, use the Poisson matrix and describe how we can program
the preconditioners in parallel.
We get examples of load flow problems by the program Matpower, which we give in chapter
6. With the results of the last chapter we know that using full matrices we do not speed up if
we use the GPU in MATLAB, it is even slower. So we give in this chapter a negative result.

The admittance matrix is a sparse matrix (the matrix we use by solving the load flow prob-
lem). The matrix appears to be unstructured. What if the matrix have a clear structure, is
it possible using the GPU and only MATLAB to have speed up? This is the reason why we
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use in the next chapters the Poisson matrix. So in chapter 7 we use an important and sparse
matrix with a clear structure, the Poisson matrix. We describe in this chapter the speed of
computation of (multiple) matrix vector multiplications by using the GPU or the CPU. We
give a couple of codes and look what gives us the most speed up.
The results that we found in the last chapter, will be used in chapter 8. We want to solve a
linear system Ax = b, where A is the Poisson matrix. There is a code for the Bi-CGSTAB
method in MATLAB, but we want find a faster code in MATLAB with using the GPU. In
this chapter we use the structure of the Poisson matrix.
In chapter 9 we conclude that we do not found a faster code in MATLAB to solve the load
flow problem by using the GPU. In the last chapter we have a code that is faster than the
standard code for Bi-CGSTAB method in MATLAB, but only when we use the diagonal
scaling preconditioner. Our code is faster if we used the CPU. So we conclude that when we
use MATLAB to solve a linear system Ax = b , using the GPU is not a good option if you
want speed up our code.

In this document we compare the time of different codes to compute the solution of a linear
system, with and without using the GPU. The results depend on the type of CPU and GPU
we use. The CPU we use is an 8 core i7 CPU 920 @2.67GHz and has the following memory
specifications: maximum memory size of 24 GB, three channels and a max bandwidth of 25.6
GB/sec.The computer has 6 GB RAM memory.
The GPU we use is an NVIDIA GeForce GTX 650 with the specifications: Clock 5.0 Gbps,
bandwidth 80.0 GB/sec and a standard memory configuration of 1 GB.
If we had used another CPU or GPU, the results maybe different.
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2 Powersystems

A network of electrical components where electric current is transported, is called a power
system. A power system can described as a grid, where generators supply power and the
transmission system carries that power to the loads. In this chapter we make a simple form
of a power system model. First we use Euler’s identity for descriping the sinusoidal voltage
and current, whereupon we give the complex representation of voltage and current. We give
an explanation of buses and give the admittance matrix.

2.1 Power, Voltage and Current

In a DC circuit (Direct current circuit) the circuit voltages and currents are constant, so
independent of time. We can say that a DC circuit has no memory, the circuit voltage or
current is independent of the past values of voltage or current. In a DC circuit the following
expression holds:

P =
V 2

R
= I2R

where P is the power, V the voltage, I the current and R the resistance.

In an AC circuit (Alternating current circuit) the circuit voltages and currents are time-
dependent. All the voltages and currents are sinusoidal and have the same frequency:

v(t) =
√

2|V | sin (ωt) and i(t) =
√

2|I| sin (ωt)

where ω the angular frequency is (ω = 2πf) [rad/s]. The power in an AC circuit is:

p(t) =
v2(t)

R
= i2(t)R

and the avarage power is:

P =
1

T

∫ T

0

v2

R
dt =

1

T

∫ T

0
i2Rdt

where T the period of the sine wave is (T = 1
f = 2π

ω ) [s]. When the average power in the DC
circuit and the average power in the AC circuit are assumed to be equal, then

V 2 =
1

T

∫ T

0
v2dt and I2 =

1

T

∫ T

0
i2dt.

With substitution we get

V =

√
1

T

∫ T

0
v2dt =

√
2|V |

√
1

T

∫ T

0
sin2 (ωt)dt =

√
2|V |

√
1

2
= |V |

and

I =

√
1

T

∫ T

0
i2dt =

√
2|I|

√
1

T

∫ T

0
sin2 (ωt)dt =

√
2|I|
√

1

2
= |I|

|V | is the RMS or effective value of the alternating voltage.
|I| is the RMS or effective value of the alternating current.
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The voltage and current of a single-phase inductive load can writen as

v(t) =
√

2|V | cos (ωt) and i(t) =
√

2|I| cos (ωt− ϕ)

Now we use Euler’s identity
ejϕ = cos (ϕ) + j sin (ϕ)

and the sinusoidal voltage and current can written as:

v(t) = Re{
√

2|V |ejwt} = Re{
√

2V ejwt} with V = |V | (1)

i(t) = Re{
√

2|I|ej(wt−ϕ)} = Re{
√

2Iejwt} with I = |I|e−jϕ (2)

2.2 Active and Reactive Power

We know that v(t) =
√

2|V | cos (ωt) and i(t) =
√

2|I| cos (ωt− ϕ). The value ϕ = δV − δI is
called the power factor angle. So we can find the instantaneous power p(t):

p(t) = v(t)i(t)

=
√

2|V | cos (ωt)
√

2|I| cos (ωt− ϕ)

= 2|V ||I| cos (ωt) cos (ωt− ϕ)

= 2|V ||I| cos (ωt)[cosϕ cos (ωt) + sinϕ cos (ωt)]

= |V ||I|[2 cosϕ cos2 (ωt) + 2 sinϕ sin (ωt) cos (ωt)]

= |V ||I| cosϕ[2 cos2 (ωt)] + |V ||I| sinϕ[2 sin (ωt) cos (ωt)]

= |V ||I| cosϕ[1 + cos (2ωt)] + |V ||I| sinϕ[sin (2ωt)]

= P [1 + cos (2ωt)] +Q[sin (2ωt)] (3)

P = |V ||I| cosϕ and Q = |V ||I| sinϕ.

The term P [1 + cos (2ωt)] describes an unidirectional component of the instantaneous power
with average value P . This value is called the active power or also real or average power.
The cosine represents the phase shift between the voltage and current. We might also say:
the cosine of the phase angle between the voltage and current phasor. The active power is
defined as P = |V ||I| cos (ϕ).
The term Q[sin (2ωt)] is alternately positive and negative and has an average value of zero.
When this term has a positive sign, the power flow is toward the load. When it is negative,
the power flows from the load back to the source of supply. The amplitude of this oscil-
lating power is called reactive power or imaginary power. The reactive power is defined as
Q = |V ||I| sin (ϕ).

Now we can use the complex representation of voltage and current. Remember that V = |V |
and I = |I|e−jϕ.

P = |V ||I| cosϕ = Re
(
|V ||I|ejϕ

)
= Re

(
V I
)
, (4)

Q = |V ||I| sinϕ = Im
(
|V ||I|ejϕ

)
= Im

(
V I
)
. (5)

Where I is the complex conjugate of I. Let S = V I.
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2.3 Impedance and Admittance

Impedance is the measure of the opposition that a circuit presents of a current when a volt-
age is applied. An impedance is the extention of the notion resistance and is denoted by
Z = R+ jX and measured in Ohm (Ω). We call R the resistance and X the reactance, where
R > 0.
If X > 0 , then the reactance is called inductive and we can write jX = jωL, where L > 0
and called the inductance.
If X < 0, then the reactance is called capactive and we can write jX = 1

jωC , where C > 0
and called the capacitance.

The inverse of impedance is called the admittance and is denoted by Y = G + jB. We can
write Y = 1

Z = R
|Z|2 − j X

|Z|2 and the measure is siemens (S). We call G = R
|Z|2 ≥ 0 the

conductance and B = −j X
|Z|2 the susceptance.

The voltage drop over an impedance Z is equal to V = ZI. This is the extension of Ohm’s
law to AC circuits. We can also write

I =
1

Z
V = Y V.

The power consumed bij the impedance is

S = V I = ZII = |I|2Z = |I|2R+ j|I|2X.

2.4 Kirchhoff’s circuit laws

To calculate the voltage and current in an electrical circuit, we use Kirchhoff’s circuit laws.

Kirchhoff’s current law (KCL)
At any point in the circuit that does not represent a capacitor plate, the sum of currents
flowing towards that point is equal to the sum of currents flowing away from that point, i.e.,∑

k Ik = 0.

Kirchhoff’s voltage law (KVL)
The directed sum of the electrical potential differences around any closed circuit is zero. i.e.,∑

k Vk = 0.

2.5 Power System Model

A power system model as a network of buses (nodes) and lines (edges). At each bus i for
electrical magnitudes are of importance:

|Vi| , the voltage amplitude,

δi , the voltage phase angle,

Pi , the injected active power,

Qi , the injected reactive power.

In the network we have generators and loads. In the model are generator buses (or PV-buses),
where Pi and |Vi| are specified and Qi and δi are unknown. And in the model are load buses
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(or PQ-buses) where Pi and Qi are specified and |Vi| and δi are unknown. A load will have
specified negative injected active power P , and specified reactive power Q.
A generator should control P and |V |. However there are generators who can not control
them. An example of the latter is a wind turbine. So we modeled those ones as a load with a
positive injected active power P . In case that a PV generator and a PQ load are connected
to the same bus, this results in a PV -bus with:

• a voltage amplitude equal to that of the generator,

• an active power equal to the sum of the active power of the generator and the load.

Buses without a generator or load connected (such as transmission substations) are modeled
as load with P = Q = 0.

In a power system we deal with system losses. These losses have to be taken into account.
They are dependent on the power flow, but these losses are not known in advance. So a
generator bus has to be assigned to supply these unknown losses, called slack bus. For the
slack bus we cannot specify the real power P , but we can specify the magnitude |V |. For a
slack bus it is generally specified that δ = 0.

Lines are the network representation of the transmission that connect buses in the power
system. A transmission line from i to j has some impedance. The total impedance over
the line is modeled as a single impedance zij of the line. From section 2.3 we know that
the admittance of that line is yij = 1

zij
. There is shunt admittance from the line and the

ground. For the model we distribute this total shunt admittance over buses i and j. There
is no conductance between line and ground, but there are losses. This means that the shunt
admittance is only due to the electrical field between line and ground. So we have ys = jbs
with bs > 0. See Figure 1.

Figure 1: Transmission line model

There are also three other devices in power systems: shunts, tap transformers and phase
shifters.

Shunt capacitors can be used to inject reactive power (resulting in a higher node voltage)
and shunt inductors consume reactive power (resulting in a lower node voltage). A shunt is
modeled as a reactance zs = jxs between de bus and the ground. The shunt admittance is
ys = 1

zs
= −j 1

xs
= jbs. The shunt is inductive if xs > 0, and is capacitive is xs < 0.
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A tap transformer is a transformer that can be set to different turns ratios. Tap transformers
are generally used to control the voltage magnitude, dealing with fluctuating industrial and
domestic demands or with the effects of switching out a circuit for maintenance.
Phase shifters are devices that can change the voltage phase angle, while keeping the voltage
magnitude constant. They can be used to control the active power.

2.6 Admittance Matrix

Let I be the vector of injected currents at each bus and V the vector of bus voltages. from
section 2.3 we know that I = Y V . So we say that matrix Y is the admittance matrix. We
also know that Z = Y −1, the impedance matrix.

First we look at the injected current Ii at each bus i. Is Ii > 0 power is generated, if Ii < 0
power is consumed and if Ii = 0 there is no current injected. The Kirchoff’s current law says

Ii =
∑
k

Iik.

Let yij be the admittance of the line between buses i and j. If there is no line between
buses i and j, then yij = 0. If there is only one line between buses i and j, then we have
Iij = yij(Vi − Vj). In this situations it also holds that Iij = −Iji. We can write it in matrix
notation [

Iij
Iji

]
= yij

[
1 −1
−1 1

] [
Vi
Vj

]
If the power system only consists of simplified lines, then the admittance matrix for that
system is a Laplacian matrix [3], given by

Yij =

{ ∑
k 6=i yik if i = j,

−yij if i 6= j.

Then we have

Ii =
∑
k

Iik =
∑
k

yik(Vi − Vk) =
∑
k 6=i

yikVi −
∑
k 6=i

yikVk =
∑
k

YikVk = (Y V )i

If a shunt s is connected to bus i, then Iis = ys(Vi − 0) = ysVi. This means that in the
admittance matrix Y , an extra term ys has been added to Yii.

Knowing how to deal with shunts, it is easy to incorporate the line shunt admittance model
as depicted in Figure 1. For a transmission line with shunt admittance ys we find[

Iij
Iji

]
=

(
yij

[
1 −1
−1 1

]
+ ys

[
1
2 0
0 1

2

])[
Vi
Vj

]
.

The influence on the admittance matrix of a device t between buses i and j is either a tap
transformer or a phase shifter. Let E be the voltage induced by t, then Vi = TE.

Then the current from bus j to t in the direction of bus i is:
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Iji = yij(Vj − Vi) = yij(Vj − E) = yij(Vj −
Vi
T

).

With the conservation of power we get

ViIij = −EIji ⇒ TIij = −Iji ⇒ TIij = −Iji.

Then the current from bus i to t in the direction of bus j is:

Iij = −Iji
T

= yij(
Vi
|T |2

− Vj

T
).

If the device t that connects bus i to bus j is a tap transformer, then T = T and |T |2 = T 2.
Then we find [

Iij
Iji

]
= yij

[
1
T 2 − 1

T
− 1
T 1

] [
Vi
Vj

]
.

If instead, t is a phase shifter, then T = e−jδT = 1
T and |T |2 = 1. Then we find[

Iij
Iji

]
= yij

[
1 −T
−T 1

] [
Vi
Vj

]
.
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3 Load Flow Problem

Computing the flow of electrical power in a power system in steady state is called the load
flow problem. This means that we calculate all node voltages and line currents in the power
system. First we describe the load flow model, what gives us a system of non-linear real
equations. To solve this system of non-linear equations we use an iterative technique to
approximate the solution, the Newton-Raphson method.

3.1 Load Flow Model

The power consumed by the impedance is given by matrix S. From section 2 we can find

Si = ViIi = Vi(Y V )i = Vi

N∑
k=1

Y ikV k.

The admittance matrix Y is easy to obtain and generally very sparse. We know that V = ZI,
where Z is the impedance matrix. The impedance matrix is generally not sparse and harder
to obtain. For each bus i where Si = 0 (i.e. no injected power), the injected current Ii = 0.
So we use the lineair (Y V )i = 0 and then we eliminate the variable Vi.

We know that Y = G+ jB. Let δij = δi− δj such that Vi = |Vi|ejδi (from which follows that
Ii = |Ii|e−jδj , see section 2.1). This gives

Si = |Vi|ejδi
N∑
k=1

(Gik − jBik)|Vk|e−jδk

=

N∑
k=1

|Vi||Vk|(cos δik + j sin δik)(Gik − jBik)

=

N∑
k=1

|Vi||Vk|(Gik cos δik +Bik sin δik) + j
N∑
k=1

|Vi||Vk|(Gik sin δik −Bik cos δik).

Now we define a real vector of the voltage variables of the load flow problem as

V = [δ1, . . . , δN , |V1|, . . . , |VN |]T .

We define, for a more comfortable notation

Pik(V) = |Vi||Vk|(Gik cos δik +Bik sin δik),

Qik(V) = |Vi||Vk|(Gik sin δik −Bik cos δik).

And so we get

Si =
N∑
k=1

Pik(V) + j
N∑
k=1

Qik(V).

17



Now we have a real and an imaginary part:

Pi = Pi(V) =

N∑
k=1

Pik(V),

Qi = Qi(V) =
N∑
k=1

Qik(V).

These equations relate the complex power in each node to the node voltages, using the ad-
mittance matrix of the power system network. We now have 2N non-linear real equations.
Each node has four variables: |Vi|, δi, Pi and Qi. In section 2.5, we say that in each node two
of these have a specified value. So we have 2N non-linear real equations and 2N unknowns
variables.

3.2 Newton-Rapshon method

To solve this system of non-linear equations we use an iterative technique to approximate the
solution. We will use the Newton-Raphson method to obtain a solution. We define a real
vector of the voltage variables of the load flow problem:

V = [δ1, . . . , δN , |V1|, . . . , |VN |]T .

Now we define a set of functions Fi as:

Fi(V) =

[
∆Pi(V)
∆Qi(V)

]
=

{
Pi − Pi(V), i = 1 . . . N,
Qi −Qi(V), i = N+1 . . . 2 N.

The function F is called the power mismatch.

We start with a vector V0 and update it iteratively with a function Φ, such that:

1. Vk+1 = Φ(Vk)

2. Φ(V) = V⇔ F(V) = 0

with F the vector of functions Fi.

So there is a non-singular matrix A(V) such that Φ(V) = V − A(V)−1F(V). The Newton-
Raphson’s method is based on the first order Taylor expansion of F , so A(V) = J(V), where
J the Jacobian of F is.

The Newton-Rapshon method is defined as

Vk+1 = Vk + ∆Vk,

where ∆Vk is the solution of the linear system of equations

−J(Vk)∆Vk = F(Vk).

So

Vk+1 = Vk − J−1(Vk)F(Vk). (6)
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In the case of the linear system, each bus i of the power system gives two equations, row i
and row N + i. In the linear system of equations, the δi and |Vi| are unknown. If bus i is a
load bus, then δi and |Vi| are unknown. In case we have a generator bus or a slack bus we
have another situation.

For a slack bus, δi and |Vi| are known and Pi and Qi are unknown. We can eliminate the
variables δi and |Vi| from the system and substistute their values into the coefficient matrix.
Row i corresponds to the equation for Pi, and row N + i corresponds to the equation for
Qi. As soon the Newton-Rapshon process has converged, Pi and Qi are easily calculated by
substituting the found solution into the original equations i and N + i.

If we have a generator bus, then Pi and |Vi| are known and Qi and δi are unknown. With |Vi|
known, we can eliminate this variable and the column N + i from the linear system. The Qi
is unknown, so we take row N + i out of the system like we did in the case of a slack bus.

Now we calculate the Jacobian. Let N1 and N2 be the dimensions after the elimination of
the slack and generator buses. The strucure of the Jacobian is

J(V) = −



∂P1(V)
∂δ1

. . . ∂P1(V)
∂δN1

∂P1(V)
∂|V1| . . . ∂P1(V)

∂|VN2
|

...
. . .

...
...

. . .
...

∂PN1
(V)

∂δ1
. . .

∂PN1
(V)

∂δN1

∂PN1
(V)

∂|V1| . . .
∂PN1

(V)

∂|VN2
|

∂Q1(V)
∂δ1

. . . ∂Q1(V)
∂δN1

∂Q1(V)
∂|V1| . . . ∂Q1(V)

∂|VN2
|

...
. . .

...
...

. . .
...

∂QN2
(V)

∂δ1
. . .

∂QN2
(V)

∂δN1

∂QN2
(V)

∂|V1| . . .
∂QN2

(V)

∂|VN2
|


. (7)

Let i 6= j.

∂Pi(V)

∂δj
= |Vi||Vj |(Gij sin δij −Bij cos δij) = Qij(V)

∂Pi(V)

∂δi
=

∑
k 6=i
|Vi||Vk|(−Gik sin δik +Bik cos δik) = −Qi(V)− |Vi|2Bii

∂Qi(V)

∂δj
= |Vi||Vj |(−Gij cos δij −Bij sin δij) = −Pij(V)

∂Qi(V)

∂δi
=

∑
k 6=i
|Vi||Vk|(Gik cos δik +Bik sin δik) = Pi(V)− |Vi|2Gii

∂Pi(V)

∂|Vj |
= |Vi|(Gij cos δij +Bij sin δij) =

Pij(V)

|Vi|
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∂Pi(V)

∂|Vj |
= 2|Vi|Gii +

∑
k 6=i
|Vk|(Gik cos δik +Bik sin δik) =

Pi(V)

|Vi|
+ |Vi|Bii

∂Qi(V)

∂|Vj |
= |Vi|(Gij sin δij −Bij cos δij) =

Qij(V)

|Vj |
∂Qi(V)

∂|Vi|
= −2|Vi|Bii +

∑
k 6=i
|Vk|(Gik sin δik −Bik cos δik) =

Qi(V)

|Vi|
− |Vi|Bii
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4 Linear solvers

In the previous chapter we have seen that

Vk+1 = Vk − J−1(Vk)F(Vk).

To compute the iteration we have to solve the linear equations as given in chapter 3. We can
use the iterative methods Bi-CGSTAB or GMRES. For this, we use a preconditioner.

4.1 Preconditioners

A preconditioner is a matrix that transforms the linear system. The transformed system has
the same solution as the original system. The transformed coefficient matrix (the precondi-
tioner) has a more favorable spectrum. Assume that we have the linear system Au = b, then
the transformed system is given by

M−1Au = M−1b.

These systems have the same solution. For matrix M it must hold that the eigenvalues of
M−1A should be clustered around 1 and it should be possible to obtain M−1y at low cost.

When we change the linear system Au = b such that the eigenvalue distribution becomes
more favorable with respect to the CG convergence, we speak about the preconditioning of a
linear system. The idea is to write the system as Ãũ = b̃, where Ã = P−1AP−T , u = P−T ũ
and b̃ = P−1b. The matrix P is non-singular and the preconditioner matrix M is given by
M = PP T . In the next subsections we describe three preconditioners.

4.1.1 Diagonal scaling

We can choose for P a diagonal matrix, where pii =
√
aii. It has been shown that this Matrix

P is such that it minimizes the condition number of P−1AP−T [2] within the class of diagonal
matrices. An advantage is that Ã = P−1AP−T is easily to calculate and diag(P−1AP−T ) = 1,
so this saves us n multiplications in the matrix vector product.

4.1.2 Basic iterative method

In the basic iterative method we compute the iterates by the following recursion:

ui+1 = ui +B−1ri,

where ri = b−Aui. So it holds that ui ∈ u0+span{B−1r0, B−1A(B−1r0), . . . , (B−1A)i−1(B−1r0)}.
We call subspace Ki(A; r0) := span{r0, Ar0, . . . , Ai−1r0} the Krylov-space of dimension i cor-
responding to matrix A and initial residual r0. When ui is calculated bij a basic iterative
method, then ui ∈ u0 +Ki(B−1A;B−1r0).

The basic iterative methods uses a splitting of the matrix A = B − R. So the i-th iteration
yi from the basic method is an element of ui ∈ u0 + Ki(B−1A;B−1r0). Two examples for a
splitting are the Jacobi and the Gauss-Seidel methods.

21



Let A ∈ RN,N , with A = (amn),m, n = 1, . . . , N and amm 6= 0(m = 1, . . . , N), b ∈ RN .
In the Jacobi method we start with a guess u0m and find recursively the vectors u1, . . . , up by:

ui+1
m =

1

amm
(bm −

N∑
k=1(k 6=m)

amku
i
k), m =, 1, . . . , N.

The Jacobi Method
This is for one iteration

for m = 1 : N
qm = (bm −

∑
k 6=m amkuk)/amm

u = q

end

With Jacobi’ s method we find a splitting A = B−R, with a diagonal matrix B and a matrix
R with zeros on the diagonal. The Jacobi method in matrix notation is Bui+1 = Rui+b.

In Gauss-Seidel’s method we use the iteration

ui+1
m =

1

amm
(bm −

m−1∑
k=1

amku
i+1
k −

N∑
k=m+1

amku
i
k), m =, 1, . . . , N.

The Gauss-Seidel Method
This is for one iteration

for m = 1 : N
um = (bm −

∑
k 6=m amkuk)/amm

end

4.1.3 Incomplete decomposition

Here we use a combination of an iterative method and an approximate direct method. Let
A ∈ RN×N be the coefficient matrix of the problem. The matrix A has at most 5 non-zero
elements per row. The matrix is symmetric and positive definite. The structue of the matrix
is [4](pag. 69)
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A =



a1 b1 c1
b1 a2 b2 c2
...

. . .
. . .

. . . �
c1 bm am+1 bm+1 cm+1

. . . � . . .
. . .

. . . � . . .

�


.

Take the lower triangular matrix L such that A = LTL and P = L. The matrix L is a good
choice with respect to convergence. The zero elements in the band of A become non-zero el-
ements in the band of L. It can be a lot of work to construct L. Make the non-zero elements
of L on the positions where the elements of A are zero also zero. Now it is less work to find
L.

Denote the set of all pairs of indices of the off-diagonal matrix by:

QN = {(i, j)|i 6= j, 1 ≤ i ≤ N, 1 ≤ j ≤ N}.

Let Q a subset of QN , where Q are the places (i, j) where L should be zero.

Theorem 1. [8] if A is a symmetric M-matrix, there exist for each Q ⊂ QN (with the
property that (i, j) ∈ Q implies (j, i) ∈ Q), a uniquely defined lower triangular matrix L and
a symmetric nonnegative matrix R with lij = 0 if (i, j) ∈ Q and rij = 0 if (i, j) /∈ Q, such
that the splitting A = LLT −R leads to convergent iterative process

LLTui+1 = Rui + b for each choise u0,

where ui → u = A−1b.

4.2 Bi-CGSTAB

We give the description of the method [5]:

Bi-CGSTAB method

u0 is an initial guess; r0 = b−Au0;
r0 is an arbitrary vector, such that (r0, r0) 6= 0, e.g., r0 = r0;
ρ−1 = α−1 = ω−1 = 1;
v−1 = p−1 = 0;
for i = 0, 1, 2, ... do

ρi = (r0, ri); βi−1 = (ρi/ρi−1)(αi−1/ωi−1);
pi = ri + βi−1(p

i−1 − ωi−1vi−1);
p̂ = M−1pi;
vi = Ap̂;
αi = ρi/(r

0, vi);
s = ri − αivi;
if ||s|| small enough then
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ui+1 = ui + αip̂; quit;
z = M−1s;
t = Az;
ωi = (t, s)/(t, t);
ui+1 = ui + αip̂+ ωiz;
if ui+1 is accurate enough then quit;
ri+1 = s− ωit;

end for

Here the matrix M is the preconditioning matrix.
This method uses short recurrences. But small changes in the algorithm can lead to instabil-
ities.

4.3 GMRES

This is the second iterative method that we look into. Here we used Arnoldi’s method for com-
puting an orthonormal basis v1, ..., vk of the Krylov subspaceKk(A; r0) := span{r0, Ar0, . . . Ak−1r0}.
We give here the description [6].

GMRES method

Start: choose u0 and compute r0 = b−Au0 and v1 = r0/||r0||2.
Iterate: for j = 1, ..., k do:

vj+1 = Avj

for i = 1, ..., j do:
hij := (vj+1)T vi, vj+1 := vj+1 − hijvi,

end for
hj+1,j := ||vj+1||2, vj+1 := vj+1/hj+1,j

end for

The entries of (k + 1)× k the upper Hessenberg matrix Hk are the scalars hij .

The form of the Hessenberg matrix Hj is

Hj =


h11 . . . . . . h1j

h21
. . .

...
. . .

. . .
...

O hj,j−1 hjj

 .
The GMRES method is based on long recurrences, but it has optimality properties. The
disadvantage is that the jth iteration takes more time to compute than the j − 1th iteration.
So it is not possible to run the full algoritm for large number of iterations. For the GMRES
method there exists a convergence proof and for the Bi-CGSTAB there does not.
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5 GPU Parallel programming with MATLAB on the GPU

In this chapter we start with a brief explanation about the disign of a GPU. Then we will
describe how we can program with MATLAB on the GPU. We want to solve a linear system
Ax = b. The admittance matrix is a sparse matrix (the matrix we use by solving the load
flow problem). The matrix appears to be unstructured. So in this chapter we will focus
on programming the Bi-CGSTAB method where matrix A is the Poisson matrix instead of
the admittance matrix. Choosing the Poisson matrix makes programming easier, because of
the known structure of the Poisson matrix. In the next chapter we will use the admittance
matrix.
The iterative method uses a preconditioner, so we will describe two of them: diagonal scaling
and incomplete decomposition. The reason that we will use the GPU is that we want speed
up. So we shall look if we can achieve speed up.

5.1 The Design of the GPU

Historically, computer users have the expectation that programs run faster with each new
generation of microprocessors. However, sequential programs will only run on one of the pro-
cessor cores and will not become significantly faster than before if a multi-core machine is used.

By a parallel program, multiple threads of execution cooperate to complete the work faster.
So application software can be faster when it is a parallel program.
We use a many-core trajectory which focuses more on the execution throughput of parallel
applications. Here we have a large number of simple cores. The GPU (graphics processing
unit) is an example of a many-core machine. A many-core machine has the advantage of more
GFLOPS (giga floating-point operations per second) than a Dual-core or a Quad-core on a
CPU (central processing unit).

The reason that there is a large performance gap between many-core GPU and a multicore
CPU, is the design between the two types. The designs are illustrated in figure 2

Figure 2: Disign of a CPU and a GPU [9].

The design of a CPU is optimized for sequential code performance. The large cache memories
are provided to reduce the instructions. But there is no contribution to calculation speed.
Then we have also the memory bandwidth. The bandwidth of a Graphic chip is more (say 10
times) than the bandwidth of a presently available CPU chip. We speak here about moving
data (GB/s) in and out of its main dynamic random access memory (DRAM). Small cache
memories are provided to help control the bandwidth requirements of these applications, so
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multiple threads that access the same memory data do not need to go all to the DRAM. So
there is more space on the chip for floating-point calculations.

5.2 MATLAB on the GPU

We can use MATLAB for programming on the GPU. We create a matrix A with MATLAB
in the standard way. If we use the code class(A), then the output is double. Now we say B =
gpuArray(A) and then we use the code class(B). The output is parallel.gpu.GPUArray.
So we can set a matrix on the GPU. With the code C = gather(B) we can copy the matrix
to the CPU.
Say that the matrices A and B are both on the GPU. When we create a new matrix in
MATLAB with the code C = A+B, then matrix C is also placed on the GPU.

With an example we can see that there are time savings when we use the GPU.

---------------------------------------

X=rand(n,1);

Y=rand(n,1);

Z=rand(n,1);

tic

for i=1:m

X=plus(Y,X); %the sum of X and Y

X=plus(Z,X);

X=6*X;

end

timeCPU=toc;

X;

---------------------------------------

We do not put the vectors X,Y and Z on the GPU.

The next vectors P,G and Q are placed on the GPU.

---------------------------------------

G = gpuArray(X);

P = gpuArray(Y);

Q = gpuArray(Z);

tic

for i=1:m

G=plus(P,G);

G=plus(Q,G);

G=6*G;

end

timeGPU=toc

k=timeCPU/timeGPU

---------------------------------------
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Let k be the ratio between timeCPU and timeGPU. In table 1 we can see an approximation
of k = timeCPU

timeGPU with different values of n.

n (×106) 0.1 0.5 1 10 15 20 25 30

k 0.013 0.013 2.7 3.6 3.6 3.7 0.9 not enough memory

Table 1: k = timeCPU
timeGPU en m = 100.

If the size of the vectors is larger, the factor k is larger. But there is a maximum size of the
vectors in case there is not enough space on the GPU. The highest value of k is approximately
3, 7. If we change m, we see little difference.
We can also use the code arrayfun. This code ensures that the entire calculation takes place
on the GPU. All the data are placed on the memory of the GPU and the calculations are
performed on the GPU. First we make a single program.

---------------------------------------

function tell = testPlus(X0,Y0,Z0,m0)

tell=1;

while (tell <= m0)

X0=X0+Y0;

X0=X0+Z0;

X0=6*X0;

tell=tell+1;

end

---------------------------------------

Then the vectors G,P and Q placed on the GPU.

---------------------------------------

tic

tell = arrayfun(@testPlus, G, P, Q, m);

tijdGPU2 = toc;

k=timeCPU/timeGPU2;

---------------------------------------

Let k be the ratio between timeCPU and timeGPU2. In Table 2 we can see an approximation
of k = timeCPU

timeGPU2 for different values of n.

n (×106) 0,1 0,5 1 10 15 20 25 30

k 0.21 0.21 26.4 29.4 29.5 29.4 29.6 not enough memory

Tabel 2: k = timeCPU
timeGPU2 en m = 100.
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This time the factor k can be 30, see figure 3 . So when we program on the GPU using ar-
rayfun, the program is much faster. However, the limited size of the memory can be a problem.

Figure 3: timeCPU, timeGPU2 and k with different n, where the size of the vector is n×106.

So the code is much faster when we can use arrayfun, because the operations supported by
arrayfun are strictly element-wise. The problem is that only a restricted amount of functions
and operators can be combined with arrayfun in MATLAB. For instance, when we want
to multiply two vectors, MATLAB gives an error. Let vector V = [v1, v2, v3, ..., vn]. With
arrayfun, MATLAB gives an error when we calculate V TV . But when we use V V , we get
[v1v1, v2v2, v3v3, ..., vnvn]. This problem is easy to fix. But if we multiply two matrices A and
B, then arrayfun gives a matrix where on row i and column j the value is A(i, j)×B(i, j). So
we get a componentwise form of a matrix-matrix multiplication. When we want to multiply
matrices in the normal way with arrayfun, it takes a lot of time and memory. Note that we
do not need to multiply in our method. But we have to multiply a matrix and a vector, which
gives the same problems.

5.3 Bi-CGSTAB with the Poisson matrix

The easiest way to compute the systemAx = b with Bi-CGSTAB is with the code x=bicgstab(A,b).
When we use this code, we do not use the GPU. If the matrix A and vector b are placed on
the GPU, we get an error.

First we start make a Possion matrix. In MATLAB we can use the code A=gallery(’poisson’,n).
MATLAB gives us:
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---------------------------------------

A =

(1,1) 4

(2,1) -1

(3,1) -1

(1,2) -1

(2,2) 4

(4,2) -1

(1,3) -1

(3,3) 4

(4,3) -1

(2,4) -1

(3,4) -1

(4,4) 4

---------------------------------------

We get an error if we enter G = gpuArray(A). On the GPU, Matlab does not recognize the
matrix stored in a sparse format. We can ”fix” it if we use the next code, where the matrix
is stored as a full matrix.

---------------------------------------

P = gallery(’poisson’,n)

m=n*n;

A=zeros(m);

for i=1:m

for j=1:m

A(i,j)=P(i,j);

end

end

G = gpuArray(A)

---------------------------------------

The problem here, is that MATLAB recognizes the matrix as a full matrix with a lot of zeros.

5.4 Programming the Preconditioners

We gave a couple of options for preconditioners in section 4.3. We can choose for diagonal
scaling, where the matrix D = diag(A) with aii 6= 0. (When we use the Jacobi method,
we find the same diagonal matrix). This matrix is easy to compute and it is parallel pro-
grammable.
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Matlab code for diagonal scaling

-------------------

D=0*A;

for i=1:n

D(i,i)=A(i,i) ;

end

-------------------

We do not use the Gauss-Seidel method here, because the preconditioner is not SPD.

5.4.1 Incomplete Decomposition Preconditioner

We can also use incomplete decomposition. When we want to use this method, matrix A
must be sparse, symmetric and positive definite.

The next code is the Matlab code with which we compute the lower triangle matrix we want.

---------------------------------------

L=A*0;

for p=1:n

A(p,p)=sqrt(A(p,p));

for i=p+1:n

if A(i,p)~=0

A(i,p)=A(i,p)/A(p,p);

end

end

for j=p+1:n

for i=j:n

if A(i,j)~=0

A(i,j)=A(i,j)-A(i,p)*A(j,p);

end

end

end

end

for i=1:n

for j=i+1:n

A(i,j)=0;

end

end

L=A;

---------------------------------------

It is easy to construct an n×n Poisson matrix in Matlab by entering A = gallery(’poisson’,n).
With the code L=ichol(A), Matlab gives the matrix L. In case matrix A is not sparse enough,
Matlab gives an error message.
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For an incomplete decomposition we saw that A ≈ LLT . If we want to approximate A−1, we
can use the next expression:

A−1 ≈ (LLT )−1 = (LT )−1L−1 = (L−1)TL−1.

So if we can compute L−1, we have an approximation of A−1.
Note: L−1 is not parallel.

Let D be the diagonal matrix of L, matrix N a lower triangle matrix with zeros on the
diagonal and I be the identity matrix. Then we can write the matrix L as follows:

L = D(I +N).

Now we have also matrix N :

L = DI +DN

DN = L−DI

N = D−1(L−DI)

Now we can write the inverse of L:

L−1 = (D(I +N))−1 = (I +N)−1D−1.

It is easy to compute D−1, but (I +N)−1 is difficult to calculate in a parallel way. Because
matrix N has zeros on the diagonal and is a lower triangular matrix, it holds that Nn = 0 if
n→∞. So (I −Nn) = I if n→∞. Now we use the next rule:

(I −Nn) = (I +N)(I −N +N2 −N3 + . . .+ (−1)n−1Nn−1) = I.

Now it follows that:

(I +N)−1 = (I −N +N2 −N3 + . . .+ (−1)n−1Nn−1) =
n−1∑
k=0

(−1)kNk.

This is called a Neumann series. The rate of convergence is defined in the next theorem.

Theorem 2 (Neumann series). [10]
Is A is a square matrix, ||A|| < 1, then I−A is nonsingular and (I−A)−1 = I+A+A2+· · · =∑∞

k=0A
k. This is the Neumann series. The speed of convergence depends on the size of ||A||.

Now we can approximate L−1 by a small number of terms of the Neumann series. Since
matrix vector products can be computed in parallel, we now have a parallel approximation
of (L−1)T , and so we find an approximation of matrix A−1.

Note that N is a sparse matrix, but (I −N + N2) can become a less sparse matrix. So the
multiplication (I −N +N2) directly with a vector v costs a lot of memory when we program
it in parallel. So (I −N + N2)v = Iv −Nv + N(Nv). In the right part of the equation we
can use the sparse property in each multiplication.
The following code represents the rest of the code.
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---------------------------------------

D=0*L;

for i=1:n

D(i,i)=L(i,i);

end

%We can also D=diag(L), but it can give problems on the GPU.

%MATLAB recognize only arrays/vectors on GPU.

invD=0*L;

for i=1:n

invD(i,i)=1/L(i,i);

end

N=invD*(L-D);

I=eye(n);

invT=I-N+N*N;

invL=invT*invD;

invA=invL’*invL;

---------------------------------------

We put this code into a function called ”IPofPoisson”. When we put the matrices on the
GPU with the code ”gpuArray(...)”, we must use a full matrix A. This costs a lot of time, so
this is not a good option.

5.4.2 Bi-CGSTAB with Incomplete decomposition preconditioner

In appendix B you can read the code. We used the function ”IPvanPoisson” that can be
found in appendix A. This function does not use the GPU. We also used the function ”IP-
vanPoissonGPU”. This code does practically the same, but in addition to the code gpuArray
it copies the matrices and vectors to the GPU.

---------------------------------------

A = gallery(’poisson’,N);

n=N*N;

A=gpuArray(zeros(n)+A);

.....

I=gpuArray(eye(n));

.....

invT=gpuArray(zeros(n));

.....

---------------------------------------

When we use this code, we must make matrix A full with a lot of zeros. This costs memory
and speedup. Off course we do not want a full matrix, however this is necessary otherwise we
can not use the GPU (see section 5.2)

In the code of the Bi-CGSTAB we compute the residual with ||Aui − b||2. First we solve the
linear system with the MATLAB code x=bicgstab(A,b) (here matrix A is a sparse matrix)
and error=norm(b-A*x,2)/norm(b,2). We find the residual with this command, so it is fair
to compare. In Table 3 we see the results.
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N ×Ngrid time code x=bicgstab(A,b) time CPU time GPU iterations

2 0.0174 0.0050 0.150 20

3 0.0016 0.0033 0.0523 6

4 0.00189 0.0009 0.0277 4

5 0.0023 0.00114 0.0368 5

6 0.0026 0.0012 0.0428 5

7 0.0029 0.0014 0.0557 6

8 0.0045 0.0015 0.0654 6

9 0.0038 0.0017 0.0808 7

10 0.0044 0.0018 0.0928 7

Tabel 3: time Bi-CGSTAB with IDP (incomplete decomposition preconditioner)

We see that solving the linear system on the CPU is a lot faster than solving it on the GPU.
The reason is that we must use a full matrix A when programming on the GPU. We see that
20 iterations are needed when we use a 2× 2 − grid. I can not explain this large number of
iterations.

5.4.3 Bi-CGSTAB with diagonal scaling preconditioner

The MATLAB code for Bi-CGSTAB with a diagonal scaling preconditioner can be found in
appendix C. In table 4 we see the results of Bi-CGSTAB with a diagonal scaling precondi-
tioner. The same results are also given in figure 4.

N ×Ngrid time code x=bicgstab(A,b) time CPU time GPU iterations

2 0.0815 0.0159 0.0426 3

3 0.0076 0.0031 0.0489 5

4 0.0019 0.0016 0.0722 7

5 0.0034 0.0028 0.1018 10

6 0.0026 0.0032 0.1371 13

7 0.0029 0.0032 0.1589 14

8 0.0033 0.0033 0.1328 18

9 0.0036 0.0033 0.1550 20

10 0.0036 0.0035 0.1670 20

Tabel 4: time Bi-CGSTAB with DSP (diagonal scaling preconditioner)
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Figure 4: time MATLAB code, CPU and GPU

We see that when we use the GPU, the program is much slower. A reason for this result is
that when we use the GPU, we have to use a full matrix A.

When we use a diagonal scaling preconditioner, the number of iterations increases. The
maximum of iterations in MATLAB is 20 when we use the code x=bicgstab(A,b), so that is
also our maximum number of iterations.
There is an option using the code x=bicgstab(A,b,tol,maxit). The value of tol specifies the
tolerance of the method. The value of maxit specifies the maximum number of iterations. In
this document we do not use these two options. We see that the program with the GPU is
much slower, when we have a ”large” number of iterations. So in this document the maximum
number of iterations is 20.
Notice the difference between the number of iterations when using the incomplete decompo-
sition preconditioner (see Table (3)) or the diagonal scaling preconditioner (see Table (4)).
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6 Results for Load Flow Problems

In chapter 2 and 3 we build the admittance matrix, but we can also use Matpower, a package
in MATLAB. First we give a short description of Matpower. We shall see that using the GPU
in this case do not give us any speed up.

6.1 Matpower

There is a package in MATLAB, named Matpower, to employ Newtons method for solving
power flow problems. This package give us examples of networks including the matrices.
There are a couple of case-files. These files contain admittance matrices, that we can use for
computing. It is also possible to find the bus-matrix, the generator-matrix, the branch-matrix
(the specifications of the transmission lines between the buses).

With the next code we get an admittance matrix of a case.

---------------------------------------

mpc = loadcase(’case10ac’);

[Y,~,~] = makeYbus(mpc.baseMVA, mpc.bus, mpc.branch);

---------------------------------------

With loadcase we can get a lot of cases belonging to different sizes of networks.

6.2 Matpower and Bi-CGSTAB

Instead of the Poisson matrix we used before, we use an admittance matrix Y from Matpower.
We have seen that an incomplete decomposition preconditioner is a better option than a di-
agonal scaling preconditioner. So we use an incomplete decomposition preconditioner. We
see the results of a couple of cases in table 5 .

From the results we see that the code of MATLAB, x = bicgstab(A, b) is faster than our code
on the CPU. The code is very slow by using the GPU, because we have to use a full matrix.

Note: There are other cases which do not give a solution with our code.

case n time MATLAB code time CPU time GPU iterations

case10ac 10 0.0411 0.02337 0.51056 10

case30Q 30 0.04185 0.02428 5.07543 10

case39 39 0.04269 0.02566 9.06620 10

case118 118 0.0437 0.05071 188.9014 16

case3120sp 3120 0.90768 3.53407 too long 20

Tabel 5: time of a couple of cases
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6.3 CUDA kernel

We want solving the load flow problem by only using MATLAB. We have seen that using the
GPU in MATLAB does not give us any speed up. The choise for arrayfun was not correct,
because arrayfun is usefull when there are only element-wise operations. The Bi-CGSTAB
method we need uses matrix-vector multiplications, so arrayfun is not very usefull.

There is a command in MATLAB, parallel.gpu.CUDAkernel(-,-), which can operate on MAT-
LAB array or gpuArray variables. To use this code, you should still program in CUDA.
In this thesis we only want programming in MATLAB without using knowledge of other
programming languages. With the command parallel.gpu.CUDAkernel(-,-) MATLAB use a
CUDA code, it means that we must first programming in CUDA. In this thesis we only use
MATLAB, so the command parallel.gpu.CUDAkernel(-,-) is not an option.

The admittance is a sparse matrix, but the we do not see a structure in the matrix. What
if the matrix have a clear structure? It is possible to use the GPU and only MATLAB to
obtain speed up? This is the reason why we use in the next chapters the Poisson matrix. The
Poisson matrix is a sparse matrix and have a simple structure.
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7 Parallel Programming of a matrix vector multiplication with
the Poisson matrix

We have seen in the previous chapters that computing becomes very slow when we use a full
matrix instead of a sparse matrix. In this chapter we use a commonly used sparse matrix,
the Poisson matrix. We use the structure of this matrix in our program to obtain speed up.
First we look at the structure of the Poisson matrix. We want compute Ak ∗ b, where A is the
Poisson matrix and k ∈ N. We use arrayfun in our code, because we have seen that arrayfun
can give us speed up. We make a couple of codes and compare them. Finally we have three
codes: the MATLAB code x=bicgstab(A,b), a code on the CPU and a code on the GPU. This
codes we shall compare in chapter 8.

7.1 The Structure of the Poisson matrix

In this chapter we focus on the scaled Poisson matrix. We give an example of a Poisson
matrix:

A =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


We can see the Poisson matrix as a block tridiagonal matrix:

A =

 T −I 0
−I T −I
0 −I T

 , (8)

where matrix I is the identity matrix and matrix T has the form:

T =


4 −1 0 0

−1 4
. . . 0

0
. . .

. . . −1
0 0 −1 4

 . (9)

First we try a multiplication of matrix A and a vector b. In case we want to program on
the GPU with MATLAB and use the Poisson matrix, it is not meaningful to only use the
gpuArray code. The code can be faster if we use the arrayfun code, but we have seen that
there is a problem when there is a multiplication of a matrix and a vector. So we do not use
the code A*b.

37



The first idea is to calculate each component separately by only using the CPU. The next
code is not an explicit matrix vector product, but the result is the same as A ∗ b.

Name code: CPU1

---------------------------------------

%NxN-matrix and n=NxN

ans=zeros(n,1);

ans(1,1)=-b(2,1)-b(N+1,1);

ans(n,1)=-b(n-1,1)-b(n-N,1);

ans(N,1)=-b(N-1,1)-b(N+N,1);

ans(n-(N-1),1)=-b(n-(N-1)+1,1)-b(n-(N-1)-N,1);

for i=2:N-1 %first blok

ans(i,1)=-b(i-1,1)-b(i+1,1)-b(i+N,1);

end

for i=N*N-(N-2):n-1; %last blok

ans(i,1)=-b(i-1,1)-b(i+1,1)-b(i-N,1);

end

for i=1:N-2 %first component others bloks

f=i*N+1;

ans(f,1)=-b(f+1,1)-b(f+N,1)-b(f-N,1);

end

for i=1:N-2 %last component others bloks

f=(i+1)*N;

ans(f,1)=-b(f-1,1)-b(f-N,1)-b(f+N,1);

end

for i=1:N-2

f=i*N;

for j=1:N-2

p=f+(j+1);

ans(p,1)=-b(p+1,1)-b(p+N,1)-b(p-1,1)-b(p-N,1);

end

end

ans=ans+4*b; %the diagonal

---------------------------------------
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7.2 Multiplication Poisson matrix with arrayfun

We want to use the code arrayfun, so the code above is not useful because arrayfun cannot
work with the command b(n,m). First start with a simple version of the Poisson matrix. Let
matrix B:

B =


4 −1 0 0

−1 4
. . . 0

0
. . .

. . . −1
0 0 −1 4

 .
NOTE: there are no zeros on B(i, i+ 1) and B(i+ 1, i).
Now we make the multiplication B ∗ b.

B ∗ b =


4 −1 0 0

−1 4
. . . 0

0
. . .

. . . −1
0 0 −1 4

 ∗

b1
b2
...
...
bn

 = 4 ∗


b1
b2
...
...
bn

−

b2
b3
...
bn
0

−


0
b1
b2
...

bn−1

 . (10)

We make the function VermenigPoison.

---------------------------------------

function UitPois1 = VermenigPoison(b0,b10,b20)

UitPois1=4*b0-b10-b20;

end

---------------------------------------

Now we can use arrayfun:

---------------------------------------

N=.......; n=N*N;

b=rand(n,1); b1=zeros(n,1); b2=zeros(n,1);

b1(2:n)=b(1:n-1);

b2(1:n-1)=b(2:n);

b0=gpuArray(b);

b10=gpuArray(b1);

b20=gpuArray(b2);

UitPois1=arrayfun(@VermenigPoison,b0,b10,b20);

---------------------------------------
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We give also the code without using the GPU:

---------------------------------------

N=.......; n=N*N;

b=rand(n,1); b1=zeros(n,1); b2=zeros(n,1);

b1(2:n)=b(1:n-1);

b2(1:n-1)=b(2:n);

AnsCPU=4*b-b1-b2;

---------------------------------------

We also use the code when we use the GPU, but not using arrayfun:

---------------------------------------

........................

b0=gpuArray(b);

b10=gpuArray(b1);

b20=gpuArray(b2);

AnsCPU=4*b0-b10-b20;

---------------------------------------

We compare the computing time for running these codes for different values of n. We give
the results in table 6.

n 103 104 105 106 107

Time CPU 0.000007 0.00004 0.00036 0.0037 0.034

Time GPU without arrayfun 0.0028 0.0039 0.0056 0.016 0.12

Time GPU with arrayfun 0.0015 0.0018 0.0040 0.011 0.075

Tabel 6: Time of computing the multiplication of the n× n matrix B with vector b.

Note: The time corresponding to the GPU is always include the time of copy data.

With n = 108 we get the comment ”Out of memory on device. You requested: 762.94Mb,
device has 53.71Mb free”.

In this case the code on the CPU is faster. But we see that if n is a larger number, the
difference between Time CPU and Time GPU with arrayfun decreases. So when we have a
GPU with much more memory, it can be that the code on the GPU is faster. But maybe we
can save more time if we extend the calculation.

We will now change matrix B, so that it is more similar to the Poisson matrix. We call the
new matrix C.

C =

 T −Ĩ 0

−ĨT T −Ĩ
0 −ĨT T

 . (11)
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Here matrix T is the same matrix of (9) and matrix Ĩ:

Ĩ =


1 0 . . . . . . 0
0 1 0 . . . 0
... 0

. . .
. . .

...

0
. . .

. . . 0
1 0 . . . 0 1

 . (12)

NOTE: matrix Ĩ is not a diagonal matrix.
Matrix C is almost the same matrix as the Poisson matrix A (8), but there are no zeros on
C(i, i+ 1) and C(i+ 1, i). An example of matrix C:

C =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 −1 0 −1 0 0 0
−1 0 −1 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 −1 0 −1
0 0 0 −1 0 −1 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


.

Let C be an n× n-matrix, where n = N ×N , N ∈ N.

C ∗ b = 4 ∗



b1
b2
...
...
...
...
bn


−



b2
b3
...
...
...
bn
0


−



0
b1
b2
...
...
...

bn−1


−



bN+1

bN+2
...
bn
0
...
0


−



0
...
0
b1
b2
...

bn−N


(13)

The code for the CPU:

---------------------------------------

n=N*N

b=rand(n,1);

b1=zeros(n,1); b2=zeros(n,1); b3=zeros(n,1); b4=zeros(n,1);

b1(2:n)=b(1:n-1);

b2(1:n-1)=b(2:n);

b3(1:n-N)=b(N+1:n);

b4(N+1:n)=b(1:n-N);

AnsCPU=4*b-b1-b2-b3-b4;

---------------------------------------
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n 102 104 106 4× 106

Time CPU 0.0000038 0.000066 0.0049 0.020

Time GPU without arrayfun 0.0035 0.0039 0.020 0.059

Time GPU with arrayfun 0.0022 0.0023 0.018 0.053

Tabel 7: Time of multiplication of the n× n matrix C with vector b..

The codes for the GPU with and without arrayfun are almost the same. We can read the
results in table 7. If we look at the results with matrix B, we do not see much difference.
MATLAB needs much time to copy the vectors on the GPU.

We will construct the code such that it is the same as a multiplication with the Poisson matrix.
Let matrix A be the same matrix as the Poisson matrix A (8). If we change matrix C such
that it is the same as matrix A, then we have C(k∗N+1, k∗N) = 0 and C(k∗N, k∗N+1) = 0
where k < n and k ∈ N. If we change two vectors in (13), we obtain the multiplication that
we want to have, namely A ∗ b.
In the second vector of (13), say vector b1, we want that every (k ∗N + 1)th element is equal
to 0, where k < n and k ∈ N. We also want that in the third vector, say vector b2, every
(k ∗N)th element is equal to 0. When we write this in the code:

Name code: GPU1

---------------------------------------

..................

b1(2:n)=b(1:n-1);

b2(1:n-1)=b(2:n);

b3(1:n-N)=b(N+1:n);

b4(N+1:n)=b(1:n-N);

for i=1:N-1

b1(i*N+1,1)=0;

b2(i*N,1)=0;

end

..................

---------------------------------------

For calculating A ∗ b, we only need one for loop. When we have multiple matrix vector
multiplications, it is convenient to use arrayfun. Say,

---------------------------------------

for i=1:p

b=A * b

end

---------------------------------------

Vector b is different in every loop, so in every loop we must use the for loop in the code above.
Note: we give the notation Ap ∗ b for this code.
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In arrayfun it holds that:


a1
a2
...
an

 ∗

b1
b2
...
bn

 =


a1 ∗ b1
a2 ∗ b2

...
an ∗ bn

 . (14)

We can use this equality to change vectors b1 and b2 (see code GPU1). To do this, we first
write the next function:

---------------------------------------

function UitPois3 = VermenigPoison3(b0,b10,b20,b30,b40,e10,e20)

UitPois3=4*b0-b10*e10-b20*e20-b30-b40;

end

---------------------------------------

Now we have the next code:

Name code: GPU2

---------------------------------------

n=N*N;

b0=gpuArray(b);

b10=gpuArray(b1); b20=gpuArray(b2); b30=gpuArray(b3); b40=gpuArray(b4);

e1=ones(n,1);

e2=e1;

for i=1:N-1

e1(i*N+1,1)=0;

e2(i*N,1)=0;

end

e1=gpuArray(e1);

e2=gpuArray(e2);

UitPois3=arrayfun(@VermenigPoison3,b0,b10,b20,b30,b40,e1,e2);

---------------------------------------

If we multiplicate matrix A with vector b with this code, we do not save time. In case the
amount of multiplications is higher, we could get better performance.

We gave two codes a name: GPU1 and GPU2. We are going to compare the speed of these
codes. We choose to compute A20 ∗ b. In the chapters before, we see that we have used 20 as
the maximum number of iterations for the Bi-CGSTAB.
We know that Bi-CGSTAB has two matrix-vector multiplications using matrix A in each
iteration.
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We use a for loop in both codes. In code GPU1, we must change the vectors b1, b2, b3, b4
in every loop and also a new vector b. But changing the vectors b1 and b2 cost more time
because of the extra for loop. In the code GPU2 we must also change the vectors b1, b2, b3, b4
and b, but we have to construct the vectors e1 and e2 just once.
Let timeGPU1 be the time to run code GPU1 for computing A20 ∗ b and let timeGPU2 be
the time to run code GPU2. Now we have factor f = timeGPU1

timeGPU2 . We see the results in table
(8) of factor f for different sizes of matrix A.

n(∗104) 1 4 9 16 25 36 49 64 81 100

f = timeGPU1
timeGPU2 57 62 64 62 50 38 32 28 26 24

Tabel 8: f = timeGPU1
timeGPU2 of compute A20 ∗ b, where A is a n× n matrix.

We conclude that code GPU2 is much faster than code GPU1. From table (8) we could
conclude that the time difference between running GPU1 and GPU2 decreases, because the
factor decreases. Also for large values of n the code GPU2 is much faster.

Figure 5: Time code GPU1 and GPU2 with different sizes of matrix A.

Now we are also going to look at the difference between runtimes of code GPU1 and code
GPU2 when size of matrix A remains the same, but the number of iterations is changed. Let
k be the number of iterations and factor f = timeGPU1

timeGPU2 . Let A be a 104×104-matrix. In table
(9) we can see the results. We see that factor f stays more or less constant and remains at
about 60. In figure (6) we see the time of code GPU1 and code GPU2 and we see that code
GPU2 is much faster.
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k 10 20 30 40 50 60 70 80 90 100

f = timeGPU1
timeGPU2 54 56 57 58 58 59 59 57 59 59

Tabel 9: f = timeGPU1
timeGPU2 of compute Ak ∗ b, where A is a 104 × 104 matrix.

Figure 6: Time code GPU1 and GPU2 for different numbers of iterations.

We can conclude that code GPU2 is faster than code GPU1. So from now on we use code
GPU2.

7.3 Computing matrix-vector multiplication without using the GPU

We want to compute a matrix-vector multiplication Ak ∗ b, where A is a Poisson matrix and
k ∈ N. Of course we use the for loop instead of the code Ak ∗ b, because of the number of
operations.

name code: type2

---------------------------------------

A = gallery(’poisson’,N);

for i=1:k

b=A*b;

end

---------------------------------------

Note: we give the notation Ak ∗ b for this code.

We are going to compare the iteration time of a couple of codes. The first code we are going
to use is a code that looks like the code GPU1, but without using the GPU.
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name code: CPU2

---------------------------------------

n=N*N; %size of the matrix

k %number of iterations

b=rand(n,1); b1=zeros(n,1); b2=zeros(n,1); b3=zeros(n,1); b4=zeros(n,1);

b1(2:n)=b(1:n-1);

b2(1:n-1)=b(2:n);

b3(1:n-N)=b(N+1:n);

b4(N+1:n)=b(1:n-N);

for i=1:N-1

b1(i*N+1,1)=0;

b2(i*N,1)=0;

end

for i=1:k

b=4*b-b1-b2-b3-b4;

if i<k

b1(2:n)=b(1:n-1);

b2(1:n-1)=b(2:n);

b3(1:n-N)=b(N+1:n);

b4(N+1:n)=b(1:n-N);

for i=1:N-1

b1(i*N+1,1)=0;

b2(i*N,1)=0;

end

end

end

---------------------------------------

At the beginning of this chapter we gave a code with a lot of for loops, named code CPU1.
Before we compare the time iteration of different types of codes, we must know which of these
two codes is the fastest. First we look at the time difference between running code CPU1
and code CPU2 when the size of matrix A remains the same, but the number of iterations is
changed. We see the results in table (7).
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Figure 7: Time code CPU1 and CPU2 for different numbers of iterations.

These results give us the idea that code CPU2 is a better choice. However, it is more important
to look at different sizes of matrix A than the high number of iterations. So we are now going
to look at the runtimes, with the number of iterations fixed on k = 20 and an increasing size
of matrix A. In figure (8) we see the results.

Figure 8: Time code CPU1 and CPU2 for different sizes of matrix A.

We conclude from this figure, that code CPU1 is faster when the size of matrix A increases.
We want use this codes for large matrices, so we choose to use code CPU1 instead of CPU2.
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7.4 Compare different ways of a matrix-vector multiplication with a Pois-
son matrix

The three codes we compare to compute Ak ∗ b are: type2, CPU1 and GPU2. In figure (9),
(10), (11), (12) en (13) we can see the results in case we compute 1, 5, 10, 20 or 30 iterations
respectively. Poisson matrix A is a 100v2 × 100v2-matrix.

Figure 9: Time code type2, CPU1 and GPU2 for different sizes of matrix A, computing A ∗ b

Figure 10: Time code type2, CPU1 and GPU2 for different sizes of matrix A, computing
A5 ∗ b
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Figure 11: Time code type2, CPU1 and GPU2 for different sizes of matrix A, computing
A10 ∗ b

Figure 12: Time code type2, CPU1 and GPU2 for different sizes of matrix A, computing
A20 ∗ b
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Figure 13: Time code type2, CPU1 and GPU2 for different sizes of matrix A, computing
A30 ∗ b

Code GPU2 gives the best results for low amounts of iterations. Code CPU1 is the fastest
after 20 iterations, but it does not differ much with code type2. When we have 30 iterations,
code type2 is the fastest.

In figure (14) we give the results when we let the Poisson matrix A be a 106×106-matrix and
use diffent number of iterations. Code GPU2 is slower than code CPU1 after 4 or 5 iterations.
We also see that code type2 is faster than code CPU1 after 20 iterations.

Figure 14: Time code type2, CPU1 and GPU2 for different number of iterations, where
Poisson matrix A is a 106 × 106-matrix, computing A30 ∗ b

In the next chapter we use the codes in a Bi-CGSTAB code. It seems reasonable that we use
the code CPU1 in case we have more than 5 iterations. However, when we integrate it into a
different code, the results can be different.
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8 Parallel Programming of the Bi-CGSTAB with the Poisson
matrix

We want to compute the system Ax = b with the Bi-CGSTAB method. In Chapter 5 matrix
A is the Poisson matrix. We have seen that the MATLAB code x=bicgstab(A,b) is faster than
our code, whether we use CPU or GPU. In this chapter we are going to use the structure of
the Poisson matrix to speed up our code on the CPU or GPU. We know that there are better
and faster algorithms for computing the system Ax = b if A is a Poisson matrix, but for a
power flow problem we used the Bi-CGSTAB algorithm. For the moment we do not know if
there is a structure in the admittance matrix Y . This is the reason that we use the algorithm
Bi-CGSTAB and also use the preconditioners: diagonal scaling predonditioner (DSP) and
parallel incomplete decomposition preconditioner (IDP). As in Chapter 7 the Poisson matrix
A is scaled, so we do not write the factor 1

h2
.

8.1 Bi-CGSTAB with the Poisson matrix and the diagonal scaling pre-
donditioner

We give the description of the Bi-CGSTAB method in Chapter 4, but for convenience we
state it again:

Bi-CGSTAB method

u0 is an initial guess; r0 = b−Au0;
r0 is an arbitrary vector, such that (r0, r0) 6= 0, e.g., r0 = r0;
ρ−1 = α−1 = ω−1 = 1;
v−1 = p−1 = 0;
for i = 0, 1, 2, ... do

ρi = (r0, ri); βi−1 = (ρi/ρi−1)(αi−1/ωi−1);
pi = ri + βi−1(p

i−1 − ωi−1vi−1);
p̂ = M−1pi;
vi = Ap̂;
αi = ρi/(r

0, vi);
s = ri − αivi;
if ||s|| small enough then
ui+1 = ui + αip̂; quit;

z = M−1s;
t = Az;
ωi = (t, s)/(t, t);
ui+1 = ui + αip̂+ ωiz;
if ui+1 is accurate enough then quit;
ri+1 = s− ωit;

end for

This method uses a matrix-vector multiplication three times, where A is a Poisson matrix.
For this multiplication we can use the results of Chapter 7.
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8.1.1 Substantiation code

In the description we see also two matrix-vector multiplications with matrix M−1. We know
that matrix M is the preconditioner. Here, matrix M is a DSP and has the form:

M =

 4 Θ
. . .

Θ 4

 (15)

So matrix M−1 has the form:

M−1 =


1
4 Θ

.. .

Θ 1
4

 (16)

Seeing the structure of matrix M−1, we can say:

M−1 ∗ a =
1

4
∗ a.

The parts of the code where we do not use GPU, should now be changed such that it can be
used by the GPU.

We must also compute dotproducts, like (t, s). In MATLAB we can use the code c=dot(t,s),
but we can also compute this with the code c=t’*s. We will first find out which command
computes the dotproduct faster. We see the results in figure (15).

Figure 15: Time code by using type2, CPU1 and GPU2 for different sizes of matrix A,
computing A30 ∗ b

We see that the command c=t’*s is faster than the MATLAB function c=dot(t,s). So we use
the command c=t’*s to compute the dotproduct.
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Then we make function PoissonAwithCPU. In Appendix E can we read the whole code and
also the associated functions.

Now we have everyting for the code without using the GPU and using the codes type2 and
CPU1. For the part with the GPU we have other functions. We make function PoissonAwithGPU,
where we use the code GPU2. This function can be found in Appendix E. We use functions
Vector1, Vector2 and Vector3. These are small codes where we compute simple vector calcu-
lations and where we use arrayfun. These codes can also be found in Appendix E.

Let b′ the transpose vector of vector b. Now we are going to look what is the fastest code to
compute the dotproduct with the GPU. We can use three codes: using command c = b′ ∗ d,
using an arrayfun code or using c=dot(b,d). Let vetor b and d be two vecors on the GPU,
b=gpuArray(b); d=gpuArray(d);. The codes b′ ∗ d and dot(b,d) are straightforward. We give
the function DotPro, which can be used with arrayfun code:

Function DotPro

---------------------------------------

function DotPro = DotProduct(b0,d0)

DotPro=b0*d0;

end

---------------------------------------

Note: in this function we write b0∗d0 and not b0′ ∗d0, because we want to use arrayfun. The
explanation can be found in section 7.2, see equation (14).

code dotproduct with arrayfun

---------------------------------------

dotBD=arrayfun(@DotProduct,b,d);

x=sum(dotBD);

---------------------------------------

In Figure (16) can we see the results. It is clear that code b′ ∗ d is the slowest. Figure (17)
gives the results without the code b′ ∗ d.

Figure 16: Time computing, on the GPU, dotproduct of vectors b and d with different
dimensions.
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Figure 17: Time computing, on the GPU, dotproduct of vectors b and d with different
dimensions.

We conclude that the code dot(b,d) is the fastest.

8.1.2 Results

We compare four codes:

• the MATLAB code x=bicgstab(A,b),

• the Bi-CGSTAB code where we use code CPU1,

• the Bi-CGSTAB code where we use code type2 (CPU),

• the Bi-CGSTAB code where we use the GPU.

We want to make a fair comparison, so every code has the same number of iterations. We
start with the code x=bicgstab(A,b). For computing the number of iterations, we write the
next code:

---------------------------------------

[x,flag,relres,iter]=bicgstab(A,b);

k=iter

---------------------------------------

Here, k is the number of iterations of the code x=bicgstab(A,b). For the other codes we will
use the same number of iterations.

Now we look which code is faster for different sizes of Poisson matrix A. Figure (18) shows
the results.
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Figure 18: Time of computing the system Ax = b with the Bi-CGSTAB with different sizes
of Poisson matrix A.

We see that every code is faster than the MATLAB code x=bicgstab(A,b) when the size of
the Poisson matrix A increases. However, we can not yet make this conclusion. Note that v
says something about the size of the matix A (see Figure (18)). If we look at the number of
iterations, we see that the code x=bicgstab(A,b) needs 20 iterations when v ≤ 10, but when
v > 10 the code uses 1 iteration (A is a 100v2 × 100v2-matrix). I do not know the reason
of this choice. We let the number of iterations of the other codes equal to the number of it-
erations of code x=bicgstab(A,b). We can use the relative residual to say it is a fair comparison.

8.1.3 Relative Residual

Suppose x̃ is an approximation of the solution of the linear system defined by Ax = b. The
relative residual is:

ε =
||b−Ax̃||
||b||

Except for the code x=bicgstab(A,b), the ε of the codes are the same. In figure (19) we can
see the difference of the values of the relative residual ε.

55



Figure 19: The relative residual of different sizes of Poisson matrix A.

We see that the relative residual of the other codes is lower than the relative residual of the
MATLAB code x=bicgstab(A,b). With this result and figure (18) we can conclude that our
code is faster than the MATLAB code x=bicgstab(A,b). We see also that the relative residual
increase till 1. This means that x̃ is not a good approximation of the linear system Ax = b
when the size of Poisson matrix A increase. In figure (20) we see what is happend if v increase.

Figure 20: The relative residual of different sizes of Poisson matrix A.

The relative residual of code x=bicgstab(A,b) is close to 1 when v increase, but the relative
residual of the other codes is higher than 1. This is a strange and undesirable result. We do
not know why both methods gives this bad results for large sizes of Poisson matrix A.
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8.2 Bi-CGSTAB with the Poisson matrix and the incomplete decomposi-
tion preconditioner

The code that we use in this section is almost the same as in the previous section, but now we
use another preconditioner M . In section 8.1, M (the DSP) has a convenient structure. We
can make a scalar vector multiplication for computing M−1v. In this section, where we use
an IDP, the structure of matrix M is not like that. Section 4.3.3 describes how we find the
IDP. In the Bi-CGSTAB method we need matrix M−1. In case we use the ISP, the matrix
M−1 is a full matrix. So we can not compute M−1v as a scalar vector multiplication, but we
must use the whole matrix M−1. The problem is that a matrix-vector multiplication costs
a lot of time. Appendix F describes the function IPvanPoissonGPU where we compute the
matrix M−1. In the first part of the code of the function we do not use the GPU, because
it is not a parallel computation. After the matrices L,D and invD have been computed, we
use the GPU.

In figure (21) can we see the results.The time of the code on the GPU is much larger then the
other codes. We can conclude that it is not a good idea use the GPU when we use the IDP.

Figure 21: Time of compute the system Ax = b with the Bi-CGSTAB with different sizes of
Poisson matrix A, use the IDP.

Figure (22) shows all the results, except the results for the code on the GPU.
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Figure 22: Time of compute the system Ax = b with the Bi-CGSTAB with different sizes of
Poisson matrix A, use the IDP.

We see that code x=bicgstab(A,b) is much faster. The other codes have also one iteration
and the relative residual is not lower. So using the IDP is not an option when we work in
MATLAB.
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9 Conclusion and Discussion

This document can be separated into two topics: solve a load flow problem with MATLAB by
using the GPU and speed up the code for solve the linear system Ax = b with Bi-CGSTAB
in MATLAB where A is the Poisson matrix. First we discuss the results of the part about
the load flow problem. After that we discuss the second part.

In chapter 2 and 3 we describe what is a load flow problem and how it can be solved. This
subject was part of my literature review, where an important source was the document of
R. Idema [3]. These chapters were especially background information, because there is a
program Matpower that gives us the admittance matrices. In chapter 4 we give two itera-
tive methods and three preconditioners, but we made the choice to choose the Bi-CGSTAB
method and use two preconditioners. In chapter 5 we start programming on the GPU with
MATLAB, first with the Poisson matrix. We saw that the code be slower when we use full
matrices, especially when we use the GPU. In chapter 5 can one read that MATLAB works
fine with sparse matrices, but when we put this sparse matrix on the GPU, MATLAB can
only work with it when it is a full matrix (with a lot of zeros). The other problem was that
the admittance matrix does not have a convenient structure, like the Poisson matrix. So we
conclude in chapter 6 that it gives us not the speed up we want. We have not found a fast
code in MATLAB by using the GPU, because of the full matrices. This was the reason of the
second part: can we speed up the code if matrix A has a convenient structure.

In chapter 7 we start with the structure of a Poisson matrix A. We have seen that the tool
arrayfun can give us a lot of speed up, dependent on the type of the calculation. The problem
is that arrayfun does not work well with matrices and the standard vector multiplication is
not supported. So we must find tricks to remedy this. By these tricks the code has not been
faster. Nevertheless, we succeeded to make the Bi-CGSTAB code faster than the MATLAB
code x=bicgstab(A,b), but only when we use a DSP. This preconditioner can be translated to
a vector seeing the structure of the matrix. When we use the IDP, then we have again the
problem that we must use a full matrix. But when we use an IDP, our codes were faster, but
the code with the CPU was faster than the code with the GPU. So we have to find a faster
code, but using the GPU in MATLAB does not give us any speed up.

We can not conlude that using the GPU in MATLAB is senseless. In our method we have
the situation that we work with matrices and multiple vectors. This costs memory and time
because of the placing of vectors to the GPU. In other problems and methods it is possible
that using the GPU gives time savings, see the easy example in chapter 5. But for solving
the linear system Ax = b we think that using the GPU in MATLAB in general is not a
good idea. The disadvantage of using MATLAB is that we do not exactly know how de code
x=bicgstab(A,b) in MATLAB works, and how MATLAB moved vectors on the GPU.

There is a command in MATLAB, parallel.gpu.CUDAkernel(-,-), which can operate on MAT-
LAB array or gpuArray variables. To use this code, you should still program in CUDA. In
this case, using MATLAB is then unnecessary.
If you really want more speed up, you can read it in a lot of literature, program in CUDA
(programming in C) and not using MATLAB.
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A
function IPvanPoisson

---------------------------------------

function [A,L,invL,invM,n]=IPvanPoisson(N);

A = gallery(’poisson’,N);

L=A; n=N*N;

for p=1:n

L(p,p)=sqrt(L(p,p));

for i=p+1:n

if L(i,p)~=0

L(i,p)=L(i,p)/L(p,p);

end

end

for j=p+1:n

for i=j:n

if L(i,j)~=0

L(i,j)=L(i,j)-L(i,p)*L(j,p);

end

end

end

end

for i=1:n

for j=i+1:n

L(i,j)=0;

end

end

D=0*L;

invD=0*L;

for i=1:n

D(i,i)=L(i,i);

invD(i,i)=1/L(i,i);

end

N=invD*(L-D);

I=eye(n);

L=D*(I+N);

T=I+N;

invT=zeros(n);

for i=0:3

invT=invT + (-1)^i*(N)^i;

end

invL=invT*invD;

invM=invL’*invL;

---------------------------------------
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B
Bi-CGSTAB with IP on the CPU and GPU

---------------------------------------

s=rng(’default’);

format long;

aantaltell=7

TijdDirect=zeros(aantaltell,1);

TijdmetIP=zeros(aantaltell,1);

TijdmetIPGPU=zeros(aantaltell,1);

for tell=1:aantaltell

N=tell;

%With MATLAB code bicgstab

tic

A = gallery(’poisson’,N);

n=N*N;

k=3;

b=ones(n,1);

for i=1:n

b(i,1)=b(i,1)*rand;

end

x=bicgstab(A,b);

tijddirect=toc;

error=norm(A*x-b,2)/norm(x,2);

if error == Inf

error = 10^-8

end

%code without GPU

[A,L,invL,invM,n]=IPvanPoisson(N);

tic

u0=rand*ones(n,1);

r0=b-A*u0;

r_0=r0;

c=0;

for i=1:n

c=c+r_0(i,1)*r0(i,1); %inner product (r_0,r0)

end

RowiMin1=1;

AlphaiMin1=1;

OhmiMin1=1;

viMin1=zeros(n,1);

piMin1=zeros(n,1);
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rowi=1;

alphai=1;

ohmi=1;

vi=zeros(n,1);

pi=zeros(n,1);

ri=r0;

ui=u0;

errorCPU=1000000;

k=0;

while errorCPU>=error && k<20

k=k+1;

rowi=dot(r_0,ri);

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=ri+betaiMin1*(piMin1-OhmiMin1*viMin1);

pdak=invM*pi;

vi=A*pdak;

alphai=rowi/dot(r_0,vi);

s=ri-alphai*vi;

z=invM*s;

t=A*z;

ohmi=dot(t,s)/dot(t,t);

ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMin1=rowi;

AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;

piMin1=pi;

errorCPU=norm(A*ui-b,2)/norm(b,2);

end

CPUui=ui;

tijdmetIP=toc;

%code with GPU

[A,L,invL,invM,n]=IPvanPoissonGPU(N);

tic

u0=rand*ones(n,1);

r0=b-A*u0;

r_0=r0;

c=0;

for i=1:n

c=c+r_0(i,1)*r0(i,1); %inner product (r_0,r0)

end
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RowiMin1=1;

AlphaiMin1=1;

OhmiMin1=1;

viMin1=zeros(n,1);

piMin1=zeros(n,1);

rowi=1;

alphai=1;

ohmi=1;

vi=zeros(n,1);

pi=zeros(n,1);

ri=r0;

ui=u0;

errorGPU=1000000;

k=0;

while errorGPU>=error && k<20

k=k+1;

rowi=dot(r_0,ri);

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=ri+betaiMin1*(piMin1-OhmiMin1*viMin1);

pdak=invM*pi;

vi=A*pdak;

alphai=rowi/dot(r_0,vi);

s=ri-alphai*vi;

z=invM*s;

t=A*z;

ohmi=dot(t,s)/dot(t,t);

ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMin1=rowi;

AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;

piMin1=pi;

errorGPU=norm(A*ui-b,2)/norm(b,2);

end

GPUui=ui;

tijdmetIPGPU=toc;

end

plot(TijdDirect,’r’)

hold on

plot(TijdmetIP,’g’)

hold on

plot(TijdmetIPGPU,’b’)

---------------------------------------

63



C
Bi-CGSTAB with diagonal scaling on the CPU and GPU

---------------------------------------

s=rng(’default’);

format long;

aantaltell=7;

TijdDirect=zeros(aantaltell,1);

TijdmetDP=zeros(aantaltell,1);

TijdmetDPGPU=zeros(aantaltell,1);

for tell=2:aantaltell

N=tell;

%With MATLAB code bicgstab

tic

A = gallery(’poisson’,N);

n=N*N;

k=3;

b=ones(n,1);

for i=1:n

b(i,1)=b(i,1)*rand;

end

x=bicgstab(A,b);

tijddirect=toc;

error=norm(A*x-b,2)/norm(x,2);

if error == Inf

error = 10^-8

end

%code without GPU

invM=A;

for i=1:n

invM(i,i)=1/A(i,i);

end

tic

u0=rand*ones(n,1);

r0=b-A*u0;

r_0=r0;

c=0;

for i=1:n

c=c+r_0(i,1)*r0(i,1);

end

RowiMin1=1;

AlphaiMin1=1;

OhmiMin1=1;

viMin1=zeros(n,1);

piMin1=zeros(n,1);

rowi=1;
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alphai=1;

ohmi=1;

vi=zeros(n,1);

pi=zeros(n,1);

ri=r0;

ui=u0;

errorCPU=1000000;

k=0;

while errorCPU>=error && k<20

k=k+1;

rowi=dot(r_0,ri);

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=ri+betaiMin1*(piMin1-OhmiMin1*viMin1);

pdak=invM*pi;

vi=A*pdak;

alphai=rowi/dot(r_0,vi);

s=ri-alphai*vi;

z=invM*s;

t=A*z;

ohmi=dot(t,s)/dot(t,t);

ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMin1=rowi;

AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;

piMin1=pi;

errorCPU=norm(A*ui-b,2)/norm(b,2);

end

CPUui=ui;

tijdmetDP=toc;

%code with GPU

A=zeros(n)+A; %here we make a full matrix

A=gpuArray(A);

invM=gpuArray(zeros(n));

for i=1:n

invM(i,i)=1/A(i,i);

end

b=gpuArray(b); %place the vector on the GPU

tic

u0=gpuArray(rand*ones(n,1));

r0=b-A*u0;

r_0=r0;

c=0;

for i=1:n

c=c+r_0(i,1)*r0(i,1);

end
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RowiMin1=1;

AlphaiMin1=1;

OhmiMin1=1;

viMin1=gpuArray(zeros(n,1));

piMin1=gpuArray(zeros(n,1));

rowi=1;

alphai=1;

ohmi=1;

vi=gpuArray(zeros(n,1));

pi=gpuArray(zeros(n,1));

ri=r0;

ui=u0;

errorGPU=1000000;

k=0;

while errorGPU>=error && k<20

k=k+1;

rowi=dot(r_0,ri);

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=ri+betaiMin1*(piMin1-OhmiMin1*viMin1);

pdak=invM*pi;

vi=A*pdak;

alphai=rowi/dot(r_0,vi);

s=ri-alphai*vi;

z=invM*s;

t=A*z;

ohmi=dot(t,s)/dot(t,t);

ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMin1=rowi;

AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;

piMin1=pi;

errorGPU=norm(A*ui-b,2)/norm(b,2);

end

GPUui=ui;

tijdmetDPGPU=toc;

TijdDirect(tell,1)=tijddirect;

TijdmetDP(tell,1)=tijdmetDP;

TijdmetDPGPU(tell,1)=tijdmetDPGPU;

end

plot(TijdDirect,’r’)

hold on

plot(TijdmetIP,’g’)

hold on

plot(TijdmetIPGPU,’b’)

---------------------------------------
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D
Matpower en Bi-CGSTAB

---------------------------------------

clear all;

close all;

clc

format long;

% Functions below come from "runpf()"

n=10;

mpc = loadcase(’case10ac’); %mpc = loadcase(’case3120sp’); %mpc = loadcase(’case30Q’);

%mpc = loadcase(’case39’); %mpc = loadcase(’case118’);

% Make admittance matrix

[Y,~,~] = makeYbus(mpc.baseMVA, mpc.bus, mpc.branch);

A=zeros(n);

for i=1:n

for j=1:n

A(i,j)=Y(i,j);

end

end

%With MATLAB code bicgstab

tic

b=rand(n,1);

x=bicgstab(A,b);

tijddirect=toc;

%code without GPU

[A,L,invL,invM]=aaaIPvanCPU(A,n);

tic

u0=rand*ones(n,1);

U0=u0;

r0=b-A*u0;

r_0=r0;

c=0;

for i=1:n

c=c+r_0(i,1)*r0(i,1);

end

RowiMin1=1;

AlphaiMin1=1;

OhmiMin1=1;

viMin1=zeros(n,1);

piMin1=zeros(n,1);

rowi=1;

alphai=1;

ohmi=1;

vi=zeros(n,1);
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pi=zeros(n,1);

ri=r0;

ui=u0;

k=0;

while k<20

k=k+1;

rowi=dot(r_0,ri);

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=ri+betaiMin1*(piMin1-OhmiMin1*viMin1);

pdak=invM*pi;

vi=A*pdak;

alphai=rowi/dot(r_0,vi);

s=ri-alphai*vi;

z=invM*s;

t=A*z;

ohmi=dot(t,s)/dot(t,t);

ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMin1=rowi;

AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;

piMin1=pi;

end

tijdmetIP=toc;

%code with GPU

tic

u0=U0;

r0=b-A*u0;

r_0=r0;

c=0;

for i=1:n

c=c+r_0(i,1)*r0(i,1);

end

RowiMin1=1;

AlphaiMin1=1;

OhmiMin1=1;

viMin1=zeros(n,1);

piMin1=zeros(n,1);

rowi=1;

alphai=1;

ohmi=1;

vi=zeros(n,1);

pi=zeros(n,1);

ri=r0;

ui=u0;

k=0;
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while k<20

k=k+1;

rowi=dot(r_0,ri);

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=ri+betaiMin1*(piMin1-OhmiMin1*viMin1);

pdak=invM*pi;

vi=A*pdak;

alphai=rowi/dot(r_0,vi);

s=ri-alphai*vi;

z=invM*s;

t=A*z;

ohmi=dot(t,s)/dot(t,t);

ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMin1=rowi;

AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;

piMin1=pi;

end

tijdmetIPGPU=toc;

---------------------------------------
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E
Poisson matrix en Bi-CGSTAB with DSP, with functions

Function PoissonAwithCPU

---------------------------------------

function AkeerZcpu = PoissonAwithCPU(N,c)

d=c;

n=N*N;

c(1,1)=-d(2,1)-d(N+1,1);

c(n,1)=-d(n-1,1)-d(n-N,1);

c(N,1)=-d(N-1,1)-d(N+N,1);

c(n-(N-1),1)=-d(n-(N-1)+1,1)-d(n-(N-1)-N,1);

for i=2:N-1

c(i,1)=-d(i-1,1)-d(i+1,1)-d(i+N,1);

end

for i=N*N-(N-2):n-1;

c(i,1)=-d(i-1,1)-d(i+1,1)-d(i-N,1);

end

for i=1:N-2

f=i*N+1;

c(f,1)=-d(f+1,1)-d(f+N,1)-d(f-N,1);

end

for i=1:N-2

f=(i+1)*N;

c(f,1)=-d(f-1,1)-d(f-N,1)-d(f+N,1);

end

for i=1:N-2

f=i*N;

for j=1:N-2

p=f+(j+1);

c(p,1)=-d(p+1,1)-d(p+N,1)-d(p-1,1)-d(p-N,1);

end

end

AkeerZcpu=c+4*d;

end

---------------------------------------

Function PoissonAwithGPU

---------------------------------------

function AkeerZgpu = PoissonAwithGPU(N,b00,e1,e2)

n=N*N;
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b10=0*b00; b20=0*b00; b30=0*b00; b40=0*b00;

b10(2:n)=b00(1:n-1);

b20(1:n-1)=b00(2:n);

b30(1:n-N)=b00(N+1:n);

b40(N+1:n)=b00(1:n-N);

AkeerZgpu=arrayfun(@VermenigPoison3,b00,b10,b20,b30,b40,e1,e2);

end

---------------------------------------

Function Vector1

---------------------------------------

function V1 = Vector1(a0,g,b0)

V1=a0-g*b0;

end

---------------------------------------

Function Vector2

---------------------------------------

function V2 = Vector2(a0,g1,b0,g2,c0)

v1=g1*b0;

v2=g2*c0;

V2=a0+v1+v2;

end

---------------------------------------

Function Vector3

---------------------------------------

function V3 = Vector3(a0,g1,b0,g2,c0)

v=b0-g2*c0

V3=a0+g1*v;

end

---------------------------------------

Code Bi-CGSTAB with the Poisson matrix and DSP

---------------------------------------

clc;

clear all;

s=rng(’default’);

format long;

N=1000;

n=N*N;
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b=rand(n,1);

%code MATLAB bicgstab

tic

A = gallery(’poisson’,N);

[x,flag,relres,iter]=bicgstab(A,b);

k=iter %number of iteraties

matlabcode=toc

% code cpu with CPU1

tic

u0=ones(n,1);

Au=PoissonAwithCPU(N,u0); %Poissonmatrix * u0

r0=b-Au;

r_0=r0;

RowiMin1=1;

AlphaiMin1=1;

OhmiMin1=1;

viMin1=zeros(n,1);

piMin1=zeros(n,1);

rowi=1;

alphai=1;

ohmi=1;

vi=zeros(n,1);

pi=zeros(n,1);

ri=r0;

ui=u0;

for i=0:k

rowi=r_0’*ri;

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=ri+betaiMin1*(piMin1-OhmiMin1*viMin1);

pdak=1/4*pi; %invM*pi

vi=PoissonAwithCPU(N,pdak);

Dotr_0vi=r_0’*vi;

alphai=rowi/Dotr_0vi;

s=ri-alphai*vi;

z= 1/4*s; %invM*pi

t=PoissonAwithCPU(N,z);

Dotts=t’*s;

Dottt=t’*t;

ohmi=Dotts/Dottt;

ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMin1=rowi;

AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;
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piMin1=pi;

end

CPU1code=toc

%code cpu with type2

tic

A = gallery(’poisson’,N);

u0=ones(n,1);

Au=A*u0; %Poissonmatrix * u0

r0=b-Au;

r_0=r0;

RowiMin1=1;

AlphaiMin1=1;

OhmiMin1=1;

viMin1=zeros(n,1);

piMin1=zeros(n,1);

rowi=1;

alphai=1;

ohmi=1;

vi=zeros(n,1);

pi=zeros(n,1);

ri=r0;

ui=u0;

for i=0:k

rowi=r_0’*ri;

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=ri+betaiMin1*(piMin1-OhmiMin1*viMin1);

pdak=1/4*pi; % invM*pi

vi=A*pdak;

Dotr_0vi=r_0’*vi;

alphai=rowi/Dotr_0vi;

s=ri-alphai*vi;

z= 1/4*s; %invM*pi

t=A*z;

Dotts=t’*s;

Dottt=t’*t;

ohmi=Dotts/Dottt;

ui=ui+alphai*pdak+ohmi*z;

ri=s-ohmi*t;

RowiMin1=rowi;

AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;

piMin1=pi;

end

type2code=toc
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%code gpu with GPU1

tic

u0=gpuArray(ones(n,1));

%we make one time e1 and e2

e1=ones(n,1);

e2=e1;

for i=1:N-1

e1(i*N+1,1)=0;

e2(i*N,1)=0;

end

e1=gpuArray(e1);

e2=gpuArray(e2);

Au=PoissonAwithGPU(N,u0,e1,e2); %Poissonmatrix * u0

r0=gpuArray(b)-Au;

r_0=r0; %ones(n,1);

RowiMin1=gpuArray(1);

AlphaiMin1=gpuArray(1);

OhmiMin1=gpuArray(1);

viMin1=gpuArray(zeros(n,1));

piMin1=gpuArray(zeros(n,1));

rowi=gpuArray(1);

alphai=rowi;

ohmi=rowi;

vi=viMin1;

pi=piMin1;

ri=r0;

ui=u0;

for i=0:k

rowi=r_0’*ri; %dot(r_0,ri);

betaiMin1=(rowi/RowiMin1)*(AlphaiMin1/OhmiMin1);

pi=arrayfun(@Vector3,ri,betaiMin1,piMin1,OhmiMin1,viMin1);

pdak=1/4*pi; % invM*pi

vi=PoissonAwithGPU(N,pdak,e1,e2);

Dotr_0vi=dot(r_0,vi);

alphai=rowi/Dotr_0vi;

s=arrayfun(@Vector1,ri,alphai,vi);

z=1/4*s; %invM*pi

t=PoissonAwithGPU(N,z,e1,e2);

Dotts=dot(t,s);

Dottt=dot(t,t);

ohmi=Dotts/Dottt;

ui=arrayfun(@Vector2,ui,alphai,pdak,ohmi,z);

ri=arrayfun(@Vector1,s,ohmi,t);

RowiMin1=rowi;
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AlphaiMin1=alphai;

OhmiMin1=ohmi;

viMin1=vi;

piMin1=pi;

end

GPU2code=toc

---------------------------------------

75



F
Function ISP on the GPU

Function IPvanPoissonGPU

---------------------------------------

function [L,invL,invM,n]=IPvanPoissonGPU(N);

n=N*N;

A = gallery(’poisson’,N);

L=A;

for p=1:n

L(p,p)=sqrt(L(p,p));

for i=p+1:n

if L(i,p)~=0

L(i,p)=L(i,p)/L(p,p);

end

end

for j=p+1:n

for i=j:n

if L(i,j)~=0

L(i,j)=L(i,j)-L(i,p)*L(j,p);

end

end

end

end

for i=1:n

for j=i+1:n

L(i,j)=0;

end

end

D=0*L;

for i=1:n

D(i,i)=L(i,i);

end

invD=0*L;

for i=1:n

invD(i,i)=1/L(i,i);

end

D=gpuArray(zeros(n)+D);

L=gpuArray(zeros(n)+L);

invD=gpuArray(zeros(n)+invD);

N=invD*(L-D);

I=gpuArray(eye(n));

invT=I-N+N*N;

invL=invT*invD;

invM=invL’*invL;

---------------------------------------
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